FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_map.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61 /*
62 * Virtual memory mapping module.
63 */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD: releng/10.0/sys/vm/vm_map.c 267017 2014-06-03 19:02:52Z delphij $");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98
99 /*
100 * Virtual memory maps provide for the mapping, protection,
101 * and sharing of virtual memory objects. In addition,
102 * this module provides for an efficient virtual copy of
103 * memory from one map to another.
104 *
105 * Synchronization is required prior to most operations.
106 *
107 * Maps consist of an ordered doubly-linked list of simple
108 * entries; a self-adjusting binary search tree of these
109 * entries is used to speed up lookups.
110 *
111 * Since portions of maps are specified by start/end addresses,
112 * which may not align with existing map entries, all
113 * routines merely "clip" entries to these start/end values.
114 * [That is, an entry is split into two, bordering at a
115 * start or end value.] Note that these clippings may not
116 * always be necessary (as the two resulting entries are then
117 * not changed); however, the clipping is done for convenience.
118 *
119 * As mentioned above, virtual copy operations are performed
120 * by copying VM object references from one map to
121 * another, and then marking both regions as copy-on-write.
122 */
123
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132 vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 #ifdef INVARIANTS
136 static void vm_map_zdtor(void *mem, int size, void *arg);
137 static void vmspace_zdtor(void *mem, int size, void *arg);
138 #endif
139
140 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
141 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
142 !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
143
144 /*
145 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
146 * stable.
147 */
148 #define PROC_VMSPACE_LOCK(p) do { } while (0)
149 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
150
151 /*
152 * VM_MAP_RANGE_CHECK: [ internal use only ]
153 *
154 * Asserts that the starting and ending region
155 * addresses fall within the valid range of the map.
156 */
157 #define VM_MAP_RANGE_CHECK(map, start, end) \
158 { \
159 if (start < vm_map_min(map)) \
160 start = vm_map_min(map); \
161 if (end > vm_map_max(map)) \
162 end = vm_map_max(map); \
163 if (start > end) \
164 start = end; \
165 }
166
167 /*
168 * vm_map_startup:
169 *
170 * Initialize the vm_map module. Must be called before
171 * any other vm_map routines.
172 *
173 * Map and entry structures are allocated from the general
174 * purpose memory pool with some exceptions:
175 *
176 * - The kernel map and kmem submap are allocated statically.
177 * - Kernel map entries are allocated out of a static pool.
178 *
179 * These restrictions are necessary since malloc() uses the
180 * maps and requires map entries.
181 */
182
183 void
184 vm_map_startup(void)
185 {
186 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
187 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
188 #ifdef INVARIANTS
189 vm_map_zdtor,
190 #else
191 NULL,
192 #endif
193 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
194 uma_prealloc(mapzone, MAX_KMAP);
195 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
196 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
197 UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
198 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
199 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
200 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
201 #ifdef INVARIANTS
202 vmspace_zdtor,
203 #else
204 NULL,
205 #endif
206 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207 }
208
209 static int
210 vmspace_zinit(void *mem, int size, int flags)
211 {
212 struct vmspace *vm;
213
214 vm = (struct vmspace *)mem;
215
216 vm->vm_map.pmap = NULL;
217 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
218 PMAP_LOCK_INIT(vmspace_pmap(vm));
219 return (0);
220 }
221
222 static int
223 vm_map_zinit(void *mem, int size, int flags)
224 {
225 vm_map_t map;
226
227 map = (vm_map_t)mem;
228 memset(map, 0, sizeof(*map));
229 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
230 sx_init(&map->lock, "vm map (user)");
231 return (0);
232 }
233
234 #ifdef INVARIANTS
235 static void
236 vmspace_zdtor(void *mem, int size, void *arg)
237 {
238 struct vmspace *vm;
239
240 vm = (struct vmspace *)mem;
241
242 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
243 }
244 static void
245 vm_map_zdtor(void *mem, int size, void *arg)
246 {
247 vm_map_t map;
248
249 map = (vm_map_t)mem;
250 KASSERT(map->nentries == 0,
251 ("map %p nentries == %d on free.",
252 map, map->nentries));
253 KASSERT(map->size == 0,
254 ("map %p size == %lu on free.",
255 map, (unsigned long)map->size));
256 }
257 #endif /* INVARIANTS */
258
259 /*
260 * Allocate a vmspace structure, including a vm_map and pmap,
261 * and initialize those structures. The refcnt is set to 1.
262 *
263 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
264 */
265 struct vmspace *
266 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
267 {
268 struct vmspace *vm;
269
270 vm = uma_zalloc(vmspace_zone, M_WAITOK);
271
272 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
273
274 if (pinit == NULL)
275 pinit = &pmap_pinit;
276
277 if (!pinit(vmspace_pmap(vm))) {
278 uma_zfree(vmspace_zone, vm);
279 return (NULL);
280 }
281 CTR1(KTR_VM, "vmspace_alloc: %p", vm);
282 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
283 vm->vm_refcnt = 1;
284 vm->vm_shm = NULL;
285 vm->vm_swrss = 0;
286 vm->vm_tsize = 0;
287 vm->vm_dsize = 0;
288 vm->vm_ssize = 0;
289 vm->vm_taddr = 0;
290 vm->vm_daddr = 0;
291 vm->vm_maxsaddr = 0;
292 return (vm);
293 }
294
295 static void
296 vmspace_container_reset(struct proc *p)
297 {
298
299 #ifdef RACCT
300 PROC_LOCK(p);
301 racct_set(p, RACCT_DATA, 0);
302 racct_set(p, RACCT_STACK, 0);
303 racct_set(p, RACCT_RSS, 0);
304 racct_set(p, RACCT_MEMLOCK, 0);
305 racct_set(p, RACCT_VMEM, 0);
306 PROC_UNLOCK(p);
307 #endif
308 }
309
310 static inline void
311 vmspace_dofree(struct vmspace *vm)
312 {
313
314 CTR1(KTR_VM, "vmspace_free: %p", vm);
315
316 /*
317 * Make sure any SysV shm is freed, it might not have been in
318 * exit1().
319 */
320 shmexit(vm);
321
322 /*
323 * Lock the map, to wait out all other references to it.
324 * Delete all of the mappings and pages they hold, then call
325 * the pmap module to reclaim anything left.
326 */
327 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
328 vm->vm_map.max_offset);
329
330 pmap_release(vmspace_pmap(vm));
331 vm->vm_map.pmap = NULL;
332 uma_zfree(vmspace_zone, vm);
333 }
334
335 void
336 vmspace_free(struct vmspace *vm)
337 {
338
339 if (vm->vm_refcnt == 0)
340 panic("vmspace_free: attempt to free already freed vmspace");
341
342 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
343 vmspace_dofree(vm);
344 }
345
346 void
347 vmspace_exitfree(struct proc *p)
348 {
349 struct vmspace *vm;
350
351 PROC_VMSPACE_LOCK(p);
352 vm = p->p_vmspace;
353 p->p_vmspace = NULL;
354 PROC_VMSPACE_UNLOCK(p);
355 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
356 vmspace_free(vm);
357 }
358
359 void
360 vmspace_exit(struct thread *td)
361 {
362 int refcnt;
363 struct vmspace *vm;
364 struct proc *p;
365
366 /*
367 * Release user portion of address space.
368 * This releases references to vnodes,
369 * which could cause I/O if the file has been unlinked.
370 * Need to do this early enough that we can still sleep.
371 *
372 * The last exiting process to reach this point releases as
373 * much of the environment as it can. vmspace_dofree() is the
374 * slower fallback in case another process had a temporary
375 * reference to the vmspace.
376 */
377
378 p = td->td_proc;
379 vm = p->p_vmspace;
380 atomic_add_int(&vmspace0.vm_refcnt, 1);
381 do {
382 refcnt = vm->vm_refcnt;
383 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
384 /* Switch now since other proc might free vmspace */
385 PROC_VMSPACE_LOCK(p);
386 p->p_vmspace = &vmspace0;
387 PROC_VMSPACE_UNLOCK(p);
388 pmap_activate(td);
389 }
390 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
391 if (refcnt == 1) {
392 if (p->p_vmspace != vm) {
393 /* vmspace not yet freed, switch back */
394 PROC_VMSPACE_LOCK(p);
395 p->p_vmspace = vm;
396 PROC_VMSPACE_UNLOCK(p);
397 pmap_activate(td);
398 }
399 pmap_remove_pages(vmspace_pmap(vm));
400 /* Switch now since this proc will free vmspace */
401 PROC_VMSPACE_LOCK(p);
402 p->p_vmspace = &vmspace0;
403 PROC_VMSPACE_UNLOCK(p);
404 pmap_activate(td);
405 vmspace_dofree(vm);
406 }
407 vmspace_container_reset(p);
408 }
409
410 /* Acquire reference to vmspace owned by another process. */
411
412 struct vmspace *
413 vmspace_acquire_ref(struct proc *p)
414 {
415 struct vmspace *vm;
416 int refcnt;
417
418 PROC_VMSPACE_LOCK(p);
419 vm = p->p_vmspace;
420 if (vm == NULL) {
421 PROC_VMSPACE_UNLOCK(p);
422 return (NULL);
423 }
424 do {
425 refcnt = vm->vm_refcnt;
426 if (refcnt <= 0) { /* Avoid 0->1 transition */
427 PROC_VMSPACE_UNLOCK(p);
428 return (NULL);
429 }
430 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
431 if (vm != p->p_vmspace) {
432 PROC_VMSPACE_UNLOCK(p);
433 vmspace_free(vm);
434 return (NULL);
435 }
436 PROC_VMSPACE_UNLOCK(p);
437 return (vm);
438 }
439
440 void
441 _vm_map_lock(vm_map_t map, const char *file, int line)
442 {
443
444 if (map->system_map)
445 mtx_lock_flags_(&map->system_mtx, 0, file, line);
446 else
447 sx_xlock_(&map->lock, file, line);
448 map->timestamp++;
449 }
450
451 static void
452 vm_map_process_deferred(void)
453 {
454 struct thread *td;
455 vm_map_entry_t entry, next;
456 vm_object_t object;
457
458 td = curthread;
459 entry = td->td_map_def_user;
460 td->td_map_def_user = NULL;
461 while (entry != NULL) {
462 next = entry->next;
463 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
464 /*
465 * Decrement the object's writemappings and
466 * possibly the vnode's v_writecount.
467 */
468 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
469 ("Submap with writecount"));
470 object = entry->object.vm_object;
471 KASSERT(object != NULL, ("No object for writecount"));
472 vnode_pager_release_writecount(object, entry->start,
473 entry->end);
474 }
475 vm_map_entry_deallocate(entry, FALSE);
476 entry = next;
477 }
478 }
479
480 void
481 _vm_map_unlock(vm_map_t map, const char *file, int line)
482 {
483
484 if (map->system_map)
485 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
486 else {
487 sx_xunlock_(&map->lock, file, line);
488 vm_map_process_deferred();
489 }
490 }
491
492 void
493 _vm_map_lock_read(vm_map_t map, const char *file, int line)
494 {
495
496 if (map->system_map)
497 mtx_lock_flags_(&map->system_mtx, 0, file, line);
498 else
499 sx_slock_(&map->lock, file, line);
500 }
501
502 void
503 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
504 {
505
506 if (map->system_map)
507 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
508 else {
509 sx_sunlock_(&map->lock, file, line);
510 vm_map_process_deferred();
511 }
512 }
513
514 int
515 _vm_map_trylock(vm_map_t map, const char *file, int line)
516 {
517 int error;
518
519 error = map->system_map ?
520 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
521 !sx_try_xlock_(&map->lock, file, line);
522 if (error == 0)
523 map->timestamp++;
524 return (error == 0);
525 }
526
527 int
528 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
529 {
530 int error;
531
532 error = map->system_map ?
533 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
534 !sx_try_slock_(&map->lock, file, line);
535 return (error == 0);
536 }
537
538 /*
539 * _vm_map_lock_upgrade: [ internal use only ]
540 *
541 * Tries to upgrade a read (shared) lock on the specified map to a write
542 * (exclusive) lock. Returns the value "" if the upgrade succeeds and a
543 * non-zero value if the upgrade fails. If the upgrade fails, the map is
544 * returned without a read or write lock held.
545 *
546 * Requires that the map be read locked.
547 */
548 int
549 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
550 {
551 unsigned int last_timestamp;
552
553 if (map->system_map) {
554 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
555 } else {
556 if (!sx_try_upgrade_(&map->lock, file, line)) {
557 last_timestamp = map->timestamp;
558 sx_sunlock_(&map->lock, file, line);
559 vm_map_process_deferred();
560 /*
561 * If the map's timestamp does not change while the
562 * map is unlocked, then the upgrade succeeds.
563 */
564 sx_xlock_(&map->lock, file, line);
565 if (last_timestamp != map->timestamp) {
566 sx_xunlock_(&map->lock, file, line);
567 return (1);
568 }
569 }
570 }
571 map->timestamp++;
572 return (0);
573 }
574
575 void
576 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
577 {
578
579 if (map->system_map) {
580 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
581 } else
582 sx_downgrade_(&map->lock, file, line);
583 }
584
585 /*
586 * vm_map_locked:
587 *
588 * Returns a non-zero value if the caller holds a write (exclusive) lock
589 * on the specified map and the value "" otherwise.
590 */
591 int
592 vm_map_locked(vm_map_t map)
593 {
594
595 if (map->system_map)
596 return (mtx_owned(&map->system_mtx));
597 else
598 return (sx_xlocked(&map->lock));
599 }
600
601 #ifdef INVARIANTS
602 static void
603 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
604 {
605
606 if (map->system_map)
607 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
608 else
609 sx_assert_(&map->lock, SA_XLOCKED, file, line);
610 }
611
612 #define VM_MAP_ASSERT_LOCKED(map) \
613 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
614 #else
615 #define VM_MAP_ASSERT_LOCKED(map)
616 #endif
617
618 /*
619 * _vm_map_unlock_and_wait:
620 *
621 * Atomically releases the lock on the specified map and puts the calling
622 * thread to sleep. The calling thread will remain asleep until either
623 * vm_map_wakeup() is performed on the map or the specified timeout is
624 * exceeded.
625 *
626 * WARNING! This function does not perform deferred deallocations of
627 * objects and map entries. Therefore, the calling thread is expected to
628 * reacquire the map lock after reawakening and later perform an ordinary
629 * unlock operation, such as vm_map_unlock(), before completing its
630 * operation on the map.
631 */
632 int
633 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
634 {
635
636 mtx_lock(&map_sleep_mtx);
637 if (map->system_map)
638 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
639 else
640 sx_xunlock_(&map->lock, file, line);
641 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
642 timo));
643 }
644
645 /*
646 * vm_map_wakeup:
647 *
648 * Awaken any threads that have slept on the map using
649 * vm_map_unlock_and_wait().
650 */
651 void
652 vm_map_wakeup(vm_map_t map)
653 {
654
655 /*
656 * Acquire and release map_sleep_mtx to prevent a wakeup()
657 * from being performed (and lost) between the map unlock
658 * and the msleep() in _vm_map_unlock_and_wait().
659 */
660 mtx_lock(&map_sleep_mtx);
661 mtx_unlock(&map_sleep_mtx);
662 wakeup(&map->root);
663 }
664
665 void
666 vm_map_busy(vm_map_t map)
667 {
668
669 VM_MAP_ASSERT_LOCKED(map);
670 map->busy++;
671 }
672
673 void
674 vm_map_unbusy(vm_map_t map)
675 {
676
677 VM_MAP_ASSERT_LOCKED(map);
678 KASSERT(map->busy, ("vm_map_unbusy: not busy"));
679 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
680 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
681 wakeup(&map->busy);
682 }
683 }
684
685 void
686 vm_map_wait_busy(vm_map_t map)
687 {
688
689 VM_MAP_ASSERT_LOCKED(map);
690 while (map->busy) {
691 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
692 if (map->system_map)
693 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
694 else
695 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
696 }
697 map->timestamp++;
698 }
699
700 long
701 vmspace_resident_count(struct vmspace *vmspace)
702 {
703 return pmap_resident_count(vmspace_pmap(vmspace));
704 }
705
706 /*
707 * vm_map_create:
708 *
709 * Creates and returns a new empty VM map with
710 * the given physical map structure, and having
711 * the given lower and upper address bounds.
