FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_kern.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61 /*
62 * Kernel memory management.
63 */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h> /* for ticks and hz */
71 #include <sys/eventhandler.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/malloc.h>
76
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_pageout.h>
84 #include <vm/vm_extern.h>
85 #include <vm/uma.h>
86
87 vm_map_t kernel_map=0;
88 vm_map_t kmem_map=0;
89 vm_map_t exec_map=0;
90 vm_map_t pipe_map;
91 vm_map_t buffer_map=0;
92
93 /*
94 * kmem_alloc_nofault:
95 *
96 * Allocate a virtual address range with no underlying object and
97 * no initial mapping to physical memory. Any mapping from this
98 * range to physical memory must be explicitly created prior to
99 * its use, typically with pmap_qenter(). Any attempt to create
100 * a mapping on demand through vm_fault() will result in a panic.
101 */
102 vm_offset_t
103 kmem_alloc_nofault(map, size)
104 vm_map_t map;
105 vm_size_t size;
106 {
107 vm_offset_t addr;
108 int result;
109
110 size = round_page(size);
111 addr = vm_map_min(map);
112 result = vm_map_find(map, NULL, 0,
113 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
114 if (result != KERN_SUCCESS) {
115 return (0);
116 }
117 return (addr);
118 }
119
120 /*
121 * Allocate wired-down memory in the kernel's address map
122 * or a submap.
123 */
124 vm_offset_t
125 kmem_alloc(map, size)
126 vm_map_t map;
127 vm_size_t size;
128 {
129 vm_offset_t addr;
130 vm_offset_t offset;
131 vm_offset_t i;
132
133 size = round_page(size);
134
135 /*
136 * Use the kernel object for wired-down kernel pages. Assume that no
137 * region of the kernel object is referenced more than once.
138 */
139
140 /*
141 * Locate sufficient space in the map. This will give us the final
142 * virtual address for the new memory, and thus will tell us the
143 * offset within the kernel map.
144 */
145 vm_map_lock(map);
146 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
147 vm_map_unlock(map);
148 return (0);
149 }
150 offset = addr - VM_MIN_KERNEL_ADDRESS;
151 vm_object_reference(kernel_object);
152 vm_map_insert(map, kernel_object, offset, addr, addr + size,
153 VM_PROT_ALL, VM_PROT_ALL, 0);
154 vm_map_unlock(map);
155
156 /*
157 * Guarantee that there are pages already in this object before
158 * calling vm_map_wire. This is to prevent the following
159 * scenario:
160 *
161 * 1) Threads have swapped out, so that there is a pager for the
162 * kernel_object. 2) The kmsg zone is empty, and so we are
163 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
164 * there is no page, but there is a pager, so we call
165 * pager_data_request. But the kmsg zone is empty, so we must
166 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
167 * we get the data back from the pager, it will be (very stale)
168 * non-zero data. kmem_alloc is defined to return zero-filled memory.
169 *
170 * We're intentionally not activating the pages we allocate to prevent a
171 * race with page-out. vm_map_wire will wire the pages.
172 */
173 VM_OBJECT_LOCK(kernel_object);
174 for (i = 0; i < size; i += PAGE_SIZE) {
175 vm_page_t mem;
176
177 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
178 VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
179 mem->valid = VM_PAGE_BITS_ALL;
180 KASSERT((mem->flags & PG_UNMANAGED) != 0,
181 ("kmem_alloc: page %p is managed", mem));
182 }
183 VM_OBJECT_UNLOCK(kernel_object);
184
185 /*
186 * And finally, mark the data as non-pageable.
187 */
188 (void) vm_map_wire(map, addr, addr + size,
189 VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
190
191 return (addr);
192 }
193
194 /*
195 * kmem_free:
196 *
197 * Release a region of kernel virtual memory allocated
198 * with kmem_alloc, and return the physical pages
199 * associated with that region.
200 *
201 * This routine may not block on kernel maps.
202 */
203 void
204 kmem_free(map, addr, size)
205 vm_map_t map;
206 vm_offset_t addr;
207 vm_size_t size;
208 {
209
210 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
211 }
212
213 /*
214 * kmem_suballoc:
215 *
216 * Allocates a map to manage a subrange
217 * of the kernel virtual address space.
