The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_map.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 /*
   62  *      Virtual memory mapping module.
   63  */
   64 
   65 #include <sys/cdefs.h>
   66 __FBSDID("$FreeBSD: releng/11.1/sys/vm/vm_map.c 320904 2017-07-12 07:00:56Z kib $");
   67 
   68 #include <sys/param.h>
   69 #include <sys/systm.h>
   70 #include <sys/kernel.h>
   71 #include <sys/ktr.h>
   72 #include <sys/lock.h>
   73 #include <sys/mutex.h>
   74 #include <sys/proc.h>
   75 #include <sys/vmmeter.h>
   76 #include <sys/mman.h>
   77 #include <sys/vnode.h>
   78 #include <sys/racct.h>
   79 #include <sys/resourcevar.h>
   80 #include <sys/rwlock.h>
   81 #include <sys/file.h>
   82 #include <sys/sysctl.h>
   83 #include <sys/sysent.h>
   84 #include <sys/shm.h>
   85 
   86 #include <vm/vm.h>
   87 #include <vm/vm_param.h>
   88 #include <vm/pmap.h>
   89 #include <vm/vm_map.h>
   90 #include <vm/vm_page.h>
   91 #include <vm/vm_object.h>
   92 #include <vm/vm_pager.h>
   93 #include <vm/vm_kern.h>
   94 #include <vm/vm_extern.h>
   95 #include <vm/vnode_pager.h>
   96 #include <vm/swap_pager.h>
   97 #include <vm/uma.h>
   98 
   99 /*
  100  *      Virtual memory maps provide for the mapping, protection,
  101  *      and sharing of virtual memory objects.  In addition,
  102  *      this module provides for an efficient virtual copy of
  103  *      memory from one map to another.
  104  *
  105  *      Synchronization is required prior to most operations.
  106  *
  107  *      Maps consist of an ordered doubly-linked list of simple
  108  *      entries; a self-adjusting binary search tree of these
  109  *      entries is used to speed up lookups.
  110  *
  111  *      Since portions of maps are specified by start/end addresses,
  112  *      which may not align with existing map entries, all
  113  *      routines merely "clip" entries to these start/end values.
  114  *      [That is, an entry is split into two, bordering at a
  115  *      start or end value.]  Note that these clippings may not
  116  *      always be necessary (as the two resulting entries are then
  117  *      not changed); however, the clipping is done for convenience.
  118  *
  119  *      As mentioned above, virtual copy operations are performed
  120  *      by copying VM object references from one map to
  121  *      another, and then marking both regions as copy-on-write.
  122  */
  123 
  124 static struct mtx map_sleep_mtx;
  125 static uma_zone_t mapentzone;
  126 static uma_zone_t kmapentzone;
  127 static uma_zone_t mapzone;
  128 static uma_zone_t vmspace_zone;
  129 static int vmspace_zinit(void *mem, int size, int flags);
  130 static int vm_map_zinit(void *mem, int ize, int flags);
  131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
  132     vm_offset_t max);
  133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
  134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
  135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
  136 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
  137     vm_map_entry_t gap_entry);
  138 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
  139     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
  140 #ifdef INVARIANTS
  141 static void vm_map_zdtor(void *mem, int size, void *arg);
  142 static void vmspace_zdtor(void *mem, int size, void *arg);
  143 #endif
  144 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
  145     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
  146     int cow);
  147 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
  148     vm_offset_t failed_addr);
  149 
  150 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
  151     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
  152      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
  153 
  154 /* 
  155  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
  156  * stable.
  157  */
  158 #define PROC_VMSPACE_LOCK(p) do { } while (0)
  159 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
  160 
  161 /*
  162  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
  163  *
  164  *      Asserts that the starting and ending region
  165  *      addresses fall within the valid range of the map.
  166  */
  167 #define VM_MAP_RANGE_CHECK(map, start, end)             \
  168                 {                                       \
  169                 if (start < vm_map_min(map))            \
  170                         start = vm_map_min(map);        \
  171                 if (end > vm_map_max(map))              \
  172                         end = vm_map_max(map);          \
  173                 if (start > end)                        \
  174                         start = end;                    \
  175                 }
  176 
  177 /*
  178  *      vm_map_startup:
  179  *
  180  *      Initialize the vm_map module.  Must be called before
  181  *      any other vm_map routines.
  182  *
  183  *      Map and entry structures are allocated from the general
  184  *      purpose memory pool with some exceptions:
  185  *
  186  *      - The kernel map and kmem submap are allocated statically.
  187  *      - Kernel map entries are allocated out of a static pool.
  188  *
  189  *      These restrictions are necessary since malloc() uses the
  190  *      maps and requires map entries.
  191  */
  192 
  193 void
  194 vm_map_startup(void)
  195 {
  196         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
  197         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
  198 #ifdef INVARIANTS
  199             vm_map_zdtor,
  200 #else
  201             NULL,
  202 #endif
  203             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  204         uma_prealloc(mapzone, MAX_KMAP);
  205         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
  206             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
  207             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
  208         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
  209             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  210         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
  211 #ifdef INVARIANTS
  212             vmspace_zdtor,
  213 #else
  214             NULL,
  215 #endif
  216             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  217 }
  218 
  219 static int
  220 vmspace_zinit(void *mem, int size, int flags)
  221 {
  222         struct vmspace *vm;
  223 
  224         vm = (struct vmspace *)mem;
  225 
  226         vm->vm_map.pmap = NULL;
  227         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
  228         PMAP_LOCK_INIT(vmspace_pmap(vm));
  229         return (0);
  230 }
  231 
  232 static int
  233 vm_map_zinit(void *mem, int size, int flags)
  234 {
  235         vm_map_t map;
  236 
  237         map = (vm_map_t)mem;
  238         memset(map, 0, sizeof(*map));
  239         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
  240         sx_init(&map->lock, "vm map (user)");
  241         return (0);
  242 }
  243 
  244 #ifdef INVARIANTS
  245 static void
  246 vmspace_zdtor(void *mem, int size, void *arg)
  247 {
  248         struct vmspace *vm;
  249 
  250         vm = (struct vmspace *)mem;
  251 
  252         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
  253 }
  254 static void
  255 vm_map_zdtor(void *mem, int size, void *arg)
  256 {
  257         vm_map_t map;
  258 
  259         map = (vm_map_t)mem;
  260         KASSERT(map->nentries == 0,
  261             ("map %p nentries == %d on free.",
  262             map, map->nentries));
  263         KASSERT(map->size == 0,
  264             ("map %p size == %lu on free.",
  265             map, (unsigned long)map->size));
  266 }
  267 #endif  /* INVARIANTS */
  268 
  269 /*
  270  * Allocate a vmspace structure, including a vm_map and pmap,
  271  * and initialize those structures.  The refcnt is set to 1.
  272  *
  273  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
  274  */
  275 struct vmspace *
  276 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
  277 {
  278         struct vmspace *vm;
  279 
  280         vm = uma_zalloc(vmspace_zone, M_WAITOK);
  281 
  282         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
  283 
  284         if (pinit == NULL)
  285                 pinit = &pmap_pinit;
  286 
  287         if (!pinit(vmspace_pmap(vm))) {
  288                 uma_zfree(vmspace_zone, vm);
  289                 return (NULL);
  290         }
  291         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
  292         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
  293         vm->vm_refcnt = 1;
  294         vm->vm_shm = NULL;
  295         vm->vm_swrss = 0;
  296         vm->vm_tsize = 0;
  297         vm->vm_dsize = 0;
  298         vm->vm_ssize = 0;
  299         vm->vm_taddr = 0;
  300         vm->vm_daddr = 0;
  301         vm->vm_maxsaddr = 0;
  302         return (vm);
  303 }
  304 
  305 #ifdef RACCT
  306 static void
  307 vmspace_container_reset(struct proc *p)
  308 {
  309 
  310         PROC_LOCK(p);
  311         racct_set(p, RACCT_DATA, 0);
  312         racct_set(p, RACCT_STACK, 0);
  313         racct_set(p, RACCT_RSS, 0);
  314         racct_set(p, RACCT_MEMLOCK, 0);
  315         racct_set(p, RACCT_VMEM, 0);
  316         PROC_UNLOCK(p);
  317 }
  318 #endif
  319 
  320 static inline void
  321 vmspace_dofree(struct vmspace *vm)
  322 {
  323 
  324         CTR1(KTR_VM, "vmspace_free: %p", vm);
  325 
  326         /*
  327          * Make sure any SysV shm is freed, it might not have been in
  328          * exit1().
  329          */
  330         shmexit(vm);
  331 
  332         /*
  333          * Lock the map, to wait out all other references to it.
  334          * Delete all of the mappings and pages they hold, then call
  335          * the pmap module to reclaim anything left.
  336          */
  337         (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
  338             vm->vm_map.max_offset);
  339 
  340         pmap_release(vmspace_pmap(vm));
  341         vm->vm_map.pmap = NULL;
  342         uma_zfree(vmspace_zone, vm);
  343 }
  344 
  345 void
  346 vmspace_free(struct vmspace *vm)
  347 {
  348 
  349         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
  350             "vmspace_free() called");
  351 
  352         if (vm->vm_refcnt == 0)
  353                 panic("vmspace_free: attempt to free already freed vmspace");
  354 
  355         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
  356                 vmspace_dofree(vm);
  357 }
  358 
  359 void
  360 vmspace_exitfree(struct proc *p)
  361 {
  362         struct vmspace *vm;
  363 
  364         PROC_VMSPACE_LOCK(p);
  365         vm = p->p_vmspace;
  366         p->p_vmspace = NULL;
  367         PROC_VMSPACE_UNLOCK(p);
  368         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
  369         vmspace_free(vm);
  370 }
  371 
  372 void
  373 vmspace_exit(struct thread *td)
  374 {
  375         int refcnt;
  376         struct vmspace *vm;
  377         struct proc *p;
  378 
  379         /*
  380          * Release user portion of address space.
  381          * This releases references to vnodes,
  382          * which could cause I/O if the file has been unlinked.
  383          * Need to do this early enough that we can still sleep.
  384          *
  385          * The last exiting process to reach this point releases as
  386          * much of the environment as it can. vmspace_dofree() is the
  387          * slower fallback in case another process had a temporary
  388          * reference to the vmspace.
  389          */
  390 
  391         p = td->td_proc;
  392         vm = p->p_vmspace;
  393         atomic_add_int(&vmspace0.vm_refcnt, 1);
  394         do {
  395                 refcnt = vm->vm_refcnt;
  396                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
  397                         /* Switch now since other proc might free vmspace */
  398                         PROC_VMSPACE_LOCK(p);
  399                         p->p_vmspace = &vmspace0;
  400                         PROC_VMSPACE_UNLOCK(p);
  401                         pmap_activate(td);
  402                 }
  403         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
  404         if (refcnt == 1) {
  405                 if (p->p_vmspace != vm) {
  406                         /* vmspace not yet freed, switch back */
  407                         PROC_VMSPACE_LOCK(p);
  408                         p->p_vmspace = vm;
  409                         PROC_VMSPACE_UNLOCK(p);
  410                         pmap_activate(td);
  411                 }
  412                 pmap_remove_pages(vmspace_pmap(vm));
  413                 /* Switch now since this proc will free vmspace */
  414                 PROC_VMSPACE_LOCK(p);
  415                 p->p_vmspace = &vmspace0;
  416                 PROC_VMSPACE_UNLOCK(p);
  417                 pmap_activate(td);
  418                 vmspace_dofree(vm);
  419         }
  420 #ifdef RACCT
  421         if (racct_enable)
  422                 vmspace_container_reset(p);
  423 #endif
  424 }
  425 
  426 /* Acquire reference to vmspace owned by another process. */
  427 
  428 struct vmspace *
  429 vmspace_acquire_ref(struct proc *p)
  430 {
  431         struct vmspace *vm;
  432         int refcnt;
  433 
  434         PROC_VMSPACE_LOCK(p);
  435         vm = p->p_vmspace;
  436         if (vm == NULL) {
  437                 PROC_VMSPACE_UNLOCK(p);
  438                 return (NULL);
  439         }
  440         do {
  441                 refcnt = vm->vm_refcnt;
  442                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
  443                         PROC_VMSPACE_UNLOCK(p);
  444                         return (NULL);
  445                 }
  446         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
  447         if (vm != p->p_vmspace) {
  448                 PROC_VMSPACE_UNLOCK(p);
  449                 vmspace_free(vm);
  450                 return (NULL);
  451         }
  452         PROC_VMSPACE_UNLOCK(p);
  453         return (vm);
  454 }
  455 
  456 /*
  457  * Switch between vmspaces in an AIO kernel process.
  458  *
  459  * The AIO kernel processes switch to and from a user process's
  460  * vmspace while performing an I/O operation on behalf of a user
  461  * process.  The new vmspace is either the vmspace of a user process
  462  * obtained from an active AIO request or the initial vmspace of the
  463  * AIO kernel process (when it is idling).  Because user processes
  464  * will block to drain any active AIO requests before proceeding in
  465  * exit() or execve(), the vmspace reference count for these vmspaces
  466  * can never be 0.  This allows for a much simpler implementation than
  467  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
  468  * processes hold an extra reference on their initial vmspace for the
  469  * life of the process so that this guarantee is true for any vmspace
  470  * passed as 'newvm'.
  471  */
  472 void
  473 vmspace_switch_aio(struct vmspace *newvm)
  474 {
  475         struct vmspace *oldvm;
  476 
  477         /* XXX: Need some way to assert that this is an aio daemon. */
  478 
  479         KASSERT(newvm->vm_refcnt > 0,
  480             ("vmspace_switch_aio: newvm unreferenced"));
  481 
  482         oldvm = curproc->p_vmspace;
  483         if (oldvm == newvm)
  484                 return;
  485 
  486         /*
  487          * Point to the new address space and refer to it.
  488          */
  489         curproc->p_vmspace = newvm;
  490         atomic_add_int(&newvm->vm_refcnt, 1);
  491 
  492         /* Activate the new mapping. */
  493         pmap_activate(curthread);
  494 
  495         /* Remove the daemon's reference to the old address space. */
  496         KASSERT(oldvm->vm_refcnt > 1,
  497             ("vmspace_switch_aio: oldvm dropping last reference"));
  498         vmspace_free(oldvm);
  499 }
  500 
  501 void
  502 _vm_map_lock(vm_map_t map, const char *file, int line)
  503 {
  504 
  505         if (map->system_map)
  506                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
  507         else
  508                 sx_xlock_(&map->lock, file, line);
  509         map->timestamp++;
  510 }
  511 
  512 static void
  513 vm_map_process_deferred(void)
  514 {
  515         struct thread *td;
  516         vm_map_entry_t entry, next;
  517         vm_object_t object;
  518 
  519         td = curthread;
  520         entry = td->td_map_def_user;
  521         td->td_map_def_user = NULL;
  522         while (entry != NULL) {
  523                 next = entry->next;
  524                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
  525                         /*
  526                          * Decrement the object's writemappings and
  527                          * possibly the vnode's v_writecount.
  528                          */
  529                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
  530                             ("Submap with writecount"));
  531                         object = entry->object.vm_object;
  532                         KASSERT(object != NULL, ("No object for writecount"));
  533                         vnode_pager_release_writecount(object, entry->start,
  534                             entry->end);
  535                 }
  536                 vm_map_entry_deallocate(entry, FALSE);
  537                 entry = next;
  538         }
  539 }
  540 
  541 void
  542 _vm_map_unlock(vm_map_t map, const char *file, int line)
  543 {
  544 
  545         if (map->system_map)
  546                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
  547         else {
  548                 sx_xunlock_(&map->lock, file, line);
  549                 vm_map_process_deferred();
  550         }
  551 }
  552 
  553 void
  554 _vm_map_lock_read(vm_map_t map, const char *file, int line)
  555 {
  556 
  557         if (map->system_map)
  558                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
  559         else
  560                 sx_slock_(&map->lock, file, line);
  561 }
  562 
  563 void
  564 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
  565 {
  566 
  567         if (map->system_map)
  568                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
  569         else {
  570                 sx_sunlock_(&map->lock, file, line);
  571                 vm_map_process_deferred();
  572         }
  573 }
  574 
  575 int
  576 _vm_map_trylock(vm_map_t map, const char *file, int line)
  577 {
  578         int error;
  579 
  580         error = map->system_map ?
  581             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
  582             !sx_try_xlock_(&map->lock, file, line);
  583         if (error == 0)
  584                 map->timestamp++;
  585         return (error == 0);
  586 }
  587 
  588 int
  589 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
  590 {
  591         int error;
  592 
  593         error = map->system_map ?
  594             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
  595             !sx_try_slock_(&map->lock, file, line);
  596         return (error == 0);
  597 }
  598 
  599 /*
  600  *      _vm_map_lock_upgrade:   [ internal use only ]
  601  *
  602  *      Tries to upgrade a read (shared) lock on the specified map to a write
  603  *      (exclusive) lock.  Returns the value "" if the upgrade succeeds and a
  604  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
  605  *      returned without a read or write lock held.
  606  *
  607  *      Requires that the map be read locked.
  608  */
  609 int
  610 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
  611 {
  612         unsigned int last_timestamp;
  613 
  614         if (map->system_map) {
  615                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
  616         } else {
  617                 if (!sx_try_upgrade_(&map->lock, file, line)) {
  618                         last_timestamp = map->timestamp;
  619                         sx_sunlock_(&map->lock, file, line);
  620                         vm_map_process_deferred();
  621                         /*
  622                          * If the map's timestamp does not change while the
  623                          * map is unlocked, then the upgrade succeeds.
  624                          */
  625                         sx_xlock_(&map->lock, file, line);
  626                         if (last_timestamp != map->timestamp) {
  627                                 sx_xunlock_(&map->lock, file, line);
  628                                 return (1);
  629                         }
  630                 }
  631         }
  632         map->timestamp++;
  633         return (0);
  634 }
  635 
  636 void
  637 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
  638 {
  639 
  640         if (map->system_map) {
  641                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
  642         } else
  643                 sx_downgrade_(&map->lock, file, line);
  644 }
  645 
  646 /*
  647  *      vm_map_locked:
  648  *
  649  *      Returns a non-zero value if the caller holds a write (exclusive) lock
  650  *      on the specified map and the value "" otherwise.
