The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_map.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
    3  *
    4  * Copyright (c) 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * The Mach Operating System project at Carnegie-Mellon University.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
   35  *
   36  *
   37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   38  * All rights reserved.
   39  *
   40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   41  *
   42  * Permission to use, copy, modify and distribute this software and
   43  * its documentation is hereby granted, provided that both the copyright
   44  * notice and this permission notice appear in all copies of the
   45  * software, derivative works or modified versions, and any portions
   46  * thereof, and that both notices appear in supporting documentation.
   47  *
   48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   51  *
   52  * Carnegie Mellon requests users of this software to return to
   53  *
   54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   55  *  School of Computer Science
   56  *  Carnegie Mellon University
   57  *  Pittsburgh PA 15213-3890
   58  *
   59  * any improvements or extensions that they make and grant Carnegie the
   60  * rights to redistribute these changes.
   61  */
   62 
   63 /*
   64  *      Virtual memory mapping module.
   65  */
   66 
   67 #include <sys/cdefs.h>
   68 __FBSDID("$FreeBSD$");
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/elf.h>
   73 #include <sys/kernel.h>
   74 #include <sys/ktr.h>
   75 #include <sys/lock.h>
   76 #include <sys/mutex.h>
   77 #include <sys/proc.h>
   78 #include <sys/vmmeter.h>
   79 #include <sys/mman.h>
   80 #include <sys/vnode.h>
   81 #include <sys/racct.h>
   82 #include <sys/resourcevar.h>
   83 #include <sys/rwlock.h>
   84 #include <sys/file.h>
   85 #include <sys/sysctl.h>
   86 #include <sys/sysent.h>
   87 #include <sys/shm.h>
   88 
   89 #include <vm/vm.h>
   90 #include <vm/vm_param.h>
   91 #include <vm/pmap.h>
   92 #include <vm/vm_map.h>
   93 #include <vm/vm_page.h>
   94 #include <vm/vm_pageout.h>
   95 #include <vm/vm_object.h>
   96 #include <vm/vm_pager.h>
   97 #include <vm/vm_kern.h>
   98 #include <vm/vm_extern.h>
   99 #include <vm/vnode_pager.h>
  100 #include <vm/swap_pager.h>
  101 #include <vm/uma.h>
  102 
  103 /*
  104  *      Virtual memory maps provide for the mapping, protection,
  105  *      and sharing of virtual memory objects.  In addition,
  106  *      this module provides for an efficient virtual copy of
  107  *      memory from one map to another.
  108  *
  109  *      Synchronization is required prior to most operations.
  110  *
  111  *      Maps consist of an ordered doubly-linked list of simple
  112  *      entries; a self-adjusting binary search tree of these
  113  *      entries is used to speed up lookups.
  114  *
  115  *      Since portions of maps are specified by start/end addresses,
  116  *      which may not align with existing map entries, all
  117  *      routines merely "clip" entries to these start/end values.
  118  *      [That is, an entry is split into two, bordering at a
  119  *      start or end value.]  Note that these clippings may not
  120  *      always be necessary (as the two resulting entries are then
  121  *      not changed); however, the clipping is done for convenience.
  122  *
  123  *      As mentioned above, virtual copy operations are performed
  124  *      by copying VM object references from one map to
  125  *      another, and then marking both regions as copy-on-write.
  126  */
  127 
  128 static struct mtx map_sleep_mtx;
  129 static uma_zone_t mapentzone;
  130 static uma_zone_t kmapentzone;
  131 static uma_zone_t vmspace_zone;
  132 static int vmspace_zinit(void *mem, int size, int flags);
  133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
  134     vm_offset_t max);
  135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
  136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
  137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
  138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
  139     vm_map_entry_t gap_entry);
  140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
  141     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
  142 #ifdef INVARIANTS
  143 static void vmspace_zdtor(void *mem, int size, void *arg);
  144 #endif
  145 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
  146     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
  147     int cow);
  148 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
  149     vm_offset_t failed_addr);
  150 
  151 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
  152     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
  153      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
  154 
  155 /* 
  156  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
  157  * stable.
  158  */
  159 #define PROC_VMSPACE_LOCK(p) do { } while (0)
  160 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
  161 
  162 /*
  163  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
  164  *
  165  *      Asserts that the starting and ending region
  166  *      addresses fall within the valid range of the map.
  167  */
  168 #define VM_MAP_RANGE_CHECK(map, start, end)             \
  169                 {                                       \
  170                 if (start < vm_map_min(map))            \
  171                         start = vm_map_min(map);        \
  172                 if (end > vm_map_max(map))              \
  173                         end = vm_map_max(map);          \
  174                 if (start > end)                        \
  175                         start = end;                    \
  176                 }
  177 
  178 #ifndef UMA_MD_SMALL_ALLOC
  179 
  180 /*
  181  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
  182  * unlocked, depending on whether the request is coming from the kernel map or a
  183  * submap.  This function allocates a virtual address range directly from the
  184  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
  185  * lock and also to avoid triggering allocator recursion in the vmem boundary
  186  * tag allocator.
  187  */
  188 static void *
  189 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
  190     int wait)
  191 {
  192         vm_offset_t addr;
  193         int error, locked;
  194 
  195         *pflag = UMA_SLAB_PRIV;
  196 
  197         if (!(locked = vm_map_locked(kernel_map)))
  198                 vm_map_lock(kernel_map);
  199         addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
  200         if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
  201                 panic("%s: kernel map is exhausted", __func__);
  202         error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
  203             VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
  204         if (error != KERN_SUCCESS)
  205                 panic("%s: vm_map_insert() failed: %d", __func__, error);
  206         if (!locked)
  207                 vm_map_unlock(kernel_map);
  208         error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
  209             M_USE_RESERVE | (wait & M_ZERO));
  210         if (error == KERN_SUCCESS) {
  211                 return ((void *)addr);
  212         } else {
  213                 if (!locked)
  214                         vm_map_lock(kernel_map);
  215                 vm_map_delete(kernel_map, addr, bytes);
  216                 if (!locked)
  217                         vm_map_unlock(kernel_map);
  218                 return (NULL);
  219         }
  220 }
  221 
  222 static void
  223 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
  224 {
  225         vm_offset_t addr;
  226         int error __diagused;
  227 
  228         if ((pflag & UMA_SLAB_PRIV) == 0)
  229                 /* XXX leaked */
  230                 return;
  231 
  232         addr = (vm_offset_t)item;
  233         kmem_unback(kernel_object, addr, size);
  234         error = vm_map_remove(kernel_map, addr, addr + size);
  235         KASSERT(error == KERN_SUCCESS,
  236             ("%s: vm_map_remove failed: %d", __func__, error));
  237 }
  238 
  239 /*
  240  * The worst-case upper bound on the number of kernel map entries that may be
  241  * created before the zone must be replenished in _vm_map_unlock().
  242  */
  243 #define KMAPENT_RESERVE         1
  244 
  245 #endif /* !UMD_MD_SMALL_ALLOC */
  246 
  247 /*
  248  *      vm_map_startup:
  249  *
  250  *      Initialize the vm_map module.  Must be called before any other vm_map
  251  *      routines.
  252  *
  253  *      User map and entry structures are allocated from the general purpose
  254  *      memory pool.  Kernel maps are statically defined.  Kernel map entries
  255  *      require special handling to avoid recursion; see the comments above
  256  *      kmapent_alloc() and in vm_map_entry_create().
  257  */
  258 void
  259 vm_map_startup(void)
  260 {
  261         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
  262 
  263         /*
  264          * Disable the use of per-CPU buckets: map entry allocation is
  265          * serialized by the kernel map lock.
  266          */
  267         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
  268             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
  269             UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
  270 #ifndef UMA_MD_SMALL_ALLOC
  271         /* Reserve an extra map entry for use when replenishing the reserve. */
  272         uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
  273         uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
  274         uma_zone_set_allocf(kmapentzone, kmapent_alloc);
  275         uma_zone_set_freef(kmapentzone, kmapent_free);
  276 #endif
  277 
  278         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
  279             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  280         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
  281 #ifdef INVARIANTS
  282             vmspace_zdtor,
  283 #else
  284             NULL,
  285 #endif
  286             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  287 }
  288 
  289 static int
  290 vmspace_zinit(void *mem, int size, int flags)
  291 {
  292         struct vmspace *vm;
  293         vm_map_t map;
  294 
  295         vm = (struct vmspace *)mem;
  296         map = &vm->vm_map;
  297 
  298         memset(map, 0, sizeof(*map));
  299         mtx_init(&map->system_mtx, "vm map (system)", NULL,
  300             MTX_DEF | MTX_DUPOK);
  301         sx_init(&map->lock, "vm map (user)");
  302         PMAP_LOCK_INIT(vmspace_pmap(vm));
  303         return (0);
  304 }
  305 
  306 #ifdef INVARIANTS
  307 static void
  308 vmspace_zdtor(void *mem, int size, void *arg)
  309 {
  310         struct vmspace *vm;
  311 
  312         vm = (struct vmspace *)mem;
  313         KASSERT(vm->vm_map.nentries == 0,
  314             ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
  315         KASSERT(vm->vm_map.size == 0,
  316             ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
  317 }
  318 #endif  /* INVARIANTS */
  319 
  320 /*
  321  * Allocate a vmspace structure, including a vm_map and pmap,
  322  * and initialize those structures.  The refcnt is set to 1.
  323  */
  324 struct vmspace *
  325 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
  326 {
  327         struct vmspace *vm;
  328 
  329         vm = uma_zalloc(vmspace_zone, M_WAITOK);
  330         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
  331         if (!pinit(vmspace_pmap(vm))) {
  332                 uma_zfree(vmspace_zone, vm);
  333                 return (NULL);
  334         }
  335         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
  336         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
  337         refcount_init(&vm->vm_refcnt, 1);
  338         vm->vm_shm = NULL;
  339         vm->vm_swrss = 0;
  340         vm->vm_tsize = 0;
  341         vm->vm_dsize = 0;
  342         vm->vm_ssize = 0;
  343         vm->vm_taddr = 0;
  344         vm->vm_daddr = 0;
  345         vm->vm_maxsaddr = 0;
  346         return (vm);
  347 }
  348 
  349 #ifdef RACCT
  350 static void
  351 vmspace_container_reset(struct proc *p)
  352 {
  353 
  354         PROC_LOCK(p);
  355         racct_set(p, RACCT_DATA, 0);
  356         racct_set(p, RACCT_STACK, 0);
  357         racct_set(p, RACCT_RSS, 0);
  358         racct_set(p, RACCT_MEMLOCK, 0);
  359         racct_set(p, RACCT_VMEM, 0);
  360         PROC_UNLOCK(p);
  361 }
  362 #endif
  363 
  364 static inline void
  365 vmspace_dofree(struct vmspace *vm)
  366 {
  367 
  368         CTR1(KTR_VM, "vmspace_free: %p", vm);
  369 
  370         /*
  371          * Make sure any SysV shm is freed, it might not have been in
  372          * exit1().
  373          */
  374         shmexit(vm);
  375 
  376         /*
  377          * Lock the map, to wait out all other references to it.
  378          * Delete all of the mappings and pages they hold, then call
  379          * the pmap module to reclaim anything left.
  380          */
  381         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
  382             vm_map_max(&vm->vm_map));
  383 
  384         pmap_release(vmspace_pmap(vm));
  385         vm->vm_map.pmap = NULL;
  386         uma_zfree(vmspace_zone, vm);
  387 }
  388 
  389 void
  390 vmspace_free(struct vmspace *vm)
  391 {
  392 
  393         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
  394             "vmspace_free() called");
  395 
  396         if (refcount_release(&vm->vm_refcnt))
  397                 vmspace_dofree(vm);
  398 }
  399 
  400 void
  401 vmspace_exitfree(struct proc *p)
  402 {
  403         struct vmspace *vm;
  404 
  405         PROC_VMSPACE_LOCK(p);
  406         vm = p->p_vmspace;
  407         p->p_vmspace = NULL;
  408         PROC_VMSPACE_UNLOCK(p);
  409         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
  410         vmspace_free(vm);
  411 }
  412 
  413 void
  414 vmspace_exit(struct thread *td)
  415 {
  416         struct vmspace *vm;
  417         struct proc *p;
  418         bool released;
  419 
  420         p = td->td_proc;
  421         vm = p->p_vmspace;
  422 
  423         /*
  424          * Prepare to release the vmspace reference.  The thread that releases
  425          * the last reference is responsible for tearing down the vmspace.
  426          * However, threads not releasing the final reference must switch to the
  427          * kernel's vmspace0 before the decrement so that the subsequent pmap
  428          * deactivation does not modify a freed vmspace.
  429          */
  430         refcount_acquire(&vmspace0.vm_refcnt);
  431         if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
  432                 if (p->p_vmspace != &vmspace0) {
  433                         PROC_VMSPACE_LOCK(p);
  434                         p->p_vmspace = &vmspace0;
  435                         PROC_VMSPACE_UNLOCK(p);
  436                         pmap_activate(td);
  437                 }
  438                 released = refcount_release(&vm->vm_refcnt);
  439         }
  440         if (released) {
  441                 /*
  442                  * pmap_remove_pages() expects the pmap to be active, so switch
  443                  * back first if necessary.
  444                  */
  445                 if (p->p_vmspace != vm) {
  446                         PROC_VMSPACE_LOCK(p);
  447                         p->p_vmspace = vm;
  448                         PROC_VMSPACE_UNLOCK(p);
  449                         pmap_activate(td);
  450                 }
  451                 pmap_remove_pages(vmspace_pmap(vm));
  452                 PROC_VMSPACE_LOCK(p);
  453                 p->p_vmspace = &vmspace0;
  454                 PROC_VMSPACE_UNLOCK(p);
  455                 pmap_activate(td);
  456                 vmspace_dofree(vm);
  457         }
  458 #ifdef RACCT
  459         if (racct_enable)
  460                 vmspace_container_reset(p);
  461 #endif
  462 }
  463 
  464 /* Acquire reference to vmspace owned by another process. */
  465 
  466 struct vmspace *
  467 vmspace_acquire_ref(struct proc *p)
  468 {
  469         struct vmspace *vm;
  470 
  471         PROC_VMSPACE_LOCK(p);
  472         vm = p->p_vmspace;
  473         if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
  474                 PROC_VMSPACE_UNLOCK(p);
  475                 return (NULL);
  476         }
  477         if (vm != p->p_vmspace) {
  478                 PROC_VMSPACE_UNLOCK(p);
  479                 vmspace_free(vm);
  480                 return (NULL);
  481         }
  482         PROC_VMSPACE_UNLOCK(p);
  483         return (vm);
  484 }
  485 
  486 /*
  487  * Switch between vmspaces in an AIO kernel process.
  488  *
  489  * The new vmspace is either the vmspace of a user process obtained
  490  * from an active AIO request or the initial vmspace of the AIO kernel
  491  * process (when it is idling).  Because user processes will block to
  492  * drain any active AIO requests before proceeding in exit() or
  493  * execve(), the reference count for vmspaces from AIO requests can
  494  * never be 0.  Similarly, AIO kernel processes hold an extra
  495  * reference on their initial vmspace for the life of the process.  As
  496  * a result, the 'newvm' vmspace always has a non-zero reference
  497  * count.  This permits an additional reference on 'newvm' to be
  498  * acquired via a simple atomic increment rather than the loop in
  499  * vmspace_acquire_ref() above.
  500  */
  501 void
  502 vmspace_switch_aio(struct vmspace *newvm)
  503 {
  504         struct vmspace *oldvm;
  505 
  506         /* XXX: Need some way to assert that this is an aio daemon. */
  507 
  508         KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
  509             ("vmspace_switch_aio: newvm unreferenced"));
  510 
  511         oldvm = curproc->p_vmspace;
  512         if (oldvm == newvm)
  513                 return;
  514 
  515         /*
  516          * Point to the new address space and refer to it.
  517          */
  518         curproc->p_vmspace = newvm;
  519         refcount_acquire(&newvm->vm_refcnt);
  520 
  521         /* Activate the new mapping. */
  522         pmap_activate(curthread);
  523 
  524         vmspace_free(oldvm);
  525 }
  526 
  527 void
  528 _vm_map_lock(vm_map_t map, const char *file, int line)
  529 {
  530 
  531         if (map->system_map)
  532                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
  533         else
  534                 sx_xlock_(&map->lock, file, line);
  535         map->timestamp++;
  536 }
  537 
  538 void
  539 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
  540 {
  541         vm_object_t object;
  542         struct vnode *vp;
  543         bool vp_held;
  544 
  545         if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
  546                 return;
  547         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
  548             ("Submap with execs"));
  549         object = entry->object.vm_object;
  550         KASSERT(object != NULL, ("No object for text, entry %p", entry));
  551         if ((object->flags & OBJ_ANON) != 0)
  552                 object = object->handle;
  553         else
  554                 KASSERT(object->backing_object == NULL,
  555                     ("non-anon object %p shadows", object));
  556         KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
  557             entry, entry->object.vm_object));
  558 
  559         /*
  560          * Mostly, we do not lock the backing object.  It is
  561          * referenced by the entry we are processing, so it cannot go
  562          * away.
  563          */
  564         vm_pager_getvp(object, &vp, &vp_held);
  565         if (vp != NULL) {
  566                 if (add) {
  567                         VOP_SET_TEXT_CHECKED(vp);
  568                 } else {
  569                         vn_lock(vp, LK_SHARED | LK_RETRY);
  570                         VOP_UNSET_TEXT_CHECKED(vp);
  571                         VOP_UNLOCK(vp);
  572                 }
  573                 if (vp_held)
  574                         vdrop(vp);
  575         }
  576 }
  577 
  578 /*
  579  * Use a different name for this vm_map_entry field when it's use
  580  * is not consistent with its use as part of an ordered search tree.
  581  */
  582 #define defer_next right
  583 
  584 static void
  585 vm_map_process_deferred(void)
  586 {
  587         struct thread *td;
  588         vm_map_entry_t entry, next;
  589         vm_object_t object;
  590 
  591         td = curthread;
  592         entry = td->td_map_def_user;
  593         td->td_map_def_user = NULL;
  594         while (entry != NULL) {
  595                 next = entry->defer_next;
  596                 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
  597                     MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
  598                     MAP_ENTRY_VN_EXEC));
  599                 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
  600                         /*
  601                          * Decrement the object's writemappings and
  602                          * possibly the vnode's v_writecount.
  603                          */
  604                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
  605                             ("Submap with writecount"));
  606                         object = entry->object.vm_object;
  607                         KASSERT(object != NULL, ("No object for writecount"));
  608                         vm_pager_release_writecount(object, entry->start,
  609                             entry->end);
  610                 }
  611                 vm_map_entry_set_vnode_text(entry, false);
  612                 vm_map_entry_deallocate(entry, FALSE);
  613                 entry = next;
  614         }
  615 }
  616 
  617 #ifdef INVARIANTS
  618 static void
  619 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
  620 {
  621 
  622         if (map->system_map)
  623                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
  624         else
  625                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
  626 }
  627 
  628 #define VM_MAP_ASSERT_LOCKED(map) \
  629     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
  630 
  631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
  632 #ifdef DIAGNOSTIC
  633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
  634 #else
  635 static int enable_vmmap_check = VMMAP_CHECK_NONE;
  636 #endif
  637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
  638     &enable_vmmap_check, 0, "Enable vm map consistency checking");
  639 
  640 static void _vm_map_assert_consistent(vm_map_t map, int check);
  641 
  642 #define VM_MAP_ASSERT_CONSISTENT(map) \
  643     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
  644 #ifdef DIAGNOSTIC
  645 #define VM_MAP_UNLOCK_CONSISTENT(map) do {                              \
  646         if (map->nupdates > map->nentries) {                            \
  647                 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);     \
  648                 map->nupdates = 0;                                      \
  649         }                                                               \
  650 } while (0)
  651 #else
  652 #define VM_MAP_UNLOCK_CONSISTENT(map)
  653 #endif
  654 #else
  655 #define VM_MAP_ASSERT_LOCKED(map)
  656 #define VM_MAP_ASSERT_CONSISTENT(map)
  657 #define VM_MAP_UNLOCK_CONSISTENT(map)
  658 #endif /* INVARIANTS */
  659 
  660 void
  661 _vm_map_unlock(vm_map_t map, const char *file, int line)
  662 {
  663 
  664         VM_MAP_UNLOCK_CONSISTENT(map);
  665         if (map->system_map) {
  666 #ifndef UMA_MD_SMALL_ALLOC
  667                 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
  668                         uma_prealloc(kmapentzone, 1);
  669                         map->flags &= ~MAP_REPLENISH;
  670                 }
  671 #endif
  672                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
  673         } else {
  674                 sx_xunlock_(&map->lock, file, line);
  675                 vm_map_process_deferred();
  676         }
  677 }
  678 
  679 void
  680 _vm_map_lock_read(vm_map_t map, const char *file, int line)
  681 {
  682 
  683         if (map->system_map)
  684                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
  685         else
  686                 sx_slock_(&map->lock, file, line);
  687 }
  688 
  689 void
  690 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
  691 {
  692 
  693         if (map->system_map) {
  694                 KASSERT((map->flags & MAP_REPLENISH) == 0,
  695                     ("%s: MAP_REPLENISH leaked", __func__));
  696                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
  697         } else {
  698                 sx_sunlock_(&map->lock, file, line);
  699                 vm_map_process_deferred();
  700         }
  701 }
  702 
  703 int
  704 _vm_map_trylock(vm_map_t map, const char *file, int line)
  705 {
  706         int error;
  707 
  708         error = map->system_map ?
  709             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
  710             !sx_try_xlock_(&map->lock, file, line);
  711         if (error == 0)
  712                 map->timestamp++;
  713         return (error == 0);
  714 }
  715 
  716 int
  717 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
  718 {
  719         int error;
  720 
  721         error = map->system_map ?
  722             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
  723             !sx_try_slock_(&map->lock, file, line);
  724         return (error == 0);
  725 }
  726 
  727 /*
  728  *      _vm_map_lock_upgrade:   [ internal use only ]
  729  *
  730  *      Tries to upgrade a read (shared) lock on the specified map to a write
  731  *      (exclusive) lock.  Returns the value "" if the upgrade succeeds and a
  732  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
  733  *      returned without a read or write lock held.
  734  *
  735  *      Requires that the map be read locked.
  736  */
  737 int
  738 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
  739 {
  740         unsigned int last_timestamp;
  741 
  742         if (map->system_map) {
  743                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
  744         } else {
  745                 if (!sx_try_upgrade_(&map->lock, file, line)) {
  746                         last_timestamp = map->timestamp;
  747                         sx_sunlock_(&map->lock, file, line);
  748                         vm_map_process_deferred();
  749                         /*
  750                          * If the map's timestamp does not change while the
  751                          * map is unlocked, then the upgrade succeeds.
  752                          */
  753                         sx_xlock_(&map->lock, file, line);
  754                         if (last_timestamp != map->timestamp) {
  755                                 sx_xunlock_(&map->lock, file, line);
  756                                 return (1);
  757                         }
  758                 }
  759         }
  760         map->timestamp++;
  761         return (0);
  762 }
  763 
  764 void
  765 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
  766 {
  767 
  768         if (map->system_map) {
  769                 KASSERT((map->flags & MAP_REPLENISH) == 0,
  770                     ("%s: MAP_REPLENISH leaked", __func__));
  771                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
  772         } else {
  773                 VM_MAP_UNLOCK_CONSISTENT(map);
  774                 sx_downgrade_(&map->lock, file, line);
  775         }
  776 }
  777 
  778 /*
  779  *      vm_map_locked:
  780  *
  781  *      Returns a non-zero value if the caller holds a write (exclusive) lock
  782  *      on the specified map and the value "" otherwise.