218 *
219 * Arguments are as follows:
220 *
221 * parent Map to take range from
222 * min, max Returned endpoints of map
223 * size Size of range to find
224 */
225 vm_map_t
226 kmem_suballoc(parent, min, max, size)
227 vm_map_t parent;
228 vm_offset_t *min, *max;
229 vm_size_t size;
230 {
231 int ret;
232 vm_map_t result;
233
234 size = round_page(size);
235
236 *min = (vm_offset_t) vm_map_min(parent);
237 ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
238 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
239 if (ret != KERN_SUCCESS) {
240 printf("kmem_suballoc: bad status return of %d.\n", ret);
241 panic("kmem_suballoc");
242 }
243 *max = *min + size;
244 result = vm_map_create(vm_map_pmap(parent), *min, *max);
245 if (result == NULL)
246 panic("kmem_suballoc: cannot create submap");
247 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
248 panic("kmem_suballoc: unable to change range to submap");
249 return (result);
250 }
251
252 /*
253 * kmem_malloc:
254 *
255 * Allocate wired-down memory in the kernel's address map for the higher
256 * level kernel memory allocator (kern/kern_malloc.c). We cannot use
257 * kmem_alloc() because we may need to allocate memory at interrupt
258 * level where we cannot block (canwait == FALSE).
259 *
260 * This routine has its own private kernel submap (kmem_map) and object
261 * (kmem_object). This, combined with the fact that only malloc uses
262 * this routine, ensures that we will never block in map or object waits.
263 *
264 * Note that this still only works in a uni-processor environment and
265 * when called at splhigh().
266 *
267 * We don't worry about expanding the map (adding entries) since entries
268 * for wired maps are statically allocated.
269 *
270 * NOTE: This routine is not supposed to block if M_NOWAIT is set, but
271 * I have not verified that it actually does not block.
272 *
273 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
274 * which we never free.
275 */
276 vm_offset_t
277 kmem_malloc(map, size, flags)
278 vm_map_t map;
279 vm_size_t size;
280 int flags;
281 {
282 vm_offset_t offset, i;
283 vm_map_entry_t entry;
284 vm_offset_t addr;
285 vm_page_t m;
286 int pflags;
287
288 size = round_page(size);
289 addr = vm_map_min(map);
290
291 /*
292 * Locate sufficient space in the map. This will give us the final
293 * virtual address for the new memory, and thus will tell us the
294 * offset within the kernel map.
295 */
296 vm_map_lock(map);
297 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
298 vm_map_unlock(map);
299 if ((flags & M_NOWAIT) == 0) {
300 for (i = 0; i < 8; i++) {
301 EVENTHANDLER_INVOKE(vm_lowmem, 0);
302 uma_reclaim();
303 vm_map_lock(map);
304 if (vm_map_findspace(map, vm_map_min(map),
305 size, &addr) == 0) {
306 break;
307 }
308 vm_map_unlock(map);
309 tsleep(&i, 0, "nokva", (hz / 4) * (i + 1));
310 }
311 if (i == 8) {
312 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
313 (long)size, (long)map->size);
314 }
315 } else {
316 return (0);
317 }
318 }
319 offset = addr - VM_MIN_KERNEL_ADDRESS;
320 vm_object_reference(kmem_object);
321 vm_map_insert(map, kmem_object, offset, addr, addr + size,
322 VM_PROT_ALL, VM_PROT_ALL, 0);
323
324 /*
325 * Note: if M_NOWAIT specified alone, allocate from
326 * interrupt-safe queues only (just the free list). If
327 * M_USE_RESERVE is also specified, we can also
328 * allocate from the cache. Neither of the latter two
329 * flags may be specified from an interrupt since interrupts
330 * are not allowed to mess with the cache queue.
331 */
332
333 if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
334 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
335 else
336 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
337
338 if (flags & M_ZERO)
339 pflags |= VM_ALLOC_ZERO;
340
341 VM_OBJECT_LOCK(kmem_object);
342 for (i = 0; i < size; i += PAGE_SIZE) {
343 retry:
344 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
345
346 /*
347 * Ran out of space, free everything up and return. Don't need
348 * to lock page queues here as we know that the pages we got
349 * aren't on any queues.
350 */
351 if (m == NULL) {
352 if ((flags & M_NOWAIT) == 0) {
353 VM_OBJECT_UNLOCK(kmem_object);
354 vm_map_unlock(map);
355 VM_WAIT;
356 vm_map_lock(map);
357 VM_OBJECT_LOCK(kmem_object);
358 goto retry;
359 }
360 /*
361 * Free the pages before removing the map entry.