  651  */
  652 int
  653 vm_map_locked(vm_map_t map)
  654 {
  655 
  656         if (map->system_map)
  657                 return (mtx_owned(&map->system_mtx));
  658         else
  659                 return (sx_xlocked(&map->lock));
  660 }
  661 
  662 #ifdef INVARIANTS
  663 static void
  664 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
  665 {
  666 
  667         if (map->system_map)
  668                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
  669         else
  670                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
  671 }
  672 
  673 #define VM_MAP_ASSERT_LOCKED(map) \
  674     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
  675 #else
  676 #define VM_MAP_ASSERT_LOCKED(map)
  677 #endif
  678 
  679 /*
  680  *      _vm_map_unlock_and_wait:
  681  *
  682  *      Atomically releases the lock on the specified map and puts the calling
  683  *      thread to sleep.  The calling thread will remain asleep until either
  684  *      vm_map_wakeup() is performed on the map or the specified timeout is
  685  *      exceeded.
  686  *
  687  *      WARNING!  This function does not perform deferred deallocations of
  688  *      objects and map entries.  Therefore, the calling thread is expected to
  689  *      reacquire the map lock after reawakening and later perform an ordinary
  690  *      unlock operation, such as vm_map_unlock(), before completing its
  691  *      operation on the map.
  692  */
  693 int
  694 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
  695 {
  696 
  697         mtx_lock(&map_sleep_mtx);
  698         if (map->system_map)
  699                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
  700         else
  701                 sx_xunlock_(&map->lock, file, line);
  702         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
  703             timo));
  704 }
  705 
  706 /*
  707  *      vm_map_wakeup:
  708  *
  709  *      Awaken any threads that have slept on the map using
  710  *      vm_map_unlock_and_wait().
  711  */
  712 void
  713 vm_map_wakeup(vm_map_t map)
  714 {
  715 
  716         /*
  717          * Acquire and release map_sleep_mtx to prevent a wakeup()
  718          * from being performed (and lost) between the map unlock
  719          * and the msleep() in _vm_map_unlock_and_wait().
  720          */
  721         mtx_lock(&map_sleep_mtx);
  722         mtx_unlock(&map_sleep_mtx);
  723         wakeup(&map->root);
  724 }
  725 
  726 void
  727 vm_map_busy(vm_map_t map)
  728 {
  729 
  730         VM_MAP_ASSERT_LOCKED(map);
  731         map->busy++;
  732 }
  733 
  734 void
  735 vm_map_unbusy(vm_map_t map)
  736 {
  737 
  738         VM_MAP_ASSERT_LOCKED(map);
  739         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
  740         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
  741                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
  742                 wakeup(&map->busy);
  743         }
  744 }
  745 
  746 void 
  747 vm_map_wait_busy(vm_map_t map)
  748 {
  749 
  750         VM_MAP_ASSERT_LOCKED(map);
  751         while (map->busy) {
  752                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
  753                 if (map->system_map)
  754                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
  755                 else
  756                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
  757         }
  758         map->timestamp++;
  759 }
  760 
  761 long
  762 vmspace_resident_count(struct vmspace *vmspace)
  763 {
  764         return pmap_resident_count(vmspace_pmap(vmspace));
  765 }
  766 
  767 /*
  768  *      vm_map_create:
  769  *
  770  *      Creates and returns a new empty VM map with
  771  *      the given physical map structure, and having
  772  *      the given lower and upper address bounds.
  773  */
  774 vm_map_t
  775 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
  776 {
  777         vm_map_t result;
  778 
  779         result = uma_zalloc(mapzone, M_WAITOK);
  780         CTR1(KTR_VM, "vm_map_create: %p", result);
  781         _vm_map_init(result, pmap, min, max);
  782         return (result);
  783 }
  784 
  785 /*
  786  * Initialize an existing vm_map structure
  787  * such as that in the vmspace structure.
  788  */
  789 static void
  790 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
  791 {
  792 
  793         map->header.next = map->header.prev = &map->header;
  794         map->needs_wakeup = FALSE;
  795         map->system_map = 0;
  796         map->pmap = pmap;
  797         map->min_offset = min;
  798         map->max_offset = max;
  799         map->flags = 0;
  800         map->root = NULL;
  801         map->timestamp = 0;
  802         map->busy = 0;
  803 }
  804 
  805 void
  806 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
  807 {
  808 
  809         _vm_map_init(map, pmap, min, max);
  810         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
  811         sx_init(&map->lock, "user map");
  812 }
  813 
  814 /*
  815  *      vm_map_entry_dispose:   [ internal use only ]
  816  *
  817  *      Inverse of vm_map_entry_create.
  818  */
  819 static void
  820 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
  821 {
  822         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
  823 }
  824 
  825 /*
  826  *      vm_map_entry_create:    [ internal use only ]
  827  *
  828  *      Allocates a VM map entry for insertion.
  829  *      No entry fields are filled in.
  830  */
  831 static vm_map_entry_t
  832 vm_map_entry_create(vm_map_t map)
  833 {
  834         vm_map_entry_t new_entry;
  835 
  836         if (map->system_map)
  837                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
  838         else
  839                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
  840         if (new_entry == NULL)
  841                 panic("vm_map_entry_create: kernel resources exhausted");
  842         return (new_entry);
  843 }
  844 
  845 /*
  846  *      vm_map_entry_set_behavior:
  847  *
  848  *      Set the expected access behavior, either normal, random, or
  849  *      sequential.
  850  */
  851 static inline void
  852 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
  853 {
  854         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
  855             (behavior & MAP_ENTRY_BEHAV_MASK);
  856 }
  857 
  858 /*
  859  *      vm_map_entry_set_max_free:
  860  *
  861  *      Set the max_free field in a vm_map_entry.
  862  */
  863 static inline void
  864 vm_map_entry_set_max_free(vm_map_entry_t entry)
  865 {
  866 
  867         entry->max_free = entry->adj_free;
  868         if (entry->left != NULL && entry->left->max_free > entry->max_free)
  869                 entry->max_free = entry->left->max_free;
  870         if (entry->right != NULL && entry->right->max_free > entry->max_free)
  871                 entry->max_free = entry->right->max_free;
  872 }
  873 
  874 /*
  875  *      vm_map_entry_splay:
  876  *
  877  *      The Sleator and Tarjan top-down splay algorithm with the
  878  *      following variation.  Max_free must be computed bottom-up, so
  879  *      on the downward pass, maintain the left and right spines in
  880  *      reverse order.  Then, make a second pass up each side to fix
  881  *      the pointers and compute max_free.  The time bound is O(log n)
  882  *      amortized.
  883  *
  884  *      The new root is the vm_map_entry containing "addr", or else an
  885  *      adjacent entry (lower or higher) if addr is not in the tree.
  886  *
  887  *      The map must be locked, and leaves it so.
  888  *
  889  *      Returns: the new root.
  890  */
  891 static vm_map_entry_t
  892 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
  893 {
  894         vm_map_entry_t llist, rlist;
  895         vm_map_entry_t ltree, rtree;
  896         vm_map_entry_t y;
  897 
  898         /* Special case of empty tree. */
  899         if (root == NULL)
  900                 return (root);
  901 
  902         /*
  903          * Pass One: Splay down the tree until we find addr or a NULL
  904          * pointer where addr would go.  llist and rlist are the two
  905          * sides in reverse order (bottom-up), with llist linked by
  906          * the right pointer and rlist linked by the left pointer in
  907          * the vm_map_entry.  Wait until Pass Two to set max_free on
  908          * the two spines.
  909          */
  910         llist = NULL;
  911         rlist = NULL;
  912         for (;;) {
  913                 /* root is never NULL in here. */
  914                 if (addr < root->start) {
  915                         y = root->left;
  916                         if (y == NULL)
  917                                 break;
  918                         if (addr < y->start && y->left != NULL) {
  919                                 /* Rotate right and put y on rlist. */
  920                                 root->left = y->right;
  921                                 y->right = root;
  922                                 vm_map_entry_set_max_free(root);
  923                                 root = y->left;
  924                                 y->left = rlist;
  925                                 rlist = y;
  926                         } else {
  927                                 /* Put root on rlist. */
  928                                 root->left = rlist;
  929                                 rlist = root;
  930                                 root = y;
  931                         }
  932                 } else if (addr >= root->end) {
  933                         y = root->right;
  934                         if (y == NULL)
  935                                 break;
  936                         if (addr >= y->end && y->right != NULL) {
  937                                 /* Rotate left and put y on llist. */
  938                                 root->right = y->left;
  939                                 y->left = root;
  940                                 vm_map_entry_set_max_free(root);
  941                                 root = y->right;
  942                                 y->right = llist;
  943                                 llist = y;
  944                         } else {
  945                                 /* Put root on llist. */
  946                                 root->right = llist;
  947                                 llist = root;
  948                                 root = y;
  949                         }
  950                 } else
  951                         break;
  952         }
  953 
  954         /*
  955          * Pass Two: Walk back up the two spines, flip the pointers
  956          * and set max_free.  The subtrees of the root go at the
  957          * bottom of llist and rlist.
  958          */
  959         ltree = root->left;
  960         while (llist != NULL) {
  961                 y = llist->right;
  962                 llist->right = ltree;
  963                 vm_map_entry_set_max_free(llist);
  964                 ltree = llist;
  965                 llist = y;
  966         }
  967         rtree = root->right;
  968         while (rlist != NULL) {
  969                 y = rlist->left;
  970                 rlist->left = rtree;
  971                 vm_map_entry_set_max_free(rlist);
  972                 rtree = rlist;
  973                 rlist = y;
  974         }
  975 
  976         /*
  977          * Final assembly: add ltree and rtree as subtrees of root.
  978          */
  979         root->left = ltree;
  980         root->right = rtree;
  981         vm_map_entry_set_max_free(root);
  982 
  983         return (root);
  984 }
  985 
  986 /*
  987  *      vm_map_entry_{un,}link:
  988  *
  989  *      Insert/remove entries from maps.
  990  */
  991 static void
  992 vm_map_entry_link(vm_map_t map,
  993                   vm_map_entry_t after_where,
  994                   vm_map_entry_t entry)
  995 {
  996 
  997         CTR4(KTR_VM,
  998             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
  999             map->nentries, entry, after_where);
 1000         VM_MAP_ASSERT_LOCKED(map);
 1001         KASSERT(after_where == &map->header ||
 1002             after_where->end <= entry->start,
 1003             ("vm_map_entry_link: prev end %jx new start %jx overlap",
 1004             (uintmax_t)after_where->end, (uintmax_t)entry->start));
 1005         KASSERT(after_where->next == &map->header ||
 1006             entry->end <= after_where->next->start,
 1007             ("vm_map_entry_link: new end %jx next start %jx overlap",
 1008             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
 1009 
 1010         map->nentries++;
 1011         entry->prev = after_where;
 1012         entry->next = after_where->next;
 1013         entry->next->prev = entry;
 1014         after_where->next = entry;
 1015 
 1016         if (after_where != &map->header) {
 1017                 if (after_where != map->root)
 1018                         vm_map_entry_splay(after_where->start, map->root);
 1019                 entry->right = after_where->right;
 1020                 entry->left = after_where;
 1021                 after_where->right = NULL;
 1022                 after_where->adj_free = entry->start - after_where->end;
 1023                 vm_map_entry_set_max_free(after_where);
 1024         } else {
 1025                 entry->right = map->root;
 1026                 entry->left = NULL;
 1027         }
 1028         entry->adj_free = (entry->next == &map->header ? map->max_offset :
 1029             entry->next->start) - entry->end;
 1030         vm_map_entry_set_max_free(entry);
 1031         map->root = entry;
 1032 }
 1033 
 1034 static void
 1035 vm_map_entry_unlink(vm_map_t map,
 1036                     vm_map_entry_t entry)
 1037 {
 1038         vm_map_entry_t next, prev, root;
 1039 
 1040         VM_MAP_ASSERT_LOCKED(map);
 1041         if (entry != map->root)
 1042                 vm_map_entry_splay(entry->start, map->root);
 1043         if (entry->left == NULL)
 1044                 root = entry->right;
 1045         else {
 1046                 root = vm_map_entry_splay(entry->start, entry->left);
 1047                 root->right = entry->right;
 1048                 root->adj_free = (entry->next == &map->header ? map->max_offset :
 1049                     entry->next->start) - root->end;
 1050                 vm_map_entry_set_max_free(root);
 1051         }
 1052         map->root = root;
 1053 
 1054         prev = entry->prev;
 1055         next = entry->next;
 1056         next->prev = prev;
 1057         prev->next = next;
 1058         map->nentries--;
 1059         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
 1060             map->nentries, entry);
 1061 }
 1062 
 1063 /*
 1064  *      vm_map_entry_resize_free:
 1065  *
 1066  *      Recompute the amount of free space following a vm_map_entry
 1067  *      and propagate that value up the tree.  Call this function after
 1068  *      resizing a map entry in-place, that is, without a call to
 1069  *      vm_map_entry_link() or _unlink().
 1070  *
 1071  *      The map must be locked, and leaves it so.
 1072  */
 1073 static void
 1074 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
 1075 {
 1076 
 1077         /*
 1078          * Using splay trees without parent pointers, propagating
 1079          * max_free up the tree is done by moving the entry to the
 1080          * root and making the change there.
 1081          */
 1082         if (entry != map->root)
 1083                 map->root = vm_map_entry_splay(entry->start, map->root);
 1084 
 1085         entry->adj_free = (entry->next == &map->header ? map->max_offset :
 1086             entry->next->start) - entry->end;
 1087         vm_map_entry_set_max_free(entry);
 1088 }
 1089 
 1090 /*
 1091  *      vm_map_lookup_entry:    [ internal use only ]
 1092  *
 1093  *      Finds the map entry containing (or
 1094  *      immediately preceding) the specified address
 1095  *      in the given map; the entry is returned
 1096  *      in the "entry" parameter.  The boolean
 1097  *      result indicates whether the address is
 1098  *      actually contained in the map.
 1099  */
 1100 boolean_t
 1101 vm_map_lookup_entry(
 1102         vm_map_t map,
 1103         vm_offset_t address,
 1104         vm_map_entry_t *entry)  /* OUT */
 1105 {
 1106         vm_map_entry_t cur;
 1107         boolean_t locked;
 1108 
 1109         /*
 1110          * If the map is empty, then the map entry immediately preceding
 1111          * "address" is the map's header.
 1112          */
 1113         cur = map->root;
 1114         if (cur == NULL)
 1115                 *entry = &map->header;
 1116         else if (address >= cur->start && cur->end > address) {
 1117                 *entry = cur;
 1118                 return (TRUE);
 1119         } else if ((locked = vm_map_locked(map)) ||
 1120             sx_try_upgrade(&map->lock)) {
 1121                 /*
 1122                  * Splay requires a write lock on the map.  However, it only
 1123                  * restructures the binary search tree; it does not otherwise
 1124                  * change the map.  Thus, the map's timestamp need not change
 1125                  * on a temporary upgrade.
 1126                  */
 1127                 map->root = cur = vm_map_entry_splay(address, cur);
 1128                 if (!locked)
 1129                         sx_downgrade(&map->lock);
 1130 
 1131                 /*
 1132                  * If "address" is contained within a map entry, the new root
 1133                  * is that map entry.  Otherwise, the new root is a map entry
 1134                  * immediately before or after "address".
 1135                  */
 1136                 if (address >= cur->start) {
 1137                         *entry = cur;
 1138                         if (cur->end > address)
 1139                                 return (TRUE);
 1140                 } else
 1141                         *entry = cur->prev;
 1142         } else
 1143                 /*
 1144                  * Since the map is only locked for read access, perform a
 1145                  * standard binary search tree lookup for "address".
 1146                  */
 1147                 for (;;) {
 1148                         if (address < cur->start) {
 1149                                 if (cur->left == NULL) {
 1150                                         *entry = cur->prev;
 1151                                         break;
 1152                                 }
 1153                                 cur = cur->left;
 1154                         } else if (cur->end > address) {
 1155                                 *entry = cur;
 1156                                 return (TRUE);
 1157                         } else {
 1158                                 if (cur->right == NULL) {
 1159                                         *entry = cur;
 1160                                         break;
 1161                                 }
 1162                                 cur = cur->right;
 1163                         }
 1164                 }
 1165         return (FALSE);
 1166 }
 1167 
 1168 /*
 1169  *      vm_map_insert:
 1170  *
 1171  *      Inserts the given whole VM object into the target
 1172  *      map at the specified address range.  The object's
 1173  *      size should match that of the address range.
 1174  *
 1175  *      Requires that the map be locked, and leaves it so.
 1176  *
 1177  *      If object is non-NULL, ref count must be bumped by caller
 1178  *      prior to making call to account for the new entry.
 1179  */
 1180 int
 1181 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 1182     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
 1183 {
 1184         vm_map_entry_t new_entry, prev_entry, temp_entry;
 1185         struct ucred *cred;
 1186         vm_eflags_t protoeflags;
 1187         vm_inherit_t inheritance;
 1188 
 1189         VM_MAP_ASSERT_LOCKED(map);
 1190         KASSERT((object != kmem_object && object != kernel_object) ||
 1191             (cow & MAP_COPY_ON_WRITE) == 0,
 1192             ("vm_map_insert: kmem or kernel object and COW"));
 1193         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
 1194             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
 1195         KASSERT((prot & ~max) == 0,
 1196             ("prot %#x is not subset of max_prot %#x", prot, max));
 1197 
 1198         /*
 1199          * Check that the start and end points are not bogus.
 1200          */
 1201         if (start < map->min_offset || end > map->max_offset || start >= end)
 1202                 return (KERN_INVALID_ADDRESS);
 1203 
 1204         /*
 1205          * Find the entry prior to the proposed starting address; if it's part
 1206          * of an existing entry, this range is bogus.
 1207          */
 1208         if (vm_map_lookup_entry(map, start, &temp_entry))
 1209                 return (KERN_NO_SPACE);
 1210 
 1211         prev_entry = temp_entry;
 1212 
 1213         /*
 1214          * Assert that the next entry doesn't overlap the end point.
