FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_map.c
1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
35 *
36 *
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * Virtual memory mapping module.
65 */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102
103 /*
104 * Virtual memory maps provide for the mapping, protection,
105 * and sharing of virtual memory objects. In addition,
106 * this module provides for an efficient virtual copy of
107 * memory from one map to another.
108 *
109 * Synchronization is required prior to most operations.
110 *
111 * Maps consist of an ordered doubly-linked list of simple
112 * entries; a self-adjusting binary search tree of these
113 * entries is used to speed up lookups.
114 *
115 * Since portions of maps are specified by start/end addresses,
116 * which may not align with existing map entries, all
117 * routines merely "clip" entries to these start/end values.
118 * [That is, an entry is split into two, bordering at a
119 * start or end value.] Note that these clippings may not
120 * always be necessary (as the two resulting entries are then
121 * not changed); however, the clipping is done for convenience.
122 *
123 * As mentioned above, virtual copy operations are performed
124 * by copying VM object references from one map to
125 * another, and then marking both regions as copy-on-write.
126 */
127
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t vmspace_zone;
132 static int vmspace_zinit(void *mem, int size, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134 vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
139 vm_map_entry_t gap_entry);
140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
141 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
142 #ifdef INVARIANTS
143 static void vmspace_zdtor(void *mem, int size, void *arg);
144 #endif
145 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
146 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
147 int cow);
148 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
149 vm_offset_t failed_addr);
150
151 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
152 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
153 !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
154
155 /*
156 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
157 * stable.
158 */
159 #define PROC_VMSPACE_LOCK(p) do { } while (0)
160 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
161
162 /*
163 * VM_MAP_RANGE_CHECK: [ internal use only ]
164 *
165 * Asserts that the starting and ending region
166 * addresses fall within the valid range of the map.
167 */
168 #define VM_MAP_RANGE_CHECK(map, start, end) \
169 { \
170 if (start < vm_map_min(map)) \
171 start = vm_map_min(map); \
172 if (end > vm_map_max(map)) \
173 end = vm_map_max(map); \
174 if (start > end) \
175 start = end; \
176 }
177
178 #ifndef UMA_MD_SMALL_ALLOC
179
180 /*
181 * Allocate a new slab for kernel map entries. The kernel map may be locked or
182 * unlocked, depending on whether the request is coming from the kernel map or a
183 * submap. This function allocates a virtual address range directly from the
184 * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
185 * lock and also to avoid triggering allocator recursion in the vmem boundary
186 * tag allocator.
187 */
188 static void *
189 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
190 int wait)
191 {
192 vm_offset_t addr;
193 int error, locked;
194
195 *pflag = UMA_SLAB_PRIV;
196
197 if (!(locked = vm_map_locked(kernel_map)))
198 vm_map_lock(kernel_map);
199 addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
200 if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
201 panic("%s: kernel map is exhausted", __func__);
202 error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
203 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
204 if (error != KERN_SUCCESS)
205 panic("%s: vm_map_insert() failed: %d", __func__, error);
206 if (!locked)
207 vm_map_unlock(kernel_map);
208 error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
209 M_USE_RESERVE | (wait & M_ZERO));
210 if (error == KERN_SUCCESS) {
211 return ((void *)addr);
212 } else {
213 if (!locked)
214 vm_map_lock(kernel_map);
215 vm_map_delete(kernel_map, addr, bytes);
216 if (!locked)
217 vm_map_unlock(kernel_map);
218 return (NULL);
219 }
220 }
221
222 static void
223 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
224 {
225 vm_offset_t addr;
226 int error __diagused;
227
228 if ((pflag & UMA_SLAB_PRIV) == 0)
229 /* XXX leaked */
230 return;
231
232 addr = (vm_offset_t)item;
233 kmem_unback(kernel_object, addr, size);
234 error = vm_map_remove(kernel_map, addr, addr + size);
235 KASSERT(error == KERN_SUCCESS,
236 ("%s: vm_map_remove failed: %d", __func__, error));
237 }
238
239 /*
240 * The worst-case upper bound on the number of kernel map entries that may be
241 * created before the zone must be replenished in _vm_map_unlock().
242 */
243 #define KMAPENT_RESERVE 1
244
245 #endif /* !UMD_MD_SMALL_ALLOC */
246
247 /*
248 * vm_map_startup:
249 *
250 * Initialize the vm_map module. Must be called before any other vm_map
251 * routines.
252 *
253 * User map and entry structures are allocated from the general purpose
254 * memory pool. Kernel maps are statically defined. Kernel map entries
255 * require special handling to avoid recursion; see the comments above
256 * kmapent_alloc() and in vm_map_entry_create().
257 */
258 void
259 vm_map_startup(void)
260 {
261 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
262
263 /*
264 * Disable the use of per-CPU buckets: map entry allocation is
265 * serialized by the kernel map lock.
266 */
267 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
268 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
269 UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
270 #ifndef UMA_MD_SMALL_ALLOC
271 /* Reserve an extra map entry for use when replenishing the reserve. */
272 uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
273 uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
274 uma_zone_set_allocf(kmapentzone, kmapent_alloc);
275 uma_zone_set_freef(kmapentzone, kmapent_free);
276 #endif
277
278 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
279 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
280 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
281 #ifdef INVARIANTS
282 vmspace_zdtor,
283 #else
284 NULL,
285 #endif
286 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
287 }
288
289 static int
290 vmspace_zinit(void *mem, int size, int flags)
291 {
292 struct vmspace *vm;
293 vm_map_t map;
294
295 vm = (struct vmspace *)mem;
296 map = &vm->vm_map;
297
298 memset(map, 0, sizeof(*map));
299 mtx_init(&map->system_mtx, "vm map (system)", NULL,
300 MTX_DEF | MTX_DUPOK);
301 sx_init(&map->lock, "vm map (user)");
302 PMAP_LOCK_INIT(vmspace_pmap(vm));
303 return (0);
304 }
305
306 #ifdef INVARIANTS
307 static void
308 vmspace_zdtor(void *mem, int size, void *arg)
309 {
310 struct vmspace *vm;
311
312 vm = (struct vmspace *)mem;
313 KASSERT(vm->vm_map.nentries == 0,
314 ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
315 KASSERT(vm->vm_map.size == 0,
316 ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
317 }
318 #endif /* INVARIANTS */
319
320 /*
321 * Allocate a vmspace structure, including a vm_map and pmap,
322 * and initialize those structures. The refcnt is set to 1.
323 */
324 struct vmspace *
325 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
326 {
327 struct vmspace *vm;
328
329 vm = uma_zalloc(vmspace_zone, M_WAITOK);
330 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
331 if (!pinit(vmspace_pmap(vm))) {
332 uma_zfree(vmspace_zone, vm);
333 return (NULL);
334 }
335 CTR1(KTR_VM, "vmspace_alloc: %p", vm);
336 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
337 refcount_init(&vm->vm_refcnt, 1);
338 vm->vm_shm = NULL;
339 vm->vm_swrss = 0;
340 vm->vm_tsize = 0;
341 vm->vm_dsize = 0;
342 vm->vm_ssize = 0;
343 vm->vm_taddr = 0;
344 vm->vm_daddr = 0;
345 vm->vm_maxsaddr = 0;
346 return (vm);
347 }
348
349 #ifdef RACCT
350 static void
351 vmspace_container_reset(struct proc *p)
352 {
353
354 PROC_LOCK(p);
355 racct_set(p, RACCT_DATA, 0);
356 racct_set(p, RACCT_STACK, 0);
357 racct_set(p, RACCT_RSS, 0);
358 racct_set(p, RACCT_MEMLOCK, 0);
359 racct_set(p, RACCT_VMEM, 0);
360 PROC_UNLOCK(p);
361 }
362 #endif
363
364 static inline void
365 vmspace_dofree(struct vmspace *vm)
366 {
367
368 CTR1(KTR_VM, "vmspace_free: %p", vm);
369
370 /*
371 * Make sure any SysV shm is freed, it might not have been in
372 * exit1().
373 */
374 shmexit(vm);
375
376 /*
377 * Lock the map, to wait out all other references to it.
378 * Delete all of the mappings and pages they hold, then call
379 * the pmap module to reclaim anything left.
380 */
381 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
382 vm_map_max(&vm->vm_map));
383
384 pmap_release(vmspace_pmap(vm));
385 vm->vm_map.pmap = NULL;
386 uma_zfree(vmspace_zone, vm);
387 }
388
389 void
390 vmspace_free(struct vmspace *vm)
391 {
392
393 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
394 "vmspace_free() called");
395
396 if (refcount_release(&vm->vm_refcnt))
397 vmspace_dofree(vm);
398 }
399
400 void
401 vmspace_exitfree(struct proc *p)
402 {
403 struct vmspace *vm;
404
405 PROC_VMSPACE_LOCK(p);
406 vm = p->p_vmspace;
407 p->p_vmspace = NULL;
408 PROC_VMSPACE_UNLOCK(p);
409 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
410 vmspace_free(vm);
411 }
412
413 void
414 vmspace_exit(struct thread *td)
415 {
416 struct vmspace *vm;
417 struct proc *p;
418 bool released;
419
420 p = td->td_proc;
421 vm = p->p_vmspace;
422
423 /*
424 * Prepare to release the vmspace reference. The thread that releases
425 * the last reference is responsible for tearing down the vmspace.
426 * However, threads not releasing the final reference must switch to the
427 * kernel's vmspace0 before the decrement so that the subsequent pmap
428 * deactivation does not modify a freed vmspace.
429 */
430 refcount_acquire(&vmspace0.vm_refcnt);
431 if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
432 if (p->p_vmspace != &vmspace0) {
433 PROC_VMSPACE_LOCK(p);
434 p->p_vmspace = &vmspace0;
435 PROC_VMSPACE_UNLOCK(p);
436 pmap_activate(td);
437 }
438 released = refcount_release(&vm->vm_refcnt);
439 }
440 if (released) {
441 /*
442 * pmap_remove_pages() expects the pmap to be active, so switch
443 * back first if necessary.
444 */
445 if (p->p_vmspace != vm) {
446 PROC_VMSPACE_LOCK(p);
447 p->p_vmspace = vm;
448 PROC_VMSPACE_UNLOCK(p);
449 pmap_activate(td);
450 }
451 pmap_remove_pages(vmspace_pmap(vm));
452 PROC_VMSPACE_LOCK(p);
453 p->p_vmspace = &vmspace0;
454 PROC_VMSPACE_UNLOCK(p);
455 pmap_activate(td);
456 vmspace_dofree(vm);
457 }
458 #ifdef RACCT
459 if (racct_enable)
460 vmspace_container_reset(p);
461 #endif
462 }
463
464 /* Acquire reference to vmspace owned by another process. */
465
466 struct vmspace *
467 vmspace_acquire_ref(struct proc *p)
468 {
469 struct vmspace *vm;
470
471 PROC_VMSPACE_LOCK(p);
472 vm = p->p_vmspace;
473 if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
474 PROC_VMSPACE_UNLOCK(p);
475 return (NULL);
476 }
477 if (vm != p->p_vmspace) {
478 PROC_VMSPACE_UNLOCK(p);
479 vmspace_free(vm);
480 return (NULL);
481 }
482 PROC_VMSPACE_UNLOCK(p);
483 return (vm);
484 }
485
486 /*
487 * Switch between vmspaces in an AIO kernel process.
488 *
489 * The new vmspace is either the vmspace of a user process obtained
490 * from an active AIO request or the initial vmspace of the AIO kernel
491 * process (when it is idling). Because user processes will block to
492 * drain any active AIO requests before proceeding in exit() or
493 * execve(), the reference count for vmspaces from AIO requests can
494 * never be 0. Similarly, AIO kernel processes hold an extra
495 * reference on their initial vmspace for the life of the process. As
496 * a result, the 'newvm' vmspace always has a non-zero reference
497 * count. This permits an additional reference on 'newvm' to be
498 * acquired via a simple atomic increment rather than the loop in
499 * vmspace_acquire_ref() above.
500 */
501 void
502 vmspace_switch_aio(struct vmspace *newvm)
503 {
504 struct vmspace *oldvm;
505
506 /* XXX: Need some way to assert that this is an aio daemon. */
507
508 KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
509 ("vmspace_switch_aio: newvm unreferenced"));
510
511 oldvm = curproc->p_vmspace;
512 if (oldvm == newvm)
513 return;
514
515 /*
516 * Point to the new address space and refer to it.
517 */
518 curproc->p_vmspace = newvm;
519 refcount_acquire(&newvm->vm_refcnt);
520
521 /* Activate the new mapping. */
522 pmap_activate(curthread);
523
524 vmspace_free(oldvm);
525 }
526
527 void
528 _vm_map_lock(vm_map_t map, const char *file, int line)
529 {
530
531 if (map->system_map)
532 mtx_lock_flags_(&map->system_mtx, 0, file, line);
533 else
534 sx_xlock_(&map->lock, file, line);
535 map->timestamp++;
536 }
537
538 void
539 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
540 {
541 vm_object_t object;
542 struct vnode *vp;
543 bool vp_held;
544
545 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
546 return;
547 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
548 ("Submap with execs"));
549 object = entry->object.vm_object;
550 KASSERT(object != NULL, ("No object for text, entry %p", entry));
551 if ((object->flags & OBJ_ANON) != 0)
552 object = object->handle;
553 else
554 KASSERT(object->backing_object == NULL,
555 ("non-anon object %p shadows", object));
556 KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
557 entry, entry->object.vm_object));
558
559 /*
560 * Mostly, we do not lock the backing object. It is
561 * referenced by the entry we are processing, so it cannot go
562 * away.
563 */
564 vm_pager_getvp(object, &vp, &vp_held);
565 if (vp != NULL) {
566 if (add) {
567 VOP_SET_TEXT_CHECKED(vp);
568 } else {
569 vn_lock(vp, LK_SHARED | LK_RETRY);
570 VOP_UNSET_TEXT_CHECKED(vp);
571 VOP_UNLOCK(vp);
572 }
573 if (vp_held)
574 vdrop(vp);
575 }
576 }
577
578 /*
579 * Use a different name for this vm_map_entry field when it's use
580 * is not consistent with its use as part of an ordered search tree.
581 */
582 #define defer_next right
583
584 static void
585 vm_map_process_deferred(void)
586 {
587 struct thread *td;
588 vm_map_entry_t entry, next;
589 vm_object_t object;
590
591 td = curthread;
592 entry = td->td_map_def_user;
593 td->td_map_def_user = NULL;
594 while (entry != NULL) {
595 next = entry->defer_next;
596 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
597 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
598 MAP_ENTRY_VN_EXEC));
599 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
600 /*
601 * Decrement the object's writemappings and
602 * possibly the vnode's v_writecount.
603 */
604 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
605 ("Submap with writecount"));
606 object = entry->object.vm_object;
607 KASSERT(object != NULL, ("No object for writecount"));
608 vm_pager_release_writecount(object, entry->start,
609 entry->end);
610 }
611 vm_map_entry_set_vnode_text(entry, false);
612 vm_map_entry_deallocate(entry, FALSE);
613 entry = next;
614 }
615 }
616
617 #ifdef INVARIANTS
618 static void
619 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
620 {
621
622 if (map->system_map)
623 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
624 else
625 sx_assert_(&map->lock, SA_XLOCKED, file, line);
626 }
627
628 #define VM_MAP_ASSERT_LOCKED(map) \
629 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
630
631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
632 #ifdef DIAGNOSTIC
633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
634 #else
635 static int enable_vmmap_check = VMMAP_CHECK_NONE;
636 #endif
637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
638 &enable_vmmap_check, 0, "Enable vm map consistency checking");
639
640 static void _vm_map_assert_consistent(vm_map_t map, int check);
641
642 #define VM_MAP_ASSERT_CONSISTENT(map) \
643 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
644 #ifdef DIAGNOSTIC
645 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \
646 if (map->nupdates > map->nentries) { \
647 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \
648 map->nupdates = 0; \
649 } \
650 } while (0)
651 #else
652 #define VM_MAP_UNLOCK_CONSISTENT(map)
653 #endif
654 #else
655 #define VM_MAP_ASSERT_LOCKED(map)
656 #define VM_MAP_ASSERT_CONSISTENT(map)
657 #define VM_MAP_UNLOCK_CONSISTENT(map)
658 #endif /* INVARIANTS */
659
660 void
661 _vm_map_unlock(vm_map_t map, const char *file, int line)
662 {
663
664 VM_MAP_UNLOCK_CONSISTENT(map);
665 if (map->system_map) {
666 #ifndef UMA_MD_SMALL_ALLOC
667 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
668 uma_prealloc(kmapentzone, 1);
669 map->flags &= ~MAP_REPLENISH;
670 }
671 #endif
672 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
673 } else {
674 sx_xunlock_(&map->lock, file, line);
675 vm_map_process_deferred();
676 }
677 }
678
679 void
680 _vm_map_lock_read(vm_map_t map, const char *file, int line)
681 {
682
683 if (map->system_map)
684 mtx_lock_flags_(&map->system_mtx, 0, file, line);
685 else
686 sx_slock_(&map->lock, file, line);
687 }
688
689 void
690 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
691 {
692
693 if (map->system_map) {
694 KASSERT((map->flags & MAP_REPLENISH) == 0,
695 ("%s: MAP_REPLENISH leaked", __func__));
696 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
697 } else {
698 sx_sunlock_(&map->lock, file, line);
699 vm_map_process_deferred();
700 }
701 }
702
703 int
704 _vm_map_trylock(vm_map_t map, const char *file, int line)
705 {
706 int error;
707
708 error = map->system_map ?
709 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
710 !sx_try_xlock_(&map->lock, file, line);
711 if (error == 0)
712 map->timestamp++;
713 return (error == 0);
714 }
715
716 int
717 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
718 {
719 int error;
720
721 error = map->system_map ?
722 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
723 !sx_try_slock_(&map->lock, file, line);
724 return (error == 0);
725 }
726
727 /*
728 * _vm_map_lock_upgrade: [ internal use only ]
729 *
730 * Tries to upgrade a read (shared) lock on the specified map to a write
731 * (exclusive) lock. Returns the value "" if the upgrade succeeds and a
732 * non-zero value if the upgrade fails. If the upgrade fails, the map is
733 * returned without a read or write lock held.
734 *
735 * Requires that the map be read locked.
736 */
737 int
738 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
739 {
740 unsigned int last_timestamp;
741
742 if (map->system_map) {
743 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
744 } else {
745 if (!sx_try_upgrade_(&map->lock, file, line)) {
746 last_timestamp = map->timestamp;
747 sx_sunlock_(&map->lock, file, line);
748 vm_map_process_deferred();
749 /*
750 * If the map's timestamp does not change while the
751 * map is unlocked, then the upgrade succeeds.
752 */
753 sx_xlock_(&map->lock, file, line);
754 if (last_timestamp != map->timestamp) {
755 sx_xunlock_(&map->lock, file, line);
756 return (1);
757 }
758 }
759 }
760 map->timestamp++;
761 return (0);
762 }
763
764 void
765 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
766 {
767
768 if (map->system_map) {
769 KASSERT((map->flags & MAP_REPLENISH) == 0,
770 ("%s: MAP_REPLENISH leaked", __func__));
771 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
772 } else {
773 VM_MAP_UNLOCK_CONSISTENT(map);
774 sx_downgrade_(&map->lock, file, line);
775 }
776 }
777
778 /*
779 * vm_map_locked:
780 *
781 * Returns a non-zero value if the caller holds a write (exclusive) lock
782 * on the specified map and the value "" otherwise.
783 */
784 int
785 vm_map_locked(vm_map_t map)
786 {
787
788 if (map->system_map)
789 return (mtx_owned(&map->system_mtx));
790 else
791 return (sx_xlocked(&map->lock));
792 }
793
794 /*
795 * _vm_map_unlock_and_wait:
796 *
797 * Atomically releases the lock on the specified map and puts the calling
798 * thread to sleep. The calling thread will remain asleep until either
799 * vm_map_wakeup() is performed on the map or the specified timeout is
800 * exceeded.
801 *
802 * WARNING! This function does not perform deferred deallocations of
803 * objects and map entries. Therefore, the calling thread is expected to
804 * reacquire the map lock after reawakening and later perform an ordinary
805 * unlock operation, such as vm_map_unlock(), before completing its
806 * operation on the map.
807 */
808 int
809 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
810 {
811
812 VM_MAP_UNLOCK_CONSISTENT(map);
813 mtx_lock(&map_sleep_mtx);
814 if (map->system_map) {
815 KASSERT((map->flags & MAP_REPLENISH) == 0,
816 ("%s: MAP_REPLENISH leaked", __func__));
817 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
818 } else {
819 sx_xunlock_(&map->lock, file, line);
820 }
821 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
822 timo));
823 }
824
825 /*
826 * vm_map_wakeup:
827 *
828 * Awaken any threads that have slept on the map using
829 * vm_map_unlock_and_wait().