712 */
713 vm_map_t
714 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
715 {
716 vm_map_t result;
717
718 result = uma_zalloc(mapzone, M_WAITOK);
719 CTR1(KTR_VM, "vm_map_create: %p", result);
720 _vm_map_init(result, pmap, min, max);
721 return (result);
722 }
723
724 /*
725 * Initialize an existing vm_map structure
726 * such as that in the vmspace structure.
727 */
728 static void
729 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
730 {
731
732 map->header.next = map->header.prev = &map->header;
733 map->needs_wakeup = FALSE;
734 map->system_map = 0;
735 map->pmap = pmap;
736 map->min_offset = min;
737 map->max_offset = max;
738 map->flags = 0;
739 map->root = NULL;
740 map->timestamp = 0;
741 map->busy = 0;
742 }
743
744 void
745 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
746 {
747
748 _vm_map_init(map, pmap, min, max);
749 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
750 sx_init(&map->lock, "user map");
751 }
752
753 /*
754 * vm_map_entry_dispose: [ internal use only ]
755 *
756 * Inverse of vm_map_entry_create.
757 */
758 static void
759 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
760 {
761 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
762 }
763
764 /*
765 * vm_map_entry_create: [ internal use only ]
766 *
767 * Allocates a VM map entry for insertion.
768 * No entry fields are filled in.
769 */
770 static vm_map_entry_t
771 vm_map_entry_create(vm_map_t map)
772 {
773 vm_map_entry_t new_entry;
774
775 if (map->system_map)
776 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
777 else
778 new_entry = uma_zalloc(mapentzone, M_WAITOK);
779 if (new_entry == NULL)
780 panic("vm_map_entry_create: kernel resources exhausted");
781 return (new_entry);
782 }
783
784 /*
785 * vm_map_entry_set_behavior:
786 *
787 * Set the expected access behavior, either normal, random, or
788 * sequential.
789 */
790 static inline void
791 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
792 {
793 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
794 (behavior & MAP_ENTRY_BEHAV_MASK);
795 }
796
797 /*
798 * vm_map_entry_set_max_free:
799 *
800 * Set the max_free field in a vm_map_entry.
801 */
802 static inline void
803 vm_map_entry_set_max_free(vm_map_entry_t entry)
804 {
805
806 entry->max_free = entry->adj_free;
807 if (entry->left != NULL && entry->left->max_free > entry->max_free)
808 entry->max_free = entry->left->max_free;
809 if (entry->right != NULL && entry->right->max_free > entry->max_free)
810 entry->max_free = entry->right->max_free;
811 }
812
813 /*
814 * vm_map_entry_splay:
815 *
816 * The Sleator and Tarjan top-down splay algorithm with the
817 * following variation. Max_free must be computed bottom-up, so
818 * on the downward pass, maintain the left and right spines in
819 * reverse order. Then, make a second pass up each side to fix
820 * the pointers and compute max_free. The time bound is O(log n)
821 * amortized.
822 *
823 * The new root is the vm_map_entry containing "addr", or else an
824 * adjacent entry (lower or higher) if addr is not in the tree.
825 *
826 * The map must be locked, and leaves it so.
827 *
828 * Returns: the new root.
829 */
830 static vm_map_entry_t
831 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
832 {
833 vm_map_entry_t llist, rlist;
834 vm_map_entry_t ltree, rtree;
835 vm_map_entry_t y;
836
837 /* Special case of empty tree. */
838 if (root == NULL)
839 return (root);
840
841 /*
842 * Pass One: Splay down the tree until we find addr or a NULL
843 * pointer where addr would go. llist and rlist are the two
844 * sides in reverse order (bottom-up), with llist linked by
845 * the right pointer and rlist linked by the left pointer in
846 * the vm_map_entry. Wait until Pass Two to set max_free on
847 * the two spines.
848 */
849 llist = NULL;
850 rlist = NULL;
851 for (;;) {
852 /* root is never NULL in here. */
853 if (addr < root->start) {
854 y = root->left;
855 if (y == NULL)
856 break;
857 if (addr < y->start && y->left != NULL) {
858 /* Rotate right and put y on rlist. */
859 root->left = y->right;
860 y->right = root;
861 vm_map_entry_set_max_free(root);
862 root = y->left;
863 y->left = rlist;
864 rlist = y;
865 } else {
866 /* Put root on rlist. */
867 root->left = rlist;
868 rlist = root;
869 root = y;
870 }
871 } else if (addr >= root->end) {
872 y = root->right;
873 if (y == NULL)
874 break;
875 if (addr >= y->end && y->right != NULL) {
876 /* Rotate left and put y on llist. */
877 root->right = y->left;
878 y->left = root;
879 vm_map_entry_set_max_free(root);
880 root = y->right;
881 y->right = llist;
882 llist = y;
883 } else {
884 /* Put root on llist. */
885 root->right = llist;
886 llist = root;
887 root = y;
888 }
889 } else
890 break;
891 }
892
893 /*
894 * Pass Two: Walk back up the two spines, flip the pointers
895 * and set max_free. The subtrees of the root go at the
896 * bottom of llist and rlist.
897 */
898 ltree = root->left;
899 while (llist != NULL) {
900 y = llist->right;
901 llist->right = ltree;
902 vm_map_entry_set_max_free(llist);
903 ltree = llist;
904 llist = y;
905 }
906 rtree = root->right;
907 while (rlist != NULL) {
908 y = rlist->left;
909 rlist->left = rtree;
910 vm_map_entry_set_max_free(rlist);
911 rtree = rlist;
912 rlist = y;
913 }
914
915 /*
916 * Final assembly: add ltree and rtree as subtrees of root.
917 */
918 root->left = ltree;
919 root->right = rtree;
920 vm_map_entry_set_max_free(root);
921
922 return (root);
923 }
924
925 /*
926 * vm_map_entry_{un,}link:
927 *
928 * Insert/remove entries from maps.
929 */
930 static void
931 vm_map_entry_link(vm_map_t map,
932 vm_map_entry_t after_where,
933 vm_map_entry_t entry)
934 {
935
936 CTR4(KTR_VM,
937 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
938 map->nentries, entry, after_where);
939 VM_MAP_ASSERT_LOCKED(map);
940 map->nentries++;
941 entry->prev = after_where;
942 entry->next = after_where->next;
943 entry->next->prev = entry;
944 after_where->next = entry;
945
946 if (after_where != &map->header) {
947 if (after_where != map->root)
948 vm_map_entry_splay(after_where->start, map->root);
949 entry->right = after_where->right;
950 entry->left = after_where;
951 after_where->right = NULL;
952 after_where->adj_free = entry->start - after_where->end;
953 vm_map_entry_set_max_free(after_where);
954 } else {
955 entry->right = map->root;
956 entry->left = NULL;
957 }
958 entry->adj_free = (entry->next == &map->header ? map->max_offset :
959 entry->next->start) - entry->end;
960 vm_map_entry_set_max_free(entry);
961 map->root = entry;
962 }
963
964 static void
965 vm_map_entry_unlink(vm_map_t map,
966 vm_map_entry_t entry)
967 {
968 vm_map_entry_t next, prev, root;
969
970 VM_MAP_ASSERT_LOCKED(map);
971 if (entry != map->root)
972 vm_map_entry_splay(entry->start, map->root);
973 if (entry->left == NULL)
974 root = entry->right;
975 else {
976 root = vm_map_entry_splay(entry->start, entry->left);
977 root->right = entry->right;
978 root->adj_free = (entry->next == &map->header ? map->max_offset :
979 entry->next->start) - root->end;
980 vm_map_entry_set_max_free(root);
981 }
982 map->root = root;
983
984 prev = entry->prev;
985 next = entry->next;
986 next->prev = prev;
987 prev->next = next;
988 map->nentries--;
989 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
990 map->nentries, entry);
991 }
992
993 /*
994 * vm_map_entry_resize_free:
995 *
996 * Recompute the amount of free space following a vm_map_entry
997 * and propagate that value up the tree. Call this function after
998 * resizing a map entry in-place, that is, without a call to
999 * vm_map_entry_link() or _unlink().
1000 *
1001 * The map must be locked, and leaves it so.
1002 */
1003 static void
1004 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1005 {
1006
1007 /*
1008 * Using splay trees without parent pointers, propagating
1009 * max_free up the tree is done by moving the entry to the
1010 * root and making the change there.
1011 */
1012 if (entry != map->root)
1013 map->root = vm_map_entry_splay(entry->start, map->root);
1014
1015 entry->adj_free = (entry->next == &map->header ? map->max_offset :
1016 entry->next->start) - entry->end;
1017 vm_map_entry_set_max_free(entry);
1018 }
1019
1020 /*
1021 * vm_map_lookup_entry: [ internal use only ]
1022 *
1023 * Finds the map entry containing (or
1024 * immediately preceding) the specified address
1025 * in the given map; the entry is returned
1026 * in the "entry" parameter. The boolean
1027 * result indicates whether the address is
1028 * actually contained in the map.
1029 */
1030 boolean_t
1031 vm_map_lookup_entry(
1032 vm_map_t map,
1033 vm_offset_t address,
1034 vm_map_entry_t *entry) /* OUT */
1035 {
1036 vm_map_entry_t cur;
1037 boolean_t locked;
1038
1039 /*
1040 * If the map is empty, then the map entry immediately preceding
1041 * "address" is the map's header.
1042 */
1043 cur = map->root;
1044 if (cur == NULL)
1045 *entry = &map->header;
1046 else if (address >= cur->start && cur->end > address) {
1047 *entry = cur;
1048 return (TRUE);
1049 } else if ((locked = vm_map_locked(map)) ||
1050 sx_try_upgrade(&map->lock)) {
1051 /*
1052 * Splay requires a write lock on the map. However, it only
1053 * restructures the binary search tree; it does not otherwise
1054 * change the map. Thus, the map's timestamp need not change
1055 * on a temporary upgrade.
1056 */
1057 map->root = cur = vm_map_entry_splay(address, cur);
1058 if (!locked)
1059 sx_downgrade(&map->lock);
1060
1061 /*
1062 * If "address" is contained within a map entry, the new root
1063 * is that map entry. Otherwise, the new root is a map entry
1064 * immediately before or after "address".
1065 */
1066 if (address >= cur->start) {
1067 *entry = cur;
1068 if (cur->end > address)
1069 return (TRUE);
1070 } else
1071 *entry = cur->prev;
1072 } else
1073 /*
1074 * Since the map is only locked for read access, perform a
1075 * standard binary search tree lookup for "address".
1076 */
1077 for (;;) {
1078 if (address < cur->start) {
1079 if (cur->left == NULL) {
1080 *entry = cur->prev;
1081 break;
1082 }
1083 cur = cur->left;
1084 } else if (cur->end > address) {
1085 *entry = cur;
1086 return (TRUE);
1087 } else {
1088 if (cur->right == NULL) {
1089 *entry = cur;
1090 break;
1091 }
1092 cur = cur->right;
1093 }
1094 }
1095 return (FALSE);
1096 }
1097
1098 /*
1099 * vm_map_insert:
1100 *
1101 * Inserts the given whole VM object into the target
1102 * map at the specified address range. The object's
1103 * size should match that of the address range.
1104 *
1105 * Requires that the map be locked, and leaves it so.
1106 *
1107 * If object is non-NULL, ref count must be bumped by caller
1108 * prior to making call to account for the new entry.
1109 */
1110 int
1111 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1112 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1113 int cow)
1114 {
1115 vm_map_entry_t new_entry;
1116 vm_map_entry_t prev_entry;
1117 vm_map_entry_t temp_entry;
1118 vm_eflags_t protoeflags;
1119 struct ucred *cred;
1120 vm_inherit_t inheritance;
1121 boolean_t charge_prev_obj;
1122
1123 VM_MAP_ASSERT_LOCKED(map);
1124
1125 /*
1126 * Check that the start and end points are not bogus.
1127 */
1128 if ((start < map->min_offset) || (end > map->max_offset) ||
1129 (start >= end))
1130 return (KERN_INVALID_ADDRESS);
1131
1132 /*
1133 * Find the entry prior to the proposed starting address; if it's part
1134 * of an existing entry, this range is bogus.
1135 */
1136 if (vm_map_lookup_entry(map, start, &temp_entry))
1137 return (KERN_NO_SPACE);
1138
1139 prev_entry = temp_entry;
1140
1141 /*
1142 * Assert that the next entry doesn't overlap the end point.
1143 */
1144 if ((prev_entry->next != &map->header) &&
1145 (prev_entry->next->start < end))
1146 return (KERN_NO_SPACE);
1147
1148 protoeflags = 0;
1149 charge_prev_obj = FALSE;
1150
1151 if (cow & MAP_COPY_ON_WRITE)
1152 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1153
1154 if (cow & MAP_NOFAULT) {
1155 protoeflags |= MAP_ENTRY_NOFAULT;
1156
1157 KASSERT(object == NULL,
1158 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1159 }
1160 if (cow & MAP_DISABLE_SYNCER)
1161 protoeflags |= MAP_ENTRY_NOSYNC;
1162 if (cow & MAP_DISABLE_COREDUMP)
1163 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1164 if (cow & MAP_VN_WRITECOUNT)
1165 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1166 if (cow & MAP_INHERIT_SHARE)
1167 inheritance = VM_INHERIT_SHARE;
1168 else
1169 inheritance = VM_INHERIT_DEFAULT;
1170
1171 cred = NULL;
1172 KASSERT((object != kmem_object && object != kernel_object) ||
1173 ((object == kmem_object || object == kernel_object) &&
1174 !(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1175 ("kmem or kernel object and cow"));
1176 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1177 goto charged;
1178 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1179 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1180 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1181 return (KERN_RESOURCE_SHORTAGE);
1182 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1183 object->cred == NULL,
1184 ("OVERCOMMIT: vm_map_insert o %p", object));
1185 cred = curthread->td_ucred;
1186 crhold(cred);
1187 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1188 charge_prev_obj = TRUE;
1189 }
1190
1191 charged:
1192 /* Expand the kernel pmap, if necessary. */
1193 if (map == kernel_map && end > kernel_vm_end)
1194 pmap_growkernel(end);
1195 if (object != NULL) {
1196 /*
1197 * OBJ_ONEMAPPING must be cleared unless this mapping
1198 * is trivially proven to be the only mapping for any
1199 * of the object's pages. (Object granularity
1200 * reference counting is insufficient to recognize
1201 * aliases with precision.)
1202 */
1203 VM_OBJECT_WLOCK(object);
1204 if (object->ref_count > 1 || object->shadow_count != 0)
1205 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1206 VM_OBJECT_WUNLOCK(object);
1207 }
1208 else if ((prev_entry != &map->header) &&
1209 (prev_entry->eflags == protoeflags) &&
1210 (cow & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) == 0 &&
1211 (prev_entry->end == start) &&
1212 (prev_entry->wired_count == 0) &&
1213 (prev_entry->cred == cred ||
1214 (prev_entry->object.vm_object != NULL &&
1215 (prev_entry->object.vm_object->cred == cred))) &&
1216 vm_object_coalesce(prev_entry->object.vm_object,
1217 prev_entry->offset,
1218 (vm_size_t)(prev_entry->end - prev_entry->start),
1219 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1220 /*
1221 * We were able to extend the object. Determine if we
1222 * can extend the previous map entry to include the
1223 * new range as well.