 1215          */
 1216         if (prev_entry->next != &map->header && prev_entry->next->start < end)
 1217                 return (KERN_NO_SPACE);
 1218 
 1219         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
 1220             max != VM_PROT_NONE))
 1221                 return (KERN_INVALID_ARGUMENT);
 1222 
 1223         protoeflags = 0;
 1224         if (cow & MAP_COPY_ON_WRITE)
 1225                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
 1226         if (cow & MAP_NOFAULT)
 1227                 protoeflags |= MAP_ENTRY_NOFAULT;
 1228         if (cow & MAP_DISABLE_SYNCER)
 1229                 protoeflags |= MAP_ENTRY_NOSYNC;
 1230         if (cow & MAP_DISABLE_COREDUMP)
 1231                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
 1232         if (cow & MAP_STACK_GROWS_DOWN)
 1233                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
 1234         if (cow & MAP_STACK_GROWS_UP)
 1235                 protoeflags |= MAP_ENTRY_GROWS_UP;
 1236         if (cow & MAP_VN_WRITECOUNT)
 1237                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
 1238         if ((cow & MAP_CREATE_GUARD) != 0)
 1239                 protoeflags |= MAP_ENTRY_GUARD;
 1240         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
 1241                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
 1242         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
 1243                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
 1244         if (cow & MAP_INHERIT_SHARE)
 1245                 inheritance = VM_INHERIT_SHARE;
 1246         else
 1247                 inheritance = VM_INHERIT_DEFAULT;
 1248 
 1249         cred = NULL;
 1250         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
 1251                 goto charged;
 1252         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
 1253             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
 1254                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
 1255                         return (KERN_RESOURCE_SHORTAGE);
 1256                 KASSERT(object == NULL ||
 1257                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
 1258                     object->cred == NULL,
 1259                     ("overcommit: vm_map_insert o %p", object));
 1260                 cred = curthread->td_ucred;
 1261         }
 1262 
 1263 charged:
 1264         /* Expand the kernel pmap, if necessary. */
 1265         if (map == kernel_map && end > kernel_vm_end)
 1266                 pmap_growkernel(end);
 1267         if (object != NULL) {
 1268                 /*
 1269                  * OBJ_ONEMAPPING must be cleared unless this mapping
 1270                  * is trivially proven to be the only mapping for any
 1271                  * of the object's pages.  (Object granularity
 1272                  * reference counting is insufficient to recognize
 1273                  * aliases with precision.)
 1274                  */
 1275                 VM_OBJECT_WLOCK(object);
 1276                 if (object->ref_count > 1 || object->shadow_count != 0)
 1277                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
 1278                 VM_OBJECT_WUNLOCK(object);
 1279         } else if (prev_entry != &map->header &&
 1280             prev_entry->eflags == protoeflags &&
 1281             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
 1282             prev_entry->end == start && prev_entry->wired_count == 0 &&
 1283             (prev_entry->cred == cred ||
 1284             (prev_entry->object.vm_object != NULL &&
 1285             prev_entry->object.vm_object->cred == cred)) &&
 1286             vm_object_coalesce(prev_entry->object.vm_object,
 1287             prev_entry->offset,
 1288             (vm_size_t)(prev_entry->end - prev_entry->start),
 1289             (vm_size_t)(end - prev_entry->end), cred != NULL &&
 1290             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
 1291                 /*
 1292                  * We were able to extend the object.  Determine if we
 1293                  * can extend the previous map entry to include the
 1294                  * new range as well.
 1295                  */
 1296                 if (prev_entry->inheritance == inheritance &&
 1297                     prev_entry->protection == prot &&
 1298                     prev_entry->max_protection == max) {
 1299                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
 1300                                 map->size += end - prev_entry->end;
 1301                         prev_entry->end = end;
 1302                         vm_map_entry_resize_free(map, prev_entry);
 1303                         vm_map_simplify_entry(map, prev_entry);
 1304                         return (KERN_SUCCESS);
 1305                 }
 1306 
 1307                 /*
 1308                  * If we can extend the object but cannot extend the
 1309                  * map entry, we have to create a new map entry.  We
 1310                  * must bump the ref count on the extended object to
 1311                  * account for it.  object may be NULL.
 1312                  */
 1313                 object = prev_entry->object.vm_object;
 1314                 offset = prev_entry->offset +
 1315                     (prev_entry->end - prev_entry->start);
 1316                 vm_object_reference(object);
 1317                 if (cred != NULL && object != NULL && object->cred != NULL &&
 1318                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
 1319                         /* Object already accounts for this uid. */
 1320                         cred = NULL;
 1321                 }
 1322         }
 1323         if (cred != NULL)
 1324                 crhold(cred);
 1325 
 1326         /*
 1327          * Create a new entry
 1328          */
 1329         new_entry = vm_map_entry_create(map);
 1330         new_entry->start = start;
 1331         new_entry->end = end;
 1332         new_entry->cred = NULL;
 1333 
 1334         new_entry->eflags = protoeflags;
 1335         new_entry->object.vm_object = object;
 1336         new_entry->offset = offset;
 1337 
 1338         new_entry->inheritance = inheritance;
 1339         new_entry->protection = prot;
 1340         new_entry->max_protection = max;
 1341         new_entry->wired_count = 0;
 1342         new_entry->wiring_thread = NULL;
 1343         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
 1344         new_entry->next_read = start;
 1345 
 1346         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
 1347             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
 1348         new_entry->cred = cred;
 1349 
 1350         /*
 1351          * Insert the new entry into the list
 1352          */
 1353         vm_map_entry_link(map, prev_entry, new_entry);
 1354         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
 1355                 map->size += new_entry->end - new_entry->start;
 1356 
 1357         /*
 1358          * Try to coalesce the new entry with both the previous and next
 1359          * entries in the list.  Previously, we only attempted to coalesce
 1360          * with the previous entry when object is NULL.  Here, we handle the
 1361          * other cases, which are less common.
 1362          */
 1363         vm_map_simplify_entry(map, new_entry);
 1364 
 1365         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
 1366                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
 1367                     end - start, cow & MAP_PREFAULT_PARTIAL);
 1368         }
 1369 
 1370         return (KERN_SUCCESS);
 1371 }
 1372 
 1373 /*
 1374  *      vm_map_findspace:
 1375  *
 1376  *      Find the first fit (lowest VM address) for "length" free bytes
 1377  *      beginning at address >= start in the given map.
 1378  *
 1379  *      In a vm_map_entry, "adj_free" is the amount of free space
 1380  *      adjacent (higher address) to this entry, and "max_free" is the
 1381  *      maximum amount of contiguous free space in its subtree.  This
 1382  *      allows finding a free region in one path down the tree, so
 1383  *      O(log n) amortized with splay trees.
 1384  *
 1385  *      The map must be locked, and leaves it so.
 1386  *
 1387  *      Returns: 0 on success, and starting address in *addr,
 1388  *               1 if insufficient space.
 1389  */
 1390 int
 1391 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
 1392     vm_offset_t *addr)  /* OUT */
 1393 {
 1394         vm_map_entry_t entry;
 1395         vm_offset_t st;
 1396 
 1397         /*
 1398          * Request must fit within min/max VM address and must avoid
 1399          * address wrap.
 1400          */
 1401         if (start < map->min_offset)
 1402                 start = map->min_offset;
 1403         if (start + length > map->max_offset || start + length < start)
 1404                 return (1);
 1405 
 1406         /* Empty tree means wide open address space. */
 1407         if (map->root == NULL) {
 1408                 *addr = start;
 1409                 return (0);
 1410         }
 1411 
 1412         /*
 1413          * After splay, if start comes before root node, then there
 1414          * must be a gap from start to the root.
 1415          */
 1416         map->root = vm_map_entry_splay(start, map->root);
 1417         if (start + length <= map->root->start) {
 1418                 *addr = start;
 1419                 return (0);
 1420         }
 1421 
 1422         /*
 1423          * Root is the last node that might begin its gap before
 1424          * start, and this is the last comparison where address
 1425          * wrap might be a problem.
 1426          */
 1427         st = (start > map->root->end) ? start : map->root->end;
 1428         if (length <= map->root->end + map->root->adj_free - st) {
 1429                 *addr = st;
 1430                 return (0);
 1431         }
 1432 
 1433         /* With max_free, can immediately tell if no solution. */
 1434         entry = map->root->right;
 1435         if (entry == NULL || length > entry->max_free)
 1436                 return (1);
 1437 
 1438         /*
 1439          * Search the right subtree in the order: left subtree, root,
 1440          * right subtree (first fit).  The previous splay implies that
 1441          * all regions in the right subtree have addresses > start.
 1442          */
 1443         while (entry != NULL) {
 1444                 if (entry->left != NULL && entry->left->max_free >= length)
 1445                         entry = entry->left;
 1446                 else if (entry->adj_free >= length) {
 1447                         *addr = entry->end;
 1448                         return (0);
 1449                 } else
 1450                         entry = entry->right;
 1451         }
 1452 
 1453         /* Can't get here, so panic if we do. */
 1454         panic("vm_map_findspace: max_free corrupt");
 1455 }
 1456 
 1457 int
 1458 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 1459     vm_offset_t start, vm_size_t length, vm_prot_t prot,
 1460     vm_prot_t max, int cow)
 1461 {
 1462         vm_offset_t end;
 1463         int result;
 1464 
 1465         end = start + length;
 1466         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
 1467             object == NULL,
 1468             ("vm_map_fixed: non-NULL backing object for stack"));
 1469         vm_map_lock(map);
 1470         VM_MAP_RANGE_CHECK(map, start, end);
 1471         if ((cow & MAP_CHECK_EXCL) == 0)
 1472                 vm_map_delete(map, start, end);
 1473         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
 1474                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
 1475                     prot, max, cow);
 1476         } else {
 1477                 result = vm_map_insert(map, object, offset, start, end,
 1478                     prot, max, cow);
 1479         }
 1480         vm_map_unlock(map);
 1481         return (result);
 1482 }
 1483 
 1484 /*
 1485  *      vm_map_find finds an unallocated region in the target address
 1486  *      map with the given length.  The search is defined to be
 1487  *      first-fit from the specified address; the region found is
 1488  *      returned in the same parameter.
 1489  *
 1490  *      If object is non-NULL, ref count must be bumped by caller
 1491  *      prior to making call to account for the new entry.
 1492  */
 1493 int
 1494 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 1495             vm_offset_t *addr,  /* IN/OUT */
 1496             vm_size_t length, vm_offset_t max_addr, int find_space,
 1497             vm_prot_t prot, vm_prot_t max, int cow)
 1498 {
 1499         vm_offset_t alignment, initial_addr, start;
 1500         int result;
 1501 
 1502         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
 1503             object == NULL,
 1504             ("vm_map_find: non-NULL backing object for stack"));
 1505         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
 1506             (object->flags & OBJ_COLORED) == 0))
 1507                 find_space = VMFS_ANY_SPACE;
 1508         if (find_space >> 8 != 0) {
 1509                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
 1510                 alignment = (vm_offset_t)1 << (find_space >> 8);
 1511         } else
 1512                 alignment = 0;
 1513         initial_addr = *addr;
 1514 again:
 1515         start = initial_addr;
 1516         vm_map_lock(map);
 1517         do {
 1518                 if (find_space != VMFS_NO_SPACE) {
 1519                         if (vm_map_findspace(map, start, length, addr) ||
 1520                             (max_addr != 0 && *addr + length > max_addr)) {
 1521                                 vm_map_unlock(map);
 1522                                 if (find_space == VMFS_OPTIMAL_SPACE) {
 1523                                         find_space = VMFS_ANY_SPACE;
 1524                                         goto again;
 1525                                 }
 1526                                 return (KERN_NO_SPACE);
 1527                         }
 1528                         switch (find_space) {
 1529                         case VMFS_SUPER_SPACE:
 1530                         case VMFS_OPTIMAL_SPACE:
 1531                                 pmap_align_superpage(object, offset, addr,
 1532                                     length);
 1533                                 break;
 1534                         case VMFS_ANY_SPACE:
 1535                                 break;
 1536                         default:
 1537                                 if ((*addr & (alignment - 1)) != 0) {
 1538                                         *addr &= ~(alignment - 1);
 1539                                         *addr += alignment;
 1540                                 }
 1541                                 break;
 1542                         }
 1543 
 1544                         start = *addr;
 1545                 }
 1546                 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
 1547                         result = vm_map_stack_locked(map, start, length,
 1548                             sgrowsiz, prot, max, cow);
 1549                 } else {
 1550                         result = vm_map_insert(map, object, offset, start,
 1551                             start + length, prot, max, cow);
 1552                 }
 1553         } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
 1554             find_space != VMFS_ANY_SPACE);
 1555         vm_map_unlock(map);
 1556         return (result);
 1557 }
 1558 
 1559 int
 1560 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 1561     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
 1562     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
 1563     int cow)
 1564 {
 1565         vm_offset_t hint;
 1566         int rv;
 1567 
 1568         hint = *addr;
 1569         for (;;) {
 1570                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
 1571                     find_space, prot, max, cow);
 1572                 if (rv == KERN_SUCCESS || min_addr >= hint)
 1573                         return (rv);
 1574                 *addr = hint = min_addr;
 1575         }
 1576 }
 1577 
 1578 /*
 1579  *      vm_map_simplify_entry:
 1580  *
 1581  *      Simplify the given map entry by merging with either neighbor.  This
 1582  *      routine also has the ability to merge with both neighbors.
 1583  *
 1584  *      The map must be locked.
 1585  *
 1586  *      This routine guarantees that the passed entry remains valid (though
 1587  *      possibly extended).  When merging, this routine may delete one or
 1588  *      both neighbors.
 1589  */
 1590 void
 1591 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
 1592 {
 1593         vm_map_entry_t next, prev;
 1594         vm_size_t prevsize, esize;
 1595 
 1596         if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
 1597             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
 1598                 return;
 1599 
 1600         prev = entry->prev;
 1601         if (prev != &map->header) {
 1602                 prevsize = prev->end - prev->start;
 1603                 if ( (prev->end == entry->start) &&
 1604                      (prev->object.vm_object == entry->object.vm_object) &&
 1605                      (!prev->object.vm_object ||
 1606                         (prev->offset + prevsize == entry->offset)) &&
 1607                      (prev->eflags == entry->eflags) &&
 1608                      (prev->protection == entry->protection) &&
 1609                      (prev->max_protection == entry->max_protection) &&
 1610                      (prev->inheritance == entry->inheritance) &&
 1611                      (prev->wired_count == entry->wired_count) &&
 1612                      (prev->cred == entry->cred)) {
 1613                         vm_map_entry_unlink(map, prev);
 1614                         entry->start = prev->start;
 1615                         entry->offset = prev->offset;
 1616                         if (entry->prev != &map->header)
 1617                                 vm_map_entry_resize_free(map, entry->prev);
 1618 
 1619                         /*
 1620                          * If the backing object is a vnode object,
 1621                          * vm_object_deallocate() calls vrele().
 1622                          * However, vrele() does not lock the vnode
 1623                          * because the vnode has additional
 1624                          * references.  Thus, the map lock can be kept
 1625                          * without causing a lock-order reversal with
 1626                          * the vnode lock.
 1627                          *
 1628                          * Since we count the number of virtual page
 1629                          * mappings in object->un_pager.vnp.writemappings,
 1630                          * the writemappings value should not be adjusted
 1631                          * when the entry is disposed of.
 1632                          */
 1633                         if (prev->object.vm_object)
 1634                                 vm_object_deallocate(prev->object.vm_object);
 1635                         if (prev->cred != NULL)
 1636                                 crfree(prev->cred);
 1637                         vm_map_entry_dispose(map, prev);
 1638                 }
 1639         }
 1640 
 1641         next = entry->next;
 1642         if (next != &map->header) {
 1643                 esize = entry->end - entry->start;
 1644                 if ((entry->end == next->start) &&
 1645                     (next->object.vm_object == entry->object.vm_object) &&
 1646                      (!entry->object.vm_object ||
 1647                         (entry->offset + esize == next->offset)) &&
 1648                     (next->eflags == entry->eflags) &&
 1649                     (next->protection == entry->protection) &&
 1650                     (next->max_protection == entry->max_protection) &&
 1651                     (next->inheritance == entry->inheritance) &&
 1652                     (next->wired_count == entry->wired_count) &&
 1653                     (next->cred == entry->cred)) {
 1654                         vm_map_entry_unlink(map, next);
 1655                         entry->end = next->end;
 1656                         vm_map_entry_resize_free(map, entry);
 1657 
 1658                         /*
 1659                          * See comment above.
 1660                          */
 1661                         if (next->object.vm_object)
 1662                                 vm_object_deallocate(next->object.vm_object);
 1663                         if (next->cred != NULL)
 1664                                 crfree(next->cred);
 1665                         vm_map_entry_dispose(map, next);
 1666                 }
 1667         }
 1668 }
 1669 /*
 1670  *      vm_map_clip_start:      [ internal use only ]
 1671  *
 1672  *      Asserts that the given entry begins at or after
 1673  *      the specified address; if necessary,
 1674  *      it splits the entry into two.
 1675  */
 1676 #define vm_map_clip_start(map, entry, startaddr) \
 1677 { \
 1678         if (startaddr > entry->start) \
 1679                 _vm_map_clip_start(map, entry, startaddr); \
 1680 }
 1681 
 1682 /*
 1683  *      This routine is called only when it is known that
 1684  *      the entry must be split.
 1685  */
 1686 static void
 1687 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
 1688 {
 1689         vm_map_entry_t new_entry;
 1690 
 1691         VM_MAP_ASSERT_LOCKED(map);
 1692         KASSERT(entry->end > start && entry->start < start,
 1693             ("_vm_map_clip_start: invalid clip of entry %p", entry));
 1694 
 1695         /*
 1696          * Split off the front portion -- note that we must insert the new
 1697          * entry BEFORE this one, so that this entry has the specified
 1698          * starting address.
 1699          */
 1700         vm_map_simplify_entry(map, entry);
 1701 
 1702         /*
 1703          * If there is no object backing this entry, we might as well create
 1704          * one now.  If we defer it, an object can get created after the map
 1705          * is clipped, and individual objects will be created for the split-up
 1706          * map.  This is a bit of a hack, but is also about the best place to
 1707          * put this improvement.
 1708          */
 1709         if (entry->object.vm_object == NULL && !map->system_map &&
 1710             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
 1711                 vm_object_t object;
 1712                 object = vm_object_allocate(OBJT_DEFAULT,
 1713                                 atop(entry->end - entry->start));
 1714                 entry->object.vm_object = object;
 1715                 entry->offset = 0;
 1716                 if (entry->cred != NULL) {
 1717                         object->cred = entry->cred;
 1718                         object->charge = entry->end - entry->start;
 1719                         entry->cred = NULL;
 1720                 }
 1721         } else if (entry->object.vm_object != NULL &&
 1722                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
 1723                    entry->cred != NULL) {
 1724                 VM_OBJECT_WLOCK(entry->object.vm_object);
 1725                 KASSERT(entry->object.vm_object->cred == NULL,
 1726                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
 1727                 entry->object.vm_object->cred = entry->cred;
 1728                 entry->object.vm_object->charge = entry->end - entry->start;
 1729                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
 1730                 entry->cred = NULL;
 1731         }
 1732 
 1733         new_entry = vm_map_entry_create(map);
 1734         *new_entry = *entry;
 1735 
 1736         new_entry->end = start;
 1737         entry->offset += (start - entry->start);
 1738         entry->start = start;
 1739         if (new_entry->cred != NULL)
 1740                 crhold(entry->cred);
 1741 
 1742         vm_map_entry_link(map, entry->prev, new_entry);
 1743 
 1744         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
 1745                 vm_object_reference(new_entry->object.vm_object);
 1746                 /*
 1747                  * The object->un_pager.vnp.writemappings for the
 1748                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
 1749                  * kept as is here.  The virtual pages are
 1750                  * re-distributed among the clipped entries, so the sum is
 1751                  * left the same.
