The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_map.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 /*
   62  *      Virtual memory mapping module.
   63  */
   64 
   65 #include <sys/cdefs.h>
   66 __FBSDID("$FreeBSD$");
   67 
   68 #include <sys/param.h>
   69 #include <sys/systm.h>
   70 #include <sys/kernel.h>
   71 #include <sys/ktr.h>
   72 #include <sys/lock.h>
   73 #include <sys/mutex.h>
   74 #include <sys/proc.h>
   75 #include <sys/vmmeter.h>
   76 #include <sys/mman.h>
   77 #include <sys/vnode.h>
   78 #include <sys/racct.h>
   79 #include <sys/resourcevar.h>
   80 #include <sys/rwlock.h>
   81 #include <sys/file.h>
   82 #include <sys/sysctl.h>
   83 #include <sys/sysent.h>
   84 #include <sys/shm.h>
   85 
   86 #include <vm/vm.h>
   87 #include <vm/vm_param.h>
   88 #include <vm/pmap.h>
   89 #include <vm/vm_map.h>
   90 #include <vm/vm_page.h>
   91 #include <vm/vm_object.h>
   92 #include <vm/vm_pager.h>
   93 #include <vm/vm_kern.h>
   94 #include <vm/vm_extern.h>
   95 #include <vm/vnode_pager.h>
   96 #include <vm/swap_pager.h>
   97 #include <vm/uma.h>
   98 
   99 /*
  100  *      Virtual memory maps provide for the mapping, protection,
  101  *      and sharing of virtual memory objects.  In addition,
  102  *      this module provides for an efficient virtual copy of
  103  *      memory from one map to another.
  104  *
  105  *      Synchronization is required prior to most operations.
  106  *
  107  *      Maps consist of an ordered doubly-linked list of simple
  108  *      entries; a self-adjusting binary search tree of these
  109  *      entries is used to speed up lookups.
  110  *
  111  *      Since portions of maps are specified by start/end addresses,
  112  *      which may not align with existing map entries, all
  113  *      routines merely "clip" entries to these start/end values.
  114  *      [That is, an entry is split into two, bordering at a
  115  *      start or end value.]  Note that these clippings may not
  116  *      always be necessary (as the two resulting entries are then
  117  *      not changed); however, the clipping is done for convenience.
  118  *
  119  *      As mentioned above, virtual copy operations are performed
  120  *      by copying VM object references from one map to
  121  *      another, and then marking both regions as copy-on-write.
  122  */
  123 
  124 static struct mtx map_sleep_mtx;
  125 static uma_zone_t mapentzone;
  126 static uma_zone_t kmapentzone;
  127 static uma_zone_t mapzone;
  128 static uma_zone_t vmspace_zone;
  129 static int vmspace_zinit(void *mem, int size, int flags);
  130 static int vm_map_zinit(void *mem, int ize, int flags);
  131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
  132     vm_offset_t max);
  133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
  134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
  135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
  136 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
  137     vm_map_entry_t gap_entry);
  138 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
  139     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
  140 #ifdef INVARIANTS
  141 static void vm_map_zdtor(void *mem, int size, void *arg);
  142 static void vmspace_zdtor(void *mem, int size, void *arg);
  143 #endif
  144 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
  145     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
  146     int cow);
  147 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
  148     vm_offset_t failed_addr);
  149 
  150 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
  151     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
  152      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
  153 
  154 /* 
  155  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
  156  * stable.
  157  */
  158 #define PROC_VMSPACE_LOCK(p) do { } while (0)
  159 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
  160 
  161 /*
  162  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
  163  *
  164  *      Asserts that the starting and ending region
  165  *      addresses fall within the valid range of the map.
  166  */
  167 #define VM_MAP_RANGE_CHECK(map, start, end)             \
  168                 {                                       \
  169                 if (start < vm_map_min(map))            \
  170                         start = vm_map_min(map);        \
  171                 if (end > vm_map_max(map))              \
  172                         end = vm_map_max(map);          \
  173                 if (start > end)                        \
  174                         start = end;                    \
  175                 }
  176 
  177 /*
  178  *      vm_map_startup:
  179  *
  180  *      Initialize the vm_map module.  Must be called before
  181  *      any other vm_map routines.
  182  *
  183  *      Map and entry structures are allocated from the general
  184  *      purpose memory pool with some exceptions:
  185  *
  186  *      - The kernel map and kmem submap are allocated statically.
  187  *      - Kernel map entries are allocated out of a static pool.
  188  *
  189  *      These restrictions are necessary since malloc() uses the
  190  *      maps and requires map entries.
  191  */
  192 
  193 void
  194 vm_map_startup(void)
  195 {
  196         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
  197         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
  198 #ifdef INVARIANTS
  199             vm_map_zdtor,
  200 #else
  201             NULL,
  202 #endif
  203             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  204         uma_prealloc(mapzone, MAX_KMAP);
  205         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
  206             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
  207             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
  208         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
  209             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  210         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
  211 #ifdef INVARIANTS
  212             vmspace_zdtor,
  213 #else
  214             NULL,
  215 #endif
  216             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  217 }
  218 
  219 static int
  220 vmspace_zinit(void *mem, int size, int flags)
  221 {
  222         struct vmspace *vm;
  223 
  224         vm = (struct vmspace *)mem;
  225 
  226         vm->vm_map.pmap = NULL;
  227         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
  228         PMAP_LOCK_INIT(vmspace_pmap(vm));
  229         return (0);
  230 }
  231 
  232 static int
  233 vm_map_zinit(void *mem, int size, int flags)
  234 {
  235         vm_map_t map;
  236 
  237         map = (vm_map_t)mem;
  238         memset(map, 0, sizeof(*map));
  239         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
  240         sx_init(&map->lock, "vm map (user)");
  241         return (0);
  242 }
  243 
  244 #ifdef INVARIANTS
  245 static void
  246 vmspace_zdtor(void *mem, int size, void *arg)
  247 {
  248         struct vmspace *vm;
  249 
  250         vm = (struct vmspace *)mem;
  251 
  252         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
  253 }
  254 static void
  255 vm_map_zdtor(void *mem, int size, void *arg)
  256 {
  257         vm_map_t map;
  258 
  259         map = (vm_map_t)mem;
  260         KASSERT(map->nentries == 0,
  261             ("map %p nentries == %d on free.",
  262             map, map->nentries));
  263         KASSERT(map->size == 0,
  264             ("map %p size == %lu on free.",
  265             map, (unsigned long)map->size));
  266 }
  267 #endif  /* INVARIANTS */
  268 
  269 /*
  270  * Allocate a vmspace structure, including a vm_map and pmap,
  271  * and initialize those structures.  The refcnt is set to 1.
  272  *
  273  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
  274  */
  275 struct vmspace *
  276 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
  277 {
  278         struct vmspace *vm;
  279 
  280         vm = uma_zalloc(vmspace_zone, M_WAITOK);
  281         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
  282         if (!pinit(vmspace_pmap(vm))) {
  283                 uma_zfree(vmspace_zone, vm);
  284                 return (NULL);
  285         }
  286         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
  287         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
  288         vm->vm_refcnt = 1;
  289         vm->vm_shm = NULL;
  290         vm->vm_swrss = 0;
  291         vm->vm_tsize = 0;
  292         vm->vm_dsize = 0;
  293         vm->vm_ssize = 0;
  294         vm->vm_taddr = 0;
  295         vm->vm_daddr = 0;
  296         vm->vm_maxsaddr = 0;
  297         return (vm);
  298 }
  299 
  300 #ifdef RACCT
  301 static void
  302 vmspace_container_reset(struct proc *p)
  303 {
  304 
  305         PROC_LOCK(p);
  306         racct_set(p, RACCT_DATA, 0);
  307         racct_set(p, RACCT_STACK, 0);
  308         racct_set(p, RACCT_RSS, 0);
  309         racct_set(p, RACCT_MEMLOCK, 0);
  310         racct_set(p, RACCT_VMEM, 0);
  311         PROC_UNLOCK(p);
  312 }
  313 #endif
  314 
  315 static inline void
  316 vmspace_dofree(struct vmspace *vm)
  317 {
  318 
  319         CTR1(KTR_VM, "vmspace_free: %p", vm);
  320 
  321         /*
  322          * Make sure any SysV shm is freed, it might not have been in
  323          * exit1().
  324          */
  325         shmexit(vm);
  326 
  327         /*
  328          * Lock the map, to wait out all other references to it.
  329          * Delete all of the mappings and pages they hold, then call
  330          * the pmap module to reclaim anything left.
  331          */
  332         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
  333             vm_map_max(&vm->vm_map));
  334 
  335         pmap_release(vmspace_pmap(vm));
  336         vm->vm_map.pmap = NULL;
  337         uma_zfree(vmspace_zone, vm);
  338 }
  339 
  340 void
  341 vmspace_free(struct vmspace *vm)
  342 {
  343 
  344         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
  345             "vmspace_free() called");
  346 
  347         if (vm->vm_refcnt == 0)
  348                 panic("vmspace_free: attempt to free already freed vmspace");
  349 
  350         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
  351                 vmspace_dofree(vm);
  352 }
  353 
  354 void
  355 vmspace_exitfree(struct proc *p)
  356 {
  357         struct vmspace *vm;
  358 
  359         PROC_VMSPACE_LOCK(p);
  360         vm = p->p_vmspace;
  361         p->p_vmspace = NULL;
  362         PROC_VMSPACE_UNLOCK(p);
  363         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
  364         vmspace_free(vm);
  365 }
  366 
  367 void
  368 vmspace_exit(struct thread *td)
  369 {
  370         int refcnt;
  371         struct vmspace *vm;
  372         struct proc *p;
  373 
  374         /*
  375          * Release user portion of address space.
