FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_map.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61 /*
62 * Virtual memory mapping module.
63 */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98
99 /*
100 * Virtual memory maps provide for the mapping, protection,
101 * and sharing of virtual memory objects. In addition,
102 * this module provides for an efficient virtual copy of
103 * memory from one map to another.
104 *
105 * Synchronization is required prior to most operations.
106 *
107 * Maps consist of an ordered doubly-linked list of simple
108 * entries; a self-adjusting binary search tree of these
109 * entries is used to speed up lookups.
110 *
111 * Since portions of maps are specified by start/end addresses,
112 * which may not align with existing map entries, all
113 * routines merely "clip" entries to these start/end values.
114 * [That is, an entry is split into two, bordering at a
115 * start or end value.] Note that these clippings may not
116 * always be necessary (as the two resulting entries are then
117 * not changed); however, the clipping is done for convenience.
118 *
119 * As mentioned above, virtual copy operations are performed
120 * by copying VM object references from one map to
121 * another, and then marking both regions as copy-on-write.
122 */
123
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132 vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
137 vm_map_entry_t gap_entry);
138 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
139 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
140 #ifdef INVARIANTS
141 static void vm_map_zdtor(void *mem, int size, void *arg);
142 static void vmspace_zdtor(void *mem, int size, void *arg);
143 #endif
144 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
145 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
146 int cow);
147 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
148 vm_offset_t failed_addr);
149
150 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
151 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
152 !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
153
154 /*
155 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
156 * stable.
157 */
158 #define PROC_VMSPACE_LOCK(p) do { } while (0)
159 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
160
161 /*
162 * VM_MAP_RANGE_CHECK: [ internal use only ]
163 *
164 * Asserts that the starting and ending region
165 * addresses fall within the valid range of the map.
166 */
167 #define VM_MAP_RANGE_CHECK(map, start, end) \
168 { \
169 if (start < vm_map_min(map)) \
170 start = vm_map_min(map); \
171 if (end > vm_map_max(map)) \
172 end = vm_map_max(map); \
173 if (start > end) \
174 start = end; \
175 }
176
177 /*
178 * vm_map_startup:
179 *
180 * Initialize the vm_map module. Must be called before
181 * any other vm_map routines.
182 *
183 * Map and entry structures are allocated from the general
184 * purpose memory pool with some exceptions:
185 *
186 * - The kernel map and kmem submap are allocated statically.
187 * - Kernel map entries are allocated out of a static pool.
188 *
189 * These restrictions are necessary since malloc() uses the
190 * maps and requires map entries.
191 */
192
193 void
194 vm_map_startup(void)
195 {
196 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
197 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
198 #ifdef INVARIANTS
199 vm_map_zdtor,
200 #else
201 NULL,
202 #endif
203 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
204 uma_prealloc(mapzone, MAX_KMAP);
205 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
206 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
207 UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
208 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
209 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
210 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
211 #ifdef INVARIANTS
212 vmspace_zdtor,
213 #else
214 NULL,
215 #endif
216 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
217 }
218
219 static int
220 vmspace_zinit(void *mem, int size, int flags)
221 {
222 struct vmspace *vm;
223
224 vm = (struct vmspace *)mem;
225
226 vm->vm_map.pmap = NULL;
227 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
228 PMAP_LOCK_INIT(vmspace_pmap(vm));
229 return (0);
230 }
231
232 static int
233 vm_map_zinit(void *mem, int size, int flags)
234 {
235 vm_map_t map;
236
237 map = (vm_map_t)mem;
238 memset(map, 0, sizeof(*map));
239 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
240 sx_init(&map->lock, "vm map (user)");
241 return (0);
242 }
243
244 #ifdef INVARIANTS
245 static void
246 vmspace_zdtor(void *mem, int size, void *arg)
247 {
248 struct vmspace *vm;
249
250 vm = (struct vmspace *)mem;
251
252 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
253 }
254 static void
255 vm_map_zdtor(void *mem, int size, void *arg)
256 {
257 vm_map_t map;
258
259 map = (vm_map_t)mem;
260 KASSERT(map->nentries == 0,
261 ("map %p nentries == %d on free.",
262 map, map->nentries));
263 KASSERT(map->size == 0,
264 ("map %p size == %lu on free.",
265 map, (unsigned long)map->size));
266 }
267 #endif /* INVARIANTS */
268
269 /*
270 * Allocate a vmspace structure, including a vm_map and pmap,
271 * and initialize those structures. The refcnt is set to 1.
272 *
273 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
274 */
275 struct vmspace *
276 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
277 {
278 struct vmspace *vm;
279
280 vm = uma_zalloc(vmspace_zone, M_WAITOK);
281 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
282 if (!pinit(vmspace_pmap(vm))) {
283 uma_zfree(vmspace_zone, vm);
284 return (NULL);
285 }
286 CTR1(KTR_VM, "vmspace_alloc: %p", vm);
287 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
288 vm->vm_refcnt = 1;
289 vm->vm_shm = NULL;
290 vm->vm_swrss = 0;
291 vm->vm_tsize = 0;
292 vm->vm_dsize = 0;
293 vm->vm_ssize = 0;
294 vm->vm_taddr = 0;
295 vm->vm_daddr = 0;
296 vm->vm_maxsaddr = 0;
297 return (vm);
298 }
299
300 #ifdef RACCT
301 static void
302 vmspace_container_reset(struct proc *p)
303 {
304
305 PROC_LOCK(p);
306 racct_set(p, RACCT_DATA, 0);
307 racct_set(p, RACCT_STACK, 0);
308 racct_set(p, RACCT_RSS, 0);
309 racct_set(p, RACCT_MEMLOCK, 0);
310 racct_set(p, RACCT_VMEM, 0);
311 PROC_UNLOCK(p);
312 }
313 #endif
314
315 static inline void
316 vmspace_dofree(struct vmspace *vm)
317 {
318
319 CTR1(KTR_VM, "vmspace_free: %p", vm);
320
321 /*
322 * Make sure any SysV shm is freed, it might not have been in
323 * exit1().
324 */
325 shmexit(vm);
326
327 /*
328 * Lock the map, to wait out all other references to it.
329 * Delete all of the mappings and pages they hold, then call
330 * the pmap module to reclaim anything left.
331 */
332 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
333 vm_map_max(&vm->vm_map));
334
335 pmap_release(vmspace_pmap(vm));
336 vm->vm_map.pmap = NULL;
337 uma_zfree(vmspace_zone, vm);
338 }
339
340 void
341 vmspace_free(struct vmspace *vm)
342 {
343
344 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
345 "vmspace_free() called");
346
347 if (vm->vm_refcnt == 0)
348 panic("vmspace_free: attempt to free already freed vmspace");
349
350 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
351 vmspace_dofree(vm);
352 }
353
354 void
355 vmspace_exitfree(struct proc *p)
356 {
357 struct vmspace *vm;
358
359 PROC_VMSPACE_LOCK(p);
360 vm = p->p_vmspace;
361 p->p_vmspace = NULL;
362 PROC_VMSPACE_UNLOCK(p);
363 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
364 vmspace_free(vm);
365 }
366
367 void
368 vmspace_exit(struct thread *td)
369 {
370 int refcnt;
371 struct vmspace *vm;
372 struct proc *p;
373
374 /*
375 * Release user portion of address space.
376 * This releases references to vnodes,
377 * which could cause I/O if the file has been unlinked.
378 * Need to do this early enough that we can still sleep.
379 *
380 * The last exiting process to reach this point releases as
381 * much of the environment as it can. vmspace_dofree() is the
382 * slower fallback in case another process had a temporary
383 * reference to the vmspace.
384 */
385
386 p = td->td_proc;
387 vm = p->p_vmspace;
388 atomic_add_int(&vmspace0.vm_refcnt, 1);
389 do {
390 refcnt = vm->vm_refcnt;
391 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
392 /* Switch now since other proc might free vmspace */
393 PROC_VMSPACE_LOCK(p);
394 p->p_vmspace = &vmspace0;
395 PROC_VMSPACE_UNLOCK(p);
396 pmap_activate(td);
397 }
398 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
399 if (refcnt == 1) {
400 if (p->p_vmspace != vm) {
401 /* vmspace not yet freed, switch back */
402 PROC_VMSPACE_LOCK(p);
403 p->p_vmspace = vm;
404 PROC_VMSPACE_UNLOCK(p);
405 pmap_activate(td);
406 }
407 pmap_remove_pages(vmspace_pmap(vm));
408 /* Switch now since this proc will free vmspace */
409 PROC_VMSPACE_LOCK(p);
410 p->p_vmspace = &vmspace0;
411 PROC_VMSPACE_UNLOCK(p);
412 pmap_activate(td);
413 vmspace_dofree(vm);
414 }
415 #ifdef RACCT
416 if (racct_enable)
417 vmspace_container_reset(p);
418 #endif
419 }
420
421 /* Acquire reference to vmspace owned by another process. */
422
423 struct vmspace *
424 vmspace_acquire_ref(struct proc *p)
425 {
426 struct vmspace *vm;
427 int refcnt;
428
429 PROC_VMSPACE_LOCK(p);
430 vm = p->p_vmspace;
431 if (vm == NULL) {
432 PROC_VMSPACE_UNLOCK(p);
433 return (NULL);
434 }
435 do {
436 refcnt = vm->vm_refcnt;
437 if (refcnt <= 0) { /* Avoid 0->1 transition */
438 PROC_VMSPACE_UNLOCK(p);
439 return (NULL);
440 }
441 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
442 if (vm != p->p_vmspace) {
443 PROC_VMSPACE_UNLOCK(p);
444 vmspace_free(vm);
445 return (NULL);
446 }
447 PROC_VMSPACE_UNLOCK(p);
448 return (vm);
449 }
450
451 /*
452 * Switch between vmspaces in an AIO kernel process.
453 *
454 * The new vmspace is either the vmspace of a user process obtained
455 * from an active AIO request or the initial vmspace of the AIO kernel
456 * process (when it is idling). Because user processes will block to
457 * drain any active AIO requests before proceeding in exit() or
458 * execve(), the reference count for vmspaces from AIO requests can
459 * never be 0. Similarly, AIO kernel processes hold an extra
460 * reference on their initial vmspace for the life of the process. As
461 * a result, the 'newvm' vmspace always has a non-zero reference
462 * count. This permits an additional reference on 'newvm' to be
463 * acquired via a simple atomic increment rather than the loop in
464 * vmspace_acquire_ref() above.
465 */
466 void
467 vmspace_switch_aio(struct vmspace *newvm)
468 {
469 struct vmspace *oldvm;
470
471 /* XXX: Need some way to assert that this is an aio daemon. */
472
473 KASSERT(newvm->vm_refcnt > 0,
474 ("vmspace_switch_aio: newvm unreferenced"));
475
476 oldvm = curproc->p_vmspace;
477 if (oldvm == newvm)
478 return;
479
480 /*
481 * Point to the new address space and refer to it.
482 */
483 curproc->p_vmspace = newvm;
484 atomic_add_int(&newvm->vm_refcnt, 1);
485
486 /* Activate the new mapping. */
487 pmap_activate(curthread);
488
489 vmspace_free(oldvm);
490 }
491
492 void
493 _vm_map_lock(vm_map_t map, const char *file, int line)
494 {
495
496 if (map->system_map)
497 mtx_lock_flags_(&map->system_mtx, 0, file, line);
498 else
499 sx_xlock_(&map->lock, file, line);
500 map->timestamp++;
501 }
502
503 static void
504 vm_map_process_deferred(void)
505 {
506 struct thread *td;
507 vm_map_entry_t entry, next;
508 vm_object_t object;
509
510 td = curthread;
511 entry = td->td_map_def_user;
512 td->td_map_def_user = NULL;
513 while (entry != NULL) {
514 next = entry->next;
515 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
516 /*
517 * Decrement the object's writemappings and
518 * possibly the vnode's v_writecount.
519 */
520 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
521 ("Submap with writecount"));
522 object = entry->object.vm_object;
523 KASSERT(object != NULL, ("No object for writecount"));
524 vnode_pager_release_writecount(object, entry->start,
525 entry->end);
526 }
527 vm_map_entry_deallocate(entry, FALSE);
528 entry = next;
529 }
530 }
531
532 void
533 _vm_map_unlock(vm_map_t map, const char *file, int line)
534 {
535
536 if (map->system_map)
537 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
538 else {
539 sx_xunlock_(&map->lock, file, line);
540 vm_map_process_deferred();
541 }
542 }
543
544 void
545 _vm_map_lock_read(vm_map_t map, const char *file, int line)
546 {
547
548 if (map->system_map)
549 mtx_lock_flags_(&map->system_mtx, 0, file, line);
550 else
551 sx_slock_(&map->lock, file, line);
552 }
553
554 void
555 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
556 {
557
558 if (map->system_map)
559 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
560 else {
561 sx_sunlock_(&map->lock, file, line);
562 vm_map_process_deferred();
563 }
564 }
565
566 int
567 _vm_map_trylock(vm_map_t map, const char *file, int line)
568 {
569 int error;
570
571 error = map->system_map ?
572 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
573 !sx_try_xlock_(&map->lock, file, line);
574 if (error == 0)
575 map->timestamp++;
576 return (error == 0);
577 }
578
579 int
580 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
581 {
582 int error;
583
584 error = map->system_map ?
585 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
586 !sx_try_slock_(&map->lock, file, line);
587 return (error == 0);
588 }
589
590 /*
591 * _vm_map_lock_upgrade: [ internal use only ]
592 *
593 * Tries to upgrade a read (shared) lock on the specified map to a write
594 * (exclusive) lock. Returns the value "" if the upgrade succeeds and a
595 * non-zero value if the upgrade fails. If the upgrade fails, the map is
596 * returned without a read or write lock held.
597 *
598 * Requires that the map be read locked.
599 */
600 int
601 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
602 {
603 unsigned int last_timestamp;
604
605 if (map->system_map) {
606 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
607 } else {
608 if (!sx_try_upgrade_(&map->lock, file, line)) {
609 last_timestamp = map->timestamp;
610 sx_sunlock_(&map->lock, file, line);
611 vm_map_process_deferred();
612 /*
613 * If the map's timestamp does not change while the
614 * map is unlocked, then the upgrade succeeds.
615 */
616 sx_xlock_(&map->lock, file, line);
617 if (last_timestamp != map->timestamp) {
618 sx_xunlock_(&map->lock, file, line);
619 return (1);
620 }
621 }
622 }
623 map->timestamp++;
624 return (0);
625 }
626
627 void
628 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
629 {
630
631 if (map->system_map) {
632 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
633 } else
634 sx_downgrade_(&map->lock, file, line);
635 }
636
637 /*
638 * vm_map_locked:
639 *
640 * Returns a non-zero value if the caller holds a write (exclusive) lock
641 * on the specified map and the value "" otherwise.
642 */
643 int
644 vm_map_locked(vm_map_t map)
645 {
646
647 if (map->system_map)
648 return (mtx_owned(&map->system_mtx));
649 else
650 return (sx_xlocked(&map->lock));
651 }
652
653 #ifdef INVARIANTS
654 static void
655 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
656 {
657
658 if (map->system_map)
659 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
660 else
661 sx_assert_(&map->lock, SA_XLOCKED, file, line);
662 }
663
664 #define VM_MAP_ASSERT_LOCKED(map) \
665 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
666 #else
667 #define VM_MAP_ASSERT_LOCKED(map)
668 #endif
669
670 /*
671 * _vm_map_unlock_and_wait:
672 *
673 * Atomically releases the lock on the specified map and puts the calling
674 * thread to sleep. The calling thread will remain asleep until either
675 * vm_map_wakeup() is performed on the map or the specified timeout is
676 * exceeded.
677 *
678 * WARNING! This function does not perform deferred deallocations of
679 * objects and map entries. Therefore, the calling thread is expected to
680 * reacquire the map lock after reawakening and later perform an ordinary
681 * unlock operation, such as vm_map_unlock(), before completing its
682 * operation on the map.
683 */
684 int
685 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
686 {
687
688 mtx_lock(&map_sleep_mtx);
689 if (map->system_map)
690 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
691 else
692 sx_xunlock_(&map->lock, file, line);
693 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
694 timo));
695 }
696
697 /*
698 * vm_map_wakeup:
699 *
700 * Awaken any threads that have slept on the map using
701 * vm_map_unlock_and_wait().
702 */
703 void
704 vm_map_wakeup(vm_map_t map)
705 {
706
707 /*
708 * Acquire and release map_sleep_mtx to prevent a wakeup()
709 * from being performed (and lost) between the map unlock
710 * and the msleep() in _vm_map_unlock_and_wait().