 1752                  */
 1753         }
 1754 }
 1755 
 1756 /*
 1757  *      vm_map_clip_end:        [ internal use only ]
 1758  *
 1759  *      Asserts that the given entry ends at or before
 1760  *      the specified address; if necessary,
 1761  *      it splits the entry into two.
 1762  */
 1763 #define vm_map_clip_end(map, entry, endaddr) \
 1764 { \
 1765         if ((endaddr) < (entry->end)) \
 1766                 _vm_map_clip_end((map), (entry), (endaddr)); \
 1767 }
 1768 
 1769 /*
 1770  *      This routine is called only when it is known that
 1771  *      the entry must be split.
 1772  */
 1773 static void
 1774 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
 1775 {
 1776         vm_map_entry_t new_entry;
 1777 
 1778         VM_MAP_ASSERT_LOCKED(map);
 1779         KASSERT(entry->start < end && entry->end > end,
 1780             ("_vm_map_clip_end: invalid clip of entry %p", entry));
 1781 
 1782         /*
 1783          * If there is no object backing this entry, we might as well create
 1784          * one now.  If we defer it, an object can get created after the map
 1785          * is clipped, and individual objects will be created for the split-up
 1786          * map.  This is a bit of a hack, but is also about the best place to
 1787          * put this improvement.
 1788          */
 1789         if (entry->object.vm_object == NULL && !map->system_map &&
 1790             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
 1791                 vm_object_t object;
 1792                 object = vm_object_allocate(OBJT_DEFAULT,
 1793                                 atop(entry->end - entry->start));
 1794                 entry->object.vm_object = object;
 1795                 entry->offset = 0;
 1796                 if (entry->cred != NULL) {
 1797                         object->cred = entry->cred;
 1798                         object->charge = entry->end - entry->start;
 1799                         entry->cred = NULL;
 1800                 }
 1801         } else if (entry->object.vm_object != NULL &&
 1802                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
 1803                    entry->cred != NULL) {
 1804                 VM_OBJECT_WLOCK(entry->object.vm_object);
 1805                 KASSERT(entry->object.vm_object->cred == NULL,
 1806                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
 1807                 entry->object.vm_object->cred = entry->cred;
 1808                 entry->object.vm_object->charge = entry->end - entry->start;
 1809                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
 1810                 entry->cred = NULL;
 1811         }
 1812 
 1813         /*
 1814          * Create a new entry and insert it AFTER the specified entry
 1815          */
 1816         new_entry = vm_map_entry_create(map);
 1817         *new_entry = *entry;
 1818 
 1819         new_entry->start = entry->end = end;
 1820         new_entry->offset += (end - entry->start);
 1821         if (new_entry->cred != NULL)
 1822                 crhold(entry->cred);
 1823 
 1824         vm_map_entry_link(map, entry, new_entry);
 1825 
 1826         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
 1827                 vm_object_reference(new_entry->object.vm_object);
 1828         }
 1829 }
 1830 
 1831 /*
 1832  *      vm_map_submap:          [ kernel use only ]
 1833  *
 1834  *      Mark the given range as handled by a subordinate map.
 1835  *
 1836  *      This range must have been created with vm_map_find,
 1837  *      and no other operations may have been performed on this
 1838  *      range prior to calling vm_map_submap.
 1839  *
 1840  *      Only a limited number of operations can be performed
 1841  *      within this rage after calling vm_map_submap:
 1842  *              vm_fault
 1843  *      [Don't try vm_map_copy!]
 1844  *
 1845  *      To remove a submapping, one must first remove the
 1846  *      range from the superior map, and then destroy the
 1847  *      submap (if desired).  [Better yet, don't try it.]
 1848  */
 1849 int
 1850 vm_map_submap(
 1851         vm_map_t map,
 1852         vm_offset_t start,
 1853         vm_offset_t end,
 1854         vm_map_t submap)
 1855 {
 1856         vm_map_entry_t entry;
 1857         int result = KERN_INVALID_ARGUMENT;
 1858 
 1859         vm_map_lock(map);
 1860 
 1861         VM_MAP_RANGE_CHECK(map, start, end);
 1862 
 1863         if (vm_map_lookup_entry(map, start, &entry)) {
 1864                 vm_map_clip_start(map, entry, start);
 1865         } else
 1866                 entry = entry->next;
 1867 
 1868         vm_map_clip_end(map, entry, end);
 1869 
 1870         if ((entry->start == start) && (entry->end == end) &&
 1871             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
 1872             (entry->object.vm_object == NULL)) {
 1873                 entry->object.sub_map = submap;
 1874                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
 1875                 result = KERN_SUCCESS;
 1876         }
 1877         vm_map_unlock(map);
 1878 
 1879         return (result);
 1880 }
 1881 
 1882 /*
 1883  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
 1884  */
 1885 #define MAX_INIT_PT     96
 1886 
 1887 /*
 1888  *      vm_map_pmap_enter:
 1889  *
 1890  *      Preload the specified map's pmap with mappings to the specified
 1891  *      object's memory-resident pages.  No further physical pages are
 1892  *      allocated, and no further virtual pages are retrieved from secondary
 1893  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
 1894  *      limited number of page mappings are created at the low-end of the
 1895  *      specified address range.  (For this purpose, a superpage mapping
 1896  *      counts as one page mapping.)  Otherwise, all resident pages within
 1897  *      the specified address range are mapped.
 1898  */
 1899 static void
 1900 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
 1901     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
 1902 {
 1903         vm_offset_t start;
 1904         vm_page_t p, p_start;
 1905         vm_pindex_t mask, psize, threshold, tmpidx;
 1906 
 1907         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
 1908                 return;
 1909         VM_OBJECT_RLOCK(object);
 1910         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
 1911                 VM_OBJECT_RUNLOCK(object);
 1912                 VM_OBJECT_WLOCK(object);
 1913                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
 1914                         pmap_object_init_pt(map->pmap, addr, object, pindex,
 1915                             size);
 1916                         VM_OBJECT_WUNLOCK(object);
 1917                         return;
 1918                 }
 1919                 VM_OBJECT_LOCK_DOWNGRADE(object);
 1920         }
 1921 
 1922         psize = atop(size);
 1923         if (psize + pindex > object->size) {
 1924                 if (object->size < pindex) {
 1925                         VM_OBJECT_RUNLOCK(object);
 1926                         return;
 1927                 }
 1928                 psize = object->size - pindex;
 1929         }
 1930 
 1931         start = 0;
 1932         p_start = NULL;
 1933         threshold = MAX_INIT_PT;
 1934 
 1935         p = vm_page_find_least(object, pindex);
 1936         /*
 1937          * Assert: the variable p is either (1) the page with the
 1938          * least pindex greater than or equal to the parameter pindex
 1939          * or (2) NULL.
 1940          */
 1941         for (;
 1942              p != NULL && (tmpidx = p->pindex - pindex) < psize;
 1943              p = TAILQ_NEXT(p, listq)) {
 1944                 /*
 1945                  * don't allow an madvise to blow away our really
 1946                  * free pages allocating pv entries.
 1947                  */
 1948                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
 1949                     vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
 1950                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
 1951                     tmpidx >= threshold)) {
 1952                         psize = tmpidx;
 1953                         break;
 1954                 }
 1955                 if (p->valid == VM_PAGE_BITS_ALL) {
 1956                         if (p_start == NULL) {
 1957                                 start = addr + ptoa(tmpidx);
 1958                                 p_start = p;
 1959                         }
 1960                         /* Jump ahead if a superpage mapping is possible. */
 1961                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
 1962                             (pagesizes[p->psind] - 1)) == 0) {
 1963                                 mask = atop(pagesizes[p->psind]) - 1;
 1964                                 if (tmpidx + mask < psize &&
 1965                                     vm_page_ps_is_valid(p)) {
 1966                                         p += mask;
 1967                                         threshold += mask;
 1968                                 }
 1969                         }
 1970                 } else if (p_start != NULL) {
 1971                         pmap_enter_object(map->pmap, start, addr +
 1972                             ptoa(tmpidx), p_start, prot);
 1973                         p_start = NULL;
 1974                 }
 1975         }
 1976         if (p_start != NULL)
 1977                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
 1978                     p_start, prot);
 1979         VM_OBJECT_RUNLOCK(object);
 1980 }
 1981 
 1982 /*
 1983  *      vm_map_protect:
 1984  *
 1985  *      Sets the protection of the specified address
 1986  *      region in the target map.  If "set_max" is
 1987  *      specified, the maximum protection is to be set;
 1988  *      otherwise, only the current protection is affected.
 1989  */
 1990 int
 1991 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1992                vm_prot_t new_prot, boolean_t set_max)
 1993 {
 1994         vm_map_entry_t current, entry;
 1995         vm_object_t obj;
 1996         struct ucred *cred;
 1997         vm_prot_t old_prot;
 1998 
 1999         if (start == end)
 2000                 return (KERN_SUCCESS);
 2001 
 2002         vm_map_lock(map);
 2003 
 2004         /*
 2005          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
 2006          * need to fault pages into the map and will drop the map lock while
 2007          * doing so, and the VM object may end up in an inconsistent state if we
 2008          * update the protection on the map entry in between faults.
 2009          */
 2010         vm_map_wait_busy(map);
 2011 
 2012         VM_MAP_RANGE_CHECK(map, start, end);
 2013 
 2014         if (vm_map_lookup_entry(map, start, &entry)) {
 2015                 vm_map_clip_start(map, entry, start);
 2016         } else {
 2017                 entry = entry->next;
 2018         }
 2019 
 2020         /*
 2021          * Make a first pass to check for protection violations.
 2022          */
 2023         for (current = entry; current != &map->header && current->start < end;
 2024             current = current->next) {
 2025                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
 2026                         continue;
 2027                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2028                         vm_map_unlock(map);
 2029                         return (KERN_INVALID_ARGUMENT);
 2030                 }
 2031                 if ((new_prot & current->max_protection) != new_prot) {
 2032                         vm_map_unlock(map);
 2033                         return (KERN_PROTECTION_FAILURE);
 2034                 }
 2035         }
 2036 
 2037         /*
 2038          * Do an accounting pass for private read-only mappings that
 2039          * now will do cow due to allowed write (e.g. debugger sets
 2040          * breakpoint on text segment)
 2041          */
 2042         for (current = entry; current != &map->header && current->start < end;
 2043             current = current->next) {
 2044 
 2045                 vm_map_clip_end(map, current, end);
 2046 
 2047                 if (set_max ||
 2048                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
 2049                     ENTRY_CHARGED(current) ||
 2050                     (current->eflags & MAP_ENTRY_GUARD) != 0) {
 2051                         continue;
 2052                 }
 2053 
 2054                 cred = curthread->td_ucred;
 2055                 obj = current->object.vm_object;
 2056 
 2057                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
 2058                         if (!swap_reserve(current->end - current->start)) {
 2059                                 vm_map_unlock(map);
 2060                                 return (KERN_RESOURCE_SHORTAGE);
 2061                         }
 2062                         crhold(cred);
 2063                         current->cred = cred;
 2064                         continue;
 2065                 }
 2066 
 2067                 VM_OBJECT_WLOCK(obj);
 2068                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
 2069                         VM_OBJECT_WUNLOCK(obj);
 2070                         continue;
 2071                 }
 2072 
 2073                 /*
 2074                  * Charge for the whole object allocation now, since
 2075                  * we cannot distinguish between non-charged and
 2076                  * charged clipped mapping of the same object later.
 2077                  */
 2078                 KASSERT(obj->charge == 0,
 2079                     ("vm_map_protect: object %p overcharged (entry %p)",
 2080                     obj, current));
 2081                 if (!swap_reserve(ptoa(obj->size))) {
 2082                         VM_OBJECT_WUNLOCK(obj);
 2083                         vm_map_unlock(map);
 2084                         return (KERN_RESOURCE_SHORTAGE);
 2085                 }
 2086 
 2087                 crhold(cred);
 2088                 obj->cred = cred;
 2089                 obj->charge = ptoa(obj->size);
 2090                 VM_OBJECT_WUNLOCK(obj);
 2091         }
 2092 
 2093         /*
 2094          * Go back and fix up protections. [Note that clipping is not
 2095          * necessary the second time.]
 2096          */
 2097         for (current = entry; current != &map->header && current->start < end;
 2098             current = current->next) {
 2099                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
 2100                         continue;
 2101 
 2102                 old_prot = current->protection;
 2103 
 2104                 if (set_max)
 2105                         current->protection =
 2106                             (current->max_protection = new_prot) &
 2107                             old_prot;
 2108                 else
 2109                         current->protection = new_prot;
 2110 
 2111                 /*
 2112                  * For user wired map entries, the normal lazy evaluation of
 2113                  * write access upgrades through soft page faults is
 2114                  * undesirable.  Instead, immediately copy any pages that are
 2115                  * copy-on-write and enable write access in the physical map.
 2116                  */
 2117                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
 2118                     (current->protection & VM_PROT_WRITE) != 0 &&
 2119                     (old_prot & VM_PROT_WRITE) == 0)
 2120                         vm_fault_copy_entry(map, map, current, current, NULL);
 2121 
 2122                 /*
 2123                  * When restricting access, update the physical map.  Worry
 2124                  * about copy-on-write here.
 2125                  */
 2126                 if ((old_prot & ~current->protection) != 0) {
 2127 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
 2128                                                         VM_PROT_ALL)
 2129                         pmap_protect(map->pmap, current->start,
 2130                             current->end,
 2131                             current->protection & MASK(current));
 2132 #undef  MASK
 2133                 }
 2134                 vm_map_simplify_entry(map, current);
 2135         }
 2136         vm_map_unlock(map);
 2137         return (KERN_SUCCESS);
 2138 }
 2139 
 2140 /*
 2141  *      vm_map_madvise:
 2142  *
 2143  *      This routine traverses a processes map handling the madvise
 2144  *      system call.  Advisories are classified as either those effecting
 2145  *      the vm_map_entry structure, or those effecting the underlying
 2146  *      objects.
 2147  */
 2148 int
 2149 vm_map_madvise(
 2150         vm_map_t map,
 2151         vm_offset_t start,
 2152         vm_offset_t end,
 2153         int behav)
 2154 {
 2155         vm_map_entry_t current, entry;
 2156         int modify_map = 0;
 2157 
 2158         /*
 2159          * Some madvise calls directly modify the vm_map_entry, in which case
 2160          * we need to use an exclusive lock on the map and we need to perform
 2161          * various clipping operations.  Otherwise we only need a read-lock
 2162          * on the map.
 2163          */
 2164         switch(behav) {
 2165         case MADV_NORMAL:
 2166         case MADV_SEQUENTIAL:
 2167         case MADV_RANDOM:
 2168         case MADV_NOSYNC:
 2169         case MADV_AUTOSYNC:
 2170         case MADV_NOCORE:
 2171         case MADV_CORE:
 2172                 if (start == end)
 2173                         return (KERN_SUCCESS);
 2174                 modify_map = 1;
 2175                 vm_map_lock(map);
 2176                 break;
 2177         case MADV_WILLNEED:
 2178         case MADV_DONTNEED:
 2179         case MADV_FREE:
 2180                 if (start == end)
 2181                         return (KERN_SUCCESS);
 2182                 vm_map_lock_read(map);
 2183                 break;
 2184         default:
 2185                 return (KERN_INVALID_ARGUMENT);
 2186         }
 2187 
 2188         /*
 2189          * Locate starting entry and clip if necessary.
 2190          */
 2191         VM_MAP_RANGE_CHECK(map, start, end);
 2192 
 2193         if (vm_map_lookup_entry(map, start, &entry)) {
 2194                 if (modify_map)
 2195                         vm_map_clip_start(map, entry, start);
 2196         } else {
 2197                 entry = entry->next;
 2198         }
 2199 
 2200         if (modify_map) {
 2201                 /*
 2202                  * madvise behaviors that are implemented in the vm_map_entry.
 2203                  *
 2204                  * We clip the vm_map_entry so that behavioral changes are
 2205                  * limited to the specified address range.
 2206                  */
 2207                 for (current = entry;
 2208                      (current != &map->header) && (current->start < end);
 2209                      current = current->next
 2210                 ) {
 2211                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
 2212                                 continue;
 2213 
 2214                         vm_map_clip_end(map, current, end);
 2215 
 2216                         switch (behav) {
 2217                         case MADV_NORMAL:
 2218                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
 2219                                 break;
 2220                         case MADV_SEQUENTIAL:
 2221                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
 2222                                 break;
 2223                         case MADV_RANDOM:
 2224                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
 2225                                 break;
 2226                         case MADV_NOSYNC:
 2227                                 current->eflags |= MAP_ENTRY_NOSYNC;
 2228                                 break;
 2229                         case MADV_AUTOSYNC:
 2230                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
 2231                                 break;
 2232                         case MADV_NOCORE:
 2233                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
 2234                                 break;
 2235                         case MADV_CORE:
 2236                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
 2237                                 break;
 2238                         default:
 2239                                 break;
 2240                         }
 2241                         vm_map_simplify_entry(map, current);
 2242                 }
 2243                 vm_map_unlock(map);
 2244         } else {
 2245                 vm_pindex_t pstart, pend;
 2246 
 2247                 /*
 2248                  * madvise behaviors that are implemented in the underlying
 2249                  * vm_object.
 2250                  *
 2251                  * Since we don't clip the vm_map_entry, we have to clip
 2252                  * the vm_object pindex and count.
 2253                  */
 2254                 for (current = entry;
 2255                      (current != &map->header) && (current->start < end);
 2256                      current = current->next
 2257                 ) {
 2258                         vm_offset_t useEnd, useStart;
 2259 
 2260                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
 2261                                 continue;
 2262 
 2263                         pstart = OFF_TO_IDX(current->offset);
 2264                         pend = pstart + atop(current->end - current->start);
 2265                         useStart = current->start;
 2266                         useEnd = current->end;
 2267 
 2268                         if (current->start < start) {
 2269                                 pstart += atop(start - current->start);
 2270                                 useStart = start;
 2271                         }
 2272                         if (current->end > end) {
 2273                                 pend -= atop(current->end - end);
 2274                                 useEnd = end;
 2275                         }
 2276 
 2277                         if (pstart >= pend)
 2278                                 continue;
 2279 
 2280                         /*
 2281                          * Perform the pmap_advise() before clearing
 2282                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
 2283                          * concurrent pmap operation, such as pmap_remove(),
 2284                          * could clear a reference in the pmap and set
 2285                          * PGA_REFERENCED on the page before the pmap_advise()
 2286                          * had completed.  Consequently, the page would appear
 2287                          * referenced based upon an old reference that
 2288                          * occurred before this pmap_advise() ran.