  376          * This releases references to vnodes,
  377          * which could cause I/O if the file has been unlinked.
  378          * Need to do this early enough that we can still sleep.
  379          *
  380          * The last exiting process to reach this point releases as
  381          * much of the environment as it can. vmspace_dofree() is the
  382          * slower fallback in case another process had a temporary
  383          * reference to the vmspace.
  384          */
  385 
  386         p = td->td_proc;
  387         vm = p->p_vmspace;
  388         atomic_add_int(&vmspace0.vm_refcnt, 1);
  389         do {
  390                 refcnt = vm->vm_refcnt;
  391                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
  392                         /* Switch now since other proc might free vmspace */
  393                         PROC_VMSPACE_LOCK(p);
  394                         p->p_vmspace = &vmspace0;
  395                         PROC_VMSPACE_UNLOCK(p);
  396                         pmap_activate(td);
  397                 }
  398         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
  399         if (refcnt == 1) {
  400                 if (p->p_vmspace != vm) {
  401                         /* vmspace not yet freed, switch back */
  402                         PROC_VMSPACE_LOCK(p);
  403                         p->p_vmspace = vm;
  404                         PROC_VMSPACE_UNLOCK(p);
  405                         pmap_activate(td);
  406                 }
  407                 pmap_remove_pages(vmspace_pmap(vm));
  408                 /* Switch now since this proc will free vmspace */
  409                 PROC_VMSPACE_LOCK(p);
  410                 p->p_vmspace = &vmspace0;
  411                 PROC_VMSPACE_UNLOCK(p);
  412                 pmap_activate(td);
  413                 vmspace_dofree(vm);
  414         }
  415 #ifdef RACCT
  416         if (racct_enable)
  417                 vmspace_container_reset(p);
  418 #endif
  419 }
  420 
  421 /* Acquire reference to vmspace owned by another process. */
  422 
  423 struct vmspace *
  424 vmspace_acquire_ref(struct proc *p)
  425 {
  426         struct vmspace *vm;
  427         int refcnt;
  428 
  429         PROC_VMSPACE_LOCK(p);
  430         vm = p->p_vmspace;
  431         if (vm == NULL) {
  432                 PROC_VMSPACE_UNLOCK(p);
  433                 return (NULL);
  434         }
  435         do {
  436                 refcnt = vm->vm_refcnt;
  437                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
  438                         PROC_VMSPACE_UNLOCK(p);
  439                         return (NULL);
  440                 }
  441         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
  442         if (vm != p->p_vmspace) {
  443                 PROC_VMSPACE_UNLOCK(p);
  444                 vmspace_free(vm);
  445                 return (NULL);
  446         }
  447         PROC_VMSPACE_UNLOCK(p);
  448         return (vm);
  449 }
  450 
  451 /*
  452  * Switch between vmspaces in an AIO kernel process.
  453  *
  454  * The new vmspace is either the vmspace of a user process obtained
  455  * from an active AIO request or the initial vmspace of the AIO kernel
  456  * process (when it is idling).  Because user processes will block to
  457  * drain any active AIO requests before proceeding in exit() or
  458  * execve(), the reference count for vmspaces from AIO requests can
  459  * never be 0.  Similarly, AIO kernel processes hold an extra
  460  * reference on their initial vmspace for the life of the process.  As
  461  * a result, the 'newvm' vmspace always has a non-zero reference
  462  * count.  This permits an additional reference on 'newvm' to be
  463  * acquired via a simple atomic increment rather than the loop in
  464  * vmspace_acquire_ref() above.
  465  */
  466 void
  467 vmspace_switch_aio(struct vmspace *newvm)
  468 {
  469         struct vmspace *oldvm;
  470 
  471         /* XXX: Need some way to assert that this is an aio daemon. */
  472 
  473         KASSERT(newvm->vm_refcnt > 0,
  474             ("vmspace_switch_aio: newvm unreferenced"));
  475 
  476         oldvm = curproc->p_vmspace;
  477         if (oldvm == newvm)
  478                 return;
  479 
  480         /*
  481          * Point to the new address space and refer to it.
  482          */
  483         curproc->p_vmspace = newvm;
  484         atomic_add_int(&newvm->vm_refcnt, 1);
  485 
  486         /* Activate the new mapping. */
  487         pmap_activate(curthread);
  488 
  489         vmspace_free(oldvm);
  490 }
  491 
  492 void
  493 _vm_map_lock(vm_map_t map, const char *file, int line)
  494 {
  495 
  496         if (map->system_map)
  497                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
  498         else
  499                 sx_xlock_(&map->lock, file, line);
  500         map->timestamp++;
  501 }
  502 
  503 static void
  504 vm_map_process_deferred(void)
  505 {
  506         struct thread *td;
  507         vm_map_entry_t entry, next;
  508         vm_object_t object;
  509 
  510         td = curthread;
  511         entry = td->td_map_def_user;
  512         td->td_map_def_user = NULL;
  513         while (entry != NULL) {
  514                 next = entry->next;
  515                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
  516                         /*
  517                          * Decrement the object's writemappings and
  518                          * possibly the vnode's v_writecount.
  519                          */
  520                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
  521                             ("Submap with writecount"));
  522                         object = entry->object.vm_object;
  523                         KASSERT(object != NULL, ("No object for writecount"));
  524                         vnode_pager_release_writecount(object, entry->start,
  525                             entry->end);
  526                 }
  527                 vm_map_entry_deallocate(entry, FALSE);
  528                 entry = next;
  529         }
  530 }
  531 
  532 void
  533 _vm_map_unlock(vm_map_t map, const char *file, int line)
  534 {
  535 
  536         if (map->system_map)
  537                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
  538         else {
  539                 sx_xunlock_(&map->lock, file, line);
  540                 vm_map_process_deferred();
  541         }
  542 }
  543 
  544 void
  545 _vm_map_lock_read(vm_map_t map, const char *file, int line)
  546 {
  547 
  548         if (map->system_map)
  549                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
  550         else
  551                 sx_slock_(&map->lock, file, line);
  552 }
  553 
  554 void
  555 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
  556 {
  557 
  558         if (map->system_map)
  559                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
  560         else {
  561                 sx_sunlock_(&map->lock, file, line);
  562                 vm_map_process_deferred();
  563         }
  564 }
  565 
  566 int
  567 _vm_map_trylock(vm_map_t map, const char *file, int line)
  568 {
  569         int error;
  570 
  571         error = map->system_map ?
  572             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
  573             !sx_try_xlock_(&map->lock, file, line);
  574         if (error == 0)
  575                 map->timestamp++;
  576         return (error == 0);
  577 }
  578 
  579 int
  580 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
  581 {
  582         int error;
  583 
  584         error = map->system_map ?
  585             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
  586             !sx_try_slock_(&map->lock, file, line);
  587         return (error == 0);
  588 }
  589 
  590 /*
  591  *      _vm_map_lock_upgrade:   [ internal use only ]
  592  *
  593  *      Tries to upgrade a read (shared) lock on the specified map to a write
  594  *      (exclusive) lock.  Returns the value "" if the upgrade succeeds and a
  595  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
  596  *      returned without a read or write lock held.
  597  *
  598  *      Requires that the map be read locked.
  599  */
  600 int
  601 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
  602 {
  603         unsigned int last_timestamp;
  604 
  605         if (map->system_map) {
  606                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
  607         } else {
  608                 if (!sx_try_upgrade_(&map->lock, file, line)) {
  609                         last_timestamp = map->timestamp;
  610                         sx_sunlock_(&map->lock, file, line);
  611                         vm_map_process_deferred();
  612                         /*
  613                          * If the map's timestamp does not change while the
  614                          * map is unlocked, then the upgrade succeeds.
  615                          */
  616                         sx_xlock_(&map->lock, file, line);
  617                         if (last_timestamp != map->timestamp) {
  618                                 sx_xunlock_(&map->lock, file, line);
  619                                 return (1);
  620                         }
  621                 }
  622         }
  623         map->timestamp++;
  624         return (0);
  625 }
  626 
  627 void
  628 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
  629 {
  630 
  631         if (map->system_map) {
  632                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
  633         } else
  634                 sx_downgrade_(&map->lock, file, line);
  635 }
  636 
  637 /*
  638  *      vm_map_locked:
  639  *
  640  *      Returns a non-zero value if the caller holds a write (exclusive) lock
  641  *      on the specified map and the value "" otherwise.
  642  */
  643 int
  644 vm_map_locked(vm_map_t map)
  645 {
  646 
  647         if (map->system_map)
  648                 return (mtx_owned(&map->system_mtx));
  649         else
  650                 return (sx_xlocked(&map->lock));
  651 }
  652 
  653 #ifdef INVARIANTS
  654 static void
  655 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
  656 {
  657 
  658         if (map->system_map)
  659                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
  660         else
  661                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
  662 }
  663 
  664 #define VM_MAP_ASSERT_LOCKED(map) \
  665     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
  666 #else
  667 #define VM_MAP_ASSERT_LOCKED(map)
  668 #endif
  669 
  670 /*
  671  *      _vm_map_unlock_and_wait:
  672  *
  673  *      Atomically releases the lock on the specified map and puts the calling
  674  *      thread to sleep.  The calling thread will remain asleep until either
  675  *      vm_map_wakeup() is performed on the map or the specified timeout is
  676  *      exceeded.
  677  *
  678  *      WARNING!  This function does not perform deferred deallocations of
  679  *      objects and map entries.  Therefore, the calling thread is expected to
  680  *      reacquire the map lock after reawakening and later perform an ordinary
  681  *      unlock operation, such as vm_map_unlock(), before completing its
  682  *      operation on the map.