1224 */
1225 if ((prev_entry->inheritance == inheritance) &&
1226 (prev_entry->protection == prot) &&
1227 (prev_entry->max_protection == max)) {
1228 map->size += (end - prev_entry->end);
1229 prev_entry->end = end;
1230 vm_map_entry_resize_free(map, prev_entry);
1231 vm_map_simplify_entry(map, prev_entry);
1232 if (cred != NULL)
1233 crfree(cred);
1234 return (KERN_SUCCESS);
1235 }
1236
1237 /*
1238 * If we can extend the object but cannot extend the
1239 * map entry, we have to create a new map entry. We
1240 * must bump the ref count on the extended object to
1241 * account for it. object may be NULL.
1242 */
1243 object = prev_entry->object.vm_object;
1244 offset = prev_entry->offset +
1245 (prev_entry->end - prev_entry->start);
1246 vm_object_reference(object);
1247 if (cred != NULL && object != NULL && object->cred != NULL &&
1248 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1249 /* Object already accounts for this uid. */
1250 crfree(cred);
1251 cred = NULL;
1252 }
1253 }
1254
1255 /*
1256 * NOTE: if conditionals fail, object can be NULL here. This occurs
1257 * in things like the buffer map where we manage kva but do not manage
1258 * backing objects.
1259 */
1260
1261 /*
1262 * Create a new entry
1263 */
1264 new_entry = vm_map_entry_create(map);
1265 new_entry->start = start;
1266 new_entry->end = end;
1267 new_entry->cred = NULL;
1268
1269 new_entry->eflags = protoeflags;
1270 new_entry->object.vm_object = object;
1271 new_entry->offset = offset;
1272 new_entry->avail_ssize = 0;
1273
1274 new_entry->inheritance = inheritance;
1275 new_entry->protection = prot;
1276 new_entry->max_protection = max;
1277 new_entry->wired_count = 0;
1278 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1279 new_entry->next_read = OFF_TO_IDX(offset);
1280
1281 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1282 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1283 new_entry->cred = cred;
1284
1285 /*
1286 * Insert the new entry into the list
1287 */
1288 vm_map_entry_link(map, prev_entry, new_entry);
1289 map->size += new_entry->end - new_entry->start;
1290
1291 /*
1292 * It may be possible to merge the new entry with the next and/or
1293 * previous entries. However, due to MAP_STACK_* being a hack, a
1294 * panic can result from merging such entries.
1295 */
1296 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1297 vm_map_simplify_entry(map, new_entry);
1298
1299 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1300 vm_map_pmap_enter(map, start, prot,
1301 object, OFF_TO_IDX(offset), end - start,
1302 cow & MAP_PREFAULT_PARTIAL);
1303 }
1304
1305 return (KERN_SUCCESS);
1306 }
1307
1308 /*
1309 * vm_map_findspace:
1310 *
1311 * Find the first fit (lowest VM address) for "length" free bytes
1312 * beginning at address >= start in the given map.
1313 *
1314 * In a vm_map_entry, "adj_free" is the amount of free space
1315 * adjacent (higher address) to this entry, and "max_free" is the
1316 * maximum amount of contiguous free space in its subtree. This
1317 * allows finding a free region in one path down the tree, so
1318 * O(log n) amortized with splay trees.
1319 *
1320 * The map must be locked, and leaves it so.
1321 *
1322 * Returns: 0 on success, and starting address in *addr,
1323 * 1 if insufficient space.
1324 */
1325 int
1326 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1327 vm_offset_t *addr) /* OUT */
1328 {
1329 vm_map_entry_t entry;
1330 vm_offset_t st;
1331
1332 /*
1333 * Request must fit within min/max VM address and must avoid
1334 * address wrap.
1335 */
1336 if (start < map->min_offset)
1337 start = map->min_offset;
1338 if (start + length > map->max_offset || start + length < start)
1339 return (1);
1340
1341 /* Empty tree means wide open address space. */
1342 if (map->root == NULL) {
1343 *addr = start;
1344 return (0);
1345 }
1346
1347 /*
1348 * After splay, if start comes before root node, then there
1349 * must be a gap from start to the root.
1350 */
1351 map->root = vm_map_entry_splay(start, map->root);
1352 if (start + length <= map->root->start) {
1353 *addr = start;
1354 return (0);
1355 }
1356
1357 /*
1358 * Root is the last node that might begin its gap before
1359 * start, and this is the last comparison where address
1360 * wrap might be a problem.
1361 */
1362 st = (start > map->root->end) ? start : map->root->end;
1363 if (length <= map->root->end + map->root->adj_free - st) {
1364 *addr = st;
1365 return (0);
1366 }
1367
1368 /* With max_free, can immediately tell if no solution. */
1369 entry = map->root->right;
1370 if (entry == NULL || length > entry->max_free)
1371 return (1);
1372
1373 /*
1374 * Search the right subtree in the order: left subtree, root,
1375 * right subtree (first fit). The previous splay implies that
1376 * all regions in the right subtree have addresses > start.
1377 */
1378 while (entry != NULL) {
1379 if (entry->left != NULL && entry->left->max_free >= length)
1380 entry = entry->left;
1381 else if (entry->adj_free >= length) {
1382 *addr = entry->end;
1383 return (0);
1384 } else
1385 entry = entry->right;
1386 }
1387
1388 /* Can't get here, so panic if we do. */
1389 panic("vm_map_findspace: max_free corrupt");
1390 }
1391
1392 int
1393 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1394 vm_offset_t start, vm_size_t length, vm_prot_t prot,
1395 vm_prot_t max, int cow)
1396 {
1397 vm_offset_t end;
1398 int result;
1399
1400 end = start + length;
1401 vm_map_lock(map);
1402 VM_MAP_RANGE_CHECK(map, start, end);
1403 (void) vm_map_delete(map, start, end);
1404 result = vm_map_insert(map, object, offset, start, end, prot,
1405 max, cow);
1406 vm_map_unlock(map);
1407 return (result);
1408 }
1409
1410 /*
1411 * vm_map_find finds an unallocated region in the target address
1412 * map with the given length. The search is defined to be
1413 * first-fit from the specified address; the region found is
1414 * returned in the same parameter.
1415 *
1416 * If object is non-NULL, ref count must be bumped by caller
1417 * prior to making call to account for the new entry.
1418 */
1419 int
1420 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1421 vm_offset_t *addr, /* IN/OUT */
1422 vm_size_t length, vm_offset_t max_addr, int find_space,
1423 vm_prot_t prot, vm_prot_t max, int cow)
1424 {
1425 vm_offset_t alignment, initial_addr, start;
1426 int result;
1427
1428 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1429 (object->flags & OBJ_COLORED) == 0))
1430 find_space = VMFS_ANY_SPACE;
1431 if (find_space >> 8 != 0) {
1432 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1433 alignment = (vm_offset_t)1 << (find_space >> 8);
1434 } else
1435 alignment = 0;
1436 initial_addr = *addr;
1437 again:
1438 start = initial_addr;
1439 vm_map_lock(map);
1440 do {
1441 if (find_space != VMFS_NO_SPACE) {
1442 if (vm_map_findspace(map, start, length, addr) ||
1443 (max_addr != 0 && *addr + length > max_addr)) {
1444 vm_map_unlock(map);
1445 if (find_space == VMFS_OPTIMAL_SPACE) {
1446 find_space = VMFS_ANY_SPACE;
1447 goto again;
1448 }
1449 return (KERN_NO_SPACE);
1450 }
1451 switch (find_space) {
1452 case VMFS_SUPER_SPACE:
1453 case VMFS_OPTIMAL_SPACE:
1454 pmap_align_superpage(object, offset, addr,
1455 length);
1456 break;
1457 case VMFS_ANY_SPACE:
1458 break;
1459 default:
1460 if ((*addr & (alignment - 1)) != 0) {
1461 *addr &= ~(alignment - 1);
1462 *addr += alignment;
1463 }
1464 break;
1465 }
1466
1467 start = *addr;
1468 }
1469 result = vm_map_insert(map, object, offset, start, start +
1470 length, prot, max, cow);
1471 } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1472 find_space != VMFS_ANY_SPACE);
1473 vm_map_unlock(map);
1474 return (result);
1475 }
1476
1477 /*
1478 * vm_map_simplify_entry:
1479 *
1480 * Simplify the given map entry by merging with either neighbor. This
1481 * routine also has the ability to merge with both neighbors.
1482 *
1483 * The map must be locked.
1484 *
1485 * This routine guarentees that the passed entry remains valid (though
1486 * possibly extended). When merging, this routine may delete one or
1487 * both neighbors.
1488 */
1489 void
1490 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1491 {
1492 vm_map_entry_t next, prev;
1493 vm_size_t prevsize, esize;
1494
1495 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1496 return;
1497
1498 prev = entry->prev;
1499 if (prev != &map->header) {
1500 prevsize = prev->end - prev->start;
1501 if ( (prev->end == entry->start) &&
1502 (prev->object.vm_object == entry->object.vm_object) &&
1503 (!prev->object.vm_object ||
1504 (prev->offset + prevsize == entry->offset)) &&
1505 (prev->eflags == entry->eflags) &&
1506 (prev->protection == entry->protection) &&
1507 (prev->max_protection == entry->max_protection) &&
1508 (prev->inheritance == entry->inheritance) &&
1509 (prev->wired_count == entry->wired_count) &&
1510 (prev->cred == entry->cred)) {
1511 vm_map_entry_unlink(map, prev);
1512 entry->start = prev->start;
1513 entry->offset = prev->offset;
1514 if (entry->prev != &map->header)
1515 vm_map_entry_resize_free(map, entry->prev);
1516
1517 /*
1518 * If the backing object is a vnode object,
1519 * vm_object_deallocate() calls vrele().
1520 * However, vrele() does not lock the vnode
1521 * because the vnode has additional
1522 * references. Thus, the map lock can be kept
1523 * without causing a lock-order reversal with
1524 * the vnode lock.
1525 *
1526 * Since we count the number of virtual page
1527 * mappings in object->un_pager.vnp.writemappings,
1528 * the writemappings value should not be adjusted
1529 * when the entry is disposed of.
1530 */
1531 if (prev->object.vm_object)
1532 vm_object_deallocate(prev->object.vm_object);
1533 if (prev->cred != NULL)
1534 crfree(prev->cred);
1535 vm_map_entry_dispose(map, prev);
1536 }
1537 }
1538
1539 next = entry->next;
1540 if (next != &map->header) {
1541 esize = entry->end - entry->start;
1542 if ((entry->end == next->start) &&
1543 (next->object.vm_object == entry->object.vm_object) &&
1544 (!entry->object.vm_object ||
1545 (entry->offset + esize == next->offset)) &&
1546 (next->eflags == entry->eflags) &&
1547 (next->protection == entry->protection) &&
1548 (next->max_protection == entry->max_protection) &&
1549 (next->inheritance == entry->inheritance) &&
1550 (next->wired_count == entry->wired_count) &&
1551 (next->cred == entry->cred)) {
1552 vm_map_entry_unlink(map, next);
1553 entry->end = next->end;
1554 vm_map_entry_resize_free(map, entry);
1555
1556 /*
1557 * See comment above.
1558 */
1559 if (next->object.vm_object)
1560 vm_object_deallocate(next->object.vm_object);
1561 if (next->cred != NULL)
1562 crfree(next->cred);
1563 vm_map_entry_dispose(map, next);
1564 }
1565 }
1566 }
1567 /*
1568 * vm_map_clip_start: [ internal use only ]
1569 *
1570 * Asserts that the given entry begins at or after
1571 * the specified address; if necessary,
1572 * it splits the entry into two.
1573 */
1574 #define vm_map_clip_start(map, entry, startaddr) \
1575 { \
1576 if (startaddr > entry->start) \
1577 _vm_map_clip_start(map, entry, startaddr); \
1578 }
1579
1580 /*
1581 * This routine is called only when it is known that
1582 * the entry must be split.
1583 */
1584 static void
1585 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1586 {
1587 vm_map_entry_t new_entry;
1588
1589 VM_MAP_ASSERT_LOCKED(map);
1590
1591 /*
1592 * Split off the front portion -- note that we must insert the new
1593 * entry BEFORE this one, so that this entry has the specified
1594 * starting address.
1595 */
1596 vm_map_simplify_entry(map, entry);
1597
1598 /*
1599 * If there is no object backing this entry, we might as well create
1600 * one now. If we defer it, an object can get created after the map
1601 * is clipped, and individual objects will be created for the split-up
1602 * map. This is a bit of a hack, but is also about the best place to
1603 * put this improvement.
1604 */
1605 if (entry->object.vm_object == NULL && !map->system_map) {
1606 vm_object_t object;
1607 object = vm_object_allocate(OBJT_DEFAULT,
1608 atop(entry->end - entry->start));
1609 entry->object.vm_object = object;
1610 entry->offset = 0;
1611 if (entry->cred != NULL) {
1612 object->cred = entry->cred;
1613 object->charge = entry->end - entry->start;
1614 entry->cred = NULL;
1615 }
1616 } else if (entry->object.vm_object != NULL &&
1617 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1618 entry->cred != NULL) {
1619 VM_OBJECT_WLOCK(entry->object.vm_object);
1620 KASSERT(entry->object.vm_object->cred == NULL,
1621 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1622 entry->object.vm_object->cred = entry->cred;
1623 entry->object.vm_object->charge = entry->end - entry->start;
1624 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1625 entry->cred = NULL;
1626 }
1627
1628 new_entry = vm_map_entry_create(map);
1629 *new_entry = *entry;
1630
1631 new_entry->end = start;
1632 entry->offset += (start - entry->start);
1633 entry->start = start;
1634 if (new_entry->cred != NULL)
1635 crhold(entry->cred);
1636
1637 vm_map_entry_link(map, entry->prev, new_entry);
1638
1639 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1640 vm_object_reference(new_entry->object.vm_object);
1641 /*
1642 * The object->un_pager.vnp.writemappings for the
1643 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1644 * kept as is here. The virtual pages are
1645 * re-distributed among the clipped entries, so the sum is
1646 * left the same.
1647 */
1648 }
1649 }
1650
1651 /*
1652 * vm_map_clip_end: [ internal use only ]
1653 *
1654 * Asserts that the given entry ends at or before
1655 * the specified address; if necessary,
1656 * it splits the entry into two.
1657 */
1658 #define vm_map_clip_end(map, entry, endaddr) \
1659 { \
1660 if ((endaddr) < (entry->end)) \
1661 _vm_map_clip_end((map), (entry), (endaddr)); \
1662 }
1663
1664 /*
1665 * This routine is called only when it is known that
1666 * the entry must be split.
1667 */
1668 static void
1669 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1670 {
1671 vm_map_entry_t new_entry;
1672
1673 VM_MAP_ASSERT_LOCKED(map);
1674
1675 /*
1676 * If there is no object backing this entry, we might as well create
1677 * one now. If we defer it, an object can get created after the map
1678 * is clipped, and individual objects will be created for the split-up
1679 * map. This is a bit of a hack, but is also about the best place to
1680 * put this improvement.