362 * They are already marked busy. Calling
363 * vm_map_delete before the pages has been freed or
364 * unbusied will cause a deadlock.
365 */
366 while (i != 0) {
367 i -= PAGE_SIZE;
368 m = vm_page_lookup(kmem_object,
369 OFF_TO_IDX(offset + i));
370 vm_page_lock_queues();
371 vm_page_unwire(m, 0);
372 vm_page_free(m);
373 vm_page_unlock_queues();
374 }
375 VM_OBJECT_UNLOCK(kmem_object);
376 vm_map_delete(map, addr, addr + size);
377 vm_map_unlock(map);
378 return (0);
379 }
380 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
381 pmap_zero_page(m);
382 m->valid = VM_PAGE_BITS_ALL;
383 KASSERT((m->flags & PG_UNMANAGED) != 0,
384 ("kmem_malloc: page %p is managed", m));
385 }
386 VM_OBJECT_UNLOCK(kmem_object);
387
388 /*
389 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
390 * be able to extend the previous entry so there will be a new entry
391 * exactly corresponding to this address range and it will have
392 * wired_count == 0.
393 */
394 if (!vm_map_lookup_entry(map, addr, &entry) ||
395 entry->start != addr || entry->end != addr + size ||
396 entry->wired_count != 0)
397 panic("kmem_malloc: entry not found or misaligned");
398 entry->wired_count = 1;
399
400 /*
401 * At this point, the kmem_object must be unlocked because
402 * vm_map_simplify_entry() calls vm_object_deallocate(), which
403 * locks the kmem_object.
404 */
405 vm_map_simplify_entry(map, entry);
406
407 /*
408 * Loop thru pages, entering them in the pmap.
409 */
410 VM_OBJECT_LOCK(kmem_object);
411 for (i = 0; i < size; i += PAGE_SIZE) {
412 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
413 /*
414 * Because this is kernel_pmap, this call will not block.
415 */
416 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
417 vm_page_wakeup(m);
418 }
419 VM_OBJECT_UNLOCK(kmem_object);
420 vm_map_unlock(map);
421
422 return (addr);
423 }
424
425 /*
426 * kmem_alloc_wait:
427 *
428 * Allocates pageable memory from a sub-map of the kernel. If the submap
429 * has no room, the caller sleeps waiting for more memory in the submap.
430 *
431 * This routine may block.
432 */
433 vm_offset_t
434 kmem_alloc_wait(map, size)
435 vm_map_t map;
436 vm_size_t size;
437 {
438 vm_offset_t addr;
439
440 size = round_page(size);
441
442 for (;;) {
443 /*
444 * To make this work for more than one map, use the map's lock
445 * to lock out sleepers/wakers.
446 */
447 vm_map_lock(map);
448 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
449 break;
450 /* no space now; see if we can ever get space */
451 if (vm_map_max(map) - vm_map_min(map) < size) {
452 vm_map_unlock(map);
453 return (0);
454 }
455 map->needs_wakeup = TRUE;
456 vm_map_unlock_and_wait(map, FALSE);
457 }
458 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
459 vm_map_unlock(map);
460 return (addr);
461 }
462
463 /*
464 * kmem_free_wakeup:
465 *
466 * Returns memory to a submap of the kernel, and wakes up any processes
467 * waiting for memory in that map.
468 */
469 void
470 kmem_free_wakeup(map, addr, size)
471 vm_map_t map;
472 vm_offset_t addr;
473 vm_size_t size;
474 {
475
476 vm_map_lock(map);
477 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
478 if (map->needs_wakeup) {
479 map->needs_wakeup = FALSE;
480 vm_map_wakeup(map);
481 }
482 vm_map_unlock(map);
483 }
484
485 /*
486 * kmem_init:
487 *
488 * Create the kernel map; insert a mapping covering kernel text,
489 * data, bss, and all space allocated thus far (`boostrap' data). The
490 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
491 * `start' as allocated, and the range between `start' and `end' as free.
492 */
493 void
494 kmem_init(start, end)
495 vm_offset_t start, end;
496 {
497 vm_map_t m;
498
499 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
500 m->system_map = 1;
501 vm_map_lock(m);
502 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */
503 kernel_map = m;
504 (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
505 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL,
506 MAP_NOFAULT);
507 /* ... and ending with the completion of the above `insert' */
508 vm_map_unlock(m);
509 }
Cache object: 4d3a04b043e3606872bed8daa5ee8d46
|