 2289                          */
 2290                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
 2291                                 pmap_advise(map->pmap, useStart, useEnd,
 2292                                     behav);
 2293 
 2294                         vm_object_madvise(current->object.vm_object, pstart,
 2295                             pend, behav);
 2296 
 2297                         /*
 2298                          * Pre-populate paging structures in the
 2299                          * WILLNEED case.  For wired entries, the
 2300                          * paging structures are already populated.
 2301                          */
 2302                         if (behav == MADV_WILLNEED &&
 2303                             current->wired_count == 0) {
 2304                                 vm_map_pmap_enter(map,
 2305                                     useStart,
 2306                                     current->protection,
 2307                                     current->object.vm_object,
 2308                                     pstart,
 2309                                     ptoa(pend - pstart),
 2310                                     MAP_PREFAULT_MADVISE
 2311                                 );
 2312                         }
 2313                 }
 2314                 vm_map_unlock_read(map);
 2315         }
 2316         return (0);
 2317 }
 2318 
 2319 
 2320 /*
 2321  *      vm_map_inherit:
 2322  *
 2323  *      Sets the inheritance of the specified address
 2324  *      range in the target map.  Inheritance
 2325  *      affects how the map will be shared with
 2326  *      child maps at the time of vmspace_fork.
 2327  */
 2328 int
 2329 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
 2330                vm_inherit_t new_inheritance)
 2331 {
 2332         vm_map_entry_t entry;
 2333         vm_map_entry_t temp_entry;
 2334 
 2335         switch (new_inheritance) {
 2336         case VM_INHERIT_NONE:
 2337         case VM_INHERIT_COPY:
 2338         case VM_INHERIT_SHARE:
 2339         case VM_INHERIT_ZERO:
 2340                 break;
 2341         default:
 2342                 return (KERN_INVALID_ARGUMENT);
 2343         }
 2344         if (start == end)
 2345                 return (KERN_SUCCESS);
 2346         vm_map_lock(map);
 2347         VM_MAP_RANGE_CHECK(map, start, end);
 2348         if (vm_map_lookup_entry(map, start, &temp_entry)) {
 2349                 entry = temp_entry;
 2350                 vm_map_clip_start(map, entry, start);
 2351         } else
 2352                 entry = temp_entry->next;
 2353         while ((entry != &map->header) && (entry->start < end)) {
 2354                 vm_map_clip_end(map, entry, end);
 2355                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
 2356                     new_inheritance != VM_INHERIT_ZERO)
 2357                         entry->inheritance = new_inheritance;
 2358                 vm_map_simplify_entry(map, entry);
 2359                 entry = entry->next;
 2360         }
 2361         vm_map_unlock(map);
 2362         return (KERN_SUCCESS);
 2363 }
 2364 
 2365 /*
 2366  *      vm_map_unwire:
 2367  *
 2368  *      Implements both kernel and user unwiring.
 2369  */
 2370 int
 2371 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 2372     int flags)
 2373 {
 2374         vm_map_entry_t entry, first_entry, tmp_entry;
 2375         vm_offset_t saved_start;
 2376         unsigned int last_timestamp;
 2377         int rv;
 2378         boolean_t need_wakeup, result, user_unwire;
 2379 
 2380         if (start == end)
 2381                 return (KERN_SUCCESS);
 2382         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
 2383         vm_map_lock(map);
 2384         VM_MAP_RANGE_CHECK(map, start, end);
 2385         if (!vm_map_lookup_entry(map, start, &first_entry)) {
 2386                 if (flags & VM_MAP_WIRE_HOLESOK)
 2387                         first_entry = first_entry->next;
 2388                 else {
 2389                         vm_map_unlock(map);
 2390                         return (KERN_INVALID_ADDRESS);
 2391                 }
 2392         }
 2393         last_timestamp = map->timestamp;
 2394         entry = first_entry;
 2395         while (entry != &map->header && entry->start < end) {
 2396                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
 2397                         /*
 2398                          * We have not yet clipped the entry.
 2399                          */
 2400                         saved_start = (start >= entry->start) ? start :
 2401                             entry->start;
 2402                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 2403                         if (vm_map_unlock_and_wait(map, 0)) {
 2404                                 /*
 2405                                  * Allow interruption of user unwiring?
 2406                                  */
 2407                         }
 2408                         vm_map_lock(map);
 2409                         if (last_timestamp+1 != map->timestamp) {
 2410                                 /*
 2411                                  * Look again for the entry because the map was
 2412                                  * modified while it was unlocked.
 2413                                  * Specifically, the entry may have been
 2414                                  * clipped, merged, or deleted.
 2415                                  */
 2416                                 if (!vm_map_lookup_entry(map, saved_start,
 2417                                     &tmp_entry)) {
 2418                                         if (flags & VM_MAP_WIRE_HOLESOK)
 2419                                                 tmp_entry = tmp_entry->next;
 2420                                         else {
 2421                                                 if (saved_start == start) {
 2422                                                         /*
 2423                                                          * First_entry has been deleted.
 2424                                                          */
 2425                                                         vm_map_unlock(map);
 2426                                                         return (KERN_INVALID_ADDRESS);
 2427                                                 }
 2428                                                 end = saved_start;
 2429                                                 rv = KERN_INVALID_ADDRESS;
 2430                                                 goto done;
 2431                                         }
 2432                                 }
 2433                                 if (entry == first_entry)
 2434                                         first_entry = tmp_entry;
 2435                                 else
 2436                                         first_entry = NULL;
 2437                                 entry = tmp_entry;
 2438                         }
 2439                         last_timestamp = map->timestamp;
 2440                         continue;
 2441                 }
 2442                 vm_map_clip_start(map, entry, start);
 2443                 vm_map_clip_end(map, entry, end);
 2444                 /*
 2445                  * Mark the entry in case the map lock is released.  (See
 2446                  * above.)
 2447                  */
 2448                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
 2449                     entry->wiring_thread == NULL,
 2450                     ("owned map entry %p", entry));
 2451                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
 2452                 entry->wiring_thread = curthread;
 2453                 /*
 2454                  * Check the map for holes in the specified region.
 2455                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
 2456                  */
 2457                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
 2458                     (entry->end < end && (entry->next == &map->header ||
 2459                     entry->next->start > entry->end))) {
 2460                         end = entry->end;
 2461                         rv = KERN_INVALID_ADDRESS;
 2462                         goto done;
 2463                 }
 2464                 /*
 2465                  * If system unwiring, require that the entry is system wired.
 2466                  */
 2467                 if (!user_unwire &&
 2468                     vm_map_entry_system_wired_count(entry) == 0) {
 2469                         end = entry->end;
 2470                         rv = KERN_INVALID_ARGUMENT;
 2471                         goto done;
 2472                 }
 2473                 entry = entry->next;
 2474         }
 2475         rv = KERN_SUCCESS;
 2476 done:
 2477         need_wakeup = FALSE;
 2478         if (first_entry == NULL) {
 2479                 result = vm_map_lookup_entry(map, start, &first_entry);
 2480                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
 2481                         first_entry = first_entry->next;
 2482                 else
 2483                         KASSERT(result, ("vm_map_unwire: lookup failed"));
 2484         }
 2485         for (entry = first_entry; entry != &map->header && entry->start < end;
 2486             entry = entry->next) {
 2487                 /*
 2488                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
 2489                  * space in the unwired region could have been mapped
 2490                  * while the map lock was dropped for draining
 2491                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
 2492                  * could be simultaneously wiring this new mapping
 2493                  * entry.  Detect these cases and skip any entries
 2494                  * marked as in transition by us.
 2495                  */
 2496                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
 2497                     entry->wiring_thread != curthread) {
 2498                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
 2499                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
 2500                         continue;
 2501                 }
 2502 
 2503                 if (rv == KERN_SUCCESS && (!user_unwire ||
 2504                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
 2505                         if (user_unwire)
 2506                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
 2507                         if (entry->wired_count == 1)
 2508                                 vm_map_entry_unwire(map, entry);
 2509                         else
 2510                                 entry->wired_count--;
 2511                 }
 2512                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
 2513                     ("vm_map_unwire: in-transition flag missing %p", entry));
 2514                 KASSERT(entry->wiring_thread == curthread,
 2515                     ("vm_map_unwire: alien wire %p", entry));
 2516                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
 2517                 entry->wiring_thread = NULL;
 2518                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
 2519                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
 2520                         need_wakeup = TRUE;
 2521                 }
 2522                 vm_map_simplify_entry(map, entry);
 2523         }
 2524         vm_map_unlock(map);
 2525         if (need_wakeup)
 2526                 vm_map_wakeup(map);
 2527         return (rv);
 2528 }
 2529 
 2530 /*
 2531  *      vm_map_wire_entry_failure:
 2532  *
 2533  *      Handle a wiring failure on the given entry.
 2534  *
 2535  *      The map should be locked.
 2536  */
 2537 static void
 2538 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
 2539     vm_offset_t failed_addr)
 2540 {
 2541 
 2542         VM_MAP_ASSERT_LOCKED(map);
 2543         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
 2544             entry->wired_count == 1,
 2545             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
 2546         KASSERT(failed_addr < entry->end,
 2547             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
 2548 
 2549         /*
 2550          * If any pages at the start of this entry were successfully wired,
 2551          * then unwire them.
 2552          */
 2553         if (failed_addr > entry->start) {
 2554                 pmap_unwire(map->pmap, entry->start, failed_addr);
 2555                 vm_object_unwire(entry->object.vm_object, entry->offset,
 2556                     failed_addr - entry->start, PQ_ACTIVE);
 2557         }
 2558 
 2559         /*
 2560          * Assign an out-of-range value to represent the failure to wire this
 2561          * entry.
 2562          */
 2563         entry->wired_count = -1;
 2564 }
 2565 
 2566 /*
 2567  *      vm_map_wire:
 2568  *
 2569  *      Implements both kernel and user wiring.
 2570  */
 2571 int
 2572 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 2573     int flags)
 2574 {
 2575         vm_map_entry_t entry, first_entry, tmp_entry;
 2576         vm_offset_t faddr, saved_end, saved_start;
 2577         unsigned int last_timestamp;
 2578         int rv;
 2579         boolean_t need_wakeup, result, user_wire;
 2580         vm_prot_t prot;
 2581 
 2582         if (start == end)
 2583                 return (KERN_SUCCESS);
 2584         prot = 0;
 2585         if (flags & VM_MAP_WIRE_WRITE)
 2586                 prot |= VM_PROT_WRITE;
 2587         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
 2588         vm_map_lock(map);
 2589         VM_MAP_RANGE_CHECK(map, start, end);
 2590         if (!vm_map_lookup_entry(map, start, &first_entry)) {
 2591                 if (flags & VM_MAP_WIRE_HOLESOK)
 2592                         first_entry = first_entry->next;
 2593                 else {
 2594                         vm_map_unlock(map);
 2595                         return (KERN_INVALID_ADDRESS);
 2596                 }
 2597         }
 2598         last_timestamp = map->timestamp;
 2599         entry = first_entry;
 2600         while (entry != &map->header && entry->start < end) {
 2601                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
 2602                         /*
 2603                          * We have not yet clipped the entry.
 2604                          */
 2605                         saved_start = (start >= entry->start) ? start :
 2606                             entry->start;
 2607                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 2608                         if (vm_map_unlock_and_wait(map, 0)) {
 2609                                 /*
 2610                                  * Allow interruption of user wiring?
 2611                                  */
 2612                         }
 2613                         vm_map_lock(map);
 2614                         if (last_timestamp + 1 != map->timestamp) {
 2615                                 /*
 2616                                  * Look again for the entry because the map was
 2617                                  * modified while it was unlocked.
 2618                                  * Specifically, the entry may have been
 2619                                  * clipped, merged, or deleted.
 2620                                  */
 2621                                 if (!vm_map_lookup_entry(map, saved_start,
 2622                                     &tmp_entry)) {
 2623                                         if (flags & VM_MAP_WIRE_HOLESOK)
 2624                                                 tmp_entry = tmp_entry->next;
 2625                                         else {
 2626                                                 if (saved_start == start) {
 2627                                                         /*
 2628                                                          * first_entry has been deleted.
 2629                                                          */
 2630                                                         vm_map_unlock(map);
 2631                                                         return (KERN_INVALID_ADDRESS);
 2632                                                 }
 2633                                                 end = saved_start;
 2634                                                 rv = KERN_INVALID_ADDRESS;
 2635                                                 goto done;
 2636                                         }
 2637                                 }
 2638                                 if (entry == first_entry)
 2639                                         first_entry = tmp_entry;
 2640                                 else
 2641                                         first_entry = NULL;
 2642                                 entry = tmp_entry;
 2643                         }
 2644                         last_timestamp = map->timestamp;
 2645                         continue;
 2646                 }
 2647                 vm_map_clip_start(map, entry, start);
 2648                 vm_map_clip_end(map, entry, end);
 2649                 /*
 2650                  * Mark the entry in case the map lock is released.  (See
 2651                  * above.)
 2652                  */
 2653                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
 2654                     entry->wiring_thread == NULL,
 2655                     ("owned map entry %p", entry));
 2656                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
 2657                 entry->wiring_thread = curthread;
 2658                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
 2659                     || (entry->protection & prot) != prot) {
 2660                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
 2661                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
 2662                                 end = entry->end;
 2663                                 rv = KERN_INVALID_ADDRESS;
 2664                                 goto done;
 2665                         }
 2666                         goto next_entry;
 2667                 }
 2668                 if (entry->wired_count == 0) {
 2669                         entry->wired_count++;
 2670                         saved_start = entry->start;
 2671                         saved_end = entry->end;
 2672 
 2673                         /*
 2674                          * Release the map lock, relying on the in-transition
 2675                          * mark.  Mark the map busy for fork.
 2676                          */
 2677                         vm_map_busy(map);
 2678                         vm_map_unlock(map);
 2679 
 2680                         faddr = saved_start;
 2681                         do {
 2682                                 /*
 2683                                  * Simulate a fault to get the page and enter
 2684                                  * it into the physical map.
 2685                                  */
 2686                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
 2687                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
 2688                                         break;
 2689                         } while ((faddr += PAGE_SIZE) < saved_end);
 2690                         vm_map_lock(map);
 2691                         vm_map_unbusy(map);
 2692                         if (last_timestamp + 1 != map->timestamp) {
 2693                                 /*
 2694                                  * Look again for the entry because the map was
 2695                                  * modified while it was unlocked.  The entry
 2696                                  * may have been clipped, but NOT merged or
 2697                                  * deleted.
 2698                                  */
 2699                                 result = vm_map_lookup_entry(map, saved_start,
 2700                                     &tmp_entry);
 2701                                 KASSERT(result, ("vm_map_wire: lookup failed"));
 2702                                 if (entry == first_entry)
 2703                                         first_entry = tmp_entry;
 2704                                 else
 2705                                         first_entry = NULL;
 2706                                 entry = tmp_entry;
 2707                                 while (entry->end < saved_end) {
 2708                                         /*
 2709                                          * In case of failure, handle entries
 2710                                          * that were not fully wired here;
 2711                                          * fully wired entries are handled
 2712                                          * later.
 2713                                          */
 2714                                         if (rv != KERN_SUCCESS &&
 2715                                             faddr < entry->end)
 2716                                                 vm_map_wire_entry_failure(map,
 2717                                                     entry, faddr);
 2718                                         entry = entry->next;
 2719                                 }
 2720                         }
 2721                         last_timestamp = map->timestamp;
 2722                         if (rv != KERN_SUCCESS) {
 2723                                 vm_map_wire_entry_failure(map, entry, faddr);
 2724                                 end = entry->end;
 2725                                 goto done;
 2726                         }
 2727                 } else if (!user_wire ||
 2728                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
 2729                         entry->wired_count++;
 2730                 }
 2731                 /*
 2732                  * Check the map for holes in the specified region.
 2733                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
 2734                  */
 2735         next_entry:
 2736                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
 2737                     (entry->end < end && (entry->next == &map->header ||
 2738                     entry->next->start > entry->end))) {
 2739                         end = entry->end;
 2740                         rv = KERN_INVALID_ADDRESS;
 2741                         goto done;
 2742                 }
 2743                 entry = entry->next;
 2744         }
 2745         rv = KERN_SUCCESS;
 2746 done:
 2747         need_wakeup = FALSE;
 2748         if (first_entry == NULL) {
 2749                 result = vm_map_lookup_entry(map, start, &first_entry);
 2750                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
 2751                         first_entry = first_entry->next;
 2752                 else
 2753                         KASSERT(result, ("vm_map_wire: lookup failed"));
 2754         }
 2755         for (entry = first_entry; entry != &map->header && entry->start < end;
 2756             entry = entry->next) {
 2757                 /*
 2758                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
 2759                  * space in the unwired region could have been mapped
 2760                  * while the map lock was dropped for faulting in the
 2761                  * pages or draining MAP_ENTRY_IN_TRANSITION.
 2762                  * Moreover, another thread could be simultaneously
 2763                  * wiring this new mapping entry.  Detect these cases
 2764                  * and skip any entries marked as in transition not by us.
 2765                  */
 2766                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
 2767                     entry->wiring_thread != curthread) {
 2768                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
 2769                             ("vm_map_wire: !HOLESOK and new/changed entry"));
 2770                         continue;
 2771                 }
 2772 
 2773                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
 2774                         goto next_entry_done;
 2775 
 2776                 if (rv == KERN_SUCCESS) {
 2777                         if (user_wire)
 2778                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
 2779                 } else if (entry->wired_count == -1) {
 2780                         /*
 2781                          * Wiring failed on this entry.  Thus, unwiring is
 2782                          * unnecessary.
 2783                          */
 2784                         entry->wired_count = 0;
 2785                 } else if (!user_wire ||
 2786                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
 2787                         /*
 2788                          * Undo the wiring.  Wiring succeeded on this entry
 2789                          * but failed on a later entry.  
 2790                          */
 2791                         if (entry->wired_count == 1)
 2792                                 vm_map_entry_unwire(map, entry);
 2793                         else
 2794                                 entry->wired_count--;
 2795                 }
 2796         next_entry_done:
 2797                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
 2798                     ("vm_map_wire: in-transition flag missing %p", entry));
 2799                 KASSERT(entry->wiring_thread == curthread,
 2800                     ("vm_map_wire: alien wire %p", entry));
 2801                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
 2802                     MAP_ENTRY_WIRE_SKIPPED);
 2803                 entry->wiring_thread = NULL;
 2804                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
 2805                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
 2806                         need_wakeup = TRUE;
 2807                 }
 2808                 vm_map_simplify_entry(map, entry);
 2809         }
 2810         vm_map_unlock(map);
 2811         if (need_wakeup)
 2812                 vm_map_wakeup(map);
 2813         return (rv);
 2814 }
 2815 
 2816 /*
 2817  * vm_map_sync
 2818  *
 2819  * Push any dirty cached pages in the address range to their pager.