  783  */
  784 int
  785 vm_map_locked(vm_map_t map)
  786 {
  787 
  788         if (map->system_map)
  789                 return (mtx_owned(&map->system_mtx));
  790         else
  791                 return (sx_xlocked(&map->lock));
  792 }
  793 
  794 /*
  795  *      _vm_map_unlock_and_wait:
  796  *
  797  *      Atomically releases the lock on the specified map and puts the calling
  798  *      thread to sleep.  The calling thread will remain asleep until either
  799  *      vm_map_wakeup() is performed on the map or the specified timeout is
  800  *      exceeded.
  801  *
  802  *      WARNING!  This function does not perform deferred deallocations of
  803  *      objects and map entries.  Therefore, the calling thread is expected to
  804  *      reacquire the map lock after reawakening and later perform an ordinary
  805  *      unlock operation, such as vm_map_unlock(), before completing its
  806  *      operation on the map.
  807  */
  808 int
  809 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
  810 {
  811 
  812         VM_MAP_UNLOCK_CONSISTENT(map);
  813         mtx_lock(&map_sleep_mtx);
  814         if (map->system_map) {
  815                 KASSERT((map->flags & MAP_REPLENISH) == 0,
  816                     ("%s: MAP_REPLENISH leaked", __func__));
  817                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
  818         } else {
  819                 sx_xunlock_(&map->lock, file, line);
  820         }
  821         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
  822             timo));
  823 }
  824 
  825 /*
  826  *      vm_map_wakeup:
  827  *
  828  *      Awaken any threads that have slept on the map using
  829  *      vm_map_unlock_and_wait().
  830  */
  831 void
  832 vm_map_wakeup(vm_map_t map)
  833 {
  834 
  835         /*
  836          * Acquire and release map_sleep_mtx to prevent a wakeup()
  837          * from being performed (and lost) between the map unlock
  838          * and the msleep() in _vm_map_unlock_and_wait().
  839          */
  840         mtx_lock(&map_sleep_mtx);
  841         mtx_unlock(&map_sleep_mtx);
  842         wakeup(&map->root);
  843 }
  844 
  845 void
  846 vm_map_busy(vm_map_t map)
  847 {
  848 
  849         VM_MAP_ASSERT_LOCKED(map);
  850         map->busy++;
  851 }
  852 
  853 void
  854 vm_map_unbusy(vm_map_t map)
  855 {
  856 
  857         VM_MAP_ASSERT_LOCKED(map);
  858         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
  859         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
  860                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
  861                 wakeup(&map->busy);
  862         }
  863 }
  864 
  865 void 
  866 vm_map_wait_busy(vm_map_t map)
  867 {
  868 
  869         VM_MAP_ASSERT_LOCKED(map);
  870         while (map->busy) {
  871                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
  872                 if (map->system_map)
  873                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
  874                 else
  875                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
  876         }
  877         map->timestamp++;
  878 }
  879 
  880 long
  881 vmspace_resident_count(struct vmspace *vmspace)
  882 {
  883         return pmap_resident_count(vmspace_pmap(vmspace));
  884 }
  885 
  886 /*
  887  * Initialize an existing vm_map structure
  888  * such as that in the vmspace structure.
  889  */
  890 static void
  891 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
  892 {
  893 
  894         map->header.eflags = MAP_ENTRY_HEADER;
  895         map->needs_wakeup = FALSE;
  896         map->system_map = 0;
  897         map->pmap = pmap;
  898         map->header.end = min;
  899         map->header.start = max;
  900         map->flags = 0;
  901         map->header.left = map->header.right = &map->header;
  902         map->root = NULL;
  903         map->timestamp = 0;
  904         map->busy = 0;
  905         map->anon_loc = 0;
  906 #ifdef DIAGNOSTIC
  907         map->nupdates = 0;
  908 #endif
  909 }
  910 
  911 void
  912 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
  913 {
  914 
  915         _vm_map_init(map, pmap, min, max);
  916         mtx_init(&map->system_mtx, "vm map (system)", NULL,
  917             MTX_DEF | MTX_DUPOK);
  918         sx_init(&map->lock, "vm map (user)");
  919 }
  920 
  921 /*
  922  *      vm_map_entry_dispose:   [ internal use only ]
  923  *
  924  *      Inverse of vm_map_entry_create.
  925  */
  926 static void
  927 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
  928 {
  929         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
  930 }
  931 
  932 /*
  933  *      vm_map_entry_create:    [ internal use only ]
  934  *
  935  *      Allocates a VM map entry for insertion.
  936  *      No entry fields are filled in.
  937  */
  938 static vm_map_entry_t
  939 vm_map_entry_create(vm_map_t map)
  940 {
  941         vm_map_entry_t new_entry;
  942 
  943 #ifndef UMA_MD_SMALL_ALLOC
  944         if (map == kernel_map) {
  945                 VM_MAP_ASSERT_LOCKED(map);
  946 
  947                 /*
  948                  * A new slab of kernel map entries cannot be allocated at this
  949                  * point because the kernel map has not yet been updated to
  950                  * reflect the caller's request.  Therefore, we allocate a new
  951                  * map entry, dipping into the reserve if necessary, and set a
  952                  * flag indicating that the reserve must be replenished before
  953                  * the map is unlocked.
  954                  */
  955                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
  956                 if (new_entry == NULL) {
  957                         new_entry = uma_zalloc(kmapentzone,
  958                             M_NOWAIT | M_NOVM | M_USE_RESERVE);
  959                         kernel_map->flags |= MAP_REPLENISH;
  960                 }
  961         } else
  962 #endif
  963         if (map->system_map) {
  964                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
  965         } else {
  966                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
  967         }
  968         KASSERT(new_entry != NULL,
  969             ("vm_map_entry_create: kernel resources exhausted"));
  970         return (new_entry);
  971 }
  972 
  973 /*
  974  *      vm_map_entry_set_behavior:
  975  *
  976  *      Set the expected access behavior, either normal, random, or
  977  *      sequential.
  978  */
  979 static inline void
  980 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
  981 {
  982         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
  983             (behavior & MAP_ENTRY_BEHAV_MASK);
  984 }
  985 
  986 /*
  987  *      vm_map_entry_max_free_{left,right}:
  988  *
  989  *      Compute the size of the largest free gap between two entries,
  990  *      one the root of a tree and the other the ancestor of that root
  991  *      that is the least or greatest ancestor found on the search path.
  992  */
  993 static inline vm_size_t
  994 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
  995 {
  996 
  997         return (root->left != left_ancestor ?
  998             root->left->max_free : root->start - left_ancestor->end);
  999 }
 1000 
 1001 static inline vm_size_t
 1002 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
 1003 {
 1004 
 1005         return (root->right != right_ancestor ?
 1006             root->right->max_free : right_ancestor->start - root->end);
 1007 }
 1008 
 1009 /*
 1010  *      vm_map_entry_{pred,succ}:
 1011  *
 1012  *      Find the {predecessor, successor} of the entry by taking one step
 1013  *      in the appropriate direction and backtracking as much as necessary.
 1014  *      vm_map_entry_succ is defined in vm_map.h.
 1015  */
 1016 static inline vm_map_entry_t
 1017 vm_map_entry_pred(vm_map_entry_t entry)
 1018 {
 1019         vm_map_entry_t prior;
 1020 
 1021         prior = entry->left;
 1022         if (prior->right->start < entry->start) {
 1023                 do
 1024                         prior = prior->right;
 1025                 while (prior->right != entry);
 1026         }
 1027         return (prior);
 1028 }
 1029 
 1030 static inline vm_size_t
 1031 vm_size_max(vm_size_t a, vm_size_t b)
 1032 {
 1033 
 1034         return (a > b ? a : b);
 1035 }
 1036 
 1037 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {               \
 1038         vm_map_entry_t z;                                               \
 1039         vm_size_t max_free;                                             \
 1040                                                                         \
 1041         /*                                                              \
 1042          * Infer root->right->max_free == root->max_free when           \
 1043          * y->max_free < root->max_free || root->max_free == 0.         \
 1044          * Otherwise, look right to find it.                            \
 1045          */                                                             \
 1046         y = root->left;                                                 \
 1047         max_free = root->max_free;                                      \
 1048         KASSERT(max_free == vm_size_max(                                \
 1049             vm_map_entry_max_free_left(root, llist),                    \
 1050             vm_map_entry_max_free_right(root, rlist)),                  \
 1051             ("%s: max_free invariant fails", __func__));                \
 1052         if (max_free - 1 < vm_map_entry_max_free_left(root, llist))     \
 1053                 max_free = vm_map_entry_max_free_right(root, rlist);    \
 1054         if (y != llist && (test)) {                                     \
 1055                 /* Rotate right and make y root. */                     \
 1056                 z = y->right;                                           \
 1057                 if (z != root) {                                        \
 1058                         root->left = z;                                 \
 1059                         y->right = root;                                \
 1060                         if (max_free < y->max_free)                     \
 1061                             root->max_free = max_free =                 \
 1062                             vm_size_max(max_free, z->max_free);         \
 1063                 } else if (max_free < y->max_free)                      \
 1064                         root->max_free = max_free =                     \
 1065                             vm_size_max(max_free, root->start - y->end);\
 1066                 root = y;                                               \
 1067                 y = root->left;                                         \
 1068         }                                                               \
 1069         /* Copy right->max_free.  Put root on rlist. */                 \
 1070         root->max_free = max_free;                                      \
 1071         KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),   \
 1072             ("%s: max_free not copied from right", __func__));          \
 1073         root->left = rlist;                                             \
 1074         rlist = root;                                                   \
 1075         root = y != llist ? y : NULL;                                   \
 1076 } while (0)
 1077 
 1078 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {              \
 1079         vm_map_entry_t z;                                               \
 1080         vm_size_t max_free;                                             \
 1081                                                                         \
 1082         /*                                                              \
 1083          * Infer root->left->max_free == root->max_free when            \
 1084          * y->max_free < root->max_free || root->max_free == 0.         \
 1085          * Otherwise, look left to find it.                             \
 1086          */                                                             \
 1087         y = root->right;                                                \
 1088         max_free = root->max_free;                                      \
 1089         KASSERT(max_free == vm_size_max(                                \
 1090             vm_map_entry_max_free_left(root, llist),                    \
 1091             vm_map_entry_max_free_right(root, rlist)),                  \
 1092             ("%s: max_free invariant fails", __func__));                \
 1093         if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))    \
 1094                 max_free = vm_map_entry_max_free_left(root, llist);     \
 1095         if (y != rlist && (test)) {                                     \
 1096                 /* Rotate left and make y root. */                      \
 1097                 z = y->left;                                            \
 1098                 if (z != root) {                                        \
 1099                         root->right = z;                                \
 1100                         y->left = root;                                 \
 1101                         if (max_free < y->max_free)                     \
 1102                             root->max_free = max_free =                 \
 1103                             vm_size_max(max_free, z->max_free);         \
 1104                 } else if (max_free < y->max_free)                      \
 1105                         root->max_free = max_free =                     \
 1106                             vm_size_max(max_free, y->start - root->end);\
 1107                 root = y;                                               \
 1108                 y = root->right;                                        \
 1109         }                                                               \
 1110         /* Copy left->max_free.  Put root on llist. */                  \
 1111         root->max_free = max_free;                                      \
 1112         KASSERT(max_free == vm_map_entry_max_free_left(root, llist),    \
 1113             ("%s: max_free not copied from left", __func__));           \
 1114         root->right = llist;                                            \
 1115         llist = root;                                                   \
 1116         root = y != rlist ? y : NULL;                                   \
 1117 } while (0)
 1118 
 1119 /*
 1120  * Walk down the tree until we find addr or a gap where addr would go, breaking
 1121  * off left and right subtrees of nodes less than, or greater than addr.  Treat
 1122  * subtrees with root->max_free < length as empty trees.  llist and rlist are
 1123  * the two sides in reverse order (bottom-up), with llist linked by the right
 1124  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
 1125  * lists terminated by &map->header.  This function, and the subsequent call to
 1126  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
 1127  * values in &map->header.
 1128  */
 1129 static __always_inline vm_map_entry_t
 1130 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
 1131     vm_map_entry_t *llist, vm_map_entry_t *rlist)
 1132 {
 1133         vm_map_entry_t left, right, root, y;
 1134 
 1135         left = right = &map->header;
 1136         root = map->root;
 1137         while (root != NULL && root->max_free >= length) {
 1138                 KASSERT(left->end <= root->start &&
 1139                     root->end <= right->start,
 1140                     ("%s: root not within tree bounds", __func__));
 1141                 if (addr < root->start) {
 1142                         SPLAY_LEFT_STEP(root, y, left, right,
 1143                             y->max_free >= length && addr < y->start);
 1144                 } else if (addr >= root->end) {
 1145                         SPLAY_RIGHT_STEP(root, y, left, right,
 1146                             y->max_free >= length && addr >= y->end);
 1147                 } else
 1148                         break;
 1149         }
 1150         *llist = left;
 1151         *rlist = right;
 1152         return (root);
 1153 }
 1154 
 1155 static __always_inline void
 1156 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
 1157 {
 1158         vm_map_entry_t hi, right, y;
 1159 
 1160         right = *rlist;
 1161         hi = root->right == right ? NULL : root->right;
 1162         if (hi == NULL)
 1163                 return;
 1164         do
 1165                 SPLAY_LEFT_STEP(hi, y, root, right, true);
 1166         while (hi != NULL);
 1167         *rlist = right;
 1168 }
 1169 
 1170 static __always_inline void
 1171 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
 1172 {
 1173         vm_map_entry_t left, lo, y;
 1174 
 1175         left = *llist;
 1176         lo = root->left == left ? NULL : root->left;
 1177         if (lo == NULL)
 1178                 return;
 1179         do
 1180                 SPLAY_RIGHT_STEP(lo, y, left, root, true);
 1181         while (lo != NULL);
 1182         *llist = left;
 1183 }
 1184 
 1185 static inline void
 1186 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
 1187 {
 1188         vm_map_entry_t tmp;
 1189 
 1190         tmp = *b;
 1191         *b = *a;
 1192         *a = tmp;
 1193 }
 1194 
 1195 /*
 1196  * Walk back up the two spines, flip the pointers and set max_free.  The
 1197  * subtrees of the root go at the bottom of llist and rlist.
 1198  */
 1199 static vm_size_t
 1200 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
 1201     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
 1202 {
 1203         do {
 1204                 /*
 1205                  * The max_free values of the children of llist are in
 1206                  * llist->max_free and max_free.  Update with the
 1207                  * max value.
 1208                  */
 1209                 llist->max_free = max_free =
 1210                     vm_size_max(llist->max_free, max_free);
 1211                 vm_map_entry_swap(&llist->right, &tail);
 1212                 vm_map_entry_swap(&tail, &llist);
 1213         } while (llist != header);
 1214         root->left = tail;
 1215         return (max_free);
 1216 }
 1217 
 1218 /*
 1219  * When llist is known to be the predecessor of root.
 1220  */
 1221 static inline vm_size_t
 1222 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
 1223     vm_map_entry_t llist)
 1224 {
 1225         vm_size_t max_free;
 1226 
 1227         max_free = root->start - llist->end;
 1228         if (llist != header) {
 1229                 max_free = vm_map_splay_merge_left_walk(header, root,
 1230                     root, max_free, llist);
 1231         } else {
 1232                 root->left = header;
 1233                 header->right = root;
 1234         }
 1235         return (max_free);
 1236 }
 1237 
 1238 /*
 1239  * When llist may or may not be the predecessor of root.
 1240  */
 1241 static inline vm_size_t
 1242 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
 1243     vm_map_entry_t llist)
 1244 {
 1245         vm_size_t max_free;
 1246 
 1247         max_free = vm_map_entry_max_free_left(root, llist);
 1248         if (llist != header) {
 1249                 max_free = vm_map_splay_merge_left_walk(header, root,
 1250                     root->left == llist ? root : root->left,
 1251                     max_free, llist);
 1252         }
 1253         return (max_free);
 1254 }
 1255 
 1256 static vm_size_t
 1257 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
 1258     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
 1259 {
 1260         do {
 1261                 /*
 1262                  * The max_free values of the children of rlist are in
 1263                  * rlist->max_free and max_free.  Update with the
 1264                  * max value.
 1265                  */
 1266                 rlist->max_free = max_free =
 1267                     vm_size_max(rlist->max_free, max_free);
 1268                 vm_map_entry_swap(&rlist->left, &tail);
 1269                 vm_map_entry_swap(&tail, &rlist);
 1270         } while (rlist != header);
 1271         root->right = tail;
 1272         return (max_free);
 1273 }
 1274 
 1275 /*
 1276  * When rlist is known to be the succecessor of root.
 1277  */
 1278 static inline vm_size_t
 1279 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
 1280     vm_map_entry_t rlist)
 1281 {
 1282         vm_size_t max_free;
 1283 
 1284         max_free = rlist->start - root->end;
 1285         if (rlist != header) {
 1286                 max_free = vm_map_splay_merge_right_walk(header, root,
 1287                     root, max_free, rlist);
 1288         } else {
 1289                 root->right = header;
 1290                 header->left = root;
 1291         }
 1292         return (max_free);
 1293 }
 1294 
 1295 /*
 1296  * When rlist may or may not be the succecessor of root.
 1297  */
 1298 static inline vm_size_t
 1299 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
 1300     vm_map_entry_t rlist)
 1301 {
 1302         vm_size_t max_free;
 1303 
 1304         max_free = vm_map_entry_max_free_right(root, rlist);
 1305         if (rlist != header) {
 1306                 max_free = vm_map_splay_merge_right_walk(header, root,
 1307                     root->right == rlist ? root : root->right,
 1308                     max_free, rlist);
 1309         }
 1310         return (max_free);
 1311 }
 1312 
 1313 /*
 1314  *      vm_map_splay:
 1315  *
 1316  *      The Sleator and Tarjan top-down splay algorithm with the
 1317  *      following variation.  Max_free must be computed bottom-up, so
 1318  *      on the downward pass, maintain the left and right spines in
 1319  *      reverse order.  Then, make a second pass up each side to fix
 1320  *      the pointers and compute max_free.  The time bound is O(log n)
 1321  *      amortized.
 1322  *
 1323  *      The tree is threaded, which means that there are no null pointers.
 1324  *      When a node has no left child, its left pointer points to its
 1325  *      predecessor, which the last ancestor on the search path from the root
 1326  *      where the search branched right.  Likewise, when a node has no right
 1327  *      child, its right pointer points to its successor.  The map header node
 1328  *      is the predecessor of the first map entry, and the successor of the
 1329  *      last.
 1330  *
 1331  *      The new root is the vm_map_entry containing "addr", or else an
 1332  *      adjacent entry (lower if possible) if addr is not in the tree.
 1333  *
 1334  *      The map must be locked, and leaves it so.
 1335  *
 1336  *      Returns: the new root.
 1337  */
 1338 static vm_map_entry_t
 1339 vm_map_splay(vm_map_t map, vm_offset_t addr)
 1340 {
 1341         vm_map_entry_t header, llist, rlist, root;
 1342         vm_size_t max_free_left, max_free_right;
 1343 
 1344         header = &map->header;
 1345         root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
 1346         if (root != NULL) {
 1347                 max_free_left = vm_map_splay_merge_left(header, root, llist);
 1348                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
 1349         } else if (llist != header) {
 1350                 /*
 1351                  * Recover the greatest node in the left
 1352                  * subtree and make it the root.
 1353                  */
 1354                 root = llist;
 1355                 llist = root->right;
 1356                 max_free_left = vm_map_splay_merge_left(header, root, llist);
 1357                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
 1358         } else if (rlist != header) {
 1359                 /*
 1360                  * Recover the least node in the right
 1361                  * subtree and make it the root.
 1362                  */
 1363                 root = rlist;
 1364                 rlist = root->left;
 1365                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
 1366                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
 1367         } else {
 1368                 /* There is no root. */
 1369                 return (NULL);
 1370         }
 1371         root->max_free = vm_size_max(max_free_left, max_free_right);
 1372         map->root = root;
 1373         VM_MAP_ASSERT_CONSISTENT(map);
 1374         return (root);
 1375 }
 1376 
 1377 /*
 1378  *      vm_map_entry_{un,}link:
 1379  *
 1380  *      Insert/remove entries from maps.  On linking, if new entry clips
 1381  *      existing entry, trim existing entry to avoid overlap, and manage
 1382  *      offsets.  On unlinking, merge disappearing entry with neighbor, if
 1383  *      called for, and manage offsets.  Callers should not modify fields in
 1384  *      entries already mapped.
 1385  */
 1386 static void
 1387 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
 1388 {
 1389         vm_map_entry_t header, llist, rlist, root;
 1390         vm_size_t max_free_left, max_free_right;
 1391 
 1392         CTR3(KTR_VM,
 1393             "vm_map_entry_link: map %p, nentries %d, entry %p", map,
 1394             map->nentries, entry);
 1395         VM_MAP_ASSERT_LOCKED(map);
 1396         map->nentries++;
 1397         header = &map->header;
 1398         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
 1399         if (root == NULL) {
 1400                 /*
 1401                  * The new entry does not overlap any existing entry in the
 1402                  * map, so it becomes the new root of the map tree.
 1403                  */
 1404                 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
 1405                 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
 1406         } else if (entry->start == root->start) {
 1407                 /*
 1408                  * The new entry is a clone of root, with only the end field
 1409                  * changed.  The root entry will be shrunk to abut the new
 1410                  * entry, and will be the right child of the new root entry in
 1411                  * the modified map.
 1412                  */
 1413                 KASSERT(entry->end < root->end,
 1414                     ("%s: clip_start not within entry", __func__));
 1415                 vm_map_splay_findprev(root, &llist);
 1416                 root->offset += entry->end - root->start;
 1417                 root->start = entry->end;
 1418                 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
 1419                 max_free_right = root->max_free = vm_size_max(
 1420                     vm_map_splay_merge_pred(entry, root, entry),
 1421                     vm_map_splay_merge_right(header, root, rlist));
 1422         } else {
 1423                 /*
 1424                  * The new entry is a clone of root, with only the start field
 1425                  * changed.  The root entry will be shrunk to abut the new
 1426                  * entry, and will be the left child of the new root entry in
 1427                  * the modified map.
 1428                  */
 1429                 KASSERT(entry->end == root->end,
 1430                     ("%s: clip_start not within entry", __func__));
 1431                 vm_map_splay_findnext(root, &rlist);
 1432                 entry->offset += entry->start - root->start;
 1433                 root->end = entry->start;
 1434                 max_free_left = root->max_free = vm_size_max(
 1435                     vm_map_splay_merge_left(header, root, llist),
 1436                     vm_map_splay_merge_succ(entry, root, entry));
 1437                 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
 1438         }
 1439         entry->max_free = vm_size_max(max_free_left, max_free_right);
 1440         map->root = entry;
 1441         VM_MAP_ASSERT_CONSISTENT(map);
 1442 }
 1443 
 1444 enum unlink_merge_type {
 1445         UNLINK_MERGE_NONE,
 1446         UNLINK_MERGE_NEXT
 1447 };
 1448 
 1449 static void
 1450 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
 1451     enum unlink_merge_type op)
 1452 {
 1453         vm_map_entry_t header, llist, rlist, root;
 1454         vm_size_t max_free_left, max_free_right;
 1455 
 1456         VM_MAP_ASSERT_LOCKED(map);
 1457         header = &map->header;
 1458         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
 1459         KASSERT(root != NULL,
 1460             ("vm_map_entry_unlink: unlink object not mapped"));
 1461 
 1462         vm_map_splay_findprev(root, &llist);
 1463         vm_map_splay_findnext(root, &rlist);
 1464         if (op == UNLINK_MERGE_NEXT) {
 1465                 rlist->start = root->start;
 1466                 rlist->offset = root->offset;
 1467         }
 1468         if (llist != header) {
 1469                 root = llist;
 1470                 llist = root->right;
 1471                 max_free_left = vm_map_splay_merge_left(header, root, llist);
 1472                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
 1473         } else if (rlist != header) {
 1474                 root = rlist;
 1475                 rlist = root->left;
 1476                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
 1477                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
 1478         } else {
 1479                 header->left = header->right = header;
 1480                 root = NULL;
 1481         }
 1482         if (root != NULL)
 1483                 root->max_free = vm_size_max(max_free_left, max_free_right);
 1484         map->root = root;
 1485         VM_MAP_ASSERT_CONSISTENT(map);
 1486         map->nentries--;
 1487         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
 1488             map->nentries, entry);
 1489 }
 1490 
 1491 /*
 1492  *      vm_map_entry_resize:
 1493  *
 1494  *      Resize a vm_map_entry, recompute the amount of free space that
 1495  *      follows it and propagate that value up the tree.