711 */
712 mtx_lock(&map_sleep_mtx);
713 mtx_unlock(&map_sleep_mtx);
714 wakeup(&map->root);
715 }
716
717 void
718 vm_map_busy(vm_map_t map)
719 {
720
721 VM_MAP_ASSERT_LOCKED(map);
722 map->busy++;
723 }
724
725 void
726 vm_map_unbusy(vm_map_t map)
727 {
728
729 VM_MAP_ASSERT_LOCKED(map);
730 KASSERT(map->busy, ("vm_map_unbusy: not busy"));
731 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
732 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
733 wakeup(&map->busy);
734 }
735 }
736
737 void
738 vm_map_wait_busy(vm_map_t map)
739 {
740
741 VM_MAP_ASSERT_LOCKED(map);
742 while (map->busy) {
743 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
744 if (map->system_map)
745 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
746 else
747 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
748 }
749 map->timestamp++;
750 }
751
752 long
753 vmspace_resident_count(struct vmspace *vmspace)
754 {
755 return pmap_resident_count(vmspace_pmap(vmspace));
756 }
757
758 /*
759 * vm_map_create:
760 *
761 * Creates and returns a new empty VM map with
762 * the given physical map structure, and having
763 * the given lower and upper address bounds.
764 */
765 vm_map_t
766 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
767 {
768 vm_map_t result;
769
770 result = uma_zalloc(mapzone, M_WAITOK);
771 CTR1(KTR_VM, "vm_map_create: %p", result);
772 _vm_map_init(result, pmap, min, max);
773 return (result);
774 }
775
776 /*
777 * Initialize an existing vm_map structure
778 * such as that in the vmspace structure.
779 */
780 static void
781 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
782 {
783
784 map->header.next = map->header.prev = &map->header;
785 map->needs_wakeup = FALSE;
786 map->system_map = 0;
787 map->pmap = pmap;
788 map->header.end = min;
789 map->header.start = max;
790 map->flags = 0;
791 map->root = NULL;
792 map->timestamp = 0;
793 map->busy = 0;
794 }
795
796 void
797 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
798 {
799
800 _vm_map_init(map, pmap, min, max);
801 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
802 sx_init(&map->lock, "user map");
803 }
804
805 /*
806 * vm_map_entry_dispose: [ internal use only ]
807 *
808 * Inverse of vm_map_entry_create.
809 */
810 static void
811 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
812 {
813 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
814 }
815
816 /*
817 * vm_map_entry_create: [ internal use only ]
818 *
819 * Allocates a VM map entry for insertion.
820 * No entry fields are filled in.
821 */
822 static vm_map_entry_t
823 vm_map_entry_create(vm_map_t map)
824 {
825 vm_map_entry_t new_entry;
826
827 if (map->system_map)
828 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
829 else
830 new_entry = uma_zalloc(mapentzone, M_WAITOK);
831 if (new_entry == NULL)
832 panic("vm_map_entry_create: kernel resources exhausted");
833 return (new_entry);
834 }
835
836 /*
837 * vm_map_entry_set_behavior:
838 *
839 * Set the expected access behavior, either normal, random, or
840 * sequential.
841 */
842 static inline void
843 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
844 {
845 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
846 (behavior & MAP_ENTRY_BEHAV_MASK);
847 }
848
849 /*
850 * vm_map_entry_set_max_free:
851 *
852 * Set the max_free field in a vm_map_entry.
853 */
854 static inline void
855 vm_map_entry_set_max_free(vm_map_entry_t entry)
856 {
857
858 entry->max_free = entry->adj_free;
859 if (entry->left != NULL && entry->left->max_free > entry->max_free)
860 entry->max_free = entry->left->max_free;
861 if (entry->right != NULL && entry->right->max_free > entry->max_free)
862 entry->max_free = entry->right->max_free;
863 }
864
865 /*
866 * vm_map_entry_splay:
867 *
868 * The Sleator and Tarjan top-down splay algorithm with the
869 * following variation. Max_free must be computed bottom-up, so
870 * on the downward pass, maintain the left and right spines in
871 * reverse order. Then, make a second pass up each side to fix
872 * the pointers and compute max_free. The time bound is O(log n)
873 * amortized.
874 *
875 * The new root is the vm_map_entry containing "addr", or else an
876 * adjacent entry (lower or higher) if addr is not in the tree.
877 *
878 * The map must be locked, and leaves it so.
879 *
880 * Returns: the new root.
881 */
882 static vm_map_entry_t
883 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
884 {
885 vm_map_entry_t llist, rlist;
886 vm_map_entry_t ltree, rtree;
887 vm_map_entry_t y;
888
889 /* Special case of empty tree. */
890 if (root == NULL)
891 return (root);
892
893 /*
894 * Pass One: Splay down the tree until we find addr or a NULL
895 * pointer where addr would go. llist and rlist are the two
896 * sides in reverse order (bottom-up), with llist linked by
897 * the right pointer and rlist linked by the left pointer in
898 * the vm_map_entry. Wait until Pass Two to set max_free on
899 * the two spines.
900 */
901 llist = NULL;
902 rlist = NULL;
903 for (;;) {
904 /* root is never NULL in here. */
905 if (addr < root->start) {
906 y = root->left;
907 if (y == NULL)
908 break;
909 if (addr < y->start && y->left != NULL) {
910 /* Rotate right and put y on rlist. */
911 root->left = y->right;
912 y->right = root;
913 vm_map_entry_set_max_free(root);
914 root = y->left;
915 y->left = rlist;
916 rlist = y;
917 } else {
918 /* Put root on rlist. */
919 root->left = rlist;
920 rlist = root;
921 root = y;
922 }
923 } else if (addr >= root->end) {
924 y = root->right;
925 if (y == NULL)
926 break;
927 if (addr >= y->end && y->right != NULL) {
928 /* Rotate left and put y on llist. */
929 root->right = y->left;
930 y->left = root;
931 vm_map_entry_set_max_free(root);
932 root = y->right;
933 y->right = llist;
934 llist = y;
935 } else {
936 /* Put root on llist. */
937 root->right = llist;
938 llist = root;
939 root = y;
940 }
941 } else
942 break;
943 }
944
945 /*
946 * Pass Two: Walk back up the two spines, flip the pointers
947 * and set max_free. The subtrees of the root go at the
948 * bottom of llist and rlist.
949 */
950 ltree = root->left;
951 while (llist != NULL) {
952 y = llist->right;
953 llist->right = ltree;
954 vm_map_entry_set_max_free(llist);
955 ltree = llist;
956 llist = y;
957 }
958 rtree = root->right;
959 while (rlist != NULL) {
960 y = rlist->left;
961 rlist->left = rtree;
962 vm_map_entry_set_max_free(rlist);
963 rtree = rlist;
964 rlist = y;
965 }
966
967 /*
968 * Final assembly: add ltree and rtree as subtrees of root.
969 */
970 root->left = ltree;
971 root->right = rtree;
972 vm_map_entry_set_max_free(root);
973
974 return (root);
975 }
976
977 /*
978 * vm_map_entry_{un,}link:
979 *
980 * Insert/remove entries from maps.
981 */
982 static void
983 vm_map_entry_link(vm_map_t map,
984 vm_map_entry_t after_where,
985 vm_map_entry_t entry)
986 {
987
988 CTR4(KTR_VM,
989 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
990 map->nentries, entry, after_where);
991 VM_MAP_ASSERT_LOCKED(map);
992 KASSERT(after_where->end <= entry->start,
993 ("vm_map_entry_link: prev end %jx new start %jx overlap",
994 (uintmax_t)after_where->end, (uintmax_t)entry->start));
995 KASSERT(entry->end <= after_where->next->start,
996 ("vm_map_entry_link: new end %jx next start %jx overlap",
997 (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
998
999 map->nentries++;
1000 entry->prev = after_where;
1001 entry->next = after_where->next;
1002 entry->next->prev = entry;
1003 after_where->next = entry;
1004
1005 if (after_where != &map->header) {
1006 if (after_where != map->root)
1007 vm_map_entry_splay(after_where->start, map->root);
1008 entry->right = after_where->right;
1009 entry->left = after_where;
1010 after_where->right = NULL;
1011 after_where->adj_free = entry->start - after_where->end;
1012 vm_map_entry_set_max_free(after_where);
1013 } else {
1014 entry->right = map->root;
1015 entry->left = NULL;
1016 }
1017 entry->adj_free = entry->next->start - entry->end;
1018 vm_map_entry_set_max_free(entry);
1019 map->root = entry;
1020 }
1021
1022 static void
1023 vm_map_entry_unlink(vm_map_t map,
1024 vm_map_entry_t entry)
1025 {
1026 vm_map_entry_t next, prev, root;
1027
1028 VM_MAP_ASSERT_LOCKED(map);
1029 if (entry != map->root)
1030 vm_map_entry_splay(entry->start, map->root);
1031 if (entry->left == NULL)
1032 root = entry->right;
1033 else {
1034 root = vm_map_entry_splay(entry->start, entry->left);
1035 root->right = entry->right;
1036 root->adj_free = entry->next->start - root->end;
1037 vm_map_entry_set_max_free(root);
1038 }
1039 map->root = root;
1040
1041 prev = entry->prev;
1042 next = entry->next;
1043 next->prev = prev;
1044 prev->next = next;
1045 map->nentries--;
1046 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1047 map->nentries, entry);
1048 }
1049
1050 /*
1051 * vm_map_entry_resize_free:
1052 *
1053 * Recompute the amount of free space following a vm_map_entry
1054 * and propagate that value up the tree. Call this function after
1055 * resizing a map entry in-place, that is, without a call to
1056 * vm_map_entry_link() or _unlink().
1057 *
1058 * The map must be locked, and leaves it so.
1059 */
1060 static void
1061 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1062 {
1063
1064 /*
1065 * Using splay trees without parent pointers, propagating
1066 * max_free up the tree is done by moving the entry to the
1067 * root and making the change there.
1068 */
1069 if (entry != map->root)
1070 map->root = vm_map_entry_splay(entry->start, map->root);
1071
1072 entry->adj_free = entry->next->start - entry->end;
1073 vm_map_entry_set_max_free(entry);
1074 }
1075
1076 /*
1077 * vm_map_lookup_entry: [ internal use only ]
1078 *
1079 * Finds the map entry containing (or
1080 * immediately preceding) the specified address
1081 * in the given map; the entry is returned
1082 * in the "entry" parameter. The boolean
1083 * result indicates whether the address is
1084 * actually contained in the map.
1085 */
1086 boolean_t
1087 vm_map_lookup_entry(
1088 vm_map_t map,
1089 vm_offset_t address,
1090 vm_map_entry_t *entry) /* OUT */
1091 {
1092 vm_map_entry_t cur;
1093 boolean_t locked;
1094
1095 /*
1096 * If the map is empty, then the map entry immediately preceding
1097 * "address" is the map's header.
1098 */
1099 cur = map->root;
1100 if (cur == NULL)
1101 *entry = &map->header;
1102 else if (address >= cur->start && cur->end > address) {
1103 *entry = cur;
1104 return (TRUE);
1105 } else if ((locked = vm_map_locked(map)) ||
1106 sx_try_upgrade(&map->lock)) {
1107 /*
1108 * Splay requires a write lock on the map. However, it only
1109 * restructures the binary search tree; it does not otherwise
1110 * change the map. Thus, the map's timestamp need not change
1111 * on a temporary upgrade.
1112 */
1113 map->root = cur = vm_map_entry_splay(address, cur);
1114 if (!locked)
1115 sx_downgrade(&map->lock);
1116
1117 /*
1118 * If "address" is contained within a map entry, the new root
1119 * is that map entry. Otherwise, the new root is a map entry
1120 * immediately before or after "address".
1121 */
1122 if (address >= cur->start) {
1123 *entry = cur;
1124 if (cur->end > address)
1125 return (TRUE);
1126 } else
1127 *entry = cur->prev;
1128 } else
1129 /*
1130 * Since the map is only locked for read access, perform a
1131 * standard binary search tree lookup for "address".
1132 */
1133 for (;;) {
1134 if (address < cur->start) {
1135 if (cur->left == NULL) {
1136 *entry = cur->prev;
1137 break;
1138 }
1139 cur = cur->left;
1140 } else if (cur->end > address) {
1141 *entry = cur;
1142 return (TRUE);
1143 } else {
1144 if (cur->right == NULL) {
1145 *entry = cur;
1146 break;
1147 }
1148 cur = cur->right;
1149 }
1150 }
1151 return (FALSE);
1152 }
1153
1154 /*
1155 * vm_map_insert:
1156 *
1157 * Inserts the given whole VM object into the target
1158 * map at the specified address range. The object's
1159 * size should match that of the address range.
1160 *
1161 * Requires that the map be locked, and leaves it so.
1162 *
1163 * If object is non-NULL, ref count must be bumped by caller
1164 * prior to making call to account for the new entry.
1165 */
1166 int
1167 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1168 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1169 {
1170 vm_map_entry_t new_entry, prev_entry, temp_entry;
1171 struct ucred *cred;
1172 vm_eflags_t protoeflags;
1173 vm_inherit_t inheritance;
1174
1175 VM_MAP_ASSERT_LOCKED(map);
1176 KASSERT((object != kmem_object && object != kernel_object) ||
1177 (cow & MAP_COPY_ON_WRITE) == 0,
1178 ("vm_map_insert: kmem or kernel object and COW"));
1179 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1180 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1181 KASSERT((prot & ~max) == 0,
1182 ("prot %#x is not subset of max_prot %#x", prot, max));
1183
1184 /*
1185 * Check that the start and end points are not bogus.
1186 */
1187 if (start < vm_map_min(map) || end > vm_map_max(map) ||
1188 start >= end)
1189 return (KERN_INVALID_ADDRESS);
1190
1191 /*
1192 * Find the entry prior to the proposed starting address; if it's part
1193 * of an existing entry, this range is bogus.
1194 */
1195 if (vm_map_lookup_entry(map, start, &temp_entry))
1196 return (KERN_NO_SPACE);
1197
1198 prev_entry = temp_entry;
1199
1200 /*
1201 * Assert that the next entry doesn't overlap the end point.
1202 */
1203 if (prev_entry->next->start < end)
1204 return (KERN_NO_SPACE);
1205
1206 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1207 max != VM_PROT_NONE))
1208 return (KERN_INVALID_ARGUMENT);
1209
1210 protoeflags = 0;
1211 if (cow & MAP_COPY_ON_WRITE)
1212 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1213 if (cow & MAP_NOFAULT)
1214 protoeflags |= MAP_ENTRY_NOFAULT;
1215 if (cow & MAP_DISABLE_SYNCER)
1216 protoeflags |= MAP_ENTRY_NOSYNC;
1217 if (cow & MAP_DISABLE_COREDUMP)
1218 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1219 if (cow & MAP_STACK_GROWS_DOWN)
1220 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1221 if (cow & MAP_STACK_GROWS_UP)
1222 protoeflags |= MAP_ENTRY_GROWS_UP;
1223 if (cow & MAP_VN_WRITECOUNT)
1224 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1225 if ((cow & MAP_CREATE_GUARD) != 0)
1226 protoeflags |= MAP_ENTRY_GUARD;
1227 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1228 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1229 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1230 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1231 if (cow & MAP_INHERIT_SHARE)
1232 inheritance = VM_INHERIT_SHARE;
1233 else
1234 inheritance = VM_INHERIT_DEFAULT;
1235
1236 cred = NULL;
1237 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1238 goto charged;
1239 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1240 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1241 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1242 return (KERN_RESOURCE_SHORTAGE);
1243 KASSERT(object == NULL ||
1244 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1245 object->cred == NULL,
1246 ("overcommit: vm_map_insert o %p", object));
1247 cred = curthread->td_ucred;
1248 }
1249
1250 charged:
1251 /* Expand the kernel pmap, if necessary. */
1252 if (map == kernel_map && end > kernel_vm_end)
1253 pmap_growkernel(end);
1254 if (object != NULL) {
1255 /*
1256 * OBJ_ONEMAPPING must be cleared unless this mapping
1257 * is trivially proven to be the only mapping for any
1258 * of the object's pages. (Object granularity
1259 * reference counting is insufficient to recognize
1260 * aliases with precision.)
1261 */
1262 VM_OBJECT_WLOCK(object);
1263 if (object->ref_count > 1 || object->shadow_count != 0)
1264 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1265 VM_OBJECT_WUNLOCK(object);
1266 } else if (prev_entry != &map->header &&
1267 prev_entry->eflags == protoeflags &&
1268 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1269 prev_entry->end == start && prev_entry->wired_count == 0 &&
1270 (prev_entry->cred == cred ||
1271 (prev_entry->object.vm_object != NULL &&
1272 prev_entry->object.vm_object->cred == cred)) &&
1273 vm_object_coalesce(prev_entry->object.vm_object,
1274 prev_entry->offset,
1275 (vm_size_t)(prev_entry->end - prev_entry->start),
1276 (vm_size_t)(end - prev_entry->end), cred != NULL &&
1277 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1278 /*
1279 * We were able to extend the object. Determine if we
1280 * can extend the previous map entry to include the
1281 * new range as well.