830 */
831 void
832 vm_map_wakeup(vm_map_t map)
833 {
834
835 /*
836 * Acquire and release map_sleep_mtx to prevent a wakeup()
837 * from being performed (and lost) between the map unlock
838 * and the msleep() in _vm_map_unlock_and_wait().
839 */
840 mtx_lock(&map_sleep_mtx);
841 mtx_unlock(&map_sleep_mtx);
842 wakeup(&map->root);
843 }
844
845 void
846 vm_map_busy(vm_map_t map)
847 {
848
849 VM_MAP_ASSERT_LOCKED(map);
850 map->busy++;
851 }
852
853 void
854 vm_map_unbusy(vm_map_t map)
855 {
856
857 VM_MAP_ASSERT_LOCKED(map);
858 KASSERT(map->busy, ("vm_map_unbusy: not busy"));
859 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
860 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
861 wakeup(&map->busy);
862 }
863 }
864
865 void
866 vm_map_wait_busy(vm_map_t map)
867 {
868
869 VM_MAP_ASSERT_LOCKED(map);
870 while (map->busy) {
871 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
872 if (map->system_map)
873 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
874 else
875 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
876 }
877 map->timestamp++;
878 }
879
880 long
881 vmspace_resident_count(struct vmspace *vmspace)
882 {
883 return pmap_resident_count(vmspace_pmap(vmspace));
884 }
885
886 /*
887 * Initialize an existing vm_map structure
888 * such as that in the vmspace structure.
889 */
890 static void
891 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
892 {
893
894 map->header.eflags = MAP_ENTRY_HEADER;
895 map->needs_wakeup = FALSE;
896 map->system_map = 0;
897 map->pmap = pmap;
898 map->header.end = min;
899 map->header.start = max;
900 map->flags = 0;
901 map->header.left = map->header.right = &map->header;
902 map->root = NULL;
903 map->timestamp = 0;
904 map->busy = 0;
905 map->anon_loc = 0;
906 #ifdef DIAGNOSTIC
907 map->nupdates = 0;
908 #endif
909 }
910
911 void
912 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
913 {
914
915 _vm_map_init(map, pmap, min, max);
916 mtx_init(&map->system_mtx, "vm map (system)", NULL,
917 MTX_DEF | MTX_DUPOK);
918 sx_init(&map->lock, "vm map (user)");
919 }
920
921 /*
922 * vm_map_entry_dispose: [ internal use only ]
923 *
924 * Inverse of vm_map_entry_create.
925 */
926 static void
927 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
928 {
929 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
930 }
931
932 /*
933 * vm_map_entry_create: [ internal use only ]
934 *
935 * Allocates a VM map entry for insertion.
936 * No entry fields are filled in.
937 */
938 static vm_map_entry_t
939 vm_map_entry_create(vm_map_t map)
940 {
941 vm_map_entry_t new_entry;
942
943 #ifndef UMA_MD_SMALL_ALLOC
944 if (map == kernel_map) {
945 VM_MAP_ASSERT_LOCKED(map);
946
947 /*
948 * A new slab of kernel map entries cannot be allocated at this
949 * point because the kernel map has not yet been updated to
950 * reflect the caller's request. Therefore, we allocate a new
951 * map entry, dipping into the reserve if necessary, and set a
952 * flag indicating that the reserve must be replenished before
953 * the map is unlocked.
954 */
955 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
956 if (new_entry == NULL) {
957 new_entry = uma_zalloc(kmapentzone,
958 M_NOWAIT | M_NOVM | M_USE_RESERVE);
959 kernel_map->flags |= MAP_REPLENISH;
960 }
961 } else
962 #endif
963 if (map->system_map) {
964 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
965 } else {
966 new_entry = uma_zalloc(mapentzone, M_WAITOK);
967 }
968 KASSERT(new_entry != NULL,
969 ("vm_map_entry_create: kernel resources exhausted"));
970 return (new_entry);
971 }
972
973 /*
974 * vm_map_entry_set_behavior:
975 *
976 * Set the expected access behavior, either normal, random, or
977 * sequential.
978 */
979 static inline void
980 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
981 {
982 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
983 (behavior & MAP_ENTRY_BEHAV_MASK);
984 }
985
986 /*
987 * vm_map_entry_max_free_{left,right}:
988 *
989 * Compute the size of the largest free gap between two entries,
990 * one the root of a tree and the other the ancestor of that root
991 * that is the least or greatest ancestor found on the search path.
992 */
993 static inline vm_size_t
994 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
995 {
996
997 return (root->left != left_ancestor ?
998 root->left->max_free : root->start - left_ancestor->end);
999 }
1000
1001 static inline vm_size_t
1002 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1003 {
1004
1005 return (root->right != right_ancestor ?
1006 root->right->max_free : right_ancestor->start - root->end);
1007 }
1008
1009 /*
1010 * vm_map_entry_{pred,succ}:
1011 *
1012 * Find the {predecessor, successor} of the entry by taking one step
1013 * in the appropriate direction and backtracking as much as necessary.
1014 * vm_map_entry_succ is defined in vm_map.h.
1015 */
1016 static inline vm_map_entry_t
1017 vm_map_entry_pred(vm_map_entry_t entry)
1018 {
1019 vm_map_entry_t prior;
1020
1021 prior = entry->left;
1022 if (prior->right->start < entry->start) {
1023 do
1024 prior = prior->right;
1025 while (prior->right != entry);
1026 }
1027 return (prior);
1028 }
1029
1030 static inline vm_size_t
1031 vm_size_max(vm_size_t a, vm_size_t b)
1032 {
1033
1034 return (a > b ? a : b);
1035 }
1036
1037 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \
1038 vm_map_entry_t z; \
1039 vm_size_t max_free; \
1040 \
1041 /* \
1042 * Infer root->right->max_free == root->max_free when \
1043 * y->max_free < root->max_free || root->max_free == 0. \
1044 * Otherwise, look right to find it. \
1045 */ \
1046 y = root->left; \
1047 max_free = root->max_free; \
1048 KASSERT(max_free == vm_size_max( \
1049 vm_map_entry_max_free_left(root, llist), \
1050 vm_map_entry_max_free_right(root, rlist)), \
1051 ("%s: max_free invariant fails", __func__)); \
1052 if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \
1053 max_free = vm_map_entry_max_free_right(root, rlist); \
1054 if (y != llist && (test)) { \
1055 /* Rotate right and make y root. */ \
1056 z = y->right; \
1057 if (z != root) { \
1058 root->left = z; \
1059 y->right = root; \
1060 if (max_free < y->max_free) \
1061 root->max_free = max_free = \
1062 vm_size_max(max_free, z->max_free); \
1063 } else if (max_free < y->max_free) \
1064 root->max_free = max_free = \
1065 vm_size_max(max_free, root->start - y->end);\
1066 root = y; \
1067 y = root->left; \
1068 } \
1069 /* Copy right->max_free. Put root on rlist. */ \
1070 root->max_free = max_free; \
1071 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \
1072 ("%s: max_free not copied from right", __func__)); \
1073 root->left = rlist; \
1074 rlist = root; \
1075 root = y != llist ? y : NULL; \
1076 } while (0)
1077
1078 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \
1079 vm_map_entry_t z; \
1080 vm_size_t max_free; \
1081 \
1082 /* \
1083 * Infer root->left->max_free == root->max_free when \
1084 * y->max_free < root->max_free || root->max_free == 0. \
1085 * Otherwise, look left to find it. \
1086 */ \
1087 y = root->right; \
1088 max_free = root->max_free; \
1089 KASSERT(max_free == vm_size_max( \
1090 vm_map_entry_max_free_left(root, llist), \
1091 vm_map_entry_max_free_right(root, rlist)), \
1092 ("%s: max_free invariant fails", __func__)); \
1093 if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \
1094 max_free = vm_map_entry_max_free_left(root, llist); \
1095 if (y != rlist && (test)) { \
1096 /* Rotate left and make y root. */ \
1097 z = y->left; \
1098 if (z != root) { \
1099 root->right = z; \
1100 y->left = root; \
1101 if (max_free < y->max_free) \
1102 root->max_free = max_free = \
1103 vm_size_max(max_free, z->max_free); \
1104 } else if (max_free < y->max_free) \
1105 root->max_free = max_free = \
1106 vm_size_max(max_free, y->start - root->end);\
1107 root = y; \
1108 y = root->right; \
1109 } \
1110 /* Copy left->max_free. Put root on llist. */ \
1111 root->max_free = max_free; \
1112 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \
1113 ("%s: max_free not copied from left", __func__)); \
1114 root->right = llist; \
1115 llist = root; \
1116 root = y != rlist ? y : NULL; \
1117 } while (0)
1118
1119 /*
1120 * Walk down the tree until we find addr or a gap where addr would go, breaking
1121 * off left and right subtrees of nodes less than, or greater than addr. Treat
1122 * subtrees with root->max_free < length as empty trees. llist and rlist are
1123 * the two sides in reverse order (bottom-up), with llist linked by the right
1124 * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1125 * lists terminated by &map->header. This function, and the subsequent call to
1126 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1127 * values in &map->header.
1128 */
1129 static __always_inline vm_map_entry_t
1130 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1131 vm_map_entry_t *llist, vm_map_entry_t *rlist)
1132 {
1133 vm_map_entry_t left, right, root, y;
1134
1135 left = right = &map->header;
1136 root = map->root;
1137 while (root != NULL && root->max_free >= length) {
1138 KASSERT(left->end <= root->start &&
1139 root->end <= right->start,
1140 ("%s: root not within tree bounds", __func__));
1141 if (addr < root->start) {
1142 SPLAY_LEFT_STEP(root, y, left, right,
1143 y->max_free >= length && addr < y->start);
1144 } else if (addr >= root->end) {
1145 SPLAY_RIGHT_STEP(root, y, left, right,
1146 y->max_free >= length && addr >= y->end);
1147 } else
1148 break;
1149 }
1150 *llist = left;
1151 *rlist = right;
1152 return (root);
1153 }
1154
1155 static __always_inline void
1156 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1157 {
1158 vm_map_entry_t hi, right, y;
1159
1160 right = *rlist;
1161 hi = root->right == right ? NULL : root->right;
1162 if (hi == NULL)
1163 return;
1164 do
1165 SPLAY_LEFT_STEP(hi, y, root, right, true);
1166 while (hi != NULL);
1167 *rlist = right;
1168 }
1169
1170 static __always_inline void
1171 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1172 {
1173 vm_map_entry_t left, lo, y;
1174
1175 left = *llist;
1176 lo = root->left == left ? NULL : root->left;
1177 if (lo == NULL)
1178 return;
1179 do
1180 SPLAY_RIGHT_STEP(lo, y, left, root, true);
1181 while (lo != NULL);
1182 *llist = left;
1183 }
1184
1185 static inline void
1186 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1187 {
1188 vm_map_entry_t tmp;
1189
1190 tmp = *b;
1191 *b = *a;
1192 *a = tmp;
1193 }
1194
1195 /*
1196 * Walk back up the two spines, flip the pointers and set max_free. The
1197 * subtrees of the root go at the bottom of llist and rlist.
1198 */
1199 static vm_size_t
1200 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1201 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1202 {
1203 do {
1204 /*
1205 * The max_free values of the children of llist are in
1206 * llist->max_free and max_free. Update with the
1207 * max value.
1208 */
1209 llist->max_free = max_free =
1210 vm_size_max(llist->max_free, max_free);
1211 vm_map_entry_swap(&llist->right, &tail);
1212 vm_map_entry_swap(&tail, &llist);
1213 } while (llist != header);
1214 root->left = tail;
1215 return (max_free);
1216 }
1217
1218 /*
1219 * When llist is known to be the predecessor of root.
1220 */
1221 static inline vm_size_t
1222 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1223 vm_map_entry_t llist)
1224 {
1225 vm_size_t max_free;
1226
1227 max_free = root->start - llist->end;
1228 if (llist != header) {
1229 max_free = vm_map_splay_merge_left_walk(header, root,
1230 root, max_free, llist);
1231 } else {
1232 root->left = header;
1233 header->right = root;
1234 }
1235 return (max_free);
1236 }
1237
1238 /*
1239 * When llist may or may not be the predecessor of root.
1240 */
1241 static inline vm_size_t
1242 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1243 vm_map_entry_t llist)
1244 {
1245 vm_size_t max_free;
1246
1247 max_free = vm_map_entry_max_free_left(root, llist);
1248 if (llist != header) {
1249 max_free = vm_map_splay_merge_left_walk(header, root,
1250 root->left == llist ? root : root->left,
1251 max_free, llist);
1252 }
1253 return (max_free);
1254 }
1255
1256 static vm_size_t
1257 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1258 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1259 {
1260 do {
1261 /*
1262 * The max_free values of the children of rlist are in
1263 * rlist->max_free and max_free. Update with the
1264 * max value.
1265 */
1266 rlist->max_free = max_free =
1267 vm_size_max(rlist->max_free, max_free);
1268 vm_map_entry_swap(&rlist->left, &tail);
1269 vm_map_entry_swap(&tail, &rlist);
1270 } while (rlist != header);
1271 root->right = tail;
1272 return (max_free);
1273 }
1274
1275 /*
1276 * When rlist is known to be the succecessor of root.
1277 */
1278 static inline vm_size_t
1279 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1280 vm_map_entry_t rlist)
1281 {
1282 vm_size_t max_free;
1283
1284 max_free = rlist->start - root->end;
1285 if (rlist != header) {
1286 max_free = vm_map_splay_merge_right_walk(header, root,
1287 root, max_free, rlist);
1288 } else {
1289 root->right = header;
1290 header->left = root;
1291 }
1292 return (max_free);
1293 }
1294
1295 /*
1296 * When rlist may or may not be the succecessor of root.
1297 */
1298 static inline vm_size_t
1299 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1300 vm_map_entry_t rlist)
1301 {
1302 vm_size_t max_free;
1303
1304 max_free = vm_map_entry_max_free_right(root, rlist);
1305 if (rlist != header) {
1306 max_free = vm_map_splay_merge_right_walk(header, root,
1307 root->right == rlist ? root : root->right,
1308 max_free, rlist);
1309 }
1310 return (max_free);
1311 }
1312
1313 /*
1314 * vm_map_splay:
1315 *
1316 * The Sleator and Tarjan top-down splay algorithm with the
1317 * following variation. Max_free must be computed bottom-up, so
1318 * on the downward pass, maintain the left and right spines in
1319 * reverse order. Then, make a second pass up each side to fix
1320 * the pointers and compute max_free. The time bound is O(log n)
1321 * amortized.
1322 *
1323 * The tree is threaded, which means that there are no null pointers.
1324 * When a node has no left child, its left pointer points to its
1325 * predecessor, which the last ancestor on the search path from the root
1326 * where the search branched right. Likewise, when a node has no right
1327 * child, its right pointer points to its successor. The map header node
1328 * is the predecessor of the first map entry, and the successor of the
1329 * last.
1330 *
1331 * The new root is the vm_map_entry containing "addr", or else an
1332 * adjacent entry (lower if possible) if addr is not in the tree.
1333 *
1334 * The map must be locked, and leaves it so.
1335 *
1336 * Returns: the new root.
1337 */
1338 static vm_map_entry_t
1339 vm_map_splay(vm_map_t map, vm_offset_t addr)
1340 {
1341 vm_map_entry_t header, llist, rlist, root;
1342 vm_size_t max_free_left, max_free_right;
1343
1344 header = &map->header;
1345 root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1346 if (root != NULL) {
1347 max_free_left = vm_map_splay_merge_left(header, root, llist);
1348 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1349 } else if (llist != header) {
1350 /*
1351 * Recover the greatest node in the left
1352 * subtree and make it the root.
1353 */
1354 root = llist;
1355 llist = root->right;
1356 max_free_left = vm_map_splay_merge_left(header, root, llist);
1357 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1358 } else if (rlist != header) {
1359 /*
1360 * Recover the least node in the right
1361 * subtree and make it the root.
1362 */
1363 root = rlist;
1364 rlist = root->left;
1365 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1366 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1367 } else {
1368 /* There is no root. */
1369 return (NULL);
1370 }
1371 root->max_free = vm_size_max(max_free_left, max_free_right);
1372 map->root = root;
1373 VM_MAP_ASSERT_CONSISTENT(map);
1374 return (root);
1375 }
1376
1377 /*
1378 * vm_map_entry_{un,}link:
1379 *
1380 * Insert/remove entries from maps. On linking, if new entry clips
1381 * existing entry, trim existing entry to avoid overlap, and manage
1382 * offsets. On unlinking, merge disappearing entry with neighbor, if
1383 * called for, and manage offsets. Callers should not modify fields in
1384 * entries already mapped.
1385 */
1386 static void
1387 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1388 {
1389 vm_map_entry_t header, llist, rlist, root;
1390 vm_size_t max_free_left, max_free_right;
1391
1392 CTR3(KTR_VM,
1393 "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1394 map->nentries, entry);
1395 VM_MAP_ASSERT_LOCKED(map);
1396 map->nentries++;
1397 header = &map->header;
1398 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1399 if (root == NULL) {
1400 /*
1401 * The new entry does not overlap any existing entry in the
1402 * map, so it becomes the new root of the map tree.
1403 */
1404 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1405 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1406 } else if (entry->start == root->start) {
1407 /*
1408 * The new entry is a clone of root, with only the end field
1409 * changed. The root entry will be shrunk to abut the new
1410 * entry, and will be the right child of the new root entry in
1411 * the modified map.
1412 */
1413 KASSERT(entry->end < root->end,
1414 ("%s: clip_start not within entry", __func__));
1415 vm_map_splay_findprev(root, &llist);
1416 root->offset += entry->end - root->start;
1417 root->start = entry->end;
1418 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1419 max_free_right = root->max_free = vm_size_max(
1420 vm_map_splay_merge_pred(entry, root, entry),
1421 vm_map_splay_merge_right(header, root, rlist));
1422 } else {
1423 /*
1424 * The new entry is a clone of root, with only the start field
1425 * changed. The root entry will be shrunk to abut the new
1426 * entry, and will be the left child of the new root entry in
1427 * the modified map.
1428 */
1429 KASSERT(entry->end == root->end,
1430 ("%s: clip_start not within entry", __func__));
1431 vm_map_splay_findnext(root, &rlist);
1432 entry->offset += entry->start - root->start;
1433 root->end = entry->start;
1434 max_free_left = root->max_free = vm_size_max(
1435 vm_map_splay_merge_left(header, root, llist),
1436 vm_map_splay_merge_succ(entry, root, entry));
1437 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1438 }
1439 entry->max_free = vm_size_max(max_free_left, max_free_right);
1440 map->root = entry;
1441 VM_MAP_ASSERT_CONSISTENT(map);
1442 }
1443
1444 enum unlink_merge_type {
1445 UNLINK_MERGE_NONE,
1446 UNLINK_MERGE_NEXT
1447 };
1448
1449 static void
1450 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1451 enum unlink_merge_type op)
1452 {
1453 vm_map_entry_t header, llist, rlist, root;
1454 vm_size_t max_free_left, max_free_right;
1455
1456 VM_MAP_ASSERT_LOCKED(map);
1457 header = &map->header;
1458 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1459 KASSERT(root != NULL,
1460 ("vm_map_entry_unlink: unlink object not mapped"));
1461
1462 vm_map_splay_findprev(root, &llist);
1463 vm_map_splay_findnext(root, &rlist);
1464 if (op == UNLINK_MERGE_NEXT) {
1465 rlist->start = root->start;
1466 rlist->offset = root->offset;
1467 }
1468 if (llist != header) {
1469 root = llist;
1470 llist = root->right;
1471 max_free_left = vm_map_splay_merge_left(header, root, llist);
1472 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1473 } else if (rlist != header) {
1474 root = rlist;
1475 rlist = root->left;
1476 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1477 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1478 } else {
1479 header->left = header->right = header;
1480 root = NULL;
1481 }
1482 if (root != NULL)
1483 root->max_free = vm_size_max(max_free_left, max_free_right);
1484 map->root = root;
1485 VM_MAP_ASSERT_CONSISTENT(map);
1486 map->nentries--;
1487 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1488 map->nentries, entry);
1489 }
1490
1491 /*
1492 * vm_map_entry_resize:
1493 *
1494 * Resize a vm_map_entry, recompute the amount of free space that
1495 * follows it and propagate that value up the tree.
1496 *
1497 * The map must be locked, and leaves it so.