 1496  *
 1497  *      The map must be locked, and leaves it so.
 1498  */
 1499 static void
 1500 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
 1501 {
 1502         vm_map_entry_t header, llist, rlist, root;
 1503 
 1504         VM_MAP_ASSERT_LOCKED(map);
 1505         header = &map->header;
 1506         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
 1507         KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
 1508         vm_map_splay_findnext(root, &rlist);
 1509         entry->end += grow_amount;
 1510         root->max_free = vm_size_max(
 1511             vm_map_splay_merge_left(header, root, llist),
 1512             vm_map_splay_merge_succ(header, root, rlist));
 1513         map->root = root;
 1514         VM_MAP_ASSERT_CONSISTENT(map);
 1515         CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
 1516             __func__, map, map->nentries, entry);
 1517 }
 1518 
 1519 /*
 1520  *      vm_map_lookup_entry:    [ internal use only ]
 1521  *
 1522  *      Finds the map entry containing (or
 1523  *      immediately preceding) the specified address
 1524  *      in the given map; the entry is returned
 1525  *      in the "entry" parameter.  The boolean
 1526  *      result indicates whether the address is
 1527  *      actually contained in the map.
 1528  */
 1529 boolean_t
 1530 vm_map_lookup_entry(
 1531         vm_map_t map,
 1532         vm_offset_t address,
 1533         vm_map_entry_t *entry)  /* OUT */
 1534 {
 1535         vm_map_entry_t cur, header, lbound, ubound;
 1536         boolean_t locked;
 1537 
 1538         /*
 1539          * If the map is empty, then the map entry immediately preceding
 1540          * "address" is the map's header.
 1541          */
 1542         header = &map->header;
 1543         cur = map->root;
 1544         if (cur == NULL) {
 1545                 *entry = header;
 1546                 return (FALSE);
 1547         }
 1548         if (address >= cur->start && cur->end > address) {
 1549                 *entry = cur;
 1550                 return (TRUE);
 1551         }
 1552         if ((locked = vm_map_locked(map)) ||
 1553             sx_try_upgrade(&map->lock)) {
 1554                 /*
 1555                  * Splay requires a write lock on the map.  However, it only
 1556                  * restructures the binary search tree; it does not otherwise
 1557                  * change the map.  Thus, the map's timestamp need not change
 1558                  * on a temporary upgrade.
 1559                  */
 1560                 cur = vm_map_splay(map, address);
 1561                 if (!locked) {
 1562                         VM_MAP_UNLOCK_CONSISTENT(map);
 1563                         sx_downgrade(&map->lock);
 1564                 }
 1565 
 1566                 /*
 1567                  * If "address" is contained within a map entry, the new root
 1568                  * is that map entry.  Otherwise, the new root is a map entry
 1569                  * immediately before or after "address".
 1570                  */
 1571                 if (address < cur->start) {
 1572                         *entry = header;
 1573                         return (FALSE);
 1574                 }
 1575                 *entry = cur;
 1576                 return (address < cur->end);
 1577         }
 1578         /*
 1579          * Since the map is only locked for read access, perform a
 1580          * standard binary search tree lookup for "address".
 1581          */
 1582         lbound = ubound = header;
 1583         for (;;) {
 1584                 if (address < cur->start) {
 1585                         ubound = cur;
 1586                         cur = cur->left;
 1587                         if (cur == lbound)
 1588                                 break;
 1589                 } else if (cur->end <= address) {
 1590                         lbound = cur;
 1591                         cur = cur->right;
 1592                         if (cur == ubound)
 1593                                 break;
 1594                 } else {
 1595                         *entry = cur;
 1596                         return (TRUE);
 1597                 }
 1598         }
 1599         *entry = lbound;
 1600         return (FALSE);
 1601 }
 1602 
 1603 /*
 1604  *      vm_map_insert:
 1605  *
 1606  *      Inserts the given whole VM object into the target
 1607  *      map at the specified address range.  The object's
 1608  *      size should match that of the address range.
 1609  *
 1610  *      Requires that the map be locked, and leaves it so.
 1611  *
 1612  *      If object is non-NULL, ref count must be bumped by caller
 1613  *      prior to making call to account for the new entry.
 1614  */
 1615 int
 1616 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 1617     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
 1618 {
 1619         vm_map_entry_t new_entry, next_entry, prev_entry;
 1620         struct ucred *cred;
 1621         vm_eflags_t protoeflags;
 1622         vm_inherit_t inheritance;
 1623         u_long bdry;
 1624         u_int bidx;
 1625 
 1626         VM_MAP_ASSERT_LOCKED(map);
 1627         KASSERT(object != kernel_object ||
 1628             (cow & MAP_COPY_ON_WRITE) == 0,
 1629             ("vm_map_insert: kernel object and COW"));
 1630         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
 1631             (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
 1632             ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
 1633             object, cow));
 1634         KASSERT((prot & ~max) == 0,
 1635             ("prot %#x is not subset of max_prot %#x", prot, max));
 1636 
 1637         /*
 1638          * Check that the start and end points are not bogus.
 1639          */
 1640         if (start == end || !vm_map_range_valid(map, start, end))
 1641                 return (KERN_INVALID_ADDRESS);
 1642 
 1643         if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
 1644             VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
 1645                 return (KERN_PROTECTION_FAILURE);
 1646 
 1647         /*
 1648          * Find the entry prior to the proposed starting address; if it's part
 1649          * of an existing entry, this range is bogus.
 1650          */
 1651         if (vm_map_lookup_entry(map, start, &prev_entry))
 1652                 return (KERN_NO_SPACE);
 1653 
 1654         /*
 1655          * Assert that the next entry doesn't overlap the end point.
 1656          */
 1657         next_entry = vm_map_entry_succ(prev_entry);
 1658         if (next_entry->start < end)
 1659                 return (KERN_NO_SPACE);
 1660 
 1661         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
 1662             max != VM_PROT_NONE))
 1663                 return (KERN_INVALID_ARGUMENT);
 1664 
 1665         protoeflags = 0;
 1666         if (cow & MAP_COPY_ON_WRITE)
 1667                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
 1668         if (cow & MAP_NOFAULT)
 1669                 protoeflags |= MAP_ENTRY_NOFAULT;
 1670         if (cow & MAP_DISABLE_SYNCER)
 1671                 protoeflags |= MAP_ENTRY_NOSYNC;
 1672         if (cow & MAP_DISABLE_COREDUMP)
 1673                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
 1674         if (cow & MAP_STACK_GROWS_DOWN)
 1675                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
 1676         if (cow & MAP_STACK_GROWS_UP)
 1677                 protoeflags |= MAP_ENTRY_GROWS_UP;
 1678         if (cow & MAP_WRITECOUNT)
 1679                 protoeflags |= MAP_ENTRY_WRITECNT;
 1680         if (cow & MAP_VN_EXEC)
 1681                 protoeflags |= MAP_ENTRY_VN_EXEC;
 1682         if ((cow & MAP_CREATE_GUARD) != 0)
 1683                 protoeflags |= MAP_ENTRY_GUARD;
 1684         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
 1685                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
 1686         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
 1687                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
 1688         if (cow & MAP_INHERIT_SHARE)
 1689                 inheritance = VM_INHERIT_SHARE;
 1690         else
 1691                 inheritance = VM_INHERIT_DEFAULT;
 1692         if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
 1693                 /* This magically ignores index 0, for usual page size. */
 1694                 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
 1695                     MAP_SPLIT_BOUNDARY_SHIFT;
 1696                 if (bidx >= MAXPAGESIZES)
 1697                         return (KERN_INVALID_ARGUMENT);
 1698                 bdry = pagesizes[bidx] - 1;
 1699                 if ((start & bdry) != 0 || (end & bdry) != 0)
 1700                         return (KERN_INVALID_ARGUMENT);
 1701                 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
 1702         }
 1703 
 1704         cred = NULL;
 1705         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
 1706                 goto charged;
 1707         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
 1708             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
 1709                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
 1710                         return (KERN_RESOURCE_SHORTAGE);
 1711                 KASSERT(object == NULL ||
 1712                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
 1713                     object->cred == NULL,
 1714                     ("overcommit: vm_map_insert o %p", object));
 1715                 cred = curthread->td_ucred;
 1716         }
 1717 
 1718 charged:
 1719         /* Expand the kernel pmap, if necessary. */
 1720         if (map == kernel_map && end > kernel_vm_end)
 1721                 pmap_growkernel(end);
 1722         if (object != NULL) {
 1723                 /*
 1724                  * OBJ_ONEMAPPING must be cleared unless this mapping
 1725                  * is trivially proven to be the only mapping for any
 1726                  * of the object's pages.  (Object granularity
 1727                  * reference counting is insufficient to recognize
 1728                  * aliases with precision.)
 1729                  */
 1730                 if ((object->flags & OBJ_ANON) != 0) {
 1731                         VM_OBJECT_WLOCK(object);
 1732                         if (object->ref_count > 1 || object->shadow_count != 0)
 1733                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
 1734                         VM_OBJECT_WUNLOCK(object);
 1735                 }
 1736         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
 1737             protoeflags &&
 1738             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
 1739             MAP_VN_EXEC)) == 0 &&
 1740             prev_entry->end == start && (prev_entry->cred == cred ||
 1741             (prev_entry->object.vm_object != NULL &&
 1742             prev_entry->object.vm_object->cred == cred)) &&
 1743             vm_object_coalesce(prev_entry->object.vm_object,
 1744             prev_entry->offset,
 1745             (vm_size_t)(prev_entry->end - prev_entry->start),
 1746             (vm_size_t)(end - prev_entry->end), cred != NULL &&
 1747             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
 1748                 /*
 1749                  * We were able to extend the object.  Determine if we
 1750                  * can extend the previous map entry to include the
 1751                  * new range as well.
 1752                  */
 1753                 if (prev_entry->inheritance == inheritance &&
 1754                     prev_entry->protection == prot &&
 1755                     prev_entry->max_protection == max &&
 1756                     prev_entry->wired_count == 0) {
 1757                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
 1758                             0, ("prev_entry %p has incoherent wiring",
 1759                             prev_entry));
 1760                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
 1761                                 map->size += end - prev_entry->end;
 1762                         vm_map_entry_resize(map, prev_entry,
 1763                             end - prev_entry->end);
 1764                         vm_map_try_merge_entries(map, prev_entry, next_entry);
 1765                         return (KERN_SUCCESS);
 1766                 }
 1767 
 1768                 /*
 1769                  * If we can extend the object but cannot extend the
 1770                  * map entry, we have to create a new map entry.  We
 1771                  * must bump the ref count on the extended object to
 1772                  * account for it.  object may be NULL.
 1773                  */
 1774                 object = prev_entry->object.vm_object;
 1775                 offset = prev_entry->offset +
 1776                     (prev_entry->end - prev_entry->start);
 1777                 vm_object_reference(object);
 1778                 if (cred != NULL && object != NULL && object->cred != NULL &&
 1779                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
 1780                         /* Object already accounts for this uid. */
 1781                         cred = NULL;
 1782                 }
 1783         }
 1784         if (cred != NULL)
 1785                 crhold(cred);
 1786 
 1787         /*
 1788          * Create a new entry
 1789          */
 1790         new_entry = vm_map_entry_create(map);
 1791         new_entry->start = start;
 1792         new_entry->end = end;
 1793         new_entry->cred = NULL;
 1794 
 1795         new_entry->eflags = protoeflags;
 1796         new_entry->object.vm_object = object;
 1797         new_entry->offset = offset;
 1798 
 1799         new_entry->inheritance = inheritance;
 1800         new_entry->protection = prot;
 1801         new_entry->max_protection = max;
 1802         new_entry->wired_count = 0;
 1803         new_entry->wiring_thread = NULL;
 1804         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
 1805         new_entry->next_read = start;
 1806 
 1807         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
 1808             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
 1809         new_entry->cred = cred;
 1810 
 1811         /*
 1812          * Insert the new entry into the list
 1813          */
 1814         vm_map_entry_link(map, new_entry);
 1815         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
 1816                 map->size += new_entry->end - new_entry->start;
 1817 
 1818         /*
 1819          * Try to coalesce the new entry with both the previous and next
 1820          * entries in the list.  Previously, we only attempted to coalesce
 1821          * with the previous entry when object is NULL.  Here, we handle the
 1822          * other cases, which are less common.
 1823          */
 1824         vm_map_try_merge_entries(map, prev_entry, new_entry);
 1825         vm_map_try_merge_entries(map, new_entry, next_entry);
 1826 
 1827         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
 1828                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
 1829                     end - start, cow & MAP_PREFAULT_PARTIAL);
 1830         }
 1831 
 1832         return (KERN_SUCCESS);
 1833 }
 1834 
 1835 /*
 1836  *      vm_map_findspace:
 1837  *
 1838  *      Find the first fit (lowest VM address) for "length" free bytes
 1839  *      beginning at address >= start in the given map.
 1840  *
 1841  *      In a vm_map_entry, "max_free" is the maximum amount of
 1842  *      contiguous free space between an entry in its subtree and a
 1843  *      neighbor of that entry.  This allows finding a free region in
 1844  *      one path down the tree, so O(log n) amortized with splay
 1845  *      trees.
 1846  *
 1847  *      The map must be locked, and leaves it so.
 1848  *
 1849  *      Returns: starting address if sufficient space,
 1850  *               vm_map_max(map)-length+1 if insufficient space.
 1851  */
 1852 vm_offset_t
 1853 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
 1854 {
 1855         vm_map_entry_t header, llist, rlist, root, y;
 1856         vm_size_t left_length, max_free_left, max_free_right;
 1857         vm_offset_t gap_end;
 1858 
 1859         VM_MAP_ASSERT_LOCKED(map);
 1860 
 1861         /*
 1862          * Request must fit within min/max VM address and must avoid
 1863          * address wrap.
 1864          */
 1865         start = MAX(start, vm_map_min(map));
 1866         if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
 1867                 return (vm_map_max(map) - length + 1);
 1868 
 1869         /* Empty tree means wide open address space. */
 1870         if (map->root == NULL)
 1871                 return (start);
 1872 
 1873         /*
 1874          * After splay_split, if start is within an entry, push it to the start
 1875          * of the following gap.  If rlist is at the end of the gap containing
 1876          * start, save the end of that gap in gap_end to see if the gap is big
 1877          * enough; otherwise set gap_end to start skip gap-checking and move
 1878          * directly to a search of the right subtree.
 1879          */
 1880         header = &map->header;
 1881         root = vm_map_splay_split(map, start, length, &llist, &rlist);
 1882         gap_end = rlist->start;
 1883         if (root != NULL) {
 1884                 start = root->end;
 1885                 if (root->right != rlist)
 1886                         gap_end = start;
 1887                 max_free_left = vm_map_splay_merge_left(header, root, llist);
 1888                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
 1889         } else if (rlist != header) {
 1890                 root = rlist;
 1891                 rlist = root->left;
 1892                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
 1893                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
 1894         } else {
 1895                 root = llist;
 1896                 llist = root->right;
 1897                 max_free_left = vm_map_splay_merge_left(header, root, llist);
 1898                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
 1899         }
 1900         root->max_free = vm_size_max(max_free_left, max_free_right);
 1901         map->root = root;
 1902         VM_MAP_ASSERT_CONSISTENT(map);
 1903         if (length <= gap_end - start)
 1904                 return (start);
 1905 
 1906         /* With max_free, can immediately tell if no solution. */
 1907         if (root->right == header || length > root->right->max_free)
 1908                 return (vm_map_max(map) - length + 1);
 1909 
 1910         /*
 1911          * Splay for the least large-enough gap in the right subtree.
 1912          */
 1913         llist = rlist = header;
 1914         for (left_length = 0;;
 1915             left_length = vm_map_entry_max_free_left(root, llist)) {
 1916                 if (length <= left_length)
 1917                         SPLAY_LEFT_STEP(root, y, llist, rlist,
 1918                             length <= vm_map_entry_max_free_left(y, llist));
 1919                 else
 1920                         SPLAY_RIGHT_STEP(root, y, llist, rlist,
 1921                             length > vm_map_entry_max_free_left(y, root));
 1922                 if (root == NULL)
 1923                         break;
 1924         }
 1925         root = llist;
 1926         llist = root->right;
 1927         max_free_left = vm_map_splay_merge_left(header, root, llist);
 1928         if (rlist == header) {
 1929                 root->max_free = vm_size_max(max_free_left,
 1930                     vm_map_splay_merge_succ(header, root, rlist));
 1931         } else {
 1932                 y = rlist;
 1933                 rlist = y->left;
 1934                 y->max_free = vm_size_max(
 1935                     vm_map_splay_merge_pred(root, y, root),
 1936                     vm_map_splay_merge_right(header, y, rlist));
 1937                 root->max_free = vm_size_max(max_free_left, y->max_free);
 1938         }
 1939         map->root = root;
 1940         VM_MAP_ASSERT_CONSISTENT(map);
 1941         return (root->end);
 1942 }
 1943 
 1944 int
 1945 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 1946     vm_offset_t start, vm_size_t length, vm_prot_t prot,
 1947     vm_prot_t max, int cow)
 1948 {
 1949         vm_offset_t end;
 1950         int result;
 1951 
 1952         end = start + length;
 1953         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
 1954             object == NULL,
 1955             ("vm_map_fixed: non-NULL backing object for stack"));
 1956         vm_map_lock(map);
 1957         VM_MAP_RANGE_CHECK(map, start, end);
 1958         if ((cow & MAP_CHECK_EXCL) == 0) {
 1959                 result = vm_map_delete(map, start, end);
 1960                 if (result != KERN_SUCCESS)
 1961                         goto out;
 1962         }
 1963         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
 1964                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
 1965                     prot, max, cow);
 1966         } else {
 1967                 result = vm_map_insert(map, object, offset, start, end,
 1968                     prot, max, cow);
 1969         }
 1970 out:
 1971         vm_map_unlock(map);
 1972         return (result);
 1973 }
 1974 
 1975 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
 1976 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
 1977 
 1978 static int cluster_anon = 1;
 1979 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
 1980     &cluster_anon, 0,
 1981     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
 1982 
 1983 static bool
 1984 clustering_anon_allowed(vm_offset_t addr)
 1985 {
 1986 
 1987         switch (cluster_anon) {
 1988         case 0:
 1989                 return (false);
 1990         case 1:
 1991                 return (addr == 0);
 1992         case 2:
 1993         default:
 1994                 return (true);
 1995         }
 1996 }
 1997 
 1998 static long aslr_restarts;
 1999 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
 2000     &aslr_restarts, 0,
 2001     "Number of aslr failures");
 2002 
 2003 /*
 2004  * Searches for the specified amount of free space in the given map with the
 2005  * specified alignment.  Performs an address-ordered, first-fit search from
 2006  * the given address "*addr", with an optional upper bound "max_addr".  If the
 2007  * parameter "alignment" is zero, then the alignment is computed from the
 2008  * given (object, offset) pair so as to enable the greatest possible use of
 2009  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
 2010  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
 2011  *
 2012  * The map must be locked.  Initially, there must be at least "length" bytes
 2013  * of free space at the given address.
 2014  */
 2015 static int
 2016 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 2017     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
 2018     vm_offset_t alignment)
 2019 {
 2020         vm_offset_t aligned_addr, free_addr;
 2021 
 2022         VM_MAP_ASSERT_LOCKED(map);
 2023         free_addr = *addr;
 2024         KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
 2025             ("caller failed to provide space %#jx at address %p",
 2026              (uintmax_t)length, (void *)free_addr));
 2027         for (;;) {
 2028                 /*
 2029                  * At the start of every iteration, the free space at address
 2030                  * "*addr" is at least "length" bytes.
 2031                  */
 2032                 if (alignment == 0)
 2033                         pmap_align_superpage(object, offset, addr, length);
 2034                 else
 2035                         *addr = roundup2(*addr, alignment);
 2036                 aligned_addr = *addr;
 2037                 if (aligned_addr == free_addr) {
 2038                         /*
 2039                          * Alignment did not change "*addr", so "*addr" must
 2040                          * still provide sufficient free space.
 2041                          */
 2042                         return (KERN_SUCCESS);
 2043                 }
 2044 
 2045                 /*
 2046                  * Test for address wrap on "*addr".  A wrapped "*addr" could
 2047                  * be a valid address, in which case vm_map_findspace() cannot
 2048                  * be relied upon to fail.
 2049                  */
 2050                 if (aligned_addr < free_addr)
 2051                         return (KERN_NO_SPACE);
 2052                 *addr = vm_map_findspace(map, aligned_addr, length);
 2053                 if (*addr + length > vm_map_max(map) ||
 2054                     (max_addr != 0 && *addr + length > max_addr))
 2055                         return (KERN_NO_SPACE);
 2056                 free_addr = *addr;
 2057                 if (free_addr == aligned_addr) {
 2058                         /*
 2059                          * If a successful call to vm_map_findspace() did not
 2060                          * change "*addr", then "*addr" must still be aligned
 2061                          * and provide sufficient free space.
 2062                          */
 2063                         return (KERN_SUCCESS);
 2064                 }
 2065         }
 2066 }
 2067 
 2068 int
 2069 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
 2070     vm_offset_t max_addr, vm_offset_t alignment)
 2071 {
 2072         /* XXXKIB ASLR eh ? */
 2073         *addr = vm_map_findspace(map, *addr, length);
 2074         if (*addr + length > vm_map_max(map) ||
 2075             (max_addr != 0 && *addr + length > max_addr))
 2076                 return (KERN_NO_SPACE);
 2077         return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
 2078             alignment));
 2079 }
 2080 
 2081 /*
 2082  *      vm_map_find finds an unallocated region in the target address
 2083  *      map with the given length.  The search is defined to be
 2084  *      first-fit from the specified address; the region found is
 2085  *      returned in the same parameter.
 2086  *
 2087  *      If object is non-NULL, ref count must be bumped by caller
 2088  *      prior to making call to account for the new entry.
