FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_kern.c
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD$
65 */
66
67 /*
68 * Kernel memory management.
69 */
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/proc.h>
74 #include <sys/malloc.h>
75
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <vm/vm_prot.h>
79 #include <sys/lock.h>
80 #include <vm/pmap.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pageout.h>
85 #include <vm/vm_extern.h>
86
87 vm_map_t kernel_map=0;
88 vm_map_t kmem_map=0;
89 vm_map_t exec_map=0;
90 vm_map_t clean_map=0;
91 vm_map_t u_map=0;
92 vm_map_t buffer_map=0;
93 vm_map_t mb_map=0;
94 int mb_map_full=0;
95 vm_map_t io_map=0;
96 vm_map_t phys_map=0;
97
98 /*
99 * kmem_alloc_pageable:
100 *
101 * Allocate pageable memory to the kernel's address map.
102 * "map" must be kernel_map or a submap of kernel_map.
103 */
104
105 vm_offset_t
106 kmem_alloc_pageable(map, size)
107 vm_map_t map;
108 register vm_size_t size;
109 {
110 vm_offset_t addr;
111 register int result;
112
113 size = round_page(size);
114 addr = vm_map_min(map);
115 result = vm_map_find(map, NULL, (vm_offset_t) 0,
116 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
117 if (result != KERN_SUCCESS) {
118 return (0);
119 }
120 return (addr);
121 }
122
123 /*
124 * Allocate wired-down memory in the kernel's address map
125 * or a submap.
126 */
127 vm_offset_t
128 kmem_alloc(map, size)
129 register vm_map_t map;
130 register vm_size_t size;
131 {
132 vm_offset_t addr;
133 register vm_offset_t offset;
134 vm_offset_t i;
135
136 size = round_page(size);
137
138 /*
139 * Use the kernel object for wired-down kernel pages. Assume that no
140 * region of the kernel object is referenced more than once.
141 */
142
143 /*
144 * Locate sufficient space in the map. This will give us the final
145 * virtual address for the new memory, and thus will tell us the
146 * offset within the kernel map.
147 */
148 vm_map_lock(map);
149 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
150 vm_map_unlock(map);
151 return (0);
152 }
153 offset = addr - VM_MIN_KERNEL_ADDRESS;
154 vm_object_reference(kernel_object);
155 vm_map_insert(map, kernel_object, offset, addr, addr + size,
156 VM_PROT_ALL, VM_PROT_ALL, 0);
157 vm_map_unlock(map);
158
159 /*
160 * Guarantee that there are pages already in this object before
161 * calling vm_map_pageable. This is to prevent the following
162 * scenario:
163 *
164 * 1) Threads have swapped out, so that there is a pager for the
165 * kernel_object. 2) The kmsg zone is empty, and so we are
166 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
167 * there is no page, but there is a pager, so we call
168 * pager_data_request. But the kmsg zone is empty, so we must
169 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
170 * we get the data back from the pager, it will be (very stale)
171 * non-zero data. kmem_alloc is defined to return zero-filled memory.
172 *
173 * We're intentionally not activating the pages we allocate to prevent a
174 * race with page-out. vm_map_pageable will wire the pages.
175 */
176
177 for (i = 0; i < size; i += PAGE_SIZE) {
178 vm_page_t mem;
179
180 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
181 VM_ALLOC_ZERO | VM_ALLOC_RETRY);
182 if ((mem->flags & PG_ZERO) == 0)
183 vm_page_zero_fill(mem);
184 vm_page_flag_clear(mem, PG_ZERO);
185 vm_page_wakeup(mem);
186 mem->valid = VM_PAGE_BITS_ALL;
187 }
188
189 /*
190 * And finally, mark the data as non-pageable.
191 */
192
193 (void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
194
195 return (addr);
196 }
197
198 /*
199 * kmem_free:
200 *
201 * Release a region of kernel virtual memory allocated
202 * with kmem_alloc, and return the physical pages
203 * associated with that region.
204 */
205 void
206 kmem_free(map, addr, size)
207 vm_map_t map;
208 register vm_offset_t addr;
209 vm_size_t size;
210 {
211 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
212 }
213
214 /*
215 * kmem_suballoc:
216 *
217 * Allocates a map to manage a subrange
218 * of the kernel virtual address space.
219 *
220 * Arguments are as follows:
221 *
222 * parent Map to take range from
223 * size Size of range to find
224 * min, max Returned endpoints of map
225 * pageable Can the region be paged
226 */
227 vm_map_t
228 kmem_suballoc(parent, min, max, size)
229 register vm_map_t parent;
230 vm_offset_t *min, *max;
231 register vm_size_t size;
232 {
233 register int ret;
234 vm_map_t result;
235
236 size = round_page(size);
237
238 *min = (vm_offset_t) vm_map_min(parent);
239 ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
240 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
241 if (ret != KERN_SUCCESS) {
242 printf("kmem_suballoc: bad status return of %d.\n", ret);
243 panic("kmem_suballoc");
244 }
245 *max = *min + size;
246 pmap_reference(vm_map_pmap(parent));
247 result = vm_map_create(vm_map_pmap(parent), *min, *max);
248 if (result == NULL)
249 panic("kmem_suballoc: cannot create submap");
250 if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
251 panic("kmem_suballoc: unable to change range to submap");
252 return (result);
253 }
254
255 /*
256 * Allocate wired-down memory in the kernel's address map for the higher
257 * level kernel memory allocator (kern/kern_malloc.c). We cannot use
258 * kmem_alloc() because we may need to allocate memory at interrupt
259 * level where we cannot block (canwait == FALSE).
260 *
261 * This routine has its own private kernel submap (kmem_map) and object
262 * (kmem_object). This, combined with the fact that only malloc uses
263 * this routine, ensures that we will never block in map or object waits.