 2820  * If syncio is TRUE, dirty pages are written synchronously.
 2821  * If invalidate is TRUE, any cached pages are freed as well.
 2822  *
 2823  * If the size of the region from start to end is zero, we are
 2824  * supposed to flush all modified pages within the region containing
 2825  * start.  Unfortunately, a region can be split or coalesced with
 2826  * neighboring regions, making it difficult to determine what the
 2827  * original region was.  Therefore, we approximate this requirement by
 2828  * flushing the current region containing start.
 2829  *
 2830  * Returns an error if any part of the specified range is not mapped.
 2831  */
 2832 int
 2833 vm_map_sync(
 2834         vm_map_t map,
 2835         vm_offset_t start,
 2836         vm_offset_t end,
 2837         boolean_t syncio,
 2838         boolean_t invalidate)
 2839 {
 2840         vm_map_entry_t current;
 2841         vm_map_entry_t entry;
 2842         vm_size_t size;
 2843         vm_object_t object;
 2844         vm_ooffset_t offset;
 2845         unsigned int last_timestamp;
 2846         boolean_t failed;
 2847 
 2848         vm_map_lock_read(map);
 2849         VM_MAP_RANGE_CHECK(map, start, end);
 2850         if (!vm_map_lookup_entry(map, start, &entry)) {
 2851                 vm_map_unlock_read(map);
 2852                 return (KERN_INVALID_ADDRESS);
 2853         } else if (start == end) {
 2854                 start = entry->start;
 2855                 end = entry->end;
 2856         }
 2857         /*
 2858          * Make a first pass to check for user-wired memory and holes.
 2859          */
 2860         for (current = entry; current != &map->header && current->start < end;
 2861             current = current->next) {
 2862                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
 2863                         vm_map_unlock_read(map);
 2864                         return (KERN_INVALID_ARGUMENT);
 2865                 }
 2866                 if (end > current->end &&
 2867                     (current->next == &map->header ||
 2868                         current->end != current->next->start)) {
 2869                         vm_map_unlock_read(map);
 2870                         return (KERN_INVALID_ADDRESS);
 2871                 }
 2872         }
 2873 
 2874         if (invalidate)
 2875                 pmap_remove(map->pmap, start, end);
 2876         failed = FALSE;
 2877 
 2878         /*
 2879          * Make a second pass, cleaning/uncaching pages from the indicated
 2880          * objects as we go.
 2881          */
 2882         for (current = entry; current != &map->header && current->start < end;) {
 2883                 offset = current->offset + (start - current->start);
 2884                 size = (end <= current->end ? end : current->end) - start;
 2885                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2886                         vm_map_t smap;
 2887                         vm_map_entry_t tentry;
 2888                         vm_size_t tsize;
 2889 
 2890                         smap = current->object.sub_map;
 2891                         vm_map_lock_read(smap);
 2892                         (void) vm_map_lookup_entry(smap, offset, &tentry);
 2893                         tsize = tentry->end - offset;
 2894                         if (tsize < size)
 2895                                 size = tsize;
 2896                         object = tentry->object.vm_object;
 2897                         offset = tentry->offset + (offset - tentry->start);
 2898                         vm_map_unlock_read(smap);
 2899                 } else {
 2900                         object = current->object.vm_object;
 2901                 }
 2902                 vm_object_reference(object);
 2903                 last_timestamp = map->timestamp;
 2904                 vm_map_unlock_read(map);
 2905                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
 2906                         failed = TRUE;
 2907                 start += size;
 2908                 vm_object_deallocate(object);
 2909                 vm_map_lock_read(map);
 2910                 if (last_timestamp == map->timestamp ||
 2911                     !vm_map_lookup_entry(map, start, &current))
 2912                         current = current->next;
 2913         }
 2914 
 2915         vm_map_unlock_read(map);
 2916         return (failed ? KERN_FAILURE : KERN_SUCCESS);
 2917 }
 2918 
 2919 /*
 2920  *      vm_map_entry_unwire:    [ internal use only ]
 2921  *
 2922  *      Make the region specified by this entry pageable.
 2923  *
 2924  *      The map in question should be locked.
 2925  *      [This is the reason for this routine's existence.]
 2926  */
 2927 static void
 2928 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
 2929 {
 2930 
 2931         VM_MAP_ASSERT_LOCKED(map);
 2932         KASSERT(entry->wired_count > 0,
 2933             ("vm_map_entry_unwire: entry %p isn't wired", entry));
 2934         pmap_unwire(map->pmap, entry->start, entry->end);
 2935         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
 2936             entry->start, PQ_ACTIVE);
 2937         entry->wired_count = 0;
 2938 }
 2939 
 2940 static void
 2941 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
 2942 {
 2943 
 2944         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
 2945                 vm_object_deallocate(entry->object.vm_object);
 2946         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
 2947 }
 2948 
 2949 /*
 2950  *      vm_map_entry_delete:    [ internal use only ]
 2951  *
 2952  *      Deallocate the given entry from the target map.
 2953  */
 2954 static void
 2955 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
 2956 {
 2957         vm_object_t object;
 2958         vm_pindex_t offidxstart, offidxend, count, size1;
 2959         vm_size_t size;
 2960 
 2961         vm_map_entry_unlink(map, entry);
 2962         object = entry->object.vm_object;
 2963 
 2964         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
 2965                 MPASS(entry->cred == NULL);
 2966                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
 2967                 MPASS(object == NULL);
 2968                 vm_map_entry_deallocate(entry, map->system_map);
 2969                 return;
 2970         }
 2971 
 2972         size = entry->end - entry->start;
 2973         map->size -= size;
 2974 
 2975         if (entry->cred != NULL) {
 2976                 swap_release_by_cred(size, entry->cred);
 2977                 crfree(entry->cred);
 2978         }
 2979 
 2980         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
 2981             (object != NULL)) {
 2982                 KASSERT(entry->cred == NULL || object->cred == NULL ||
 2983                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
 2984                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
 2985                 count = atop(size);
 2986                 offidxstart = OFF_TO_IDX(entry->offset);
 2987                 offidxend = offidxstart + count;
 2988                 VM_OBJECT_WLOCK(object);
 2989                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
 2990                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
 2991                     object == kernel_object || object == kmem_object)) {
 2992                         vm_object_collapse(object);
 2993 
 2994                         /*
 2995                          * The option OBJPR_NOTMAPPED can be passed here
 2996                          * because vm_map_delete() already performed
 2997                          * pmap_remove() on the only mapping to this range
 2998                          * of pages. 
 2999                          */
 3000                         vm_object_page_remove(object, offidxstart, offidxend,
 3001                             OBJPR_NOTMAPPED);
 3002                         if (object->type == OBJT_SWAP)
 3003                                 swap_pager_freespace(object, offidxstart,
 3004                                     count);
 3005                         if (offidxend >= object->size &&
 3006                             offidxstart < object->size) {
 3007                                 size1 = object->size;
 3008                                 object->size = offidxstart;
 3009                                 if (object->cred != NULL) {
 3010                                         size1 -= object->size;
 3011                                         KASSERT(object->charge >= ptoa(size1),
 3012                                             ("object %p charge < 0", object));
 3013                                         swap_release_by_cred(ptoa(size1),
 3014                                             object->cred);
 3015                                         object->charge -= ptoa(size1);
 3016                                 }
 3017                         }
 3018                 }
 3019                 VM_OBJECT_WUNLOCK(object);
 3020         } else
 3021                 entry->object.vm_object = NULL;
 3022         if (map->system_map)
 3023                 vm_map_entry_deallocate(entry, TRUE);
 3024         else {
 3025                 entry->next = curthread->td_map_def_user;
 3026                 curthread->td_map_def_user = entry;
 3027         }
 3028 }
 3029 
 3030 /*
 3031  *      vm_map_delete:  [ internal use only ]
 3032  *
 3033  *      Deallocates the given address range from the target
 3034  *      map.
 3035  */
 3036 int
 3037 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
 3038 {
 3039         vm_map_entry_t entry;
 3040         vm_map_entry_t first_entry;
 3041 
 3042         VM_MAP_ASSERT_LOCKED(map);
 3043         if (start == end)
 3044                 return (KERN_SUCCESS);
 3045 
 3046         /*
 3047          * Find the start of the region, and clip it
 3048          */
 3049         if (!vm_map_lookup_entry(map, start, &first_entry))
 3050                 entry = first_entry->next;
 3051         else {
 3052                 entry = first_entry;
 3053                 vm_map_clip_start(map, entry, start);
 3054         }
 3055 
 3056         /*
 3057          * Step through all entries in this region
 3058          */
 3059         while ((entry != &map->header) && (entry->start < end)) {
 3060                 vm_map_entry_t next;
 3061 
 3062                 /*
 3063                  * Wait for wiring or unwiring of an entry to complete.
 3064                  * Also wait for any system wirings to disappear on
 3065                  * user maps.
 3066                  */
 3067                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
 3068                     (vm_map_pmap(map) != kernel_pmap &&
 3069                     vm_map_entry_system_wired_count(entry) != 0)) {
 3070                         unsigned int last_timestamp;
 3071                         vm_offset_t saved_start;
 3072                         vm_map_entry_t tmp_entry;
 3073 
 3074                         saved_start = entry->start;
 3075                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 3076                         last_timestamp = map->timestamp;
 3077                         (void) vm_map_unlock_and_wait(map, 0);
 3078                         vm_map_lock(map);
 3079                         if (last_timestamp + 1 != map->timestamp) {
 3080                                 /*
 3081                                  * Look again for the entry because the map was
 3082                                  * modified while it was unlocked.
 3083                                  * Specifically, the entry may have been
 3084                                  * clipped, merged, or deleted.
 3085                                  */
 3086                                 if (!vm_map_lookup_entry(map, saved_start,
 3087                                                          &tmp_entry))
 3088                                         entry = tmp_entry->next;
 3089                                 else {
 3090                                         entry = tmp_entry;
 3091                                         vm_map_clip_start(map, entry,
 3092                                                           saved_start);
 3093                                 }
 3094                         }
 3095                         continue;
 3096                 }
 3097                 vm_map_clip_end(map, entry, end);
 3098 
 3099                 next = entry->next;
 3100 
 3101                 /*
 3102                  * Unwire before removing addresses from the pmap; otherwise,
 3103                  * unwiring will put the entries back in the pmap.
 3104                  */
 3105                 if (entry->wired_count != 0) {
 3106                         vm_map_entry_unwire(map, entry);
 3107                 }
 3108 
 3109                 pmap_remove(map->pmap, entry->start, entry->end);
 3110 
 3111                 /*
 3112                  * Delete the entry only after removing all pmap
 3113                  * entries pointing to its pages.  (Otherwise, its
 3114                  * page frames may be reallocated, and any modify bits
 3115                  * will be set in the wrong object!)
 3116                  */
 3117                 vm_map_entry_delete(map, entry);
 3118                 entry = next;
 3119         }
 3120         return (KERN_SUCCESS);
 3121 }
 3122 
 3123 /*
 3124  *      vm_map_remove:
 3125  *
 3126  *      Remove the given address range from the target map.
 3127  *      This is the exported form of vm_map_delete.
 3128  */
 3129 int
 3130 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
 3131 {
 3132         int result;
 3133 
 3134         vm_map_lock(map);
 3135         VM_MAP_RANGE_CHECK(map, start, end);
 3136         result = vm_map_delete(map, start, end);
 3137         vm_map_unlock(map);
 3138         return (result);
 3139 }
 3140 
 3141 /*
 3142  *      vm_map_check_protection:
 3143  *
 3144  *      Assert that the target map allows the specified privilege on the
 3145  *      entire address region given.  The entire region must be allocated.
 3146  *
 3147  *      WARNING!  This code does not and should not check whether the
 3148  *      contents of the region is accessible.  For example a smaller file
 3149  *      might be mapped into a larger address space.
 3150  *
 3151  *      NOTE!  This code is also called by munmap().
 3152  *
 3153  *      The map must be locked.  A read lock is sufficient.
 3154  */
 3155 boolean_t
 3156 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
 3157                         vm_prot_t protection)
 3158 {
 3159         vm_map_entry_t entry;
 3160         vm_map_entry_t tmp_entry;
 3161 
 3162         if (!vm_map_lookup_entry(map, start, &tmp_entry))
 3163                 return (FALSE);
 3164         entry = tmp_entry;
 3165 
 3166         while (start < end) {
 3167                 if (entry == &map->header)
 3168                         return (FALSE);
 3169                 /*
 3170                  * No holes allowed!
 3171                  */
 3172                 if (start < entry->start)
 3173                         return (FALSE);
 3174                 /*
 3175                  * Check protection associated with entry.
 3176                  */
 3177                 if ((entry->protection & protection) != protection)
 3178                         return (FALSE);
 3179                 /* go to next entry */
 3180                 start = entry->end;
 3181                 entry = entry->next;
 3182         }
 3183         return (TRUE);
 3184 }
 3185 
 3186 /*
 3187  *      vm_map_copy_entry:
 3188  *
 3189  *      Copies the contents of the source entry to the destination
 3190  *      entry.  The entries *must* be aligned properly.
 3191  */
 3192 static void
 3193 vm_map_copy_entry(
 3194         vm_map_t src_map,
 3195         vm_map_t dst_map,
 3196         vm_map_entry_t src_entry,
 3197         vm_map_entry_t dst_entry,
 3198         vm_ooffset_t *fork_charge)
 3199 {
 3200         vm_object_t src_object;
 3201         vm_map_entry_t fake_entry;
 3202         vm_offset_t size;
 3203         struct ucred *cred;
 3204         int charged;
 3205 
 3206         VM_MAP_ASSERT_LOCKED(dst_map);
 3207 
 3208         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
 3209                 return;
 3210 
 3211         if (src_entry->wired_count == 0 ||
 3212             (src_entry->protection & VM_PROT_WRITE) == 0) {
 3213                 /*
 3214                  * If the source entry is marked needs_copy, it is already
 3215                  * write-protected.
 3216                  */
 3217                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
 3218                     (src_entry->protection & VM_PROT_WRITE) != 0) {
 3219                         pmap_protect(src_map->pmap,
 3220                             src_entry->start,
 3221                             src_entry->end,
 3222                             src_entry->protection & ~VM_PROT_WRITE);
 3223                 }
 3224 
 3225                 /*
 3226                  * Make a copy of the object.
 3227                  */
 3228                 size = src_entry->end - src_entry->start;
 3229                 if ((src_object = src_entry->object.vm_object) != NULL) {
 3230                         VM_OBJECT_WLOCK(src_object);
 3231                         charged = ENTRY_CHARGED(src_entry);
 3232                         if (src_object->handle == NULL &&
 3233                             (src_object->type == OBJT_DEFAULT ||
 3234                             src_object->type == OBJT_SWAP)) {
 3235                                 vm_object_collapse(src_object);
 3236                                 if ((src_object->flags & (OBJ_NOSPLIT |
 3237                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
 3238                                         vm_object_split(src_entry);
 3239                                         src_object =
 3240                                             src_entry->object.vm_object;
 3241                                 }
 3242                         }
 3243                         vm_object_reference_locked(src_object);
 3244                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
 3245                         if (src_entry->cred != NULL &&
 3246                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
 3247                                 KASSERT(src_object->cred == NULL,
 3248                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
 3249                                      src_object));
 3250                                 src_object->cred = src_entry->cred;
 3251                                 src_object->charge = size;
 3252                         }
 3253                         VM_OBJECT_WUNLOCK(src_object);
 3254                         dst_entry->object.vm_object = src_object;
 3255                         if (charged) {
 3256                                 cred = curthread->td_ucred;
 3257                                 crhold(cred);
 3258                                 dst_entry->cred = cred;
 3259                                 *fork_charge += size;
 3260                                 if (!(src_entry->eflags &
 3261                                       MAP_ENTRY_NEEDS_COPY)) {
 3262                                         crhold(cred);
 3263                                         src_entry->cred = cred;
 3264                                         *fork_charge += size;
 3265                                 }
 3266                         }
 3267                         src_entry->eflags |= MAP_ENTRY_COW |
 3268                             MAP_ENTRY_NEEDS_COPY;
 3269                         dst_entry->eflags |= MAP_ENTRY_COW |
 3270                             MAP_ENTRY_NEEDS_COPY;
 3271                         dst_entry->offset = src_entry->offset;
 3272                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
 3273                                 /*
 3274                                  * MAP_ENTRY_VN_WRITECNT cannot
 3275                                  * indicate write reference from
 3276                                  * src_entry, since the entry is
 3277                                  * marked as needs copy.  Allocate a
 3278                                  * fake entry that is used to
 3279                                  * decrement object->un_pager.vnp.writecount
 3280                                  * at the appropriate time.  Attach
 3281                                  * fake_entry to the deferred list.
 3282                                  */
 3283                                 fake_entry = vm_map_entry_create(dst_map);
 3284                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
 3285                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
 3286                                 vm_object_reference(src_object);
 3287                                 fake_entry->object.vm_object = src_object;
 3288                                 fake_entry->start = src_entry->start;
 3289                                 fake_entry->end = src_entry->end;
 3290                                 fake_entry->next = curthread->td_map_def_user;
 3291                                 curthread->td_map_def_user = fake_entry;
 3292                         }
 3293 
 3294                         pmap_copy(dst_map->pmap, src_map->pmap,
 3295                             dst_entry->start, dst_entry->end - dst_entry->start,
 3296                             src_entry->start);
 3297                 } else {
 3298                         dst_entry->object.vm_object = NULL;
 3299                         dst_entry->offset = 0;
 3300                         if (src_entry->cred != NULL) {
 3301                                 dst_entry->cred = curthread->td_ucred;
 3302                                 crhold(dst_entry->cred);
 3303                                 *fork_charge += size;
 3304                         }
 3305                 }
 3306         } else {
 3307                 /*
 3308                  * We don't want to make writeable wired pages copy-on-write.
 3309                  * Immediately copy these pages into the new map by simulating
 3310                  * page faults.  The new pages are pageable.