 2089  */
 2090 int
 2091 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 2092             vm_offset_t *addr,  /* IN/OUT */
 2093             vm_size_t length, vm_offset_t max_addr, int find_space,
 2094             vm_prot_t prot, vm_prot_t max, int cow)
 2095 {
 2096         vm_offset_t alignment, curr_min_addr, min_addr;
 2097         int gap, pidx, rv, try;
 2098         bool cluster, en_aslr, update_anon;
 2099 
 2100         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
 2101             object == NULL,
 2102             ("vm_map_find: non-NULL backing object for stack"));
 2103         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
 2104             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
 2105         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
 2106             (object->flags & OBJ_COLORED) == 0))
 2107                 find_space = VMFS_ANY_SPACE;
 2108         if (find_space >> 8 != 0) {
 2109                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
 2110                 alignment = (vm_offset_t)1 << (find_space >> 8);
 2111         } else
 2112                 alignment = 0;
 2113         en_aslr = (map->flags & MAP_ASLR) != 0;
 2114         update_anon = cluster = clustering_anon_allowed(*addr) &&
 2115             (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
 2116             find_space != VMFS_NO_SPACE && object == NULL &&
 2117             (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
 2118             MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
 2119         curr_min_addr = min_addr = *addr;
 2120         if (en_aslr && min_addr == 0 && !cluster &&
 2121             find_space != VMFS_NO_SPACE &&
 2122             (map->flags & MAP_ASLR_IGNSTART) != 0)
 2123                 curr_min_addr = min_addr = vm_map_min(map);
 2124         try = 0;
 2125         vm_map_lock(map);
 2126         if (cluster) {
 2127                 curr_min_addr = map->anon_loc;
 2128                 if (curr_min_addr == 0)
 2129                         cluster = false;
 2130         }
 2131         if (find_space != VMFS_NO_SPACE) {
 2132                 KASSERT(find_space == VMFS_ANY_SPACE ||
 2133                     find_space == VMFS_OPTIMAL_SPACE ||
 2134                     find_space == VMFS_SUPER_SPACE ||
 2135                     alignment != 0, ("unexpected VMFS flag"));
 2136 again:
 2137                 /*
 2138                  * When creating an anonymous mapping, try clustering
 2139                  * with an existing anonymous mapping first.
 2140                  *
 2141                  * We make up to two attempts to find address space
 2142                  * for a given find_space value. The first attempt may
 2143                  * apply randomization or may cluster with an existing
 2144                  * anonymous mapping. If this first attempt fails,
 2145                  * perform a first-fit search of the available address
 2146                  * space.
 2147                  *
 2148                  * If all tries failed, and find_space is
 2149                  * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
 2150                  * Again enable clustering and randomization.
 2151                  */
 2152                 try++;
 2153                 MPASS(try <= 2);
 2154 
 2155                 if (try == 2) {
 2156                         /*
 2157                          * Second try: we failed either to find a
 2158                          * suitable region for randomizing the
 2159                          * allocation, or to cluster with an existing
 2160                          * mapping.  Retry with free run.
 2161                          */
 2162                         curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
 2163                             vm_map_min(map) : min_addr;
 2164                         atomic_add_long(&aslr_restarts, 1);
 2165                 }
 2166 
 2167                 if (try == 1 && en_aslr && !cluster) {
 2168                         /*
 2169                          * Find space for allocation, including
 2170                          * gap needed for later randomization.
 2171                          */
 2172                         pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
 2173                             (find_space == VMFS_SUPER_SPACE || find_space ==
 2174                             VMFS_OPTIMAL_SPACE) ? 1 : 0;
 2175                         gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
 2176                             (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
 2177                             aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
 2178                         *addr = vm_map_findspace(map, curr_min_addr,
 2179                             length + gap * pagesizes[pidx]);
 2180                         if (*addr + length + gap * pagesizes[pidx] >
 2181                             vm_map_max(map))
 2182                                 goto again;
 2183                         /* And randomize the start address. */
 2184                         *addr += (arc4random() % gap) * pagesizes[pidx];
 2185                         if (max_addr != 0 && *addr + length > max_addr)
 2186                                 goto again;
 2187                 } else {
 2188                         *addr = vm_map_findspace(map, curr_min_addr, length);
 2189                         if (*addr + length > vm_map_max(map) ||
 2190                             (max_addr != 0 && *addr + length > max_addr)) {
 2191                                 if (cluster) {
 2192                                         cluster = false;
 2193                                         MPASS(try == 1);
 2194                                         goto again;
 2195                                 }
 2196                                 rv = KERN_NO_SPACE;
 2197                                 goto done;
 2198                         }
 2199                 }
 2200 
 2201                 if (find_space != VMFS_ANY_SPACE &&
 2202                     (rv = vm_map_alignspace(map, object, offset, addr, length,
 2203                     max_addr, alignment)) != KERN_SUCCESS) {
 2204                         if (find_space == VMFS_OPTIMAL_SPACE) {
 2205                                 find_space = VMFS_ANY_SPACE;
 2206                                 curr_min_addr = min_addr;
 2207                                 cluster = update_anon;
 2208                                 try = 0;
 2209                                 goto again;
 2210                         }
 2211                         goto done;
 2212                 }
 2213         } else if ((cow & MAP_REMAP) != 0) {
 2214                 if (!vm_map_range_valid(map, *addr, *addr + length)) {
 2215                         rv = KERN_INVALID_ADDRESS;
 2216                         goto done;
 2217                 }
 2218                 rv = vm_map_delete(map, *addr, *addr + length);
 2219                 if (rv != KERN_SUCCESS)
 2220                         goto done;
 2221         }
 2222         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
 2223                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
 2224                     max, cow);
 2225         } else {
 2226                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
 2227                     prot, max, cow);
 2228         }
 2229         if (rv == KERN_SUCCESS && update_anon)
 2230                 map->anon_loc = *addr + length;
 2231 done:
 2232         vm_map_unlock(map);
 2233         return (rv);
 2234 }
 2235 
 2236 /*
 2237  *      vm_map_find_min() is a variant of vm_map_find() that takes an
 2238  *      additional parameter (min_addr) and treats the given address
 2239  *      (*addr) differently.  Specifically, it treats *addr as a hint
 2240  *      and not as the minimum address where the mapping is created.
 2241  *
 2242  *      This function works in two phases.  First, it tries to
 2243  *      allocate above the hint.  If that fails and the hint is
 2244  *      greater than min_addr, it performs a second pass, replacing
 2245  *      the hint with min_addr as the minimum address for the
 2246  *      allocation.
 2247  */
 2248 int
 2249 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 2250     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
 2251     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
 2252     int cow)
 2253 {
 2254         vm_offset_t hint;
 2255         int rv;
 2256 
 2257         hint = *addr;
 2258         for (;;) {
 2259                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
 2260                     find_space, prot, max, cow);
 2261                 if (rv == KERN_SUCCESS || min_addr >= hint)
 2262                         return (rv);
 2263                 *addr = hint = min_addr;
 2264         }
 2265 }
 2266 
 2267 /*
 2268  * A map entry with any of the following flags set must not be merged with
 2269  * another entry.
 2270  */
 2271 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
 2272             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
 2273 
 2274 static bool
 2275 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
 2276 {
 2277 
 2278         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
 2279             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
 2280             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
 2281             prev, entry));
 2282         return (prev->end == entry->start &&
 2283             prev->object.vm_object == entry->object.vm_object &&
 2284             (prev->object.vm_object == NULL ||
 2285             prev->offset + (prev->end - prev->start) == entry->offset) &&
 2286             prev->eflags == entry->eflags &&
 2287             prev->protection == entry->protection &&
 2288             prev->max_protection == entry->max_protection &&
 2289             prev->inheritance == entry->inheritance &&
 2290             prev->wired_count == entry->wired_count &&
 2291             prev->cred == entry->cred);
 2292 }
 2293 
 2294 static void
 2295 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
 2296 {
 2297 
 2298         /*
 2299          * If the backing object is a vnode object, vm_object_deallocate()
 2300          * calls vrele().  However, vrele() does not lock the vnode because
 2301          * the vnode has additional references.  Thus, the map lock can be
 2302          * kept without causing a lock-order reversal with the vnode lock.
 2303          *
 2304          * Since we count the number of virtual page mappings in
 2305          * object->un_pager.vnp.writemappings, the writemappings value
 2306          * should not be adjusted when the entry is disposed of.
 2307          */
 2308         if (entry->object.vm_object != NULL)
 2309                 vm_object_deallocate(entry->object.vm_object);
 2310         if (entry->cred != NULL)
 2311                 crfree(entry->cred);
 2312         vm_map_entry_dispose(map, entry);
 2313 }
 2314 
 2315 /*
 2316  *      vm_map_try_merge_entries:
 2317  *
 2318  *      Compare the given map entry to its predecessor, and merge its precessor
 2319  *      into it if possible.  The entry remains valid, and may be extended.
 2320  *      The predecessor may be deleted.
 2321  *
 2322  *      The map must be locked.
 2323  */
 2324 void
 2325 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
 2326     vm_map_entry_t entry)
 2327 {
 2328 
 2329         VM_MAP_ASSERT_LOCKED(map);
 2330         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
 2331             vm_map_mergeable_neighbors(prev_entry, entry)) {
 2332                 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
 2333                 vm_map_merged_neighbor_dispose(map, prev_entry);
 2334         }
 2335 }
 2336 
 2337 /*
 2338  *      vm_map_entry_back:
 2339  *
 2340  *      Allocate an object to back a map entry.
 2341  */
 2342 static inline void
 2343 vm_map_entry_back(vm_map_entry_t entry)
 2344 {
 2345         vm_object_t object;
 2346 
 2347         KASSERT(entry->object.vm_object == NULL,
 2348             ("map entry %p has backing object", entry));
 2349         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
 2350             ("map entry %p is a submap", entry));
 2351         object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
 2352             entry->cred, entry->end - entry->start);
 2353         entry->object.vm_object = object;
 2354         entry->offset = 0;
 2355         entry->cred = NULL;
 2356 }
 2357 
 2358 /*
 2359  *      vm_map_entry_charge_object
 2360  *
 2361  *      If there is no object backing this entry, create one.  Otherwise, if
 2362  *      the entry has cred, give it to the backing object.
 2363  */
 2364 static inline void
 2365 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
 2366 {
 2367 
 2368         VM_MAP_ASSERT_LOCKED(map);
 2369         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
 2370             ("map entry %p is a submap", entry));
 2371         if (entry->object.vm_object == NULL && !map->system_map &&
 2372             (entry->eflags & MAP_ENTRY_GUARD) == 0)
 2373                 vm_map_entry_back(entry);
 2374         else if (entry->object.vm_object != NULL &&
 2375             ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
 2376             entry->cred != NULL) {
 2377                 VM_OBJECT_WLOCK(entry->object.vm_object);
 2378                 KASSERT(entry->object.vm_object->cred == NULL,
 2379                     ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
 2380                 entry->object.vm_object->cred = entry->cred;
 2381                 entry->object.vm_object->charge = entry->end - entry->start;
 2382                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
 2383                 entry->cred = NULL;
 2384         }
 2385 }
 2386 
 2387 /*
 2388  *      vm_map_entry_clone
 2389  *
 2390  *      Create a duplicate map entry for clipping.
 2391  */
 2392 static vm_map_entry_t
 2393 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
 2394 {
 2395         vm_map_entry_t new_entry;
 2396 
 2397         VM_MAP_ASSERT_LOCKED(map);
 2398 
 2399         /*
 2400          * Create a backing object now, if none exists, so that more individual
 2401          * objects won't be created after the map entry is split.
 2402          */
 2403         vm_map_entry_charge_object(map, entry);
 2404 
 2405         /* Clone the entry. */
 2406         new_entry = vm_map_entry_create(map);
 2407         *new_entry = *entry;
 2408         if (new_entry->cred != NULL)
 2409                 crhold(entry->cred);
 2410         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
 2411                 vm_object_reference(new_entry->object.vm_object);
 2412                 vm_map_entry_set_vnode_text(new_entry, true);
 2413                 /*
 2414                  * The object->un_pager.vnp.writemappings for the object of
 2415                  * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
 2416                  * virtual pages are re-distributed among the clipped entries,
 2417                  * so the sum is left the same.
 2418                  */
 2419         }
 2420         return (new_entry);
 2421 }
 2422 
 2423 /*
 2424  *      vm_map_clip_start:      [ internal use only ]
 2425  *
 2426  *      Asserts that the given entry begins at or after
 2427  *      the specified address; if necessary,
 2428  *      it splits the entry into two.
 2429  */
 2430 static int
 2431 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
 2432 {
 2433         vm_map_entry_t new_entry;
 2434         int bdry_idx;
 2435 
 2436         if (!map->system_map)
 2437                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
 2438                     "%s: map %p entry %p start 0x%jx", __func__, map, entry,
 2439                     (uintmax_t)startaddr);
 2440 
 2441         if (startaddr <= entry->start)
 2442                 return (KERN_SUCCESS);
 2443 
 2444         VM_MAP_ASSERT_LOCKED(map);
 2445         KASSERT(entry->end > startaddr && entry->start < startaddr,
 2446             ("%s: invalid clip of entry %p", __func__, entry));
 2447 
 2448         bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
 2449             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
 2450         if (bdry_idx != 0) {
 2451                 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
 2452                         return (KERN_INVALID_ARGUMENT);
 2453         }
 2454 
 2455         new_entry = vm_map_entry_clone(map, entry);
 2456 
 2457         /*
 2458          * Split off the front portion.  Insert the new entry BEFORE this one,
 2459          * so that this entry has the specified starting address.
 2460          */
 2461         new_entry->end = startaddr;
 2462         vm_map_entry_link(map, new_entry);
 2463         return (KERN_SUCCESS);
 2464 }
 2465 
 2466 /*
 2467  *      vm_map_lookup_clip_start:
 2468  *
 2469  *      Find the entry at or just after 'start', and clip it if 'start' is in
 2470  *      the interior of the entry.  Return entry after 'start', and in
 2471  *      prev_entry set the entry before 'start'.
 2472  */
 2473 static int
 2474 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
 2475     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
 2476 {
 2477         vm_map_entry_t entry;
 2478         int rv;
 2479 
 2480         if (!map->system_map)
 2481                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
 2482                     "%s: map %p start 0x%jx prev %p", __func__, map,
 2483                     (uintmax_t)start, prev_entry);
 2484 
 2485         if (vm_map_lookup_entry(map, start, prev_entry)) {
 2486                 entry = *prev_entry;
 2487                 rv = vm_map_clip_start(map, entry, start);
 2488                 if (rv != KERN_SUCCESS)
 2489                         return (rv);
 2490                 *prev_entry = vm_map_entry_pred(entry);
 2491         } else
 2492                 entry = vm_map_entry_succ(*prev_entry);
 2493         *res_entry = entry;
 2494         return (KERN_SUCCESS);
 2495 }
 2496 
 2497 /*
 2498  *      vm_map_clip_end:        [ internal use only ]
 2499  *
 2500  *      Asserts that the given entry ends at or before
 2501  *      the specified address; if necessary,
 2502  *      it splits the entry into two.
 2503  */
 2504 static int
 2505 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
 2506 {
 2507         vm_map_entry_t new_entry;
 2508         int bdry_idx;
 2509 
 2510         if (!map->system_map)
 2511                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
 2512                     "%s: map %p entry %p end 0x%jx", __func__, map, entry,
 2513                     (uintmax_t)endaddr);
 2514 
 2515         if (endaddr >= entry->end)
 2516                 return (KERN_SUCCESS);
 2517 
 2518         VM_MAP_ASSERT_LOCKED(map);
 2519         KASSERT(entry->start < endaddr && entry->end > endaddr,
 2520             ("%s: invalid clip of entry %p", __func__, entry));
 2521 
 2522         bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
 2523             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
 2524         if (bdry_idx != 0) {
 2525                 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
 2526                         return (KERN_INVALID_ARGUMENT);
 2527         }
 2528 
 2529         new_entry = vm_map_entry_clone(map, entry);
 2530 
 2531         /*
 2532          * Split off the back portion.  Insert the new entry AFTER this one,
 2533          * so that this entry has the specified ending address.
 2534          */
 2535         new_entry->start = endaddr;
 2536         vm_map_entry_link(map, new_entry);
 2537 
 2538         return (KERN_SUCCESS);
 2539 }
 2540 
 2541 /*
 2542  *      vm_map_submap:          [ kernel use only ]
 2543  *
 2544  *      Mark the given range as handled by a subordinate map.
 2545  *
 2546  *      This range must have been created with vm_map_find,
 2547  *      and no other operations may have been performed on this
 2548  *      range prior to calling vm_map_submap.
 2549  *
 2550  *      Only a limited number of operations can be performed
 2551  *      within this rage after calling vm_map_submap:
 2552  *              vm_fault
 2553  *      [Don't try vm_map_copy!]
 2554  *
 2555  *      To remove a submapping, one must first remove the
 2556  *      range from the superior map, and then destroy the
 2557  *      submap (if desired).  [Better yet, don't try it.]
 2558  */
 2559 int
 2560 vm_map_submap(
 2561         vm_map_t map,
 2562         vm_offset_t start,
 2563         vm_offset_t end,
 2564         vm_map_t submap)
 2565 {
 2566         vm_map_entry_t entry;
 2567         int result;
 2568 
 2569         result = KERN_INVALID_ARGUMENT;
 2570 
 2571         vm_map_lock(submap);
 2572         submap->flags |= MAP_IS_SUB_MAP;
 2573         vm_map_unlock(submap);
 2574 
 2575         vm_map_lock(map);
 2576         VM_MAP_RANGE_CHECK(map, start, end);
 2577         if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
 2578             (entry->eflags & MAP_ENTRY_COW) == 0 &&
 2579             entry->object.vm_object == NULL) {
 2580                 result = vm_map_clip_start(map, entry, start);
 2581                 if (result != KERN_SUCCESS)
 2582                         goto unlock;
 2583                 result = vm_map_clip_end(map, entry, end);
 2584                 if (result != KERN_SUCCESS)
 2585                         goto unlock;
 2586                 entry->object.sub_map = submap;
 2587                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
 2588                 result = KERN_SUCCESS;
 2589         }
 2590 unlock:
 2591         vm_map_unlock(map);
 2592 
 2593         if (result != KERN_SUCCESS) {
 2594                 vm_map_lock(submap);
 2595                 submap->flags &= ~MAP_IS_SUB_MAP;
 2596                 vm_map_unlock(submap);
 2597         }
 2598         return (result);
 2599 }
 2600 
 2601 /*
 2602  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
 2603  */
 2604 #define MAX_INIT_PT     96
 2605 
 2606 /*
 2607  *      vm_map_pmap_enter:
 2608  *
 2609  *      Preload the specified map's pmap with mappings to the specified
 2610  *      object's memory-resident pages.  No further physical pages are
 2611  *      allocated, and no further virtual pages are retrieved from secondary
 2612  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
 2613  *      limited number of page mappings are created at the low-end of the
 2614  *      specified address range.  (For this purpose, a superpage mapping
 2615  *      counts as one page mapping.)  Otherwise, all resident pages within
 2616  *      the specified address range are mapped.
 2617  */
 2618 static void
 2619 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
 2620     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
 2621 {
 2622         vm_offset_t start;
 2623         vm_page_t p, p_start;
 2624         vm_pindex_t mask, psize, threshold, tmpidx;
 2625 
 2626         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
 2627                 return;
 2628         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
 2629                 VM_OBJECT_WLOCK(object);
 2630                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
 2631                         pmap_object_init_pt(map->pmap, addr, object, pindex,
 2632                             size);
 2633                         VM_OBJECT_WUNLOCK(object);
 2634                         return;
 2635                 }
 2636                 VM_OBJECT_LOCK_DOWNGRADE(object);
 2637         } else
 2638                 VM_OBJECT_RLOCK(object);
 2639 
 2640         psize = atop(size);
 2641         if (psize + pindex > object->size) {
 2642                 if (pindex >= object->size) {
 2643                         VM_OBJECT_RUNLOCK(object);
 2644                         return;
 2645                 }
 2646                 psize = object->size - pindex;
 2647         }
 2648 
 2649         start = 0;
 2650         p_start = NULL;
 2651         threshold = MAX_INIT_PT;
 2652 
 2653         p = vm_page_find_least(object, pindex);
 2654         /*
 2655          * Assert: the variable p is either (1) the page with the
 2656          * least pindex greater than or equal to the parameter pindex
 2657          * or (2) NULL.
 2658          */
 2659         for (;
 2660              p != NULL && (tmpidx = p->pindex - pindex) < psize;
 2661              p = TAILQ_NEXT(p, listq)) {
 2662                 /*
 2663                  * don't allow an madvise to blow away our really
 2664                  * free pages allocating pv entries.
 2665                  */
 2666                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
 2667                     vm_page_count_severe()) ||
 2668                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
 2669                     tmpidx >= threshold)) {
 2670                         psize = tmpidx;
 2671                         break;
 2672                 }
 2673                 if (vm_page_all_valid(p)) {
 2674                         if (p_start == NULL) {
 2675                                 start = addr + ptoa(tmpidx);
 2676                                 p_start = p;
 2677                         }
 2678                         /* Jump ahead if a superpage mapping is possible. */
 2679                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
 2680                             (pagesizes[p->psind] - 1)) == 0) {
 2681                                 mask = atop(pagesizes[p->psind]) - 1;
 2682                                 if (tmpidx + mask < psize &&
 2683                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
 2684                                         p += mask;
 2685                                         threshold += mask;
 2686                                 }
 2687                         }
 2688                 } else if (p_start != NULL) {
 2689                         pmap_enter_object(map->pmap, start, addr +
 2690                             ptoa(tmpidx), p_start, prot);
 2691                         p_start = NULL;
 2692                 }
 2693         }
 2694         if (p_start != NULL)
 2695                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
 2696                     p_start, prot);
 2697         VM_OBJECT_RUNLOCK(object);
 2698 }
 2699 
 2700 /*
 2701  *      vm_map_protect:
 2702  *
 2703  *      Sets the protection and/or the maximum protection of the
 2704  *      specified address region in the target map.
 2705  */
 2706 int
 2707 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
 2708     vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
 2709 {
 2710         vm_map_entry_t entry, first_entry, in_tran, prev_entry;
 2711         vm_object_t obj;
 2712         struct ucred *cred;
 2713         vm_prot_t old_prot;
 2714         int rv;
 2715 
 2716         if (start == end)
 2717                 return (KERN_SUCCESS);
 2718 
 2719         if ((flags & (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT)) ==
 2720             (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT) &&
 2721             (new_prot & new_maxprot) != new_prot)
 2722                 return (KERN_OUT_OF_BOUNDS);
 2723 
 2724 again:
 2725         in_tran = NULL;
 2726         vm_map_lock(map);
 2727 
 2728         if ((map->flags & MAP_WXORX) != 0 &&
 2729             (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
 2730             (new_prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE |
 2731             VM_PROT_EXECUTE)) {
 2732                 vm_map_unlock(map);
 2733                 return (KERN_PROTECTION_FAILURE);
 2734         }
 2735 
 2736         /*
 2737          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
 2738          * need to fault pages into the map and will drop the map lock while
 2739          * doing so, and the VM object may end up in an inconsistent state if we
 2740          * update the protection on the map entry in between faults.
 2741          */
 2742         vm_map_wait_busy(map);
 2743 
 2744         VM_MAP_RANGE_CHECK(map, start, end);
 2745 
 2746         if (!vm_map_lookup_entry(map, start, &first_entry))
 2747                 first_entry = vm_map_entry_succ(first_entry);
 2748 
 2749         /*
 2750          * Make a first pass to check for protection violations.
 2751          */
 2752         for (entry = first_entry; entry->start < end;
 2753             entry = vm_map_entry_succ(entry)) {
 2754                 if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
 2755                         continue;
 2756                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
 2757                         vm_map_unlock(map);
 2758                         return (KERN_INVALID_ARGUMENT);
 2759                 }
 2760                 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0)
 2761                         new_prot = entry->protection;
 2762                 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) == 0)
 2763                         new_maxprot = entry->max_protection;
 2764                 if ((new_prot & entry->max_protection) != new_prot ||
 2765                     (new_maxprot & entry->max_protection) != new_maxprot) {
 2766                         vm_map_unlock(map);
 2767                         return (KERN_PROTECTION_FAILURE);
 2768                 }
 2769                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
 2770                         in_tran = entry;
 2771         }
 2772 
 2773         /*
 2774          * Postpone the operation until all in-transition map entries have
 2775          * stabilized.  An in-transition entry might already have its pages
 2776          * wired and wired_count incremented, but not yet have its
 2777          * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
 2778          * vm_fault_copy_entry() in the final loop below.