1282 */
1283 if (prev_entry->inheritance == inheritance &&
1284 prev_entry->protection == prot &&
1285 prev_entry->max_protection == max) {
1286 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1287 map->size += end - prev_entry->end;
1288 prev_entry->end = end;
1289 vm_map_entry_resize_free(map, prev_entry);
1290 vm_map_simplify_entry(map, prev_entry);
1291 return (KERN_SUCCESS);
1292 }
1293
1294 /*
1295 * If we can extend the object but cannot extend the
1296 * map entry, we have to create a new map entry. We
1297 * must bump the ref count on the extended object to
1298 * account for it. object may be NULL.
1299 */
1300 object = prev_entry->object.vm_object;
1301 offset = prev_entry->offset +
1302 (prev_entry->end - prev_entry->start);
1303 vm_object_reference(object);
1304 if (cred != NULL && object != NULL && object->cred != NULL &&
1305 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1306 /* Object already accounts for this uid. */
1307 cred = NULL;
1308 }
1309 }
1310 if (cred != NULL)
1311 crhold(cred);
1312
1313 /*
1314 * Create a new entry
1315 */
1316 new_entry = vm_map_entry_create(map);
1317 new_entry->start = start;
1318 new_entry->end = end;
1319 new_entry->cred = NULL;
1320
1321 new_entry->eflags = protoeflags;
1322 new_entry->object.vm_object = object;
1323 new_entry->offset = offset;
1324
1325 new_entry->inheritance = inheritance;
1326 new_entry->protection = prot;
1327 new_entry->max_protection = max;
1328 new_entry->wired_count = 0;
1329 new_entry->wiring_thread = NULL;
1330 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1331 new_entry->next_read = start;
1332
1333 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1334 ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1335 new_entry->cred = cred;
1336
1337 /*
1338 * Insert the new entry into the list
1339 */
1340 vm_map_entry_link(map, prev_entry, new_entry);
1341 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1342 map->size += new_entry->end - new_entry->start;
1343
1344 /*
1345 * Try to coalesce the new entry with both the previous and next
1346 * entries in the list. Previously, we only attempted to coalesce
1347 * with the previous entry when object is NULL. Here, we handle the
1348 * other cases, which are less common.
1349 */
1350 vm_map_simplify_entry(map, new_entry);
1351
1352 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1353 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1354 end - start, cow & MAP_PREFAULT_PARTIAL);
1355 }
1356
1357 return (KERN_SUCCESS);
1358 }
1359
1360 /*
1361 * vm_map_findspace:
1362 *
1363 * Find the first fit (lowest VM address) for "length" free bytes
1364 * beginning at address >= start in the given map.
1365 *
1366 * In a vm_map_entry, "adj_free" is the amount of free space
1367 * adjacent (higher address) to this entry, and "max_free" is the
1368 * maximum amount of contiguous free space in its subtree. This
1369 * allows finding a free region in one path down the tree, so
1370 * O(log n) amortized with splay trees.
1371 *
1372 * The map must be locked, and leaves it so.
1373 *
1374 * Returns: 0 on success, and starting address in *addr,
1375 * 1 if insufficient space.
1376 */
1377 int
1378 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1379 vm_offset_t *addr) /* OUT */
1380 {
1381 vm_map_entry_t entry;
1382 vm_offset_t st;
1383
1384 /*
1385 * Request must fit within min/max VM address and must avoid
1386 * address wrap.
1387 */
1388 start = MAX(start, vm_map_min(map));
1389 if (start + length > vm_map_max(map) || start + length < start)
1390 return (1);
1391
1392 /* Empty tree means wide open address space. */
1393 if (map->root == NULL) {
1394 *addr = start;
1395 return (0);
1396 }
1397
1398 /*
1399 * After splay, if start comes before root node, then there
1400 * must be a gap from start to the root.
1401 */
1402 map->root = vm_map_entry_splay(start, map->root);
1403 if (start + length <= map->root->start) {
1404 *addr = start;
1405 return (0);
1406 }
1407
1408 /*
1409 * Root is the last node that might begin its gap before
1410 * start, and this is the last comparison where address
1411 * wrap might be a problem.
1412 */
1413 st = (start > map->root->end) ? start : map->root->end;
1414 if (length <= map->root->end + map->root->adj_free - st) {
1415 *addr = st;
1416 return (0);
1417 }
1418
1419 /* With max_free, can immediately tell if no solution. */
1420 entry = map->root->right;
1421 if (entry == NULL || length > entry->max_free)
1422 return (1);
1423
1424 /*
1425 * Search the right subtree in the order: left subtree, root,
1426 * right subtree (first fit). The previous splay implies that
1427 * all regions in the right subtree have addresses > start.
1428 */
1429 while (entry != NULL) {
1430 if (entry->left != NULL && entry->left->max_free >= length)
1431 entry = entry->left;
1432 else if (entry->adj_free >= length) {
1433 *addr = entry->end;
1434 return (0);
1435 } else
1436 entry = entry->right;
1437 }
1438
1439 /* Can't get here, so panic if we do. */
1440 panic("vm_map_findspace: max_free corrupt");
1441 }
1442
1443 int
1444 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1445 vm_offset_t start, vm_size_t length, vm_prot_t prot,
1446 vm_prot_t max, int cow)
1447 {
1448 vm_offset_t end;
1449 int result;
1450
1451 end = start + length;
1452 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1453 object == NULL,
1454 ("vm_map_fixed: non-NULL backing object for stack"));
1455 vm_map_lock(map);
1456 VM_MAP_RANGE_CHECK(map, start, end);
1457 if ((cow & MAP_CHECK_EXCL) == 0)
1458 vm_map_delete(map, start, end);
1459 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1460 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1461 prot, max, cow);
1462 } else {
1463 result = vm_map_insert(map, object, offset, start, end,
1464 prot, max, cow);
1465 }
1466 vm_map_unlock(map);
1467 return (result);
1468 }
1469
1470 /*
1471 * vm_map_find finds an unallocated region in the target address
1472 * map with the given length. The search is defined to be
1473 * first-fit from the specified address; the region found is
1474 * returned in the same parameter.
1475 *
1476 * If object is non-NULL, ref count must be bumped by caller
1477 * prior to making call to account for the new entry.
1478 */
1479 int
1480 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1481 vm_offset_t *addr, /* IN/OUT */
1482 vm_size_t length, vm_offset_t max_addr, int find_space,
1483 vm_prot_t prot, vm_prot_t max, int cow)
1484 {
1485 vm_offset_t alignment, initial_addr, start;
1486 int result;
1487
1488 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1489 object == NULL,
1490 ("vm_map_find: non-NULL backing object for stack"));
1491 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1492 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1493 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1494 (object->flags & OBJ_COLORED) == 0))
1495 find_space = VMFS_ANY_SPACE;
1496 if (find_space >> 8 != 0) {
1497 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1498 alignment = (vm_offset_t)1 << (find_space >> 8);
1499 } else
1500 alignment = 0;
1501 initial_addr = *addr;
1502 again:
1503 start = initial_addr;
1504 vm_map_lock(map);
1505 do {
1506 if (find_space != VMFS_NO_SPACE) {
1507 if (vm_map_findspace(map, start, length, addr) ||
1508 (max_addr != 0 && *addr + length > max_addr)) {
1509 vm_map_unlock(map);
1510 if (find_space == VMFS_OPTIMAL_SPACE) {
1511 find_space = VMFS_ANY_SPACE;
1512 goto again;
1513 }
1514 return (KERN_NO_SPACE);
1515 }
1516 switch (find_space) {
1517 case VMFS_SUPER_SPACE:
1518 case VMFS_OPTIMAL_SPACE:
1519 pmap_align_superpage(object, offset, addr,
1520 length);
1521 break;
1522 case VMFS_ANY_SPACE:
1523 break;
1524 default:
1525 if ((*addr & (alignment - 1)) != 0) {
1526 *addr &= ~(alignment - 1);
1527 *addr += alignment;
1528 }
1529 break;
1530 }
1531
1532 start = *addr;
1533 } else if ((cow & MAP_REMAP) != 0) {
1534 if (start < vm_map_min(map) ||
1535 start + length > vm_map_max(map) ||
1536 start + length <= length) {
1537 result = KERN_INVALID_ADDRESS;
1538 break;
1539 }
1540 vm_map_delete(map, start, start + length);
1541 }
1542 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1543 result = vm_map_stack_locked(map, start, length,
1544 sgrowsiz, prot, max, cow);
1545 } else {
1546 result = vm_map_insert(map, object, offset, start,
1547 start + length, prot, max, cow);
1548 }
1549 } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1550 find_space != VMFS_ANY_SPACE);
1551 vm_map_unlock(map);
1552 return (result);
1553 }
1554
1555 /*
1556 * vm_map_find_min() is a variant of vm_map_find() that takes an
1557 * additional parameter (min_addr) and treats the given address
1558 * (*addr) differently. Specifically, it treats *addr as a hint
1559 * and not as the minimum address where the mapping is created.
1560 *
1561 * This function works in two phases. First, it tries to
1562 * allocate above the hint. If that fails and the hint is
1563 * greater than min_addr, it performs a second pass, replacing
1564 * the hint with min_addr as the minimum address for the
1565 * allocation.
1566 */
1567 int
1568 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1569 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1570 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1571 int cow)
1572 {
1573 vm_offset_t hint;
1574 int rv;
1575
1576 hint = *addr;
1577 for (;;) {
1578 rv = vm_map_find(map, object, offset, addr, length, max_addr,
1579 find_space, prot, max, cow);
1580 if (rv == KERN_SUCCESS || min_addr >= hint)
1581 return (rv);
1582 *addr = hint = min_addr;
1583 }
1584 }
1585
1586 /*
1587 * vm_map_simplify_entry:
1588 *
1589 * Simplify the given map entry by merging with either neighbor. This
1590 * routine also has the ability to merge with both neighbors.
1591 *
1592 * The map must be locked.
1593 *
1594 * This routine guarantees that the passed entry remains valid (though
1595 * possibly extended). When merging, this routine may delete one or
1596 * both neighbors.
1597 */
1598 void
1599 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1600 {
1601 vm_map_entry_t next, prev;
1602 vm_size_t prevsize, esize;
1603
1604 if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1605 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1606 return;
1607
1608 prev = entry->prev;
1609 if (prev != &map->header) {
1610 prevsize = prev->end - prev->start;
1611 if ( (prev->end == entry->start) &&
1612 (prev->object.vm_object == entry->object.vm_object) &&
1613 (!prev->object.vm_object ||
1614 (prev->offset + prevsize == entry->offset)) &&
1615 (prev->eflags == entry->eflags) &&
1616 (prev->protection == entry->protection) &&
1617 (prev->max_protection == entry->max_protection) &&
1618 (prev->inheritance == entry->inheritance) &&
1619 (prev->wired_count == entry->wired_count) &&
1620 (prev->cred == entry->cred)) {
1621 vm_map_entry_unlink(map, prev);
1622 entry->start = prev->start;
1623 entry->offset = prev->offset;
1624 if (entry->prev != &map->header)
1625 vm_map_entry_resize_free(map, entry->prev);
1626
1627 /*
1628 * If the backing object is a vnode object,
1629 * vm_object_deallocate() calls vrele().
1630 * However, vrele() does not lock the vnode
1631 * because the vnode has additional
1632 * references. Thus, the map lock can be kept
1633 * without causing a lock-order reversal with
1634 * the vnode lock.
1635 *
1636 * Since we count the number of virtual page
1637 * mappings in object->un_pager.vnp.writemappings,
1638 * the writemappings value should not be adjusted
1639 * when the entry is disposed of.
1640 */
1641 if (prev->object.vm_object)
1642 vm_object_deallocate(prev->object.vm_object);
1643 if (prev->cred != NULL)
1644 crfree(prev->cred);
1645 vm_map_entry_dispose(map, prev);
1646 }
1647 }
1648
1649 next = entry->next;
1650 if (next != &map->header) {
1651 esize = entry->end - entry->start;
1652 if ((entry->end == next->start) &&
1653 (next->object.vm_object == entry->object.vm_object) &&
1654 (!entry->object.vm_object ||
1655 (entry->offset + esize == next->offset)) &&
1656 (next->eflags == entry->eflags) &&
1657 (next->protection == entry->protection) &&
1658 (next->max_protection == entry->max_protection) &&
1659 (next->inheritance == entry->inheritance) &&
1660 (next->wired_count == entry->wired_count) &&
1661 (next->cred == entry->cred)) {
1662 vm_map_entry_unlink(map, next);
1663 entry->end = next->end;
1664 vm_map_entry_resize_free(map, entry);
1665
1666 /*
1667 * See comment above.
1668 */
1669 if (next->object.vm_object)
1670 vm_object_deallocate(next->object.vm_object);
1671 if (next->cred != NULL)
1672 crfree(next->cred);
1673 vm_map_entry_dispose(map, next);
1674 }
1675 }
1676 }
1677 /*
1678 * vm_map_clip_start: [ internal use only ]
1679 *
1680 * Asserts that the given entry begins at or after
1681 * the specified address; if necessary,
1682 * it splits the entry into two.
1683 */
1684 #define vm_map_clip_start(map, entry, startaddr) \
1685 { \
1686 if (startaddr > entry->start) \
1687 _vm_map_clip_start(map, entry, startaddr); \
1688 }
1689
1690 /*
1691 * This routine is called only when it is known that
1692 * the entry must be split.
1693 */
1694 static void
1695 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1696 {
1697 vm_map_entry_t new_entry;
1698
1699 VM_MAP_ASSERT_LOCKED(map);
1700 KASSERT(entry->end > start && entry->start < start,
1701 ("_vm_map_clip_start: invalid clip of entry %p", entry));
1702
1703 /*
1704 * Split off the front portion -- note that we must insert the new
1705 * entry BEFORE this one, so that this entry has the specified
1706 * starting address.
1707 */
1708 vm_map_simplify_entry(map, entry);
1709
1710 /*
1711 * If there is no object backing this entry, we might as well create
1712 * one now. If we defer it, an object can get created after the map
1713 * is clipped, and individual objects will be created for the split-up
1714 * map. This is a bit of a hack, but is also about the best place to
1715 * put this improvement.
1716 */
1717 if (entry->object.vm_object == NULL && !map->system_map &&
1718 (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1719 vm_object_t object;
1720 object = vm_object_allocate(OBJT_DEFAULT,
1721 atop(entry->end - entry->start));
1722 entry->object.vm_object = object;
1723 entry->offset = 0;
1724 if (entry->cred != NULL) {
1725 object->cred = entry->cred;
1726 object->charge = entry->end - entry->start;
1727 entry->cred = NULL;
1728 }
1729 } else if (entry->object.vm_object != NULL &&
1730 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1731 entry->cred != NULL) {
1732 VM_OBJECT_WLOCK(entry->object.vm_object);
1733 KASSERT(entry->object.vm_object->cred == NULL,
1734 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1735 entry->object.vm_object->cred = entry->cred;
1736 entry->object.vm_object->charge = entry->end - entry->start;
1737 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1738 entry->cred = NULL;
1739 }
1740
1741 new_entry = vm_map_entry_create(map);
1742 *new_entry = *entry;
1743
1744 new_entry->end = start;
1745 entry->offset += (start - entry->start);
1746 entry->start = start;
1747 if (new_entry->cred != NULL)
1748 crhold(entry->cred);
1749
1750 vm_map_entry_link(map, entry->prev, new_entry);
1751
1752 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1753 vm_object_reference(new_entry->object.vm_object);
1754 /*
1755 * The object->un_pager.vnp.writemappings for the
1756 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1757 * kept as is here. The virtual pages are
1758 * re-distributed among the clipped entries, so the sum is
1759 * left the same.
1760 */
1761 }
1762 }
1763
1764 /*
1765 * vm_map_clip_end: [ internal use only ]
1766 *
1767 * Asserts that the given entry ends at or before
1768 * the specified address; if necessary,
1769 * it splits the entry into two.
1770 */
1771 #define vm_map_clip_end(map, entry, endaddr) \
1772 { \
1773 if ((endaddr) < (entry->end)) \
1774 _vm_map_clip_end((map), (entry), (endaddr)); \
1775 }
1776
1777 /*
1778 * This routine is called only when it is known that
1779 * the entry must be split.