1498 */
1499 static void
1500 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1501 {
1502 vm_map_entry_t header, llist, rlist, root;
1503
1504 VM_MAP_ASSERT_LOCKED(map);
1505 header = &map->header;
1506 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1507 KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1508 vm_map_splay_findnext(root, &rlist);
1509 entry->end += grow_amount;
1510 root->max_free = vm_size_max(
1511 vm_map_splay_merge_left(header, root, llist),
1512 vm_map_splay_merge_succ(header, root, rlist));
1513 map->root = root;
1514 VM_MAP_ASSERT_CONSISTENT(map);
1515 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1516 __func__, map, map->nentries, entry);
1517 }
1518
1519 /*
1520 * vm_map_lookup_entry: [ internal use only ]
1521 *
1522 * Finds the map entry containing (or
1523 * immediately preceding) the specified address
1524 * in the given map; the entry is returned
1525 * in the "entry" parameter. The boolean
1526 * result indicates whether the address is
1527 * actually contained in the map.
1528 */
1529 boolean_t
1530 vm_map_lookup_entry(
1531 vm_map_t map,
1532 vm_offset_t address,
1533 vm_map_entry_t *entry) /* OUT */
1534 {
1535 vm_map_entry_t cur, header, lbound, ubound;
1536 boolean_t locked;
1537
1538 /*
1539 * If the map is empty, then the map entry immediately preceding
1540 * "address" is the map's header.
1541 */
1542 header = &map->header;
1543 cur = map->root;
1544 if (cur == NULL) {
1545 *entry = header;
1546 return (FALSE);
1547 }
1548 if (address >= cur->start && cur->end > address) {
1549 *entry = cur;
1550 return (TRUE);
1551 }
1552 if ((locked = vm_map_locked(map)) ||
1553 sx_try_upgrade(&map->lock)) {
1554 /*
1555 * Splay requires a write lock on the map. However, it only
1556 * restructures the binary search tree; it does not otherwise
1557 * change the map. Thus, the map's timestamp need not change
1558 * on a temporary upgrade.
1559 */
1560 cur = vm_map_splay(map, address);
1561 if (!locked) {
1562 VM_MAP_UNLOCK_CONSISTENT(map);
1563 sx_downgrade(&map->lock);
1564 }
1565
1566 /*
1567 * If "address" is contained within a map entry, the new root
1568 * is that map entry. Otherwise, the new root is a map entry
1569 * immediately before or after "address".
1570 */
1571 if (address < cur->start) {
1572 *entry = header;
1573 return (FALSE);
1574 }
1575 *entry = cur;
1576 return (address < cur->end);
1577 }
1578 /*
1579 * Since the map is only locked for read access, perform a
1580 * standard binary search tree lookup for "address".
1581 */
1582 lbound = ubound = header;
1583 for (;;) {
1584 if (address < cur->start) {
1585 ubound = cur;
1586 cur = cur->left;
1587 if (cur == lbound)
1588 break;
1589 } else if (cur->end <= address) {
1590 lbound = cur;
1591 cur = cur->right;
1592 if (cur == ubound)
1593 break;
1594 } else {
1595 *entry = cur;
1596 return (TRUE);
1597 }
1598 }
1599 *entry = lbound;
1600 return (FALSE);
1601 }
1602
1603 /*
1604 * vm_map_insert:
1605 *
1606 * Inserts the given whole VM object into the target
1607 * map at the specified address range. The object's
1608 * size should match that of the address range.
1609 *
1610 * Requires that the map be locked, and leaves it so.
1611 *
1612 * If object is non-NULL, ref count must be bumped by caller
1613 * prior to making call to account for the new entry.
1614 */
1615 int
1616 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1617 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1618 {
1619 vm_map_entry_t new_entry, next_entry, prev_entry;
1620 struct ucred *cred;
1621 vm_eflags_t protoeflags;
1622 vm_inherit_t inheritance;
1623 u_long bdry;
1624 u_int bidx;
1625
1626 VM_MAP_ASSERT_LOCKED(map);
1627 KASSERT(object != kernel_object ||
1628 (cow & MAP_COPY_ON_WRITE) == 0,
1629 ("vm_map_insert: kernel object and COW"));
1630 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1631 (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1632 ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1633 object, cow));
1634 KASSERT((prot & ~max) == 0,
1635 ("prot %#x is not subset of max_prot %#x", prot, max));
1636
1637 /*
1638 * Check that the start and end points are not bogus.
1639 */
1640 if (start == end || !vm_map_range_valid(map, start, end))
1641 return (KERN_INVALID_ADDRESS);
1642
1643 if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1644 VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1645 return (KERN_PROTECTION_FAILURE);
1646
1647 /*
1648 * Find the entry prior to the proposed starting address; if it's part
1649 * of an existing entry, this range is bogus.
1650 */
1651 if (vm_map_lookup_entry(map, start, &prev_entry))
1652 return (KERN_NO_SPACE);
1653
1654 /*
1655 * Assert that the next entry doesn't overlap the end point.
1656 */
1657 next_entry = vm_map_entry_succ(prev_entry);
1658 if (next_entry->start < end)
1659 return (KERN_NO_SPACE);
1660
1661 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1662 max != VM_PROT_NONE))
1663 return (KERN_INVALID_ARGUMENT);
1664
1665 protoeflags = 0;
1666 if (cow & MAP_COPY_ON_WRITE)
1667 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1668 if (cow & MAP_NOFAULT)
1669 protoeflags |= MAP_ENTRY_NOFAULT;
1670 if (cow & MAP_DISABLE_SYNCER)
1671 protoeflags |= MAP_ENTRY_NOSYNC;
1672 if (cow & MAP_DISABLE_COREDUMP)
1673 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1674 if (cow & MAP_STACK_GROWS_DOWN)
1675 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1676 if (cow & MAP_STACK_GROWS_UP)
1677 protoeflags |= MAP_ENTRY_GROWS_UP;
1678 if (cow & MAP_WRITECOUNT)
1679 protoeflags |= MAP_ENTRY_WRITECNT;
1680 if (cow & MAP_VN_EXEC)
1681 protoeflags |= MAP_ENTRY_VN_EXEC;
1682 if ((cow & MAP_CREATE_GUARD) != 0)
1683 protoeflags |= MAP_ENTRY_GUARD;
1684 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1685 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1686 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1687 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1688 if (cow & MAP_INHERIT_SHARE)
1689 inheritance = VM_INHERIT_SHARE;
1690 else
1691 inheritance = VM_INHERIT_DEFAULT;
1692 if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1693 /* This magically ignores index 0, for usual page size. */
1694 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1695 MAP_SPLIT_BOUNDARY_SHIFT;
1696 if (bidx >= MAXPAGESIZES)
1697 return (KERN_INVALID_ARGUMENT);
1698 bdry = pagesizes[bidx] - 1;
1699 if ((start & bdry) != 0 || (end & bdry) != 0)
1700 return (KERN_INVALID_ARGUMENT);
1701 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1702 }
1703
1704 cred = NULL;
1705 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1706 goto charged;
1707 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1708 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1709 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1710 return (KERN_RESOURCE_SHORTAGE);
1711 KASSERT(object == NULL ||
1712 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1713 object->cred == NULL,
1714 ("overcommit: vm_map_insert o %p", object));
1715 cred = curthread->td_ucred;
1716 }
1717
1718 charged:
1719 /* Expand the kernel pmap, if necessary. */
1720 if (map == kernel_map && end > kernel_vm_end)
1721 pmap_growkernel(end);
1722 if (object != NULL) {
1723 /*
1724 * OBJ_ONEMAPPING must be cleared unless this mapping
1725 * is trivially proven to be the only mapping for any
1726 * of the object's pages. (Object granularity
1727 * reference counting is insufficient to recognize
1728 * aliases with precision.)
1729 */
1730 if ((object->flags & OBJ_ANON) != 0) {
1731 VM_OBJECT_WLOCK(object);
1732 if (object->ref_count > 1 || object->shadow_count != 0)
1733 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1734 VM_OBJECT_WUNLOCK(object);
1735 }
1736 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1737 protoeflags &&
1738 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1739 MAP_VN_EXEC)) == 0 &&
1740 prev_entry->end == start && (prev_entry->cred == cred ||
1741 (prev_entry->object.vm_object != NULL &&
1742 prev_entry->object.vm_object->cred == cred)) &&
1743 vm_object_coalesce(prev_entry->object.vm_object,
1744 prev_entry->offset,
1745 (vm_size_t)(prev_entry->end - prev_entry->start),
1746 (vm_size_t)(end - prev_entry->end), cred != NULL &&
1747 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1748 /*
1749 * We were able to extend the object. Determine if we
1750 * can extend the previous map entry to include the
1751 * new range as well.
1752 */
1753 if (prev_entry->inheritance == inheritance &&
1754 prev_entry->protection == prot &&
1755 prev_entry->max_protection == max &&
1756 prev_entry->wired_count == 0) {
1757 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1758 0, ("prev_entry %p has incoherent wiring",
1759 prev_entry));
1760 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1761 map->size += end - prev_entry->end;
1762 vm_map_entry_resize(map, prev_entry,
1763 end - prev_entry->end);
1764 vm_map_try_merge_entries(map, prev_entry, next_entry);
1765 return (KERN_SUCCESS);
1766 }
1767
1768 /*
1769 * If we can extend the object but cannot extend the
1770 * map entry, we have to create a new map entry. We
1771 * must bump the ref count on the extended object to
1772 * account for it. object may be NULL.
1773 */
1774 object = prev_entry->object.vm_object;
1775 offset = prev_entry->offset +
1776 (prev_entry->end - prev_entry->start);
1777 vm_object_reference(object);
1778 if (cred != NULL && object != NULL && object->cred != NULL &&
1779 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1780 /* Object already accounts for this uid. */
1781 cred = NULL;
1782 }
1783 }
1784 if (cred != NULL)
1785 crhold(cred);
1786
1787 /*
1788 * Create a new entry
1789 */
1790 new_entry = vm_map_entry_create(map);
1791 new_entry->start = start;
1792 new_entry->end = end;
1793 new_entry->cred = NULL;
1794
1795 new_entry->eflags = protoeflags;
1796 new_entry->object.vm_object = object;
1797 new_entry->offset = offset;
1798
1799 new_entry->inheritance = inheritance;
1800 new_entry->protection = prot;
1801 new_entry->max_protection = max;
1802 new_entry->wired_count = 0;
1803 new_entry->wiring_thread = NULL;
1804 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1805 new_entry->next_read = start;
1806
1807 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1808 ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1809 new_entry->cred = cred;
1810
1811 /*
1812 * Insert the new entry into the list
1813 */
1814 vm_map_entry_link(map, new_entry);
1815 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1816 map->size += new_entry->end - new_entry->start;
1817
1818 /*
1819 * Try to coalesce the new entry with both the previous and next
1820 * entries in the list. Previously, we only attempted to coalesce
1821 * with the previous entry when object is NULL. Here, we handle the
1822 * other cases, which are less common.
1823 */
1824 vm_map_try_merge_entries(map, prev_entry, new_entry);
1825 vm_map_try_merge_entries(map, new_entry, next_entry);
1826
1827 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1828 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1829 end - start, cow & MAP_PREFAULT_PARTIAL);
1830 }
1831
1832 return (KERN_SUCCESS);
1833 }
1834
1835 /*
1836 * vm_map_findspace:
1837 *
1838 * Find the first fit (lowest VM address) for "length" free bytes
1839 * beginning at address >= start in the given map.
1840 *
1841 * In a vm_map_entry, "max_free" is the maximum amount of
1842 * contiguous free space between an entry in its subtree and a
1843 * neighbor of that entry. This allows finding a free region in
1844 * one path down the tree, so O(log n) amortized with splay
1845 * trees.
1846 *
1847 * The map must be locked, and leaves it so.
1848 *
1849 * Returns: starting address if sufficient space,
1850 * vm_map_max(map)-length+1 if insufficient space.
1851 */
1852 vm_offset_t
1853 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1854 {
1855 vm_map_entry_t header, llist, rlist, root, y;
1856 vm_size_t left_length, max_free_left, max_free_right;
1857 vm_offset_t gap_end;
1858
1859 VM_MAP_ASSERT_LOCKED(map);
1860
1861 /*
1862 * Request must fit within min/max VM address and must avoid
1863 * address wrap.
1864 */
1865 start = MAX(start, vm_map_min(map));
1866 if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1867 return (vm_map_max(map) - length + 1);
1868
1869 /* Empty tree means wide open address space. */
1870 if (map->root == NULL)
1871 return (start);
1872
1873 /*
1874 * After splay_split, if start is within an entry, push it to the start
1875 * of the following gap. If rlist is at the end of the gap containing
1876 * start, save the end of that gap in gap_end to see if the gap is big
1877 * enough; otherwise set gap_end to start skip gap-checking and move
1878 * directly to a search of the right subtree.
1879 */
1880 header = &map->header;
1881 root = vm_map_splay_split(map, start, length, &llist, &rlist);
1882 gap_end = rlist->start;
1883 if (root != NULL) {
1884 start = root->end;
1885 if (root->right != rlist)
1886 gap_end = start;
1887 max_free_left = vm_map_splay_merge_left(header, root, llist);
1888 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1889 } else if (rlist != header) {
1890 root = rlist;
1891 rlist = root->left;
1892 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1893 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1894 } else {
1895 root = llist;
1896 llist = root->right;
1897 max_free_left = vm_map_splay_merge_left(header, root, llist);
1898 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1899 }
1900 root->max_free = vm_size_max(max_free_left, max_free_right);
1901 map->root = root;
1902 VM_MAP_ASSERT_CONSISTENT(map);
1903 if (length <= gap_end - start)
1904 return (start);
1905
1906 /* With max_free, can immediately tell if no solution. */
1907 if (root->right == header || length > root->right->max_free)
1908 return (vm_map_max(map) - length + 1);
1909
1910 /*
1911 * Splay for the least large-enough gap in the right subtree.
1912 */
1913 llist = rlist = header;
1914 for (left_length = 0;;
1915 left_length = vm_map_entry_max_free_left(root, llist)) {
1916 if (length <= left_length)
1917 SPLAY_LEFT_STEP(root, y, llist, rlist,
1918 length <= vm_map_entry_max_free_left(y, llist));
1919 else
1920 SPLAY_RIGHT_STEP(root, y, llist, rlist,
1921 length > vm_map_entry_max_free_left(y, root));
1922 if (root == NULL)
1923 break;
1924 }
1925 root = llist;
1926 llist = root->right;
1927 max_free_left = vm_map_splay_merge_left(header, root, llist);
1928 if (rlist == header) {
1929 root->max_free = vm_size_max(max_free_left,
1930 vm_map_splay_merge_succ(header, root, rlist));
1931 } else {
1932 y = rlist;
1933 rlist = y->left;
1934 y->max_free = vm_size_max(
1935 vm_map_splay_merge_pred(root, y, root),
1936 vm_map_splay_merge_right(header, y, rlist));
1937 root->max_free = vm_size_max(max_free_left, y->max_free);
1938 }
1939 map->root = root;
1940 VM_MAP_ASSERT_CONSISTENT(map);
1941 return (root->end);
1942 }
1943
1944 int
1945 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1946 vm_offset_t start, vm_size_t length, vm_prot_t prot,
1947 vm_prot_t max, int cow)
1948 {
1949 vm_offset_t end;
1950 int result;
1951
1952 end = start + length;
1953 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1954 object == NULL,
1955 ("vm_map_fixed: non-NULL backing object for stack"));
1956 vm_map_lock(map);
1957 VM_MAP_RANGE_CHECK(map, start, end);
1958 if ((cow & MAP_CHECK_EXCL) == 0) {
1959 result = vm_map_delete(map, start, end);
1960 if (result != KERN_SUCCESS)
1961 goto out;
1962 }
1963 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1964 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1965 prot, max, cow);
1966 } else {
1967 result = vm_map_insert(map, object, offset, start, end,
1968 prot, max, cow);
1969 }
1970 out:
1971 vm_map_unlock(map);
1972 return (result);
1973 }
1974
1975 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1976 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1977
1978 static int cluster_anon = 1;
1979 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1980 &cluster_anon, 0,
1981 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1982
1983 static bool
1984 clustering_anon_allowed(vm_offset_t addr)
1985 {
1986
1987 switch (cluster_anon) {
1988 case 0:
1989 return (false);
1990 case 1:
1991 return (addr == 0);
1992 case 2:
1993 default:
1994 return (true);
1995 }
1996 }
1997
1998 static long aslr_restarts;
1999 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2000 &aslr_restarts, 0,
2001 "Number of aslr failures");
2002
2003 /*
2004 * Searches for the specified amount of free space in the given map with the
2005 * specified alignment. Performs an address-ordered, first-fit search from
2006 * the given address "*addr", with an optional upper bound "max_addr". If the
2007 * parameter "alignment" is zero, then the alignment is computed from the
2008 * given (object, offset) pair so as to enable the greatest possible use of
2009 * superpage mappings. Returns KERN_SUCCESS and the address of the free space
2010 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE.
2011 *
2012 * The map must be locked. Initially, there must be at least "length" bytes
2013 * of free space at the given address.
2014 */
2015 static int
2016 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2017 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2018 vm_offset_t alignment)
2019 {
2020 vm_offset_t aligned_addr, free_addr;
2021
2022 VM_MAP_ASSERT_LOCKED(map);
2023 free_addr = *addr;
2024 KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2025 ("caller failed to provide space %#jx at address %p",
2026 (uintmax_t)length, (void *)free_addr));
2027 for (;;) {
2028 /*
2029 * At the start of every iteration, the free space at address
2030 * "*addr" is at least "length" bytes.
2031 */
2032 if (alignment == 0)
2033 pmap_align_superpage(object, offset, addr, length);
2034 else
2035 *addr = roundup2(*addr, alignment);
2036 aligned_addr = *addr;
2037 if (aligned_addr == free_addr) {
2038 /*
2039 * Alignment did not change "*addr", so "*addr" must
2040 * still provide sufficient free space.
2041 */
2042 return (KERN_SUCCESS);
2043 }
2044
2045 /*
2046 * Test for address wrap on "*addr". A wrapped "*addr" could
2047 * be a valid address, in which case vm_map_findspace() cannot
2048 * be relied upon to fail.
2049 */
2050 if (aligned_addr < free_addr)
2051 return (KERN_NO_SPACE);
2052 *addr = vm_map_findspace(map, aligned_addr, length);
2053 if (*addr + length > vm_map_max(map) ||
2054 (max_addr != 0 && *addr + length > max_addr))
2055 return (KERN_NO_SPACE);
2056 free_addr = *addr;
2057 if (free_addr == aligned_addr) {
2058 /*
2059 * If a successful call to vm_map_findspace() did not
2060 * change "*addr", then "*addr" must still be aligned
2061 * and provide sufficient free space.
2062 */
2063 return (KERN_SUCCESS);
2064 }
2065 }
2066 }
2067
2068 int
2069 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2070 vm_offset_t max_addr, vm_offset_t alignment)
2071 {
2072 /* XXXKIB ASLR eh ? */
2073 *addr = vm_map_findspace(map, *addr, length);
2074 if (*addr + length > vm_map_max(map) ||
2075 (max_addr != 0 && *addr + length > max_addr))
2076 return (KERN_NO_SPACE);
2077 return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2078 alignment));
2079 }
2080
2081 /*
2082 * vm_map_find finds an unallocated region in the target address
2083 * map with the given length. The search is defined to be
2084 * first-fit from the specified address; the region found is
2085 * returned in the same parameter.
2086 *
2087 * If object is non-NULL, ref count must be bumped by caller
2088 * prior to making call to account for the new entry.
2089 */
2090 int
2091 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2092 vm_offset_t *addr, /* IN/OUT */
2093 vm_size_t length, vm_offset_t max_addr, int find_space,
2094 vm_prot_t prot, vm_prot_t max, int cow)
2095 {
2096 vm_offset_t alignment, curr_min_addr, min_addr;
2097 int gap, pidx, rv, try;
2098 bool cluster, en_aslr, update_anon;
2099
2100 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2101 object == NULL,
2102 ("vm_map_find: non-NULL backing object for stack"));
2103 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2104 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2105 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2106 (object->flags & OBJ_COLORED) == 0))
2107 find_space = VMFS_ANY_SPACE;
2108 if (find_space >> 8 != 0) {
2109 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2110 alignment = (vm_offset_t)1 << (find_space >> 8);
2111 } else
2112 alignment = 0;
2113 en_aslr = (map->flags & MAP_ASLR) != 0;
2114 update_anon = cluster = clustering_anon_allowed(*addr) &&
2115 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2116 find_space != VMFS_NO_SPACE && object == NULL &&
2117 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2118 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2119 curr_min_addr = min_addr = *addr;
2120 if (en_aslr && min_addr == 0 && !cluster &&
2121 find_space != VMFS_NO_SPACE &&
2122 (map->flags & MAP_ASLR_IGNSTART) != 0)
2123 curr_min_addr = min_addr = vm_map_min(map);
2124 try = 0;
2125 vm_map_lock(map);
2126 if (cluster) {
2127 curr_min_addr = map->anon_loc;
2128 if (curr_min_addr == 0)
2129 cluster = false;
2130 }
2131 if (find_space != VMFS_NO_SPACE) {
2132 KASSERT(find_space == VMFS_ANY_SPACE ||
2133 find_space == VMFS_OPTIMAL_SPACE ||
2134 find_space == VMFS_SUPER_SPACE ||
2135 alignment != 0, ("unexpected VMFS flag"));
2136 again:
2137 /*
2138 * When creating an anonymous mapping, try clustering
2139 * with an existing anonymous mapping first.