 2779          */
 2780         if (in_tran != NULL) {
 2781                 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 2782                 vm_map_unlock_and_wait(map, 0);
 2783                 goto again;
 2784         }
 2785 
 2786         /*
 2787          * Before changing the protections, try to reserve swap space for any
 2788          * private (i.e., copy-on-write) mappings that are transitioning from
 2789          * read-only to read/write access.  If a reservation fails, break out
 2790          * of this loop early and let the next loop simplify the entries, since
 2791          * some may now be mergeable.
 2792          */
 2793         rv = vm_map_clip_start(map, first_entry, start);
 2794         if (rv != KERN_SUCCESS) {
 2795                 vm_map_unlock(map);
 2796                 return (rv);
 2797         }
 2798         for (entry = first_entry; entry->start < end;
 2799             entry = vm_map_entry_succ(entry)) {
 2800                 rv = vm_map_clip_end(map, entry, end);
 2801                 if (rv != KERN_SUCCESS) {
 2802                         vm_map_unlock(map);
 2803                         return (rv);
 2804                 }
 2805 
 2806                 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
 2807                     ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
 2808                     ENTRY_CHARGED(entry) ||
 2809                     (entry->eflags & MAP_ENTRY_GUARD) != 0)
 2810                         continue;
 2811 
 2812                 cred = curthread->td_ucred;
 2813                 obj = entry->object.vm_object;
 2814 
 2815                 if (obj == NULL ||
 2816                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
 2817                         if (!swap_reserve(entry->end - entry->start)) {
 2818                                 rv = KERN_RESOURCE_SHORTAGE;
 2819                                 end = entry->end;
 2820                                 break;
 2821                         }
 2822                         crhold(cred);
 2823                         entry->cred = cred;
 2824                         continue;
 2825                 }
 2826 
 2827                 VM_OBJECT_WLOCK(obj);
 2828                 if ((obj->flags & OBJ_SWAP) == 0) {
 2829                         VM_OBJECT_WUNLOCK(obj);
 2830                         continue;
 2831                 }
 2832 
 2833                 /*
 2834                  * Charge for the whole object allocation now, since
 2835                  * we cannot distinguish between non-charged and
 2836                  * charged clipped mapping of the same object later.
 2837                  */
 2838                 KASSERT(obj->charge == 0,
 2839                     ("vm_map_protect: object %p overcharged (entry %p)",
 2840                     obj, entry));
 2841                 if (!swap_reserve(ptoa(obj->size))) {
 2842                         VM_OBJECT_WUNLOCK(obj);
 2843                         rv = KERN_RESOURCE_SHORTAGE;
 2844                         end = entry->end;
 2845                         break;
 2846                 }
 2847 
 2848                 crhold(cred);
 2849                 obj->cred = cred;
 2850                 obj->charge = ptoa(obj->size);
 2851                 VM_OBJECT_WUNLOCK(obj);
 2852         }
 2853 
 2854         /*
 2855          * If enough swap space was available, go back and fix up protections.
 2856          * Otherwise, just simplify entries, since some may have been modified.
 2857          * [Note that clipping is not necessary the second time.]
 2858          */
 2859         for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
 2860             entry->start < end;
 2861             vm_map_try_merge_entries(map, prev_entry, entry),
 2862             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
 2863                 if (rv != KERN_SUCCESS ||
 2864                     (entry->eflags & MAP_ENTRY_GUARD) != 0)
 2865                         continue;
 2866 
 2867                 old_prot = entry->protection;
 2868 
 2869                 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
 2870                         entry->max_protection = new_maxprot;
 2871                         entry->protection = new_maxprot & old_prot;
 2872                 }
 2873                 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
 2874                         entry->protection = new_prot;
 2875 
 2876                 /*
 2877                  * For user wired map entries, the normal lazy evaluation of
 2878                  * write access upgrades through soft page faults is
 2879                  * undesirable.  Instead, immediately copy any pages that are
 2880                  * copy-on-write and enable write access in the physical map.
 2881                  */
 2882                 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
 2883                     (entry->protection & VM_PROT_WRITE) != 0 &&
 2884                     (old_prot & VM_PROT_WRITE) == 0)
 2885                         vm_fault_copy_entry(map, map, entry, entry, NULL);
 2886 
 2887                 /*
 2888                  * When restricting access, update the physical map.  Worry
 2889                  * about copy-on-write here.
 2890                  */
 2891                 if ((old_prot & ~entry->protection) != 0) {
 2892 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
 2893                                                         VM_PROT_ALL)
 2894                         pmap_protect(map->pmap, entry->start,
 2895                             entry->end,
 2896                             entry->protection & MASK(entry));
 2897 #undef  MASK
 2898                 }
 2899         }
 2900         vm_map_try_merge_entries(map, prev_entry, entry);
 2901         vm_map_unlock(map);
 2902         return (rv);
 2903 }
 2904 
 2905 /*
 2906  *      vm_map_madvise:
 2907  *
 2908  *      This routine traverses a processes map handling the madvise
 2909  *      system call.  Advisories are classified as either those effecting
 2910  *      the vm_map_entry structure, or those effecting the underlying
 2911  *      objects.
 2912  */
 2913 int
 2914 vm_map_madvise(
 2915         vm_map_t map,
 2916         vm_offset_t start,
 2917         vm_offset_t end,
 2918         int behav)
 2919 {
 2920         vm_map_entry_t entry, prev_entry;
 2921         int rv;
 2922         bool modify_map;
 2923 
 2924         /*
 2925          * Some madvise calls directly modify the vm_map_entry, in which case
 2926          * we need to use an exclusive lock on the map and we need to perform
 2927          * various clipping operations.  Otherwise we only need a read-lock
 2928          * on the map.
 2929          */
 2930         switch(behav) {
 2931         case MADV_NORMAL:
 2932         case MADV_SEQUENTIAL:
 2933         case MADV_RANDOM:
 2934         case MADV_NOSYNC:
 2935         case MADV_AUTOSYNC:
 2936         case MADV_NOCORE:
 2937         case MADV_CORE:
 2938                 if (start == end)
 2939                         return (0);
 2940                 modify_map = true;
 2941                 vm_map_lock(map);
 2942                 break;
 2943         case MADV_WILLNEED:
 2944         case MADV_DONTNEED:
 2945         case MADV_FREE:
 2946                 if (start == end)
 2947                         return (0);
 2948                 modify_map = false;
 2949                 vm_map_lock_read(map);
 2950                 break;
 2951         default:
 2952                 return (EINVAL);
 2953         }
 2954 
 2955         /*
 2956          * Locate starting entry and clip if necessary.
 2957          */
 2958         VM_MAP_RANGE_CHECK(map, start, end);
 2959 
 2960         if (modify_map) {
 2961                 /*
 2962                  * madvise behaviors that are implemented in the vm_map_entry.
 2963                  *
 2964                  * We clip the vm_map_entry so that behavioral changes are
 2965                  * limited to the specified address range.
 2966                  */
 2967                 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
 2968                 if (rv != KERN_SUCCESS) {
 2969                         vm_map_unlock(map);
 2970                         return (vm_mmap_to_errno(rv));
 2971                 }
 2972 
 2973                 for (; entry->start < end; prev_entry = entry,
 2974                     entry = vm_map_entry_succ(entry)) {
 2975                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
 2976                                 continue;
 2977 
 2978                         rv = vm_map_clip_end(map, entry, end);
 2979                         if (rv != KERN_SUCCESS) {
 2980                                 vm_map_unlock(map);
 2981                                 return (vm_mmap_to_errno(rv));
 2982                         }
 2983 
 2984                         switch (behav) {
 2985                         case MADV_NORMAL:
 2986                                 vm_map_entry_set_behavior(entry,
 2987                                     MAP_ENTRY_BEHAV_NORMAL);
 2988                                 break;
 2989                         case MADV_SEQUENTIAL:
 2990                                 vm_map_entry_set_behavior(entry,
 2991                                     MAP_ENTRY_BEHAV_SEQUENTIAL);
 2992                                 break;
 2993                         case MADV_RANDOM:
 2994                                 vm_map_entry_set_behavior(entry,
 2995                                     MAP_ENTRY_BEHAV_RANDOM);
 2996                                 break;
 2997                         case MADV_NOSYNC:
 2998                                 entry->eflags |= MAP_ENTRY_NOSYNC;
 2999                                 break;
 3000                         case MADV_AUTOSYNC:
 3001                                 entry->eflags &= ~MAP_ENTRY_NOSYNC;
 3002                                 break;
 3003                         case MADV_NOCORE:
 3004                                 entry->eflags |= MAP_ENTRY_NOCOREDUMP;
 3005                                 break;
 3006                         case MADV_CORE:
 3007                                 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
 3008                                 break;
 3009                         default:
 3010                                 break;
 3011                         }
 3012                         vm_map_try_merge_entries(map, prev_entry, entry);
 3013                 }
 3014                 vm_map_try_merge_entries(map, prev_entry, entry);
 3015                 vm_map_unlock(map);
 3016         } else {
 3017                 vm_pindex_t pstart, pend;
 3018 
 3019                 /*
 3020                  * madvise behaviors that are implemented in the underlying
 3021                  * vm_object.
 3022                  *
 3023                  * Since we don't clip the vm_map_entry, we have to clip
 3024                  * the vm_object pindex and count.
 3025                  */
 3026                 if (!vm_map_lookup_entry(map, start, &entry))
 3027                         entry = vm_map_entry_succ(entry);
 3028                 for (; entry->start < end;
 3029                     entry = vm_map_entry_succ(entry)) {
 3030                         vm_offset_t useEnd, useStart;
 3031 
 3032                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
 3033                                 continue;
 3034 
 3035                         /*
 3036                          * MADV_FREE would otherwise rewind time to
 3037                          * the creation of the shadow object.  Because
 3038                          * we hold the VM map read-locked, neither the
 3039                          * entry's object nor the presence of a
 3040                          * backing object can change.
 3041                          */
 3042                         if (behav == MADV_FREE &&
 3043                             entry->object.vm_object != NULL &&
 3044                             entry->object.vm_object->backing_object != NULL)
 3045                                 continue;
 3046 
 3047                         pstart = OFF_TO_IDX(entry->offset);
 3048                         pend = pstart + atop(entry->end - entry->start);
 3049                         useStart = entry->start;
 3050                         useEnd = entry->end;
 3051 
 3052                         if (entry->start < start) {
 3053                                 pstart += atop(start - entry->start);
 3054                                 useStart = start;
 3055                         }
 3056                         if (entry->end > end) {
 3057                                 pend -= atop(entry->end - end);
 3058                                 useEnd = end;
 3059                         }
 3060 
 3061                         if (pstart >= pend)
 3062                                 continue;
 3063 
 3064                         /*
 3065                          * Perform the pmap_advise() before clearing
 3066                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
 3067                          * concurrent pmap operation, such as pmap_remove(),
 3068                          * could clear a reference in the pmap and set
 3069                          * PGA_REFERENCED on the page before the pmap_advise()
 3070                          * had completed.  Consequently, the page would appear
 3071                          * referenced based upon an old reference that
 3072                          * occurred before this pmap_advise() ran.
 3073                          */
 3074                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
 3075                                 pmap_advise(map->pmap, useStart, useEnd,
 3076                                     behav);
 3077 
 3078                         vm_object_madvise(entry->object.vm_object, pstart,
 3079                             pend, behav);
 3080 
 3081                         /*
 3082                          * Pre-populate paging structures in the
 3083                          * WILLNEED case.  For wired entries, the
 3084                          * paging structures are already populated.
 3085                          */
 3086                         if (behav == MADV_WILLNEED &&
 3087                             entry->wired_count == 0) {
 3088                                 vm_map_pmap_enter(map,
 3089                                     useStart,
 3090                                     entry->protection,
 3091                                     entry->object.vm_object,
 3092                                     pstart,
 3093                                     ptoa(pend - pstart),
 3094                                     MAP_PREFAULT_MADVISE
 3095                                 );
 3096                         }
 3097                 }
 3098                 vm_map_unlock_read(map);
 3099         }
 3100         return (0);
 3101 }
 3102 
 3103 /*
 3104  *      vm_map_inherit:
 3105  *
 3106  *      Sets the inheritance of the specified address
 3107  *      range in the target map.  Inheritance
 3108  *      affects how the map will be shared with
 3109  *      child maps at the time of vmspace_fork.
 3110  */
 3111 int
 3112 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
 3113                vm_inherit_t new_inheritance)
 3114 {
 3115         vm_map_entry_t entry, lentry, prev_entry, start_entry;
 3116         int rv;
 3117 
 3118         switch (new_inheritance) {
 3119         case VM_INHERIT_NONE:
 3120         case VM_INHERIT_COPY:
 3121         case VM_INHERIT_SHARE:
 3122         case VM_INHERIT_ZERO:
 3123                 break;
 3124         default:
 3125                 return (KERN_INVALID_ARGUMENT);
 3126         }
 3127         if (start == end)
 3128                 return (KERN_SUCCESS);
 3129         vm_map_lock(map);
 3130         VM_MAP_RANGE_CHECK(map, start, end);
 3131         rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
 3132         if (rv != KERN_SUCCESS)
 3133                 goto unlock;
 3134         if (vm_map_lookup_entry(map, end - 1, &lentry)) {
 3135                 rv = vm_map_clip_end(map, lentry, end);
 3136                 if (rv != KERN_SUCCESS)
 3137                         goto unlock;
 3138         }
 3139         if (new_inheritance == VM_INHERIT_COPY) {
 3140                 for (entry = start_entry; entry->start < end;
 3141                     prev_entry = entry, entry = vm_map_entry_succ(entry)) {
 3142                         if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
 3143                             != 0) {
 3144                                 rv = KERN_INVALID_ARGUMENT;
 3145                                 goto unlock;
 3146                         }
 3147                 }
 3148         }
 3149         for (entry = start_entry; entry->start < end; prev_entry = entry,
 3150             entry = vm_map_entry_succ(entry)) {
 3151                 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
 3152                     entry, (uintmax_t)entry->end, (uintmax_t)end));
 3153                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
 3154                     new_inheritance != VM_INHERIT_ZERO)
 3155                         entry->inheritance = new_inheritance;
 3156                 vm_map_try_merge_entries(map, prev_entry, entry);
 3157         }
 3158         vm_map_try_merge_entries(map, prev_entry, entry);
 3159 unlock:
 3160         vm_map_unlock(map);
 3161         return (rv);
 3162 }
 3163 
 3164 /*
 3165  *      vm_map_entry_in_transition:
 3166  *
 3167  *      Release the map lock, and sleep until the entry is no longer in
 3168  *      transition.  Awake and acquire the map lock.  If the map changed while
 3169  *      another held the lock, lookup a possibly-changed entry at or after the
 3170  *      'start' position of the old entry.
 3171  */
 3172 static vm_map_entry_t
 3173 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
 3174     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
 3175 {
 3176         vm_map_entry_t entry;
 3177         vm_offset_t start;
 3178         u_int last_timestamp;
 3179 
 3180         VM_MAP_ASSERT_LOCKED(map);
 3181         KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
 3182             ("not in-tranition map entry %p", in_entry));
 3183         /*
 3184          * We have not yet clipped the entry.
 3185          */
 3186         start = MAX(in_start, in_entry->start);
 3187         in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 3188         last_timestamp = map->timestamp;
 3189         if (vm_map_unlock_and_wait(map, 0)) {
 3190                 /*
 3191                  * Allow interruption of user wiring/unwiring?
 3192                  */
 3193         }
 3194         vm_map_lock(map);
 3195         if (last_timestamp + 1 == map->timestamp)
 3196                 return (in_entry);
 3197 
 3198         /*
 3199          * Look again for the entry because the map was modified while it was
 3200          * unlocked.  Specifically, the entry may have been clipped, merged, or
 3201          * deleted.
 3202          */
 3203         if (!vm_map_lookup_entry(map, start, &entry)) {
 3204                 if (!holes_ok) {
 3205                         *io_end = start;
 3206                         return (NULL);
 3207                 }
 3208                 entry = vm_map_entry_succ(entry);
 3209         }
 3210         return (entry);
 3211 }
 3212 
 3213 /*
 3214  *      vm_map_unwire:
 3215  *
 3216  *      Implements both kernel and user unwiring.
 3217  */
 3218 int
 3219 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 3220     int flags)
 3221 {
 3222         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
 3223         int rv;
 3224         bool holes_ok, need_wakeup, user_unwire;
 3225 
 3226         if (start == end)
 3227                 return (KERN_SUCCESS);
 3228         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
 3229         user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
 3230         vm_map_lock(map);
 3231         VM_MAP_RANGE_CHECK(map, start, end);
 3232         if (!vm_map_lookup_entry(map, start, &first_entry)) {
 3233                 if (holes_ok)
 3234                         first_entry = vm_map_entry_succ(first_entry);
 3235                 else {
 3236                         vm_map_unlock(map);
 3237                         return (KERN_INVALID_ADDRESS);
 3238                 }
 3239         }
 3240         rv = KERN_SUCCESS;
 3241         for (entry = first_entry; entry->start < end; entry = next_entry) {
 3242                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
 3243                         /*
 3244                          * We have not yet clipped the entry.
 3245                          */
 3246                         next_entry = vm_map_entry_in_transition(map, start,
 3247                             &end, holes_ok, entry);
 3248                         if (next_entry == NULL) {
 3249                                 if (entry == first_entry) {
 3250                                         vm_map_unlock(map);
 3251                                         return (KERN_INVALID_ADDRESS);
 3252                                 }
 3253                                 rv = KERN_INVALID_ADDRESS;
 3254                                 break;
 3255                         }
 3256                         first_entry = (entry == first_entry) ?
 3257                             next_entry : NULL;
 3258                         continue;
 3259                 }
 3260                 rv = vm_map_clip_start(map, entry, start);
 3261                 if (rv != KERN_SUCCESS)
 3262                         break;
 3263                 rv = vm_map_clip_end(map, entry, end);
 3264                 if (rv != KERN_SUCCESS)
 3265                         break;
 3266 
 3267                 /*
 3268                  * Mark the entry in case the map lock is released.  (See
 3269                  * above.)
 3270                  */
 3271                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
 3272                     entry->wiring_thread == NULL,
 3273                     ("owned map entry %p", entry));
 3274                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
 3275                 entry->wiring_thread = curthread;
 3276                 next_entry = vm_map_entry_succ(entry);
 3277                 /*
 3278                  * Check the map for holes in the specified region.
 3279                  * If holes_ok, skip this check.
 3280                  */
 3281                 if (!holes_ok &&
 3282                     entry->end < end && next_entry->start > entry->end) {
 3283                         end = entry->end;
 3284                         rv = KERN_INVALID_ADDRESS;
 3285                         break;
 3286                 }
 3287                 /*
 3288                  * If system unwiring, require that the entry is system wired.
 3289                  */
 3290                 if (!user_unwire &&
 3291                     vm_map_entry_system_wired_count(entry) == 0) {
 3292                         end = entry->end;
 3293                         rv = KERN_INVALID_ARGUMENT;
 3294                         break;
 3295                 }
 3296         }
 3297         need_wakeup = false;
 3298         if (first_entry == NULL &&
 3299             !vm_map_lookup_entry(map, start, &first_entry)) {
 3300                 KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
 3301                 prev_entry = first_entry;
 3302                 entry = vm_map_entry_succ(first_entry);
 3303         } else {
 3304                 prev_entry = vm_map_entry_pred(first_entry);
 3305                 entry = first_entry;
 3306         }
 3307         for (; entry->start < end;
 3308             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
 3309                 /*
 3310                  * If holes_ok was specified, an empty
 3311                  * space in the unwired region could have been mapped
 3312                  * while the map lock was dropped for draining
 3313                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
 3314                  * could be simultaneously wiring this new mapping
 3315                  * entry.  Detect these cases and skip any entries
 3316                  * marked as in transition by us.
 3317                  */
 3318                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
 3319                     entry->wiring_thread != curthread) {
 3320                         KASSERT(holes_ok,
 3321                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
 3322                         continue;
 3323                 }
 3324 
 3325                 if (rv == KERN_SUCCESS && (!user_unwire ||
 3326                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
 3327                         if (entry->wired_count == 1)
 3328                                 vm_map_entry_unwire(map, entry);
 3329                         else
 3330                                 entry->wired_count--;
 3331                         if (user_unwire)
 3332                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
 3333                 }
 3334                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
 3335                     ("vm_map_unwire: in-transition flag missing %p", entry));
 3336                 KASSERT(entry->wiring_thread == curthread,
 3337                     ("vm_map_unwire: alien wire %p", entry));
 3338                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
 3339                 entry->wiring_thread = NULL;
 3340                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
 3341                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
 3342                         need_wakeup = true;
 3343                 }
 3344                 vm_map_try_merge_entries(map, prev_entry, entry);
 3345         }
 3346         vm_map_try_merge_entries(map, prev_entry, entry);
 3347         vm_map_unlock(map);
 3348         if (need_wakeup)
 3349                 vm_map_wakeup(map);
 3350         return (rv);
 3351 }
 3352 
 3353 static void
 3354 vm_map_wire_user_count_sub(u_long npages)
 3355 {
 3356 
 3357         atomic_subtract_long(&vm_user_wire_count, npages);
 3358 }
 3359 
 3360 static bool
 3361 vm_map_wire_user_count_add(u_long npages)
 3362 {
 3363         u_long wired;
 3364 
 3365         wired = vm_user_wire_count;
 3366         do {
 3367                 if (npages + wired > vm_page_max_user_wired)
 3368                         return (false);
 3369         } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
 3370             npages + wired));
 3371 
 3372         return (true);
 3373 }
 3374 
 3375 /*
 3376  *      vm_map_wire_entry_failure:
 3377  *
 3378  *      Handle a wiring failure on the given entry.
 3379  *
 3380  *      The map should be locked.
 3381  */
 3382 static void
 3383 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
 3384     vm_offset_t failed_addr)
 3385 {
 3386 
 3387         VM_MAP_ASSERT_LOCKED(map);
 3388         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
 3389             entry->wired_count == 1,
 3390             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
 3391         KASSERT(failed_addr < entry->end,
 3392             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
 3393 
 3394         /*
 3395          * If any pages at the start of this entry were successfully wired,
 3396          * then unwire them.
 3397          */
 3398         if (failed_addr > entry->start) {
 3399                 pmap_unwire(map->pmap, entry->start, failed_addr);
 3400                 vm_object_unwire(entry->object.vm_object, entry->offset,
 3401                     failed_addr - entry->start, PQ_ACTIVE);
 3402         }
 3403 
 3404         /*
 3405          * Assign an out-of-range value to represent the failure to wire this
 3406          * entry.
 3407          */
 3408         entry->wired_count = -1;
 3409 }
 3410 
 3411 int
 3412 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
 3413 {
 3414         int rv;
 3415 
 3416         vm_map_lock(map);
 3417         rv = vm_map_wire_locked(map, start, end, flags);
 3418         vm_map_unlock(map);
 3419         return (rv);
 3420 }
 3421 
 3422 /*
 3423  *      vm_map_wire_locked:
 3424  *
 3425  *      Implements both kernel and user wiring.  Returns with the map locked,
 3426  *      the map lock may be dropped.