1780 */
1781 static void
1782 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1783 {
1784 vm_map_entry_t new_entry;
1785
1786 VM_MAP_ASSERT_LOCKED(map);
1787 KASSERT(entry->start < end && entry->end > end,
1788 ("_vm_map_clip_end: invalid clip of entry %p", entry));
1789
1790 /*
1791 * If there is no object backing this entry, we might as well create
1792 * one now. If we defer it, an object can get created after the map
1793 * is clipped, and individual objects will be created for the split-up
1794 * map. This is a bit of a hack, but is also about the best place to
1795 * put this improvement.
1796 */
1797 if (entry->object.vm_object == NULL && !map->system_map &&
1798 (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1799 vm_object_t object;
1800 object = vm_object_allocate(OBJT_DEFAULT,
1801 atop(entry->end - entry->start));
1802 entry->object.vm_object = object;
1803 entry->offset = 0;
1804 if (entry->cred != NULL) {
1805 object->cred = entry->cred;
1806 object->charge = entry->end - entry->start;
1807 entry->cred = NULL;
1808 }
1809 } else if (entry->object.vm_object != NULL &&
1810 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1811 entry->cred != NULL) {
1812 VM_OBJECT_WLOCK(entry->object.vm_object);
1813 KASSERT(entry->object.vm_object->cred == NULL,
1814 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1815 entry->object.vm_object->cred = entry->cred;
1816 entry->object.vm_object->charge = entry->end - entry->start;
1817 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1818 entry->cred = NULL;
1819 }
1820
1821 /*
1822 * Create a new entry and insert it AFTER the specified entry
1823 */
1824 new_entry = vm_map_entry_create(map);
1825 *new_entry = *entry;
1826
1827 new_entry->start = entry->end = end;
1828 new_entry->offset += (end - entry->start);
1829 if (new_entry->cred != NULL)
1830 crhold(entry->cred);
1831
1832 vm_map_entry_link(map, entry, new_entry);
1833
1834 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1835 vm_object_reference(new_entry->object.vm_object);
1836 }
1837 }
1838
1839 /*
1840 * vm_map_submap: [ kernel use only ]
1841 *
1842 * Mark the given range as handled by a subordinate map.
1843 *
1844 * This range must have been created with vm_map_find,
1845 * and no other operations may have been performed on this
1846 * range prior to calling vm_map_submap.
1847 *
1848 * Only a limited number of operations can be performed
1849 * within this rage after calling vm_map_submap:
1850 * vm_fault
1851 * [Don't try vm_map_copy!]
1852 *
1853 * To remove a submapping, one must first remove the
1854 * range from the superior map, and then destroy the
1855 * submap (if desired). [Better yet, don't try it.]
1856 */
1857 int
1858 vm_map_submap(
1859 vm_map_t map,
1860 vm_offset_t start,
1861 vm_offset_t end,
1862 vm_map_t submap)
1863 {
1864 vm_map_entry_t entry;
1865 int result = KERN_INVALID_ARGUMENT;
1866
1867 vm_map_lock(map);
1868
1869 VM_MAP_RANGE_CHECK(map, start, end);
1870
1871 if (vm_map_lookup_entry(map, start, &entry)) {
1872 vm_map_clip_start(map, entry, start);
1873 } else
1874 entry = entry->next;
1875
1876 vm_map_clip_end(map, entry, end);
1877
1878 if ((entry->start == start) && (entry->end == end) &&
1879 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1880 (entry->object.vm_object == NULL)) {
1881 entry->object.sub_map = submap;
1882 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1883 result = KERN_SUCCESS;
1884 }
1885 vm_map_unlock(map);
1886
1887 return (result);
1888 }
1889
1890 /*
1891 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1892 */
1893 #define MAX_INIT_PT 96
1894
1895 /*
1896 * vm_map_pmap_enter:
1897 *
1898 * Preload the specified map's pmap with mappings to the specified
1899 * object's memory-resident pages. No further physical pages are
1900 * allocated, and no further virtual pages are retrieved from secondary
1901 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a
1902 * limited number of page mappings are created at the low-end of the
1903 * specified address range. (For this purpose, a superpage mapping
1904 * counts as one page mapping.) Otherwise, all resident pages within
1905 * the specified address range are mapped.
1906 */
1907 static void
1908 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1909 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1910 {
1911 vm_offset_t start;
1912 vm_page_t p, p_start;
1913 vm_pindex_t mask, psize, threshold, tmpidx;
1914
1915 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1916 return;
1917 VM_OBJECT_RLOCK(object);
1918 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1919 VM_OBJECT_RUNLOCK(object);
1920 VM_OBJECT_WLOCK(object);
1921 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1922 pmap_object_init_pt(map->pmap, addr, object, pindex,
1923 size);
1924 VM_OBJECT_WUNLOCK(object);
1925 return;
1926 }
1927 VM_OBJECT_LOCK_DOWNGRADE(object);
1928 }
1929
1930 psize = atop(size);
1931 if (psize + pindex > object->size) {
1932 if (object->size < pindex) {
1933 VM_OBJECT_RUNLOCK(object);
1934 return;
1935 }
1936 psize = object->size - pindex;
1937 }
1938
1939 start = 0;
1940 p_start = NULL;
1941 threshold = MAX_INIT_PT;
1942
1943 p = vm_page_find_least(object, pindex);
1944 /*
1945 * Assert: the variable p is either (1) the page with the
1946 * least pindex greater than or equal to the parameter pindex
1947 * or (2) NULL.
1948 */
1949 for (;
1950 p != NULL && (tmpidx = p->pindex - pindex) < psize;
1951 p = TAILQ_NEXT(p, listq)) {
1952 /*
1953 * don't allow an madvise to blow away our really
1954 * free pages allocating pv entries.
1955 */
1956 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1957 vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1958 ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1959 tmpidx >= threshold)) {
1960 psize = tmpidx;
1961 break;
1962 }
1963 if (p->valid == VM_PAGE_BITS_ALL) {
1964 if (p_start == NULL) {
1965 start = addr + ptoa(tmpidx);
1966 p_start = p;
1967 }
1968 /* Jump ahead if a superpage mapping is possible. */
1969 if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1970 (pagesizes[p->psind] - 1)) == 0) {
1971 mask = atop(pagesizes[p->psind]) - 1;
1972 if (tmpidx + mask < psize &&
1973 vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
1974 p += mask;
1975 threshold += mask;
1976 }
1977 }
1978 } else if (p_start != NULL) {
1979 pmap_enter_object(map->pmap, start, addr +
1980 ptoa(tmpidx), p_start, prot);
1981 p_start = NULL;
1982 }
1983 }
1984 if (p_start != NULL)
1985 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1986 p_start, prot);
1987 VM_OBJECT_RUNLOCK(object);
1988 }
1989
1990 /*
1991 * vm_map_protect:
1992 *
1993 * Sets the protection of the specified address
1994 * region in the target map. If "set_max" is
1995 * specified, the maximum protection is to be set;
1996 * otherwise, only the current protection is affected.
1997 */
1998 int
1999 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2000 vm_prot_t new_prot, boolean_t set_max)
2001 {
2002 vm_map_entry_t current, entry, in_tran;
2003 vm_object_t obj;
2004 struct ucred *cred;
2005 vm_prot_t old_prot;
2006
2007 if (start == end)
2008 return (KERN_SUCCESS);
2009
2010 again:
2011 in_tran = NULL;
2012 vm_map_lock(map);
2013
2014 /*
2015 * Ensure that we are not concurrently wiring pages. vm_map_wire() may
2016 * need to fault pages into the map and will drop the map lock while
2017 * doing so, and the VM object may end up in an inconsistent state if we
2018 * update the protection on the map entry in between faults.
2019 */
2020 vm_map_wait_busy(map);
2021
2022 VM_MAP_RANGE_CHECK(map, start, end);
2023
2024 if (vm_map_lookup_entry(map, start, &entry)) {
2025 vm_map_clip_start(map, entry, start);
2026 } else {
2027 entry = entry->next;
2028 }
2029
2030 /*
2031 * Make a first pass to check for protection violations.
2032 */
2033 for (current = entry; current->start < end; current = current->next) {
2034 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2035 continue;
2036 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2037 vm_map_unlock(map);
2038 return (KERN_INVALID_ARGUMENT);
2039 }
2040 if ((new_prot & current->max_protection) != new_prot) {
2041 vm_map_unlock(map);
2042 return (KERN_PROTECTION_FAILURE);
2043 }
2044 if ((current->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2045 in_tran = current;
2046 }
2047
2048 /*
2049 * Postpone the operation until all in-transition map entries have
2050 * stabilized. An in-transition entry might already have its pages
2051 * wired and wired_count incremented, but not yet have its
2052 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call
2053 * vm_fault_copy_entry() in the final loop below.
2054 */
2055 if (in_tran != NULL) {
2056 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2057 vm_map_unlock_and_wait(map, 0);
2058 goto again;
2059 }
2060
2061 /*
2062 * Do an accounting pass for private read-only mappings that
2063 * now will do cow due to allowed write (e.g. debugger sets
2064 * breakpoint on text segment)
2065 */
2066 for (current = entry; current->start < end; current = current->next) {
2067
2068 vm_map_clip_end(map, current, end);
2069
2070 if (set_max ||
2071 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2072 ENTRY_CHARGED(current) ||
2073 (current->eflags & MAP_ENTRY_GUARD) != 0) {
2074 continue;
2075 }
2076
2077 cred = curthread->td_ucred;
2078 obj = current->object.vm_object;
2079
2080 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2081 if (!swap_reserve(current->end - current->start)) {
2082 vm_map_unlock(map);
2083 return (KERN_RESOURCE_SHORTAGE);
2084 }
2085 crhold(cred);
2086 current->cred = cred;
2087 continue;
2088 }
2089
2090 VM_OBJECT_WLOCK(obj);
2091 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2092 VM_OBJECT_WUNLOCK(obj);
2093 continue;
2094 }
2095
2096 /*
2097 * Charge for the whole object allocation now, since
2098 * we cannot distinguish between non-charged and
2099 * charged clipped mapping of the same object later.
2100 */
2101 KASSERT(obj->charge == 0,
2102 ("vm_map_protect: object %p overcharged (entry %p)",
2103 obj, current));
2104 if (!swap_reserve(ptoa(obj->size))) {
2105 VM_OBJECT_WUNLOCK(obj);
2106 vm_map_unlock(map);
2107 return (KERN_RESOURCE_SHORTAGE);
2108 }
2109
2110 crhold(cred);
2111 obj->cred = cred;
2112 obj->charge = ptoa(obj->size);
2113 VM_OBJECT_WUNLOCK(obj);
2114 }
2115
2116 /*
2117 * Go back and fix up protections. [Note that clipping is not
2118 * necessary the second time.]
2119 */
2120 for (current = entry; current->start < end; current = current->next) {
2121 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2122 continue;
2123
2124 old_prot = current->protection;
2125
2126 if (set_max)
2127 current->protection =
2128 (current->max_protection = new_prot) &
2129 old_prot;
2130 else
2131 current->protection = new_prot;
2132
2133 /*
2134 * For user wired map entries, the normal lazy evaluation of
2135 * write access upgrades through soft page faults is
2136 * undesirable. Instead, immediately copy any pages that are
2137 * copy-on-write and enable write access in the physical map.
2138 */
2139 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2140 (current->protection & VM_PROT_WRITE) != 0 &&
2141 (old_prot & VM_PROT_WRITE) == 0)
2142 vm_fault_copy_entry(map, map, current, current, NULL);
2143
2144 /*
2145 * When restricting access, update the physical map. Worry
2146 * about copy-on-write here.
2147 */
2148 if ((old_prot & ~current->protection) != 0) {
2149 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2150 VM_PROT_ALL)
2151 pmap_protect(map->pmap, current->start,
2152 current->end,
2153 current->protection & MASK(current));
2154 #undef MASK
2155 }
2156 vm_map_simplify_entry(map, current);
2157 }
2158 vm_map_unlock(map);
2159 return (KERN_SUCCESS);
2160 }
2161
2162 /*
2163 * vm_map_madvise:
2164 *
2165 * This routine traverses a processes map handling the madvise
2166 * system call. Advisories are classified as either those effecting
2167 * the vm_map_entry structure, or those effecting the underlying
2168 * objects.
2169 */
2170 int
2171 vm_map_madvise(
2172 vm_map_t map,
2173 vm_offset_t start,
2174 vm_offset_t end,
2175 int behav)
2176 {
2177 vm_map_entry_t current, entry;
2178 int modify_map = 0;
2179
2180 /*
2181 * Some madvise calls directly modify the vm_map_entry, in which case
2182 * we need to use an exclusive lock on the map and we need to perform
2183 * various clipping operations. Otherwise we only need a read-lock
2184 * on the map.
2185 */
2186 switch(behav) {
2187 case MADV_NORMAL:
2188 case MADV_SEQUENTIAL:
2189 case MADV_RANDOM:
2190 case MADV_NOSYNC:
2191 case MADV_AUTOSYNC:
2192 case MADV_NOCORE:
2193 case MADV_CORE:
2194 if (start == end)
2195 return (KERN_SUCCESS);
2196 modify_map = 1;
2197 vm_map_lock(map);
2198 break;
2199 case MADV_WILLNEED:
2200 case MADV_DONTNEED:
2201 case MADV_FREE:
2202 if (start == end)
2203 return (KERN_SUCCESS);
2204 vm_map_lock_read(map);
2205 break;
2206 default:
2207 return (KERN_INVALID_ARGUMENT);
2208 }
2209
2210 /*
2211 * Locate starting entry and clip if necessary.
2212 */
2213 VM_MAP_RANGE_CHECK(map, start, end);
2214
2215 if (vm_map_lookup_entry(map, start, &entry)) {
2216 if (modify_map)
2217 vm_map_clip_start(map, entry, start);
2218 } else {
2219 entry = entry->next;
2220 }
2221
2222 if (modify_map) {
2223 /*
2224 * madvise behaviors that are implemented in the vm_map_entry.
2225 *
2226 * We clip the vm_map_entry so that behavioral changes are
2227 * limited to the specified address range.
2228 */
2229 for (current = entry; current->start < end;
2230 current = current->next) {
2231 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2232 continue;
2233
2234 vm_map_clip_end(map, current, end);
2235
2236 switch (behav) {
2237 case MADV_NORMAL:
2238 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2239 break;
2240 case MADV_SEQUENTIAL:
2241 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2242 break;
2243 case MADV_RANDOM:
2244 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2245 break;
2246 case MADV_NOSYNC:
2247 current->eflags |= MAP_ENTRY_NOSYNC;
2248 break;
2249 case MADV_AUTOSYNC:
2250 current->eflags &= ~MAP_ENTRY_NOSYNC;
2251 break;
2252 case MADV_NOCORE:
2253 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2254 break;
2255 case MADV_CORE:
2256 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2257 break;
2258 default:
2259 break;
2260 }
2261 vm_map_simplify_entry(map, current);
2262 }
2263 vm_map_unlock(map);
2264 } else {
2265 vm_pindex_t pstart, pend;
2266
2267 /*
2268 * madvise behaviors that are implemented in the underlying
2269 * vm_object.
2270 *
2271 * Since we don't clip the vm_map_entry, we have to clip
2272 * the vm_object pindex and count.
2273 */
2274 for (current = entry; current->start < end;
2275 current = current->next) {
2276 vm_offset_t useEnd, useStart;
2277
2278 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2279 continue;
2280
2281 /*
2282 * MADV_FREE would otherwise rewind time to
2283 * the creation of the shadow object. Because
2284 * we hold the VM map read-locked, neither the
2285 * entry's object nor the presence of a
2286 * backing object can change.
2287 */
2288 if (behav == MADV_FREE &&
2289 current->object.vm_object != NULL &&
2290 current->object.vm_object->backing_object != NULL)
2291 continue;
2292
2293 pstart = OFF_TO_IDX(current->offset);
2294 pend = pstart + atop(current->end - current->start);
2295 useStart = current->start;
2296 useEnd = current->end;
2297
2298 if (current->start < start) {
2299 pstart += atop(start - current->start);
2300 useStart = start;
2301 }
2302 if (current->end > end) {
2303 pend -= atop(current->end - end);
2304 useEnd = end;
2305 }
2306
2307 if (pstart >= pend)
2308 continue;
2309
2310 /*
2311 * Perform the pmap_advise() before clearing
2312 * PGA_REFERENCED in vm_page_advise(). Otherwise, a
2313 * concurrent pmap operation, such as pmap_remove(),
2314 * could clear a reference in the pmap and set
2315 * PGA_REFERENCED on the page before the pmap_advise()
2316 * had completed. Consequently, the page would appear
2317 * referenced based upon an old reference that
2318 * occurred before this pmap_advise() ran.
2319 */
2320 if (behav == MADV_DONTNEED || behav == MADV_FREE)
2321 pmap_advise(map->pmap, useStart, useEnd,
2322 behav);
2323
2324 vm_object_madvise(current->object.vm_object, pstart,
2325 pend, behav);
2326
2327 /*
2328 * Pre-populate paging structures in the
2329 * WILLNEED case. For wired entries, the
2330 * paging structures are already populated.