 3311                  */
 3312                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
 3313                     fork_charge);
 3314         }
 3315 }
 3316 
 3317 /*
 3318  * vmspace_map_entry_forked:
 3319  * Update the newly-forked vmspace each time a map entry is inherited
 3320  * or copied.  The values for vm_dsize and vm_tsize are approximate
 3321  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
 3322  */
 3323 static void
 3324 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
 3325     vm_map_entry_t entry)
 3326 {
 3327         vm_size_t entrysize;
 3328         vm_offset_t newend;
 3329 
 3330         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
 3331                 return;
 3332         entrysize = entry->end - entry->start;
 3333         vm2->vm_map.size += entrysize;
 3334         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
 3335                 vm2->vm_ssize += btoc(entrysize);
 3336         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
 3337             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
 3338                 newend = MIN(entry->end,
 3339                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
 3340                 vm2->vm_dsize += btoc(newend - entry->start);
 3341         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
 3342             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
 3343                 newend = MIN(entry->end,
 3344                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
 3345                 vm2->vm_tsize += btoc(newend - entry->start);
 3346         }
 3347 }
 3348 
 3349 /*
 3350  * vmspace_fork:
 3351  * Create a new process vmspace structure and vm_map
 3352  * based on those of an existing process.  The new map
 3353  * is based on the old map, according to the inheritance
 3354  * values on the regions in that map.
 3355  *
 3356  * XXX It might be worth coalescing the entries added to the new vmspace.
 3357  *
 3358  * The source map must not be locked.
 3359  */
 3360 struct vmspace *
 3361 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
 3362 {
 3363         struct vmspace *vm2;
 3364         vm_map_t new_map, old_map;
 3365         vm_map_entry_t new_entry, old_entry;
 3366         vm_object_t object;
 3367         int locked;
 3368         vm_inherit_t inh;
 3369 
 3370         old_map = &vm1->vm_map;
 3371         /* Copy immutable fields of vm1 to vm2. */
 3372         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
 3373         if (vm2 == NULL)
 3374                 return (NULL);
 3375         vm2->vm_taddr = vm1->vm_taddr;
 3376         vm2->vm_daddr = vm1->vm_daddr;
 3377         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
 3378         vm_map_lock(old_map);
 3379         if (old_map->busy)
 3380                 vm_map_wait_busy(old_map);
 3381         new_map = &vm2->vm_map;
 3382         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
 3383         KASSERT(locked, ("vmspace_fork: lock failed"));
 3384 
 3385         old_entry = old_map->header.next;
 3386 
 3387         while (old_entry != &old_map->header) {
 3388                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 3389                         panic("vm_map_fork: encountered a submap");
 3390 
 3391                 inh = old_entry->inheritance;
 3392                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
 3393                     inh != VM_INHERIT_NONE)
 3394                         inh = VM_INHERIT_COPY;
 3395 
 3396                 switch (inh) {
 3397                 case VM_INHERIT_NONE:
 3398                         break;
 3399 
 3400                 case VM_INHERIT_SHARE:
 3401                         /*
 3402                          * Clone the entry, creating the shared object if necessary.
 3403                          */
 3404                         object = old_entry->object.vm_object;
 3405                         if (object == NULL) {
 3406                                 object = vm_object_allocate(OBJT_DEFAULT,
 3407                                         atop(old_entry->end - old_entry->start));
 3408                                 old_entry->object.vm_object = object;
 3409                                 old_entry->offset = 0;
 3410                                 if (old_entry->cred != NULL) {
 3411                                         object->cred = old_entry->cred;
 3412                                         object->charge = old_entry->end -
 3413                                             old_entry->start;
 3414                                         old_entry->cred = NULL;
 3415                                 }
 3416                         }
 3417 
 3418                         /*
 3419                          * Add the reference before calling vm_object_shadow
 3420                          * to insure that a shadow object is created.
 3421                          */
 3422                         vm_object_reference(object);
 3423                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 3424                                 vm_object_shadow(&old_entry->object.vm_object,
 3425                                     &old_entry->offset,
 3426                                     old_entry->end - old_entry->start);
 3427                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
 3428                                 /* Transfer the second reference too. */
 3429                                 vm_object_reference(
 3430                                     old_entry->object.vm_object);
 3431 
 3432                                 /*
 3433                                  * As in vm_map_simplify_entry(), the
 3434                                  * vnode lock will not be acquired in
 3435                                  * this call to vm_object_deallocate().
 3436                                  */
 3437                                 vm_object_deallocate(object);
 3438                                 object = old_entry->object.vm_object;
 3439                         }
 3440                         VM_OBJECT_WLOCK(object);
 3441                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
 3442                         if (old_entry->cred != NULL) {
 3443                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
 3444                                 object->cred = old_entry->cred;
 3445                                 object->charge = old_entry->end - old_entry->start;
 3446                                 old_entry->cred = NULL;
 3447                         }
 3448 
 3449                         /*
 3450                          * Assert the correct state of the vnode
 3451                          * v_writecount while the object is locked, to
 3452                          * not relock it later for the assertion
 3453                          * correctness.
 3454                          */
 3455                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
 3456                             object->type == OBJT_VNODE) {
 3457                                 KASSERT(((struct vnode *)object->handle)->
 3458                                     v_writecount > 0,
 3459                                     ("vmspace_fork: v_writecount %p", object));
 3460                                 KASSERT(object->un_pager.vnp.writemappings > 0,
 3461                                     ("vmspace_fork: vnp.writecount %p",
 3462                                     object));
 3463                         }
 3464                         VM_OBJECT_WUNLOCK(object);
 3465 
 3466                         /*
 3467                          * Clone the entry, referencing the shared object.
 3468                          */
 3469                         new_entry = vm_map_entry_create(new_map);
 3470                         *new_entry = *old_entry;
 3471                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
 3472                             MAP_ENTRY_IN_TRANSITION);
 3473                         new_entry->wiring_thread = NULL;
 3474                         new_entry->wired_count = 0;
 3475                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
 3476                                 vnode_pager_update_writecount(object,
 3477                                     new_entry->start, new_entry->end);
 3478                         }
 3479 
 3480                         /*
 3481                          * Insert the entry into the new map -- we know we're
 3482                          * inserting at the end of the new map.
 3483                          */
 3484                         vm_map_entry_link(new_map, new_map->header.prev,
 3485                             new_entry);
 3486                         vmspace_map_entry_forked(vm1, vm2, new_entry);
 3487 
 3488                         /*
 3489                          * Update the physical map
 3490                          */
 3491                         pmap_copy(new_map->pmap, old_map->pmap,
 3492                             new_entry->start,
 3493                             (old_entry->end - old_entry->start),
 3494                             old_entry->start);
 3495                         break;
 3496 
 3497                 case VM_INHERIT_COPY:
 3498                         /*
 3499                          * Clone the entry and link into the map.
 3500                          */
 3501                         new_entry = vm_map_entry_create(new_map);
 3502                         *new_entry = *old_entry;
 3503                         /*
 3504                          * Copied entry is COW over the old object.
 3505                          */
 3506                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
 3507                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
 3508                         new_entry->wiring_thread = NULL;
 3509                         new_entry->wired_count = 0;
 3510                         new_entry->object.vm_object = NULL;
 3511                         new_entry->cred = NULL;
 3512                         vm_map_entry_link(new_map, new_map->header.prev,
 3513                             new_entry);
 3514                         vmspace_map_entry_forked(vm1, vm2, new_entry);
 3515                         vm_map_copy_entry(old_map, new_map, old_entry,
 3516                             new_entry, fork_charge);
 3517                         break;
 3518 
 3519                 case VM_INHERIT_ZERO:
 3520                         /*
 3521                          * Create a new anonymous mapping entry modelled from
 3522                          * the old one.
 3523                          */
 3524                         new_entry = vm_map_entry_create(new_map);
 3525                         memset(new_entry, 0, sizeof(*new_entry));
 3526 
 3527                         new_entry->start = old_entry->start;
 3528                         new_entry->end = old_entry->end;
 3529                         new_entry->eflags = old_entry->eflags &
 3530                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
 3531                             MAP_ENTRY_VN_WRITECNT);
 3532                         new_entry->protection = old_entry->protection;
 3533                         new_entry->max_protection = old_entry->max_protection;
 3534                         new_entry->inheritance = VM_INHERIT_ZERO;
 3535 
 3536                         vm_map_entry_link(new_map, new_map->header.prev,
 3537                             new_entry);
 3538                         vmspace_map_entry_forked(vm1, vm2, new_entry);
 3539 
 3540                         new_entry->cred = curthread->td_ucred;
 3541                         crhold(new_entry->cred);
 3542                         *fork_charge += (new_entry->end - new_entry->start);
 3543 
 3544                         break;
 3545                 }
 3546                 old_entry = old_entry->next;
 3547         }
 3548         /*
 3549          * Use inlined vm_map_unlock() to postpone handling the deferred
 3550          * map entries, which cannot be done until both old_map and
 3551          * new_map locks are released.
 3552          */
 3553         sx_xunlock(&old_map->lock);
 3554         sx_xunlock(&new_map->lock);
 3555         vm_map_process_deferred();
 3556 
 3557         return (vm2);
 3558 }
 3559 
 3560 int
 3561 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
 3562     vm_prot_t prot, vm_prot_t max, int cow)
 3563 {
 3564         vm_size_t growsize, init_ssize;
 3565         rlim_t lmemlim, vmemlim;
 3566         int rv;
 3567 
 3568         growsize = sgrowsiz;
 3569         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
 3570         vm_map_lock(map);
 3571         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
 3572         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
 3573         if (!old_mlock && map->flags & MAP_WIREFUTURE) {
 3574                 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
 3575                         rv = KERN_NO_SPACE;
 3576                         goto out;
 3577                 }
 3578         }
 3579         /* If we would blow our VMEM resource limit, no go */
 3580         if (map->size + init_ssize > vmemlim) {
 3581                 rv = KERN_NO_SPACE;
 3582                 goto out;
 3583         }
 3584         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
 3585             max, cow);
 3586 out:
 3587         vm_map_unlock(map);
 3588         return (rv);
 3589 }
 3590 
 3591 static int stack_guard_page = 1;
 3592 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
 3593     &stack_guard_page, 0,
 3594     "Specifies the number of guard pages for a stack that grows");
 3595 
 3596 static int
 3597 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
 3598     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
 3599 {
 3600         vm_map_entry_t new_entry, prev_entry;
 3601         vm_offset_t bot, gap_bot, gap_top, top;
 3602         vm_size_t init_ssize, sgp;
 3603         int orient, rv;
 3604 
 3605         /*
 3606          * The stack orientation is piggybacked with the cow argument.
 3607          * Extract it into orient and mask the cow argument so that we
 3608          * don't pass it around further.
 3609          */
 3610         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
 3611         KASSERT(orient != 0, ("No stack grow direction"));
 3612         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
 3613             ("bi-dir stack"));
 3614 
 3615         sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
 3616         if (addrbos < vm_map_min(map) ||
 3617             addrbos > vm_map_max(map) ||
 3618             addrbos + max_ssize < addrbos ||
 3619             sgp >= max_ssize)
 3620                 return (KERN_NO_SPACE);
 3621 
 3622         init_ssize = growsize;
 3623         if (max_ssize < init_ssize + sgp)
 3624                 init_ssize = max_ssize - sgp;
 3625 
 3626         /* If addr is already mapped, no go */
 3627         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
 3628                 return (KERN_NO_SPACE);
 3629 
 3630         /*
 3631          * If we can't accommodate max_ssize in the current mapping, no go.
 3632          */
 3633         if ((prev_entry->next != &map->header) &&
 3634             (prev_entry->next->start < addrbos + max_ssize))
 3635                 return (KERN_NO_SPACE);
 3636 
 3637         /*
 3638          * We initially map a stack of only init_ssize.  We will grow as
 3639          * needed later.  Depending on the orientation of the stack (i.e.
 3640          * the grow direction) we either map at the top of the range, the
 3641          * bottom of the range or in the middle.
 3642          *
 3643          * Note: we would normally expect prot and max to be VM_PROT_ALL,
 3644          * and cow to be 0.  Possibly we should eliminate these as input
 3645          * parameters, and just pass these values here in the insert call.
 3646          */
 3647         if (orient == MAP_STACK_GROWS_DOWN) {
 3648                 bot = addrbos + max_ssize - init_ssize;
 3649                 top = bot + init_ssize;
 3650                 gap_bot = addrbos;
 3651                 gap_top = bot;
 3652         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
 3653                 bot = addrbos;
 3654                 top = bot + init_ssize;
 3655                 gap_bot = top;
 3656                 gap_top = addrbos + max_ssize;
 3657         }
 3658         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
 3659         if (rv != KERN_SUCCESS)
 3660                 return (rv);
 3661         new_entry = prev_entry->next;
 3662         KASSERT(new_entry->end == top || new_entry->start == bot,
 3663             ("Bad entry start/end for new stack entry"));
 3664         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
 3665             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
 3666             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
 3667         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
 3668             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
 3669             ("new entry lacks MAP_ENTRY_GROWS_UP"));
 3670         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
 3671             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
 3672             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
 3673         if (rv != KERN_SUCCESS)
 3674                 (void)vm_map_delete(map, bot, top);
 3675         return (rv);
 3676 }
 3677 
 3678 /*
 3679  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
 3680  * successfully grow the stack.
 3681  */
 3682 static int
 3683 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
 3684 {
 3685         vm_map_entry_t stack_entry;
 3686         struct proc *p;
 3687         struct vmspace *vm;
 3688         struct ucred *cred;
 3689         vm_offset_t gap_end, gap_start, grow_start;
 3690         size_t grow_amount, guard, max_grow;
 3691         rlim_t lmemlim, stacklim, vmemlim;
 3692         int rv, rv1;
 3693         bool gap_deleted, grow_down, is_procstack;
 3694 #ifdef notyet
 3695         uint64_t limit;
 3696 #endif
 3697 #ifdef RACCT
 3698         int error;
 3699 #endif
 3700 
 3701         p = curproc;
 3702         vm = p->p_vmspace;
 3703         MPASS(map == &p->p_vmspace->vm_map);
 3704         MPASS(!map->system_map);
 3705 
 3706         guard = stack_guard_page * PAGE_SIZE;
 3707         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
 3708         stacklim = lim_cur(curthread, RLIMIT_STACK);
 3709         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
 3710 retry:
 3711         /* If addr is not in a hole for a stack grow area, no need to grow. */
 3712         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
 3713                 return (KERN_FAILURE);
 3714         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
 3715                 return (KERN_SUCCESS);
 3716         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
 3717                 stack_entry = gap_entry->next;
 3718                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
 3719                     stack_entry->start != gap_entry->end)
 3720                         return (KERN_FAILURE);
 3721                 grow_amount = round_page(stack_entry->start - addr);
 3722                 grow_down = true;
 3723         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
 3724                 stack_entry = gap_entry->prev;
 3725                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
 3726                     stack_entry->end != gap_entry->start)
 3727                         return (KERN_FAILURE);
 3728                 grow_amount = round_page(addr + 1 - stack_entry->end);
 3729                 grow_down = false;
 3730         } else {
 3731                 return (KERN_FAILURE);
 3732         }
 3733         max_grow = gap_entry->end - gap_entry->start;
 3734         if (guard > max_grow)
 3735                 return (KERN_NO_SPACE);
 3736         max_grow -= guard;
 3737         if (grow_amount > max_grow)
 3738                 return (KERN_NO_SPACE);
 3739 
 3740         /*
 3741          * If this is the main process stack, see if we're over the stack
 3742          * limit.
 3743          */
 3744         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
 3745             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
 3746         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
 3747                 return (KERN_NO_SPACE);
 3748 
 3749 #ifdef RACCT
 3750         if (racct_enable) {
 3751                 PROC_LOCK(p);
 3752                 if (is_procstack && racct_set(p, RACCT_STACK,
 3753                     ctob(vm->vm_ssize) + grow_amount)) {
 3754                         PROC_UNLOCK(p);
 3755                         return (KERN_NO_SPACE);
 3756                 }
 3757                 PROC_UNLOCK(p);
 3758         }
 3759 #endif
 3760 
 3761         grow_amount = roundup(grow_amount, sgrowsiz);
 3762         if (grow_amount > max_grow)
 3763                 grow_amount = max_grow;
 3764         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
 3765                 grow_amount = trunc_page((vm_size_t)stacklim) -
 3766                     ctob(vm->vm_ssize);
 3767         }
 3768 
 3769 #ifdef notyet
 3770         PROC_LOCK(p);
 3771         limit = racct_get_available(p, RACCT_STACK);
 3772         PROC_UNLOCK(p);
 3773         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
 3774                 grow_amount = limit - ctob(vm->vm_ssize);
 3775 #endif
 3776 
 3777         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
 3778                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
 3779                         rv = KERN_NO_SPACE;
 3780                         goto out;
 3781                 }
 3782 #ifdef RACCT
 3783                 if (racct_enable) {
 3784                         PROC_LOCK(p);
 3785                         if (racct_set(p, RACCT_MEMLOCK,
 3786                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
 3787                                 PROC_UNLOCK(p);
 3788                                 rv = KERN_NO_SPACE;
 3789                                 goto out;
 3790                         }
 3791                         PROC_UNLOCK(p);
 3792                 }
 3793 #endif
 3794         }
 3795 
 3796         /* If we would blow our VMEM resource limit, no go */
 3797         if (map->size + grow_amount > vmemlim) {
 3798                 rv = KERN_NO_SPACE;
 3799                 goto out;
 3800         }
 3801 #ifdef RACCT
 3802         if (racct_enable) {
 3803                 PROC_LOCK(p);
 3804                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
 3805                         PROC_UNLOCK(p);
 3806                         rv = KERN_NO_SPACE;
 3807                         goto out;
 3808                 }
 3809                 PROC_UNLOCK(p);
 3810         }
 3811 #endif
 3812 
 3813         if (vm_map_lock_upgrade(map)) {
 3814                 gap_entry = NULL;
 3815                 vm_map_lock_read(map);
 3816                 goto retry;
 3817         }
 3818 
 3819         if (grow_down) {
 3820                 grow_start = gap_entry->end - grow_amount;
 3821                 if (gap_entry->start + grow_amount == gap_entry->end) {
 3822                         gap_start = gap_entry->start;
 3823                         gap_end = gap_entry->end;
 3824                         vm_map_entry_delete(map, gap_entry);
 3825                         gap_deleted = true;
 3826                 } else {
 3827                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
 3828                         gap_entry->end -= grow_amount;
 3829                         vm_map_entry_resize_free(map, gap_entry);
 3830                         gap_deleted = false;
 3831                 }
 3832                 rv = vm_map_insert(map, NULL, 0, grow_start,
 3833                     grow_start + grow_amount,
 3834                     stack_entry->protection, stack_entry->max_protection,
 3835                     MAP_STACK_GROWS_DOWN);
 3836                 if (rv != KERN_SUCCESS) {
 3837                         if (gap_deleted) {
 3838                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
 3839                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
 3840                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
 3841                                 MPASS(rv1 == KERN_SUCCESS);
 3842                         } else {
 3843                                 gap_entry->end += grow_amount;
 3844                                 vm_map_entry_resize_free(map, gap_entry);
 3845                         }
 3846                 }
 3847         } else {
 3848                 grow_start = stack_entry->end;
 3849                 cred = stack_entry->cred;
 3850                 if (cred == NULL && stack_entry->object.vm_object != NULL)
 3851                         cred = stack_entry->object.vm_object->cred;
 3852                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
 3853                         rv = KERN_NO_SPACE;
 3854                 /* Grow the underlying object if applicable. */
 3855                 else if (stack_entry->object.vm_object == NULL ||
 3856                     vm_object_coalesce(stack_entry->object.vm_object,
 3857                     stack_entry->offset,
 3858                     (vm_size_t)(stack_entry->end - stack_entry->start),
 3859                     (vm_size_t)grow_amount, cred != NULL)) {
 3860                         if (gap_entry->start + grow_amount == gap_entry->end)
 3861                                 vm_map_entry_delete(map, gap_entry);
 3862                         else
 3863                                 gap_entry->start += grow_amount;
 3864                         stack_entry->end += grow_amount;
 3865                         map->size += grow_amount;
 3866                         vm_map_entry_resize_free(map, stack_entry);
 3867                         rv = KERN_SUCCESS;
 3868                 } else
 3869                         rv = KERN_FAILURE;
 3870         }
 3871         if (rv == KERN_SUCCESS && is_procstack)
 3872                 vm->vm_ssize += btoc(grow_amount);
 3873 
 3874         /*
 3875          * Heed the MAP_WIREFUTURE flag if it was set for this process.