2140 *
2141 * We make up to two attempts to find address space
2142 * for a given find_space value. The first attempt may
2143 * apply randomization or may cluster with an existing
2144 * anonymous mapping. If this first attempt fails,
2145 * perform a first-fit search of the available address
2146 * space.
2147 *
2148 * If all tries failed, and find_space is
2149 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2150 * Again enable clustering and randomization.
2151 */
2152 try++;
2153 MPASS(try <= 2);
2154
2155 if (try == 2) {
2156 /*
2157 * Second try: we failed either to find a
2158 * suitable region for randomizing the
2159 * allocation, or to cluster with an existing
2160 * mapping. Retry with free run.
2161 */
2162 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2163 vm_map_min(map) : min_addr;
2164 atomic_add_long(&aslr_restarts, 1);
2165 }
2166
2167 if (try == 1 && en_aslr && !cluster) {
2168 /*
2169 * Find space for allocation, including
2170 * gap needed for later randomization.
2171 */
2172 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2173 (find_space == VMFS_SUPER_SPACE || find_space ==
2174 VMFS_OPTIMAL_SPACE) ? 1 : 0;
2175 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2176 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2177 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2178 *addr = vm_map_findspace(map, curr_min_addr,
2179 length + gap * pagesizes[pidx]);
2180 if (*addr + length + gap * pagesizes[pidx] >
2181 vm_map_max(map))
2182 goto again;
2183 /* And randomize the start address. */
2184 *addr += (arc4random() % gap) * pagesizes[pidx];
2185 if (max_addr != 0 && *addr + length > max_addr)
2186 goto again;
2187 } else {
2188 *addr = vm_map_findspace(map, curr_min_addr, length);
2189 if (*addr + length > vm_map_max(map) ||
2190 (max_addr != 0 && *addr + length > max_addr)) {
2191 if (cluster) {
2192 cluster = false;
2193 MPASS(try == 1);
2194 goto again;
2195 }
2196 rv = KERN_NO_SPACE;
2197 goto done;
2198 }
2199 }
2200
2201 if (find_space != VMFS_ANY_SPACE &&
2202 (rv = vm_map_alignspace(map, object, offset, addr, length,
2203 max_addr, alignment)) != KERN_SUCCESS) {
2204 if (find_space == VMFS_OPTIMAL_SPACE) {
2205 find_space = VMFS_ANY_SPACE;
2206 curr_min_addr = min_addr;
2207 cluster = update_anon;
2208 try = 0;
2209 goto again;
2210 }
2211 goto done;
2212 }
2213 } else if ((cow & MAP_REMAP) != 0) {
2214 if (!vm_map_range_valid(map, *addr, *addr + length)) {
2215 rv = KERN_INVALID_ADDRESS;
2216 goto done;
2217 }
2218 rv = vm_map_delete(map, *addr, *addr + length);
2219 if (rv != KERN_SUCCESS)
2220 goto done;
2221 }
2222 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2223 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2224 max, cow);
2225 } else {
2226 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2227 prot, max, cow);
2228 }
2229 if (rv == KERN_SUCCESS && update_anon)
2230 map->anon_loc = *addr + length;
2231 done:
2232 vm_map_unlock(map);
2233 return (rv);
2234 }
2235
2236 /*
2237 * vm_map_find_min() is a variant of vm_map_find() that takes an
2238 * additional parameter (min_addr) and treats the given address
2239 * (*addr) differently. Specifically, it treats *addr as a hint
2240 * and not as the minimum address where the mapping is created.
2241 *
2242 * This function works in two phases. First, it tries to
2243 * allocate above the hint. If that fails and the hint is
2244 * greater than min_addr, it performs a second pass, replacing
2245 * the hint with min_addr as the minimum address for the
2246 * allocation.
2247 */
2248 int
2249 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2250 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2251 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2252 int cow)
2253 {
2254 vm_offset_t hint;
2255 int rv;
2256
2257 hint = *addr;
2258 for (;;) {
2259 rv = vm_map_find(map, object, offset, addr, length, max_addr,
2260 find_space, prot, max, cow);
2261 if (rv == KERN_SUCCESS || min_addr >= hint)
2262 return (rv);
2263 *addr = hint = min_addr;
2264 }
2265 }
2266
2267 /*
2268 * A map entry with any of the following flags set must not be merged with
2269 * another entry.
2270 */
2271 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2272 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2273
2274 static bool
2275 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2276 {
2277
2278 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2279 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2280 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2281 prev, entry));
2282 return (prev->end == entry->start &&
2283 prev->object.vm_object == entry->object.vm_object &&
2284 (prev->object.vm_object == NULL ||
2285 prev->offset + (prev->end - prev->start) == entry->offset) &&
2286 prev->eflags == entry->eflags &&
2287 prev->protection == entry->protection &&
2288 prev->max_protection == entry->max_protection &&
2289 prev->inheritance == entry->inheritance &&
2290 prev->wired_count == entry->wired_count &&
2291 prev->cred == entry->cred);
2292 }
2293
2294 static void
2295 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2296 {
2297
2298 /*
2299 * If the backing object is a vnode object, vm_object_deallocate()
2300 * calls vrele(). However, vrele() does not lock the vnode because
2301 * the vnode has additional references. Thus, the map lock can be
2302 * kept without causing a lock-order reversal with the vnode lock.
2303 *
2304 * Since we count the number of virtual page mappings in
2305 * object->un_pager.vnp.writemappings, the writemappings value
2306 * should not be adjusted when the entry is disposed of.
2307 */
2308 if (entry->object.vm_object != NULL)
2309 vm_object_deallocate(entry->object.vm_object);
2310 if (entry->cred != NULL)
2311 crfree(entry->cred);
2312 vm_map_entry_dispose(map, entry);
2313 }
2314
2315 /*
2316 * vm_map_try_merge_entries:
2317 *
2318 * Compare the given map entry to its predecessor, and merge its precessor
2319 * into it if possible. The entry remains valid, and may be extended.
2320 * The predecessor may be deleted.
2321 *
2322 * The map must be locked.
2323 */
2324 void
2325 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2326 vm_map_entry_t entry)
2327 {
2328
2329 VM_MAP_ASSERT_LOCKED(map);
2330 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2331 vm_map_mergeable_neighbors(prev_entry, entry)) {
2332 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2333 vm_map_merged_neighbor_dispose(map, prev_entry);
2334 }
2335 }
2336
2337 /*
2338 * vm_map_entry_back:
2339 *
2340 * Allocate an object to back a map entry.
2341 */
2342 static inline void
2343 vm_map_entry_back(vm_map_entry_t entry)
2344 {
2345 vm_object_t object;
2346
2347 KASSERT(entry->object.vm_object == NULL,
2348 ("map entry %p has backing object", entry));
2349 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2350 ("map entry %p is a submap", entry));
2351 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2352 entry->cred, entry->end - entry->start);
2353 entry->object.vm_object = object;
2354 entry->offset = 0;
2355 entry->cred = NULL;
2356 }
2357
2358 /*
2359 * vm_map_entry_charge_object
2360 *
2361 * If there is no object backing this entry, create one. Otherwise, if
2362 * the entry has cred, give it to the backing object.
2363 */
2364 static inline void
2365 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2366 {
2367
2368 VM_MAP_ASSERT_LOCKED(map);
2369 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2370 ("map entry %p is a submap", entry));
2371 if (entry->object.vm_object == NULL && !map->system_map &&
2372 (entry->eflags & MAP_ENTRY_GUARD) == 0)
2373 vm_map_entry_back(entry);
2374 else if (entry->object.vm_object != NULL &&
2375 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2376 entry->cred != NULL) {
2377 VM_OBJECT_WLOCK(entry->object.vm_object);
2378 KASSERT(entry->object.vm_object->cred == NULL,
2379 ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2380 entry->object.vm_object->cred = entry->cred;
2381 entry->object.vm_object->charge = entry->end - entry->start;
2382 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2383 entry->cred = NULL;
2384 }
2385 }
2386
2387 /*
2388 * vm_map_entry_clone
2389 *
2390 * Create a duplicate map entry for clipping.
2391 */
2392 static vm_map_entry_t
2393 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2394 {
2395 vm_map_entry_t new_entry;
2396
2397 VM_MAP_ASSERT_LOCKED(map);
2398
2399 /*
2400 * Create a backing object now, if none exists, so that more individual
2401 * objects won't be created after the map entry is split.
2402 */
2403 vm_map_entry_charge_object(map, entry);
2404
2405 /* Clone the entry. */
2406 new_entry = vm_map_entry_create(map);
2407 *new_entry = *entry;
2408 if (new_entry->cred != NULL)
2409 crhold(entry->cred);
2410 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2411 vm_object_reference(new_entry->object.vm_object);
2412 vm_map_entry_set_vnode_text(new_entry, true);
2413 /*
2414 * The object->un_pager.vnp.writemappings for the object of
2415 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The
2416 * virtual pages are re-distributed among the clipped entries,
2417 * so the sum is left the same.
2418 */
2419 }
2420 return (new_entry);
2421 }
2422
2423 /*
2424 * vm_map_clip_start: [ internal use only ]
2425 *
2426 * Asserts that the given entry begins at or after
2427 * the specified address; if necessary,
2428 * it splits the entry into two.
2429 */
2430 static int
2431 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2432 {
2433 vm_map_entry_t new_entry;
2434 int bdry_idx;
2435
2436 if (!map->system_map)
2437 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2438 "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2439 (uintmax_t)startaddr);
2440
2441 if (startaddr <= entry->start)
2442 return (KERN_SUCCESS);
2443
2444 VM_MAP_ASSERT_LOCKED(map);
2445 KASSERT(entry->end > startaddr && entry->start < startaddr,
2446 ("%s: invalid clip of entry %p", __func__, entry));
2447
2448 bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2449 MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
2450 if (bdry_idx != 0) {
2451 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2452 return (KERN_INVALID_ARGUMENT);
2453 }
2454
2455 new_entry = vm_map_entry_clone(map, entry);
2456
2457 /*
2458 * Split off the front portion. Insert the new entry BEFORE this one,
2459 * so that this entry has the specified starting address.
2460 */
2461 new_entry->end = startaddr;
2462 vm_map_entry_link(map, new_entry);
2463 return (KERN_SUCCESS);
2464 }
2465
2466 /*
2467 * vm_map_lookup_clip_start:
2468 *
2469 * Find the entry at or just after 'start', and clip it if 'start' is in
2470 * the interior of the entry. Return entry after 'start', and in
2471 * prev_entry set the entry before 'start'.
2472 */
2473 static int
2474 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2475 vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2476 {
2477 vm_map_entry_t entry;
2478 int rv;
2479
2480 if (!map->system_map)
2481 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2482 "%s: map %p start 0x%jx prev %p", __func__, map,
2483 (uintmax_t)start, prev_entry);
2484
2485 if (vm_map_lookup_entry(map, start, prev_entry)) {
2486 entry = *prev_entry;
2487 rv = vm_map_clip_start(map, entry, start);
2488 if (rv != KERN_SUCCESS)
2489 return (rv);
2490 *prev_entry = vm_map_entry_pred(entry);
2491 } else
2492 entry = vm_map_entry_succ(*prev_entry);
2493 *res_entry = entry;
2494 return (KERN_SUCCESS);
2495 }
2496
2497 /*
2498 * vm_map_clip_end: [ internal use only ]
2499 *
2500 * Asserts that the given entry ends at or before
2501 * the specified address; if necessary,
2502 * it splits the entry into two.
2503 */
2504 static int
2505 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2506 {
2507 vm_map_entry_t new_entry;
2508 int bdry_idx;
2509
2510 if (!map->system_map)
2511 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2512 "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2513 (uintmax_t)endaddr);
2514
2515 if (endaddr >= entry->end)
2516 return (KERN_SUCCESS);
2517
2518 VM_MAP_ASSERT_LOCKED(map);
2519 KASSERT(entry->start < endaddr && entry->end > endaddr,
2520 ("%s: invalid clip of entry %p", __func__, entry));
2521
2522 bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2523 MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
2524 if (bdry_idx != 0) {
2525 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2526 return (KERN_INVALID_ARGUMENT);
2527 }
2528
2529 new_entry = vm_map_entry_clone(map, entry);
2530
2531 /*
2532 * Split off the back portion. Insert the new entry AFTER this one,
2533 * so that this entry has the specified ending address.
2534 */
2535 new_entry->start = endaddr;
2536 vm_map_entry_link(map, new_entry);
2537
2538 return (KERN_SUCCESS);
2539 }
2540
2541 /*
2542 * vm_map_submap: [ kernel use only ]
2543 *
2544 * Mark the given range as handled by a subordinate map.
2545 *
2546 * This range must have been created with vm_map_find,
2547 * and no other operations may have been performed on this
2548 * range prior to calling vm_map_submap.
2549 *
2550 * Only a limited number of operations can be performed
2551 * within this rage after calling vm_map_submap:
2552 * vm_fault
2553 * [Don't try vm_map_copy!]
2554 *
2555 * To remove a submapping, one must first remove the
2556 * range from the superior map, and then destroy the
2557 * submap (if desired). [Better yet, don't try it.]
2558 */
2559 int
2560 vm_map_submap(
2561 vm_map_t map,
2562 vm_offset_t start,
2563 vm_offset_t end,
2564 vm_map_t submap)
2565 {
2566 vm_map_entry_t entry;
2567 int result;
2568
2569 result = KERN_INVALID_ARGUMENT;
2570
2571 vm_map_lock(submap);
2572 submap->flags |= MAP_IS_SUB_MAP;
2573 vm_map_unlock(submap);
2574
2575 vm_map_lock(map);
2576 VM_MAP_RANGE_CHECK(map, start, end);
2577 if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2578 (entry->eflags & MAP_ENTRY_COW) == 0 &&
2579 entry->object.vm_object == NULL) {
2580 result = vm_map_clip_start(map, entry, start);
2581 if (result != KERN_SUCCESS)
2582 goto unlock;
2583 result = vm_map_clip_end(map, entry, end);
2584 if (result != KERN_SUCCESS)
2585 goto unlock;
2586 entry->object.sub_map = submap;
2587 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2588 result = KERN_SUCCESS;
2589 }
2590 unlock:
2591 vm_map_unlock(map);
2592
2593 if (result != KERN_SUCCESS) {
2594 vm_map_lock(submap);
2595 submap->flags &= ~MAP_IS_SUB_MAP;
2596 vm_map_unlock(submap);
2597 }
2598 return (result);
2599 }
2600
2601 /*
2602 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2603 */
2604 #define MAX_INIT_PT 96
2605
2606 /*
2607 * vm_map_pmap_enter:
2608 *
2609 * Preload the specified map's pmap with mappings to the specified
2610 * object's memory-resident pages. No further physical pages are
2611 * allocated, and no further virtual pages are retrieved from secondary
2612 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a
2613 * limited number of page mappings are created at the low-end of the
2614 * specified address range. (For this purpose, a superpage mapping
2615 * counts as one page mapping.) Otherwise, all resident pages within
2616 * the specified address range are mapped.
2617 */
2618 static void
2619 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2620 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2621 {
2622 vm_offset_t start;
2623 vm_page_t p, p_start;
2624 vm_pindex_t mask, psize, threshold, tmpidx;
2625
2626 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2627 return;
2628 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2629 VM_OBJECT_WLOCK(object);
2630 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2631 pmap_object_init_pt(map->pmap, addr, object, pindex,
2632 size);
2633 VM_OBJECT_WUNLOCK(object);
2634 return;
2635 }
2636 VM_OBJECT_LOCK_DOWNGRADE(object);
2637 } else
2638 VM_OBJECT_RLOCK(object);
2639
2640 psize = atop(size);
2641 if (psize + pindex > object->size) {
2642 if (pindex >= object->size) {
2643 VM_OBJECT_RUNLOCK(object);
2644 return;
2645 }
2646 psize = object->size - pindex;
2647 }
2648
2649 start = 0;
2650 p_start = NULL;
2651 threshold = MAX_INIT_PT;
2652
2653 p = vm_page_find_least(object, pindex);
2654 /*
2655 * Assert: the variable p is either (1) the page with the
2656 * least pindex greater than or equal to the parameter pindex
2657 * or (2) NULL.
2658 */
2659 for (;
2660 p != NULL && (tmpidx = p->pindex - pindex) < psize;
2661 p = TAILQ_NEXT(p, listq)) {
2662 /*
2663 * don't allow an madvise to blow away our really
2664 * free pages allocating pv entries.
2665 */
2666 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2667 vm_page_count_severe()) ||
2668 ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2669 tmpidx >= threshold)) {
2670 psize = tmpidx;
2671 break;
2672 }
2673 if (vm_page_all_valid(p)) {
2674 if (p_start == NULL) {
2675 start = addr + ptoa(tmpidx);
2676 p_start = p;
2677 }
2678 /* Jump ahead if a superpage mapping is possible. */
2679 if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2680 (pagesizes[p->psind] - 1)) == 0) {
2681 mask = atop(pagesizes[p->psind]) - 1;
2682 if (tmpidx + mask < psize &&
2683 vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2684 p += mask;
2685 threshold += mask;
2686 }
2687 }
2688 } else if (p_start != NULL) {
2689 pmap_enter_object(map->pmap, start, addr +
2690 ptoa(tmpidx), p_start, prot);
2691 p_start = NULL;
2692 }
2693 }
2694 if (p_start != NULL)
2695 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2696 p_start, prot);
2697 VM_OBJECT_RUNLOCK(object);
2698 }
2699
2700 /*
2701 * vm_map_protect:
2702 *
2703 * Sets the protection and/or the maximum protection of the
2704 * specified address region in the target map.
2705 */
2706 int
2707 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2708 vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2709 {
2710 vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2711 vm_object_t obj;
2712 struct ucred *cred;
2713 vm_prot_t old_prot;
2714 int rv;
2715
2716 if (start == end)
2717 return (KERN_SUCCESS);
2718
2719 if ((flags & (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT)) ==
2720 (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT) &&
2721 (new_prot & new_maxprot) != new_prot)
2722 return (KERN_OUT_OF_BOUNDS);
2723
2724 again:
2725 in_tran = NULL;
2726 vm_map_lock(map);
2727
2728 if ((map->flags & MAP_WXORX) != 0 &&
2729 (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2730 (new_prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE |
2731 VM_PROT_EXECUTE)) {
2732 vm_map_unlock(map);
2733 return (KERN_PROTECTION_FAILURE);
2734 }
2735
2736 /*
2737 * Ensure that we are not concurrently wiring pages. vm_map_wire() may
2738 * need to fault pages into the map and will drop the map lock while
2739 * doing so, and the VM object may end up in an inconsistent state if we
2740 * update the protection on the map entry in between faults.
2741 */
2742 vm_map_wait_busy(map);
2743
2744 VM_MAP_RANGE_CHECK(map, start, end);
2745
2746 if (!vm_map_lookup_entry(map, start, &first_entry))
2747 first_entry = vm_map_entry_succ(first_entry);
2748
2749 /*
2750 * Make a first pass to check for protection violations.
2751 */
2752 for (entry = first_entry; entry->start < end;
2753 entry = vm_map_entry_succ(entry)) {
2754 if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
2755 continue;
2756 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2757 vm_map_unlock(map);
2758 return (KERN_INVALID_ARGUMENT);
2759 }
2760 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0)
2761 new_prot = entry->protection;
2762 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) == 0)
2763 new_maxprot = entry->max_protection;
2764 if ((new_prot & entry->max_protection) != new_prot ||
2765 (new_maxprot & entry->max_protection) != new_maxprot) {
2766 vm_map_unlock(map);
2767 return (KERN_PROTECTION_FAILURE);
2768 }
2769 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2770 in_tran = entry;
2771 }
2772
2773 /*
2774 * Postpone the operation until all in-transition map entries have
2775 * stabilized. An in-transition entry might already have its pages
2776 * wired and wired_count incremented, but not yet have its
2777 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call
2778 * vm_fault_copy_entry() in the final loop below.