2331 */
2332 if (behav == MADV_WILLNEED &&
2333 current->wired_count == 0) {
2334 vm_map_pmap_enter(map,
2335 useStart,
2336 current->protection,
2337 current->object.vm_object,
2338 pstart,
2339 ptoa(pend - pstart),
2340 MAP_PREFAULT_MADVISE
2341 );
2342 }
2343 }
2344 vm_map_unlock_read(map);
2345 }
2346 return (0);
2347 }
2348
2349
2350 /*
2351 * vm_map_inherit:
2352 *
2353 * Sets the inheritance of the specified address
2354 * range in the target map. Inheritance
2355 * affects how the map will be shared with
2356 * child maps at the time of vmspace_fork.
2357 */
2358 int
2359 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2360 vm_inherit_t new_inheritance)
2361 {
2362 vm_map_entry_t entry;
2363 vm_map_entry_t temp_entry;
2364
2365 switch (new_inheritance) {
2366 case VM_INHERIT_NONE:
2367 case VM_INHERIT_COPY:
2368 case VM_INHERIT_SHARE:
2369 case VM_INHERIT_ZERO:
2370 break;
2371 default:
2372 return (KERN_INVALID_ARGUMENT);
2373 }
2374 if (start == end)
2375 return (KERN_SUCCESS);
2376 vm_map_lock(map);
2377 VM_MAP_RANGE_CHECK(map, start, end);
2378 if (vm_map_lookup_entry(map, start, &temp_entry)) {
2379 entry = temp_entry;
2380 vm_map_clip_start(map, entry, start);
2381 } else
2382 entry = temp_entry->next;
2383 while (entry->start < end) {
2384 vm_map_clip_end(map, entry, end);
2385 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2386 new_inheritance != VM_INHERIT_ZERO)
2387 entry->inheritance = new_inheritance;
2388 vm_map_simplify_entry(map, entry);
2389 entry = entry->next;
2390 }
2391 vm_map_unlock(map);
2392 return (KERN_SUCCESS);
2393 }
2394
2395 /*
2396 * vm_map_unwire:
2397 *
2398 * Implements both kernel and user unwiring.
2399 */
2400 int
2401 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2402 int flags)
2403 {
2404 vm_map_entry_t entry, first_entry, tmp_entry;
2405 vm_offset_t saved_start;
2406 unsigned int last_timestamp;
2407 int rv;
2408 boolean_t need_wakeup, result, user_unwire;
2409
2410 if (start == end)
2411 return (KERN_SUCCESS);
2412 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2413 vm_map_lock(map);
2414 VM_MAP_RANGE_CHECK(map, start, end);
2415 if (!vm_map_lookup_entry(map, start, &first_entry)) {
2416 if (flags & VM_MAP_WIRE_HOLESOK)
2417 first_entry = first_entry->next;
2418 else {
2419 vm_map_unlock(map);
2420 return (KERN_INVALID_ADDRESS);
2421 }
2422 }
2423 last_timestamp = map->timestamp;
2424 entry = first_entry;
2425 while (entry->start < end) {
2426 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2427 /*
2428 * We have not yet clipped the entry.
2429 */
2430 saved_start = (start >= entry->start) ? start :
2431 entry->start;
2432 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2433 if (vm_map_unlock_and_wait(map, 0)) {
2434 /*
2435 * Allow interruption of user unwiring?
2436 */
2437 }
2438 vm_map_lock(map);
2439 if (last_timestamp+1 != map->timestamp) {
2440 /*
2441 * Look again for the entry because the map was
2442 * modified while it was unlocked.
2443 * Specifically, the entry may have been
2444 * clipped, merged, or deleted.
2445 */
2446 if (!vm_map_lookup_entry(map, saved_start,
2447 &tmp_entry)) {
2448 if (flags & VM_MAP_WIRE_HOLESOK)
2449 tmp_entry = tmp_entry->next;
2450 else {
2451 if (saved_start == start) {
2452 /*
2453 * First_entry has been deleted.
2454 */
2455 vm_map_unlock(map);
2456 return (KERN_INVALID_ADDRESS);
2457 }
2458 end = saved_start;
2459 rv = KERN_INVALID_ADDRESS;
2460 goto done;
2461 }
2462 }
2463 if (entry == first_entry)
2464 first_entry = tmp_entry;
2465 else
2466 first_entry = NULL;
2467 entry = tmp_entry;
2468 }
2469 last_timestamp = map->timestamp;
2470 continue;
2471 }
2472 vm_map_clip_start(map, entry, start);
2473 vm_map_clip_end(map, entry, end);
2474 /*
2475 * Mark the entry in case the map lock is released. (See
2476 * above.)
2477 */
2478 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2479 entry->wiring_thread == NULL,
2480 ("owned map entry %p", entry));
2481 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2482 entry->wiring_thread = curthread;
2483 /*
2484 * Check the map for holes in the specified region.
2485 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2486 */
2487 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2488 (entry->end < end && entry->next->start > entry->end)) {
2489 end = entry->end;
2490 rv = KERN_INVALID_ADDRESS;
2491 goto done;
2492 }
2493 /*
2494 * If system unwiring, require that the entry is system wired.
2495 */
2496 if (!user_unwire &&
2497 vm_map_entry_system_wired_count(entry) == 0) {
2498 end = entry->end;
2499 rv = KERN_INVALID_ARGUMENT;
2500 goto done;
2501 }
2502 entry = entry->next;
2503 }
2504 rv = KERN_SUCCESS;
2505 done:
2506 need_wakeup = FALSE;
2507 if (first_entry == NULL) {
2508 result = vm_map_lookup_entry(map, start, &first_entry);
2509 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2510 first_entry = first_entry->next;
2511 else
2512 KASSERT(result, ("vm_map_unwire: lookup failed"));
2513 }
2514 for (entry = first_entry; entry->start < end; entry = entry->next) {
2515 /*
2516 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2517 * space in the unwired region could have been mapped
2518 * while the map lock was dropped for draining
2519 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread
2520 * could be simultaneously wiring this new mapping
2521 * entry. Detect these cases and skip any entries
2522 * marked as in transition by us.
2523 */
2524 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2525 entry->wiring_thread != curthread) {
2526 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2527 ("vm_map_unwire: !HOLESOK and new/changed entry"));
2528 continue;
2529 }
2530
2531 if (rv == KERN_SUCCESS && (!user_unwire ||
2532 (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2533 if (user_unwire)
2534 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2535 if (entry->wired_count == 1)
2536 vm_map_entry_unwire(map, entry);
2537 else
2538 entry->wired_count--;
2539 }
2540 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2541 ("vm_map_unwire: in-transition flag missing %p", entry));
2542 KASSERT(entry->wiring_thread == curthread,
2543 ("vm_map_unwire: alien wire %p", entry));
2544 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2545 entry->wiring_thread = NULL;
2546 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2547 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2548 need_wakeup = TRUE;
2549 }
2550 vm_map_simplify_entry(map, entry);
2551 }
2552 vm_map_unlock(map);
2553 if (need_wakeup)
2554 vm_map_wakeup(map);
2555 return (rv);
2556 }
2557
2558 /*
2559 * vm_map_wire_entry_failure:
2560 *
2561 * Handle a wiring failure on the given entry.
2562 *
2563 * The map should be locked.
2564 */
2565 static void
2566 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2567 vm_offset_t failed_addr)
2568 {
2569
2570 VM_MAP_ASSERT_LOCKED(map);
2571 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2572 entry->wired_count == 1,
2573 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2574 KASSERT(failed_addr < entry->end,
2575 ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2576
2577 /*
2578 * If any pages at the start of this entry were successfully wired,
2579 * then unwire them.
2580 */
2581 if (failed_addr > entry->start) {
2582 pmap_unwire(map->pmap, entry->start, failed_addr);
2583 vm_object_unwire(entry->object.vm_object, entry->offset,
2584 failed_addr - entry->start, PQ_ACTIVE);
2585 }
2586
2587 /*
2588 * Assign an out-of-range value to represent the failure to wire this
2589 * entry.
2590 */
2591 entry->wired_count = -1;
2592 }
2593
2594 /*
2595 * vm_map_wire:
2596 *
2597 * Implements both kernel and user wiring.
2598 */
2599 int
2600 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2601 int flags)
2602 {
2603 vm_map_entry_t entry, first_entry, tmp_entry;
2604 vm_offset_t faddr, saved_end, saved_start;
2605 unsigned int last_timestamp;
2606 int rv;
2607 boolean_t need_wakeup, result, user_wire;
2608 vm_prot_t prot;
2609
2610 if (start == end)
2611 return (KERN_SUCCESS);
2612 prot = 0;
2613 if (flags & VM_MAP_WIRE_WRITE)
2614 prot |= VM_PROT_WRITE;
2615 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2616 vm_map_lock(map);
2617 VM_MAP_RANGE_CHECK(map, start, end);
2618 if (!vm_map_lookup_entry(map, start, &first_entry)) {
2619 if (flags & VM_MAP_WIRE_HOLESOK)
2620 first_entry = first_entry->next;
2621 else {
2622 vm_map_unlock(map);
2623 return (KERN_INVALID_ADDRESS);
2624 }
2625 }
2626 last_timestamp = map->timestamp;
2627 entry = first_entry;
2628 while (entry->start < end) {
2629 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2630 /*
2631 * We have not yet clipped the entry.
2632 */
2633 saved_start = (start >= entry->start) ? start :
2634 entry->start;
2635 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2636 if (vm_map_unlock_and_wait(map, 0)) {
2637 /*
2638 * Allow interruption of user wiring?
2639 */
2640 }
2641 vm_map_lock(map);
2642 if (last_timestamp + 1 != map->timestamp) {
2643 /*
2644 * Look again for the entry because the map was
2645 * modified while it was unlocked.
2646 * Specifically, the entry may have been
2647 * clipped, merged, or deleted.
2648 */
2649 if (!vm_map_lookup_entry(map, saved_start,
2650 &tmp_entry)) {
2651 if (flags & VM_MAP_WIRE_HOLESOK)
2652 tmp_entry = tmp_entry->next;
2653 else {
2654 if (saved_start == start) {
2655 /*
2656 * first_entry has been deleted.
2657 */
2658 vm_map_unlock(map);
2659 return (KERN_INVALID_ADDRESS);
2660 }
2661 end = saved_start;
2662 rv = KERN_INVALID_ADDRESS;
2663 goto done;
2664 }
2665 }
2666 if (entry == first_entry)
2667 first_entry = tmp_entry;
2668 else
2669 first_entry = NULL;
2670 entry = tmp_entry;
2671 }
2672 last_timestamp = map->timestamp;
2673 continue;
2674 }
2675 vm_map_clip_start(map, entry, start);
2676 vm_map_clip_end(map, entry, end);
2677 /*
2678 * Mark the entry in case the map lock is released. (See
2679 * above.)
2680 */
2681 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2682 entry->wiring_thread == NULL,
2683 ("owned map entry %p", entry));
2684 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2685 entry->wiring_thread = curthread;
2686 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2687 || (entry->protection & prot) != prot) {
2688 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2689 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2690 end = entry->end;
2691 rv = KERN_INVALID_ADDRESS;
2692 goto done;
2693 }
2694 goto next_entry;
2695 }
2696 if (entry->wired_count == 0) {
2697 entry->wired_count++;
2698 saved_start = entry->start;
2699 saved_end = entry->end;
2700
2701 /*
2702 * Release the map lock, relying on the in-transition
2703 * mark. Mark the map busy for fork.
2704 */
2705 vm_map_busy(map);
2706 vm_map_unlock(map);
2707
2708 faddr = saved_start;
2709 do {
2710 /*
2711 * Simulate a fault to get the page and enter
2712 * it into the physical map.
2713 */
2714 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2715 VM_FAULT_WIRE)) != KERN_SUCCESS)
2716 break;
2717 } while ((faddr += PAGE_SIZE) < saved_end);
2718 vm_map_lock(map);
2719 vm_map_unbusy(map);
2720 if (last_timestamp + 1 != map->timestamp) {
2721 /*
2722 * Look again for the entry because the map was
2723 * modified while it was unlocked. The entry
2724 * may have been clipped, but NOT merged or
2725 * deleted.
2726 */
2727 result = vm_map_lookup_entry(map, saved_start,
2728 &tmp_entry);
2729 KASSERT(result, ("vm_map_wire: lookup failed"));
2730 if (entry == first_entry)
2731 first_entry = tmp_entry;
2732 else
2733 first_entry = NULL;
2734 entry = tmp_entry;
2735 while (entry->end < saved_end) {
2736 /*
2737 * In case of failure, handle entries
2738 * that were not fully wired here;
2739 * fully wired entries are handled
2740 * later.
2741 */
2742 if (rv != KERN_SUCCESS &&
2743 faddr < entry->end)
2744 vm_map_wire_entry_failure(map,
2745 entry, faddr);
2746 entry = entry->next;
2747 }
2748 }
2749 last_timestamp = map->timestamp;
2750 if (rv != KERN_SUCCESS) {
2751 vm_map_wire_entry_failure(map, entry, faddr);
2752 end = entry->end;
2753 goto done;
2754 }
2755 } else if (!user_wire ||
2756 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2757 entry->wired_count++;
2758 }
2759 /*
2760 * Check the map for holes in the specified region.
2761 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2762 */
2763 next_entry:
2764 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2765 entry->end < end && entry->next->start > entry->end) {
2766 end = entry->end;
2767 rv = KERN_INVALID_ADDRESS;
2768 goto done;
2769 }
2770 entry = entry->next;
2771 }
2772 rv = KERN_SUCCESS;
2773 done:
2774 need_wakeup = FALSE;
2775 if (first_entry == NULL) {
2776 result = vm_map_lookup_entry(map, start, &first_entry);
2777 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2778 first_entry = first_entry->next;
2779 else
2780 KASSERT(result, ("vm_map_wire: lookup failed"));
2781 }
2782 for (entry = first_entry; entry->start < end; entry = entry->next) {
2783 /*
2784 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2785 * space in the unwired region could have been mapped
2786 * while the map lock was dropped for faulting in the
2787 * pages or draining MAP_ENTRY_IN_TRANSITION.
2788 * Moreover, another thread could be simultaneously
2789 * wiring this new mapping entry. Detect these cases
2790 * and skip any entries marked as in transition not by us.
2791 */
2792 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2793 entry->wiring_thread != curthread) {
2794 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2795 ("vm_map_wire: !HOLESOK and new/changed entry"));
2796 continue;
2797 }
2798
2799 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2800 goto next_entry_done;
2801
2802 if (rv == KERN_SUCCESS) {
2803 if (user_wire)
2804 entry->eflags |= MAP_ENTRY_USER_WIRED;
2805 } else if (entry->wired_count == -1) {
2806 /*
2807 * Wiring failed on this entry. Thus, unwiring is
2808 * unnecessary.
2809 */
2810 entry->wired_count = 0;
2811 } else if (!user_wire ||
2812 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2813 /*
2814 * Undo the wiring. Wiring succeeded on this entry
2815 * but failed on a later entry.
2816 */
2817 if (entry->wired_count == 1)
2818 vm_map_entry_unwire(map, entry);
2819 else
2820 entry->wired_count--;
2821 }
2822 next_entry_done:
2823 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2824 ("vm_map_wire: in-transition flag missing %p", entry));
2825 KASSERT(entry->wiring_thread == curthread,
2826 ("vm_map_wire: alien wire %p", entry));
2827 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2828 MAP_ENTRY_WIRE_SKIPPED);
2829 entry->wiring_thread = NULL;
2830 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2831 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2832 need_wakeup = TRUE;
2833 }
2834 vm_map_simplify_entry(map, entry);
2835 }
2836 vm_map_unlock(map);
2837 if (need_wakeup)
2838 vm_map_wakeup(map);
2839 return (rv);
2840 }
2841
2842 /*
2843 * vm_map_sync
2844 *
2845 * Push any dirty cached pages in the address range to their pager.
2846 * If syncio is TRUE, dirty pages are written synchronously.
2847 * If invalidate is TRUE, any cached pages are freed as well.
2848 *
2849 * If the size of the region from start to end is zero, we are
2850 * supposed to flush all modified pages within the region containing
2851 * start. Unfortunately, a region can be split or coalesced with
2852 * neighboring regions, making it difficult to determine what the
2853 * original region was. Therefore, we approximate this requirement by
2854 * flushing the current region containing start.
2855 *
2856 * Returns an error if any part of the specified range is not mapped.