1681 */
1682 if (entry->object.vm_object == NULL && !map->system_map) {
1683 vm_object_t object;
1684 object = vm_object_allocate(OBJT_DEFAULT,
1685 atop(entry->end - entry->start));
1686 entry->object.vm_object = object;
1687 entry->offset = 0;
1688 if (entry->cred != NULL) {
1689 object->cred = entry->cred;
1690 object->charge = entry->end - entry->start;
1691 entry->cred = NULL;
1692 }
1693 } else if (entry->object.vm_object != NULL &&
1694 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1695 entry->cred != NULL) {
1696 VM_OBJECT_WLOCK(entry->object.vm_object);
1697 KASSERT(entry->object.vm_object->cred == NULL,
1698 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1699 entry->object.vm_object->cred = entry->cred;
1700 entry->object.vm_object->charge = entry->end - entry->start;
1701 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1702 entry->cred = NULL;
1703 }
1704
1705 /*
1706 * Create a new entry and insert it AFTER the specified entry
1707 */
1708 new_entry = vm_map_entry_create(map);
1709 *new_entry = *entry;
1710
1711 new_entry->start = entry->end = end;
1712 new_entry->offset += (end - entry->start);
1713 if (new_entry->cred != NULL)
1714 crhold(entry->cred);
1715
1716 vm_map_entry_link(map, entry, new_entry);
1717
1718 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1719 vm_object_reference(new_entry->object.vm_object);
1720 }
1721 }
1722
1723 /*
1724 * vm_map_submap: [ kernel use only ]
1725 *
1726 * Mark the given range as handled by a subordinate map.
1727 *
1728 * This range must have been created with vm_map_find,
1729 * and no other operations may have been performed on this
1730 * range prior to calling vm_map_submap.
1731 *
1732 * Only a limited number of operations can be performed
1733 * within this rage after calling vm_map_submap:
1734 * vm_fault
1735 * [Don't try vm_map_copy!]
1736 *
1737 * To remove a submapping, one must first remove the
1738 * range from the superior map, and then destroy the
1739 * submap (if desired). [Better yet, don't try it.]
1740 */
1741 int
1742 vm_map_submap(
1743 vm_map_t map,
1744 vm_offset_t start,
1745 vm_offset_t end,
1746 vm_map_t submap)
1747 {
1748 vm_map_entry_t entry;
1749 int result = KERN_INVALID_ARGUMENT;
1750
1751 vm_map_lock(map);
1752
1753 VM_MAP_RANGE_CHECK(map, start, end);
1754
1755 if (vm_map_lookup_entry(map, start, &entry)) {
1756 vm_map_clip_start(map, entry, start);
1757 } else
1758 entry = entry->next;
1759
1760 vm_map_clip_end(map, entry, end);
1761
1762 if ((entry->start == start) && (entry->end == end) &&
1763 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1764 (entry->object.vm_object == NULL)) {
1765 entry->object.sub_map = submap;
1766 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1767 result = KERN_SUCCESS;
1768 }
1769 vm_map_unlock(map);
1770
1771 return (result);
1772 }
1773
1774 /*
1775 * The maximum number of pages to map
1776 */
1777 #define MAX_INIT_PT 96
1778
1779 /*
1780 * vm_map_pmap_enter:
1781 *
1782 * Preload read-only mappings for the specified object's resident pages
1783 * into the target map. If "flags" is MAP_PREFAULT_PARTIAL, then only
1784 * the resident pages within the address range [addr, addr + ulmin(size,
1785 * ptoa(MAX_INIT_PT))) are mapped. Otherwise, all resident pages within
1786 * the specified address range are mapped. This eliminates many soft
1787 * faults on process startup and immediately after an mmap(2). Because
1788 * these are speculative mappings, cached pages are not reactivated and
1789 * mapped.
1790 */
1791 void
1792 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1793 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1794 {
1795 vm_offset_t start;
1796 vm_page_t p, p_start;
1797 vm_pindex_t psize, tmpidx;
1798
1799 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1800 return;
1801 VM_OBJECT_RLOCK(object);
1802 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1803 VM_OBJECT_RUNLOCK(object);
1804 VM_OBJECT_WLOCK(object);
1805 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1806 pmap_object_init_pt(map->pmap, addr, object, pindex,
1807 size);
1808 VM_OBJECT_WUNLOCK(object);
1809 return;
1810 }
1811 VM_OBJECT_LOCK_DOWNGRADE(object);
1812 }
1813
1814 psize = atop(size);
1815 if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1816 psize = MAX_INIT_PT;
1817 if (psize + pindex > object->size) {
1818 if (object->size < pindex) {
1819 VM_OBJECT_RUNLOCK(object);
1820 return;
1821 }
1822 psize = object->size - pindex;
1823 }
1824
1825 start = 0;
1826 p_start = NULL;
1827
1828 p = vm_page_find_least(object, pindex);
1829 /*
1830 * Assert: the variable p is either (1) the page with the
1831 * least pindex greater than or equal to the parameter pindex
1832 * or (2) NULL.
1833 */
1834 for (;
1835 p != NULL && (tmpidx = p->pindex - pindex) < psize;
1836 p = TAILQ_NEXT(p, listq)) {
1837 /*
1838 * don't allow an madvise to blow away our really
1839 * free pages allocating pv entries.
1840 */
1841 if ((flags & MAP_PREFAULT_MADVISE) &&
1842 cnt.v_free_count < cnt.v_free_reserved) {
1843 psize = tmpidx;
1844 break;
1845 }
1846 if (p->valid == VM_PAGE_BITS_ALL) {
1847 if (p_start == NULL) {
1848 start = addr + ptoa(tmpidx);
1849 p_start = p;
1850 }
1851 } else if (p_start != NULL) {
1852 pmap_enter_object(map->pmap, start, addr +
1853 ptoa(tmpidx), p_start, prot);
1854 p_start = NULL;
1855 }
1856 }
1857 if (p_start != NULL)
1858 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1859 p_start, prot);
1860 VM_OBJECT_RUNLOCK(object);
1861 }
1862
1863 /*
1864 * vm_map_protect:
1865 *
1866 * Sets the protection of the specified address
1867 * region in the target map. If "set_max" is
1868 * specified, the maximum protection is to be set;
1869 * otherwise, only the current protection is affected.
1870 */
1871 int
1872 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1873 vm_prot_t new_prot, boolean_t set_max)
1874 {
1875 vm_map_entry_t current, entry;
1876 vm_object_t obj;
1877 struct ucred *cred;
1878 vm_prot_t old_prot;
1879
1880 vm_map_lock(map);
1881
1882 VM_MAP_RANGE_CHECK(map, start, end);
1883
1884 if (vm_map_lookup_entry(map, start, &entry)) {
1885 vm_map_clip_start(map, entry, start);
1886 } else {
1887 entry = entry->next;
1888 }
1889
1890 /*
1891 * Make a first pass to check for protection violations.
1892 */
1893 current = entry;
1894 while ((current != &map->header) && (current->start < end)) {
1895 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1896 vm_map_unlock(map);
1897 return (KERN_INVALID_ARGUMENT);
1898 }
1899 if ((new_prot & current->max_protection) != new_prot) {
1900 vm_map_unlock(map);
1901 return (KERN_PROTECTION_FAILURE);
1902 }
1903 current = current->next;
1904 }
1905
1906
1907 /*
1908 * Do an accounting pass for private read-only mappings that
1909 * now will do cow due to allowed write (e.g. debugger sets
1910 * breakpoint on text segment)
1911 */
1912 for (current = entry; (current != &map->header) &&
1913 (current->start < end); current = current->next) {
1914
1915 vm_map_clip_end(map, current, end);
1916
1917 if (set_max ||
1918 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1919 ENTRY_CHARGED(current)) {
1920 continue;
1921 }
1922
1923 cred = curthread->td_ucred;
1924 obj = current->object.vm_object;
1925
1926 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1927 if (!swap_reserve(current->end - current->start)) {
1928 vm_map_unlock(map);
1929 return (KERN_RESOURCE_SHORTAGE);
1930 }
1931 crhold(cred);
1932 current->cred = cred;
1933 continue;
1934 }
1935
1936 VM_OBJECT_WLOCK(obj);
1937 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1938 VM_OBJECT_WUNLOCK(obj);
1939 continue;
1940 }
1941
1942 /*
1943 * Charge for the whole object allocation now, since
1944 * we cannot distinguish between non-charged and
1945 * charged clipped mapping of the same object later.
1946 */
1947 KASSERT(obj->charge == 0,
1948 ("vm_map_protect: object %p overcharged\n", obj));
1949 if (!swap_reserve(ptoa(obj->size))) {
1950 VM_OBJECT_WUNLOCK(obj);
1951 vm_map_unlock(map);
1952 return (KERN_RESOURCE_SHORTAGE);
1953 }
1954
1955 crhold(cred);
1956 obj->cred = cred;
1957 obj->charge = ptoa(obj->size);
1958 VM_OBJECT_WUNLOCK(obj);
1959 }
1960
1961 /*
1962 * Go back and fix up protections. [Note that clipping is not
1963 * necessary the second time.]
1964 */
1965 current = entry;
1966 while ((current != &map->header) && (current->start < end)) {
1967 old_prot = current->protection;
1968
1969 if (set_max)
1970 current->protection =
1971 (current->max_protection = new_prot) &
1972 old_prot;
1973 else
1974 current->protection = new_prot;
1975
1976 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1977 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1978 (current->protection & VM_PROT_WRITE) != 0 &&
1979 (old_prot & VM_PROT_WRITE) == 0) {
1980 vm_fault_copy_entry(map, map, current, current, NULL);
1981 }
1982
1983 /*
1984 * When restricting access, update the physical map. Worry
1985 * about copy-on-write here.
1986 */
1987 if ((old_prot & ~current->protection) != 0) {
1988 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1989 VM_PROT_ALL)
1990 pmap_protect(map->pmap, current->start,
1991 current->end,
1992 current->protection & MASK(current));
1993 #undef MASK
1994 }
1995 vm_map_simplify_entry(map, current);
1996 current = current->next;
1997 }
1998 vm_map_unlock(map);
1999 return (KERN_SUCCESS);
2000 }
2001
2002 /*
2003 * vm_map_madvise:
2004 *
2005 * This routine traverses a processes map handling the madvise
2006 * system call. Advisories are classified as either those effecting
2007 * the vm_map_entry structure, or those effecting the underlying
2008 * objects.
2009 */
2010 int
2011 vm_map_madvise(
2012 vm_map_t map,
2013 vm_offset_t start,
2014 vm_offset_t end,
2015 int behav)
2016 {
2017 vm_map_entry_t current, entry;
2018 int modify_map = 0;
2019
2020 /*
2021 * Some madvise calls directly modify the vm_map_entry, in which case
2022 * we need to use an exclusive lock on the map and we need to perform
2023 * various clipping operations. Otherwise we only need a read-lock
2024 * on the map.
2025 */
2026 switch(behav) {
2027 case MADV_NORMAL:
2028 case MADV_SEQUENTIAL:
2029 case MADV_RANDOM:
2030 case MADV_NOSYNC:
2031 case MADV_AUTOSYNC:
2032 case MADV_NOCORE:
2033 case MADV_CORE:
2034 modify_map = 1;
2035 vm_map_lock(map);
2036 break;
2037 case MADV_WILLNEED:
2038 case MADV_DONTNEED:
2039 case MADV_FREE:
2040 vm_map_lock_read(map);
2041 break;
2042 default:
2043 return (KERN_INVALID_ARGUMENT);
2044 }
2045
2046 /*
2047 * Locate starting entry and clip if necessary.
2048 */
2049 VM_MAP_RANGE_CHECK(map, start, end);
2050
2051 if (vm_map_lookup_entry(map, start, &entry)) {
2052 if (modify_map)
2053 vm_map_clip_start(map, entry, start);
2054 } else {
2055 entry = entry->next;
2056 }
2057
2058 if (modify_map) {
2059 /*
2060 * madvise behaviors that are implemented in the vm_map_entry.
2061 *
2062 * We clip the vm_map_entry so that behavioral changes are
2063 * limited to the specified address range.
2064 */
2065 for (current = entry;
2066 (current != &map->header) && (current->start < end);
2067 current = current->next
2068 ) {
2069 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2070 continue;
2071
2072 vm_map_clip_end(map, current, end);
2073
2074 switch (behav) {
2075 case MADV_NORMAL:
2076 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2077 break;
2078 case MADV_SEQUENTIAL:
2079 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2080 break;
2081 case MADV_RANDOM:
2082 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2083 break;
2084 case MADV_NOSYNC:
2085 current->eflags |= MAP_ENTRY_NOSYNC;
2086 break;
2087 case MADV_AUTOSYNC:
2088 current->eflags &= ~MAP_ENTRY_NOSYNC;
2089 break;
2090 case MADV_NOCORE:
2091 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2092 break;
2093 case MADV_CORE:
2094 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2095 break;
2096 default:
2097 break;
2098 }
2099 vm_map_simplify_entry(map, current);
2100 }
2101 vm_map_unlock(map);
2102 } else {
2103 vm_pindex_t pstart, pend;
2104
2105 /*
2106 * madvise behaviors that are implemented in the underlying
2107 * vm_object.
2108 *
2109 * Since we don't clip the vm_map_entry, we have to clip
2110 * the vm_object pindex and count.
2111 */
2112 for (current = entry;
2113 (current != &map->header) && (current->start < end);
2114 current = current->next
2115 ) {
2116 vm_offset_t useEnd, useStart;
2117
2118 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2119 continue;
2120
2121 pstart = OFF_TO_IDX(current->offset);
2122 pend = pstart + atop(current->end - current->start);
2123 useStart = current->start;
2124 useEnd = current->end;
2125
2126 if (current->start < start) {
2127 pstart += atop(start - current->start);
2128 useStart = start;
2129 }
2130 if (current->end > end) {
2131 pend -= atop(current->end - end);
2132 useEnd = end;
2133 }
2134
2135 if (pstart >= pend)
2136 continue;
2137
2138 /*
2139 * Perform the pmap_advise() before clearing
2140 * PGA_REFERENCED in vm_page_advise(). Otherwise, a
2141 * concurrent pmap operation, such as pmap_remove(),
2142 * could clear a reference in the pmap and set
2143 * PGA_REFERENCED on the page before the pmap_advise()
2144 * had completed. Consequently, the page would appear
2145 * referenced based upon an old reference that
2146 * occurred before this pmap_advise() ran.
2147 */
2148 if (behav == MADV_DONTNEED || behav == MADV_FREE)
2149 pmap_advise(map->pmap, useStart, useEnd,
2150 behav);
2151
2152 vm_object_madvise(current->object.vm_object, pstart,
2153 pend, behav);
2154 if (behav == MADV_WILLNEED) {
2155 vm_map_pmap_enter(map,
2156 useStart,
2157 current->protection,
2158 current->object.vm_object,
2159 pstart,
2160 ptoa(pend - pstart),
2161 MAP_PREFAULT_MADVISE
2162 );
2163 }
2164 }
2165 vm_map_unlock_read(map);
2166 }
2167 return (0);
2168 }
2169
2170
2171 /*
2172 * vm_map_inherit:
2173 *
2174 * Sets the inheritance of the specified address
2175 * range in the target map. Inheritance
2176 * affects how the map will be shared with
2177 * child maps at the time of vmspace_fork.
2178 */
2179 int
2180 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2181 vm_inherit_t new_inheritance)
2182 {
2183 vm_map_entry_t entry;
2184 vm_map_entry_t temp_entry;
2185
2186 switch (new_inheritance) {
2187 case VM_INHERIT_NONE:
2188 case VM_INHERIT_COPY:
2189 case VM_INHERIT_SHARE:
2190 break;
2191 default:
2192 return (KERN_INVALID_ARGUMENT);
2193 }
2194 vm_map_lock(map);
2195 VM_MAP_RANGE_CHECK(map, start, end);
2196 if (vm_map_lookup_entry(map, start, &temp_entry)) {
2197 entry = temp_entry;
2198 vm_map_clip_start(map, entry, start);
2199 } else
2200 entry = temp_entry->next;
2201 while ((entry != &map->header) && (entry->start < end)) {
2202 vm_map_clip_end(map, entry, end);
2203 entry->inheritance = new_inheritance;
2204 vm_map_simplify_entry(map, entry);
2205 entry = entry->next;
2206 }
2207 vm_map_unlock(map);
2208 return (KERN_SUCCESS);
2209 }
2210
2211 /*
2212 * vm_map_unwire:
2213 *
2214 * Implements both kernel and user unwiring.