2779 */
2780 if (in_tran != NULL) {
2781 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2782 vm_map_unlock_and_wait(map, 0);
2783 goto again;
2784 }
2785
2786 /*
2787 * Before changing the protections, try to reserve swap space for any
2788 * private (i.e., copy-on-write) mappings that are transitioning from
2789 * read-only to read/write access. If a reservation fails, break out
2790 * of this loop early and let the next loop simplify the entries, since
2791 * some may now be mergeable.
2792 */
2793 rv = vm_map_clip_start(map, first_entry, start);
2794 if (rv != KERN_SUCCESS) {
2795 vm_map_unlock(map);
2796 return (rv);
2797 }
2798 for (entry = first_entry; entry->start < end;
2799 entry = vm_map_entry_succ(entry)) {
2800 rv = vm_map_clip_end(map, entry, end);
2801 if (rv != KERN_SUCCESS) {
2802 vm_map_unlock(map);
2803 return (rv);
2804 }
2805
2806 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2807 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2808 ENTRY_CHARGED(entry) ||
2809 (entry->eflags & MAP_ENTRY_GUARD) != 0)
2810 continue;
2811
2812 cred = curthread->td_ucred;
2813 obj = entry->object.vm_object;
2814
2815 if (obj == NULL ||
2816 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2817 if (!swap_reserve(entry->end - entry->start)) {
2818 rv = KERN_RESOURCE_SHORTAGE;
2819 end = entry->end;
2820 break;
2821 }
2822 crhold(cred);
2823 entry->cred = cred;
2824 continue;
2825 }
2826
2827 VM_OBJECT_WLOCK(obj);
2828 if ((obj->flags & OBJ_SWAP) == 0) {
2829 VM_OBJECT_WUNLOCK(obj);
2830 continue;
2831 }
2832
2833 /*
2834 * Charge for the whole object allocation now, since
2835 * we cannot distinguish between non-charged and
2836 * charged clipped mapping of the same object later.
2837 */
2838 KASSERT(obj->charge == 0,
2839 ("vm_map_protect: object %p overcharged (entry %p)",
2840 obj, entry));
2841 if (!swap_reserve(ptoa(obj->size))) {
2842 VM_OBJECT_WUNLOCK(obj);
2843 rv = KERN_RESOURCE_SHORTAGE;
2844 end = entry->end;
2845 break;
2846 }
2847
2848 crhold(cred);
2849 obj->cred = cred;
2850 obj->charge = ptoa(obj->size);
2851 VM_OBJECT_WUNLOCK(obj);
2852 }
2853
2854 /*
2855 * If enough swap space was available, go back and fix up protections.
2856 * Otherwise, just simplify entries, since some may have been modified.
2857 * [Note that clipping is not necessary the second time.]
2858 */
2859 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2860 entry->start < end;
2861 vm_map_try_merge_entries(map, prev_entry, entry),
2862 prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2863 if (rv != KERN_SUCCESS ||
2864 (entry->eflags & MAP_ENTRY_GUARD) != 0)
2865 continue;
2866
2867 old_prot = entry->protection;
2868
2869 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2870 entry->max_protection = new_maxprot;
2871 entry->protection = new_maxprot & old_prot;
2872 }
2873 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2874 entry->protection = new_prot;
2875
2876 /*
2877 * For user wired map entries, the normal lazy evaluation of
2878 * write access upgrades through soft page faults is
2879 * undesirable. Instead, immediately copy any pages that are
2880 * copy-on-write and enable write access in the physical map.
2881 */
2882 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2883 (entry->protection & VM_PROT_WRITE) != 0 &&
2884 (old_prot & VM_PROT_WRITE) == 0)
2885 vm_fault_copy_entry(map, map, entry, entry, NULL);
2886
2887 /*
2888 * When restricting access, update the physical map. Worry
2889 * about copy-on-write here.
2890 */
2891 if ((old_prot & ~entry->protection) != 0) {
2892 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2893 VM_PROT_ALL)
2894 pmap_protect(map->pmap, entry->start,
2895 entry->end,
2896 entry->protection & MASK(entry));
2897 #undef MASK
2898 }
2899 }
2900 vm_map_try_merge_entries(map, prev_entry, entry);
2901 vm_map_unlock(map);
2902 return (rv);
2903 }
2904
2905 /*
2906 * vm_map_madvise:
2907 *
2908 * This routine traverses a processes map handling the madvise
2909 * system call. Advisories are classified as either those effecting
2910 * the vm_map_entry structure, or those effecting the underlying
2911 * objects.
2912 */
2913 int
2914 vm_map_madvise(
2915 vm_map_t map,
2916 vm_offset_t start,
2917 vm_offset_t end,
2918 int behav)
2919 {
2920 vm_map_entry_t entry, prev_entry;
2921 int rv;
2922 bool modify_map;
2923
2924 /*
2925 * Some madvise calls directly modify the vm_map_entry, in which case
2926 * we need to use an exclusive lock on the map and we need to perform
2927 * various clipping operations. Otherwise we only need a read-lock
2928 * on the map.
2929 */
2930 switch(behav) {
2931 case MADV_NORMAL:
2932 case MADV_SEQUENTIAL:
2933 case MADV_RANDOM:
2934 case MADV_NOSYNC:
2935 case MADV_AUTOSYNC:
2936 case MADV_NOCORE:
2937 case MADV_CORE:
2938 if (start == end)
2939 return (0);
2940 modify_map = true;
2941 vm_map_lock(map);
2942 break;
2943 case MADV_WILLNEED:
2944 case MADV_DONTNEED:
2945 case MADV_FREE:
2946 if (start == end)
2947 return (0);
2948 modify_map = false;
2949 vm_map_lock_read(map);
2950 break;
2951 default:
2952 return (EINVAL);
2953 }
2954
2955 /*
2956 * Locate starting entry and clip if necessary.
2957 */
2958 VM_MAP_RANGE_CHECK(map, start, end);
2959
2960 if (modify_map) {
2961 /*
2962 * madvise behaviors that are implemented in the vm_map_entry.
2963 *
2964 * We clip the vm_map_entry so that behavioral changes are
2965 * limited to the specified address range.
2966 */
2967 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
2968 if (rv != KERN_SUCCESS) {
2969 vm_map_unlock(map);
2970 return (vm_mmap_to_errno(rv));
2971 }
2972
2973 for (; entry->start < end; prev_entry = entry,
2974 entry = vm_map_entry_succ(entry)) {
2975 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2976 continue;
2977
2978 rv = vm_map_clip_end(map, entry, end);
2979 if (rv != KERN_SUCCESS) {
2980 vm_map_unlock(map);
2981 return (vm_mmap_to_errno(rv));
2982 }
2983
2984 switch (behav) {
2985 case MADV_NORMAL:
2986 vm_map_entry_set_behavior(entry,
2987 MAP_ENTRY_BEHAV_NORMAL);
2988 break;
2989 case MADV_SEQUENTIAL:
2990 vm_map_entry_set_behavior(entry,
2991 MAP_ENTRY_BEHAV_SEQUENTIAL);
2992 break;
2993 case MADV_RANDOM:
2994 vm_map_entry_set_behavior(entry,
2995 MAP_ENTRY_BEHAV_RANDOM);
2996 break;
2997 case MADV_NOSYNC:
2998 entry->eflags |= MAP_ENTRY_NOSYNC;
2999 break;
3000 case MADV_AUTOSYNC:
3001 entry->eflags &= ~MAP_ENTRY_NOSYNC;
3002 break;
3003 case MADV_NOCORE:
3004 entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3005 break;
3006 case MADV_CORE:
3007 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3008 break;
3009 default:
3010 break;
3011 }
3012 vm_map_try_merge_entries(map, prev_entry, entry);
3013 }
3014 vm_map_try_merge_entries(map, prev_entry, entry);
3015 vm_map_unlock(map);
3016 } else {
3017 vm_pindex_t pstart, pend;
3018
3019 /*
3020 * madvise behaviors that are implemented in the underlying
3021 * vm_object.
3022 *
3023 * Since we don't clip the vm_map_entry, we have to clip
3024 * the vm_object pindex and count.
3025 */
3026 if (!vm_map_lookup_entry(map, start, &entry))
3027 entry = vm_map_entry_succ(entry);
3028 for (; entry->start < end;
3029 entry = vm_map_entry_succ(entry)) {
3030 vm_offset_t useEnd, useStart;
3031
3032 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3033 continue;
3034
3035 /*
3036 * MADV_FREE would otherwise rewind time to
3037 * the creation of the shadow object. Because
3038 * we hold the VM map read-locked, neither the
3039 * entry's object nor the presence of a
3040 * backing object can change.
3041 */
3042 if (behav == MADV_FREE &&
3043 entry->object.vm_object != NULL &&
3044 entry->object.vm_object->backing_object != NULL)
3045 continue;
3046
3047 pstart = OFF_TO_IDX(entry->offset);
3048 pend = pstart + atop(entry->end - entry->start);
3049 useStart = entry->start;
3050 useEnd = entry->end;
3051
3052 if (entry->start < start) {
3053 pstart += atop(start - entry->start);
3054 useStart = start;
3055 }
3056 if (entry->end > end) {
3057 pend -= atop(entry->end - end);
3058 useEnd = end;
3059 }
3060
3061 if (pstart >= pend)
3062 continue;
3063
3064 /*
3065 * Perform the pmap_advise() before clearing
3066 * PGA_REFERENCED in vm_page_advise(). Otherwise, a
3067 * concurrent pmap operation, such as pmap_remove(),
3068 * could clear a reference in the pmap and set
3069 * PGA_REFERENCED on the page before the pmap_advise()
3070 * had completed. Consequently, the page would appear
3071 * referenced based upon an old reference that
3072 * occurred before this pmap_advise() ran.
3073 */
3074 if (behav == MADV_DONTNEED || behav == MADV_FREE)
3075 pmap_advise(map->pmap, useStart, useEnd,
3076 behav);
3077
3078 vm_object_madvise(entry->object.vm_object, pstart,
3079 pend, behav);
3080
3081 /*
3082 * Pre-populate paging structures in the
3083 * WILLNEED case. For wired entries, the
3084 * paging structures are already populated.
3085 */
3086 if (behav == MADV_WILLNEED &&
3087 entry->wired_count == 0) {
3088 vm_map_pmap_enter(map,
3089 useStart,
3090 entry->protection,
3091 entry->object.vm_object,
3092 pstart,
3093 ptoa(pend - pstart),
3094 MAP_PREFAULT_MADVISE
3095 );
3096 }
3097 }
3098 vm_map_unlock_read(map);
3099 }
3100 return (0);
3101 }
3102
3103 /*
3104 * vm_map_inherit:
3105 *
3106 * Sets the inheritance of the specified address
3107 * range in the target map. Inheritance
3108 * affects how the map will be shared with
3109 * child maps at the time of vmspace_fork.
3110 */
3111 int
3112 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3113 vm_inherit_t new_inheritance)
3114 {
3115 vm_map_entry_t entry, lentry, prev_entry, start_entry;
3116 int rv;
3117
3118 switch (new_inheritance) {
3119 case VM_INHERIT_NONE:
3120 case VM_INHERIT_COPY:
3121 case VM_INHERIT_SHARE:
3122 case VM_INHERIT_ZERO:
3123 break;
3124 default:
3125 return (KERN_INVALID_ARGUMENT);
3126 }
3127 if (start == end)
3128 return (KERN_SUCCESS);
3129 vm_map_lock(map);
3130 VM_MAP_RANGE_CHECK(map, start, end);
3131 rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3132 if (rv != KERN_SUCCESS)
3133 goto unlock;
3134 if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3135 rv = vm_map_clip_end(map, lentry, end);
3136 if (rv != KERN_SUCCESS)
3137 goto unlock;
3138 }
3139 if (new_inheritance == VM_INHERIT_COPY) {
3140 for (entry = start_entry; entry->start < end;
3141 prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3142 if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3143 != 0) {
3144 rv = KERN_INVALID_ARGUMENT;
3145 goto unlock;
3146 }
3147 }
3148 }
3149 for (entry = start_entry; entry->start < end; prev_entry = entry,
3150 entry = vm_map_entry_succ(entry)) {
3151 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3152 entry, (uintmax_t)entry->end, (uintmax_t)end));
3153 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3154 new_inheritance != VM_INHERIT_ZERO)
3155 entry->inheritance = new_inheritance;
3156 vm_map_try_merge_entries(map, prev_entry, entry);
3157 }
3158 vm_map_try_merge_entries(map, prev_entry, entry);
3159 unlock:
3160 vm_map_unlock(map);
3161 return (rv);
3162 }
3163
3164 /*
3165 * vm_map_entry_in_transition:
3166 *
3167 * Release the map lock, and sleep until the entry is no longer in
3168 * transition. Awake and acquire the map lock. If the map changed while
3169 * another held the lock, lookup a possibly-changed entry at or after the
3170 * 'start' position of the old entry.
3171 */
3172 static vm_map_entry_t
3173 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3174 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3175 {
3176 vm_map_entry_t entry;
3177 vm_offset_t start;
3178 u_int last_timestamp;
3179
3180 VM_MAP_ASSERT_LOCKED(map);
3181 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3182 ("not in-tranition map entry %p", in_entry));
3183 /*
3184 * We have not yet clipped the entry.
3185 */
3186 start = MAX(in_start, in_entry->start);
3187 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3188 last_timestamp = map->timestamp;
3189 if (vm_map_unlock_and_wait(map, 0)) {
3190 /*
3191 * Allow interruption of user wiring/unwiring?
3192 */
3193 }
3194 vm_map_lock(map);
3195 if (last_timestamp + 1 == map->timestamp)
3196 return (in_entry);
3197
3198 /*
3199 * Look again for the entry because the map was modified while it was
3200 * unlocked. Specifically, the entry may have been clipped, merged, or
3201 * deleted.
3202 */
3203 if (!vm_map_lookup_entry(map, start, &entry)) {
3204 if (!holes_ok) {
3205 *io_end = start;
3206 return (NULL);
3207 }
3208 entry = vm_map_entry_succ(entry);
3209 }
3210 return (entry);
3211 }
3212
3213 /*
3214 * vm_map_unwire:
3215 *
3216 * Implements both kernel and user unwiring.
3217 */
3218 int
3219 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3220 int flags)
3221 {
3222 vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3223 int rv;
3224 bool holes_ok, need_wakeup, user_unwire;
3225
3226 if (start == end)
3227 return (KERN_SUCCESS);
3228 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3229 user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3230 vm_map_lock(map);
3231 VM_MAP_RANGE_CHECK(map, start, end);
3232 if (!vm_map_lookup_entry(map, start, &first_entry)) {
3233 if (holes_ok)
3234 first_entry = vm_map_entry_succ(first_entry);
3235 else {
3236 vm_map_unlock(map);
3237 return (KERN_INVALID_ADDRESS);
3238 }
3239 }
3240 rv = KERN_SUCCESS;
3241 for (entry = first_entry; entry->start < end; entry = next_entry) {
3242 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3243 /*
3244 * We have not yet clipped the entry.
3245 */
3246 next_entry = vm_map_entry_in_transition(map, start,
3247 &end, holes_ok, entry);
3248 if (next_entry == NULL) {
3249 if (entry == first_entry) {
3250 vm_map_unlock(map);
3251 return (KERN_INVALID_ADDRESS);
3252 }
3253 rv = KERN_INVALID_ADDRESS;
3254 break;
3255 }
3256 first_entry = (entry == first_entry) ?
3257 next_entry : NULL;
3258 continue;
3259 }
3260 rv = vm_map_clip_start(map, entry, start);
3261 if (rv != KERN_SUCCESS)
3262 break;
3263 rv = vm_map_clip_end(map, entry, end);
3264 if (rv != KERN_SUCCESS)
3265 break;
3266
3267 /*
3268 * Mark the entry in case the map lock is released. (See
3269 * above.)
3270 */
3271 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3272 entry->wiring_thread == NULL,
3273 ("owned map entry %p", entry));
3274 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3275 entry->wiring_thread = curthread;
3276 next_entry = vm_map_entry_succ(entry);
3277 /*
3278 * Check the map for holes in the specified region.
3279 * If holes_ok, skip this check.
3280 */
3281 if (!holes_ok &&
3282 entry->end < end && next_entry->start > entry->end) {
3283 end = entry->end;
3284 rv = KERN_INVALID_ADDRESS;
3285 break;
3286 }
3287 /*
3288 * If system unwiring, require that the entry is system wired.
3289 */
3290 if (!user_unwire &&
3291 vm_map_entry_system_wired_count(entry) == 0) {
3292 end = entry->end;
3293 rv = KERN_INVALID_ARGUMENT;
3294 break;
3295 }
3296 }
3297 need_wakeup = false;
3298 if (first_entry == NULL &&
3299 !vm_map_lookup_entry(map, start, &first_entry)) {
3300 KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3301 prev_entry = first_entry;
3302 entry = vm_map_entry_succ(first_entry);
3303 } else {
3304 prev_entry = vm_map_entry_pred(first_entry);
3305 entry = first_entry;
3306 }
3307 for (; entry->start < end;
3308 prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3309 /*
3310 * If holes_ok was specified, an empty
3311 * space in the unwired region could have been mapped
3312 * while the map lock was dropped for draining
3313 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread
3314 * could be simultaneously wiring this new mapping
3315 * entry. Detect these cases and skip any entries
3316 * marked as in transition by us.
3317 */
3318 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3319 entry->wiring_thread != curthread) {
3320 KASSERT(holes_ok,
3321 ("vm_map_unwire: !HOLESOK and new/changed entry"));
3322 continue;
3323 }
3324
3325 if (rv == KERN_SUCCESS && (!user_unwire ||
3326 (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3327 if (entry->wired_count == 1)
3328 vm_map_entry_unwire(map, entry);
3329 else
3330 entry->wired_count--;
3331 if (user_unwire)
3332 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3333 }
3334 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3335 ("vm_map_unwire: in-transition flag missing %p", entry));
3336 KASSERT(entry->wiring_thread == curthread,
3337 ("vm_map_unwire: alien wire %p", entry));
3338 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3339 entry->wiring_thread = NULL;
3340 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3341 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3342 need_wakeup = true;
3343 }
3344 vm_map_try_merge_entries(map, prev_entry, entry);
3345 }
3346 vm_map_try_merge_entries(map, prev_entry, entry);
3347 vm_map_unlock(map);
3348 if (need_wakeup)
3349 vm_map_wakeup(map);
3350 return (rv);
3351 }
3352
3353 static void
3354 vm_map_wire_user_count_sub(u_long npages)
3355 {
3356
3357 atomic_subtract_long(&vm_user_wire_count, npages);
3358 }
3359
3360 static bool
3361 vm_map_wire_user_count_add(u_long npages)
3362 {
3363 u_long wired;
3364
3365 wired = vm_user_wire_count;
3366 do {
3367 if (npages + wired > vm_page_max_user_wired)
3368 return (false);
3369 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3370 npages + wired));
3371
3372 return (true);
3373 }
3374
3375 /*
3376 * vm_map_wire_entry_failure:
3377 *
3378 * Handle a wiring failure on the given entry.
3379 *
3380 * The map should be locked.
3381 */
3382 static void
3383 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3384 vm_offset_t failed_addr)
3385 {
3386
3387 VM_MAP_ASSERT_LOCKED(map);
3388 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3389 entry->wired_count == 1,
3390 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3391 KASSERT(failed_addr < entry->end,
3392 ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3393
3394 /*
3395 * If any pages at the start of this entry were successfully wired,
3396 * then unwire them.
3397 */
3398 if (failed_addr > entry->start) {
3399 pmap_unwire(map->pmap, entry->start, failed_addr);
3400 vm_object_unwire(entry->object.vm_object, entry->offset,
3401 failed_addr - entry->start, PQ_ACTIVE);
3402 }
3403
3404 /*
3405 * Assign an out-of-range value to represent the failure to wire this
3406 * entry.
3407 */
3408 entry->wired_count = -1;
3409 }
3410
3411 int
3412 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3413 {
3414 int rv;
3415
3416 vm_map_lock(map);
3417 rv = vm_map_wire_locked(map, start, end, flags);
3418 vm_map_unlock(map);
3419 return (rv);
3420 }
3421
3422 /*
3423 * vm_map_wire_locked:
3424 *
3425 * Implements both kernel and user wiring. Returns with the map locked,
3426 * the map lock may be dropped.