2857 */
2858 int
2859 vm_map_sync(
2860 vm_map_t map,
2861 vm_offset_t start,
2862 vm_offset_t end,
2863 boolean_t syncio,
2864 boolean_t invalidate)
2865 {
2866 vm_map_entry_t current;
2867 vm_map_entry_t entry;
2868 vm_size_t size;
2869 vm_object_t object;
2870 vm_ooffset_t offset;
2871 unsigned int last_timestamp;
2872 boolean_t failed;
2873
2874 vm_map_lock_read(map);
2875 VM_MAP_RANGE_CHECK(map, start, end);
2876 if (!vm_map_lookup_entry(map, start, &entry)) {
2877 vm_map_unlock_read(map);
2878 return (KERN_INVALID_ADDRESS);
2879 } else if (start == end) {
2880 start = entry->start;
2881 end = entry->end;
2882 }
2883 /*
2884 * Make a first pass to check for user-wired memory and holes.
2885 */
2886 for (current = entry; current->start < end; current = current->next) {
2887 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2888 vm_map_unlock_read(map);
2889 return (KERN_INVALID_ARGUMENT);
2890 }
2891 if (end > current->end &&
2892 current->end != current->next->start) {
2893 vm_map_unlock_read(map);
2894 return (KERN_INVALID_ADDRESS);
2895 }
2896 }
2897
2898 if (invalidate)
2899 pmap_remove(map->pmap, start, end);
2900 failed = FALSE;
2901
2902 /*
2903 * Make a second pass, cleaning/uncaching pages from the indicated
2904 * objects as we go.
2905 */
2906 for (current = entry; current->start < end;) {
2907 offset = current->offset + (start - current->start);
2908 size = (end <= current->end ? end : current->end) - start;
2909 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2910 vm_map_t smap;
2911 vm_map_entry_t tentry;
2912 vm_size_t tsize;
2913
2914 smap = current->object.sub_map;
2915 vm_map_lock_read(smap);
2916 (void) vm_map_lookup_entry(smap, offset, &tentry);
2917 tsize = tentry->end - offset;
2918 if (tsize < size)
2919 size = tsize;
2920 object = tentry->object.vm_object;
2921 offset = tentry->offset + (offset - tentry->start);
2922 vm_map_unlock_read(smap);
2923 } else {
2924 object = current->object.vm_object;
2925 }
2926 vm_object_reference(object);
2927 last_timestamp = map->timestamp;
2928 vm_map_unlock_read(map);
2929 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2930 failed = TRUE;
2931 start += size;
2932 vm_object_deallocate(object);
2933 vm_map_lock_read(map);
2934 if (last_timestamp == map->timestamp ||
2935 !vm_map_lookup_entry(map, start, ¤t))
2936 current = current->next;
2937 }
2938
2939 vm_map_unlock_read(map);
2940 return (failed ? KERN_FAILURE : KERN_SUCCESS);
2941 }
2942
2943 /*
2944 * vm_map_entry_unwire: [ internal use only ]
2945 *
2946 * Make the region specified by this entry pageable.
2947 *
2948 * The map in question should be locked.
2949 * [This is the reason for this routine's existence.]
2950 */
2951 static void
2952 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2953 {
2954
2955 VM_MAP_ASSERT_LOCKED(map);
2956 KASSERT(entry->wired_count > 0,
2957 ("vm_map_entry_unwire: entry %p isn't wired", entry));
2958 pmap_unwire(map->pmap, entry->start, entry->end);
2959 vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2960 entry->start, PQ_ACTIVE);
2961 entry->wired_count = 0;
2962 }
2963
2964 static void
2965 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2966 {
2967
2968 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2969 vm_object_deallocate(entry->object.vm_object);
2970 uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2971 }
2972
2973 /*
2974 * vm_map_entry_delete: [ internal use only ]
2975 *
2976 * Deallocate the given entry from the target map.
2977 */
2978 static void
2979 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2980 {
2981 vm_object_t object;
2982 vm_pindex_t offidxstart, offidxend, count, size1;
2983 vm_size_t size;
2984
2985 vm_map_entry_unlink(map, entry);
2986 object = entry->object.vm_object;
2987
2988 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2989 MPASS(entry->cred == NULL);
2990 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
2991 MPASS(object == NULL);
2992 vm_map_entry_deallocate(entry, map->system_map);
2993 return;
2994 }
2995
2996 size = entry->end - entry->start;
2997 map->size -= size;
2998
2999 if (entry->cred != NULL) {
3000 swap_release_by_cred(size, entry->cred);
3001 crfree(entry->cred);
3002 }
3003
3004 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3005 (object != NULL)) {
3006 KASSERT(entry->cred == NULL || object->cred == NULL ||
3007 (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3008 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3009 count = atop(size);
3010 offidxstart = OFF_TO_IDX(entry->offset);
3011 offidxend = offidxstart + count;
3012 VM_OBJECT_WLOCK(object);
3013 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3014 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3015 object == kernel_object || object == kmem_object)) {
3016 vm_object_collapse(object);
3017
3018 /*
3019 * The option OBJPR_NOTMAPPED can be passed here
3020 * because vm_map_delete() already performed
3021 * pmap_remove() on the only mapping to this range
3022 * of pages.
3023 */
3024 vm_object_page_remove(object, offidxstart, offidxend,
3025 OBJPR_NOTMAPPED);
3026 if (object->type == OBJT_SWAP)
3027 swap_pager_freespace(object, offidxstart,
3028 count);
3029 if (offidxend >= object->size &&
3030 offidxstart < object->size) {
3031 size1 = object->size;
3032 object->size = offidxstart;
3033 if (object->cred != NULL) {
3034 size1 -= object->size;
3035 KASSERT(object->charge >= ptoa(size1),
3036 ("object %p charge < 0", object));
3037 swap_release_by_cred(ptoa(size1),
3038 object->cred);
3039 object->charge -= ptoa(size1);
3040 }
3041 }
3042 }
3043 VM_OBJECT_WUNLOCK(object);
3044 } else
3045 entry->object.vm_object = NULL;
3046 if (map->system_map)
3047 vm_map_entry_deallocate(entry, TRUE);
3048 else {
3049 entry->next = curthread->td_map_def_user;
3050 curthread->td_map_def_user = entry;
3051 }
3052 }
3053
3054 /*
3055 * vm_map_delete: [ internal use only ]
3056 *
3057 * Deallocates the given address range from the target
3058 * map.
3059 */
3060 int
3061 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3062 {
3063 vm_map_entry_t entry;
3064 vm_map_entry_t first_entry;
3065
3066 VM_MAP_ASSERT_LOCKED(map);
3067 if (start == end)
3068 return (KERN_SUCCESS);
3069
3070 /*
3071 * Find the start of the region, and clip it
3072 */
3073 if (!vm_map_lookup_entry(map, start, &first_entry))
3074 entry = first_entry->next;
3075 else {
3076 entry = first_entry;
3077 vm_map_clip_start(map, entry, start);
3078 }
3079
3080 /*
3081 * Step through all entries in this region
3082 */
3083 while (entry->start < end) {
3084 vm_map_entry_t next;
3085
3086 /*
3087 * Wait for wiring or unwiring of an entry to complete.
3088 * Also wait for any system wirings to disappear on
3089 * user maps.
3090 */
3091 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3092 (vm_map_pmap(map) != kernel_pmap &&
3093 vm_map_entry_system_wired_count(entry) != 0)) {
3094 unsigned int last_timestamp;
3095 vm_offset_t saved_start;
3096 vm_map_entry_t tmp_entry;
3097
3098 saved_start = entry->start;
3099 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3100 last_timestamp = map->timestamp;
3101 (void) vm_map_unlock_and_wait(map, 0);
3102 vm_map_lock(map);
3103 if (last_timestamp + 1 != map->timestamp) {
3104 /*
3105 * Look again for the entry because the map was
3106 * modified while it was unlocked.
3107 * Specifically, the entry may have been
3108 * clipped, merged, or deleted.
3109 */
3110 if (!vm_map_lookup_entry(map, saved_start,
3111 &tmp_entry))
3112 entry = tmp_entry->next;
3113 else {
3114 entry = tmp_entry;
3115 vm_map_clip_start(map, entry,
3116 saved_start);
3117 }
3118 }
3119 continue;
3120 }
3121 vm_map_clip_end(map, entry, end);
3122
3123 next = entry->next;
3124
3125 /*
3126 * Unwire before removing addresses from the pmap; otherwise,
3127 * unwiring will put the entries back in the pmap.
3128 */
3129 if (entry->wired_count != 0)
3130 vm_map_entry_unwire(map, entry);
3131
3132 /*
3133 * Remove mappings for the pages, but only if the
3134 * mappings could exist. For instance, it does not
3135 * make sense to call pmap_remove() for guard entries.
3136 */
3137 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3138 entry->object.vm_object != NULL)
3139 pmap_remove(map->pmap, entry->start, entry->end);
3140
3141 /*
3142 * Delete the entry only after removing all pmap
3143 * entries pointing to its pages. (Otherwise, its
3144 * page frames may be reallocated, and any modify bits
3145 * will be set in the wrong object!)
3146 */
3147 vm_map_entry_delete(map, entry);
3148 entry = next;
3149 }
3150 return (KERN_SUCCESS);
3151 }
3152
3153 /*
3154 * vm_map_remove:
3155 *
3156 * Remove the given address range from the target map.
3157 * This is the exported form of vm_map_delete.
3158 */
3159 int
3160 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3161 {
3162 int result;
3163
3164 vm_map_lock(map);
3165 VM_MAP_RANGE_CHECK(map, start, end);
3166 result = vm_map_delete(map, start, end);
3167 vm_map_unlock(map);
3168 return (result);
3169 }
3170
3171 /*
3172 * vm_map_check_protection:
3173 *
3174 * Assert that the target map allows the specified privilege on the
3175 * entire address region given. The entire region must be allocated.
3176 *
3177 * WARNING! This code does not and should not check whether the
3178 * contents of the region is accessible. For example a smaller file
3179 * might be mapped into a larger address space.
3180 *
3181 * NOTE! This code is also called by munmap().
3182 *
3183 * The map must be locked. A read lock is sufficient.
3184 */
3185 boolean_t
3186 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3187 vm_prot_t protection)
3188 {
3189 vm_map_entry_t entry;
3190 vm_map_entry_t tmp_entry;
3191
3192 if (!vm_map_lookup_entry(map, start, &tmp_entry))
3193 return (FALSE);
3194 entry = tmp_entry;
3195
3196 while (start < end) {
3197 /*
3198 * No holes allowed!
3199 */
3200 if (start < entry->start)
3201 return (FALSE);
3202 /*
3203 * Check protection associated with entry.
3204 */
3205 if ((entry->protection & protection) != protection)
3206 return (FALSE);
3207 /* go to next entry */
3208 start = entry->end;
3209 entry = entry->next;
3210 }
3211 return (TRUE);
3212 }
3213
3214 /*
3215 * vm_map_copy_entry:
3216 *
3217 * Copies the contents of the source entry to the destination
3218 * entry. The entries *must* be aligned properly.
3219 */
3220 static void
3221 vm_map_copy_entry(
3222 vm_map_t src_map,
3223 vm_map_t dst_map,
3224 vm_map_entry_t src_entry,
3225 vm_map_entry_t dst_entry,
3226 vm_ooffset_t *fork_charge)
3227 {
3228 vm_object_t src_object;
3229 vm_map_entry_t fake_entry;
3230 vm_offset_t size;
3231 struct ucred *cred;
3232 int charged;
3233
3234 VM_MAP_ASSERT_LOCKED(dst_map);
3235
3236 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3237 return;
3238
3239 if (src_entry->wired_count == 0 ||
3240 (src_entry->protection & VM_PROT_WRITE) == 0) {
3241 /*
3242 * If the source entry is marked needs_copy, it is already
3243 * write-protected.
3244 */
3245 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3246 (src_entry->protection & VM_PROT_WRITE) != 0) {
3247 pmap_protect(src_map->pmap,
3248 src_entry->start,
3249 src_entry->end,
3250 src_entry->protection & ~VM_PROT_WRITE);
3251 }
3252
3253 /*
3254 * Make a copy of the object.
3255 */
3256 size = src_entry->end - src_entry->start;
3257 if ((src_object = src_entry->object.vm_object) != NULL) {
3258 VM_OBJECT_WLOCK(src_object);
3259 charged = ENTRY_CHARGED(src_entry);
3260 if (src_object->handle == NULL &&
3261 (src_object->type == OBJT_DEFAULT ||
3262 src_object->type == OBJT_SWAP)) {
3263 vm_object_collapse(src_object);
3264 if ((src_object->flags & (OBJ_NOSPLIT |
3265 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3266 vm_object_split(src_entry);
3267 src_object =
3268 src_entry->object.vm_object;
3269 }
3270 }
3271 vm_object_reference_locked(src_object);
3272 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3273 if (src_entry->cred != NULL &&
3274 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3275 KASSERT(src_object->cred == NULL,
3276 ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3277 src_object));
3278 src_object->cred = src_entry->cred;
3279 src_object->charge = size;
3280 }
3281 VM_OBJECT_WUNLOCK(src_object);
3282 dst_entry->object.vm_object = src_object;
3283 if (charged) {
3284 cred = curthread->td_ucred;
3285 crhold(cred);
3286 dst_entry->cred = cred;
3287 *fork_charge += size;
3288 if (!(src_entry->eflags &
3289 MAP_ENTRY_NEEDS_COPY)) {
3290 crhold(cred);
3291 src_entry->cred = cred;
3292 *fork_charge += size;
3293 }
3294 }
3295 src_entry->eflags |= MAP_ENTRY_COW |
3296 MAP_ENTRY_NEEDS_COPY;
3297 dst_entry->eflags |= MAP_ENTRY_COW |
3298 MAP_ENTRY_NEEDS_COPY;
3299 dst_entry->offset = src_entry->offset;
3300 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3301 /*
3302 * MAP_ENTRY_VN_WRITECNT cannot
3303 * indicate write reference from
3304 * src_entry, since the entry is
3305 * marked as needs copy. Allocate a
3306 * fake entry that is used to
3307 * decrement object->un_pager.vnp.writecount
3308 * at the appropriate time. Attach
3309 * fake_entry to the deferred list.
3310 */
3311 fake_entry = vm_map_entry_create(dst_map);
3312 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3313 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3314 vm_object_reference(src_object);
3315 fake_entry->object.vm_object = src_object;
3316 fake_entry->start = src_entry->start;
3317 fake_entry->end = src_entry->end;
3318 fake_entry->next = curthread->td_map_def_user;
3319 curthread->td_map_def_user = fake_entry;
3320 }
3321
3322 pmap_copy(dst_map->pmap, src_map->pmap,
3323 dst_entry->start, dst_entry->end - dst_entry->start,
3324 src_entry->start);
3325 } else {
3326 dst_entry->object.vm_object = NULL;
3327 dst_entry->offset = 0;
3328 if (src_entry->cred != NULL) {
3329 dst_entry->cred = curthread->td_ucred;
3330 crhold(dst_entry->cred);
3331 *fork_charge += size;
3332 }
3333 }
3334 } else {
3335 /*
3336 * We don't want to make writeable wired pages copy-on-write.
3337 * Immediately copy these pages into the new map by simulating
3338 * page faults. The new pages are pageable.
3339 */
3340 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3341 fork_charge);
3342 }
3343 }
3344
3345 /*
3346 * vmspace_map_entry_forked:
3347 * Update the newly-forked vmspace each time a map entry is inherited
3348 * or copied. The values for vm_dsize and vm_tsize are approximate
3349 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3350 */
3351 static void
3352 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3353 vm_map_entry_t entry)
3354 {
3355 vm_size_t entrysize;
3356 vm_offset_t newend;
3357
3358 if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3359 return;
3360 entrysize = entry->end - entry->start;
3361 vm2->vm_map.size += entrysize;
3362 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3363 vm2->vm_ssize += btoc(entrysize);
3364 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3365 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3366 newend = MIN(entry->end,
3367 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3368 vm2->vm_dsize += btoc(newend - entry->start);
3369 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3370 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3371 newend = MIN(entry->end,
3372 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3373 vm2->vm_tsize += btoc(newend - entry->start);
3374 }
3375 }
3376
3377 /*
3378 * vmspace_fork:
3379 * Create a new process vmspace structure and vm_map
3380 * based on those of an existing process. The new map
3381 * is based on the old map, according to the inheritance
3382 * values on the regions in that map.
3383 *
3384 * XXX It might be worth coalescing the entries added to the new vmspace.
3385 *
3386 * The source map must not be locked.