  683  */
  684 int
  685 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
  686 {
  687 
  688         mtx_lock(&map_sleep_mtx);
  689         if (map->system_map)
  690                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
  691         else
  692                 sx_xunlock_(&map->lock, file, line);
  693         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
  694             timo));
  695 }
  696 
  697 /*
  698  *      vm_map_wakeup:
  699  *
  700  *      Awaken any threads that have slept on the map using
  701  *      vm_map_unlock_and_wait().
  702  */
  703 void
  704 vm_map_wakeup(vm_map_t map)
  705 {
  706 
  707         /*
  708          * Acquire and release map_sleep_mtx to prevent a wakeup()
  709          * from being performed (and lost) between the map unlock
  710          * and the msleep() in _vm_map_unlock_and_wait().
  711          */
  712         mtx_lock(&map_sleep_mtx);
  713         mtx_unlock(&map_sleep_mtx);
  714         wakeup(&map->root);
  715 }
  716 
  717 void
  718 vm_map_busy(vm_map_t map)
  719 {
  720 
  721         VM_MAP_ASSERT_LOCKED(map);
  722         map->busy++;
  723 }
  724 
  725 void
  726 vm_map_unbusy(vm_map_t map)
  727 {
  728 
  729         VM_MAP_ASSERT_LOCKED(map);
  730         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
  731         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
  732                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
  733                 wakeup(&map->busy);
  734         }
  735 }
  736 
  737 void 
  738 vm_map_wait_busy(vm_map_t map)
  739 {
  740 
  741         VM_MAP_ASSERT_LOCKED(map);
  742         while (map->busy) {
  743                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
  744                 if (map->system_map)
  745                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
  746                 else
  747                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
  748         }
  749         map->timestamp++;
  750 }
  751 
  752 long
  753 vmspace_resident_count(struct vmspace *vmspace)
  754 {
  755         return pmap_resident_count(vmspace_pmap(vmspace));
  756 }
  757 
  758 /*
  759  *      vm_map_create:
  760  *
  761  *      Creates and returns a new empty VM map with
  762  *      the given physical map structure, and having
  763  *      the given lower and upper address bounds.
  764  */
  765 vm_map_t
  766 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
  767 {
  768         vm_map_t result;
  769 
  770         result = uma_zalloc(mapzone, M_WAITOK);
  771         CTR1(KTR_VM, "vm_map_create: %p", result);
  772         _vm_map_init(result, pmap, min, max);
  773         return (result);
  774 }
  775 
  776 /*
  777  * Initialize an existing vm_map structure
  778  * such as that in the vmspace structure.
  779  */
  780 static void
  781 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
  782 {
  783 
  784         map->header.next = map->header.prev = &map->header;
  785         map->needs_wakeup = FALSE;
  786         map->system_map = 0;
  787         map->pmap = pmap;
  788         map->header.end = min;
  789         map->header.start = max;
  790         map->flags = 0;
  791         map->root = NULL;
  792         map->timestamp = 0;
  793         map->busy = 0;
  794 }
  795 
  796 void
  797 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
  798 {
  799 
  800         _vm_map_init(map, pmap, min, max);
  801         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
  802         sx_init(&map->lock, "user map");
  803 }
  804 
  805 /*
  806  *      vm_map_entry_dispose:   [ internal use only ]
  807  *
  808  *      Inverse of vm_map_entry_create.
  809  */
  810 static void
  811 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
  812 {
  813         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
  814 }
  815 
  816 /*
  817  *      vm_map_entry_create:    [ internal use only ]
  818  *
  819  *      Allocates a VM map entry for insertion.
  820  *      No entry fields are filled in.
  821  */
  822 static vm_map_entry_t
  823 vm_map_entry_create(vm_map_t map)
  824 {
  825         vm_map_entry_t new_entry;
  826 
  827         if (map->system_map)
  828                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
  829         else
  830                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
  831         if (new_entry == NULL)
  832                 panic("vm_map_entry_create: kernel resources exhausted");
  833         return (new_entry);
  834 }
  835 
  836 /*
  837  *      vm_map_entry_set_behavior:
  838  *
  839  *      Set the expected access behavior, either normal, random, or
  840  *      sequential.
  841  */
  842 static inline void
  843 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
  844 {
  845         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
  846             (behavior & MAP_ENTRY_BEHAV_MASK);
  847 }
  848 
  849 /*
  850  *      vm_map_entry_set_max_free:
  851  *
  852  *      Set the max_free field in a vm_map_entry.
  853  */
  854 static inline void
  855 vm_map_entry_set_max_free(vm_map_entry_t entry)
  856 {
  857 
  858         entry->max_free = entry->adj_free;
  859         if (entry->left != NULL && entry->left->max_free > entry->max_free)
  860                 entry->max_free = entry->left->max_free;
  861         if (entry->right != NULL && entry->right->max_free > entry->max_free)
  862                 entry->max_free = entry->right->max_free;
  863 }
  864 
  865 /*
  866  *      vm_map_entry_splay:
  867  *
  868  *      The Sleator and Tarjan top-down splay algorithm with the
  869  *      following variation.  Max_free must be computed bottom-up, so
  870  *      on the downward pass, maintain the left and right spines in
  871  *      reverse order.  Then, make a second pass up each side to fix
  872  *      the pointers and compute max_free.  The time bound is O(log n)
  873  *      amortized.
  874  *
  875  *      The new root is the vm_map_entry containing "addr", or else an
  876  *      adjacent entry (lower or higher) if addr is not in the tree.
  877  *
  878  *      The map must be locked, and leaves it so.
  879  *
  880  *      Returns: the new root.
  881  */
  882 static vm_map_entry_t
  883 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
  884 {
  885         vm_map_entry_t llist, rlist;
  886         vm_map_entry_t ltree, rtree;
  887         vm_map_entry_t y;
  888 
  889         /* Special case of empty tree. */
  890         if (root == NULL)
  891                 return (root);
  892 
  893         /*
  894          * Pass One: Splay down the tree until we find addr or a NULL
  895          * pointer where addr would go.  llist and rlist are the two
  896          * sides in reverse order (bottom-up), with llist linked by
  897          * the right pointer and rlist linked by the left pointer in
  898          * the vm_map_entry.  Wait until Pass Two to set max_free on
  899          * the two spines.
  900          */
  901         llist = NULL;
  902         rlist = NULL;
  903         for (;;) {
  904                 /* root is never NULL in here. */
  905                 if (addr < root->start) {
  906                         y = root->left;
  907                         if (y == NULL)
  908                                 break;
  909                         if (addr < y->start && y->left != NULL) {
  910                                 /* Rotate right and put y on rlist. */
  911                                 root->left = y->right;
  912                                 y->right = root;
  913                                 vm_map_entry_set_max_free(root);
  914                                 root = y->left;
  915                                 y->left = rlist;
  916                                 rlist = y;
  917                         } else {
  918                                 /* Put root on rlist. */
  919                                 root->left = rlist;
  920                                 rlist = root;
  921                                 root = y;
  922                         }
  923                 } else if (addr >= root->end) {
  924                         y = root->right;
  925                         if (y == NULL)
  926                                 break;
  927                         if (addr >= y->end && y->right != NULL) {
  928                                 /* Rotate left and put y on llist. */
  929                                 root->right = y->left;
  930                                 y->left = root;
  931                                 vm_map_entry_set_max_free(root);
  932                                 root = y->right;
  933                                 y->right = llist;
  934                                 llist = y;
  935                         } else {
  936                                 /* Put root on llist. */
  937                                 root->right = llist;
  938                                 llist = root;
  939                                 root = y;
  940                         }
  941                 } else
  942                         break;
  943         }
  944 
  945         /*
  946          * Pass Two: Walk back up the two spines, flip the pointers
  947          * and set max_free.  The subtrees of the root go at the
  948          * bottom of llist and rlist.
  949          */
  950         ltree = root->left;
  951         while (llist != NULL) {
  952                 y = llist->right;
  953                 llist->right = ltree;
  954                 vm_map_entry_set_max_free(llist);
  955                 ltree = llist;
  956                 llist = y;
  957         }
  958         rtree = root->right;
  959         while (rlist != NULL) {
  960                 y = rlist->left;
  961                 rlist->left = rtree;
  962                 vm_map_entry_set_max_free(rlist);
  963                 rtree = rlist;
  964                 rlist = y;
  965         }
  966 
  967         /*
  968          * Final assembly: add ltree and rtree as subtrees of root.
  969          */
  970         root->left = ltree;
  971         root->right = rtree;
  972         vm_map_entry_set_max_free(root);
  973 
  974         return (root);
  975 }
  976 
  977 /*
  978  *      vm_map_entry_{un,}link:
  979  *
  980  *      Insert/remove entries from maps.