2215 */
2216 int
2217 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2218 int flags)
2219 {
2220 vm_map_entry_t entry, first_entry, tmp_entry;
2221 vm_offset_t saved_start;
2222 unsigned int last_timestamp;
2223 int rv;
2224 boolean_t need_wakeup, result, user_unwire;
2225
2226 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2227 vm_map_lock(map);
2228 VM_MAP_RANGE_CHECK(map, start, end);
2229 if (!vm_map_lookup_entry(map, start, &first_entry)) {
2230 if (flags & VM_MAP_WIRE_HOLESOK)
2231 first_entry = first_entry->next;
2232 else {
2233 vm_map_unlock(map);
2234 return (KERN_INVALID_ADDRESS);
2235 }
2236 }
2237 last_timestamp = map->timestamp;
2238 entry = first_entry;
2239 while (entry != &map->header && entry->start < end) {
2240 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2241 /*
2242 * We have not yet clipped the entry.
2243 */
2244 saved_start = (start >= entry->start) ? start :
2245 entry->start;
2246 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2247 if (vm_map_unlock_and_wait(map, 0)) {
2248 /*
2249 * Allow interruption of user unwiring?
2250 */
2251 }
2252 vm_map_lock(map);
2253 if (last_timestamp+1 != map->timestamp) {
2254 /*
2255 * Look again for the entry because the map was
2256 * modified while it was unlocked.
2257 * Specifically, the entry may have been
2258 * clipped, merged, or deleted.
2259 */
2260 if (!vm_map_lookup_entry(map, saved_start,
2261 &tmp_entry)) {
2262 if (flags & VM_MAP_WIRE_HOLESOK)
2263 tmp_entry = tmp_entry->next;
2264 else {
2265 if (saved_start == start) {
2266 /*
2267 * First_entry has been deleted.
2268 */
2269 vm_map_unlock(map);
2270 return (KERN_INVALID_ADDRESS);
2271 }
2272 end = saved_start;
2273 rv = KERN_INVALID_ADDRESS;
2274 goto done;
2275 }
2276 }
2277 if (entry == first_entry)
2278 first_entry = tmp_entry;
2279 else
2280 first_entry = NULL;
2281 entry = tmp_entry;
2282 }
2283 last_timestamp = map->timestamp;
2284 continue;
2285 }
2286 vm_map_clip_start(map, entry, start);
2287 vm_map_clip_end(map, entry, end);
2288 /*
2289 * Mark the entry in case the map lock is released. (See
2290 * above.)
2291 */
2292 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2293 entry->wiring_thread = curthread;
2294 /*
2295 * Check the map for holes in the specified region.
2296 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2297 */
2298 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2299 (entry->end < end && (entry->next == &map->header ||
2300 entry->next->start > entry->end))) {
2301 end = entry->end;
2302 rv = KERN_INVALID_ADDRESS;
2303 goto done;
2304 }
2305 /*
2306 * If system unwiring, require that the entry is system wired.
2307 */
2308 if (!user_unwire &&
2309 vm_map_entry_system_wired_count(entry) == 0) {
2310 end = entry->end;
2311 rv = KERN_INVALID_ARGUMENT;
2312 goto done;
2313 }
2314 entry = entry->next;
2315 }
2316 rv = KERN_SUCCESS;
2317 done:
2318 need_wakeup = FALSE;
2319 if (first_entry == NULL) {
2320 result = vm_map_lookup_entry(map, start, &first_entry);
2321 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2322 first_entry = first_entry->next;
2323 else
2324 KASSERT(result, ("vm_map_unwire: lookup failed"));
2325 }
2326 for (entry = first_entry; entry != &map->header && entry->start < end;
2327 entry = entry->next) {
2328 /*
2329 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2330 * space in the unwired region could have been mapped
2331 * while the map lock was dropped for draining
2332 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread
2333 * could be simultaneously wiring this new mapping
2334 * entry. Detect these cases and skip any entries
2335 * marked as in transition by us.
2336 */
2337 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2338 entry->wiring_thread != curthread) {
2339 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2340 ("vm_map_unwire: !HOLESOK and new/changed entry"));
2341 continue;
2342 }
2343
2344 if (rv == KERN_SUCCESS && (!user_unwire ||
2345 (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2346 if (user_unwire)
2347 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2348 entry->wired_count--;
2349 if (entry->wired_count == 0) {
2350 /*
2351 * Retain the map lock.
2352 */
2353 vm_fault_unwire(map, entry->start, entry->end,
2354 entry->object.vm_object != NULL &&
2355 (entry->object.vm_object->flags &
2356 OBJ_FICTITIOUS) != 0);
2357 }
2358 }
2359 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2360 ("vm_map_unwire: in-transition flag missing"));
2361 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2362 entry->wiring_thread = NULL;
2363 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2364 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2365 need_wakeup = TRUE;
2366 }
2367 vm_map_simplify_entry(map, entry);
2368 }
2369 vm_map_unlock(map);
2370 if (need_wakeup)
2371 vm_map_wakeup(map);
2372 return (rv);
2373 }
2374
2375 /*
2376 * vm_map_wire:
2377 *
2378 * Implements both kernel and user wiring.
2379 */
2380 int
2381 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2382 int flags)
2383 {
2384 vm_map_entry_t entry, first_entry, tmp_entry;
2385 vm_offset_t saved_end, saved_start;
2386 unsigned int last_timestamp;
2387 int rv;
2388 boolean_t fictitious, need_wakeup, result, user_wire;
2389 vm_prot_t prot;
2390
2391 prot = 0;
2392 if (flags & VM_MAP_WIRE_WRITE)
2393 prot |= VM_PROT_WRITE;
2394 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2395 vm_map_lock(map);
2396 VM_MAP_RANGE_CHECK(map, start, end);
2397 if (!vm_map_lookup_entry(map, start, &first_entry)) {
2398 if (flags & VM_MAP_WIRE_HOLESOK)
2399 first_entry = first_entry->next;
2400 else {
2401 vm_map_unlock(map);
2402 return (KERN_INVALID_ADDRESS);
2403 }
2404 }
2405 last_timestamp = map->timestamp;
2406 entry = first_entry;
2407 while (entry != &map->header && entry->start < end) {
2408 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2409 /*
2410 * We have not yet clipped the entry.
2411 */
2412 saved_start = (start >= entry->start) ? start :
2413 entry->start;
2414 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2415 if (vm_map_unlock_and_wait(map, 0)) {
2416 /*
2417 * Allow interruption of user wiring?
2418 */
2419 }
2420 vm_map_lock(map);
2421 if (last_timestamp + 1 != map->timestamp) {
2422 /*
2423 * Look again for the entry because the map was
2424 * modified while it was unlocked.
2425 * Specifically, the entry may have been
2426 * clipped, merged, or deleted.
2427 */
2428 if (!vm_map_lookup_entry(map, saved_start,
2429 &tmp_entry)) {
2430 if (flags & VM_MAP_WIRE_HOLESOK)
2431 tmp_entry = tmp_entry->next;
2432 else {
2433 if (saved_start == start) {
2434 /*
2435 * first_entry has been deleted.
2436 */
2437 vm_map_unlock(map);
2438 return (KERN_INVALID_ADDRESS);
2439 }
2440 end = saved_start;
2441 rv = KERN_INVALID_ADDRESS;
2442 goto done;
2443 }
2444 }
2445 if (entry == first_entry)
2446 first_entry = tmp_entry;
2447 else
2448 first_entry = NULL;
2449 entry = tmp_entry;
2450 }
2451 last_timestamp = map->timestamp;
2452 continue;
2453 }
2454 vm_map_clip_start(map, entry, start);
2455 vm_map_clip_end(map, entry, end);
2456 /*
2457 * Mark the entry in case the map lock is released. (See
2458 * above.)
2459 */
2460 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2461 entry->wiring_thread = curthread;
2462 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2463 || (entry->protection & prot) != prot) {
2464 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2465 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2466 end = entry->end;
2467 rv = KERN_INVALID_ADDRESS;
2468 goto done;
2469 }
2470 goto next_entry;
2471 }
2472 if (entry->wired_count == 0) {
2473 entry->wired_count++;
2474 saved_start = entry->start;
2475 saved_end = entry->end;
2476 fictitious = entry->object.vm_object != NULL &&
2477 (entry->object.vm_object->flags &
2478 OBJ_FICTITIOUS) != 0;
2479 /*
2480 * Release the map lock, relying on the in-transition
2481 * mark. Mark the map busy for fork.
2482 */
2483 vm_map_busy(map);
2484 vm_map_unlock(map);
2485 rv = vm_fault_wire(map, saved_start, saved_end,
2486 fictitious);
2487 vm_map_lock(map);
2488 vm_map_unbusy(map);
2489 if (last_timestamp + 1 != map->timestamp) {
2490 /*
2491 * Look again for the entry because the map was
2492 * modified while it was unlocked. The entry
2493 * may have been clipped, but NOT merged or
2494 * deleted.
2495 */
2496 result = vm_map_lookup_entry(map, saved_start,
2497 &tmp_entry);
2498 KASSERT(result, ("vm_map_wire: lookup failed"));
2499 if (entry == first_entry)
2500 first_entry = tmp_entry;
2501 else
2502 first_entry = NULL;
2503 entry = tmp_entry;
2504 while (entry->end < saved_end) {
2505 if (rv != KERN_SUCCESS) {
2506 KASSERT(entry->wired_count == 1,
2507 ("vm_map_wire: bad count"));
2508 entry->wired_count = -1;
2509 }
2510 entry = entry->next;
2511 }
2512 }
2513 last_timestamp = map->timestamp;
2514 if (rv != KERN_SUCCESS) {
2515 KASSERT(entry->wired_count == 1,
2516 ("vm_map_wire: bad count"));
2517 /*
2518 * Assign an out-of-range value to represent
2519 * the failure to wire this entry.
2520 */
2521 entry->wired_count = -1;
2522 end = entry->end;
2523 goto done;
2524 }
2525 } else if (!user_wire ||
2526 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2527 entry->wired_count++;
2528 }
2529 /*
2530 * Check the map for holes in the specified region.
2531 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2532 */
2533 next_entry:
2534 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2535 (entry->end < end && (entry->next == &map->header ||
2536 entry->next->start > entry->end))) {
2537 end = entry->end;
2538 rv = KERN_INVALID_ADDRESS;
2539 goto done;
2540 }
2541 entry = entry->next;
2542 }
2543 rv = KERN_SUCCESS;
2544 done:
2545 need_wakeup = FALSE;
2546 if (first_entry == NULL) {
2547 result = vm_map_lookup_entry(map, start, &first_entry);
2548 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2549 first_entry = first_entry->next;
2550 else
2551 KASSERT(result, ("vm_map_wire: lookup failed"));
2552 }
2553 for (entry = first_entry; entry != &map->header && entry->start < end;
2554 entry = entry->next) {
2555 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2556 goto next_entry_done;
2557
2558 /*
2559 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2560 * space in the unwired region could have been mapped
2561 * while the map lock was dropped for faulting in the
2562 * pages or draining MAP_ENTRY_IN_TRANSITION.
2563 * Moreover, another thread could be simultaneously
2564 * wiring this new mapping entry. Detect these cases
2565 * and skip any entries marked as in transition by us.
2566 */
2567 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2568 entry->wiring_thread != curthread) {
2569 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2570 ("vm_map_wire: !HOLESOK and new/changed entry"));
2571 continue;
2572 }
2573
2574 if (rv == KERN_SUCCESS) {
2575 if (user_wire)
2576 entry->eflags |= MAP_ENTRY_USER_WIRED;
2577 } else if (entry->wired_count == -1) {
2578 /*
2579 * Wiring failed on this entry. Thus, unwiring is
2580 * unnecessary.
2581 */
2582 entry->wired_count = 0;
2583 } else {
2584 if (!user_wire ||
2585 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2586 entry->wired_count--;
2587 if (entry->wired_count == 0) {
2588 /*
2589 * Retain the map lock.
2590 */
2591 vm_fault_unwire(map, entry->start, entry->end,
2592 entry->object.vm_object != NULL &&
2593 (entry->object.vm_object->flags &
2594 OBJ_FICTITIOUS) != 0);
2595 }
2596 }
2597 next_entry_done:
2598 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2599 ("vm_map_wire: in-transition flag missing %p", entry));
2600 KASSERT(entry->wiring_thread == curthread,
2601 ("vm_map_wire: alien wire %p", entry));
2602 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2603 MAP_ENTRY_WIRE_SKIPPED);
2604 entry->wiring_thread = NULL;
2605 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2606 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2607 need_wakeup = TRUE;
2608 }
2609 vm_map_simplify_entry(map, entry);
2610 }
2611 vm_map_unlock(map);
2612 if (need_wakeup)
2613 vm_map_wakeup(map);
2614 return (rv);
2615 }
2616
2617 /*
2618 * vm_map_sync
2619 *
2620 * Push any dirty cached pages in the address range to their pager.
2621 * If syncio is TRUE, dirty pages are written synchronously.
2622 * If invalidate is TRUE, any cached pages are freed as well.
2623 *
2624 * If the size of the region from start to end is zero, we are
2625 * supposed to flush all modified pages within the region containing
2626 * start. Unfortunately, a region can be split or coalesced with
2627 * neighboring regions, making it difficult to determine what the
2628 * original region was. Therefore, we approximate this requirement by
2629 * flushing the current region containing start.
2630 *
2631 * Returns an error if any part of the specified range is not mapped.
2632 */
2633 int
2634 vm_map_sync(
2635 vm_map_t map,
2636 vm_offset_t start,
2637 vm_offset_t end,
2638 boolean_t syncio,
2639 boolean_t invalidate)
2640 {
2641 vm_map_entry_t current;
2642 vm_map_entry_t entry;
2643 vm_size_t size;
2644 vm_object_t object;
2645 vm_ooffset_t offset;
2646 unsigned int last_timestamp;
2647 boolean_t failed;
2648
2649 vm_map_lock_read(map);
2650 VM_MAP_RANGE_CHECK(map, start, end);
2651 if (!vm_map_lookup_entry(map, start, &entry)) {
2652 vm_map_unlock_read(map);
2653 return (KERN_INVALID_ADDRESS);
2654 } else if (start == end) {
2655 start = entry->start;
2656 end = entry->end;
2657 }
2658 /*
2659 * Make a first pass to check for user-wired memory and holes.
2660 */
2661 for (current = entry; current != &map->header && current->start < end;
2662 current = current->next) {
2663 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2664 vm_map_unlock_read(map);
2665 return (KERN_INVALID_ARGUMENT);
2666 }
2667 if (end > current->end &&
2668 (current->next == &map->header ||
2669 current->end != current->next->start)) {
2670 vm_map_unlock_read(map);
2671 return (KERN_INVALID_ADDRESS);
2672 }
2673 }
2674
2675 if (invalidate)
2676 pmap_remove(map->pmap, start, end);
2677 failed = FALSE;
2678
2679 /*
2680 * Make a second pass, cleaning/uncaching pages from the indicated
2681 * objects as we go.