 3876          */
 3877         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
 3878                 vm_map_unlock(map);
 3879                 vm_map_wire(map, grow_start, grow_start + grow_amount,
 3880                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
 3881                 vm_map_lock_read(map);
 3882         } else
 3883                 vm_map_lock_downgrade(map);
 3884 
 3885 out:
 3886 #ifdef RACCT
 3887         if (racct_enable && rv != KERN_SUCCESS) {
 3888                 PROC_LOCK(p);
 3889                 error = racct_set(p, RACCT_VMEM, map->size);
 3890                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
 3891                 if (!old_mlock) {
 3892                         error = racct_set(p, RACCT_MEMLOCK,
 3893                             ptoa(pmap_wired_count(map->pmap)));
 3894                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
 3895                 }
 3896                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
 3897                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
 3898                 PROC_UNLOCK(p);
 3899         }
 3900 #endif
 3901 
 3902         return (rv);
 3903 }
 3904 
 3905 /*
 3906  * Unshare the specified VM space for exec.  If other processes are
 3907  * mapped to it, then create a new one.  The new vmspace is null.
 3908  */
 3909 int
 3910 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
 3911 {
 3912         struct vmspace *oldvmspace = p->p_vmspace;
 3913         struct vmspace *newvmspace;
 3914 
 3915         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
 3916             ("vmspace_exec recursed"));
 3917         newvmspace = vmspace_alloc(minuser, maxuser, NULL);
 3918         if (newvmspace == NULL)
 3919                 return (ENOMEM);
 3920         newvmspace->vm_swrss = oldvmspace->vm_swrss;
 3921         /*
 3922          * This code is written like this for prototype purposes.  The
 3923          * goal is to avoid running down the vmspace here, but let the
 3924          * other process's that are still using the vmspace to finally
 3925          * run it down.  Even though there is little or no chance of blocking
 3926          * here, it is a good idea to keep this form for future mods.
 3927          */
 3928         PROC_VMSPACE_LOCK(p);
 3929         p->p_vmspace = newvmspace;
 3930         PROC_VMSPACE_UNLOCK(p);
 3931         if (p == curthread->td_proc)
 3932                 pmap_activate(curthread);
 3933         curthread->td_pflags |= TDP_EXECVMSPC;
 3934         return (0);
 3935 }
 3936 
 3937 /*
 3938  * Unshare the specified VM space for forcing COW.  This
 3939  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
 3940  */
 3941 int
 3942 vmspace_unshare(struct proc *p)
 3943 {
 3944         struct vmspace *oldvmspace = p->p_vmspace;
 3945         struct vmspace *newvmspace;
 3946         vm_ooffset_t fork_charge;
 3947 
 3948         if (oldvmspace->vm_refcnt == 1)
 3949                 return (0);
 3950         fork_charge = 0;
 3951         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
 3952         if (newvmspace == NULL)
 3953                 return (ENOMEM);
 3954         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
 3955                 vmspace_free(newvmspace);
 3956                 return (ENOMEM);
 3957         }
 3958         PROC_VMSPACE_LOCK(p);
 3959         p->p_vmspace = newvmspace;
 3960         PROC_VMSPACE_UNLOCK(p);
 3961         if (p == curthread->td_proc)
 3962                 pmap_activate(curthread);
 3963         vmspace_free(oldvmspace);
 3964         return (0);
 3965 }
 3966 
 3967 /*
 3968  *      vm_map_lookup:
 3969  *
 3970  *      Finds the VM object, offset, and
 3971  *      protection for a given virtual address in the
 3972  *      specified map, assuming a page fault of the
 3973  *      type specified.
 3974  *
 3975  *      Leaves the map in question locked for read; return
 3976  *      values are guaranteed until a vm_map_lookup_done
 3977  *      call is performed.  Note that the map argument
 3978  *      is in/out; the returned map must be used in
 3979  *      the call to vm_map_lookup_done.
 3980  *
 3981  *      A handle (out_entry) is returned for use in
 3982  *      vm_map_lookup_done, to make that fast.
 3983  *
 3984  *      If a lookup is requested with "write protection"
 3985  *      specified, the map may be changed to perform virtual
 3986  *      copying operations, although the data referenced will
 3987  *      remain the same.
 3988  */
 3989 int
 3990 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
 3991               vm_offset_t vaddr,
 3992               vm_prot_t fault_typea,
 3993               vm_map_entry_t *out_entry,        /* OUT */
 3994               vm_object_t *object,              /* OUT */
 3995               vm_pindex_t *pindex,              /* OUT */
 3996               vm_prot_t *out_prot,              /* OUT */
 3997               boolean_t *wired)                 /* OUT */
 3998 {
 3999         vm_map_entry_t entry;
 4000         vm_map_t map = *var_map;
 4001         vm_prot_t prot;
 4002         vm_prot_t fault_type = fault_typea;
 4003         vm_object_t eobject;
 4004         vm_size_t size;
 4005         struct ucred *cred;
 4006 
 4007 RetryLookup:
 4008 
 4009         vm_map_lock_read(map);
 4010 
 4011 RetryLookupLocked:
 4012         /*
 4013          * Lookup the faulting address.
 4014          */
 4015         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
 4016                 vm_map_unlock_read(map);
 4017                 return (KERN_INVALID_ADDRESS);
 4018         }
 4019 
 4020         entry = *out_entry;
 4021 
 4022         /*
 4023          * Handle submaps.
 4024          */
 4025         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 4026                 vm_map_t old_map = map;
 4027 
 4028                 *var_map = map = entry->object.sub_map;
 4029                 vm_map_unlock_read(old_map);
 4030                 goto RetryLookup;
 4031         }
 4032 
 4033         /*
 4034          * Check whether this task is allowed to have this page.
 4035          */
 4036         prot = entry->protection;
 4037         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
 4038                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
 4039                 if (prot == VM_PROT_NONE && map != kernel_map &&
 4040                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
 4041                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
 4042                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
 4043                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
 4044                         goto RetryLookupLocked;
 4045         }
 4046         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
 4047         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
 4048                 vm_map_unlock_read(map);
 4049                 return (KERN_PROTECTION_FAILURE);
 4050         }
 4051         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
 4052             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
 4053             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
 4054             ("entry %p flags %x", entry, entry->eflags));
 4055         if ((fault_typea & VM_PROT_COPY) != 0 &&
 4056             (entry->max_protection & VM_PROT_WRITE) == 0 &&
 4057             (entry->eflags & MAP_ENTRY_COW) == 0) {
 4058                 vm_map_unlock_read(map);
 4059                 return (KERN_PROTECTION_FAILURE);
 4060         }
 4061 
 4062         /*
 4063          * If this page is not pageable, we have to get it for all possible
 4064          * accesses.
 4065          */
 4066         *wired = (entry->wired_count != 0);
 4067         if (*wired)
 4068                 fault_type = entry->protection;
 4069         size = entry->end - entry->start;
 4070         /*
 4071          * If the entry was copy-on-write, we either ...
 4072          */
 4073         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 4074                 /*
 4075                  * If we want to write the page, we may as well handle that
 4076                  * now since we've got the map locked.
 4077                  *
 4078                  * If we don't need to write the page, we just demote the
 4079                  * permissions allowed.
 4080                  */
 4081                 if ((fault_type & VM_PROT_WRITE) != 0 ||
 4082                     (fault_typea & VM_PROT_COPY) != 0) {
 4083                         /*
 4084                          * Make a new object, and place it in the object
 4085                          * chain.  Note that no new references have appeared
 4086                          * -- one just moved from the map to the new
 4087                          * object.
 4088                          */
 4089                         if (vm_map_lock_upgrade(map))
 4090                                 goto RetryLookup;
 4091 
 4092                         if (entry->cred == NULL) {
 4093                                 /*
 4094                                  * The debugger owner is charged for
 4095                                  * the memory.
 4096                                  */
 4097                                 cred = curthread->td_ucred;
 4098                                 crhold(cred);
 4099                                 if (!swap_reserve_by_cred(size, cred)) {
 4100                                         crfree(cred);
 4101                                         vm_map_unlock(map);
 4102                                         return (KERN_RESOURCE_SHORTAGE);
 4103                                 }
 4104                                 entry->cred = cred;
 4105                         }
 4106                         vm_object_shadow(&entry->object.vm_object,
 4107                             &entry->offset, size);
 4108                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
 4109                         eobject = entry->object.vm_object;
 4110                         if (eobject->cred != NULL) {
 4111                                 /*
 4112                                  * The object was not shadowed.
 4113                                  */
 4114                                 swap_release_by_cred(size, entry->cred);
 4115                                 crfree(entry->cred);
 4116                                 entry->cred = NULL;
 4117                         } else if (entry->cred != NULL) {
 4118                                 VM_OBJECT_WLOCK(eobject);
 4119                                 eobject->cred = entry->cred;
 4120                                 eobject->charge = size;
 4121                                 VM_OBJECT_WUNLOCK(eobject);
 4122                                 entry->cred = NULL;
 4123                         }
 4124 
 4125                         vm_map_lock_downgrade(map);
 4126                 } else {
 4127                         /*
 4128                          * We're attempting to read a copy-on-write page --
 4129                          * don't allow writes.
 4130                          */
 4131                         prot &= ~VM_PROT_WRITE;
 4132                 }
 4133         }
 4134 
 4135         /*
 4136          * Create an object if necessary.
 4137          */
 4138         if (entry->object.vm_object == NULL &&
 4139             !map->system_map) {
 4140                 if (vm_map_lock_upgrade(map))
 4141                         goto RetryLookup;
 4142                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
 4143                     atop(size));
 4144                 entry->offset = 0;
 4145                 if (entry->cred != NULL) {
 4146                         VM_OBJECT_WLOCK(entry->object.vm_object);
 4147                         entry->object.vm_object->cred = entry->cred;
 4148                         entry->object.vm_object->charge = size;
 4149                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
 4150                         entry->cred = NULL;
 4151                 }
 4152                 vm_map_lock_downgrade(map);
 4153         }
 4154 
 4155         /*
 4156          * Return the object/offset from this entry.  If the entry was
 4157          * copy-on-write or empty, it has been fixed up.
 4158          */
 4159         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
 4160         *object = entry->object.vm_object;
 4161 
 4162         *out_prot = prot;
 4163         return (KERN_SUCCESS);
 4164 }
 4165 
 4166 /*
 4167  *      vm_map_lookup_locked:
 4168  *
 4169  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
 4170  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
 4171  */
 4172 int
 4173 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
 4174                      vm_offset_t vaddr,
 4175                      vm_prot_t fault_typea,
 4176                      vm_map_entry_t *out_entry, /* OUT */
 4177                      vm_object_t *object,       /* OUT */
 4178                      vm_pindex_t *pindex,       /* OUT */
 4179                      vm_prot_t *out_prot,       /* OUT */
 4180                      boolean_t *wired)          /* OUT */
 4181 {
 4182         vm_map_entry_t entry;
 4183         vm_map_t map = *var_map;
 4184         vm_prot_t prot;
 4185         vm_prot_t fault_type = fault_typea;
 4186 
 4187         /*
 4188          * Lookup the faulting address.
 4189          */
 4190         if (!vm_map_lookup_entry(map, vaddr, out_entry))
 4191                 return (KERN_INVALID_ADDRESS);
 4192 
 4193         entry = *out_entry;
 4194 
 4195         /*
 4196          * Fail if the entry refers to a submap.
 4197          */
 4198         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 4199                 return (KERN_FAILURE);
 4200 
 4201         /*
 4202          * Check whether this task is allowed to have this page.
 4203          */
 4204         prot = entry->protection;
 4205         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
 4206         if ((fault_type & prot) != fault_type)
 4207                 return (KERN_PROTECTION_FAILURE);
 4208 
 4209         /*
 4210          * If this page is not pageable, we have to get it for all possible
 4211          * accesses.
 4212          */
 4213         *wired = (entry->wired_count != 0);
 4214         if (*wired)
 4215                 fault_type = entry->protection;
 4216 
 4217         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 4218                 /*
 4219                  * Fail if the entry was copy-on-write for a write fault.
 4220                  */
 4221                 if (fault_type & VM_PROT_WRITE)
 4222                         return (KERN_FAILURE);
 4223                 /*
 4224                  * We're attempting to read a copy-on-write page --
 4225                  * don't allow writes.
 4226                  */
 4227                 prot &= ~VM_PROT_WRITE;
 4228         }
 4229 
 4230         /*
 4231          * Fail if an object should be created.
 4232          */
 4233         if (entry->object.vm_object == NULL && !map->system_map)
 4234                 return (KERN_FAILURE);
 4235 
 4236         /*
 4237          * Return the object/offset from this entry.  If the entry was
 4238          * copy-on-write or empty, it has been fixed up.
 4239          */
 4240         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
 4241         *object = entry->object.vm_object;
 4242 
 4243         *out_prot = prot;
 4244         return (KERN_SUCCESS);
 4245 }
 4246 
 4247 /*
 4248  *      vm_map_lookup_done:
 4249  *
 4250  *      Releases locks acquired by a vm_map_lookup
 4251  *      (according to the handle returned by that lookup).
 4252  */
 4253 void
 4254 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
 4255 {
 4256         /*
 4257          * Unlock the main-level map
 4258          */
 4259         vm_map_unlock_read(map);
 4260 }
 4261 
 4262 #include "opt_ddb.h"
 4263 #ifdef DDB
 4264 #include <sys/kernel.h>
 4265 
 4266 #include <ddb/ddb.h>
 4267 
 4268 static void
 4269 vm_map_print(vm_map_t map)
 4270 {
 4271         vm_map_entry_t entry;
 4272 
 4273         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
 4274             (void *)map,
 4275             (void *)map->pmap, map->nentries, map->timestamp);
 4276 
 4277         db_indent += 2;
 4278         for (entry = map->header.next; entry != &map->header;
 4279             entry = entry->next) {
 4280                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
 4281                     (void *)entry, (void *)entry->start, (void *)entry->end,
 4282                     entry->eflags);
 4283                 {
 4284                         static char *inheritance_name[4] =
 4285                         {"share", "copy", "none", "donate_copy"};
 4286 
 4287                         db_iprintf(" prot=%x/%x/%s",
 4288                             entry->protection,
 4289                             entry->max_protection,
 4290                             inheritance_name[(int)(unsigned char)entry->inheritance]);
 4291                         if (entry->wired_count != 0)
 4292                                 db_printf(", wired");
 4293                 }
 4294                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 4295                         db_printf(", share=%p, offset=0x%jx\n",
 4296                             (void *)entry->object.sub_map,
 4297                             (uintmax_t)entry->offset);
 4298                         if ((entry->prev == &map->header) ||
 4299                             (entry->prev->object.sub_map !=
 4300                                 entry->object.sub_map)) {
 4301                                 db_indent += 2;
 4302                                 vm_map_print((vm_map_t)entry->object.sub_map);
 4303                                 db_indent -= 2;
 4304                         }
 4305                 } else {
 4306                         if (entry->cred != NULL)
 4307                                 db_printf(", ruid %d", entry->cred->cr_ruid);
 4308                         db_printf(", object=%p, offset=0x%jx",
 4309                             (void *)entry->object.vm_object,
 4310                             (uintmax_t)entry->offset);
 4311                         if (entry->object.vm_object && entry->object.vm_object->cred)
 4312                                 db_printf(", obj ruid %d charge %jx",
 4313                                     entry->object.vm_object->cred->cr_ruid,
 4314                                     (uintmax_t)entry->object.vm_object->charge);
 4315                         if (entry->eflags & MAP_ENTRY_COW)
 4316                                 db_printf(", copy (%s)",
 4317                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
 4318                         db_printf("\n");
 4319 
 4320                         if ((entry->prev == &map->header) ||
 4321                             (entry->prev->object.vm_object !=
 4322                                 entry->object.vm_object)) {
 4323                                 db_indent += 2;
 4324                                 vm_object_print((db_expr_t)(intptr_t)
 4325                                                 entry->object.vm_object,
 4326                                                 0, 0, (char *)0);
 4327                                 db_indent -= 2;
 4328                         }
 4329                 }
 4330         }
 4331         db_indent -= 2;
 4332 }
 4333 
 4334 DB_SHOW_COMMAND(map, map)
 4335 {
 4336 
 4337         if (!have_addr) {
 4338                 db_printf("usage: show map <addr>\n");
 4339                 return;
 4340         }
 4341         vm_map_print((vm_map_t)addr);
 4342 }
 4343 
 4344 DB_SHOW_COMMAND(procvm, procvm)
 4345 {
 4346         struct proc *p;
 4347 
 4348         if (have_addr) {
 4349                 p = db_lookup_proc(addr);
 4350         } else {
 4351                 p = curproc;
 4352         }
 4353 
 4354         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
 4355             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
 4356             (void *)vmspace_pmap(p->p_vmspace));
 4357 
 4358         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
 4359 }
 4360 
 4361 #endif /* DDB */

Cache object: 1c83292e457530bae75c60cf52c62d42


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.