  981  */
  982 static void
  983 vm_map_entry_link(vm_map_t map,
  984                   vm_map_entry_t after_where,
  985                   vm_map_entry_t entry)
  986 {
  987 
  988         CTR4(KTR_VM,
  989             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
  990             map->nentries, entry, after_where);
  991         VM_MAP_ASSERT_LOCKED(map);
  992         KASSERT(after_where->end <= entry->start,
  993             ("vm_map_entry_link: prev end %jx new start %jx overlap",
  994             (uintmax_t)after_where->end, (uintmax_t)entry->start));
  995         KASSERT(entry->end <= after_where->next->start,
  996             ("vm_map_entry_link: new end %jx next start %jx overlap",
  997             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
  998 
  999         map->nentries++;
 1000         entry->prev = after_where;
 1001         entry->next = after_where->next;
 1002         entry->next->prev = entry;
 1003         after_where->next = entry;
 1004 
 1005         if (after_where != &map->header) {
 1006                 if (after_where != map->root)
 1007                         vm_map_entry_splay(after_where->start, map->root);
 1008                 entry->right = after_where->right;
 1009                 entry->left = after_where;
 1010                 after_where->right = NULL;
 1011                 after_where->adj_free = entry->start - after_where->end;
 1012                 vm_map_entry_set_max_free(after_where);
 1013         } else {
 1014                 entry->right = map->root;
 1015                 entry->left = NULL;
 1016         }
 1017         entry->adj_free = entry->next->start - entry->end;
 1018         vm_map_entry_set_max_free(entry);
 1019         map->root = entry;
 1020 }
 1021 
 1022 static void
 1023 vm_map_entry_unlink(vm_map_t map,
 1024                     vm_map_entry_t entry)
 1025 {
 1026         vm_map_entry_t next, prev, root;
 1027 
 1028         VM_MAP_ASSERT_LOCKED(map);
 1029         if (entry != map->root)
 1030                 vm_map_entry_splay(entry->start, map->root);
 1031         if (entry->left == NULL)
 1032                 root = entry->right;
 1033         else {
 1034                 root = vm_map_entry_splay(entry->start, entry->left);
 1035                 root->right = entry->right;
 1036                 root->adj_free = entry->next->start - root->end;
 1037                 vm_map_entry_set_max_free(root);
 1038         }
 1039         map->root = root;
 1040 
 1041         prev = entry->prev;
 1042         next = entry->next;
 1043         next->prev = prev;
 1044         prev->next = next;
 1045         map->nentries--;
 1046         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
 1047             map->nentries, entry);
 1048 }
 1049 
 1050 /*
 1051  *      vm_map_entry_resize_free:
 1052  *
 1053  *      Recompute the amount of free space following a vm_map_entry
 1054  *      and propagate that value up the tree.  Call this function after
 1055  *      resizing a map entry in-place, that is, without a call to
 1056  *      vm_map_entry_link() or _unlink().
 1057  *
 1058  *      The map must be locked, and leaves it so.
 1059  */
 1060 static void
 1061 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
 1062 {
 1063 
 1064         /*
 1065          * Using splay trees without parent pointers, propagating
 1066          * max_free up the tree is done by moving the entry to the
 1067          * root and making the change there.
 1068          */
 1069         if (entry != map->root)
 1070                 map->root = vm_map_entry_splay(entry->start, map->root);
 1071 
 1072         entry->adj_free = entry->next->start - entry->end;
 1073         vm_map_entry_set_max_free(entry);
 1074 }
 1075 
 1076 /*
 1077  *      vm_map_lookup_entry:    [ internal use only ]
 1078  *
 1079  *      Finds the map entry containing (or
 1080  *      immediately preceding) the specified address
 1081  *      in the given map; the entry is returned
 1082  *      in the "entry" parameter.  The boolean
 1083  *      result indicates whether the address is
 1084  *      actually contained in the map.
 1085  */
 1086 boolean_t
 1087 vm_map_lookup_entry(
 1088         vm_map_t map,
 1089         vm_offset_t address,
 1090         vm_map_entry_t *entry)  /* OUT */
 1091 {
 1092         vm_map_entry_t cur;
 1093         boolean_t locked;
 1094 
 1095         /*
 1096          * If the map is empty, then the map entry immediately preceding
 1097          * "address" is the map's header.
 1098          */
 1099         cur = map->root;
 1100         if (cur == NULL)
 1101                 *entry = &map->header;
 1102         else if (address >= cur->start && cur->end > address) {
 1103                 *entry = cur;
 1104                 return (TRUE);
 1105         } else if ((locked = vm_map_locked(map)) ||
 1106             sx_try_upgrade(&map->lock)) {
 1107                 /*
 1108                  * Splay requires a write lock on the map.  However, it only
 1109                  * restructures the binary search tree; it does not otherwise
 1110                  * change the map.  Thus, the map's timestamp need not change
 1111                  * on a temporary upgrade.
 1112                  */
 1113                 map->root = cur = vm_map_entry_splay(address, cur);
 1114                 if (!locked)
 1115                         sx_downgrade(&map->lock);
 1116 
 1117                 /*
 1118                  * If "address" is contained within a map entry, the new root
 1119                  * is that map entry.  Otherwise, the new root is a map entry
 1120                  * immediately before or after "address".
 1121                  */
 1122                 if (address >= cur->start) {
 1123                         *entry = cur;
 1124                         if (cur->end > address)
 1125                                 return (TRUE);
 1126                 } else
 1127                         *entry = cur->prev;
 1128         } else
 1129                 /*
 1130                  * Since the map is only locked for read access, perform a
 1131                  * standard binary search tree lookup for "address".
 1132                  */
 1133                 for (;;) {
 1134                         if (address < cur->start) {
 1135                                 if (cur->left == NULL) {
 1136                                         *entry = cur->prev;
 1137                                         break;
 1138                                 }
 1139                                 cur = cur->left;
 1140                         } else if (cur->end > address) {
 1141                                 *entry = cur;
 1142                                 return (TRUE);
 1143                         } else {
 1144                                 if (cur->right == NULL) {
 1145                                         *entry = cur;
 1146                                         break;
 1147                                 }
 1148                                 cur = cur->right;
 1149                         }
 1150                 }
 1151         return (FALSE);
 1152 }
 1153 
 1154 /*
 1155  *      vm_map_insert:
 1156  *
 1157  *      Inserts the given whole VM object into the target
 1158  *      map at the specified address range.  The object's
 1159  *      size should match that of the address range.
 1160  *
 1161  *      Requires that the map be locked, and leaves it so.
 1162  *
 1163  *      If object is non-NULL, ref count must be bumped by caller
 1164  *      prior to making call to account for the new entry.
 1165  */
 1166 int
 1167 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 1168     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
 1169 {
 1170         vm_map_entry_t new_entry, prev_entry, temp_entry;
 1171         struct ucred *cred;
 1172         vm_eflags_t protoeflags;
 1173         vm_inherit_t inheritance;
 1174 
 1175         VM_MAP_ASSERT_LOCKED(map);
 1176         KASSERT((object != kmem_object && object != kernel_object) ||
 1177             (cow & MAP_COPY_ON_WRITE) == 0,
 1178             ("vm_map_insert: kmem or kernel object and COW"));
 1179         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
 1180             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
 1181         KASSERT((prot & ~max) == 0,
 1182             ("prot %#x is not subset of max_prot %#x", prot, max));
 1183 
 1184         /*
 1185          * Check that the start and end points are not bogus.
 1186          */
 1187         if (start < vm_map_min(map) || end > vm_map_max(map) ||
 1188             start >= end)
 1189                 return (KERN_INVALID_ADDRESS);
 1190 
 1191         /*
 1192          * Find the entry prior to the proposed starting address; if it's part
 1193          * of an existing entry, this range is bogus.
 1194          */
 1195         if (vm_map_lookup_entry(map, start, &temp_entry))
 1196                 return (KERN_NO_SPACE);
 1197 
 1198         prev_entry = temp_entry;
 1199 
 1200         /*
 1201          * Assert that the next entry doesn't overlap the end point.
 1202          */
 1203         if (prev_entry->next->start < end)
 1204                 return (KERN_NO_SPACE);
 1205 
 1206         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
 1207             max != VM_PROT_NONE))
 1208                 return (KERN_INVALID_ARGUMENT);
 1209 
 1210         protoeflags = 0;
 1211         if (cow & MAP_COPY_ON_WRITE)
 1212                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
 1213         if (cow & MAP_NOFAULT)
 1214                 protoeflags |= MAP_ENTRY_NOFAULT;
 1215         if (cow & MAP_DISABLE_SYNCER)
 1216                 protoeflags |= MAP_ENTRY_NOSYNC;
 1217         if (cow & MAP_DISABLE_COREDUMP)
 1218                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
 1219         if (cow & MAP_STACK_GROWS_DOWN)
 1220                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
 1221         if (cow & MAP_STACK_GROWS_UP)
 1222                 protoeflags |= MAP_ENTRY_GROWS_UP;
 1223         if (cow & MAP_VN_WRITECOUNT)
 1224                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
 1225         if ((cow & MAP_CREATE_GUARD) != 0)
 1226                 protoeflags |= MAP_ENTRY_GUARD;
 1227         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
 1228                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
 1229         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
 1230                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
 1231         if (cow & MAP_INHERIT_SHARE)
 1232                 inheritance = VM_INHERIT_SHARE;
 1233         else
 1234                 inheritance = VM_INHERIT_DEFAULT;
 1235 
 1236         cred = NULL;
 1237         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
 1238                 goto charged;
 1239         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
 1240             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
 1241                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
 1242                         return (KERN_RESOURCE_SHORTAGE);
 1243                 KASSERT(object == NULL ||
 1244                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
 1245                     object->cred == NULL,
 1246                     ("overcommit: vm_map_insert o %p", object));
 1247                 cred = curthread->td_ucred;
 1248         }
 1249 
 1250 charged:
 1251         /* Expand the kernel pmap, if necessary. */
 1252         if (map == kernel_map && end > kernel_vm_end)
 1253                 pmap_growkernel(end);
 1254         if (object != NULL) {
 1255                 /*
 1256                  * OBJ_ONEMAPPING must be cleared unless this mapping
 1257                  * is trivially proven to be the only mapping for any
 1258                  * of the object's pages.  (Object granularity
 1259                  * reference counting is insufficient to recognize
 1260                  * aliases with precision.)