2682 */
2683 for (current = entry; current != &map->header && current->start < end;) {
2684 offset = current->offset + (start - current->start);
2685 size = (end <= current->end ? end : current->end) - start;
2686 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2687 vm_map_t smap;
2688 vm_map_entry_t tentry;
2689 vm_size_t tsize;
2690
2691 smap = current->object.sub_map;
2692 vm_map_lock_read(smap);
2693 (void) vm_map_lookup_entry(smap, offset, &tentry);
2694 tsize = tentry->end - offset;
2695 if (tsize < size)
2696 size = tsize;
2697 object = tentry->object.vm_object;
2698 offset = tentry->offset + (offset - tentry->start);
2699 vm_map_unlock_read(smap);
2700 } else {
2701 object = current->object.vm_object;
2702 }
2703 vm_object_reference(object);
2704 last_timestamp = map->timestamp;
2705 vm_map_unlock_read(map);
2706 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2707 failed = TRUE;
2708 start += size;
2709 vm_object_deallocate(object);
2710 vm_map_lock_read(map);
2711 if (last_timestamp == map->timestamp ||
2712 !vm_map_lookup_entry(map, start, ¤t))
2713 current = current->next;
2714 }
2715
2716 vm_map_unlock_read(map);
2717 return (failed ? KERN_FAILURE : KERN_SUCCESS);
2718 }
2719
2720 /*
2721 * vm_map_entry_unwire: [ internal use only ]
2722 *
2723 * Make the region specified by this entry pageable.
2724 *
2725 * The map in question should be locked.
2726 * [This is the reason for this routine's existence.]
2727 */
2728 static void
2729 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2730 {
2731 vm_fault_unwire(map, entry->start, entry->end,
2732 entry->object.vm_object != NULL &&
2733 (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2734 entry->wired_count = 0;
2735 }
2736
2737 static void
2738 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2739 {
2740
2741 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2742 vm_object_deallocate(entry->object.vm_object);
2743 uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2744 }
2745
2746 /*
2747 * vm_map_entry_delete: [ internal use only ]
2748 *
2749 * Deallocate the given entry from the target map.
2750 */
2751 static void
2752 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2753 {
2754 vm_object_t object;
2755 vm_pindex_t offidxstart, offidxend, count, size1;
2756 vm_ooffset_t size;
2757
2758 vm_map_entry_unlink(map, entry);
2759 object = entry->object.vm_object;
2760 size = entry->end - entry->start;
2761 map->size -= size;
2762
2763 if (entry->cred != NULL) {
2764 swap_release_by_cred(size, entry->cred);
2765 crfree(entry->cred);
2766 }
2767
2768 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2769 (object != NULL)) {
2770 KASSERT(entry->cred == NULL || object->cred == NULL ||
2771 (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2772 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2773 count = OFF_TO_IDX(size);
2774 offidxstart = OFF_TO_IDX(entry->offset);
2775 offidxend = offidxstart + count;
2776 VM_OBJECT_WLOCK(object);
2777 if (object->ref_count != 1 &&
2778 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2779 object == kernel_object || object == kmem_object)) {
2780 vm_object_collapse(object);
2781
2782 /*
2783 * The option OBJPR_NOTMAPPED can be passed here
2784 * because vm_map_delete() already performed
2785 * pmap_remove() on the only mapping to this range
2786 * of pages.
2787 */
2788 vm_object_page_remove(object, offidxstart, offidxend,
2789 OBJPR_NOTMAPPED);
2790 if (object->type == OBJT_SWAP)
2791 swap_pager_freespace(object, offidxstart, count);
2792 if (offidxend >= object->size &&
2793 offidxstart < object->size) {
2794 size1 = object->size;
2795 object->size = offidxstart;
2796 if (object->cred != NULL) {
2797 size1 -= object->size;
2798 KASSERT(object->charge >= ptoa(size1),
2799 ("vm_map_entry_delete: object->charge < 0"));
2800 swap_release_by_cred(ptoa(size1), object->cred);
2801 object->charge -= ptoa(size1);
2802 }
2803 }
2804 }
2805 VM_OBJECT_WUNLOCK(object);
2806 } else
2807 entry->object.vm_object = NULL;
2808 if (map->system_map)
2809 vm_map_entry_deallocate(entry, TRUE);
2810 else {
2811 entry->next = curthread->td_map_def_user;
2812 curthread->td_map_def_user = entry;
2813 }
2814 }
2815
2816 /*
2817 * vm_map_delete: [ internal use only ]
2818 *
2819 * Deallocates the given address range from the target
2820 * map.
2821 */
2822 int
2823 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2824 {
2825 vm_map_entry_t entry;
2826 vm_map_entry_t first_entry;
2827
2828 VM_MAP_ASSERT_LOCKED(map);
2829
2830 /*
2831 * Find the start of the region, and clip it
2832 */
2833 if (!vm_map_lookup_entry(map, start, &first_entry))
2834 entry = first_entry->next;
2835 else {
2836 entry = first_entry;
2837 vm_map_clip_start(map, entry, start);
2838 }
2839
2840 /*
2841 * Step through all entries in this region
2842 */
2843 while ((entry != &map->header) && (entry->start < end)) {
2844 vm_map_entry_t next;
2845
2846 /*
2847 * Wait for wiring or unwiring of an entry to complete.
2848 * Also wait for any system wirings to disappear on
2849 * user maps.
2850 */
2851 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2852 (vm_map_pmap(map) != kernel_pmap &&
2853 vm_map_entry_system_wired_count(entry) != 0)) {
2854 unsigned int last_timestamp;
2855 vm_offset_t saved_start;
2856 vm_map_entry_t tmp_entry;
2857
2858 saved_start = entry->start;
2859 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2860 last_timestamp = map->timestamp;
2861 (void) vm_map_unlock_and_wait(map, 0);
2862 vm_map_lock(map);
2863 if (last_timestamp + 1 != map->timestamp) {
2864 /*
2865 * Look again for the entry because the map was
2866 * modified while it was unlocked.
2867 * Specifically, the entry may have been
2868 * clipped, merged, or deleted.
2869 */
2870 if (!vm_map_lookup_entry(map, saved_start,
2871 &tmp_entry))
2872 entry = tmp_entry->next;
2873 else {
2874 entry = tmp_entry;
2875 vm_map_clip_start(map, entry,
2876 saved_start);
2877 }
2878 }
2879 continue;
2880 }
2881 vm_map_clip_end(map, entry, end);
2882
2883 next = entry->next;
2884
2885 /*
2886 * Unwire before removing addresses from the pmap; otherwise,
2887 * unwiring will put the entries back in the pmap.
2888 */
2889 if (entry->wired_count != 0) {
2890 vm_map_entry_unwire(map, entry);
2891 }
2892
2893 pmap_remove(map->pmap, entry->start, entry->end);
2894
2895 /*
2896 * Delete the entry only after removing all pmap
2897 * entries pointing to its pages. (Otherwise, its
2898 * page frames may be reallocated, and any modify bits
2899 * will be set in the wrong object!)
2900 */
2901 vm_map_entry_delete(map, entry);
2902 entry = next;
2903 }
2904 return (KERN_SUCCESS);
2905 }
2906
2907 /*
2908 * vm_map_remove:
2909 *
2910 * Remove the given address range from the target map.
2911 * This is the exported form of vm_map_delete.
2912 */
2913 int
2914 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2915 {
2916 int result;
2917
2918 vm_map_lock(map);
2919 VM_MAP_RANGE_CHECK(map, start, end);
2920 result = vm_map_delete(map, start, end);
2921 vm_map_unlock(map);
2922 return (result);
2923 }
2924
2925 /*
2926 * vm_map_check_protection:
2927 *
2928 * Assert that the target map allows the specified privilege on the
2929 * entire address region given. The entire region must be allocated.
2930 *
2931 * WARNING! This code does not and should not check whether the
2932 * contents of the region is accessible. For example a smaller file
2933 * might be mapped into a larger address space.
2934 *
2935 * NOTE! This code is also called by munmap().
2936 *
2937 * The map must be locked. A read lock is sufficient.
2938 */
2939 boolean_t
2940 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2941 vm_prot_t protection)
2942 {
2943 vm_map_entry_t entry;
2944 vm_map_entry_t tmp_entry;
2945
2946 if (!vm_map_lookup_entry(map, start, &tmp_entry))
2947 return (FALSE);
2948 entry = tmp_entry;
2949
2950 while (start < end) {
2951 if (entry == &map->header)
2952 return (FALSE);
2953 /*
2954 * No holes allowed!
2955 */
2956 if (start < entry->start)
2957 return (FALSE);
2958 /*
2959 * Check protection associated with entry.
2960 */
2961 if ((entry->protection & protection) != protection)
2962 return (FALSE);
2963 /* go to next entry */
2964 start = entry->end;
2965 entry = entry->next;
2966 }
2967 return (TRUE);
2968 }
2969
2970 /*
2971 * vm_map_copy_entry:
2972 *
2973 * Copies the contents of the source entry to the destination
2974 * entry. The entries *must* be aligned properly.
2975 */
2976 static void
2977 vm_map_copy_entry(
2978 vm_map_t src_map,
2979 vm_map_t dst_map,
2980 vm_map_entry_t src_entry,
2981 vm_map_entry_t dst_entry,
2982 vm_ooffset_t *fork_charge)
2983 {
2984 vm_object_t src_object;
2985 vm_map_entry_t fake_entry;
2986 vm_offset_t size;
2987 struct ucred *cred;
2988 int charged;
2989
2990 VM_MAP_ASSERT_LOCKED(dst_map);
2991
2992 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2993 return;
2994
2995 if (src_entry->wired_count == 0) {
2996
2997 /*
2998 * If the source entry is marked needs_copy, it is already
2999 * write-protected.
3000 */
3001 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3002 pmap_protect(src_map->pmap,
3003 src_entry->start,
3004 src_entry->end,
3005 src_entry->protection & ~VM_PROT_WRITE);
3006 }
3007
3008 /*
3009 * Make a copy of the object.
3010 */
3011 size = src_entry->end - src_entry->start;
3012 if ((src_object = src_entry->object.vm_object) != NULL) {
3013 VM_OBJECT_WLOCK(src_object);
3014 charged = ENTRY_CHARGED(src_entry);
3015 if ((src_object->handle == NULL) &&
3016 (src_object->type == OBJT_DEFAULT ||
3017 src_object->type == OBJT_SWAP)) {
3018 vm_object_collapse(src_object);
3019 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3020 vm_object_split(src_entry);
3021 src_object = src_entry->object.vm_object;
3022 }
3023 }
3024 vm_object_reference_locked(src_object);
3025 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3026 if (src_entry->cred != NULL &&
3027 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3028 KASSERT(src_object->cred == NULL,
3029 ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3030 src_object));
3031 src_object->cred = src_entry->cred;
3032 src_object->charge = size;
3033 }
3034 VM_OBJECT_WUNLOCK(src_object);
3035 dst_entry->object.vm_object = src_object;
3036 if (charged) {
3037 cred = curthread->td_ucred;
3038 crhold(cred);
3039 dst_entry->cred = cred;
3040 *fork_charge += size;
3041 if (!(src_entry->eflags &
3042 MAP_ENTRY_NEEDS_COPY)) {
3043 crhold(cred);
3044 src_entry->cred = cred;
3045 *fork_charge += size;
3046 }
3047 }
3048 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3049 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3050 dst_entry->offset = src_entry->offset;
3051 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3052 /*
3053 * MAP_ENTRY_VN_WRITECNT cannot
3054 * indicate write reference from
3055 * src_entry, since the entry is
3056 * marked as needs copy. Allocate a
3057 * fake entry that is used to
3058 * decrement object->un_pager.vnp.writecount
3059 * at the appropriate time. Attach
3060 * fake_entry to the deferred list.
3061 */
3062 fake_entry = vm_map_entry_create(dst_map);
3063 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3064 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3065 vm_object_reference(src_object);
3066 fake_entry->object.vm_object = src_object;
3067 fake_entry->start = src_entry->start;
3068 fake_entry->end = src_entry->end;
3069 fake_entry->next = curthread->td_map_def_user;
3070 curthread->td_map_def_user = fake_entry;
3071 }
3072 } else {
3073 dst_entry->object.vm_object = NULL;
3074 dst_entry->offset = 0;
3075 if (src_entry->cred != NULL) {
3076 dst_entry->cred = curthread->td_ucred;
3077 crhold(dst_entry->cred);
3078 *fork_charge += size;
3079 }
3080 }
3081
3082 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3083 dst_entry->end - dst_entry->start, src_entry->start);
3084 } else {
3085 /*
3086 * Of course, wired down pages can't be set copy-on-write.
3087 * Cause wired pages to be copied into the new map by
3088 * simulating faults (the new pages are pageable)
3089 */
3090 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3091 fork_charge);
3092 }
3093 }
3094
3095 /*
3096 * vmspace_map_entry_forked:
3097 * Update the newly-forked vmspace each time a map entry is inherited
3098 * or copied. The values for vm_dsize and vm_tsize are approximate
3099 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3100 */
3101 static void
3102 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3103 vm_map_entry_t entry)
3104 {
3105 vm_size_t entrysize;
3106 vm_offset_t newend;
3107
3108 entrysize = entry->end - entry->start;
3109 vm2->vm_map.size += entrysize;
3110 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3111 vm2->vm_ssize += btoc(entrysize);
3112 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3113 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3114 newend = MIN(entry->end,
3115 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3116 vm2->vm_dsize += btoc(newend - entry->start);
3117 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3118 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3119 newend = MIN(entry->end,
3120 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3121 vm2->vm_tsize += btoc(newend - entry->start);
3122 }
3123 }
3124
3125 /*
3126 * vmspace_fork:
3127 * Create a new process vmspace structure and vm_map
3128 * based on those of an existing process. The new map
3129 * is based on the old map, according to the inheritance
3130 * values on the regions in that map.
3131 *
3132 * XXX It might be worth coalescing the entries added to the new vmspace.
3133 *
3134 * The source map must not be locked.
3135 */
3136 struct vmspace *
3137 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3138 {
3139 struct vmspace *vm2;
3140 vm_map_t new_map, old_map;
3141 vm_map_entry_t new_entry, old_entry;
3142 vm_object_t object;
3143 int locked;
3144
3145 old_map = &vm1->vm_map;
3146 /* Copy immutable fields of vm1 to vm2. */
3147 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3148 if (vm2 == NULL)
3149 return (NULL);
3150 vm2->vm_taddr = vm1->vm_taddr;
3151 vm2->vm_daddr = vm1->vm_daddr;
3152 vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3153 vm_map_lock(old_map);
3154 if (old_map->busy)
3155 vm_map_wait_busy(old_map);
3156 new_map = &vm2->vm_map;
3157 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3158 KASSERT(locked, ("vmspace_fork: lock failed"));
3159
3160 old_entry = old_map->header.next;
3161
3162 while (old_entry != &old_map->header) {
3163 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3164 panic("vm_map_fork: encountered a submap");
3165
3166 switch (old_entry->inheritance) {
3167 case VM_INHERIT_NONE:
3168 break;
3169
3170 case VM_INHERIT_SHARE:
3171 /*
3172 * Clone the entry, creating the shared object if necessary.
3173 */
3174 object = old_entry->object.vm_object;
3175 if (object == NULL) {
3176 object = vm_object_allocate(OBJT_DEFAULT,
3177 atop(old_entry->end - old_entry->start));
3178 old_entry->object.vm_object = object;
3179 old_entry->offset = 0;
3180 if (old_entry->cred != NULL) {
3181 object->cred = old_entry->cred;
3182 object->charge = old_entry->end -
3183 old_entry->start;
3184 old_entry->cred = NULL;
3185 }
3186 }
3187
3188 /*
3189 * Add the reference before calling vm_object_shadow
3190 * to insure that a shadow object is created.
3191 */
3192 vm_object_reference(object);
3193 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3194 vm_object_shadow(&old_entry->object.vm_object,
3195 &old_entry->offset,
3196 old_entry->end - old_entry->start);
3197 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3198 /* Transfer the second reference too. */
3199 vm_object_reference(
3200 old_entry->object.vm_object);
3201
3202 /*
3203 * As in vm_map_simplify_entry(), the
3204 * vnode lock will not be acquired in
3205 * this call to vm_object_deallocate().