3427 */
3428 int
3429 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3430 {
3431 vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3432 vm_offset_t faddr, saved_end, saved_start;
3433 u_long incr, npages;
3434 u_int bidx, last_timestamp;
3435 int rv;
3436 bool holes_ok, need_wakeup, user_wire;
3437 vm_prot_t prot;
3438
3439 VM_MAP_ASSERT_LOCKED(map);
3440
3441 if (start == end)
3442 return (KERN_SUCCESS);
3443 prot = 0;
3444 if (flags & VM_MAP_WIRE_WRITE)
3445 prot |= VM_PROT_WRITE;
3446 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3447 user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3448 VM_MAP_RANGE_CHECK(map, start, end);
3449 if (!vm_map_lookup_entry(map, start, &first_entry)) {
3450 if (holes_ok)
3451 first_entry = vm_map_entry_succ(first_entry);
3452 else
3453 return (KERN_INVALID_ADDRESS);
3454 }
3455 for (entry = first_entry; entry->start < end; entry = next_entry) {
3456 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3457 /*
3458 * We have not yet clipped the entry.
3459 */
3460 next_entry = vm_map_entry_in_transition(map, start,
3461 &end, holes_ok, entry);
3462 if (next_entry == NULL) {
3463 if (entry == first_entry)
3464 return (KERN_INVALID_ADDRESS);
3465 rv = KERN_INVALID_ADDRESS;
3466 goto done;
3467 }
3468 first_entry = (entry == first_entry) ?
3469 next_entry : NULL;
3470 continue;
3471 }
3472 rv = vm_map_clip_start(map, entry, start);
3473 if (rv != KERN_SUCCESS)
3474 goto done;
3475 rv = vm_map_clip_end(map, entry, end);
3476 if (rv != KERN_SUCCESS)
3477 goto done;
3478
3479 /*
3480 * Mark the entry in case the map lock is released. (See
3481 * above.)
3482 */
3483 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3484 entry->wiring_thread == NULL,
3485 ("owned map entry %p", entry));
3486 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3487 entry->wiring_thread = curthread;
3488 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3489 || (entry->protection & prot) != prot) {
3490 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3491 if (!holes_ok) {
3492 end = entry->end;
3493 rv = KERN_INVALID_ADDRESS;
3494 goto done;
3495 }
3496 } else if (entry->wired_count == 0) {
3497 entry->wired_count++;
3498
3499 npages = atop(entry->end - entry->start);
3500 if (user_wire && !vm_map_wire_user_count_add(npages)) {
3501 vm_map_wire_entry_failure(map, entry,
3502 entry->start);
3503 end = entry->end;
3504 rv = KERN_RESOURCE_SHORTAGE;
3505 goto done;
3506 }
3507
3508 /*
3509 * Release the map lock, relying on the in-transition
3510 * mark. Mark the map busy for fork.
3511 */
3512 saved_start = entry->start;
3513 saved_end = entry->end;
3514 last_timestamp = map->timestamp;
3515 bidx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3516 >> MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
3517 incr = pagesizes[bidx];
3518 vm_map_busy(map);
3519 vm_map_unlock(map);
3520
3521 for (faddr = saved_start; faddr < saved_end;
3522 faddr += incr) {
3523 /*
3524 * Simulate a fault to get the page and enter
3525 * it into the physical map.
3526 */
3527 rv = vm_fault(map, faddr, VM_PROT_NONE,
3528 VM_FAULT_WIRE, NULL);
3529 if (rv != KERN_SUCCESS)
3530 break;
3531 }
3532 vm_map_lock(map);
3533 vm_map_unbusy(map);
3534 if (last_timestamp + 1 != map->timestamp) {
3535 /*
3536 * Look again for the entry because the map was
3537 * modified while it was unlocked. The entry
3538 * may have been clipped, but NOT merged or
3539 * deleted.
3540 */
3541 if (!vm_map_lookup_entry(map, saved_start,
3542 &next_entry))
3543 KASSERT(false,
3544 ("vm_map_wire: lookup failed"));
3545 first_entry = (entry == first_entry) ?
3546 next_entry : NULL;
3547 for (entry = next_entry; entry->end < saved_end;
3548 entry = vm_map_entry_succ(entry)) {
3549 /*
3550 * In case of failure, handle entries
3551 * that were not fully wired here;
3552 * fully wired entries are handled
3553 * later.
3554 */
3555 if (rv != KERN_SUCCESS &&
3556 faddr < entry->end)
3557 vm_map_wire_entry_failure(map,
3558 entry, faddr);
3559 }
3560 }
3561 if (rv != KERN_SUCCESS) {
3562 vm_map_wire_entry_failure(map, entry, faddr);
3563 if (user_wire)
3564 vm_map_wire_user_count_sub(npages);
3565 end = entry->end;
3566 goto done;
3567 }
3568 } else if (!user_wire ||
3569 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3570 entry->wired_count++;
3571 }
3572 /*
3573 * Check the map for holes in the specified region.
3574 * If holes_ok was specified, skip this check.
3575 */
3576 next_entry = vm_map_entry_succ(entry);
3577 if (!holes_ok &&
3578 entry->end < end && next_entry->start > entry->end) {
3579 end = entry->end;
3580 rv = KERN_INVALID_ADDRESS;
3581 goto done;
3582 }
3583 }
3584 rv = KERN_SUCCESS;
3585 done:
3586 need_wakeup = false;
3587 if (first_entry == NULL &&
3588 !vm_map_lookup_entry(map, start, &first_entry)) {
3589 KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3590 prev_entry = first_entry;
3591 entry = vm_map_entry_succ(first_entry);
3592 } else {
3593 prev_entry = vm_map_entry_pred(first_entry);
3594 entry = first_entry;
3595 }
3596 for (; entry->start < end;
3597 prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3598 /*
3599 * If holes_ok was specified, an empty
3600 * space in the unwired region could have been mapped
3601 * while the map lock was dropped for faulting in the
3602 * pages or draining MAP_ENTRY_IN_TRANSITION.
3603 * Moreover, another thread could be simultaneously
3604 * wiring this new mapping entry. Detect these cases
3605 * and skip any entries marked as in transition not by us.
3606 *
3607 * Another way to get an entry not marked with
3608 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3609 * which set rv to KERN_INVALID_ARGUMENT.
3610 */
3611 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3612 entry->wiring_thread != curthread) {
3613 KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3614 ("vm_map_wire: !HOLESOK and new/changed entry"));
3615 continue;
3616 }
3617
3618 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3619 /* do nothing */
3620 } else if (rv == KERN_SUCCESS) {
3621 if (user_wire)
3622 entry->eflags |= MAP_ENTRY_USER_WIRED;
3623 } else if (entry->wired_count == -1) {
3624 /*
3625 * Wiring failed on this entry. Thus, unwiring is
3626 * unnecessary.
3627 */
3628 entry->wired_count = 0;
3629 } else if (!user_wire ||
3630 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3631 /*
3632 * Undo the wiring. Wiring succeeded on this entry
3633 * but failed on a later entry.
3634 */
3635 if (entry->wired_count == 1) {
3636 vm_map_entry_unwire(map, entry);
3637 if (user_wire)
3638 vm_map_wire_user_count_sub(
3639 atop(entry->end - entry->start));
3640 } else
3641 entry->wired_count--;
3642 }
3643 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3644 ("vm_map_wire: in-transition flag missing %p", entry));
3645 KASSERT(entry->wiring_thread == curthread,
3646 ("vm_map_wire: alien wire %p", entry));
3647 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3648 MAP_ENTRY_WIRE_SKIPPED);
3649 entry->wiring_thread = NULL;
3650 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3651 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3652 need_wakeup = true;
3653 }
3654 vm_map_try_merge_entries(map, prev_entry, entry);
3655 }
3656 vm_map_try_merge_entries(map, prev_entry, entry);
3657 if (need_wakeup)
3658 vm_map_wakeup(map);
3659 return (rv);
3660 }
3661
3662 /*
3663 * vm_map_sync
3664 *
3665 * Push any dirty cached pages in the address range to their pager.
3666 * If syncio is TRUE, dirty pages are written synchronously.
3667 * If invalidate is TRUE, any cached pages are freed as well.
3668 *
3669 * If the size of the region from start to end is zero, we are
3670 * supposed to flush all modified pages within the region containing
3671 * start. Unfortunately, a region can be split or coalesced with
3672 * neighboring regions, making it difficult to determine what the
3673 * original region was. Therefore, we approximate this requirement by
3674 * flushing the current region containing start.
3675 *
3676 * Returns an error if any part of the specified range is not mapped.
3677 */
3678 int
3679 vm_map_sync(
3680 vm_map_t map,
3681 vm_offset_t start,
3682 vm_offset_t end,
3683 boolean_t syncio,
3684 boolean_t invalidate)
3685 {
3686 vm_map_entry_t entry, first_entry, next_entry;
3687 vm_size_t size;
3688 vm_object_t object;
3689 vm_ooffset_t offset;
3690 unsigned int last_timestamp;
3691 int bdry_idx;
3692 boolean_t failed;
3693
3694 vm_map_lock_read(map);
3695 VM_MAP_RANGE_CHECK(map, start, end);
3696 if (!vm_map_lookup_entry(map, start, &first_entry)) {
3697 vm_map_unlock_read(map);
3698 return (KERN_INVALID_ADDRESS);
3699 } else if (start == end) {
3700 start = first_entry->start;
3701 end = first_entry->end;
3702 }
3703
3704 /*
3705 * Make a first pass to check for user-wired memory, holes,
3706 * and partial invalidation of largepage mappings.
3707 */
3708 for (entry = first_entry; entry->start < end; entry = next_entry) {
3709 if (invalidate) {
3710 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3711 vm_map_unlock_read(map);
3712 return (KERN_INVALID_ARGUMENT);
3713 }
3714 bdry_idx = (entry->eflags &
3715 MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
3716 MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
3717 if (bdry_idx != 0 &&
3718 ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3719 (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3720 vm_map_unlock_read(map);
3721 return (KERN_INVALID_ARGUMENT);
3722 }
3723 }
3724 next_entry = vm_map_entry_succ(entry);
3725 if (end > entry->end &&
3726 entry->end != next_entry->start) {
3727 vm_map_unlock_read(map);
3728 return (KERN_INVALID_ADDRESS);
3729 }
3730 }
3731
3732 if (invalidate)
3733 pmap_remove(map->pmap, start, end);
3734 failed = FALSE;
3735
3736 /*
3737 * Make a second pass, cleaning/uncaching pages from the indicated
3738 * objects as we go.
3739 */
3740 for (entry = first_entry; entry->start < end;) {
3741 offset = entry->offset + (start - entry->start);
3742 size = (end <= entry->end ? end : entry->end) - start;
3743 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3744 vm_map_t smap;
3745 vm_map_entry_t tentry;
3746 vm_size_t tsize;
3747
3748 smap = entry->object.sub_map;
3749 vm_map_lock_read(smap);
3750 (void) vm_map_lookup_entry(smap, offset, &tentry);
3751 tsize = tentry->end - offset;
3752 if (tsize < size)
3753 size = tsize;
3754 object = tentry->object.vm_object;
3755 offset = tentry->offset + (offset - tentry->start);
3756 vm_map_unlock_read(smap);
3757 } else {
3758 object = entry->object.vm_object;
3759 }
3760 vm_object_reference(object);
3761 last_timestamp = map->timestamp;
3762 vm_map_unlock_read(map);
3763 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3764 failed = TRUE;
3765 start += size;
3766 vm_object_deallocate(object);
3767 vm_map_lock_read(map);
3768 if (last_timestamp == map->timestamp ||
3769 !vm_map_lookup_entry(map, start, &entry))
3770 entry = vm_map_entry_succ(entry);
3771 }
3772
3773 vm_map_unlock_read(map);
3774 return (failed ? KERN_FAILURE : KERN_SUCCESS);
3775 }
3776
3777 /*
3778 * vm_map_entry_unwire: [ internal use only ]
3779 *
3780 * Make the region specified by this entry pageable.
3781 *
3782 * The map in question should be locked.
3783 * [This is the reason for this routine's existence.]
3784 */
3785 static void
3786 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3787 {
3788 vm_size_t size;
3789
3790 VM_MAP_ASSERT_LOCKED(map);
3791 KASSERT(entry->wired_count > 0,
3792 ("vm_map_entry_unwire: entry %p isn't wired", entry));
3793
3794 size = entry->end - entry->start;
3795 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3796 vm_map_wire_user_count_sub(atop(size));
3797 pmap_unwire(map->pmap, entry->start, entry->end);
3798 vm_object_unwire(entry->object.vm_object, entry->offset, size,
3799 PQ_ACTIVE);
3800 entry->wired_count = 0;
3801 }
3802
3803 static void
3804 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3805 {
3806
3807 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3808 vm_object_deallocate(entry->object.vm_object);
3809 uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3810 }
3811
3812 /*
3813 * vm_map_entry_delete: [ internal use only ]
3814 *
3815 * Deallocate the given entry from the target map.
3816 */
3817 static void
3818 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3819 {
3820 vm_object_t object;
3821 vm_pindex_t offidxstart, offidxend, size1;
3822 vm_size_t size;
3823
3824 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3825 object = entry->object.vm_object;
3826
3827 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3828 MPASS(entry->cred == NULL);
3829 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3830 MPASS(object == NULL);
3831 vm_map_entry_deallocate(entry, map->system_map);
3832 return;
3833 }
3834
3835 size = entry->end - entry->start;
3836 map->size -= size;
3837
3838 if (entry->cred != NULL) {
3839 swap_release_by_cred(size, entry->cred);
3840 crfree(entry->cred);
3841 }
3842
3843 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3844 entry->object.vm_object = NULL;
3845 } else if ((object->flags & OBJ_ANON) != 0 ||
3846 object == kernel_object) {
3847 KASSERT(entry->cred == NULL || object->cred == NULL ||
3848 (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3849 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3850 offidxstart = OFF_TO_IDX(entry->offset);
3851 offidxend = offidxstart + atop(size);
3852 VM_OBJECT_WLOCK(object);
3853 if (object->ref_count != 1 &&
3854 ((object->flags & OBJ_ONEMAPPING) != 0 ||
3855 object == kernel_object)) {
3856 vm_object_collapse(object);
3857
3858 /*
3859 * The option OBJPR_NOTMAPPED can be passed here
3860 * because vm_map_delete() already performed
3861 * pmap_remove() on the only mapping to this range
3862 * of pages.
3863 */
3864 vm_object_page_remove(object, offidxstart, offidxend,
3865 OBJPR_NOTMAPPED);
3866 if (offidxend >= object->size &&
3867 offidxstart < object->size) {
3868 size1 = object->size;
3869 object->size = offidxstart;
3870 if (object->cred != NULL) {
3871 size1 -= object->size;
3872 KASSERT(object->charge >= ptoa(size1),
3873 ("object %p charge < 0", object));
3874 swap_release_by_cred(ptoa(size1),
3875 object->cred);
3876 object->charge -= ptoa(size1);
3877 }
3878 }
3879 }
3880 VM_OBJECT_WUNLOCK(object);
3881 }
3882 if (map->system_map)
3883 vm_map_entry_deallocate(entry, TRUE);
3884 else {
3885 entry->defer_next = curthread->td_map_def_user;
3886 curthread->td_map_def_user = entry;
3887 }
3888 }
3889
3890 /*
3891 * vm_map_delete: [ internal use only ]
3892 *
3893 * Deallocates the given address range from the target
3894 * map.
3895 */
3896 int
3897 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3898 {
3899 vm_map_entry_t entry, next_entry, scratch_entry;
3900 int rv;
3901
3902 VM_MAP_ASSERT_LOCKED(map);
3903
3904 if (start == end)
3905 return (KERN_SUCCESS);
3906
3907 /*
3908 * Find the start of the region, and clip it.
3909 * Step through all entries in this region.
3910 */
3911 rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
3912 if (rv != KERN_SUCCESS)
3913 return (rv);
3914 for (; entry->start < end; entry = next_entry) {
3915 /*
3916 * Wait for wiring or unwiring of an entry to complete.
3917 * Also wait for any system wirings to disappear on
3918 * user maps.
3919 */
3920 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3921 (vm_map_pmap(map) != kernel_pmap &&
3922 vm_map_entry_system_wired_count(entry) != 0)) {
3923 unsigned int last_timestamp;
3924 vm_offset_t saved_start;
3925
3926 saved_start = entry->start;
3927 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3928 last_timestamp = map->timestamp;
3929 (void) vm_map_unlock_and_wait(map, 0);
3930 vm_map_lock(map);
3931 if (last_timestamp + 1 != map->timestamp) {
3932 /*
3933 * Look again for the entry because the map was
3934 * modified while it was unlocked.
3935 * Specifically, the entry may have been
3936 * clipped, merged, or deleted.
3937 */
3938 rv = vm_map_lookup_clip_start(map, saved_start,
3939 &next_entry, &scratch_entry);
3940 if (rv != KERN_SUCCESS)
3941 break;
3942 } else
3943 next_entry = entry;
3944 continue;
3945 }
3946
3947 /* XXXKIB or delete to the upper superpage boundary ? */
3948 rv = vm_map_clip_end(map, entry, end);
3949 if (rv != KERN_SUCCESS)
3950 break;
3951 next_entry = vm_map_entry_succ(entry);
3952
3953 /*
3954 * Unwire before removing addresses from the pmap; otherwise,
3955 * unwiring will put the entries back in the pmap.
3956 */
3957 if (entry->wired_count != 0)
3958 vm_map_entry_unwire(map, entry);
3959
3960 /*
3961 * Remove mappings for the pages, but only if the
3962 * mappings could exist. For instance, it does not
3963 * make sense to call pmap_remove() for guard entries.
3964 */
3965 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3966 entry->object.vm_object != NULL)
3967 pmap_remove(map->pmap, entry->start, entry->end);
3968
3969 if (entry->end == map->anon_loc)
3970 map->anon_loc = entry->start;
3971
3972 /*
3973 * Delete the entry only after removing all pmap
3974 * entries pointing to its pages. (Otherwise, its
3975 * page frames may be reallocated, and any modify bits
3976 * will be set in the wrong object!)
3977 */
3978 vm_map_entry_delete(map, entry);
3979 }
3980 return (rv);
3981 }
3982
3983 /*
3984 * vm_map_remove:
3985 *
3986 * Remove the given address range from the target map.
3987 * This is the exported form of vm_map_delete.
3988 */
3989 int
3990 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3991 {
3992 int result;
3993
3994 vm_map_lock(map);
3995 VM_MAP_RANGE_CHECK(map, start, end);
3996 result = vm_map_delete(map, start, end);
3997 vm_map_unlock(map);
3998 return (result);
3999 }
4000
4001 /*
4002 * vm_map_check_protection:
4003 *
4004 * Assert that the target map allows the specified privilege on the
4005 * entire address region given. The entire region must be allocated.
4006 *
4007 * WARNING! This code does not and should not check whether the
4008 * contents of the region is accessible. For example a smaller file
4009 * might be mapped into a larger address space.
4010 *
4011 * NOTE! This code is also called by munmap().
4012 *
4013 * The map must be locked. A read lock is sufficient.
4014 */
4015 boolean_t
4016 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4017 vm_prot_t protection)
4018 {
4019 vm_map_entry_t entry;
4020 vm_map_entry_t tmp_entry;
4021
4022 if (!vm_map_lookup_entry(map, start, &tmp_entry))
4023 return (FALSE);
4024 entry = tmp_entry;
4025
4026 while (start < end) {
4027 /*
4028 * No holes allowed!
4029 */
4030 if (start < entry->start)
4031 return (FALSE);
4032 /*
4033 * Check protection associated with entry.
4034 */
4035 if ((entry->protection & protection) != protection)
4036 return (FALSE);
4037 /* go to next entry */
4038 start = entry->end;
4039 entry = vm_map_entry_succ(entry);
4040 }
4041 return (TRUE);
4042 }
4043
4044 /*
4045 *
4046 * vm_map_copy_swap_object:
4047 *
4048 * Copies a swap-backed object from an existing map entry to a
4049 * new one. Carries forward the swap charge. May change the
4050 * src object on return.
4051 */
4052 static void
4053 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4054 vm_offset_t size, vm_ooffset_t *fork_charge)
4055 {
4056 vm_object_t src_object;
4057 struct ucred *cred;
4058 int charged;
4059
4060 src_object = src_entry->object.vm_object;
4061 charged = ENTRY_CHARGED(src_entry);
4062 if ((src_object->flags & OBJ_ANON) != 0) {
4063 VM_OBJECT_WLOCK(src_object);
4064 vm_object_collapse(src_object);
4065 if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4066 vm_object_split(src_entry);
4067 src_object = src_entry->object.vm_object;
4068 }
4069 vm_object_reference_locked(src_object);
4070 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4071 VM_OBJECT_WUNLOCK(src_object);
4072 } else
4073 vm_object_reference(src_object);
4074 if (src_entry->cred != NULL &&
4075 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4076 KASSERT(src_object->cred == NULL,
4077 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4078 src_object));
4079 src_object->cred = src_entry->cred;
4080 src_object->charge = size;
4081 }
4082 dst_entry->object.vm_object = src_object;
4083 if (charged) {
4084 cred = curthread->td_ucred;
4085 crhold(cred);
4086 dst_entry->cred = cred;
4087 *fork_charge += size;
4088 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4089 crhold(cred);
4090 src_entry->cred = cred;
4091 *fork_charge += size;
4092 }
4093 }
4094 }
4095
4096 /*
4097 * vm_map_copy_entry:
4098 *
4099 * Copies the contents of the source entry to the destination
4100 * entry. The entries *must* be aligned properly.