 1261                  */
 1262                 VM_OBJECT_WLOCK(object);
 1263                 if (object->ref_count > 1 || object->shadow_count != 0)
 1264                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
 1265                 VM_OBJECT_WUNLOCK(object);
 1266         } else if (prev_entry != &map->header &&
 1267             prev_entry->eflags == protoeflags &&
 1268             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
 1269             prev_entry->end == start && prev_entry->wired_count == 0 &&
 1270             (prev_entry->cred == cred ||
 1271             (prev_entry->object.vm_object != NULL &&
 1272             prev_entry->object.vm_object->cred == cred)) &&
 1273             vm_object_coalesce(prev_entry->object.vm_object,
 1274             prev_entry->offset,
 1275             (vm_size_t)(prev_entry->end - prev_entry->start),
 1276             (vm_size_t)(end - prev_entry->end), cred != NULL &&
 1277             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
 1278                 /*
 1279                  * We were able to extend the object.  Determine if we
 1280                  * can extend the previous map entry to include the
 1281                  * new range as well.
 1282                  */
 1283                 if (prev_entry->inheritance == inheritance &&
 1284                     prev_entry->protection == prot &&
 1285                     prev_entry->max_protection == max) {
 1286                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
 1287                                 map->size += end - prev_entry->end;
 1288                         prev_entry->end = end;
 1289                         vm_map_entry_resize_free(map, prev_entry);
 1290                         vm_map_simplify_entry(map, prev_entry);
 1291                         return (KERN_SUCCESS);
 1292                 }
 1293 
 1294                 /*
 1295                  * If we can extend the object but cannot extend the
 1296                  * map entry, we have to create a new map entry.  We
 1297                  * must bump the ref count on the extended object to
 1298                  * account for it.  object may be NULL.
 1299                  */
 1300                 object = prev_entry->object.vm_object;
 1301                 offset = prev_entry->offset +
 1302                     (prev_entry->end - prev_entry->start);
 1303                 vm_object_reference(object);
 1304                 if (cred != NULL && object != NULL && object->cred != NULL &&
 1305                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
 1306                         /* Object already accounts for this uid. */
 1307                         cred = NULL;
 1308                 }
 1309         }
 1310         if (cred != NULL)
 1311                 crhold(cred);
 1312 
 1313         /*
 1314          * Create a new entry
 1315          */
 1316         new_entry = vm_map_entry_create(map);
 1317         new_entry->start = start;
 1318         new_entry->end = end;
 1319         new_entry->cred = NULL;
 1320 
 1321         new_entry->eflags = protoeflags;
 1322         new_entry->object.vm_object = object;
 1323         new_entry->offset = offset;
 1324 
 1325         new_entry->inheritance = inheritance;
 1326         new_entry->protection = prot;
 1327         new_entry->max_protection = max;
 1328         new_entry->wired_count = 0;
 1329         new_entry->wiring_thread = NULL;
 1330         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
 1331         new_entry->next_read = start;
 1332 
 1333         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
 1334             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
 1335         new_entry->cred = cred;
 1336 
 1337         /*
 1338          * Insert the new entry into the list
 1339          */
 1340         vm_map_entry_link(map, prev_entry, new_entry);
 1341         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
 1342                 map->size += new_entry->end - new_entry->start;
 1343 
 1344         /*
 1345          * Try to coalesce the new entry with both the previous and next
 1346          * entries in the list.  Previously, we only attempted to coalesce
 1347          * with the previous entry when object is NULL.  Here, we handle the
 1348          * other cases, which are less common.
 1349          */
 1350         vm_map_simplify_entry(map, new_entry);
 1351 
 1352         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
 1353                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
 1354                     end - start, cow & MAP_PREFAULT_PARTIAL);
 1355         }
 1356 
 1357         return (KERN_SUCCESS);
 1358 }
 1359 
 1360 /*
 1361  *      vm_map_findspace:
 1362  *
 1363  *      Find the first fit (lowest VM address) for "length" free bytes
 1364  *      beginning at address >= start in the given map.
 1365  *
 1366  *      In a vm_map_entry, "adj_free" is the amount of free space
 1367  *      adjacent (higher address) to this entry, and "max_free" is the
 1368  *      maximum amount of contiguous free space in its subtree.  This
 1369  *      allows finding a free region in one path down the tree, so
 1370  *      O(log n) amortized with splay trees.
 1371  *
 1372  *      The map must be locked, and leaves it so.
 1373  *
 1374  *      Returns: 0 on success, and starting address in *addr,
 1375  *               1 if insufficient space.
 1376  */
 1377 int
 1378 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
 1379     vm_offset_t *addr)  /* OUT */
 1380 {
 1381         vm_map_entry_t entry;
 1382         vm_offset_t st;
 1383 
 1384         /*
 1385          * Request must fit within min/max VM address and must avoid
 1386          * address wrap.
 1387          */
 1388         start = MAX(start, vm_map_min(map));
 1389         if (start + length > vm_map_max(map) || start + length < start)
 1390                 return (1);
 1391 
 1392         /* Empty tree means wide open address space. */
 1393         if (map->root == NULL) {
 1394                 *addr = start;
 1395                 return (0);
 1396         }
 1397 
 1398         /*
 1399          * After splay, if start comes before root node, then there
 1400          * must be a gap from start to the root.
 1401          */
 1402         map->root = vm_map_entry_splay(start, map->root);
 1403         if (start + length <= map->root->start) {
 1404                 *addr = start;
 1405                 return (0);
 1406         }
 1407 
 1408         /*
 1409          * Root is the last node that might begin its gap before
 1410          * start, and this is the last comparison where address
 1411          * wrap might be a problem.
 1412          */
 1413         st = (start > map->root->end) ? start : map->root->end;
 1414         if (length <= map->root->end + map->root->adj_free - st) {
 1415                 *addr = st;
 1416                 return (0);
 1417         }
 1418 
 1419         /* With max_free, can immediately tell if no solution. */
 1420         entry = map->root->right;
 1421         if (entry == NULL || length > entry->max_free)
 1422                 return (1);
 1423 
 1424         /*
 1425          * Search the right subtree in the order: left subtree, root,
 1426          * right subtree (first fit).  The previous splay implies that
 1427          * all regions in the right subtree have addresses > start.
 1428          */
 1429         while (entry != NULL) {
 1430                 if (entry->left != NULL && entry->left->max_free >= length)
 1431                         entry = entry->left;
 1432                 else if (entry->adj_free >= length) {
 1433                         *addr = entry->end;
 1434                         return (0);
 1435                 } else
 1436                         entry = entry->right;
 1437         }
 1438 
 1439         /* Can't get here, so panic if we do. */
 1440         panic("vm_map_findspace: max_free corrupt");
 1441 }
 1442 
 1443 int
 1444 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 1445     vm_offset_t start, vm_size_t length, vm_prot_t prot,
 1446     vm_prot_t max, int cow)
 1447 {
 1448         vm_offset_t end;
 1449         int result;
 1450 
 1451         end = start + length;
 1452         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
 1453             object == NULL,
 1454             ("vm_map_fixed: non-NULL backing object for stack"));
 1455         vm_map_lock(map);
 1456         VM_MAP_RANGE_CHECK(map, start, end);
 1457         if ((cow & MAP_CHECK_EXCL) == 0)
 1458                 vm_map_delete(map, start, end);
 1459         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
 1460                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
 1461                     prot, max, cow);
 1462         } else {
 1463                 result = vm_map_insert(map, object, offset, start, end,
 1464                     prot, max, cow);
 1465         }
 1466         vm_map_unlock(map);
 1467         return (result);
 1468 }
 1469 
 1470 /*
 1471  *      vm_map_find finds an unallocated region in the target address
 1472  *      map with the given length.  The search is defined to be
 1473  *      first-fit from the specified address; the region found is
 1474  *      returned in the same parameter.
 1475  *
 1476  *      If object is non-NULL, ref count must be bumped by caller
 1477  *      prior to making call to account for the new entry.
 1478  */
 1479 int
 1480 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 1481             vm_offset_t *addr,  /* IN/OUT */
 1482             vm_size_t length, vm_offset_t max_addr, int find_space,
 1483             vm_prot_t prot, vm_prot_t max, int cow)
 1484 {
 1485         vm_offset_t alignment, initial_addr, start;
 1486         int result;
 1487 
 1488         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
 1489             object == NULL,
 1490             ("vm_map_find: non-NULL backing object for stack"));
 1491         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
 1492             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
 1493         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
 1494             (object->flags & OBJ_COLORED) == 0))
 1495                 find_space = VMFS_ANY_SPACE;
 1496         if (find_space >> 8 != 0) {
 1497                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
 1498                 alignment = (vm_offset_t)1 << (find_space >> 8);
 1499         } else
 1500                 alignment = 0;
 1501         initial_addr = *addr;
 1502 again:
 1503         start = initial_addr;
 1504         vm_map_lock(map);
 1505         do {
 1506                 if (find_space != VMFS_NO_SPACE) {
 1507                         if (vm_map_findspace(map, start, length, addr) ||
 1508                             (max_addr != 0 && *addr + length > max_addr)) {
 1509                                 vm_map_unlock(map);
 1510                                 if (find_space == VMFS_OPTIMAL_SPACE) {
 1511                                         find_space = VMFS_ANY_SPACE;
 1512                                         goto again;
 1513                                 }
 1514                                 return (KERN_NO_SPACE);
 1515                         }
 1516                         switch (find_space) {
 1517                         case VMFS_SUPER_SPACE:
 1518                         case VMFS_OPTIMAL_SPACE:
 1519                                 pmap_align_superpage(object, offset, addr,
 1520                                     length);
 1521                                 break;
 1522                         case VMFS_ANY_SPACE:
 1523                                 break;
 1524                         default:
 1525                                 if ((*addr & (alignment - 1)) != 0) {
 1526                                         *addr &= ~(alignment - 1);
 1527                                         *addr += alignment;
 1528                                 }
 1529                                 break;
 1530                         }
 1531 
 1532                         start = *addr;
 1533                 } else if ((cow & MAP_REMAP) != 0) {
 1534                         if (start < vm_map_min(map) ||
 1535                             start + length > vm_map_max(map) ||
 1536                             start + length <= length) {
 1537                                 result = KERN_INVALID_ADDRESS;
 1538                                 break;
 1539                         }
 1540                         vm_map_delete(map, start, start + length);
 1541                 }
 1542                 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
 1543                         result = vm_map_stack_locked(map, start, length,
 1544                             sgrowsiz, prot, max, cow);
 1545                 } else {
 1546                         result = vm_map_insert(map, object, offset, start,
 1547                             start + length, prot, max, cow);
 1548                 }
 1549         } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
 1550             find_space != VMFS_ANY_SPACE);
 1551         vm_map_unlock(map);
 1552         return (result);
 1553 }
 1554 
 1555 /*
 1556  *      vm_map_find_min() is a variant of vm_map_find() that takes an
 1557  *      additional parameter (min_addr) and treats the given address
 1558  *      (*addr) differently.  Specifically, it treats *addr as a hint
 1559  *      and not as the minimum address where the mapping is created.