264 *
265 * Note that this still only works in a uni-processor environment and
266 * when called at splhigh().
267 *
268 * We don't worry about expanding the map (adding entries) since entries
269 * for wired maps are statically allocated.
270 */
271 vm_offset_t
272 kmem_malloc(map, size, waitflag)
273 register vm_map_t map;
274 register vm_size_t size;
275 boolean_t waitflag;
276 {
277 register vm_offset_t offset, i;
278 vm_map_entry_t entry;
279 vm_offset_t addr;
280 vm_page_t m;
281
282 if (map != kmem_map && map != mb_map)
283 panic("kmem_malloc: map != {kmem,mb}_map");
284
285 size = round_page(size);
286 addr = vm_map_min(map);
287
288 /*
289 * Locate sufficient space in the map. This will give us the final
290 * virtual address for the new memory, and thus will tell us the
291 * offset within the kernel map.
292 */
293 vm_map_lock(map);
294 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
295 vm_map_unlock(map);
296 if (map == mb_map) {
297 mb_map_full = TRUE;
298 printf("Out of mbuf clusters - adjust NMBCLUSTERS or increase maxusers!\n");
299 return (0);
300 }
301 if (waitflag == M_WAITOK)
302 panic("kmem_malloc(%d): kmem_map too small: %d total allocated",
303 size, map->size);
304 return (0);
305 }
306 offset = addr - VM_MIN_KERNEL_ADDRESS;
307 vm_object_reference(kmem_object);
308 vm_map_insert(map, kmem_object, offset, addr, addr + size,
309 VM_PROT_ALL, VM_PROT_ALL, 0);
310
311 for (i = 0; i < size; i += PAGE_SIZE) {
312 retry:
313 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
314 (waitflag == M_NOWAIT) ? VM_ALLOC_INTERRUPT : VM_ALLOC_SYSTEM);
315
316 /*
317 * Ran out of space, free everything up and return. Don't need
318 * to lock page queues here as we know that the pages we got
319 * aren't on any queues.
320 */
321 if (m == NULL) {
322 if (waitflag == M_WAITOK) {
323 vm_map_unlock(map);
324 VM_WAIT;
325 vm_map_lock(map);
326 goto retry;
327 }
328 vm_map_delete(map, addr, addr + size);
329 vm_map_unlock(map);
330 return (0);
331 }
332 vm_page_flag_clear(m, PG_ZERO);
333 m->valid = VM_PAGE_BITS_ALL;
334 }
335
336 /*
337 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
338 * be able to extend the previous entry so there will be a new entry
339 * exactly corresponding to this address range and it will have
340 * wired_count == 0.
341 */
342 if (!vm_map_lookup_entry(map, addr, &entry) ||
343 entry->start != addr || entry->end != addr + size ||
344 entry->wired_count != 0)
345 panic("kmem_malloc: entry not found or misaligned");
346 entry->wired_count = 1;
347
348 vm_map_simplify_entry(map, entry);
349
350 /*
351 * Loop thru pages, entering them in the pmap. (We cannot add them to
352 * the wired count without wrapping the vm_page_queue_lock in
353 * splimp...)
354 */
355 for (i = 0; i < size; i += PAGE_SIZE) {
356 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
357 vm_page_wire(m);
358 vm_page_wakeup(m);
359 pmap_enter(kernel_pmap, addr + i, VM_PAGE_TO_PHYS(m),
360 VM_PROT_ALL, 1);
361 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
362 }
363 vm_map_unlock(map);
364
365 return (addr);
366 }
367
368 /*
369 * kmem_alloc_wait
370 *
371 * Allocates pageable memory from a sub-map of the kernel. If the submap
372 * has no room, the caller sleeps waiting for more memory in the submap.
373 *
374 */
375 vm_offset_t
376 kmem_alloc_wait(map, size)
377 vm_map_t map;
378 vm_size_t size;
379 {
380 vm_offset_t addr;
381
382 size = round_page(size);
383
384 for (;;) {
385 /*
386 * To make this work for more than one map, use the map's lock
387 * to lock out sleepers/wakers.
388 */
389 vm_map_lock(map);
390 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
391 break;
392 /* no space now; see if we can ever get space */
393 if (vm_map_max(map) - vm_map_min(map) < size) {
394 vm_map_unlock(map);
395 return (0);
396 }
397 vm_map_unlock(map);
398 tsleep(map, PVM, "kmaw", 0);
399 }
400 vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
401 vm_map_unlock(map);
402 return (addr);
403 }
404
405 /*
406 * kmem_free_wakeup
407 *
408 * Returns memory to a submap of the kernel, and wakes up any processes
409 * waiting for memory in that map.
410 */
411 void
412 kmem_free_wakeup(map, addr, size)
413 vm_map_t map;
414 vm_offset_t addr;
415 vm_size_t size;
416 {
417 vm_map_lock(map);
418 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
419 wakeup(map);
420 vm_map_unlock(map);
421 }
422
423 /*
424 * Create the kernel map; insert a mapping covering kernel text, data, bss,
425 * and all space allocated thus far (`boostrap' data). The new map will thus
426 * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
427 * the range between `start' and `end' as free.
428 */
429 void
430 kmem_init(start, end)
431 vm_offset_t start, end;
432 {
433 register vm_map_t m;
434
435 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
436 vm_map_lock(m);
437 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */
438 kernel_map = m;
439 kernel_map->system_map = 1;
440 (void) vm_map_insert(m, NULL, (vm_offset_t) 0,
441 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
442 /* ... and ending with the completion of the above `insert' */
443 vm_map_unlock(m);
444 }
Cache object: e1d843f99c660b594698725e57f63485
|