3206 */
3207 vm_object_deallocate(object);
3208 object = old_entry->object.vm_object;
3209 }
3210 VM_OBJECT_WLOCK(object);
3211 vm_object_clear_flag(object, OBJ_ONEMAPPING);
3212 if (old_entry->cred != NULL) {
3213 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3214 object->cred = old_entry->cred;
3215 object->charge = old_entry->end - old_entry->start;
3216 old_entry->cred = NULL;
3217 }
3218
3219 /*
3220 * Assert the correct state of the vnode
3221 * v_writecount while the object is locked, to
3222 * not relock it later for the assertion
3223 * correctness.
3224 */
3225 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3226 object->type == OBJT_VNODE) {
3227 KASSERT(((struct vnode *)object->handle)->
3228 v_writecount > 0,
3229 ("vmspace_fork: v_writecount %p", object));
3230 KASSERT(object->un_pager.vnp.writemappings > 0,
3231 ("vmspace_fork: vnp.writecount %p",
3232 object));
3233 }
3234 VM_OBJECT_WUNLOCK(object);
3235
3236 /*
3237 * Clone the entry, referencing the shared object.
3238 */
3239 new_entry = vm_map_entry_create(new_map);
3240 *new_entry = *old_entry;
3241 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3242 MAP_ENTRY_IN_TRANSITION);
3243 new_entry->wiring_thread = NULL;
3244 new_entry->wired_count = 0;
3245 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3246 vnode_pager_update_writecount(object,
3247 new_entry->start, new_entry->end);
3248 }
3249
3250 /*
3251 * Insert the entry into the new map -- we know we're
3252 * inserting at the end of the new map.
3253 */
3254 vm_map_entry_link(new_map, new_map->header.prev,
3255 new_entry);
3256 vmspace_map_entry_forked(vm1, vm2, new_entry);
3257
3258 /*
3259 * Update the physical map
3260 */
3261 pmap_copy(new_map->pmap, old_map->pmap,
3262 new_entry->start,
3263 (old_entry->end - old_entry->start),
3264 old_entry->start);
3265 break;
3266
3267 case VM_INHERIT_COPY:
3268 /*
3269 * Clone the entry and link into the map.
3270 */
3271 new_entry = vm_map_entry_create(new_map);
3272 *new_entry = *old_entry;
3273 /*
3274 * Copied entry is COW over the old object.
3275 */
3276 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3277 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3278 new_entry->wiring_thread = NULL;
3279 new_entry->wired_count = 0;
3280 new_entry->object.vm_object = NULL;
3281 new_entry->cred = NULL;
3282 vm_map_entry_link(new_map, new_map->header.prev,
3283 new_entry);
3284 vmspace_map_entry_forked(vm1, vm2, new_entry);
3285 vm_map_copy_entry(old_map, new_map, old_entry,
3286 new_entry, fork_charge);
3287 break;
3288 }
3289 old_entry = old_entry->next;
3290 }
3291 /*
3292 * Use inlined vm_map_unlock() to postpone handling the deferred
3293 * map entries, which cannot be done until both old_map and
3294 * new_map locks are released.
3295 */
3296 sx_xunlock(&old_map->lock);
3297 sx_xunlock(&new_map->lock);
3298 vm_map_process_deferred();
3299
3300 return (vm2);
3301 }
3302
3303 int
3304 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3305 vm_prot_t prot, vm_prot_t max, int cow)
3306 {
3307 vm_map_entry_t new_entry, prev_entry;
3308 vm_offset_t bot, top;
3309 vm_size_t growsize, init_ssize;
3310 int orient, rv;
3311 rlim_t lmemlim, vmemlim;
3312
3313 /*
3314 * The stack orientation is piggybacked with the cow argument.
3315 * Extract it into orient and mask the cow argument so that we
3316 * don't pass it around further.
3317 * NOTE: We explicitly allow bi-directional stacks.
3318 */
3319 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3320 KASSERT(orient != 0, ("No stack grow direction"));
3321
3322 if (addrbos < vm_map_min(map) ||
3323 addrbos > vm_map_max(map) ||
3324 addrbos + max_ssize < addrbos)
3325 return (KERN_NO_SPACE);
3326
3327 growsize = sgrowsiz;
3328 init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3329
3330 PROC_LOCK(curproc);
3331 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3332 vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3333 PROC_UNLOCK(curproc);
3334
3335 vm_map_lock(map);
3336
3337 /* If addr is already mapped, no go */
3338 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3339 vm_map_unlock(map);
3340 return (KERN_NO_SPACE);
3341 }
3342
3343 if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3344 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3345 vm_map_unlock(map);
3346 return (KERN_NO_SPACE);
3347 }
3348 }
3349
3350 /* If we would blow our VMEM resource limit, no go */
3351 if (map->size + init_ssize > vmemlim) {
3352 vm_map_unlock(map);
3353 return (KERN_NO_SPACE);
3354 }
3355
3356 /*
3357 * If we can't accomodate max_ssize in the current mapping, no go.
3358 * However, we need to be aware that subsequent user mappings might
3359 * map into the space we have reserved for stack, and currently this
3360 * space is not protected.
3361 *
3362 * Hopefully we will at least detect this condition when we try to
3363 * grow the stack.
3364 */
3365 if ((prev_entry->next != &map->header) &&
3366 (prev_entry->next->start < addrbos + max_ssize)) {
3367 vm_map_unlock(map);
3368 return (KERN_NO_SPACE);
3369 }
3370
3371 /*
3372 * We initially map a stack of only init_ssize. We will grow as
3373 * needed later. Depending on the orientation of the stack (i.e.
3374 * the grow direction) we either map at the top of the range, the
3375 * bottom of the range or in the middle.
3376 *
3377 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3378 * and cow to be 0. Possibly we should eliminate these as input
3379 * parameters, and just pass these values here in the insert call.
3380 */
3381 if (orient == MAP_STACK_GROWS_DOWN)
3382 bot = addrbos + max_ssize - init_ssize;
3383 else if (orient == MAP_STACK_GROWS_UP)
3384 bot = addrbos;
3385 else
3386 bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3387 top = bot + init_ssize;
3388 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3389
3390 /* Now set the avail_ssize amount. */
3391 if (rv == KERN_SUCCESS) {
3392 if (prev_entry != &map->header)
3393 vm_map_clip_end(map, prev_entry, bot);
3394 new_entry = prev_entry->next;
3395 if (new_entry->end != top || new_entry->start != bot)
3396 panic("Bad entry start/end for new stack entry");
3397
3398 new_entry->avail_ssize = max_ssize - init_ssize;
3399 if (orient & MAP_STACK_GROWS_DOWN)
3400 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3401 if (orient & MAP_STACK_GROWS_UP)
3402 new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3403 }
3404
3405 vm_map_unlock(map);
3406 return (rv);
3407 }
3408
3409 static int stack_guard_page = 0;
3410 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3411 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3412 &stack_guard_page, 0,
3413 "Insert stack guard page ahead of the growable segments.");
3414
3415 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
3416 * desired address is already mapped, or if we successfully grow
3417 * the stack. Also returns KERN_SUCCESS if addr is outside the
3418 * stack range (this is strange, but preserves compatibility with
3419 * the grow function in vm_machdep.c).
3420 */
3421 int
3422 vm_map_growstack(struct proc *p, vm_offset_t addr)
3423 {
3424 vm_map_entry_t next_entry, prev_entry;
3425 vm_map_entry_t new_entry, stack_entry;
3426 struct vmspace *vm = p->p_vmspace;
3427 vm_map_t map = &vm->vm_map;
3428 vm_offset_t end;
3429 vm_size_t growsize;
3430 size_t grow_amount, max_grow;
3431 rlim_t lmemlim, stacklim, vmemlim;
3432 int is_procstack, rv;
3433 struct ucred *cred;
3434 #ifdef notyet
3435 uint64_t limit;
3436 #endif
3437 #ifdef RACCT
3438 int error;
3439 #endif
3440
3441 Retry:
3442 PROC_LOCK(p);
3443 lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3444 stacklim = lim_cur(p, RLIMIT_STACK);
3445 vmemlim = lim_cur(p, RLIMIT_VMEM);
3446 PROC_UNLOCK(p);
3447
3448 vm_map_lock_read(map);
3449
3450 /* If addr is already in the entry range, no need to grow.*/
3451 if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3452 vm_map_unlock_read(map);
3453 return (KERN_SUCCESS);
3454 }
3455
3456 next_entry = prev_entry->next;
3457 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3458 /*
3459 * This entry does not grow upwards. Since the address lies
3460 * beyond this entry, the next entry (if one exists) has to
3461 * be a downward growable entry. The entry list header is
3462 * never a growable entry, so it suffices to check the flags.
3463 */
3464 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3465 vm_map_unlock_read(map);
3466 return (KERN_SUCCESS);
3467 }
3468 stack_entry = next_entry;
3469 } else {
3470 /*
3471 * This entry grows upward. If the next entry does not at
3472 * least grow downwards, this is the entry we need to grow.
3473 * otherwise we have two possible choices and we have to
3474 * select one.
3475 */
3476 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3477 /*
3478 * We have two choices; grow the entry closest to
3479 * the address to minimize the amount of growth.
3480 */
3481 if (addr - prev_entry->end <= next_entry->start - addr)
3482 stack_entry = prev_entry;
3483 else
3484 stack_entry = next_entry;
3485 } else
3486 stack_entry = prev_entry;
3487 }
3488
3489 if (stack_entry == next_entry) {
3490 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3491 KASSERT(addr < stack_entry->start, ("foo"));
3492 end = (prev_entry != &map->header) ? prev_entry->end :
3493 stack_entry->start - stack_entry->avail_ssize;
3494 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3495 max_grow = stack_entry->start - end;
3496 } else {
3497 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3498 KASSERT(addr >= stack_entry->end, ("foo"));
3499 end = (next_entry != &map->header) ? next_entry->start :
3500 stack_entry->end + stack_entry->avail_ssize;
3501 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3502 max_grow = end - stack_entry->end;
3503 }
3504
3505 if (grow_amount > stack_entry->avail_ssize) {
3506 vm_map_unlock_read(map);
3507 return (KERN_NO_SPACE);
3508 }
3509
3510 /*
3511 * If there is no longer enough space between the entries nogo, and
3512 * adjust the available space. Note: this should only happen if the
3513 * user has mapped into the stack area after the stack was created,
3514 * and is probably an error.
3515 *
3516 * This also effectively destroys any guard page the user might have
3517 * intended by limiting the stack size.
3518 */
3519 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3520 if (vm_map_lock_upgrade(map))
3521 goto Retry;
3522
3523 stack_entry->avail_ssize = max_grow;
3524
3525 vm_map_unlock(map);
3526 return (KERN_NO_SPACE);
3527 }
3528
3529 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3530
3531 /*
3532 * If this is the main process stack, see if we're over the stack
3533 * limit.
3534 */
3535 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3536 vm_map_unlock_read(map);
3537 return (KERN_NO_SPACE);
3538 }
3539 #ifdef RACCT
3540 PROC_LOCK(p);
3541 if (is_procstack &&
3542 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3543 PROC_UNLOCK(p);
3544 vm_map_unlock_read(map);
3545 return (KERN_NO_SPACE);
3546 }
3547 PROC_UNLOCK(p);
3548 #endif
3549
3550 /* Round up the grow amount modulo sgrowsiz */
3551 growsize = sgrowsiz;
3552 grow_amount = roundup(grow_amount, growsize);
3553 if (grow_amount > stack_entry->avail_ssize)
3554 grow_amount = stack_entry->avail_ssize;
3555 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3556 grow_amount = trunc_page((vm_size_t)stacklim) -
3557 ctob(vm->vm_ssize);
3558 }
3559 #ifdef notyet
3560 PROC_LOCK(p);
3561 limit = racct_get_available(p, RACCT_STACK);
3562 PROC_UNLOCK(p);
3563 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3564 grow_amount = limit - ctob(vm->vm_ssize);
3565 #endif
3566 if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3567 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3568 vm_map_unlock_read(map);
3569 rv = KERN_NO_SPACE;
3570 goto out;
3571 }
3572 #ifdef RACCT
3573 PROC_LOCK(p);
3574 if (racct_set(p, RACCT_MEMLOCK,
3575 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3576 PROC_UNLOCK(p);
3577 vm_map_unlock_read(map);
3578 rv = KERN_NO_SPACE;
3579 goto out;
3580 }
3581 PROC_UNLOCK(p);
3582 #endif
3583 }
3584 /* If we would blow our VMEM resource limit, no go */
3585 if (map->size + grow_amount > vmemlim) {
3586 vm_map_unlock_read(map);
3587 rv = KERN_NO_SPACE;
3588 goto out;
3589 }
3590 #ifdef RACCT
3591 PROC_LOCK(p);
3592 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3593 PROC_UNLOCK(p);
3594 vm_map_unlock_read(map);
3595 rv = KERN_NO_SPACE;
3596 goto out;
3597 }
3598 PROC_UNLOCK(p);
3599 #endif
3600
3601 if (vm_map_lock_upgrade(map))
3602 goto Retry;
3603
3604 if (stack_entry == next_entry) {
3605 /*
3606 * Growing downward.
3607 */
3608 /* Get the preliminary new entry start value */
3609 addr = stack_entry->start - grow_amount;
3610
3611 /*
3612 * If this puts us into the previous entry, cut back our
3613 * growth to the available space. Also, see the note above.
3614 */
3615 if (addr < end) {
3616 stack_entry->avail_ssize = max_grow;
3617 addr = end;
3618 if (stack_guard_page)
3619 addr += PAGE_SIZE;
3620 }
3621
3622 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3623 next_entry->protection, next_entry->max_protection, 0);
3624
3625 /* Adjust the available stack space by the amount we grew. */
3626 if (rv == KERN_SUCCESS) {
3627 if (prev_entry != &map->header)
3628 vm_map_clip_end(map, prev_entry, addr);
3629 new_entry = prev_entry->next;
3630 KASSERT(new_entry == stack_entry->prev, ("foo"));
3631 KASSERT(new_entry->end == stack_entry->start, ("foo"));
3632 KASSERT(new_entry->start == addr, ("foo"));
3633 grow_amount = new_entry->end - new_entry->start;
3634 new_entry->avail_ssize = stack_entry->avail_ssize -
3635 grow_amount;
3636 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3637 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3638 }
3639 } else {
3640 /*
3641 * Growing upward.
3642 */
3643 addr = stack_entry->end + grow_amount;
3644
3645 /*
3646 * If this puts us into the next entry, cut back our growth
3647 * to the available space. Also, see the note above.