 1560  *
 1561  *      This function works in two phases.  First, it tries to
 1562  *      allocate above the hint.  If that fails and the hint is
 1563  *      greater than min_addr, it performs a second pass, replacing
 1564  *      the hint with min_addr as the minimum address for the
 1565  *      allocation.
 1566  */
 1567 int
 1568 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 1569     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
 1570     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
 1571     int cow)
 1572 {
 1573         vm_offset_t hint;
 1574         int rv;
 1575 
 1576         hint = *addr;
 1577         for (;;) {
 1578                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
 1579                     find_space, prot, max, cow);
 1580                 if (rv == KERN_SUCCESS || min_addr >= hint)
 1581                         return (rv);
 1582                 *addr = hint = min_addr;
 1583         }
 1584 }
 1585 
 1586 /*
 1587  *      vm_map_simplify_entry:
 1588  *
 1589  *      Simplify the given map entry by merging with either neighbor.  This
 1590  *      routine also has the ability to merge with both neighbors.
 1591  *
 1592  *      The map must be locked.
 1593  *
 1594  *      This routine guarantees that the passed entry remains valid (though
 1595  *      possibly extended).  When merging, this routine may delete one or
 1596  *      both neighbors.
 1597  */
 1598 void
 1599 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
 1600 {
 1601         vm_map_entry_t next, prev;
 1602         vm_size_t prevsize, esize;
 1603 
 1604         if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
 1605             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
 1606                 return;
 1607 
 1608         prev = entry->prev;
 1609         if (prev != &map->header) {
 1610                 prevsize = prev->end - prev->start;
 1611                 if ( (prev->end == entry->start) &&
 1612                      (prev->object.vm_object == entry->object.vm_object) &&
 1613                      (!prev->object.vm_object ||
 1614                         (prev->offset + prevsize == entry->offset)) &&
 1615                      (prev->eflags == entry->eflags) &&
 1616                      (prev->protection == entry->protection) &&
 1617                      (prev->max_protection == entry->max_protection) &&
 1618                      (prev->inheritance == entry->inheritance) &&
 1619                      (prev->wired_count == entry->wired_count) &&
 1620                      (prev->cred == entry->cred)) {
 1621                         vm_map_entry_unlink(map, prev);
 1622                         entry->start = prev->start;
 1623                         entry->offset = prev->offset;
 1624                         if (entry->prev != &map->header)
 1625                                 vm_map_entry_resize_free(map, entry->prev);
 1626 
 1627                         /*
 1628                          * If the backing object is a vnode object,
 1629                          * vm_object_deallocate() calls vrele().
 1630                          * However, vrele() does not lock the vnode
 1631                          * because the vnode has additional
 1632                          * references.  Thus, the map lock can be kept
 1633                          * without causing a lock-order reversal with
 1634                          * the vnode lock.
 1635                          *
 1636                          * Since we count the number of virtual page
 1637                          * mappings in object->un_pager.vnp.writemappings,
 1638                          * the writemappings value should not be adjusted
 1639                          * when the entry is disposed of.
 1640                          */
 1641                         if (prev->object.vm_object)
 1642                                 vm_object_deallocate(prev->object.vm_object);
 1643                         if (prev->cred != NULL)
 1644                                 crfree(prev->cred);
 1645                         vm_map_entry_dispose(map, prev);
 1646                 }
 1647         }
 1648 
 1649         next = entry->next;
 1650         if (next != &map->header) {
 1651                 esize = entry->end - entry->start;
 1652                 if ((entry->end == next->start) &&
 1653                     (next->object.vm_object == entry->object.vm_object) &&
 1654                      (!entry->object.vm_object ||
 1655                         (entry->offset + esize == next->offset)) &&
 1656                     (next->eflags == entry->eflags) &&
 1657                     (next->protection == entry->protection) &&
 1658                     (next->max_protection == entry->max_protection) &&
 1659                     (next->inheritance == entry->inheritance) &&
 1660                     (next->wired_count == entry->wired_count) &&
 1661                     (next->cred == entry->cred)) {
 1662                         vm_map_entry_unlink(map, next);
 1663                         entry->end = next->end;
 1664                         vm_map_entry_resize_free(map, entry);
 1665 
 1666                         /*
 1667                          * See comment above.
 1668                          */
 1669                         if (next->object.vm_object)
 1670                                 vm_object_deallocate(next->object.vm_object);
 1671                         if (next->cred != NULL)
 1672                                 crfree(next->cred);
 1673                         vm_map_entry_dispose(map, next);
 1674                 }
 1675         }
 1676 }
 1677 /*
 1678  *      vm_map_clip_start:      [ internal use only ]
 1679  *
 1680  *      Asserts that the given entry begins at or after
 1681  *      the specified address; if necessary,
 1682  *      it splits the entry into two.
 1683  */
 1684 #define vm_map_clip_start(map, entry, startaddr) \
 1685 { \
 1686         if (startaddr > entry->start) \
 1687                 _vm_map_clip_start(map, entry, startaddr); \
 1688 }
 1689 
 1690 /*
 1691  *      This routine is called only when it is known that
 1692  *      the entry must be split.
 1693  */
 1694 static void
 1695 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
 1696 {
 1697         vm_map_entry_t new_entry;
 1698 
 1699         VM_MAP_ASSERT_LOCKED(map);
 1700         KASSERT(entry->end > start && entry->start < start,
 1701             ("_vm_map_clip_start: invalid clip of entry %p", entry));
 1702 
 1703         /*
 1704          * Split off the front portion -- note that we must insert the new
 1705          * entry BEFORE this one, so that this entry has the specified
 1706          * starting address.
 1707          */
 1708         vm_map_simplify_entry(map, entry);
 1709 
 1710         /*
 1711          * If there is no object backing this entry, we might as well create
 1712          * one now.  If we defer it, an object can get created after the map
 1713          * is clipped, and individual objects will be created for the split-up
 1714          * map.  This is a bit of a hack, but is also about the best place to
 1715          * put this improvement.
 1716          */
 1717         if (entry->object.vm_object == NULL && !map->system_map &&
 1718             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
 1719                 vm_object_t object;
 1720                 object = vm_object_allocate(OBJT_DEFAULT,
 1721                                 atop(entry->end - entry->start));
 1722                 entry->object.vm_object = object;
 1723                 entry->offset = 0;
 1724                 if (entry->cred != NULL) {
 1725                         object->cred = entry->cred;
 1726                         object->charge = entry->end - entry->start;
 1727                         entry->cred = NULL;
 1728                 }
 1729         } else if (entry->object.vm_object != NULL &&
 1730                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
 1731                    entry->cred != NULL) {
 1732                 VM_OBJECT_WLOCK(entry->object.vm_object);
 1733                 KASSERT(entry->object.vm_object->cred == NULL,
 1734                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
 1735                 entry->object.vm_object->cred = entry->cred;
 1736                 entry->object.vm_object->charge = entry->end - entry->start;
 1737                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
 1738                 entry->cred = NULL;
 1739         }
 1740 
 1741         new_entry = vm_map_entry_create(map);
 1742         *new_entry = *entry;
 1743 
 1744         new_entry->end = start;
 1745         entry->offset += (start - entry->start);
 1746         entry->start = start;
 1747         if (new_entry->cred != NULL)
 1748                 crhold(entry->cred);
 1749 
 1750         vm_map_entry_link(map, entry->prev, new_entry);
 1751 
 1752         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
 1753                 vm_object_reference(new_entry->object.vm_object);
 1754                 /*
 1755                  * The object->un_pager.vnp.writemappings for the
 1756                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
 1757                  * kept as is here.  The virtual pages are
 1758                  * re-distributed among the clipped entries, so the sum is
 1759                  * left the same.
 1760                  */
 1761         }
 1762 }
 1763 
 1764 /*
 1765  *      vm_map_clip_end:        [ internal use only ]
 1766  *
 1767  *      Asserts that the given entry ends at or before
 1768  *      the specified address; if necessary,
 1769  *      it splits the entry into two.
 1770  */
 1771 #define vm_map_clip_end(map, entry, endaddr) \
 1772 { \
 1773         if ((endaddr) < (entry->end)) \
 1774                 _vm_map_clip_end((map), (entry), (endaddr)); \
 1775 }
 1776 
 1777 /*
 1778  *      This routine is called only when it is known that
 1779  *      the entry must be split.