 3427  */
 3428 int
 3429 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
 3430 {
 3431         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
 3432         vm_offset_t faddr, saved_end, saved_start;
 3433         u_long incr, npages;
 3434         u_int bidx, last_timestamp;
 3435         int rv;
 3436         bool holes_ok, need_wakeup, user_wire;
 3437         vm_prot_t prot;
 3438 
 3439         VM_MAP_ASSERT_LOCKED(map);
 3440 
 3441         if (start == end)
 3442                 return (KERN_SUCCESS);
 3443         prot = 0;
 3444         if (flags & VM_MAP_WIRE_WRITE)
 3445                 prot |= VM_PROT_WRITE;
 3446         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
 3447         user_wire = (flags & VM_MAP_WIRE_USER) != 0;
 3448         VM_MAP_RANGE_CHECK(map, start, end);
 3449         if (!vm_map_lookup_entry(map, start, &first_entry)) {
 3450                 if (holes_ok)
 3451                         first_entry = vm_map_entry_succ(first_entry);
 3452                 else
 3453                         return (KERN_INVALID_ADDRESS);
 3454         }
 3455         for (entry = first_entry; entry->start < end; entry = next_entry) {
 3456                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
 3457                         /*
 3458                          * We have not yet clipped the entry.
 3459                          */
 3460                         next_entry = vm_map_entry_in_transition(map, start,
 3461                             &end, holes_ok, entry);
 3462                         if (next_entry == NULL) {
 3463                                 if (entry == first_entry)
 3464                                         return (KERN_INVALID_ADDRESS);
 3465                                 rv = KERN_INVALID_ADDRESS;
 3466                                 goto done;
 3467                         }
 3468                         first_entry = (entry == first_entry) ?
 3469                             next_entry : NULL;
 3470                         continue;
 3471                 }
 3472                 rv = vm_map_clip_start(map, entry, start);
 3473                 if (rv != KERN_SUCCESS)
 3474                         goto done;
 3475                 rv = vm_map_clip_end(map, entry, end);
 3476                 if (rv != KERN_SUCCESS)
 3477                         goto done;
 3478 
 3479                 /*
 3480                  * Mark the entry in case the map lock is released.  (See
 3481                  * above.)
 3482                  */
 3483                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
 3484                     entry->wiring_thread == NULL,
 3485                     ("owned map entry %p", entry));
 3486                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
 3487                 entry->wiring_thread = curthread;
 3488                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
 3489                     || (entry->protection & prot) != prot) {
 3490                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
 3491                         if (!holes_ok) {
 3492                                 end = entry->end;
 3493                                 rv = KERN_INVALID_ADDRESS;
 3494                                 goto done;
 3495                         }
 3496                 } else if (entry->wired_count == 0) {
 3497                         entry->wired_count++;
 3498 
 3499                         npages = atop(entry->end - entry->start);
 3500                         if (user_wire && !vm_map_wire_user_count_add(npages)) {
 3501                                 vm_map_wire_entry_failure(map, entry,
 3502                                     entry->start);
 3503                                 end = entry->end;
 3504                                 rv = KERN_RESOURCE_SHORTAGE;
 3505                                 goto done;
 3506                         }
 3507 
 3508                         /*
 3509                          * Release the map lock, relying on the in-transition
 3510                          * mark.  Mark the map busy for fork.
 3511                          */
 3512                         saved_start = entry->start;
 3513                         saved_end = entry->end;
 3514                         last_timestamp = map->timestamp;
 3515                         bidx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
 3516                             >> MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
 3517                         incr =  pagesizes[bidx];
 3518                         vm_map_busy(map);
 3519                         vm_map_unlock(map);
 3520 
 3521                         for (faddr = saved_start; faddr < saved_end;
 3522                             faddr += incr) {
 3523                                 /*
 3524                                  * Simulate a fault to get the page and enter
 3525                                  * it into the physical map.
 3526                                  */
 3527                                 rv = vm_fault(map, faddr, VM_PROT_NONE,
 3528                                     VM_FAULT_WIRE, NULL);
 3529                                 if (rv != KERN_SUCCESS)
 3530                                         break;
 3531                         }
 3532                         vm_map_lock(map);
 3533                         vm_map_unbusy(map);
 3534                         if (last_timestamp + 1 != map->timestamp) {
 3535                                 /*
 3536                                  * Look again for the entry because the map was
 3537                                  * modified while it was unlocked.  The entry
 3538                                  * may have been clipped, but NOT merged or
 3539                                  * deleted.
 3540                                  */
 3541                                 if (!vm_map_lookup_entry(map, saved_start,
 3542                                     &next_entry))
 3543                                         KASSERT(false,
 3544                                             ("vm_map_wire: lookup failed"));
 3545                                 first_entry = (entry == first_entry) ?
 3546                                     next_entry : NULL;
 3547                                 for (entry = next_entry; entry->end < saved_end;
 3548                                     entry = vm_map_entry_succ(entry)) {
 3549                                         /*
 3550                                          * In case of failure, handle entries
 3551                                          * that were not fully wired here;
 3552                                          * fully wired entries are handled
 3553                                          * later.
 3554                                          */
 3555                                         if (rv != KERN_SUCCESS &&
 3556                                             faddr < entry->end)
 3557                                                 vm_map_wire_entry_failure(map,
 3558                                                     entry, faddr);
 3559                                 }
 3560                         }
 3561                         if (rv != KERN_SUCCESS) {
 3562                                 vm_map_wire_entry_failure(map, entry, faddr);
 3563                                 if (user_wire)
 3564                                         vm_map_wire_user_count_sub(npages);
 3565                                 end = entry->end;
 3566                                 goto done;
 3567                         }
 3568                 } else if (!user_wire ||
 3569                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
 3570                         entry->wired_count++;
 3571                 }
 3572                 /*
 3573                  * Check the map for holes in the specified region.
 3574                  * If holes_ok was specified, skip this check.
 3575                  */
 3576                 next_entry = vm_map_entry_succ(entry);
 3577                 if (!holes_ok &&
 3578                     entry->end < end && next_entry->start > entry->end) {
 3579                         end = entry->end;
 3580                         rv = KERN_INVALID_ADDRESS;
 3581                         goto done;
 3582                 }
 3583         }
 3584         rv = KERN_SUCCESS;
 3585 done:
 3586         need_wakeup = false;
 3587         if (first_entry == NULL &&
 3588             !vm_map_lookup_entry(map, start, &first_entry)) {
 3589                 KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
 3590                 prev_entry = first_entry;
 3591                 entry = vm_map_entry_succ(first_entry);
 3592         } else {
 3593                 prev_entry = vm_map_entry_pred(first_entry);
 3594                 entry = first_entry;
 3595         }
 3596         for (; entry->start < end;
 3597             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
 3598                 /*
 3599                  * If holes_ok was specified, an empty
 3600                  * space in the unwired region could have been mapped
 3601                  * while the map lock was dropped for faulting in the
 3602                  * pages or draining MAP_ENTRY_IN_TRANSITION.
 3603                  * Moreover, another thread could be simultaneously
 3604                  * wiring this new mapping entry.  Detect these cases
 3605                  * and skip any entries marked as in transition not by us.
 3606                  *
 3607                  * Another way to get an entry not marked with
 3608                  * MAP_ENTRY_IN_TRANSITION is after failed clipping,
 3609                  * which set rv to KERN_INVALID_ARGUMENT.
 3610                  */
 3611                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
 3612                     entry->wiring_thread != curthread) {
 3613                         KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
 3614                             ("vm_map_wire: !HOLESOK and new/changed entry"));
 3615                         continue;
 3616                 }
 3617 
 3618                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
 3619                         /* do nothing */
 3620                 } else if (rv == KERN_SUCCESS) {
 3621                         if (user_wire)
 3622                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
 3623                 } else if (entry->wired_count == -1) {
 3624                         /*
 3625                          * Wiring failed on this entry.  Thus, unwiring is
 3626                          * unnecessary.
 3627                          */
 3628                         entry->wired_count = 0;
 3629                 } else if (!user_wire ||
 3630                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
 3631                         /*
 3632                          * Undo the wiring.  Wiring succeeded on this entry
 3633                          * but failed on a later entry.  
 3634                          */
 3635                         if (entry->wired_count == 1) {
 3636                                 vm_map_entry_unwire(map, entry);
 3637                                 if (user_wire)
 3638                                         vm_map_wire_user_count_sub(
 3639                                             atop(entry->end - entry->start));
 3640                         } else
 3641                                 entry->wired_count--;
 3642                 }
 3643                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
 3644                     ("vm_map_wire: in-transition flag missing %p", entry));
 3645                 KASSERT(entry->wiring_thread == curthread,
 3646                     ("vm_map_wire: alien wire %p", entry));
 3647                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
 3648                     MAP_ENTRY_WIRE_SKIPPED);
 3649                 entry->wiring_thread = NULL;
 3650                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
 3651                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
 3652                         need_wakeup = true;
 3653                 }
 3654                 vm_map_try_merge_entries(map, prev_entry, entry);
 3655         }
 3656         vm_map_try_merge_entries(map, prev_entry, entry);
 3657         if (need_wakeup)
 3658                 vm_map_wakeup(map);
 3659         return (rv);
 3660 }
 3661 
 3662 /*
 3663  * vm_map_sync
 3664  *
 3665  * Push any dirty cached pages in the address range to their pager.
 3666  * If syncio is TRUE, dirty pages are written synchronously.
 3667  * If invalidate is TRUE, any cached pages are freed as well.
 3668  *
 3669  * If the size of the region from start to end is zero, we are
 3670  * supposed to flush all modified pages within the region containing
 3671  * start.  Unfortunately, a region can be split or coalesced with
 3672  * neighboring regions, making it difficult to determine what the
 3673  * original region was.  Therefore, we approximate this requirement by
 3674  * flushing the current region containing start.
 3675  *
 3676  * Returns an error if any part of the specified range is not mapped.
 3677  */
 3678 int
 3679 vm_map_sync(
 3680         vm_map_t map,
 3681         vm_offset_t start,
 3682         vm_offset_t end,
 3683         boolean_t syncio,
 3684         boolean_t invalidate)
 3685 {
 3686         vm_map_entry_t entry, first_entry, next_entry;
 3687         vm_size_t size;
 3688         vm_object_t object;
 3689         vm_ooffset_t offset;
 3690         unsigned int last_timestamp;
 3691         int bdry_idx;
 3692         boolean_t failed;
 3693 
 3694         vm_map_lock_read(map);
 3695         VM_MAP_RANGE_CHECK(map, start, end);
 3696         if (!vm_map_lookup_entry(map, start, &first_entry)) {
 3697                 vm_map_unlock_read(map);
 3698                 return (KERN_INVALID_ADDRESS);
 3699         } else if (start == end) {
 3700                 start = first_entry->start;
 3701                 end = first_entry->end;
 3702         }
 3703 
 3704         /*
 3705          * Make a first pass to check for user-wired memory, holes,
 3706          * and partial invalidation of largepage mappings.
 3707          */
 3708         for (entry = first_entry; entry->start < end; entry = next_entry) {
 3709                 if (invalidate) {
 3710                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
 3711                                 vm_map_unlock_read(map);
 3712                                 return (KERN_INVALID_ARGUMENT);
 3713                         }
 3714                         bdry_idx = (entry->eflags &
 3715                             MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
 3716                             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
 3717                         if (bdry_idx != 0 &&
 3718                             ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
 3719                             (end & (pagesizes[bdry_idx] - 1)) != 0)) {
 3720                                 vm_map_unlock_read(map);
 3721                                 return (KERN_INVALID_ARGUMENT);
 3722                         }
 3723                 }
 3724                 next_entry = vm_map_entry_succ(entry);
 3725                 if (end > entry->end &&
 3726                     entry->end != next_entry->start) {
 3727                         vm_map_unlock_read(map);
 3728                         return (KERN_INVALID_ADDRESS);
 3729                 }
 3730         }
 3731 
 3732         if (invalidate)
 3733                 pmap_remove(map->pmap, start, end);
 3734         failed = FALSE;
 3735 
 3736         /*
 3737          * Make a second pass, cleaning/uncaching pages from the indicated
 3738          * objects as we go.
 3739          */
 3740         for (entry = first_entry; entry->start < end;) {
 3741                 offset = entry->offset + (start - entry->start);
 3742                 size = (end <= entry->end ? end : entry->end) - start;
 3743                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
 3744                         vm_map_t smap;
 3745                         vm_map_entry_t tentry;
 3746                         vm_size_t tsize;
 3747 
 3748                         smap = entry->object.sub_map;
 3749                         vm_map_lock_read(smap);
 3750                         (void) vm_map_lookup_entry(smap, offset, &tentry);
 3751                         tsize = tentry->end - offset;
 3752                         if (tsize < size)
 3753                                 size = tsize;
 3754                         object = tentry->object.vm_object;
 3755                         offset = tentry->offset + (offset - tentry->start);
 3756                         vm_map_unlock_read(smap);
 3757                 } else {
 3758                         object = entry->object.vm_object;
 3759                 }
 3760                 vm_object_reference(object);
 3761                 last_timestamp = map->timestamp;
 3762                 vm_map_unlock_read(map);
 3763                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
 3764                         failed = TRUE;
 3765                 start += size;
 3766                 vm_object_deallocate(object);
 3767                 vm_map_lock_read(map);
 3768                 if (last_timestamp == map->timestamp ||
 3769                     !vm_map_lookup_entry(map, start, &entry))
 3770                         entry = vm_map_entry_succ(entry);
 3771         }
 3772 
 3773         vm_map_unlock_read(map);
 3774         return (failed ? KERN_FAILURE : KERN_SUCCESS);
 3775 }
 3776 
 3777 /*
 3778  *      vm_map_entry_unwire:    [ internal use only ]
 3779  *
 3780  *      Make the region specified by this entry pageable.
 3781  *
 3782  *      The map in question should be locked.
 3783  *      [This is the reason for this routine's existence.]
 3784  */
 3785 static void
 3786 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
 3787 {
 3788         vm_size_t size;
 3789 
 3790         VM_MAP_ASSERT_LOCKED(map);
 3791         KASSERT(entry->wired_count > 0,
 3792             ("vm_map_entry_unwire: entry %p isn't wired", entry));
 3793 
 3794         size = entry->end - entry->start;
 3795         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
 3796                 vm_map_wire_user_count_sub(atop(size));
 3797         pmap_unwire(map->pmap, entry->start, entry->end);
 3798         vm_object_unwire(entry->object.vm_object, entry->offset, size,
 3799             PQ_ACTIVE);
 3800         entry->wired_count = 0;
 3801 }
 3802 
 3803 static void
 3804 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
 3805 {
 3806 
 3807         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
 3808                 vm_object_deallocate(entry->object.vm_object);
 3809         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
 3810 }
 3811 
 3812 /*
 3813  *      vm_map_entry_delete:    [ internal use only ]
 3814  *
 3815  *      Deallocate the given entry from the target map.
 3816  */
 3817 static void
 3818 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
 3819 {
 3820         vm_object_t object;
 3821         vm_pindex_t offidxstart, offidxend, size1;
 3822         vm_size_t size;
 3823 
 3824         vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
 3825         object = entry->object.vm_object;
 3826 
 3827         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
 3828                 MPASS(entry->cred == NULL);
 3829                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
 3830                 MPASS(object == NULL);
 3831                 vm_map_entry_deallocate(entry, map->system_map);
 3832                 return;
 3833         }
 3834 
 3835         size = entry->end - entry->start;
 3836         map->size -= size;
 3837 
 3838         if (entry->cred != NULL) {
 3839                 swap_release_by_cred(size, entry->cred);
 3840                 crfree(entry->cred);
 3841         }
 3842 
 3843         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
 3844                 entry->object.vm_object = NULL;
 3845         } else if ((object->flags & OBJ_ANON) != 0 ||
 3846             object == kernel_object) {
 3847                 KASSERT(entry->cred == NULL || object->cred == NULL ||
 3848                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
 3849                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
 3850                 offidxstart = OFF_TO_IDX(entry->offset);
 3851                 offidxend = offidxstart + atop(size);
 3852                 VM_OBJECT_WLOCK(object);
 3853                 if (object->ref_count != 1 &&
 3854                     ((object->flags & OBJ_ONEMAPPING) != 0 ||
 3855                     object == kernel_object)) {
 3856                         vm_object_collapse(object);
 3857 
 3858                         /*
 3859                          * The option OBJPR_NOTMAPPED can be passed here
 3860                          * because vm_map_delete() already performed
 3861                          * pmap_remove() on the only mapping to this range
 3862                          * of pages. 
 3863                          */
 3864                         vm_object_page_remove(object, offidxstart, offidxend,
 3865                             OBJPR_NOTMAPPED);
 3866                         if (offidxend >= object->size &&
 3867                             offidxstart < object->size) {
 3868                                 size1 = object->size;
 3869                                 object->size = offidxstart;
 3870                                 if (object->cred != NULL) {
 3871                                         size1 -= object->size;
 3872                                         KASSERT(object->charge >= ptoa(size1),
 3873                                             ("object %p charge < 0", object));
 3874                                         swap_release_by_cred(ptoa(size1),
 3875                                             object->cred);
 3876                                         object->charge -= ptoa(size1);
 3877                                 }
 3878                         }
 3879                 }
 3880                 VM_OBJECT_WUNLOCK(object);
 3881         }
 3882         if (map->system_map)
 3883                 vm_map_entry_deallocate(entry, TRUE);
 3884         else {
 3885                 entry->defer_next = curthread->td_map_def_user;
 3886                 curthread->td_map_def_user = entry;
 3887         }
 3888 }
 3889 
 3890 /*
 3891  *      vm_map_delete:  [ internal use only ]
 3892  *
 3893  *      Deallocates the given address range from the target
 3894  *      map.
 3895  */
 3896 int
 3897 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
 3898 {
 3899         vm_map_entry_t entry, next_entry, scratch_entry;
 3900         int rv;
 3901 
 3902         VM_MAP_ASSERT_LOCKED(map);
 3903 
 3904         if (start == end)
 3905                 return (KERN_SUCCESS);
 3906 
 3907         /*
 3908          * Find the start of the region, and clip it.
 3909          * Step through all entries in this region.
 3910          */
 3911         rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
 3912         if (rv != KERN_SUCCESS)
 3913                 return (rv);
 3914         for (; entry->start < end; entry = next_entry) {
 3915                 /*
 3916                  * Wait for wiring or unwiring of an entry to complete.
 3917                  * Also wait for any system wirings to disappear on
 3918                  * user maps.
 3919                  */
 3920                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
 3921                     (vm_map_pmap(map) != kernel_pmap &&
 3922                     vm_map_entry_system_wired_count(entry) != 0)) {
 3923                         unsigned int last_timestamp;
 3924                         vm_offset_t saved_start;
 3925 
 3926                         saved_start = entry->start;
 3927                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 3928                         last_timestamp = map->timestamp;
 3929                         (void) vm_map_unlock_and_wait(map, 0);
 3930                         vm_map_lock(map);
 3931                         if (last_timestamp + 1 != map->timestamp) {
 3932                                 /*
 3933                                  * Look again for the entry because the map was
 3934                                  * modified while it was unlocked.
 3935                                  * Specifically, the entry may have been
 3936                                  * clipped, merged, or deleted.
 3937                                  */
 3938                                 rv = vm_map_lookup_clip_start(map, saved_start,
 3939                                     &next_entry, &scratch_entry);
 3940                                 if (rv != KERN_SUCCESS)
 3941                                         break;
 3942                         } else
 3943                                 next_entry = entry;
 3944                         continue;
 3945                 }
 3946 
 3947                 /* XXXKIB or delete to the upper superpage boundary ? */
 3948                 rv = vm_map_clip_end(map, entry, end);
 3949                 if (rv != KERN_SUCCESS)
 3950                         break;
 3951                 next_entry = vm_map_entry_succ(entry);
 3952 
 3953                 /*
 3954                  * Unwire before removing addresses from the pmap; otherwise,
 3955                  * unwiring will put the entries back in the pmap.
 3956                  */
 3957                 if (entry->wired_count != 0)
 3958                         vm_map_entry_unwire(map, entry);
 3959 
 3960                 /*
 3961                  * Remove mappings for the pages, but only if the
 3962                  * mappings could exist.  For instance, it does not
 3963                  * make sense to call pmap_remove() for guard entries.
 3964                  */
 3965                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
 3966                     entry->object.vm_object != NULL)
 3967                         pmap_remove(map->pmap, entry->start, entry->end);
 3968 
 3969                 if (entry->end == map->anon_loc)
 3970                         map->anon_loc = entry->start;
 3971 
 3972                 /*
 3973                  * Delete the entry only after removing all pmap
 3974                  * entries pointing to its pages.  (Otherwise, its
 3975                  * page frames may be reallocated, and any modify bits
 3976                  * will be set in the wrong object!)
 3977                  */
 3978                 vm_map_entry_delete(map, entry);
 3979         }
 3980         return (rv);
 3981 }
 3982 
 3983 /*
 3984  *      vm_map_remove:
 3985  *
 3986  *      Remove the given address range from the target map.
 3987  *      This is the exported form of vm_map_delete.
 3988  */
 3989 int
 3990 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
 3991 {
 3992         int result;
 3993 
 3994         vm_map_lock(map);
 3995         VM_MAP_RANGE_CHECK(map, start, end);
 3996         result = vm_map_delete(map, start, end);
 3997         vm_map_unlock(map);
 3998         return (result);
 3999 }
 4000 
 4001 /*
 4002  *      vm_map_check_protection:
 4003  *
 4004  *      Assert that the target map allows the specified privilege on the
 4005  *      entire address region given.  The entire region must be allocated.
 4006  *
 4007  *      WARNING!  This code does not and should not check whether the
 4008  *      contents of the region is accessible.  For example a smaller file
 4009  *      might be mapped into a larger address space.
 4010  *
 4011  *      NOTE!  This code is also called by munmap().
 4012  *
 4013  *      The map must be locked.  A read lock is sufficient.
 4014  */
 4015 boolean_t
 4016 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
 4017                         vm_prot_t protection)
 4018 {
 4019         vm_map_entry_t entry;
 4020         vm_map_entry_t tmp_entry;
 4021 
 4022         if (!vm_map_lookup_entry(map, start, &tmp_entry))
 4023                 return (FALSE);
 4024         entry = tmp_entry;
 4025 
 4026         while (start < end) {
 4027                 /*
 4028                  * No holes allowed!
 4029                  */
 4030                 if (start < entry->start)
 4031                         return (FALSE);
 4032                 /*
 4033                  * Check protection associated with entry.
 4034                  */
 4035                 if ((entry->protection & protection) != protection)
 4036                         return (FALSE);
 4037                 /* go to next entry */
 4038                 start = entry->end;
 4039                 entry = vm_map_entry_succ(entry);
 4040         }
 4041         return (TRUE);
 4042 }
 4043 
 4044 /*
 4045  *
 4046  *      vm_map_copy_swap_object:
 4047  *
 4048  *      Copies a swap-backed object from an existing map entry to a
 4049  *      new one.  Carries forward the swap charge.  May change the
 4050  *      src object on return.