3387 */
3388 struct vmspace *
3389 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3390 {
3391 struct vmspace *vm2;
3392 vm_map_t new_map, old_map;
3393 vm_map_entry_t new_entry, old_entry;
3394 vm_object_t object;
3395 int locked;
3396 vm_inherit_t inh;
3397
3398 old_map = &vm1->vm_map;
3399 /* Copy immutable fields of vm1 to vm2. */
3400 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3401 pmap_pinit);
3402 if (vm2 == NULL)
3403 return (NULL);
3404 vm2->vm_taddr = vm1->vm_taddr;
3405 vm2->vm_daddr = vm1->vm_daddr;
3406 vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3407 vm_map_lock(old_map);
3408 if (old_map->busy)
3409 vm_map_wait_busy(old_map);
3410 new_map = &vm2->vm_map;
3411 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3412 KASSERT(locked, ("vmspace_fork: lock failed"));
3413
3414 old_entry = old_map->header.next;
3415
3416 while (old_entry != &old_map->header) {
3417 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3418 panic("vm_map_fork: encountered a submap");
3419
3420 inh = old_entry->inheritance;
3421 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3422 inh != VM_INHERIT_NONE)
3423 inh = VM_INHERIT_COPY;
3424
3425 switch (inh) {
3426 case VM_INHERIT_NONE:
3427 break;
3428
3429 case VM_INHERIT_SHARE:
3430 /*
3431 * Clone the entry, creating the shared object if necessary.
3432 */
3433 object = old_entry->object.vm_object;
3434 if (object == NULL) {
3435 object = vm_object_allocate(OBJT_DEFAULT,
3436 atop(old_entry->end - old_entry->start));
3437 old_entry->object.vm_object = object;
3438 old_entry->offset = 0;
3439 if (old_entry->cred != NULL) {
3440 object->cred = old_entry->cred;
3441 object->charge = old_entry->end -
3442 old_entry->start;
3443 old_entry->cred = NULL;
3444 }
3445 }
3446
3447 /*
3448 * Add the reference before calling vm_object_shadow
3449 * to insure that a shadow object is created.
3450 */
3451 vm_object_reference(object);
3452 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3453 vm_object_shadow(&old_entry->object.vm_object,
3454 &old_entry->offset,
3455 old_entry->end - old_entry->start);
3456 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3457 /* Transfer the second reference too. */
3458 vm_object_reference(
3459 old_entry->object.vm_object);
3460
3461 /*
3462 * As in vm_map_simplify_entry(), the
3463 * vnode lock will not be acquired in
3464 * this call to vm_object_deallocate().
3465 */
3466 vm_object_deallocate(object);
3467 object = old_entry->object.vm_object;
3468 }
3469 VM_OBJECT_WLOCK(object);
3470 vm_object_clear_flag(object, OBJ_ONEMAPPING);
3471 if (old_entry->cred != NULL) {
3472 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3473 object->cred = old_entry->cred;
3474 object->charge = old_entry->end - old_entry->start;
3475 old_entry->cred = NULL;
3476 }
3477
3478 /*
3479 * Assert the correct state of the vnode
3480 * v_writecount while the object is locked, to
3481 * not relock it later for the assertion
3482 * correctness.
3483 */
3484 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3485 object->type == OBJT_VNODE) {
3486 KASSERT(((struct vnode *)object->handle)->
3487 v_writecount > 0,
3488 ("vmspace_fork: v_writecount %p", object));
3489 KASSERT(object->un_pager.vnp.writemappings > 0,
3490 ("vmspace_fork: vnp.writecount %p",
3491 object));
3492 }
3493 VM_OBJECT_WUNLOCK(object);
3494
3495 /*
3496 * Clone the entry, referencing the shared object.
3497 */
3498 new_entry = vm_map_entry_create(new_map);
3499 *new_entry = *old_entry;
3500 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3501 MAP_ENTRY_IN_TRANSITION);
3502 new_entry->wiring_thread = NULL;
3503 new_entry->wired_count = 0;
3504 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3505 vnode_pager_update_writecount(object,
3506 new_entry->start, new_entry->end);
3507 }
3508
3509 /*
3510 * Insert the entry into the new map -- we know we're
3511 * inserting at the end of the new map.
3512 */
3513 vm_map_entry_link(new_map, new_map->header.prev,
3514 new_entry);
3515 vmspace_map_entry_forked(vm1, vm2, new_entry);
3516
3517 /*
3518 * Update the physical map
3519 */
3520 pmap_copy(new_map->pmap, old_map->pmap,
3521 new_entry->start,
3522 (old_entry->end - old_entry->start),
3523 old_entry->start);
3524 break;
3525
3526 case VM_INHERIT_COPY:
3527 /*
3528 * Clone the entry and link into the map.
3529 */
3530 new_entry = vm_map_entry_create(new_map);
3531 *new_entry = *old_entry;
3532 /*
3533 * Copied entry is COW over the old object.
3534 */
3535 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3536 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3537 new_entry->wiring_thread = NULL;
3538 new_entry->wired_count = 0;
3539 new_entry->object.vm_object = NULL;
3540 new_entry->cred = NULL;
3541 vm_map_entry_link(new_map, new_map->header.prev,
3542 new_entry);
3543 vmspace_map_entry_forked(vm1, vm2, new_entry);
3544 vm_map_copy_entry(old_map, new_map, old_entry,
3545 new_entry, fork_charge);
3546 break;
3547
3548 case VM_INHERIT_ZERO:
3549 /*
3550 * Create a new anonymous mapping entry modelled from
3551 * the old one.
3552 */
3553 new_entry = vm_map_entry_create(new_map);
3554 memset(new_entry, 0, sizeof(*new_entry));
3555
3556 new_entry->start = old_entry->start;
3557 new_entry->end = old_entry->end;
3558 new_entry->eflags = old_entry->eflags &
3559 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3560 MAP_ENTRY_VN_WRITECNT);
3561 new_entry->protection = old_entry->protection;
3562 new_entry->max_protection = old_entry->max_protection;
3563 new_entry->inheritance = VM_INHERIT_ZERO;
3564
3565 vm_map_entry_link(new_map, new_map->header.prev,
3566 new_entry);
3567 vmspace_map_entry_forked(vm1, vm2, new_entry);
3568
3569 new_entry->cred = curthread->td_ucred;
3570 crhold(new_entry->cred);
3571 *fork_charge += (new_entry->end - new_entry->start);
3572
3573 break;
3574 }
3575 old_entry = old_entry->next;
3576 }
3577 /*
3578 * Use inlined vm_map_unlock() to postpone handling the deferred
3579 * map entries, which cannot be done until both old_map and
3580 * new_map locks are released.
3581 */
3582 sx_xunlock(&old_map->lock);
3583 sx_xunlock(&new_map->lock);
3584 vm_map_process_deferred();
3585
3586 return (vm2);
3587 }
3588
3589 /*
3590 * Create a process's stack for exec_new_vmspace(). This function is never
3591 * asked to wire the newly created stack.
3592 */
3593 int
3594 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3595 vm_prot_t prot, vm_prot_t max, int cow)
3596 {
3597 vm_size_t growsize, init_ssize;
3598 rlim_t vmemlim;
3599 int rv;
3600
3601 MPASS((map->flags & MAP_WIREFUTURE) == 0);
3602 growsize = sgrowsiz;
3603 init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3604 vm_map_lock(map);
3605 vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3606 /* If we would blow our VMEM resource limit, no go */
3607 if (map->size + init_ssize > vmemlim) {
3608 rv = KERN_NO_SPACE;
3609 goto out;
3610 }
3611 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3612 max, cow);
3613 out:
3614 vm_map_unlock(map);
3615 return (rv);
3616 }
3617
3618 static int stack_guard_page = 1;
3619 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3620 &stack_guard_page, 0,
3621 "Specifies the number of guard pages for a stack that grows");
3622
3623 static int
3624 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3625 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3626 {
3627 vm_map_entry_t new_entry, prev_entry;
3628 vm_offset_t bot, gap_bot, gap_top, top;
3629 vm_size_t init_ssize, sgp;
3630 int orient, rv;
3631
3632 /*
3633 * The stack orientation is piggybacked with the cow argument.
3634 * Extract it into orient and mask the cow argument so that we
3635 * don't pass it around further.
3636 */
3637 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3638 KASSERT(orient != 0, ("No stack grow direction"));
3639 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3640 ("bi-dir stack"));
3641
3642 if (addrbos < vm_map_min(map) ||
3643 addrbos + max_ssize > vm_map_max(map) ||
3644 addrbos + max_ssize <= addrbos)
3645 return (KERN_INVALID_ADDRESS);
3646 sgp = (curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ? 0 :
3647 (vm_size_t)stack_guard_page * PAGE_SIZE;
3648 if (sgp >= max_ssize)
3649 return (KERN_INVALID_ARGUMENT);
3650
3651 init_ssize = growsize;
3652 if (max_ssize < init_ssize + sgp)
3653 init_ssize = max_ssize - sgp;
3654
3655 /* If addr is already mapped, no go */
3656 if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3657 return (KERN_NO_SPACE);
3658
3659 /*
3660 * If we can't accommodate max_ssize in the current mapping, no go.
3661 */
3662 if (prev_entry->next->start < addrbos + max_ssize)
3663 return (KERN_NO_SPACE);
3664
3665 /*
3666 * We initially map a stack of only init_ssize. We will grow as
3667 * needed later. Depending on the orientation of the stack (i.e.
3668 * the grow direction) we either map at the top of the range, the
3669 * bottom of the range or in the middle.
3670 *
3671 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3672 * and cow to be 0. Possibly we should eliminate these as input
3673 * parameters, and just pass these values here in the insert call.
3674 */
3675 if (orient == MAP_STACK_GROWS_DOWN) {
3676 bot = addrbos + max_ssize - init_ssize;
3677 top = bot + init_ssize;
3678 gap_bot = addrbos;
3679 gap_top = bot;
3680 } else /* if (orient == MAP_STACK_GROWS_UP) */ {
3681 bot = addrbos;
3682 top = bot + init_ssize;
3683 gap_bot = top;
3684 gap_top = addrbos + max_ssize;
3685 }
3686 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3687 if (rv != KERN_SUCCESS)
3688 return (rv);
3689 new_entry = prev_entry->next;
3690 KASSERT(new_entry->end == top || new_entry->start == bot,
3691 ("Bad entry start/end for new stack entry"));
3692 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3693 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3694 ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3695 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3696 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3697 ("new entry lacks MAP_ENTRY_GROWS_UP"));
3698 if (gap_bot == gap_top)
3699 return (KERN_SUCCESS);
3700 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3701 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3702 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3703 if (rv == KERN_SUCCESS) {
3704 /*
3705 * Gap can never successfully handle a fault, so
3706 * read-ahead logic is never used for it. Re-use
3707 * next_read of the gap entry to store
3708 * stack_guard_page for vm_map_growstack().
3709 */
3710 if (orient == MAP_STACK_GROWS_DOWN)
3711 new_entry->prev->next_read = sgp;
3712 else
3713 new_entry->next->next_read = sgp;
3714 } else {
3715 (void)vm_map_delete(map, bot, top);
3716 }
3717 return (rv);
3718 }
3719
3720 /*
3721 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we
3722 * successfully grow the stack.
3723 */
3724 static int
3725 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3726 {
3727 vm_map_entry_t stack_entry;
3728 struct proc *p;
3729 struct vmspace *vm;
3730 struct ucred *cred;
3731 vm_offset_t gap_end, gap_start, grow_start;
3732 size_t grow_amount, guard, max_grow;
3733 rlim_t lmemlim, stacklim, vmemlim;
3734 int rv, rv1;
3735 bool gap_deleted, grow_down, is_procstack;
3736 #ifdef notyet
3737 uint64_t limit;
3738 #endif
3739 #ifdef RACCT
3740 int error;
3741 #endif
3742
3743 p = curproc;
3744 vm = p->p_vmspace;
3745
3746 /*
3747 * Disallow stack growth when the access is performed by a
3748 * debugger or AIO daemon. The reason is that the wrong
3749 * resource limits are applied.
3750 */
3751 if (p != initproc && (map != &p->p_vmspace->vm_map ||
3752 p->p_textvp == NULL))
3753 return (KERN_FAILURE);
3754
3755 MPASS(!map->system_map);
3756
3757 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3758 stacklim = lim_cur(curthread, RLIMIT_STACK);
3759 vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3760 retry:
3761 /* If addr is not in a hole for a stack grow area, no need to grow. */
3762 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3763 return (KERN_FAILURE);
3764 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3765 return (KERN_SUCCESS);
3766 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3767 stack_entry = gap_entry->next;
3768 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3769 stack_entry->start != gap_entry->end)
3770 return (KERN_FAILURE);
3771 grow_amount = round_page(stack_entry->start - addr);
3772 grow_down = true;
3773 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3774 stack_entry = gap_entry->prev;
3775 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3776 stack_entry->end != gap_entry->start)
3777 return (KERN_FAILURE);
3778 grow_amount = round_page(addr + 1 - stack_entry->end);
3779 grow_down = false;
3780 } else {
3781 return (KERN_FAILURE);
3782 }
3783 guard = (curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ? 0 :
3784 gap_entry->next_read;
3785 max_grow = gap_entry->end - gap_entry->start;
3786 if (guard > max_grow)
3787 return (KERN_NO_SPACE);
3788 max_grow -= guard;
3789 if (grow_amount > max_grow)
3790 return (KERN_NO_SPACE);
3791
3792 /*
3793 * If this is the main process stack, see if we're over the stack
3794 * limit.
3795 */
3796 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3797 addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3798 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3799 return (KERN_NO_SPACE);
3800
3801 #ifdef RACCT
3802 if (racct_enable) {
3803 PROC_LOCK(p);
3804 if (is_procstack && racct_set(p, RACCT_STACK,
3805 ctob(vm->vm_ssize) + grow_amount)) {
3806 PROC_UNLOCK(p);
3807 return (KERN_NO_SPACE);
3808 }
3809 PROC_UNLOCK(p);
3810 }
3811 #endif
3812
3813 grow_amount = roundup(grow_amount, sgrowsiz);
3814 if (grow_amount > max_grow)
3815 grow_amount = max_grow;
3816 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3817 grow_amount = trunc_page((vm_size_t)stacklim) -
3818 ctob(vm->vm_ssize);
3819 }
3820
3821 #ifdef notyet
3822 PROC_LOCK(p);
3823 limit = racct_get_available(p, RACCT_STACK);
3824 PROC_UNLOCK(p);
3825 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3826 grow_amount = limit - ctob(vm->vm_ssize);
3827 #endif
3828
3829 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3830 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3831 rv = KERN_NO_SPACE;
3832 goto out;
3833 }
3834 #ifdef RACCT
3835 if (racct_enable) {
3836 PROC_LOCK(p);
3837 if (racct_set(p, RACCT_MEMLOCK,
3838 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3839 PROC_UNLOCK(p);
3840 rv = KERN_NO_SPACE;
3841 goto out;
3842 }
3843 PROC_UNLOCK(p);
3844 }
3845 #endif
3846 }
3847
3848 /* If we would blow our VMEM resource limit, no go */
3849 if (map->size + grow_amount > vmemlim) {
3850 rv = KERN_NO_SPACE;
3851 goto out;
3852 }
3853 #ifdef RACCT
3854 if (racct_enable) {
3855 PROC_LOCK(p);
3856 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3857 PROC_UNLOCK(p);
3858 rv = KERN_NO_SPACE;
3859 goto out;
3860 }
3861 PROC_UNLOCK(p);
3862 }
3863 #endif
3864
3865 if (vm_map_lock_upgrade(map)) {
3866 gap_entry = NULL;
3867 vm_map_lock_read(map);
3868 goto retry;
3869 }
3870
3871 if (grow_down) {
3872 grow_start = gap_entry->end - grow_amount;
3873 if (gap_entry->start + grow_amount == gap_entry->end) {
3874 gap_start = gap_entry->start;
3875 gap_end = gap_entry->end;
3876 vm_map_entry_delete(map, gap_entry);
3877 gap_deleted = true;
3878 } else {
3879 MPASS(gap_entry->start < gap_entry->end - grow_amount);
3880 gap_entry->end -= grow_amount;
3881 vm_map_entry_resize_free(map, gap_entry);
3882 gap_deleted = false;
3883 }
3884 rv = vm_map_insert(map, NULL, 0, grow_start,
3885 grow_start + grow_amount,
3886 stack_entry->protection, stack_entry->max_protection,
3887 MAP_STACK_GROWS_DOWN);
3888 if (rv != KERN_SUCCESS) {
3889 if (gap_deleted) {
3890 rv1 = vm_map_insert(map, NULL, 0, gap_start,
3891 gap_end, VM_PROT_NONE, VM_PROT_NONE,
3892 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3893 MPASS(rv1 == KERN_SUCCESS);
3894 } else {
3895 gap_entry->end += grow_amount;
3896 vm_map_entry_resize_free(map, gap_entry);
3897 }
3898 }
3899 } else {
3900 grow_start = stack_entry->end;
3901 cred = stack_entry->cred;
3902 if (cred == NULL && stack_entry->object.vm_object != NULL)
3903 cred = stack_entry->object.vm_object->cred;
3904 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3905 rv = KERN_NO_SPACE;
3906 /* Grow the underlying object if applicable. */
3907 else if (stack_entry->object.vm_object == NULL ||
3908 vm_object_coalesce(stack_entry->object.vm_object,
3909 stack_entry->offset,
3910 (vm_size_t)(stack_entry->end - stack_entry->start),
3911 (vm_size_t)grow_amount, cred != NULL)) {
3912 if (gap_entry->start + grow_amount == gap_entry->end)
3913 vm_map_entry_delete(map, gap_entry);
3914 else
3915 gap_entry->start += grow_amount;
3916 stack_entry->end += grow_amount;
3917 map->size += grow_amount;
3918 vm_map_entry_resize_free(map, stack_entry);
3919 rv = KERN_SUCCESS;
3920 } else
3921 rv = KERN_FAILURE;
3922 }
3923 if (rv == KERN_SUCCESS && is_procstack)
3924 vm->vm_ssize += btoc(grow_amount);
3925
3926 /*
3927 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3928 */
3929 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3930 vm_map_unlock(map);
3931 vm_map_wire(map, grow_start, grow_start + grow_amount,
3932 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3933 vm_map_lock_read(map);
3934 } else
3935 vm_map_lock_downgrade(map);
3936
3937 out:
3938 #ifdef RACCT
3939 if (racct_enable && rv != KERN_SUCCESS) {
3940 PROC_LOCK(p);
3941 error = racct_set(p, RACCT_VMEM, map->size);
3942 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3943 if (!old_mlock) {
3944 error = racct_set(p, RACCT_MEMLOCK,
3945 ptoa(pmap_wired_count(map->pmap)));
3946 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3947 }
3948 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3949 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3950 PROC_UNLOCK(p);
3951 }
3952 #endif
3953
3954 return (rv);
3955 }
3956
3957 /*
3958 * Unshare the specified VM space for exec. If other processes are
3959 * mapped to it, then create a new one. The new vmspace is null.