 1780  */
 1781 static void
 1782 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
 1783 {
 1784         vm_map_entry_t new_entry;
 1785 
 1786         VM_MAP_ASSERT_LOCKED(map);
 1787         KASSERT(entry->start < end && entry->end > end,
 1788             ("_vm_map_clip_end: invalid clip of entry %p", entry));
 1789 
 1790         /*
 1791          * If there is no object backing this entry, we might as well create
 1792          * one now.  If we defer it, an object can get created after the map
 1793          * is clipped, and individual objects will be created for the split-up
 1794          * map.  This is a bit of a hack, but is also about the best place to
 1795          * put this improvement.
 1796          */
 1797         if (entry->object.vm_object == NULL && !map->system_map &&
 1798             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
 1799                 vm_object_t object;
 1800                 object = vm_object_allocate(OBJT_DEFAULT,
 1801                                 atop(entry->end - entry->start));
 1802                 entry->object.vm_object = object;
 1803                 entry->offset = 0;
 1804                 if (entry->cred != NULL) {
 1805                         object->cred = entry->cred;
 1806                         object->charge = entry->end - entry->start;
 1807                         entry->cred = NULL;
 1808                 }
 1809         } else if (entry->object.vm_object != NULL &&
 1810                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
 1811                    entry->cred != NULL) {
 1812                 VM_OBJECT_WLOCK(entry->object.vm_object);
 1813                 KASSERT(entry->object.vm_object->cred == NULL,
 1814                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
 1815                 entry->object.vm_object->cred = entry->cred;
 1816                 entry->object.vm_object->charge = entry->end - entry->start;
 1817                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
 1818                 entry->cred = NULL;
 1819         }
 1820 
 1821         /*
 1822          * Create a new entry and insert it AFTER the specified entry
 1823          */
 1824         new_entry = vm_map_entry_create(map);
 1825         *new_entry = *entry;
 1826 
 1827         new_entry->start = entry->end = end;
 1828         new_entry->offset += (end - entry->start);
 1829         if (new_entry->cred != NULL)
 1830                 crhold(entry->cred);
 1831 
 1832         vm_map_entry_link(map, entry, new_entry);
 1833 
 1834         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
 1835                 vm_object_reference(new_entry->object.vm_object);
 1836         }
 1837 }
 1838 
 1839 /*
 1840  *      vm_map_submap:          [ kernel use only ]
 1841  *
 1842  *      Mark the given range as handled by a subordinate map.
 1843  *
 1844  *      This range must have been created with vm_map_find,
 1845  *      and no other operations may have been performed on this
 1846  *      range prior to calling vm_map_submap.
 1847  *
 1848  *      Only a limited number of operations can be performed
 1849  *      within this rage after calling vm_map_submap:
 1850  *              vm_fault
 1851  *      [Don't try vm_map_copy!]
 1852  *
 1853  *      To remove a submapping, one must first remove the
 1854  *      range from the superior map, and then destroy the
 1855  *      submap (if desired).  [Better yet, don't try it.]
 1856  */
 1857 int
 1858 vm_map_submap(
 1859         vm_map_t map,
 1860         vm_offset_t start,
 1861         vm_offset_t end,
 1862         vm_map_t submap)
 1863 {
 1864         vm_map_entry_t entry;
 1865         int result = KERN_INVALID_ARGUMENT;
 1866 
 1867         vm_map_lock(map);
 1868 
 1869         VM_MAP_RANGE_CHECK(map, start, end);
 1870 
 1871         if (vm_map_lookup_entry(map, start, &entry)) {
 1872                 vm_map_clip_start(map, entry, start);
 1873         } else
 1874                 entry = entry->next;
 1875 
 1876         vm_map_clip_end(map, entry, end);
 1877 
 1878         if ((entry->start == start) && (entry->end == end) &&
 1879             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
 1880             (entry->object.vm_object == NULL)) {
 1881                 entry->object.sub_map = submap;
 1882                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
 1883                 result = KERN_SUCCESS;
 1884         }
 1885         vm_map_unlock(map);
 1886 
 1887         return (result);
 1888 }
 1889 
 1890 /*
 1891  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
 1892  */
 1893 #define MAX_INIT_PT     96
 1894 
 1895 /*
 1896  *      vm_map_pmap_enter:
 1897  *
 1898  *      Preload the specified map's pmap with mappings to the specified
 1899  *      object's memory-resident pages.  No further physical pages are
 1900  *      allocated, and no further virtual pages are retrieved from secondary
 1901  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
 1902  *      limited number of page mappings are created at the low-end of the
 1903  *      specified address range.  (For this purpose, a superpage mapping
 1904  *      counts as one page mapping.)  Otherwise, all resident pages within
 1905  *      the specified address range are mapped.
 1906  */
 1907 static void
 1908 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
 1909     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
 1910 {
 1911         vm_offset_t start;
 1912         vm_page_t p, p_start;
 1913         vm_pindex_t mask, psize, threshold, tmpidx;
 1914 
 1915         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
 1916                 return;
 1917         VM_OBJECT_RLOCK(object);
 1918         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
 1919                 VM_OBJECT_RUNLOCK(object);
 1920                 VM_OBJECT_WLOCK(object);
 1921                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
 1922                         pmap_object_init_pt(map->pmap, addr, object, pindex,
 1923                             size);
 1924                         VM_OBJECT_WUNLOCK(object);
 1925                         return;
 1926                 }
 1927                 VM_OBJECT_LOCK_DOWNGRADE(object);
 1928         }
 1929 
 1930         psize = atop(size);
 1931         if (psize + pindex > object->size) {
 1932                 if (object->size < pindex) {
 1933                         VM_OBJECT_RUNLOCK(object);
 1934                         return;
 1935                 }
 1936                 psize = object->size - pindex;
 1937         }
 1938 
 1939         start = 0;
 1940         p_start = NULL;
 1941         threshold = MAX_INIT_PT;
 1942 
 1943         p = vm_page_find_least(object, pindex);
 1944         /*
 1945          * Assert: the variable p is either (1) the page with the
 1946          * least pindex greater than or equal to the parameter pindex
 1947          * or (2) NULL.
 1948          */
 1949         for (;
 1950              p != NULL && (tmpidx = p->pindex - pindex) < psize;
 1951              p = TAILQ_NEXT(p, listq)) {
 1952                 /*
 1953                  * don't allow an madvise to blow away our really
 1954                  * free pages allocating pv entries.
 1955                  */
 1956                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
 1957                     vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
 1958                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
 1959                     tmpidx >= threshold)) {
 1960                         psize = tmpidx;
 1961                         break;
 1962                 }
 1963                 if (p->valid == VM_PAGE_BITS_ALL) {
 1964                         if (p_start == NULL) {
 1965                                 start = addr + ptoa(tmpidx);
 1966                                 p_start = p;
 1967                         }
 1968                         /* Jump ahead if a superpage mapping is possible. */
 1969                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
 1970                             (pagesizes[p->psind] - 1)) == 0) {
 1971                                 mask = atop(pagesizes[p->psind]) - 1;
 1972                                 if (tmpidx + mask < psize &&
 1973                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
 1974                                         p += mask;
 1975                                         threshold += mask;
 1976                                 }
 1977                         }
 1978                 } else if (p_start != NULL) {
 1979                         pmap_enter_object(map->pmap, start, addr +
 1980                             ptoa(tmpidx), p_start, prot);
 1981                         p_start = NULL;
 1982                 }
 1983         }
 1984         if (p_start != NULL)
 1985                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
 1986                     p_start, prot);
 1987         VM_OBJECT_RUNLOCK(object);
 1988 }
 1989 
 1990 /*
 1991  *      vm_map_protect:
 1992  *
 1993  *      Sets the protection of the specified address
 1994  *      region in the target map.  If "set_max" is
 1995  *      specified, the maximum protection is to be set;
 1996  *      otherwise, only the current protection is affected.
 1997  */
 1998 int
 1999 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
 2000                vm_prot_t new_prot, boolean_t set_max)
 2001 {
 2002         vm_map_entry_t current, entry, in_tran;
 2003         vm_object_t obj;
 2004         struct ucred *cred;
 2005         vm_prot_t old_prot;
 2006 
 2007         if (start == end)
 2008                 return (KERN_SUCCESS);
 2009 
 2010 again:
 2011         in_tran = NULL;
 2012         vm_map_lock(map);
 2013 
 2014         /*
 2015          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
 2016          * need to fault pages into the map and will drop the map lock while
 2017          * doing so, and the VM object may end up in an inconsistent state if we
 2018          * update the protection on the map entry in between faults.
 2019          */
 2020         vm_map_wait_busy(map);
 2021 
 2022         VM_MAP_RANGE_CHECK(map, start, end);
 2023 
 2024         if (vm_map_lookup_entry(map, start, &entry)) {
 2025                 vm_map_clip_start(map, entry, start);
 2026         } else {
 2027                 entry = entry->next;
 2028         }
 2029 
 2030         /*
 2031          * Make a first pass to check for protection violations.
 2032          */
 2033         for (current = entry; current->start < end; current = current->next) {
 2034                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
 2035                         continue;
 2036                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2037                         vm_map_unlock(map);
 2038                         return (KERN_INVALID_ARGUMENT);
 2039                 }
 2040                 if ((new_prot & current->max_protection) != new_prot) {
 2041                         vm_map_unlock(map);
 2042                         return (KERN_PROTECTION_FAILURE);
 2043                 }
 2044                 if ((current->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
 2045                         in_tran = current;
 2046         }
 2047 
 2048         /*
 2049          * Postpone the operation until all in-transition map entries have
 2050          * stabilized.  An in-transition entry might already have its pages
 2051          * wired and wired_count incremented, but not yet have its
 2052          * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
 2053          * vm_fault_copy_entry() in the final loop below.