 4051  */
 4052 static void
 4053 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
 4054     vm_offset_t size, vm_ooffset_t *fork_charge)
 4055 {
 4056         vm_object_t src_object;
 4057         struct ucred *cred;
 4058         int charged;
 4059 
 4060         src_object = src_entry->object.vm_object;
 4061         charged = ENTRY_CHARGED(src_entry);
 4062         if ((src_object->flags & OBJ_ANON) != 0) {
 4063                 VM_OBJECT_WLOCK(src_object);
 4064                 vm_object_collapse(src_object);
 4065                 if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
 4066                         vm_object_split(src_entry);
 4067                         src_object = src_entry->object.vm_object;
 4068                 }
 4069                 vm_object_reference_locked(src_object);
 4070                 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
 4071                 VM_OBJECT_WUNLOCK(src_object);
 4072         } else
 4073                 vm_object_reference(src_object);
 4074         if (src_entry->cred != NULL &&
 4075             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
 4076                 KASSERT(src_object->cred == NULL,
 4077                     ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
 4078                      src_object));
 4079                 src_object->cred = src_entry->cred;
 4080                 src_object->charge = size;
 4081         }
 4082         dst_entry->object.vm_object = src_object;
 4083         if (charged) {
 4084                 cred = curthread->td_ucred;
 4085                 crhold(cred);
 4086                 dst_entry->cred = cred;
 4087                 *fork_charge += size;
 4088                 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
 4089                         crhold(cred);
 4090                         src_entry->cred = cred;
 4091                         *fork_charge += size;
 4092                 }
 4093         }
 4094 }
 4095 
 4096 /*
 4097  *      vm_map_copy_entry:
 4098  *
 4099  *      Copies the contents of the source entry to the destination
 4100  *      entry.  The entries *must* be aligned properly.
 4101  */
 4102 static void
 4103 vm_map_copy_entry(
 4104         vm_map_t src_map,
 4105         vm_map_t dst_map,
 4106         vm_map_entry_t src_entry,
 4107         vm_map_entry_t dst_entry,
 4108         vm_ooffset_t *fork_charge)
 4109 {
 4110         vm_object_t src_object;
 4111         vm_map_entry_t fake_entry;
 4112         vm_offset_t size;
 4113 
 4114         VM_MAP_ASSERT_LOCKED(dst_map);
 4115 
 4116         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
 4117                 return;
 4118 
 4119         if (src_entry->wired_count == 0 ||
 4120             (src_entry->protection & VM_PROT_WRITE) == 0) {
 4121                 /*
 4122                  * If the source entry is marked needs_copy, it is already
 4123                  * write-protected.
 4124                  */
 4125                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
 4126                     (src_entry->protection & VM_PROT_WRITE) != 0) {
 4127                         pmap_protect(src_map->pmap,
 4128                             src_entry->start,
 4129                             src_entry->end,
 4130                             src_entry->protection & ~VM_PROT_WRITE);
 4131                 }
 4132 
 4133                 /*
 4134                  * Make a copy of the object.
 4135                  */
 4136                 size = src_entry->end - src_entry->start;
 4137                 if ((src_object = src_entry->object.vm_object) != NULL) {
 4138                         if ((src_object->flags & OBJ_SWAP) != 0) {
 4139                                 vm_map_copy_swap_object(src_entry, dst_entry,
 4140                                     size, fork_charge);
 4141                                 /* May have split/collapsed, reload obj. */
 4142                                 src_object = src_entry->object.vm_object;
 4143                         } else {
 4144                                 vm_object_reference(src_object);
 4145                                 dst_entry->object.vm_object = src_object;
 4146                         }
 4147                         src_entry->eflags |= MAP_ENTRY_COW |
 4148                             MAP_ENTRY_NEEDS_COPY;
 4149                         dst_entry->eflags |= MAP_ENTRY_COW |
 4150                             MAP_ENTRY_NEEDS_COPY;
 4151                         dst_entry->offset = src_entry->offset;
 4152                         if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
 4153                                 /*
 4154                                  * MAP_ENTRY_WRITECNT cannot
 4155                                  * indicate write reference from
 4156                                  * src_entry, since the entry is
 4157                                  * marked as needs copy.  Allocate a
 4158                                  * fake entry that is used to
 4159                                  * decrement object->un_pager writecount
 4160                                  * at the appropriate time.  Attach
 4161                                  * fake_entry to the deferred list.
 4162                                  */
 4163                                 fake_entry = vm_map_entry_create(dst_map);
 4164                                 fake_entry->eflags = MAP_ENTRY_WRITECNT;
 4165                                 src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
 4166                                 vm_object_reference(src_object);
 4167                                 fake_entry->object.vm_object = src_object;
 4168                                 fake_entry->start = src_entry->start;
 4169                                 fake_entry->end = src_entry->end;
 4170                                 fake_entry->defer_next =
 4171                                     curthread->td_map_def_user;
 4172                                 curthread->td_map_def_user = fake_entry;
 4173                         }
 4174 
 4175                         pmap_copy(dst_map->pmap, src_map->pmap,
 4176                             dst_entry->start, dst_entry->end - dst_entry->start,
 4177                             src_entry->start);
 4178                 } else {
 4179                         dst_entry->object.vm_object = NULL;
 4180                         dst_entry->offset = 0;
 4181                         if (src_entry->cred != NULL) {
 4182                                 dst_entry->cred = curthread->td_ucred;
 4183                                 crhold(dst_entry->cred);
 4184                                 *fork_charge += size;
 4185                         }
 4186                 }
 4187         } else {
 4188                 /*
 4189                  * We don't want to make writeable wired pages copy-on-write.
 4190                  * Immediately copy these pages into the new map by simulating
 4191                  * page faults.  The new pages are pageable.
 4192                  */
 4193                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
 4194                     fork_charge);
 4195         }
 4196 }
 4197 
 4198 /*
 4199  * vmspace_map_entry_forked:
 4200  * Update the newly-forked vmspace each time a map entry is inherited
 4201  * or copied.  The values for vm_dsize and vm_tsize are approximate
 4202  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
 4203  */
 4204 static void
 4205 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
 4206     vm_map_entry_t entry)
 4207 {
 4208         vm_size_t entrysize;
 4209         vm_offset_t newend;
 4210 
 4211         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
 4212                 return;
 4213         entrysize = entry->end - entry->start;
 4214         vm2->vm_map.size += entrysize;
 4215         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
 4216                 vm2->vm_ssize += btoc(entrysize);
 4217         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
 4218             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
 4219                 newend = MIN(entry->end,
 4220                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
 4221                 vm2->vm_dsize += btoc(newend - entry->start);
 4222         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
 4223             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
 4224                 newend = MIN(entry->end,
 4225                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
 4226                 vm2->vm_tsize += btoc(newend - entry->start);
 4227         }
 4228 }
 4229 
 4230 /*
 4231  * vmspace_fork:
 4232  * Create a new process vmspace structure and vm_map
 4233  * based on those of an existing process.  The new map
 4234  * is based on the old map, according to the inheritance
 4235  * values on the regions in that map.
 4236  *
 4237  * XXX It might be worth coalescing the entries added to the new vmspace.
 4238  *
 4239  * The source map must not be locked.
 4240  */
 4241 struct vmspace *
 4242 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
 4243 {
 4244         struct vmspace *vm2;
 4245         vm_map_t new_map, old_map;
 4246         vm_map_entry_t new_entry, old_entry;
 4247         vm_object_t object;
 4248         int error, locked __diagused;
 4249         vm_inherit_t inh;
 4250 
 4251         old_map = &vm1->vm_map;
 4252         /* Copy immutable fields of vm1 to vm2. */
 4253         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
 4254             pmap_pinit);
 4255         if (vm2 == NULL)
 4256                 return (NULL);
 4257 
 4258         vm2->vm_taddr = vm1->vm_taddr;
 4259         vm2->vm_daddr = vm1->vm_daddr;
 4260         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
 4261         vm2->vm_stacktop = vm1->vm_stacktop;
 4262         vm2->vm_shp_base = vm1->vm_shp_base;
 4263         vm_map_lock(old_map);
 4264         if (old_map->busy)
 4265                 vm_map_wait_busy(old_map);
 4266         new_map = &vm2->vm_map;
 4267         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
 4268         KASSERT(locked, ("vmspace_fork: lock failed"));
 4269 
 4270         error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
 4271         if (error != 0) {
 4272                 sx_xunlock(&old_map->lock);
 4273                 sx_xunlock(&new_map->lock);
 4274                 vm_map_process_deferred();
 4275                 vmspace_free(vm2);
 4276                 return (NULL);
 4277         }
 4278 
 4279         new_map->anon_loc = old_map->anon_loc;
 4280         new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
 4281             MAP_ASLR_STACK | MAP_WXORX);
 4282 
 4283         VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
 4284                 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
 4285                         panic("vm_map_fork: encountered a submap");
 4286 
 4287                 inh = old_entry->inheritance;
 4288                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
 4289                     inh != VM_INHERIT_NONE)
 4290                         inh = VM_INHERIT_COPY;
 4291 
 4292                 switch (inh) {
 4293                 case VM_INHERIT_NONE:
 4294                         break;
 4295 
 4296                 case VM_INHERIT_SHARE:
 4297                         /*
 4298                          * Clone the entry, creating the shared object if
 4299                          * necessary.
 4300                          */
 4301                         object = old_entry->object.vm_object;
 4302                         if (object == NULL) {
 4303                                 vm_map_entry_back(old_entry);
 4304                                 object = old_entry->object.vm_object;
 4305                         }
 4306 
 4307                         /*
 4308                          * Add the reference before calling vm_object_shadow
 4309                          * to insure that a shadow object is created.
 4310                          */
 4311                         vm_object_reference(object);
 4312                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 4313                                 vm_object_shadow(&old_entry->object.vm_object,
 4314                                     &old_entry->offset,
 4315                                     old_entry->end - old_entry->start,
 4316                                     old_entry->cred,
 4317                                     /* Transfer the second reference too. */
 4318                                     true);
 4319                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
 4320                                 old_entry->cred = NULL;
 4321 
 4322                                 /*
 4323                                  * As in vm_map_merged_neighbor_dispose(),
 4324                                  * the vnode lock will not be acquired in
 4325                                  * this call to vm_object_deallocate().
 4326                                  */
 4327                                 vm_object_deallocate(object);
 4328                                 object = old_entry->object.vm_object;
 4329                         } else {
 4330                                 VM_OBJECT_WLOCK(object);
 4331                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
 4332                                 if (old_entry->cred != NULL) {
 4333                                         KASSERT(object->cred == NULL,
 4334                                             ("vmspace_fork both cred"));
 4335                                         object->cred = old_entry->cred;
 4336                                         object->charge = old_entry->end -
 4337                                             old_entry->start;
 4338                                         old_entry->cred = NULL;
 4339                                 }
 4340 
 4341                                 /*
 4342                                  * Assert the correct state of the vnode
 4343                                  * v_writecount while the object is locked, to
 4344                                  * not relock it later for the assertion
 4345                                  * correctness.
 4346                                  */
 4347                                 if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
 4348                                     object->type == OBJT_VNODE) {
 4349                                         KASSERT(((struct vnode *)object->
 4350                                             handle)->v_writecount > 0,
 4351                                             ("vmspace_fork: v_writecount %p",
 4352                                             object));
 4353                                         KASSERT(object->un_pager.vnp.
 4354                                             writemappings > 0,
 4355                                             ("vmspace_fork: vnp.writecount %p",
 4356                                             object));
 4357                                 }
 4358                                 VM_OBJECT_WUNLOCK(object);
 4359                         }
 4360 
 4361                         /*
 4362                          * Clone the entry, referencing the shared object.
 4363                          */
 4364                         new_entry = vm_map_entry_create(new_map);
 4365                         *new_entry = *old_entry;
 4366                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
 4367                             MAP_ENTRY_IN_TRANSITION);
 4368                         new_entry->wiring_thread = NULL;
 4369                         new_entry->wired_count = 0;
 4370                         if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
 4371                                 vm_pager_update_writecount(object,
 4372                                     new_entry->start, new_entry->end);
 4373                         }
 4374                         vm_map_entry_set_vnode_text(new_entry, true);
 4375 
 4376                         /*
 4377                          * Insert the entry into the new map -- we know we're
 4378                          * inserting at the end of the new map.
 4379                          */
 4380                         vm_map_entry_link(new_map, new_entry);
 4381                         vmspace_map_entry_forked(vm1, vm2, new_entry);
 4382 
 4383                         /*
 4384                          * Update the physical map
 4385                          */
 4386                         pmap_copy(new_map->pmap, old_map->pmap,
 4387                             new_entry->start,
 4388                             (old_entry->end - old_entry->start),
 4389                             old_entry->start);
 4390                         break;
 4391 
 4392                 case VM_INHERIT_COPY:
 4393                         /*
 4394                          * Clone the entry and link into the map.
 4395                          */
 4396                         new_entry = vm_map_entry_create(new_map);
 4397                         *new_entry = *old_entry;
 4398                         /*
 4399                          * Copied entry is COW over the old object.
 4400                          */
 4401                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
 4402                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
 4403                         new_entry->wiring_thread = NULL;
 4404                         new_entry->wired_count = 0;
 4405                         new_entry->object.vm_object = NULL;
 4406                         new_entry->cred = NULL;
 4407                         vm_map_entry_link(new_map, new_entry);
 4408                         vmspace_map_entry_forked(vm1, vm2, new_entry);
 4409                         vm_map_copy_entry(old_map, new_map, old_entry,
 4410                             new_entry, fork_charge);
 4411                         vm_map_entry_set_vnode_text(new_entry, true);
 4412                         break;
 4413 
 4414                 case VM_INHERIT_ZERO:
 4415                         /*
 4416                          * Create a new anonymous mapping entry modelled from
 4417                          * the old one.
 4418                          */
 4419                         new_entry = vm_map_entry_create(new_map);
 4420                         memset(new_entry, 0, sizeof(*new_entry));
 4421 
 4422                         new_entry->start = old_entry->start;
 4423                         new_entry->end = old_entry->end;
 4424                         new_entry->eflags = old_entry->eflags &
 4425                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
 4426                             MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
 4427                             MAP_ENTRY_SPLIT_BOUNDARY_MASK);
 4428                         new_entry->protection = old_entry->protection;
 4429                         new_entry->max_protection = old_entry->max_protection;
 4430                         new_entry->inheritance = VM_INHERIT_ZERO;
 4431 
 4432                         vm_map_entry_link(new_map, new_entry);
 4433                         vmspace_map_entry_forked(vm1, vm2, new_entry);
 4434 
 4435                         new_entry->cred = curthread->td_ucred;
 4436                         crhold(new_entry->cred);
 4437                         *fork_charge += (new_entry->end - new_entry->start);
 4438 
 4439                         break;
 4440                 }
 4441         }
 4442         /*
 4443          * Use inlined vm_map_unlock() to postpone handling the deferred
 4444          * map entries, which cannot be done until both old_map and
 4445          * new_map locks are released.
 4446          */
 4447         sx_xunlock(&old_map->lock);
 4448         sx_xunlock(&new_map->lock);
 4449         vm_map_process_deferred();
 4450 
 4451         return (vm2);
 4452 }
 4453 
 4454 /*
 4455  * Create a process's stack for exec_new_vmspace().  This function is never
 4456  * asked to wire the newly created stack.
 4457  */
 4458 int
 4459 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
 4460     vm_prot_t prot, vm_prot_t max, int cow)
 4461 {
 4462         vm_size_t growsize, init_ssize;
 4463         rlim_t vmemlim;
 4464         int rv;
 4465 
 4466         MPASS((map->flags & MAP_WIREFUTURE) == 0);
 4467         growsize = sgrowsiz;
 4468         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
 4469         vm_map_lock(map);
 4470         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
 4471         /* If we would blow our VMEM resource limit, no go */
 4472         if (map->size + init_ssize > vmemlim) {
 4473                 rv = KERN_NO_SPACE;
 4474                 goto out;
 4475         }
 4476         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
 4477             max, cow);
 4478 out:
 4479         vm_map_unlock(map);
 4480         return (rv);
 4481 }
 4482 
 4483 static int stack_guard_page = 1;
 4484 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
 4485     &stack_guard_page, 0,
 4486     "Specifies the number of guard pages for a stack that grows");
 4487 
 4488 static int
 4489 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
 4490     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
 4491 {
 4492         vm_map_entry_t new_entry, prev_entry;
 4493         vm_offset_t bot, gap_bot, gap_top, top;
 4494         vm_size_t init_ssize, sgp;
 4495         int orient, rv;
 4496 
 4497         /*
 4498          * The stack orientation is piggybacked with the cow argument.
 4499          * Extract it into orient and mask the cow argument so that we
 4500          * don't pass it around further.
 4501          */
 4502         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
 4503         KASSERT(orient != 0, ("No stack grow direction"));
 4504         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
 4505             ("bi-dir stack"));
 4506 
 4507         if (max_ssize == 0 ||
 4508             !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
 4509                 return (KERN_INVALID_ADDRESS);
 4510         sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
 4511             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
 4512             (vm_size_t)stack_guard_page * PAGE_SIZE;
 4513         if (sgp >= max_ssize)
 4514                 return (KERN_INVALID_ARGUMENT);
 4515 
 4516         init_ssize = growsize;
 4517         if (max_ssize < init_ssize + sgp)
 4518                 init_ssize = max_ssize - sgp;
 4519 
 4520         /* If addr is already mapped, no go */
 4521         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
 4522                 return (KERN_NO_SPACE);
 4523 
 4524         /*
 4525          * If we can't accommodate max_ssize in the current mapping, no go.
 4526          */
 4527         if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
 4528                 return (KERN_NO_SPACE);
 4529 
 4530         /*
 4531          * We initially map a stack of only init_ssize.  We will grow as
 4532          * needed later.  Depending on the orientation of the stack (i.e.
 4533          * the grow direction) we either map at the top of the range, the
 4534          * bottom of the range or in the middle.
 4535          *
 4536          * Note: we would normally expect prot and max to be VM_PROT_ALL,
 4537          * and cow to be 0.  Possibly we should eliminate these as input
 4538          * parameters, and just pass these values here in the insert call.
 4539          */
 4540         if (orient == MAP_STACK_GROWS_DOWN) {
 4541                 bot = addrbos + max_ssize - init_ssize;
 4542                 top = bot + init_ssize;
 4543                 gap_bot = addrbos;
 4544                 gap_top = bot;
 4545         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
 4546                 bot = addrbos;
 4547                 top = bot + init_ssize;
 4548                 gap_bot = top;
 4549                 gap_top = addrbos + max_ssize;
 4550         }
 4551         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
 4552         if (rv != KERN_SUCCESS)
 4553                 return (rv);
 4554         new_entry = vm_map_entry_succ(prev_entry);
 4555         KASSERT(new_entry->end == top || new_entry->start == bot,
 4556             ("Bad entry start/end for new stack entry"));
 4557         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
 4558             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
 4559             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
 4560         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
 4561             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
 4562             ("new entry lacks MAP_ENTRY_GROWS_UP"));
 4563         if (gap_bot == gap_top)
 4564                 return (KERN_SUCCESS);
 4565         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
 4566             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
 4567             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
 4568         if (rv == KERN_SUCCESS) {
 4569                 /*
 4570                  * Gap can never successfully handle a fault, so
 4571                  * read-ahead logic is never used for it.  Re-use
 4572                  * next_read of the gap entry to store
 4573                  * stack_guard_page for vm_map_growstack().
 4574                  */
 4575                 if (orient == MAP_STACK_GROWS_DOWN)
 4576                         vm_map_entry_pred(new_entry)->next_read = sgp;
 4577                 else
 4578                         vm_map_entry_succ(new_entry)->next_read = sgp;
 4579         } else {
 4580                 (void)vm_map_delete(map, bot, top);
 4581         }
 4582         return (rv);
 4583 }
 4584 
 4585 /*
 4586  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
 4587  * successfully grow the stack.
 4588  */
 4589 static int
 4590 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
 4591 {
 4592         vm_map_entry_t stack_entry;
 4593         struct proc *p;
 4594         struct vmspace *vm;
 4595         struct ucred *cred;
 4596         vm_offset_t gap_end, gap_start, grow_start;
 4597         vm_size_t grow_amount, guard, max_grow;
 4598         rlim_t lmemlim, stacklim, vmemlim;
 4599         int rv, rv1 __diagused;
 4600         bool gap_deleted, grow_down, is_procstack;
 4601 #ifdef notyet
 4602         uint64_t limit;
 4603 #endif
 4604 #ifdef RACCT
 4605         int error __diagused;
 4606 #endif
 4607 
 4608         p = curproc;
 4609         vm = p->p_vmspace;
 4610 
 4611         /*
 4612          * Disallow stack growth when the access is performed by a
 4613          * debugger or AIO daemon.  The reason is that the wrong
 4614          * resource limits are applied.
 4615          */
 4616         if (p != initproc && (map != &p->p_vmspace->vm_map ||
 4617             p->p_textvp == NULL))
 4618                 return (KERN_FAILURE);
 4619 
 4620         MPASS(!map->system_map);
 4621 
 4622         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
 4623         stacklim = lim_cur(curthread, RLIMIT_STACK);
 4624         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
 4625 retry:
 4626         /* If addr is not in a hole for a stack grow area, no need to grow. */
 4627         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
 4628                 return (KERN_FAILURE);
 4629         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
 4630                 return (KERN_SUCCESS);
 4631         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
 4632                 stack_entry = vm_map_entry_succ(gap_entry);
 4633                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
 4634                     stack_entry->start != gap_entry->end)
 4635                         return (KERN_FAILURE);
 4636                 grow_amount = round_page(stack_entry->start - addr);
 4637                 grow_down = true;
 4638         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
 4639                 stack_entry = vm_map_entry_pred(gap_entry);
 4640                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
 4641                     stack_entry->end != gap_entry->start)
 4642                         return (KERN_FAILURE);
 4643                 grow_amount = round_page(addr + 1 - stack_entry->end);
 4644                 grow_down = false;
 4645         } else {
 4646                 return (KERN_FAILURE);
 4647         }
 4648         guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
 4649             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
 4650             gap_entry->next_read;
 4651         max_grow = gap_entry->end - gap_entry->start;
 4652         if (guard > max_grow)
 4653                 return (KERN_NO_SPACE);
 4654         max_grow -= guard;
 4655         if (grow_amount > max_grow)
 4656                 return (KERN_NO_SPACE);
 4657 
 4658         /*
 4659          * If this is the main process stack, see if we're over the stack
 4660          * limit.