3960 */
3961 int
3962 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3963 {
3964 struct vmspace *oldvmspace = p->p_vmspace;
3965 struct vmspace *newvmspace;
3966
3967 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3968 ("vmspace_exec recursed"));
3969 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
3970 if (newvmspace == NULL)
3971 return (ENOMEM);
3972 newvmspace->vm_swrss = oldvmspace->vm_swrss;
3973 /*
3974 * This code is written like this for prototype purposes. The
3975 * goal is to avoid running down the vmspace here, but let the
3976 * other process's that are still using the vmspace to finally
3977 * run it down. Even though there is little or no chance of blocking
3978 * here, it is a good idea to keep this form for future mods.
3979 */
3980 PROC_VMSPACE_LOCK(p);
3981 p->p_vmspace = newvmspace;
3982 PROC_VMSPACE_UNLOCK(p);
3983 if (p == curthread->td_proc)
3984 pmap_activate(curthread);
3985 curthread->td_pflags |= TDP_EXECVMSPC;
3986 return (0);
3987 }
3988
3989 /*
3990 * Unshare the specified VM space for forcing COW. This
3991 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3992 */
3993 int
3994 vmspace_unshare(struct proc *p)
3995 {
3996 struct vmspace *oldvmspace = p->p_vmspace;
3997 struct vmspace *newvmspace;
3998 vm_ooffset_t fork_charge;
3999
4000 if (oldvmspace->vm_refcnt == 1)
4001 return (0);
4002 fork_charge = 0;
4003 newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4004 if (newvmspace == NULL)
4005 return (ENOMEM);
4006 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4007 vmspace_free(newvmspace);
4008 return (ENOMEM);
4009 }
4010 PROC_VMSPACE_LOCK(p);
4011 p->p_vmspace = newvmspace;
4012 PROC_VMSPACE_UNLOCK(p);
4013 if (p == curthread->td_proc)
4014 pmap_activate(curthread);
4015 vmspace_free(oldvmspace);
4016 return (0);
4017 }
4018
4019 /*
4020 * vm_map_lookup:
4021 *
4022 * Finds the VM object, offset, and
4023 * protection for a given virtual address in the
4024 * specified map, assuming a page fault of the
4025 * type specified.
4026 *
4027 * Leaves the map in question locked for read; return
4028 * values are guaranteed until a vm_map_lookup_done
4029 * call is performed. Note that the map argument
4030 * is in/out; the returned map must be used in
4031 * the call to vm_map_lookup_done.
4032 *
4033 * A handle (out_entry) is returned for use in
4034 * vm_map_lookup_done, to make that fast.
4035 *
4036 * If a lookup is requested with "write protection"
4037 * specified, the map may be changed to perform virtual
4038 * copying operations, although the data referenced will
4039 * remain the same.
4040 */
4041 int
4042 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
4043 vm_offset_t vaddr,
4044 vm_prot_t fault_typea,
4045 vm_map_entry_t *out_entry, /* OUT */
4046 vm_object_t *object, /* OUT */
4047 vm_pindex_t *pindex, /* OUT */
4048 vm_prot_t *out_prot, /* OUT */
4049 boolean_t *wired) /* OUT */
4050 {
4051 vm_map_entry_t entry;
4052 vm_map_t map = *var_map;
4053 vm_prot_t prot;
4054 vm_prot_t fault_type = fault_typea;
4055 vm_object_t eobject;
4056 vm_size_t size;
4057 struct ucred *cred;
4058
4059 RetryLookup:
4060
4061 vm_map_lock_read(map);
4062
4063 RetryLookupLocked:
4064 /*
4065 * Lookup the faulting address.
4066 */
4067 if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4068 vm_map_unlock_read(map);
4069 return (KERN_INVALID_ADDRESS);
4070 }
4071
4072 entry = *out_entry;
4073
4074 /*
4075 * Handle submaps.
4076 */
4077 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4078 vm_map_t old_map = map;
4079
4080 *var_map = map = entry->object.sub_map;
4081 vm_map_unlock_read(old_map);
4082 goto RetryLookup;
4083 }
4084
4085 /*
4086 * Check whether this task is allowed to have this page.
4087 */
4088 prot = entry->protection;
4089 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4090 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4091 if (prot == VM_PROT_NONE && map != kernel_map &&
4092 (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4093 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4094 MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4095 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4096 goto RetryLookupLocked;
4097 }
4098 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4099 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4100 vm_map_unlock_read(map);
4101 return (KERN_PROTECTION_FAILURE);
4102 }
4103 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4104 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4105 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4106 ("entry %p flags %x", entry, entry->eflags));
4107 if ((fault_typea & VM_PROT_COPY) != 0 &&
4108 (entry->max_protection & VM_PROT_WRITE) == 0 &&
4109 (entry->eflags & MAP_ENTRY_COW) == 0) {
4110 vm_map_unlock_read(map);
4111 return (KERN_PROTECTION_FAILURE);
4112 }
4113
4114 /*
4115 * If this page is not pageable, we have to get it for all possible
4116 * accesses.
4117 */
4118 *wired = (entry->wired_count != 0);
4119 if (*wired)
4120 fault_type = entry->protection;
4121 size = entry->end - entry->start;
4122 /*
4123 * If the entry was copy-on-write, we either ...
4124 */
4125 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4126 /*
4127 * If we want to write the page, we may as well handle that
4128 * now since we've got the map locked.
4129 *
4130 * If we don't need to write the page, we just demote the
4131 * permissions allowed.
4132 */
4133 if ((fault_type & VM_PROT_WRITE) != 0 ||
4134 (fault_typea & VM_PROT_COPY) != 0) {
4135 /*
4136 * Make a new object, and place it in the object
4137 * chain. Note that no new references have appeared
4138 * -- one just moved from the map to the new
4139 * object.
4140 */
4141 if (vm_map_lock_upgrade(map))
4142 goto RetryLookup;
4143
4144 if (entry->cred == NULL) {
4145 /*
4146 * The debugger owner is charged for
4147 * the memory.
4148 */
4149 cred = curthread->td_ucred;
4150 crhold(cred);
4151 if (!swap_reserve_by_cred(size, cred)) {
4152 crfree(cred);
4153 vm_map_unlock(map);
4154 return (KERN_RESOURCE_SHORTAGE);
4155 }
4156 entry->cred = cred;
4157 }
4158 vm_object_shadow(&entry->object.vm_object,
4159 &entry->offset, size);
4160 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4161 eobject = entry->object.vm_object;
4162 if (eobject->cred != NULL) {
4163 /*
4164 * The object was not shadowed.
4165 */
4166 swap_release_by_cred(size, entry->cred);
4167 crfree(entry->cred);
4168 entry->cred = NULL;
4169 } else if (entry->cred != NULL) {
4170 VM_OBJECT_WLOCK(eobject);
4171 eobject->cred = entry->cred;
4172 eobject->charge = size;
4173 VM_OBJECT_WUNLOCK(eobject);
4174 entry->cred = NULL;
4175 }
4176
4177 vm_map_lock_downgrade(map);
4178 } else {
4179 /*
4180 * We're attempting to read a copy-on-write page --
4181 * don't allow writes.
4182 */
4183 prot &= ~VM_PROT_WRITE;
4184 }
4185 }
4186
4187 /*
4188 * Create an object if necessary.
4189 */
4190 if (entry->object.vm_object == NULL &&
4191 !map->system_map) {
4192 if (vm_map_lock_upgrade(map))
4193 goto RetryLookup;
4194 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4195 atop(size));
4196 entry->offset = 0;
4197 if (entry->cred != NULL) {
4198 VM_OBJECT_WLOCK(entry->object.vm_object);
4199 entry->object.vm_object->cred = entry->cred;
4200 entry->object.vm_object->charge = size;
4201 VM_OBJECT_WUNLOCK(entry->object.vm_object);
4202 entry->cred = NULL;
4203 }
4204 vm_map_lock_downgrade(map);
4205 }
4206
4207 /*
4208 * Return the object/offset from this entry. If the entry was
4209 * copy-on-write or empty, it has been fixed up.
4210 */
4211 *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4212 *object = entry->object.vm_object;
4213
4214 *out_prot = prot;
4215 return (KERN_SUCCESS);
4216 }
4217
4218 /*
4219 * vm_map_lookup_locked:
4220 *
4221 * Lookup the faulting address. A version of vm_map_lookup that returns
4222 * KERN_FAILURE instead of blocking on map lock or memory allocation.
4223 */
4224 int
4225 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */
4226 vm_offset_t vaddr,
4227 vm_prot_t fault_typea,
4228 vm_map_entry_t *out_entry, /* OUT */
4229 vm_object_t *object, /* OUT */
4230 vm_pindex_t *pindex, /* OUT */
4231 vm_prot_t *out_prot, /* OUT */
4232 boolean_t *wired) /* OUT */
4233 {
4234 vm_map_entry_t entry;
4235 vm_map_t map = *var_map;
4236 vm_prot_t prot;
4237 vm_prot_t fault_type = fault_typea;
4238
4239 /*
4240 * Lookup the faulting address.
4241 */
4242 if (!vm_map_lookup_entry(map, vaddr, out_entry))
4243 return (KERN_INVALID_ADDRESS);
4244
4245 entry = *out_entry;
4246
4247 /*
4248 * Fail if the entry refers to a submap.
4249 */
4250 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4251 return (KERN_FAILURE);
4252
4253 /*
4254 * Check whether this task is allowed to have this page.
4255 */
4256 prot = entry->protection;
4257 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4258 if ((fault_type & prot) != fault_type)
4259 return (KERN_PROTECTION_FAILURE);
4260
4261 /*
4262 * If this page is not pageable, we have to get it for all possible
4263 * accesses.
4264 */
4265 *wired = (entry->wired_count != 0);
4266 if (*wired)
4267 fault_type = entry->protection;
4268
4269 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4270 /*
4271 * Fail if the entry was copy-on-write for a write fault.
4272 */
4273 if (fault_type & VM_PROT_WRITE)
4274 return (KERN_FAILURE);
4275 /*
4276 * We're attempting to read a copy-on-write page --
4277 * don't allow writes.
4278 */
4279 prot &= ~VM_PROT_WRITE;
4280 }
4281
4282 /*
4283 * Fail if an object should be created.
4284 */
4285 if (entry->object.vm_object == NULL && !map->system_map)
4286 return (KERN_FAILURE);
4287
4288 /*
4289 * Return the object/offset from this entry. If the entry was
4290 * copy-on-write or empty, it has been fixed up.
4291 */
4292 *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4293 *object = entry->object.vm_object;
4294
4295 *out_prot = prot;
4296 return (KERN_SUCCESS);
4297 }
4298
4299 /*
4300 * vm_map_lookup_done:
4301 *
4302 * Releases locks acquired by a vm_map_lookup
4303 * (according to the handle returned by that lookup).
4304 */
4305 void
4306 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4307 {
4308 /*
4309 * Unlock the main-level map
4310 */
4311 vm_map_unlock_read(map);
4312 }
4313
4314 vm_offset_t
4315 vm_map_max_KBI(const struct vm_map *map)
4316 {
4317
4318 return (vm_map_max(map));
4319 }
4320
4321 vm_offset_t
4322 vm_map_min_KBI(const struct vm_map *map)
4323 {
4324
4325 return (vm_map_min(map));
4326 }
4327
4328 pmap_t
4329 vm_map_pmap_KBI(vm_map_t map)
4330 {
4331
4332 return (map->pmap);
4333 }
4334
4335 #include "opt_ddb.h"
4336 #ifdef DDB
4337 #include <sys/kernel.h>
4338
4339 #include <ddb/ddb.h>
4340
4341 static void
4342 vm_map_print(vm_map_t map)
4343 {
4344 vm_map_entry_t entry;
4345
4346 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4347 (void *)map,
4348 (void *)map->pmap, map->nentries, map->timestamp);
4349
4350 db_indent += 2;
4351 for (entry = map->header.next; entry != &map->header;
4352 entry = entry->next) {
4353 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4354 (void *)entry, (void *)entry->start, (void *)entry->end,
4355 entry->eflags);
4356 {
4357 static char *inheritance_name[4] =
4358 {"share", "copy", "none", "donate_copy"};
4359
4360 db_iprintf(" prot=%x/%x/%s",
4361 entry->protection,
4362 entry->max_protection,
4363 inheritance_name[(int)(unsigned char)entry->inheritance]);
4364 if (entry->wired_count != 0)
4365 db_printf(", wired");
4366 }
4367 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4368 db_printf(", share=%p, offset=0x%jx\n",
4369 (void *)entry->object.sub_map,
4370 (uintmax_t)entry->offset);
4371 if ((entry->prev == &map->header) ||
4372 (entry->prev->object.sub_map !=
4373 entry->object.sub_map)) {
4374 db_indent += 2;
4375 vm_map_print((vm_map_t)entry->object.sub_map);
4376 db_indent -= 2;
4377 }
4378 } else {
4379 if (entry->cred != NULL)
4380 db_printf(", ruid %d", entry->cred->cr_ruid);
4381 db_printf(", object=%p, offset=0x%jx",
4382 (void *)entry->object.vm_object,
4383 (uintmax_t)entry->offset);
4384 if (entry->object.vm_object && entry->object.vm_object->cred)
4385 db_printf(", obj ruid %d charge %jx",
4386 entry->object.vm_object->cred->cr_ruid,
4387 (uintmax_t)entry->object.vm_object->charge);
4388 if (entry->eflags & MAP_ENTRY_COW)
4389 db_printf(", copy (%s)",
4390 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4391 db_printf("\n");
4392
4393 if ((entry->prev == &map->header) ||
4394 (entry->prev->object.vm_object !=
4395 entry->object.vm_object)) {
4396 db_indent += 2;
4397 vm_object_print((db_expr_t)(intptr_t)
4398 entry->object.vm_object,
4399 0, 0, (char *)0);
4400 db_indent -= 2;
4401 }
4402 }
4403 }
4404 db_indent -= 2;
4405 }
4406
4407 DB_SHOW_COMMAND(map, map)
4408 {
4409
4410 if (!have_addr) {
4411 db_printf("usage: show map <addr>\n");
4412 return;
4413 }
4414 vm_map_print((vm_map_t)addr);
4415 }
4416
4417 DB_SHOW_COMMAND(procvm, procvm)
4418 {
4419 struct proc *p;
4420
4421 if (have_addr) {
4422 p = db_lookup_proc(addr);
4423 } else {
4424 p = curproc;
4425 }
4426
4427 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4428 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4429 (void *)vmspace_pmap(p->p_vmspace));
4430
4431 vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4432 }
4433
4434 #endif /* DDB */
Cache object: 8db99337125bfc1b609035691bef8e2f
|