4101 */
4102 static void
4103 vm_map_copy_entry(
4104 vm_map_t src_map,
4105 vm_map_t dst_map,
4106 vm_map_entry_t src_entry,
4107 vm_map_entry_t dst_entry,
4108 vm_ooffset_t *fork_charge)
4109 {
4110 vm_object_t src_object;
4111 vm_map_entry_t fake_entry;
4112 vm_offset_t size;
4113
4114 VM_MAP_ASSERT_LOCKED(dst_map);
4115
4116 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4117 return;
4118
4119 if (src_entry->wired_count == 0 ||
4120 (src_entry->protection & VM_PROT_WRITE) == 0) {
4121 /*
4122 * If the source entry is marked needs_copy, it is already
4123 * write-protected.
4124 */
4125 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4126 (src_entry->protection & VM_PROT_WRITE) != 0) {
4127 pmap_protect(src_map->pmap,
4128 src_entry->start,
4129 src_entry->end,
4130 src_entry->protection & ~VM_PROT_WRITE);
4131 }
4132
4133 /*
4134 * Make a copy of the object.
4135 */
4136 size = src_entry->end - src_entry->start;
4137 if ((src_object = src_entry->object.vm_object) != NULL) {
4138 if ((src_object->flags & OBJ_SWAP) != 0) {
4139 vm_map_copy_swap_object(src_entry, dst_entry,
4140 size, fork_charge);
4141 /* May have split/collapsed, reload obj. */
4142 src_object = src_entry->object.vm_object;
4143 } else {
4144 vm_object_reference(src_object);
4145 dst_entry->object.vm_object = src_object;
4146 }
4147 src_entry->eflags |= MAP_ENTRY_COW |
4148 MAP_ENTRY_NEEDS_COPY;
4149 dst_entry->eflags |= MAP_ENTRY_COW |
4150 MAP_ENTRY_NEEDS_COPY;
4151 dst_entry->offset = src_entry->offset;
4152 if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4153 /*
4154 * MAP_ENTRY_WRITECNT cannot
4155 * indicate write reference from
4156 * src_entry, since the entry is
4157 * marked as needs copy. Allocate a
4158 * fake entry that is used to
4159 * decrement object->un_pager writecount
4160 * at the appropriate time. Attach
4161 * fake_entry to the deferred list.
4162 */
4163 fake_entry = vm_map_entry_create(dst_map);
4164 fake_entry->eflags = MAP_ENTRY_WRITECNT;
4165 src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4166 vm_object_reference(src_object);
4167 fake_entry->object.vm_object = src_object;
4168 fake_entry->start = src_entry->start;
4169 fake_entry->end = src_entry->end;
4170 fake_entry->defer_next =
4171 curthread->td_map_def_user;
4172 curthread->td_map_def_user = fake_entry;
4173 }
4174
4175 pmap_copy(dst_map->pmap, src_map->pmap,
4176 dst_entry->start, dst_entry->end - dst_entry->start,
4177 src_entry->start);
4178 } else {
4179 dst_entry->object.vm_object = NULL;
4180 dst_entry->offset = 0;
4181 if (src_entry->cred != NULL) {
4182 dst_entry->cred = curthread->td_ucred;
4183 crhold(dst_entry->cred);
4184 *fork_charge += size;
4185 }
4186 }
4187 } else {
4188 /*
4189 * We don't want to make writeable wired pages copy-on-write.
4190 * Immediately copy these pages into the new map by simulating
4191 * page faults. The new pages are pageable.
4192 */
4193 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4194 fork_charge);
4195 }
4196 }
4197
4198 /*
4199 * vmspace_map_entry_forked:
4200 * Update the newly-forked vmspace each time a map entry is inherited
4201 * or copied. The values for vm_dsize and vm_tsize are approximate
4202 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4203 */
4204 static void
4205 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4206 vm_map_entry_t entry)
4207 {
4208 vm_size_t entrysize;
4209 vm_offset_t newend;
4210
4211 if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4212 return;
4213 entrysize = entry->end - entry->start;
4214 vm2->vm_map.size += entrysize;
4215 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4216 vm2->vm_ssize += btoc(entrysize);
4217 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4218 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4219 newend = MIN(entry->end,
4220 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4221 vm2->vm_dsize += btoc(newend - entry->start);
4222 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4223 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4224 newend = MIN(entry->end,
4225 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4226 vm2->vm_tsize += btoc(newend - entry->start);
4227 }
4228 }
4229
4230 /*
4231 * vmspace_fork:
4232 * Create a new process vmspace structure and vm_map
4233 * based on those of an existing process. The new map
4234 * is based on the old map, according to the inheritance
4235 * values on the regions in that map.
4236 *
4237 * XXX It might be worth coalescing the entries added to the new vmspace.
4238 *
4239 * The source map must not be locked.
4240 */
4241 struct vmspace *
4242 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4243 {
4244 struct vmspace *vm2;
4245 vm_map_t new_map, old_map;
4246 vm_map_entry_t new_entry, old_entry;
4247 vm_object_t object;
4248 int error, locked __diagused;
4249 vm_inherit_t inh;
4250
4251 old_map = &vm1->vm_map;
4252 /* Copy immutable fields of vm1 to vm2. */
4253 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4254 pmap_pinit);
4255 if (vm2 == NULL)
4256 return (NULL);
4257
4258 vm2->vm_taddr = vm1->vm_taddr;
4259 vm2->vm_daddr = vm1->vm_daddr;
4260 vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4261 vm2->vm_stacktop = vm1->vm_stacktop;
4262 vm2->vm_shp_base = vm1->vm_shp_base;
4263 vm_map_lock(old_map);
4264 if (old_map->busy)
4265 vm_map_wait_busy(old_map);
4266 new_map = &vm2->vm_map;
4267 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4268 KASSERT(locked, ("vmspace_fork: lock failed"));
4269
4270 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4271 if (error != 0) {
4272 sx_xunlock(&old_map->lock);
4273 sx_xunlock(&new_map->lock);
4274 vm_map_process_deferred();
4275 vmspace_free(vm2);
4276 return (NULL);
4277 }
4278
4279 new_map->anon_loc = old_map->anon_loc;
4280 new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4281 MAP_ASLR_STACK | MAP_WXORX);
4282
4283 VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4284 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4285 panic("vm_map_fork: encountered a submap");
4286
4287 inh = old_entry->inheritance;
4288 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4289 inh != VM_INHERIT_NONE)
4290 inh = VM_INHERIT_COPY;
4291
4292 switch (inh) {
4293 case VM_INHERIT_NONE:
4294 break;
4295
4296 case VM_INHERIT_SHARE:
4297 /*
4298 * Clone the entry, creating the shared object if
4299 * necessary.
4300 */
4301 object = old_entry->object.vm_object;
4302 if (object == NULL) {
4303 vm_map_entry_back(old_entry);
4304 object = old_entry->object.vm_object;
4305 }
4306
4307 /*
4308 * Add the reference before calling vm_object_shadow
4309 * to insure that a shadow object is created.
4310 */
4311 vm_object_reference(object);
4312 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4313 vm_object_shadow(&old_entry->object.vm_object,
4314 &old_entry->offset,
4315 old_entry->end - old_entry->start,
4316 old_entry->cred,
4317 /* Transfer the second reference too. */
4318 true);
4319 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4320 old_entry->cred = NULL;
4321
4322 /*
4323 * As in vm_map_merged_neighbor_dispose(),
4324 * the vnode lock will not be acquired in
4325 * this call to vm_object_deallocate().
4326 */
4327 vm_object_deallocate(object);
4328 object = old_entry->object.vm_object;
4329 } else {
4330 VM_OBJECT_WLOCK(object);
4331 vm_object_clear_flag(object, OBJ_ONEMAPPING);
4332 if (old_entry->cred != NULL) {
4333 KASSERT(object->cred == NULL,
4334 ("vmspace_fork both cred"));
4335 object->cred = old_entry->cred;
4336 object->charge = old_entry->end -
4337 old_entry->start;
4338 old_entry->cred = NULL;
4339 }
4340
4341 /*
4342 * Assert the correct state of the vnode
4343 * v_writecount while the object is locked, to
4344 * not relock it later for the assertion
4345 * correctness.
4346 */
4347 if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4348 object->type == OBJT_VNODE) {
4349 KASSERT(((struct vnode *)object->
4350 handle)->v_writecount > 0,
4351 ("vmspace_fork: v_writecount %p",
4352 object));
4353 KASSERT(object->un_pager.vnp.
4354 writemappings > 0,
4355 ("vmspace_fork: vnp.writecount %p",
4356 object));
4357 }
4358 VM_OBJECT_WUNLOCK(object);
4359 }
4360
4361 /*
4362 * Clone the entry, referencing the shared object.
4363 */
4364 new_entry = vm_map_entry_create(new_map);
4365 *new_entry = *old_entry;
4366 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4367 MAP_ENTRY_IN_TRANSITION);
4368 new_entry->wiring_thread = NULL;
4369 new_entry->wired_count = 0;
4370 if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4371 vm_pager_update_writecount(object,
4372 new_entry->start, new_entry->end);
4373 }
4374 vm_map_entry_set_vnode_text(new_entry, true);
4375
4376 /*
4377 * Insert the entry into the new map -- we know we're
4378 * inserting at the end of the new map.
4379 */
4380 vm_map_entry_link(new_map, new_entry);
4381 vmspace_map_entry_forked(vm1, vm2, new_entry);
4382
4383 /*
4384 * Update the physical map
4385 */
4386 pmap_copy(new_map->pmap, old_map->pmap,
4387 new_entry->start,
4388 (old_entry->end - old_entry->start),
4389 old_entry->start);
4390 break;
4391
4392 case VM_INHERIT_COPY:
4393 /*
4394 * Clone the entry and link into the map.
4395 */
4396 new_entry = vm_map_entry_create(new_map);
4397 *new_entry = *old_entry;
4398 /*
4399 * Copied entry is COW over the old object.
4400 */
4401 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4402 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4403 new_entry->wiring_thread = NULL;
4404 new_entry->wired_count = 0;
4405 new_entry->object.vm_object = NULL;
4406 new_entry->cred = NULL;
4407 vm_map_entry_link(new_map, new_entry);
4408 vmspace_map_entry_forked(vm1, vm2, new_entry);
4409 vm_map_copy_entry(old_map, new_map, old_entry,
4410 new_entry, fork_charge);
4411 vm_map_entry_set_vnode_text(new_entry, true);
4412 break;
4413
4414 case VM_INHERIT_ZERO:
4415 /*
4416 * Create a new anonymous mapping entry modelled from
4417 * the old one.
4418 */
4419 new_entry = vm_map_entry_create(new_map);
4420 memset(new_entry, 0, sizeof(*new_entry));
4421
4422 new_entry->start = old_entry->start;
4423 new_entry->end = old_entry->end;
4424 new_entry->eflags = old_entry->eflags &
4425 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4426 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4427 MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4428 new_entry->protection = old_entry->protection;
4429 new_entry->max_protection = old_entry->max_protection;
4430 new_entry->inheritance = VM_INHERIT_ZERO;
4431
4432 vm_map_entry_link(new_map, new_entry);
4433 vmspace_map_entry_forked(vm1, vm2, new_entry);
4434
4435 new_entry->cred = curthread->td_ucred;
4436 crhold(new_entry->cred);
4437 *fork_charge += (new_entry->end - new_entry->start);
4438
4439 break;
4440 }
4441 }
4442 /*
4443 * Use inlined vm_map_unlock() to postpone handling the deferred
4444 * map entries, which cannot be done until both old_map and
4445 * new_map locks are released.
4446 */
4447 sx_xunlock(&old_map->lock);
4448 sx_xunlock(&new_map->lock);
4449 vm_map_process_deferred();
4450
4451 return (vm2);
4452 }
4453
4454 /*
4455 * Create a process's stack for exec_new_vmspace(). This function is never
4456 * asked to wire the newly created stack.
4457 */
4458 int
4459 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4460 vm_prot_t prot, vm_prot_t max, int cow)
4461 {
4462 vm_size_t growsize, init_ssize;
4463 rlim_t vmemlim;
4464 int rv;
4465
4466 MPASS((map->flags & MAP_WIREFUTURE) == 0);
4467 growsize = sgrowsiz;
4468 init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4469 vm_map_lock(map);
4470 vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4471 /* If we would blow our VMEM resource limit, no go */
4472 if (map->size + init_ssize > vmemlim) {
4473 rv = KERN_NO_SPACE;
4474 goto out;
4475 }
4476 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4477 max, cow);
4478 out:
4479 vm_map_unlock(map);
4480 return (rv);
4481 }
4482
4483 static int stack_guard_page = 1;
4484 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4485 &stack_guard_page, 0,
4486 "Specifies the number of guard pages for a stack that grows");
4487
4488 static int
4489 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4490 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4491 {
4492 vm_map_entry_t new_entry, prev_entry;
4493 vm_offset_t bot, gap_bot, gap_top, top;
4494 vm_size_t init_ssize, sgp;
4495 int orient, rv;
4496
4497 /*
4498 * The stack orientation is piggybacked with the cow argument.
4499 * Extract it into orient and mask the cow argument so that we
4500 * don't pass it around further.
4501 */
4502 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4503 KASSERT(orient != 0, ("No stack grow direction"));
4504 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4505 ("bi-dir stack"));
4506
4507 if (max_ssize == 0 ||
4508 !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4509 return (KERN_INVALID_ADDRESS);
4510 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4511 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4512 (vm_size_t)stack_guard_page * PAGE_SIZE;
4513 if (sgp >= max_ssize)
4514 return (KERN_INVALID_ARGUMENT);
4515
4516 init_ssize = growsize;
4517 if (max_ssize < init_ssize + sgp)
4518 init_ssize = max_ssize - sgp;
4519
4520 /* If addr is already mapped, no go */
4521 if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4522 return (KERN_NO_SPACE);
4523
4524 /*
4525 * If we can't accommodate max_ssize in the current mapping, no go.
4526 */
4527 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4528 return (KERN_NO_SPACE);
4529
4530 /*
4531 * We initially map a stack of only init_ssize. We will grow as
4532 * needed later. Depending on the orientation of the stack (i.e.
4533 * the grow direction) we either map at the top of the range, the
4534 * bottom of the range or in the middle.
4535 *
4536 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4537 * and cow to be 0. Possibly we should eliminate these as input
4538 * parameters, and just pass these values here in the insert call.
4539 */
4540 if (orient == MAP_STACK_GROWS_DOWN) {
4541 bot = addrbos + max_ssize - init_ssize;
4542 top = bot + init_ssize;
4543 gap_bot = addrbos;
4544 gap_top = bot;
4545 } else /* if (orient == MAP_STACK_GROWS_UP) */ {
4546 bot = addrbos;
4547 top = bot + init_ssize;
4548 gap_bot = top;
4549 gap_top = addrbos + max_ssize;
4550 }
4551 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4552 if (rv != KERN_SUCCESS)
4553 return (rv);
4554 new_entry = vm_map_entry_succ(prev_entry);
4555 KASSERT(new_entry->end == top || new_entry->start == bot,
4556 ("Bad entry start/end for new stack entry"));
4557 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4558 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4559 ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4560 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4561 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4562 ("new entry lacks MAP_ENTRY_GROWS_UP"));
4563 if (gap_bot == gap_top)
4564 return (KERN_SUCCESS);
4565 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4566 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4567 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4568 if (rv == KERN_SUCCESS) {
4569 /*
4570 * Gap can never successfully handle a fault, so
4571 * read-ahead logic is never used for it. Re-use
4572 * next_read of the gap entry to store
4573 * stack_guard_page for vm_map_growstack().
4574 */
4575 if (orient == MAP_STACK_GROWS_DOWN)
4576 vm_map_entry_pred(new_entry)->next_read = sgp;
4577 else
4578 vm_map_entry_succ(new_entry)->next_read = sgp;
4579 } else {
4580 (void)vm_map_delete(map, bot, top);
4581 }
4582 return (rv);
4583 }
4584
4585 /*
4586 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we
4587 * successfully grow the stack.
4588 */
4589 static int
4590 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4591 {
4592 vm_map_entry_t stack_entry;
4593 struct proc *p;
4594 struct vmspace *vm;
4595 struct ucred *cred;
4596 vm_offset_t gap_end, gap_start, grow_start;
4597 vm_size_t grow_amount, guard, max_grow;
4598 rlim_t lmemlim, stacklim, vmemlim;
4599 int rv, rv1 __diagused;
4600 bool gap_deleted, grow_down, is_procstack;
4601 #ifdef notyet
4602 uint64_t limit;
4603 #endif
4604 #ifdef RACCT
4605 int error __diagused;
4606 #endif
4607
4608 p = curproc;
4609 vm = p->p_vmspace;
4610
4611 /*
4612 * Disallow stack growth when the access is performed by a
4613 * debugger or AIO daemon. The reason is that the wrong
4614 * resource limits are applied.
4615 */
4616 if (p != initproc && (map != &p->p_vmspace->vm_map ||
4617 p->p_textvp == NULL))
4618 return (KERN_FAILURE);
4619
4620 MPASS(!map->system_map);
4621
4622 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4623 stacklim = lim_cur(curthread, RLIMIT_STACK);
4624 vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4625 retry:
4626 /* If addr is not in a hole for a stack grow area, no need to grow. */
4627 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4628 return (KERN_FAILURE);
4629 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4630 return (KERN_SUCCESS);
4631 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4632 stack_entry = vm_map_entry_succ(gap_entry);
4633 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4634 stack_entry->start != gap_entry->end)
4635 return (KERN_FAILURE);
4636 grow_amount = round_page(stack_entry->start - addr);
4637 grow_down = true;
4638 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4639 stack_entry = vm_map_entry_pred(gap_entry);
4640 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4641 stack_entry->end != gap_entry->start)
4642 return (KERN_FAILURE);
4643 grow_amount = round_page(addr + 1 - stack_entry->end);
4644 grow_down = false;
4645 } else {
4646 return (KERN_FAILURE);
4647 }
4648 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4649 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4650 gap_entry->next_read;
4651 max_grow = gap_entry->end - gap_entry->start;
4652 if (guard > max_grow)
4653 return (KERN_NO_SPACE);
4654 max_grow -= guard;
4655 if (grow_amount > max_grow)
4656 return (KERN_NO_SPACE);
4657
4658 /*
4659 * If this is the main process stack, see if we're over the stack
4660 * limit.