 4661          */
 4662         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
 4663             addr < (vm_offset_t)vm->vm_stacktop;
 4664         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
 4665                 return (KERN_NO_SPACE);
 4666 
 4667 #ifdef RACCT
 4668         if (racct_enable) {
 4669                 PROC_LOCK(p);
 4670                 if (is_procstack && racct_set(p, RACCT_STACK,
 4671                     ctob(vm->vm_ssize) + grow_amount)) {
 4672                         PROC_UNLOCK(p);
 4673                         return (KERN_NO_SPACE);
 4674                 }
 4675                 PROC_UNLOCK(p);
 4676         }
 4677 #endif
 4678 
 4679         grow_amount = roundup(grow_amount, sgrowsiz);
 4680         if (grow_amount > max_grow)
 4681                 grow_amount = max_grow;
 4682         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
 4683                 grow_amount = trunc_page((vm_size_t)stacklim) -
 4684                     ctob(vm->vm_ssize);
 4685         }
 4686 
 4687 #ifdef notyet
 4688         PROC_LOCK(p);
 4689         limit = racct_get_available(p, RACCT_STACK);
 4690         PROC_UNLOCK(p);
 4691         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
 4692                 grow_amount = limit - ctob(vm->vm_ssize);
 4693 #endif
 4694 
 4695         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
 4696                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
 4697                         rv = KERN_NO_SPACE;
 4698                         goto out;
 4699                 }
 4700 #ifdef RACCT
 4701                 if (racct_enable) {
 4702                         PROC_LOCK(p);
 4703                         if (racct_set(p, RACCT_MEMLOCK,
 4704                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
 4705                                 PROC_UNLOCK(p);
 4706                                 rv = KERN_NO_SPACE;
 4707                                 goto out;
 4708                         }
 4709                         PROC_UNLOCK(p);
 4710                 }
 4711 #endif
 4712         }
 4713 
 4714         /* If we would blow our VMEM resource limit, no go */
 4715         if (map->size + grow_amount > vmemlim) {
 4716                 rv = KERN_NO_SPACE;
 4717                 goto out;
 4718         }
 4719 #ifdef RACCT
 4720         if (racct_enable) {
 4721                 PROC_LOCK(p);
 4722                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
 4723                         PROC_UNLOCK(p);
 4724                         rv = KERN_NO_SPACE;
 4725                         goto out;
 4726                 }
 4727                 PROC_UNLOCK(p);
 4728         }
 4729 #endif
 4730 
 4731         if (vm_map_lock_upgrade(map)) {
 4732                 gap_entry = NULL;
 4733                 vm_map_lock_read(map);
 4734                 goto retry;
 4735         }
 4736 
 4737         if (grow_down) {
 4738                 grow_start = gap_entry->end - grow_amount;
 4739                 if (gap_entry->start + grow_amount == gap_entry->end) {
 4740                         gap_start = gap_entry->start;
 4741                         gap_end = gap_entry->end;
 4742                         vm_map_entry_delete(map, gap_entry);
 4743                         gap_deleted = true;
 4744                 } else {
 4745                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
 4746                         vm_map_entry_resize(map, gap_entry, -grow_amount);
 4747                         gap_deleted = false;
 4748                 }
 4749                 rv = vm_map_insert(map, NULL, 0, grow_start,
 4750                     grow_start + grow_amount,
 4751                     stack_entry->protection, stack_entry->max_protection,
 4752                     MAP_STACK_GROWS_DOWN);
 4753                 if (rv != KERN_SUCCESS) {
 4754                         if (gap_deleted) {
 4755                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
 4756                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
 4757                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
 4758                                 MPASS(rv1 == KERN_SUCCESS);
 4759                         } else
 4760                                 vm_map_entry_resize(map, gap_entry,
 4761                                     grow_amount);
 4762                 }
 4763         } else {
 4764                 grow_start = stack_entry->end;
 4765                 cred = stack_entry->cred;
 4766                 if (cred == NULL && stack_entry->object.vm_object != NULL)
 4767                         cred = stack_entry->object.vm_object->cred;
 4768                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
 4769                         rv = KERN_NO_SPACE;
 4770                 /* Grow the underlying object if applicable. */
 4771                 else if (stack_entry->object.vm_object == NULL ||
 4772                     vm_object_coalesce(stack_entry->object.vm_object,
 4773                     stack_entry->offset,
 4774                     (vm_size_t)(stack_entry->end - stack_entry->start),
 4775                     grow_amount, cred != NULL)) {
 4776                         if (gap_entry->start + grow_amount == gap_entry->end) {
 4777                                 vm_map_entry_delete(map, gap_entry);
 4778                                 vm_map_entry_resize(map, stack_entry,
 4779                                     grow_amount);
 4780                         } else {
 4781                                 gap_entry->start += grow_amount;
 4782                                 stack_entry->end += grow_amount;
 4783                         }
 4784                         map->size += grow_amount;
 4785                         rv = KERN_SUCCESS;
 4786                 } else
 4787                         rv = KERN_FAILURE;
 4788         }
 4789         if (rv == KERN_SUCCESS && is_procstack)
 4790                 vm->vm_ssize += btoc(grow_amount);
 4791 
 4792         /*
 4793          * Heed the MAP_WIREFUTURE flag if it was set for this process.
 4794          */
 4795         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
 4796                 rv = vm_map_wire_locked(map, grow_start,
 4797                     grow_start + grow_amount,
 4798                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
 4799         }
 4800         vm_map_lock_downgrade(map);
 4801 
 4802 out:
 4803 #ifdef RACCT
 4804         if (racct_enable && rv != KERN_SUCCESS) {
 4805                 PROC_LOCK(p);
 4806                 error = racct_set(p, RACCT_VMEM, map->size);
 4807                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
 4808                 if (!old_mlock) {
 4809                         error = racct_set(p, RACCT_MEMLOCK,
 4810                             ptoa(pmap_wired_count(map->pmap)));
 4811                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
 4812                 }
 4813                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
 4814                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
 4815                 PROC_UNLOCK(p);
 4816         }
 4817 #endif
 4818 
 4819         return (rv);
 4820 }
 4821 
 4822 /*
 4823  * Unshare the specified VM space for exec.  If other processes are
 4824  * mapped to it, then create a new one.  The new vmspace is null.
 4825  */
 4826 int
 4827 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
 4828 {
 4829         struct vmspace *oldvmspace = p->p_vmspace;
 4830         struct vmspace *newvmspace;
 4831 
 4832         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
 4833             ("vmspace_exec recursed"));
 4834         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
 4835         if (newvmspace == NULL)
 4836                 return (ENOMEM);
 4837         newvmspace->vm_swrss = oldvmspace->vm_swrss;
 4838         /*
 4839          * This code is written like this for prototype purposes.  The
 4840          * goal is to avoid running down the vmspace here, but let the
 4841          * other process's that are still using the vmspace to finally
 4842          * run it down.  Even though there is little or no chance of blocking
 4843          * here, it is a good idea to keep this form for future mods.
 4844          */
 4845         PROC_VMSPACE_LOCK(p);
 4846         p->p_vmspace = newvmspace;
 4847         PROC_VMSPACE_UNLOCK(p);
 4848         if (p == curthread->td_proc)
 4849                 pmap_activate(curthread);
 4850         curthread->td_pflags |= TDP_EXECVMSPC;
 4851         return (0);
 4852 }
 4853 
 4854 /*
 4855  * Unshare the specified VM space for forcing COW.  This
 4856  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
 4857  */
 4858 int
 4859 vmspace_unshare(struct proc *p)
 4860 {
 4861         struct vmspace *oldvmspace = p->p_vmspace;
 4862         struct vmspace *newvmspace;
 4863         vm_ooffset_t fork_charge;
 4864 
 4865         /*
 4866          * The caller is responsible for ensuring that the reference count
 4867          * cannot concurrently transition 1 -> 2.
 4868          */
 4869         if (refcount_load(&oldvmspace->vm_refcnt) == 1)
 4870                 return (0);
 4871         fork_charge = 0;
 4872         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
 4873         if (newvmspace == NULL)
 4874                 return (ENOMEM);
 4875         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
 4876                 vmspace_free(newvmspace);
 4877                 return (ENOMEM);
 4878         }
 4879         PROC_VMSPACE_LOCK(p);
 4880         p->p_vmspace = newvmspace;
 4881         PROC_VMSPACE_UNLOCK(p);
 4882         if (p == curthread->td_proc)
 4883                 pmap_activate(curthread);
 4884         vmspace_free(oldvmspace);
 4885         return (0);
 4886 }
 4887 
 4888 /*
 4889  *      vm_map_lookup:
 4890  *
 4891  *      Finds the VM object, offset, and
 4892  *      protection for a given virtual address in the
 4893  *      specified map, assuming a page fault of the
 4894  *      type specified.
 4895  *
 4896  *      Leaves the map in question locked for read; return
 4897  *      values are guaranteed until a vm_map_lookup_done
 4898  *      call is performed.  Note that the map argument
 4899  *      is in/out; the returned map must be used in
 4900  *      the call to vm_map_lookup_done.
 4901  *
 4902  *      A handle (out_entry) is returned for use in
 4903  *      vm_map_lookup_done, to make that fast.
 4904  *
 4905  *      If a lookup is requested with "write protection"
 4906  *      specified, the map may be changed to perform virtual
 4907  *      copying operations, although the data referenced will
 4908  *      remain the same.
 4909  */
 4910 int
 4911 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
 4912               vm_offset_t vaddr,
 4913               vm_prot_t fault_typea,
 4914               vm_map_entry_t *out_entry,        /* OUT */
 4915               vm_object_t *object,              /* OUT */
 4916               vm_pindex_t *pindex,              /* OUT */
 4917               vm_prot_t *out_prot,              /* OUT */
 4918               boolean_t *wired)                 /* OUT */
 4919 {
 4920         vm_map_entry_t entry;
 4921         vm_map_t map = *var_map;
 4922         vm_prot_t prot;
 4923         vm_prot_t fault_type;
 4924         vm_object_t eobject;
 4925         vm_size_t size;
 4926         struct ucred *cred;
 4927 
 4928 RetryLookup:
 4929 
 4930         vm_map_lock_read(map);
 4931 
 4932 RetryLookupLocked:
 4933         /*
 4934          * Lookup the faulting address.
 4935          */
 4936         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
 4937                 vm_map_unlock_read(map);
 4938                 return (KERN_INVALID_ADDRESS);
 4939         }
 4940 
 4941         entry = *out_entry;
 4942 
 4943         /*
 4944          * Handle submaps.
 4945          */
 4946         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 4947                 vm_map_t old_map = map;
 4948 
 4949                 *var_map = map = entry->object.sub_map;
 4950                 vm_map_unlock_read(old_map);
 4951                 goto RetryLookup;
 4952         }
 4953 
 4954         /*
 4955          * Check whether this task is allowed to have this page.
 4956          */
 4957         prot = entry->protection;
 4958         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
 4959                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
 4960                 if (prot == VM_PROT_NONE && map != kernel_map &&
 4961                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
 4962                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
 4963                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
 4964                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
 4965                         goto RetryLookupLocked;
 4966         }
 4967         fault_type = fault_typea & VM_PROT_ALL;
 4968         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
 4969                 vm_map_unlock_read(map);
 4970                 return (KERN_PROTECTION_FAILURE);
 4971         }
 4972         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
 4973             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
 4974             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
 4975             ("entry %p flags %x", entry, entry->eflags));
 4976         if ((fault_typea & VM_PROT_COPY) != 0 &&
 4977             (entry->max_protection & VM_PROT_WRITE) == 0 &&
 4978             (entry->eflags & MAP_ENTRY_COW) == 0) {
 4979                 vm_map_unlock_read(map);
 4980                 return (KERN_PROTECTION_FAILURE);
 4981         }
 4982 
 4983         /*
 4984          * If this page is not pageable, we have to get it for all possible
 4985          * accesses.
 4986          */
 4987         *wired = (entry->wired_count != 0);
 4988         if (*wired)
 4989                 fault_type = entry->protection;
 4990         size = entry->end - entry->start;
 4991 
 4992         /*
 4993          * If the entry was copy-on-write, we either ...
 4994          */
 4995         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 4996                 /*
 4997                  * If we want to write the page, we may as well handle that
 4998                  * now since we've got the map locked.
 4999                  *
 5000                  * If we don't need to write the page, we just demote the
 5001                  * permissions allowed.
 5002                  */
 5003                 if ((fault_type & VM_PROT_WRITE) != 0 ||
 5004                     (fault_typea & VM_PROT_COPY) != 0) {
 5005                         /*
 5006                          * Make a new object, and place it in the object
 5007                          * chain.  Note that no new references have appeared
 5008                          * -- one just moved from the map to the new
 5009                          * object.
 5010                          */
 5011                         if (vm_map_lock_upgrade(map))
 5012                                 goto RetryLookup;
 5013 
 5014                         if (entry->cred == NULL) {
 5015                                 /*
 5016                                  * The debugger owner is charged for
 5017                                  * the memory.
 5018                                  */
 5019                                 cred = curthread->td_ucred;
 5020                                 crhold(cred);
 5021                                 if (!swap_reserve_by_cred(size, cred)) {
 5022                                         crfree(cred);
 5023                                         vm_map_unlock(map);
 5024                                         return (KERN_RESOURCE_SHORTAGE);
 5025                                 }
 5026                                 entry->cred = cred;
 5027                         }
 5028                         eobject = entry->object.vm_object;
 5029                         vm_object_shadow(&entry->object.vm_object,
 5030                             &entry->offset, size, entry->cred, false);
 5031                         if (eobject == entry->object.vm_object) {
 5032                                 /*
 5033                                  * The object was not shadowed.
 5034                                  */
 5035                                 swap_release_by_cred(size, entry->cred);
 5036                                 crfree(entry->cred);
 5037                         }
 5038                         entry->cred = NULL;
 5039                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
 5040 
 5041                         vm_map_lock_downgrade(map);
 5042                 } else {
 5043                         /*
 5044                          * We're attempting to read a copy-on-write page --
 5045                          * don't allow writes.
 5046                          */
 5047                         prot &= ~VM_PROT_WRITE;
 5048                 }
 5049         }
 5050 
 5051         /*
 5052          * Create an object if necessary.
 5053          */
 5054         if (entry->object.vm_object == NULL && !map->system_map) {
 5055                 if (vm_map_lock_upgrade(map))
 5056                         goto RetryLookup;
 5057                 entry->object.vm_object = vm_object_allocate_anon(atop(size),
 5058                     NULL, entry->cred, size);
 5059                 entry->offset = 0;
 5060                 entry->cred = NULL;
 5061                 vm_map_lock_downgrade(map);
 5062         }
 5063 
 5064         /*
 5065          * Return the object/offset from this entry.  If the entry was
 5066          * copy-on-write or empty, it has been fixed up.
 5067          */
 5068         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
 5069         *object = entry->object.vm_object;
 5070 
 5071         *out_prot = prot;
 5072         return (KERN_SUCCESS);
 5073 }
 5074 
 5075 /*
 5076  *      vm_map_lookup_locked:
 5077  *
 5078  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
 5079  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
 5080  */
 5081 int
 5082 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
 5083                      vm_offset_t vaddr,
 5084                      vm_prot_t fault_typea,
 5085                      vm_map_entry_t *out_entry, /* OUT */
 5086                      vm_object_t *object,       /* OUT */
 5087                      vm_pindex_t *pindex,       /* OUT */
 5088                      vm_prot_t *out_prot,       /* OUT */
 5089                      boolean_t *wired)          /* OUT */
 5090 {
 5091         vm_map_entry_t entry;
 5092         vm_map_t map = *var_map;
 5093         vm_prot_t prot;
 5094         vm_prot_t fault_type = fault_typea;
 5095 
 5096         /*
 5097          * Lookup the faulting address.
 5098          */
 5099         if (!vm_map_lookup_entry(map, vaddr, out_entry))
 5100                 return (KERN_INVALID_ADDRESS);
 5101 
 5102         entry = *out_entry;
 5103 
 5104         /*
 5105          * Fail if the entry refers to a submap.
 5106          */
 5107         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 5108                 return (KERN_FAILURE);
 5109 
 5110         /*
 5111          * Check whether this task is allowed to have this page.
 5112          */
 5113         prot = entry->protection;
 5114         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
 5115         if ((fault_type & prot) != fault_type)
 5116                 return (KERN_PROTECTION_FAILURE);
 5117 
 5118         /*
 5119          * If this page is not pageable, we have to get it for all possible
 5120          * accesses.
 5121          */
 5122         *wired = (entry->wired_count != 0);
 5123         if (*wired)
 5124                 fault_type = entry->protection;
 5125 
 5126         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 5127                 /*
 5128                  * Fail if the entry was copy-on-write for a write fault.
 5129                  */
 5130                 if (fault_type & VM_PROT_WRITE)
 5131                         return (KERN_FAILURE);
 5132                 /*
 5133                  * We're attempting to read a copy-on-write page --
 5134                  * don't allow writes.
 5135                  */
 5136                 prot &= ~VM_PROT_WRITE;
 5137         }
 5138 
 5139         /*
 5140          * Fail if an object should be created.
 5141          */
 5142         if (entry->object.vm_object == NULL && !map->system_map)
 5143                 return (KERN_FAILURE);
 5144 
 5145         /*
 5146          * Return the object/offset from this entry.  If the entry was
 5147          * copy-on-write or empty, it has been fixed up.
 5148          */
 5149         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
 5150         *object = entry->object.vm_object;
 5151 
 5152         *out_prot = prot;
 5153         return (KERN_SUCCESS);
 5154 }
 5155 
 5156 /*
 5157  *      vm_map_lookup_done:
 5158  *
 5159  *      Releases locks acquired by a vm_map_lookup
 5160  *      (according to the handle returned by that lookup).
 5161  */
 5162 void
 5163 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
 5164 {
 5165         /*
 5166          * Unlock the main-level map
 5167          */
 5168         vm_map_unlock_read(map);
 5169 }
 5170 
 5171 vm_offset_t
 5172 vm_map_max_KBI(const struct vm_map *map)
 5173 {
 5174 
 5175         return (vm_map_max(map));
 5176 }
 5177 
 5178 vm_offset_t
 5179 vm_map_min_KBI(const struct vm_map *map)
 5180 {
 5181 
 5182         return (vm_map_min(map));
 5183 }
 5184 
 5185 pmap_t
 5186 vm_map_pmap_KBI(vm_map_t map)
 5187 {
 5188 
 5189         return (map->pmap);
 5190 }
 5191 
 5192 bool
 5193 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
 5194 {
 5195 
 5196         return (vm_map_range_valid(map, start, end));
 5197 }
 5198 
 5199 #ifdef INVARIANTS
 5200 static void
 5201 _vm_map_assert_consistent(vm_map_t map, int check)
 5202 {
 5203         vm_map_entry_t entry, prev;
 5204         vm_map_entry_t cur, header, lbound, ubound;
 5205         vm_size_t max_left, max_right;
 5206 
 5207 #ifdef DIAGNOSTIC
 5208         ++map->nupdates;
 5209 #endif
 5210         if (enable_vmmap_check != check)
 5211                 return;
 5212 
 5213         header = prev = &map->header;
 5214         VM_MAP_ENTRY_FOREACH(entry, map) {
 5215                 KASSERT(prev->end <= entry->start,
 5216                     ("map %p prev->end = %jx, start = %jx", map,
 5217                     (uintmax_t)prev->end, (uintmax_t)entry->start));
 5218                 KASSERT(entry->start < entry->end,
 5219                     ("map %p start = %jx, end = %jx", map,
 5220                     (uintmax_t)entry->start, (uintmax_t)entry->end));
 5221                 KASSERT(entry->left == header ||
 5222                     entry->left->start < entry->start,
 5223                     ("map %p left->start = %jx, start = %jx", map,
 5224                     (uintmax_t)entry->left->start, (uintmax_t)entry->start));
 5225                 KASSERT(entry->right == header ||
 5226                     entry->start < entry->right->start,
 5227                     ("map %p start = %jx, right->start = %jx", map,
 5228                     (uintmax_t)entry->start, (uintmax_t)entry->right->start));
 5229                 cur = map->root;
 5230                 lbound = ubound = header;
 5231                 for (;;) {
 5232                         if (entry->start < cur->start) {
 5233                                 ubound = cur;
 5234                                 cur = cur->left;
 5235                                 KASSERT(cur != lbound,
 5236                                     ("map %p cannot find %jx",
 5237                                     map, (uintmax_t)entry->start));
 5238                         } else if (cur->end <= entry->start) {
 5239                                 lbound = cur;
 5240                                 cur = cur->right;
 5241                                 KASSERT(cur != ubound,
 5242                                     ("map %p cannot find %jx",
 5243                                     map, (uintmax_t)entry->start));
 5244                         } else {
 5245                                 KASSERT(cur == entry,
 5246                                     ("map %p cannot find %jx",
 5247                                     map, (uintmax_t)entry->start));
 5248                                 break;
 5249                         }
 5250                 }
 5251                 max_left = vm_map_entry_max_free_left(entry, lbound);
 5252                 max_right = vm_map_entry_max_free_right(entry, ubound);
 5253                 KASSERT(entry->max_free == vm_size_max(max_left, max_right),
 5254                     ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
 5255                     (uintmax_t)entry->max_free,
 5256                     (uintmax_t)max_left, (uintmax_t)max_right));
 5257                 prev = entry;
 5258         }
 5259         KASSERT(prev->end <= entry->start,
 5260             ("map %p prev->end = %jx, start = %jx", map,
 5261             (uintmax_t)prev->end, (uintmax_t)entry->start));
 5262 }
 5263 #endif
 5264 
 5265 #include "opt_ddb.h"
 5266 #ifdef DDB
 5267 #include <sys/kernel.h>
 5268 
 5269 #include <ddb/ddb.h>
 5270 
 5271 static void
 5272 vm_map_print(vm_map_t map)
 5273 {
 5274         vm_map_entry_t entry, prev;
 5275 
 5276         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
 5277             (void *)map,
 5278             (void *)map->pmap, map->nentries, map->timestamp);
 5279 
 5280         db_indent += 2;
 5281         prev = &map->header;
 5282         VM_MAP_ENTRY_FOREACH(entry, map) {
 5283                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
 5284                     (void *)entry, (void *)entry->start, (void *)entry->end,
 5285                     entry->eflags);
 5286                 {
 5287                         static const char * const inheritance_name[4] =
 5288                         {"share", "copy", "none", "donate_copy"};
 5289 
 5290                         db_iprintf(" prot=%x/%x/%s",
 5291                             entry->protection,
 5292                             entry->max_protection,
 5293                             inheritance_name[(int)(unsigned char)
 5294                             entry->inheritance]);
 5295                         if (entry->wired_count != 0)
 5296                                 db_printf(", wired");
 5297                 }
 5298                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 5299                         db_printf(", share=%p, offset=0x%jx\n",
 5300                             (void *)entry->object.sub_map,
 5301                             (uintmax_t)entry->offset);
 5302                         if (prev == &map->header ||
 5303                             prev->object.sub_map !=
 5304                                 entry->object.sub_map) {
 5305                                 db_indent += 2;
 5306                                 vm_map_print((vm_map_t)entry->object.sub_map);
 5307                                 db_indent -= 2;
 5308                         }
 5309                 } else {
 5310                         if (entry->cred != NULL)
 5311                                 db_printf(", ruid %d", entry->cred->cr_ruid);
 5312                         db_printf(", object=%p, offset=0x%jx",
 5313                             (void *)entry->object.vm_object,
 5314                             (uintmax_t)entry->offset);
 5315                         if (entry->object.vm_object && entry->object.vm_object->cred)
 5316                                 db_printf(", obj ruid %d charge %jx",
 5317                                     entry->object.vm_object->cred->cr_ruid,
 5318                                     (uintmax_t)entry->object.vm_object->charge);
 5319                         if (entry->eflags & MAP_ENTRY_COW)
 5320                                 db_printf(", copy (%s)",
 5321                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
 5322                         db_printf("\n");
 5323 
 5324                         if (prev == &map->header ||
 5325                             prev->object.vm_object !=
 5326                                 entry->object.vm_object) {
 5327                                 db_indent += 2;
 5328                                 vm_object_print((db_expr_t)(intptr_t)
 5329                                                 entry->object.vm_object,
 5330                                                 0, 0, (char *)0);
 5331                                 db_indent -= 2;
 5332                         }
 5333                 }
 5334                 prev = entry;
 5335         }
 5336         db_indent -= 2;
 5337 }
 5338 
 5339 DB_SHOW_COMMAND(map, map)
 5340 {
 5341 
 5342         if (!have_addr) {
 5343                 db_printf("usage: show map <addr>\n");
 5344                 return;
 5345         }
 5346         vm_map_print((vm_map_t)addr);
 5347 }
 5348 
 5349 DB_SHOW_COMMAND(procvm, procvm)
 5350 {
 5351         struct proc *p;
 5352 
 5353         if (have_addr) {
 5354                 p = db_lookup_proc(addr);
 5355         } else {
 5356                 p = curproc;
 5357         }
 5358 
 5359         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
 5360             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
 5361             (void *)vmspace_pmap(p->p_vmspace));
 5362 
 5363         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
 5364 }
 5365 
 5366 #endif /* DDB */

Cache object: 69c846a9afc55e3c1f5f774714ee7bbd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.