3648 */
3649 if (addr > end) {
3650 stack_entry->avail_ssize = end - stack_entry->end;
3651 addr = end;
3652 if (stack_guard_page)
3653 addr -= PAGE_SIZE;
3654 }
3655
3656 grow_amount = addr - stack_entry->end;
3657 cred = stack_entry->cred;
3658 if (cred == NULL && stack_entry->object.vm_object != NULL)
3659 cred = stack_entry->object.vm_object->cred;
3660 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3661 rv = KERN_NO_SPACE;
3662 /* Grow the underlying object if applicable. */
3663 else if (stack_entry->object.vm_object == NULL ||
3664 vm_object_coalesce(stack_entry->object.vm_object,
3665 stack_entry->offset,
3666 (vm_size_t)(stack_entry->end - stack_entry->start),
3667 (vm_size_t)grow_amount, cred != NULL)) {
3668 map->size += (addr - stack_entry->end);
3669 /* Update the current entry. */
3670 stack_entry->end = addr;
3671 stack_entry->avail_ssize -= grow_amount;
3672 vm_map_entry_resize_free(map, stack_entry);
3673 rv = KERN_SUCCESS;
3674
3675 if (next_entry != &map->header)
3676 vm_map_clip_start(map, next_entry, addr);
3677 } else
3678 rv = KERN_FAILURE;
3679 }
3680
3681 if (rv == KERN_SUCCESS && is_procstack)
3682 vm->vm_ssize += btoc(grow_amount);
3683
3684 vm_map_unlock(map);
3685
3686 /*
3687 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3688 */
3689 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3690 vm_map_wire(map,
3691 (stack_entry == next_entry) ? addr : addr - grow_amount,
3692 (stack_entry == next_entry) ? stack_entry->start : addr,
3693 (p->p_flag & P_SYSTEM)
3694 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3695 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3696 }
3697
3698 out:
3699 #ifdef RACCT
3700 if (rv != KERN_SUCCESS) {
3701 PROC_LOCK(p);
3702 error = racct_set(p, RACCT_VMEM, map->size);
3703 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3704 if (!old_mlock) {
3705 error = racct_set(p, RACCT_MEMLOCK,
3706 ptoa(pmap_wired_count(map->pmap)));
3707 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3708 }
3709 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3710 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3711 PROC_UNLOCK(p);
3712 }
3713 #endif
3714
3715 return (rv);
3716 }
3717
3718 /*
3719 * Unshare the specified VM space for exec. If other processes are
3720 * mapped to it, then create a new one. The new vmspace is null.
3721 */
3722 int
3723 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3724 {
3725 struct vmspace *oldvmspace = p->p_vmspace;
3726 struct vmspace *newvmspace;
3727
3728 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3729 ("vmspace_exec recursed"));
3730 newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3731 if (newvmspace == NULL)
3732 return (ENOMEM);
3733 newvmspace->vm_swrss = oldvmspace->vm_swrss;
3734 /*
3735 * This code is written like this for prototype purposes. The
3736 * goal is to avoid running down the vmspace here, but let the
3737 * other process's that are still using the vmspace to finally
3738 * run it down. Even though there is little or no chance of blocking
3739 * here, it is a good idea to keep this form for future mods.
3740 */
3741 PROC_VMSPACE_LOCK(p);
3742 p->p_vmspace = newvmspace;
3743 PROC_VMSPACE_UNLOCK(p);
3744 if (p == curthread->td_proc)
3745 pmap_activate(curthread);
3746 curthread->td_pflags |= TDP_EXECVMSPC;
3747 return (0);
3748 }
3749
3750 /*
3751 * Unshare the specified VM space for forcing COW. This
3752 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3753 */
3754 int
3755 vmspace_unshare(struct proc *p)
3756 {
3757 struct vmspace *oldvmspace = p->p_vmspace;
3758 struct vmspace *newvmspace;
3759 vm_ooffset_t fork_charge;
3760
3761 if (oldvmspace->vm_refcnt == 1)
3762 return (0);
3763 fork_charge = 0;
3764 newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3765 if (newvmspace == NULL)
3766 return (ENOMEM);
3767 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3768 vmspace_free(newvmspace);
3769 return (ENOMEM);
3770 }
3771 PROC_VMSPACE_LOCK(p);
3772 p->p_vmspace = newvmspace;
3773 PROC_VMSPACE_UNLOCK(p);
3774 if (p == curthread->td_proc)
3775 pmap_activate(curthread);
3776 vmspace_free(oldvmspace);
3777 return (0);
3778 }
3779
3780 /*
3781 * vm_map_lookup:
3782 *
3783 * Finds the VM object, offset, and
3784 * protection for a given virtual address in the
3785 * specified map, assuming a page fault of the
3786 * type specified.
3787 *
3788 * Leaves the map in question locked for read; return
3789 * values are guaranteed until a vm_map_lookup_done
3790 * call is performed. Note that the map argument
3791 * is in/out; the returned map must be used in
3792 * the call to vm_map_lookup_done.
3793 *
3794 * A handle (out_entry) is returned for use in
3795 * vm_map_lookup_done, to make that fast.
3796 *
3797 * If a lookup is requested with "write protection"
3798 * specified, the map may be changed to perform virtual
3799 * copying operations, although the data referenced will
3800 * remain the same.
3801 */
3802 int
3803 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
3804 vm_offset_t vaddr,
3805 vm_prot_t fault_typea,
3806 vm_map_entry_t *out_entry, /* OUT */
3807 vm_object_t *object, /* OUT */
3808 vm_pindex_t *pindex, /* OUT */
3809 vm_prot_t *out_prot, /* OUT */
3810 boolean_t *wired) /* OUT */
3811 {
3812 vm_map_entry_t entry;
3813 vm_map_t map = *var_map;
3814 vm_prot_t prot;
3815 vm_prot_t fault_type = fault_typea;
3816 vm_object_t eobject;
3817 vm_size_t size;
3818 struct ucred *cred;
3819
3820 RetryLookup:;
3821
3822 vm_map_lock_read(map);
3823
3824 /*
3825 * Lookup the faulting address.
3826 */
3827 if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3828 vm_map_unlock_read(map);
3829 return (KERN_INVALID_ADDRESS);
3830 }
3831
3832 entry = *out_entry;
3833
3834 /*
3835 * Handle submaps.
3836 */
3837 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3838 vm_map_t old_map = map;
3839
3840 *var_map = map = entry->object.sub_map;
3841 vm_map_unlock_read(old_map);
3842 goto RetryLookup;
3843 }
3844
3845 /*
3846 * Check whether this task is allowed to have this page.
3847 */
3848 prot = entry->protection;
3849 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3850 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3851 vm_map_unlock_read(map);
3852 return (KERN_PROTECTION_FAILURE);
3853 }
3854 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3855 (entry->eflags & MAP_ENTRY_COW) &&
3856 (fault_type & VM_PROT_WRITE)) {
3857 vm_map_unlock_read(map);
3858 return (KERN_PROTECTION_FAILURE);
3859 }
3860 if ((fault_typea & VM_PROT_COPY) != 0 &&
3861 (entry->max_protection & VM_PROT_WRITE) == 0 &&
3862 (entry->eflags & MAP_ENTRY_COW) == 0) {
3863 vm_map_unlock_read(map);
3864 return (KERN_PROTECTION_FAILURE);
3865 }
3866
3867 /*
3868 * If this page is not pageable, we have to get it for all possible
3869 * accesses.
3870 */
3871 *wired = (entry->wired_count != 0);
3872 if (*wired)
3873 fault_type = entry->protection;
3874 size = entry->end - entry->start;
3875 /*
3876 * If the entry was copy-on-write, we either ...
3877 */
3878 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3879 /*
3880 * If we want to write the page, we may as well handle that
3881 * now since we've got the map locked.
3882 *
3883 * If we don't need to write the page, we just demote the
3884 * permissions allowed.
3885 */
3886 if ((fault_type & VM_PROT_WRITE) != 0 ||
3887 (fault_typea & VM_PROT_COPY) != 0) {
3888 /*
3889 * Make a new object, and place it in the object
3890 * chain. Note that no new references have appeared
3891 * -- one just moved from the map to the new
3892 * object.
3893 */
3894 if (vm_map_lock_upgrade(map))
3895 goto RetryLookup;
3896
3897 if (entry->cred == NULL) {
3898 /*
3899 * The debugger owner is charged for
3900 * the memory.
3901 */
3902 cred = curthread->td_ucred;
3903 crhold(cred);
3904 if (!swap_reserve_by_cred(size, cred)) {
3905 crfree(cred);
3906 vm_map_unlock(map);
3907 return (KERN_RESOURCE_SHORTAGE);
3908 }
3909 entry->cred = cred;
3910 }
3911 vm_object_shadow(&entry->object.vm_object,
3912 &entry->offset, size);
3913 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3914 eobject = entry->object.vm_object;
3915 if (eobject->cred != NULL) {
3916 /*
3917 * The object was not shadowed.
3918 */
3919 swap_release_by_cred(size, entry->cred);
3920 crfree(entry->cred);
3921 entry->cred = NULL;
3922 } else if (entry->cred != NULL) {
3923 VM_OBJECT_WLOCK(eobject);
3924 eobject->cred = entry->cred;
3925 eobject->charge = size;
3926 VM_OBJECT_WUNLOCK(eobject);
3927 entry->cred = NULL;
3928 }
3929
3930 vm_map_lock_downgrade(map);
3931 } else {
3932 /*
3933 * We're attempting to read a copy-on-write page --
3934 * don't allow writes.
3935 */
3936 prot &= ~VM_PROT_WRITE;
3937 }
3938 }
3939
3940 /*
3941 * Create an object if necessary.
3942 */
3943 if (entry->object.vm_object == NULL &&
3944 !map->system_map) {
3945 if (vm_map_lock_upgrade(map))
3946 goto RetryLookup;
3947 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3948 atop(size));
3949 entry->offset = 0;
3950 if (entry->cred != NULL) {
3951 VM_OBJECT_WLOCK(entry->object.vm_object);
3952 entry->object.vm_object->cred = entry->cred;
3953 entry->object.vm_object->charge = size;
3954 VM_OBJECT_WUNLOCK(entry->object.vm_object);
3955 entry->cred = NULL;
3956 }
3957 vm_map_lock_downgrade(map);
3958 }
3959
3960 /*
3961 * Return the object/offset from this entry. If the entry was
3962 * copy-on-write or empty, it has been fixed up.
3963 */
3964 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3965 *object = entry->object.vm_object;
3966
3967 *out_prot = prot;
3968 return (KERN_SUCCESS);
3969 }
3970
3971 /*
3972 * vm_map_lookup_locked:
3973 *
3974 * Lookup the faulting address. A version of vm_map_lookup that returns
3975 * KERN_FAILURE instead of blocking on map lock or memory allocation.
3976 */
3977 int
3978 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */
3979 vm_offset_t vaddr,
3980 vm_prot_t fault_typea,
3981 vm_map_entry_t *out_entry, /* OUT */
3982 vm_object_t *object, /* OUT */
3983 vm_pindex_t *pindex, /* OUT */
3984 vm_prot_t *out_prot, /* OUT */
3985 boolean_t *wired) /* OUT */
3986 {
3987 vm_map_entry_t entry;
3988 vm_map_t map = *var_map;
3989 vm_prot_t prot;
3990 vm_prot_t fault_type = fault_typea;
3991
3992 /*
3993 * Lookup the faulting address.
3994 */
3995 if (!vm_map_lookup_entry(map, vaddr, out_entry))
3996 return (KERN_INVALID_ADDRESS);
3997
3998 entry = *out_entry;
3999
4000 /*
4001 * Fail if the entry refers to a submap.
4002 */
4003 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4004 return (KERN_FAILURE);
4005
4006 /*
4007 * Check whether this task is allowed to have this page.
4008 */
4009 prot = entry->protection;
4010 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4011 if ((fault_type & prot) != fault_type)
4012 return (KERN_PROTECTION_FAILURE);
4013 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4014 (entry->eflags & MAP_ENTRY_COW) &&
4015 (fault_type & VM_PROT_WRITE))
4016 return (KERN_PROTECTION_FAILURE);
4017
4018 /*
4019 * If this page is not pageable, we have to get it for all possible
4020 * accesses.
4021 */
4022 *wired = (entry->wired_count != 0);
4023 if (*wired)
4024 fault_type = entry->protection;
4025
4026 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4027 /*
4028 * Fail if the entry was copy-on-write for a write fault.
4029 */
4030 if (fault_type & VM_PROT_WRITE)
4031 return (KERN_FAILURE);
4032 /*
4033 * We're attempting to read a copy-on-write page --
4034 * don't allow writes.
4035 */
4036 prot &= ~VM_PROT_WRITE;
4037 }
4038
4039 /*
4040 * Fail if an object should be created.
4041 */
4042 if (entry->object.vm_object == NULL && !map->system_map)
4043 return (KERN_FAILURE);
4044
4045 /*
4046 * Return the object/offset from this entry. If the entry was
4047 * copy-on-write or empty, it has been fixed up.
4048 */
4049 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4050 *object = entry->object.vm_object;
4051
4052 *out_prot = prot;
4053 return (KERN_SUCCESS);
4054 }
4055
4056 /*
4057 * vm_map_lookup_done:
4058 *
4059 * Releases locks acquired by a vm_map_lookup
4060 * (according to the handle returned by that lookup).
4061 */
4062 void
4063 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4064 {
4065 /*
4066 * Unlock the main-level map
4067 */
4068 vm_map_unlock_read(map);
4069 }
4070
4071 #include "opt_ddb.h"
4072 #ifdef DDB
4073 #include <sys/kernel.h>
4074
4075 #include <ddb/ddb.h>
4076
4077 static void
4078 vm_map_print(vm_map_t map)
4079 {
4080 vm_map_entry_t entry;
4081
4082 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4083 (void *)map,
4084 (void *)map->pmap, map->nentries, map->timestamp);
4085
4086 db_indent += 2;
4087 for (entry = map->header.next; entry != &map->header;
4088 entry = entry->next) {
4089 db_iprintf("map entry %p: start=%p, end=%p\n",
4090 (void *)entry, (void *)entry->start, (void *)entry->end);
4091 {
4092 static char *inheritance_name[4] =
4093 {"share", "copy", "none", "donate_copy"};
4094
4095 db_iprintf(" prot=%x/%x/%s",
4096 entry->protection,
4097 entry->max_protection,
4098 inheritance_name[(int)(unsigned char)entry->inheritance]);
4099 if (entry->wired_count != 0)
4100 db_printf(", wired");
4101 }
4102 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4103 db_printf(", share=%p, offset=0x%jx\n",
4104 (void *)entry->object.sub_map,
4105 (uintmax_t)entry->offset);
4106 if ((entry->prev == &map->header) ||
4107 (entry->prev->object.sub_map !=
4108 entry->object.sub_map)) {
4109 db_indent += 2;
4110 vm_map_print((vm_map_t)entry->object.sub_map);
4111 db_indent -= 2;
4112 }
4113 } else {
4114 if (entry->cred != NULL)
4115 db_printf(", ruid %d", entry->cred->cr_ruid);
4116 db_printf(", object=%p, offset=0x%jx",
4117 (void *)entry->object.vm_object,
4118 (uintmax_t)entry->offset);
4119 if (entry->object.vm_object && entry->object.vm_object->cred)
4120 db_printf(", obj ruid %d charge %jx",
4121 entry->object.vm_object->cred->cr_ruid,
4122 (uintmax_t)entry->object.vm_object->charge);
4123 if (entry->eflags & MAP_ENTRY_COW)
4124 db_printf(", copy (%s)",
4125 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4126 db_printf("\n");
4127
4128 if ((entry->prev == &map->header) ||
4129 (entry->prev->object.vm_object !=
4130 entry->object.vm_object)) {
4131 db_indent += 2;
4132 vm_object_print((db_expr_t)(intptr_t)
4133 entry->object.vm_object,
4134 1, 0, (char *)0);
4135 db_indent -= 2;
4136 }
4137 }
4138 }
4139 db_indent -= 2;
4140 }
4141
4142 DB_SHOW_COMMAND(map, map)
4143 {
4144
4145 if (!have_addr) {
4146 db_printf("usage: show map <addr>\n");
4147 return;
4148 }
4149 vm_map_print((vm_map_t)addr);
4150 }
4151
4152 DB_SHOW_COMMAND(procvm, procvm)
4153 {
4154 struct proc *p;
4155
4156 if (have_addr) {
4157 p = (struct proc *) addr;
4158 } else {
4159 p = curproc;
4160 }
4161
4162 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4163 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4164 (void *)vmspace_pmap(p->p_vmspace));
4165
4166 vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4167 }
4168
4169 #endif /* DDB */
Cache object: 0b0ca894fbbd06b6962c3debbaaed3cd
|