4661 */
4662 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4663 addr < (vm_offset_t)vm->vm_stacktop;
4664 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4665 return (KERN_NO_SPACE);
4666
4667 #ifdef RACCT
4668 if (racct_enable) {
4669 PROC_LOCK(p);
4670 if (is_procstack && racct_set(p, RACCT_STACK,
4671 ctob(vm->vm_ssize) + grow_amount)) {
4672 PROC_UNLOCK(p);
4673 return (KERN_NO_SPACE);
4674 }
4675 PROC_UNLOCK(p);
4676 }
4677 #endif
4678
4679 grow_amount = roundup(grow_amount, sgrowsiz);
4680 if (grow_amount > max_grow)
4681 grow_amount = max_grow;
4682 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4683 grow_amount = trunc_page((vm_size_t)stacklim) -
4684 ctob(vm->vm_ssize);
4685 }
4686
4687 #ifdef notyet
4688 PROC_LOCK(p);
4689 limit = racct_get_available(p, RACCT_STACK);
4690 PROC_UNLOCK(p);
4691 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4692 grow_amount = limit - ctob(vm->vm_ssize);
4693 #endif
4694
4695 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4696 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4697 rv = KERN_NO_SPACE;
4698 goto out;
4699 }
4700 #ifdef RACCT
4701 if (racct_enable) {
4702 PROC_LOCK(p);
4703 if (racct_set(p, RACCT_MEMLOCK,
4704 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4705 PROC_UNLOCK(p);
4706 rv = KERN_NO_SPACE;
4707 goto out;
4708 }
4709 PROC_UNLOCK(p);
4710 }
4711 #endif
4712 }
4713
4714 /* If we would blow our VMEM resource limit, no go */
4715 if (map->size + grow_amount > vmemlim) {
4716 rv = KERN_NO_SPACE;
4717 goto out;
4718 }
4719 #ifdef RACCT
4720 if (racct_enable) {
4721 PROC_LOCK(p);
4722 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4723 PROC_UNLOCK(p);
4724 rv = KERN_NO_SPACE;
4725 goto out;
4726 }
4727 PROC_UNLOCK(p);
4728 }
4729 #endif
4730
4731 if (vm_map_lock_upgrade(map)) {
4732 gap_entry = NULL;
4733 vm_map_lock_read(map);
4734 goto retry;
4735 }
4736
4737 if (grow_down) {
4738 grow_start = gap_entry->end - grow_amount;
4739 if (gap_entry->start + grow_amount == gap_entry->end) {
4740 gap_start = gap_entry->start;
4741 gap_end = gap_entry->end;
4742 vm_map_entry_delete(map, gap_entry);
4743 gap_deleted = true;
4744 } else {
4745 MPASS(gap_entry->start < gap_entry->end - grow_amount);
4746 vm_map_entry_resize(map, gap_entry, -grow_amount);
4747 gap_deleted = false;
4748 }
4749 rv = vm_map_insert(map, NULL, 0, grow_start,
4750 grow_start + grow_amount,
4751 stack_entry->protection, stack_entry->max_protection,
4752 MAP_STACK_GROWS_DOWN);
4753 if (rv != KERN_SUCCESS) {
4754 if (gap_deleted) {
4755 rv1 = vm_map_insert(map, NULL, 0, gap_start,
4756 gap_end, VM_PROT_NONE, VM_PROT_NONE,
4757 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4758 MPASS(rv1 == KERN_SUCCESS);
4759 } else
4760 vm_map_entry_resize(map, gap_entry,
4761 grow_amount);
4762 }
4763 } else {
4764 grow_start = stack_entry->end;
4765 cred = stack_entry->cred;
4766 if (cred == NULL && stack_entry->object.vm_object != NULL)
4767 cred = stack_entry->object.vm_object->cred;
4768 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4769 rv = KERN_NO_SPACE;
4770 /* Grow the underlying object if applicable. */
4771 else if (stack_entry->object.vm_object == NULL ||
4772 vm_object_coalesce(stack_entry->object.vm_object,
4773 stack_entry->offset,
4774 (vm_size_t)(stack_entry->end - stack_entry->start),
4775 grow_amount, cred != NULL)) {
4776 if (gap_entry->start + grow_amount == gap_entry->end) {
4777 vm_map_entry_delete(map, gap_entry);
4778 vm_map_entry_resize(map, stack_entry,
4779 grow_amount);
4780 } else {
4781 gap_entry->start += grow_amount;
4782 stack_entry->end += grow_amount;
4783 }
4784 map->size += grow_amount;
4785 rv = KERN_SUCCESS;
4786 } else
4787 rv = KERN_FAILURE;
4788 }
4789 if (rv == KERN_SUCCESS && is_procstack)
4790 vm->vm_ssize += btoc(grow_amount);
4791
4792 /*
4793 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4794 */
4795 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4796 rv = vm_map_wire_locked(map, grow_start,
4797 grow_start + grow_amount,
4798 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4799 }
4800 vm_map_lock_downgrade(map);
4801
4802 out:
4803 #ifdef RACCT
4804 if (racct_enable && rv != KERN_SUCCESS) {
4805 PROC_LOCK(p);
4806 error = racct_set(p, RACCT_VMEM, map->size);
4807 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4808 if (!old_mlock) {
4809 error = racct_set(p, RACCT_MEMLOCK,
4810 ptoa(pmap_wired_count(map->pmap)));
4811 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4812 }
4813 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4814 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4815 PROC_UNLOCK(p);
4816 }
4817 #endif
4818
4819 return (rv);
4820 }
4821
4822 /*
4823 * Unshare the specified VM space for exec. If other processes are
4824 * mapped to it, then create a new one. The new vmspace is null.
4825 */
4826 int
4827 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4828 {
4829 struct vmspace *oldvmspace = p->p_vmspace;
4830 struct vmspace *newvmspace;
4831
4832 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4833 ("vmspace_exec recursed"));
4834 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4835 if (newvmspace == NULL)
4836 return (ENOMEM);
4837 newvmspace->vm_swrss = oldvmspace->vm_swrss;
4838 /*
4839 * This code is written like this for prototype purposes. The
4840 * goal is to avoid running down the vmspace here, but let the
4841 * other process's that are still using the vmspace to finally
4842 * run it down. Even though there is little or no chance of blocking
4843 * here, it is a good idea to keep this form for future mods.
4844 */
4845 PROC_VMSPACE_LOCK(p);
4846 p->p_vmspace = newvmspace;
4847 PROC_VMSPACE_UNLOCK(p);
4848 if (p == curthread->td_proc)
4849 pmap_activate(curthread);
4850 curthread->td_pflags |= TDP_EXECVMSPC;
4851 return (0);
4852 }
4853
4854 /*
4855 * Unshare the specified VM space for forcing COW. This
4856 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4857 */
4858 int
4859 vmspace_unshare(struct proc *p)
4860 {
4861 struct vmspace *oldvmspace = p->p_vmspace;
4862 struct vmspace *newvmspace;
4863 vm_ooffset_t fork_charge;
4864
4865 /*
4866 * The caller is responsible for ensuring that the reference count
4867 * cannot concurrently transition 1 -> 2.
4868 */
4869 if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4870 return (0);
4871 fork_charge = 0;
4872 newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4873 if (newvmspace == NULL)
4874 return (ENOMEM);
4875 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4876 vmspace_free(newvmspace);
4877 return (ENOMEM);
4878 }
4879 PROC_VMSPACE_LOCK(p);
4880 p->p_vmspace = newvmspace;
4881 PROC_VMSPACE_UNLOCK(p);
4882 if (p == curthread->td_proc)
4883 pmap_activate(curthread);
4884 vmspace_free(oldvmspace);
4885 return (0);
4886 }
4887
4888 /*
4889 * vm_map_lookup:
4890 *
4891 * Finds the VM object, offset, and
4892 * protection for a given virtual address in the
4893 * specified map, assuming a page fault of the
4894 * type specified.
4895 *
4896 * Leaves the map in question locked for read; return
4897 * values are guaranteed until a vm_map_lookup_done
4898 * call is performed. Note that the map argument
4899 * is in/out; the returned map must be used in
4900 * the call to vm_map_lookup_done.
4901 *
4902 * A handle (out_entry) is returned for use in
4903 * vm_map_lookup_done, to make that fast.
4904 *
4905 * If a lookup is requested with "write protection"
4906 * specified, the map may be changed to perform virtual
4907 * copying operations, although the data referenced will
4908 * remain the same.
4909 */
4910 int
4911 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
4912 vm_offset_t vaddr,
4913 vm_prot_t fault_typea,
4914 vm_map_entry_t *out_entry, /* OUT */
4915 vm_object_t *object, /* OUT */
4916 vm_pindex_t *pindex, /* OUT */
4917 vm_prot_t *out_prot, /* OUT */
4918 boolean_t *wired) /* OUT */
4919 {
4920 vm_map_entry_t entry;
4921 vm_map_t map = *var_map;
4922 vm_prot_t prot;
4923 vm_prot_t fault_type;
4924 vm_object_t eobject;
4925 vm_size_t size;
4926 struct ucred *cred;
4927
4928 RetryLookup:
4929
4930 vm_map_lock_read(map);
4931
4932 RetryLookupLocked:
4933 /*
4934 * Lookup the faulting address.
4935 */
4936 if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4937 vm_map_unlock_read(map);
4938 return (KERN_INVALID_ADDRESS);
4939 }
4940
4941 entry = *out_entry;
4942
4943 /*
4944 * Handle submaps.
4945 */
4946 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4947 vm_map_t old_map = map;
4948
4949 *var_map = map = entry->object.sub_map;
4950 vm_map_unlock_read(old_map);
4951 goto RetryLookup;
4952 }
4953
4954 /*
4955 * Check whether this task is allowed to have this page.
4956 */
4957 prot = entry->protection;
4958 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4959 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4960 if (prot == VM_PROT_NONE && map != kernel_map &&
4961 (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4962 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4963 MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4964 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4965 goto RetryLookupLocked;
4966 }
4967 fault_type = fault_typea & VM_PROT_ALL;
4968 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4969 vm_map_unlock_read(map);
4970 return (KERN_PROTECTION_FAILURE);
4971 }
4972 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4973 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4974 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4975 ("entry %p flags %x", entry, entry->eflags));
4976 if ((fault_typea & VM_PROT_COPY) != 0 &&
4977 (entry->max_protection & VM_PROT_WRITE) == 0 &&
4978 (entry->eflags & MAP_ENTRY_COW) == 0) {
4979 vm_map_unlock_read(map);
4980 return (KERN_PROTECTION_FAILURE);
4981 }
4982
4983 /*
4984 * If this page is not pageable, we have to get it for all possible
4985 * accesses.
4986 */
4987 *wired = (entry->wired_count != 0);
4988 if (*wired)
4989 fault_type = entry->protection;
4990 size = entry->end - entry->start;
4991
4992 /*
4993 * If the entry was copy-on-write, we either ...
4994 */
4995 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4996 /*
4997 * If we want to write the page, we may as well handle that
4998 * now since we've got the map locked.
4999 *
5000 * If we don't need to write the page, we just demote the
5001 * permissions allowed.
5002 */
5003 if ((fault_type & VM_PROT_WRITE) != 0 ||
5004 (fault_typea & VM_PROT_COPY) != 0) {
5005 /*
5006 * Make a new object, and place it in the object
5007 * chain. Note that no new references have appeared
5008 * -- one just moved from the map to the new
5009 * object.
5010 */
5011 if (vm_map_lock_upgrade(map))
5012 goto RetryLookup;
5013
5014 if (entry->cred == NULL) {
5015 /*
5016 * The debugger owner is charged for
5017 * the memory.
5018 */
5019 cred = curthread->td_ucred;
5020 crhold(cred);
5021 if (!swap_reserve_by_cred(size, cred)) {
5022 crfree(cred);
5023 vm_map_unlock(map);
5024 return (KERN_RESOURCE_SHORTAGE);
5025 }
5026 entry->cred = cred;
5027 }
5028 eobject = entry->object.vm_object;
5029 vm_object_shadow(&entry->object.vm_object,
5030 &entry->offset, size, entry->cred, false);
5031 if (eobject == entry->object.vm_object) {
5032 /*
5033 * The object was not shadowed.
5034 */
5035 swap_release_by_cred(size, entry->cred);
5036 crfree(entry->cred);
5037 }
5038 entry->cred = NULL;
5039 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5040
5041 vm_map_lock_downgrade(map);
5042 } else {
5043 /*
5044 * We're attempting to read a copy-on-write page --
5045 * don't allow writes.
5046 */
5047 prot &= ~VM_PROT_WRITE;
5048 }
5049 }
5050
5051 /*
5052 * Create an object if necessary.
5053 */
5054 if (entry->object.vm_object == NULL && !map->system_map) {
5055 if (vm_map_lock_upgrade(map))
5056 goto RetryLookup;
5057 entry->object.vm_object = vm_object_allocate_anon(atop(size),
5058 NULL, entry->cred, size);
5059 entry->offset = 0;
5060 entry->cred = NULL;
5061 vm_map_lock_downgrade(map);
5062 }
5063
5064 /*
5065 * Return the object/offset from this entry. If the entry was
5066 * copy-on-write or empty, it has been fixed up.
5067 */
5068 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5069 *object = entry->object.vm_object;
5070
5071 *out_prot = prot;
5072 return (KERN_SUCCESS);
5073 }
5074
5075 /*
5076 * vm_map_lookup_locked:
5077 *
5078 * Lookup the faulting address. A version of vm_map_lookup that returns
5079 * KERN_FAILURE instead of blocking on map lock or memory allocation.
5080 */
5081 int
5082 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */
5083 vm_offset_t vaddr,
5084 vm_prot_t fault_typea,
5085 vm_map_entry_t *out_entry, /* OUT */
5086 vm_object_t *object, /* OUT */
5087 vm_pindex_t *pindex, /* OUT */
5088 vm_prot_t *out_prot, /* OUT */
5089 boolean_t *wired) /* OUT */
5090 {
5091 vm_map_entry_t entry;
5092 vm_map_t map = *var_map;
5093 vm_prot_t prot;
5094 vm_prot_t fault_type = fault_typea;
5095
5096 /*
5097 * Lookup the faulting address.
5098 */
5099 if (!vm_map_lookup_entry(map, vaddr, out_entry))
5100 return (KERN_INVALID_ADDRESS);
5101
5102 entry = *out_entry;
5103
5104 /*
5105 * Fail if the entry refers to a submap.
5106 */
5107 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5108 return (KERN_FAILURE);
5109
5110 /*
5111 * Check whether this task is allowed to have this page.
5112 */
5113 prot = entry->protection;
5114 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5115 if ((fault_type & prot) != fault_type)
5116 return (KERN_PROTECTION_FAILURE);
5117
5118 /*
5119 * If this page is not pageable, we have to get it for all possible
5120 * accesses.
5121 */
5122 *wired = (entry->wired_count != 0);
5123 if (*wired)
5124 fault_type = entry->protection;
5125
5126 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5127 /*
5128 * Fail if the entry was copy-on-write for a write fault.
5129 */
5130 if (fault_type & VM_PROT_WRITE)
5131 return (KERN_FAILURE);
5132 /*
5133 * We're attempting to read a copy-on-write page --
5134 * don't allow writes.
5135 */
5136 prot &= ~VM_PROT_WRITE;
5137 }
5138
5139 /*
5140 * Fail if an object should be created.
5141 */
5142 if (entry->object.vm_object == NULL && !map->system_map)
5143 return (KERN_FAILURE);
5144
5145 /*
5146 * Return the object/offset from this entry. If the entry was
5147 * copy-on-write or empty, it has been fixed up.
5148 */
5149 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5150 *object = entry->object.vm_object;
5151
5152 *out_prot = prot;
5153 return (KERN_SUCCESS);
5154 }
5155
5156 /*
5157 * vm_map_lookup_done:
5158 *
5159 * Releases locks acquired by a vm_map_lookup
5160 * (according to the handle returned by that lookup).
5161 */
5162 void
5163 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5164 {
5165 /*
5166 * Unlock the main-level map
5167 */
5168 vm_map_unlock_read(map);
5169 }
5170
5171 vm_offset_t
5172 vm_map_max_KBI(const struct vm_map *map)
5173 {
5174
5175 return (vm_map_max(map));
5176 }
5177
5178 vm_offset_t
5179 vm_map_min_KBI(const struct vm_map *map)
5180 {
5181
5182 return (vm_map_min(map));
5183 }
5184
5185 pmap_t
5186 vm_map_pmap_KBI(vm_map_t map)
5187 {
5188
5189 return (map->pmap);
5190 }
5191
5192 bool
5193 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5194 {
5195
5196 return (vm_map_range_valid(map, start, end));
5197 }
5198
5199 #ifdef INVARIANTS
5200 static void
5201 _vm_map_assert_consistent(vm_map_t map, int check)
5202 {
5203 vm_map_entry_t entry, prev;
5204 vm_map_entry_t cur, header, lbound, ubound;
5205 vm_size_t max_left, max_right;
5206
5207 #ifdef DIAGNOSTIC
5208 ++map->nupdates;
5209 #endif
5210 if (enable_vmmap_check != check)
5211 return;
5212
5213 header = prev = &map->header;
5214 VM_MAP_ENTRY_FOREACH(entry, map) {
5215 KASSERT(prev->end <= entry->start,
5216 ("map %p prev->end = %jx, start = %jx", map,
5217 (uintmax_t)prev->end, (uintmax_t)entry->start));
5218 KASSERT(entry->start < entry->end,
5219 ("map %p start = %jx, end = %jx", map,
5220 (uintmax_t)entry->start, (uintmax_t)entry->end));
5221 KASSERT(entry->left == header ||
5222 entry->left->start < entry->start,
5223 ("map %p left->start = %jx, start = %jx", map,
5224 (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5225 KASSERT(entry->right == header ||
5226 entry->start < entry->right->start,
5227 ("map %p start = %jx, right->start = %jx", map,
5228 (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5229 cur = map->root;
5230 lbound = ubound = header;
5231 for (;;) {
5232 if (entry->start < cur->start) {
5233 ubound = cur;
5234 cur = cur->left;
5235 KASSERT(cur != lbound,
5236 ("map %p cannot find %jx",
5237 map, (uintmax_t)entry->start));
5238 } else if (cur->end <= entry->start) {
5239 lbound = cur;
5240 cur = cur->right;
5241 KASSERT(cur != ubound,
5242 ("map %p cannot find %jx",
5243 map, (uintmax_t)entry->start));
5244 } else {
5245 KASSERT(cur == entry,
5246 ("map %p cannot find %jx",
5247 map, (uintmax_t)entry->start));
5248 break;
5249 }
5250 }
5251 max_left = vm_map_entry_max_free_left(entry, lbound);
5252 max_right = vm_map_entry_max_free_right(entry, ubound);
5253 KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5254 ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5255 (uintmax_t)entry->max_free,
5256 (uintmax_t)max_left, (uintmax_t)max_right));
5257 prev = entry;
5258 }
5259 KASSERT(prev->end <= entry->start,
5260 ("map %p prev->end = %jx, start = %jx", map,
5261 (uintmax_t)prev->end, (uintmax_t)entry->start));
5262 }
5263 #endif
5264
5265 #include "opt_ddb.h"
5266 #ifdef DDB
5267 #include <sys/kernel.h>
5268
5269 #include <ddb/ddb.h>
5270
5271 static void
5272 vm_map_print(vm_map_t map)
5273 {
5274 vm_map_entry_t entry, prev;
5275
5276 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5277 (void *)map,
5278 (void *)map->pmap, map->nentries, map->timestamp);
5279
5280 db_indent += 2;
5281 prev = &map->header;
5282 VM_MAP_ENTRY_FOREACH(entry, map) {
5283 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5284 (void *)entry, (void *)entry->start, (void *)entry->end,
5285 entry->eflags);
5286 {
5287 static const char * const inheritance_name[4] =
5288 {"share", "copy", "none", "donate_copy"};
5289
5290 db_iprintf(" prot=%x/%x/%s",
5291 entry->protection,
5292 entry->max_protection,
5293 inheritance_name[(int)(unsigned char)
5294 entry->inheritance]);
5295 if (entry->wired_count != 0)
5296 db_printf(", wired");
5297 }
5298 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5299 db_printf(", share=%p, offset=0x%jx\n",
5300 (void *)entry->object.sub_map,
5301 (uintmax_t)entry->offset);
5302 if (prev == &map->header ||
5303 prev->object.sub_map !=
5304 entry->object.sub_map) {
5305 db_indent += 2;
5306 vm_map_print((vm_map_t)entry->object.sub_map);
5307 db_indent -= 2;
5308 }
5309 } else {
5310 if (entry->cred != NULL)
5311 db_printf(", ruid %d", entry->cred->cr_ruid);
5312 db_printf(", object=%p, offset=0x%jx",
5313 (void *)entry->object.vm_object,
5314 (uintmax_t)entry->offset);
5315 if (entry->object.vm_object && entry->object.vm_object->cred)
5316 db_printf(", obj ruid %d charge %jx",
5317 entry->object.vm_object->cred->cr_ruid,
5318 (uintmax_t)entry->object.vm_object->charge);
5319 if (entry->eflags & MAP_ENTRY_COW)
5320 db_printf(", copy (%s)",
5321 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5322 db_printf("\n");
5323
5324 if (prev == &map->header ||
5325 prev->object.vm_object !=
5326 entry->object.vm_object) {
5327 db_indent += 2;
5328 vm_object_print((db_expr_t)(intptr_t)
5329 entry->object.vm_object,
5330 0, 0, (char *)0);
5331 db_indent -= 2;
5332 }
5333 }
5334 prev = entry;
5335 }
5336 db_indent -= 2;
5337 }
5338
5339 DB_SHOW_COMMAND(map, map)
5340 {
5341
5342 if (!have_addr) {
5343 db_printf("usage: show map <addr>\n");
5344 return;
5345 }
5346 vm_map_print((vm_map_t)addr);
5347 }
5348
5349 DB_SHOW_COMMAND(procvm, procvm)
5350 {
5351 struct proc *p;
5352
5353 if (have_addr) {
5354 p = db_lookup_proc(addr);
5355 } else {
5356 p = curproc;
5357 }
5358
5359 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5360 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5361 (void *)vmspace_pmap(p->p_vmspace));
5362
5363 vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5364 }
5365
5366 #endif /* DDB */
Cache object: 69c846a9afc55e3c1f5f774714ee7bbd
|