 2054          */
 2055         if (in_tran != NULL) {
 2056                 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 2057                 vm_map_unlock_and_wait(map, 0);
 2058                 goto again;
 2059         }
 2060 
 2061         /*
 2062          * Do an accounting pass for private read-only mappings that
 2063          * now will do cow due to allowed write (e.g. debugger sets
 2064          * breakpoint on text segment)
 2065          */
 2066         for (current = entry; current->start < end; current = current->next) {
 2067 
 2068                 vm_map_clip_end(map, current, end);
 2069 
 2070                 if (set_max ||
 2071                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
 2072                     ENTRY_CHARGED(current) ||
 2073                     (current->eflags & MAP_ENTRY_GUARD) != 0) {
 2074                         continue;
 2075                 }
 2076 
 2077                 cred = curthread->td_ucred;
 2078                 obj = current->object.vm_object;
 2079 
 2080                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
 2081                         if (!swap_reserve(current->end - current->start)) {
 2082                                 vm_map_unlock(map);
 2083                                 return (KERN_RESOURCE_SHORTAGE);
 2084                         }
 2085                         crhold(cred);
 2086                         current->cred = cred;
 2087                         continue;
 2088                 }
 2089 
 2090                 VM_OBJECT_WLOCK(obj);
 2091                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
 2092                         VM_OBJECT_WUNLOCK(obj);
 2093                         continue;
 2094                 }
 2095 
 2096                 /*
 2097                  * Charge for the whole object allocation now, since
 2098                  * we cannot distinguish between non-charged and
 2099                  * charged clipped mapping of the same object later.
 2100                  */
 2101                 KASSERT(obj->charge == 0,
 2102                     ("vm_map_protect: object %p overcharged (entry %p)",
 2103                     obj, current));
 2104                 if (!swap_reserve(ptoa(obj->size))) {
 2105                         VM_OBJECT_WUNLOCK(obj);
 2106                         vm_map_unlock(map);
 2107                         return (KERN_RESOURCE_SHORTAGE);
 2108                 }
 2109 
 2110                 crhold(cred);
 2111                 obj->cred = cred;
 2112                 obj->charge = ptoa(obj->size);
 2113                 VM_OBJECT_WUNLOCK(obj);
 2114         }
 2115 
 2116         /*
 2117          * Go back and fix up protections. [Note that clipping is not
 2118          * necessary the second time.]
 2119          */
 2120         for (current = entry; current->start < end; current = current->next) {
 2121                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
 2122                         continue;
 2123 
 2124                 old_prot = current->protection;
 2125 
 2126                 if (set_max)
 2127                         current->protection =
 2128                             (current->max_protection = new_prot) &
 2129                             old_prot;
 2130                 else
 2131                         current->protection = new_prot;
 2132 
 2133                 /*
 2134                  * For user wired map entries, the normal lazy evaluation of
 2135                  * write access upgrades through soft page faults is
 2136                  * undesirable.  Instead, immediately copy any pages that are
 2137                  * copy-on-write and enable write access in the physical map.
 2138                  */
 2139                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
 2140                     (current->protection & VM_PROT_WRITE) != 0 &&
 2141                     (old_prot & VM_PROT_WRITE) == 0)
 2142                         vm_fault_copy_entry(map, map, current, current, NULL);
 2143 
 2144                 /*
 2145                  * When restricting access, update the physical map.  Worry
 2146                  * about copy-on-write here.
 2147                  */
 2148                 if ((old_prot & ~current->protection) != 0) {
 2149 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
 2150                                                         VM_PROT_ALL)
 2151                         pmap_protect(map->pmap, current->start,
 2152                             current->end,
 2153                             current->protection & MASK(current));
 2154 #undef  MASK
 2155                 }
 2156                 vm_map_simplify_entry(map, current);
 2157         }
 2158         vm_map_unlock(map);
 2159         return (KERN_SUCCESS);
 2160 }
 2161 
 2162 /*
 2163  *      vm_map_madvise:
 2164  *
 2165  *      This routine traverses a processes map handling the madvise
 2166  *      system call.  Advisories are classified as either those effecting
 2167  *      the vm_map_entry structure, or those effecting the underlying
 2168  *      objects.
 2169  */
 2170 int
 2171 vm_map_madvise(
 2172         vm_map_t map,
 2173         vm_offset_t start,
 2174         vm_offset_t end,
 2175         int behav)
 2176 {
 2177         vm_map_entry_t current, entry;
 2178         int modify_map = 0;
 2179 
 2180         /*
 2181          * Some madvise calls directly modify the vm_map_entry, in which case
 2182          * we need to use an exclusive lock on the map and we need to perform
 2183          * various clipping operations.  Otherwise we only need a read-lock
 2184          * on the map.
 2185          */
 2186         switch(behav) {
 2187         case MADV_NORMAL:
 2188         case MADV_SEQUENTIAL:
 2189         case MADV_RANDOM:
 2190         case MADV_NOSYNC:
 2191         case MADV_AUTOSYNC:
 2192         case MADV_NOCORE:
 2193         case MADV_CORE:
 2194                 if (start == end)
 2195                         return (KERN_SUCCESS);
 2196                 modify_map = 1;
 2197                 vm_map_lock(map);
 2198                 break;
 2199         case MADV_WILLNEED:
 2200         case MADV_DONTNEED:
 2201         case MADV_FREE:
 2202                 if (start == end)
 2203                         return (KERN_SUCCESS);
 2204                 vm_map_lock_read(map);
 2205                 break;
 2206         default:
 2207                 return (KERN_INVALID_ARGUMENT);
 2208         }
 2209 
 2210         /*
 2211          * Locate starting entry and clip if necessary.
 2212          */
 2213         VM_MAP_RANGE_CHECK(map, start, end);
 2214 
 2215         if (vm_map_lookup_entry(map, start, &entry)) {
 2216                 if (modify_map)
 2217                         vm_map_clip_start(map, entry, start);
 2218         } else {
 2219                 entry = entry->next;
 2220         }
 2221 
 2222         if (modify_map) {
 2223                 /*
 2224                  * madvise behaviors that are implemented in the vm_map_entry.
 2225                  *
 2226                  * We clip the vm_map_entry so that behavioral changes are
 2227                  * limited to the specified address range.
 2228                  */
 2229                 for (current = entry; current->start < end;
 2230                     current = current->next) {
 2231                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
 2232                                 continue;
 2233 
 2234                         vm_map_clip_end(map, current, end);
 2235 
 2236                         switch (behav) {
 2237                         case MADV_NORMAL:
 2238                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
 2239                                 break;
 2240                         case MADV_SEQUENTIAL:
 2241                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
 2242                                 break;
 2243                         case MADV_RANDOM:
 2244                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
 2245                                 break;
 2246                         case MADV_NOSYNC:
 2247                                 current->eflags |= MAP_ENTRY_NOSYNC;
 2248                                 break;
 2249                         case MADV_AUTOSYNC:
 2250                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
 2251                                 break;
 2252                         case MADV_NOCORE:
 2253                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
 2254                                 break;
 2255                         case MADV_CORE:
 2256                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
 2257                                 break;
 2258                         default:
 2259                                 break;
 2260                         }
 2261                         vm_map_simplify_entry(map, current);
 2262                 }
 2263                 vm_map_unlock(map);
 2264         } else {
 2265                 vm_pindex_t pstart, pend;
 2266 
 2267                 /*
 2268                  * madvise behaviors that are implemented in the underlying
 2269                  * vm_object.
 2270                  *
 2271                  * Since we don't clip the vm_map_entry, we have to clip
 2272                  * the vm_object pindex and count.
 2273                  */
 2274                 for (current = entry; current->start < end;
 2275                     current = current->next) {
 2276                         vm_offset_t useEnd, useStart;
 2277 
 2278                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
 2279                                 continue;
 2280 
 2281                         /*
 2282                          * MADV_FREE would otherwise rewind time to
 2283                          * the creation of the shadow object.  Because
 2284                          * we hold the VM map read-locked, neither the
 2285                          * entry's object nor the presence of a
 2286                          * backing object can change.
 2287                          */
 2288                         if (behav == MADV_FREE &&
 2289                             current->object.vm_object != NULL &&
 2290                             current->object.vm_object->backing_object != NULL)
 2291                                 continue;
 2292 
 2293                         pstart = OFF_TO_IDX(current->offset);
 2294                         pend = pstart + atop(current->end - current->start);
 2295                         useStart = current->start;
 2296                         useEnd = current->end;
 2297 
 2298                         if (current->start < start) {
 2299                                 pstart += atop(start - current->start);
 2300                                 useStart = start;
 2301                         }
 2302                         if (current->end > end) {
 2303                                 pend -= atop(current->end - end);
 2304                                 useEnd = end;
 2305                         }
 2306 
 2307                         if (pstart >= pend)
 2308                                 continue;
 2309 
 2310                         /*
 2311                          * Perform the pmap_advise() before clearing
 2312                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
 2313                          * concurrent pmap operation, such as pmap_remove(),
 2314                          * could clear a reference in the pmap and set
 2315                          * PGA_REFERENCED on the page before the pmap_advise()
 2316                          * had completed.  Consequently, the page would appear
 2317                          * referenced based upon an old reference that
 2318                          * occurred before this pmap_advise() ran.
 2319                          */
 2320                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
 2321                                 pmap_advise(map->pmap, useStart, useEnd,
 2322                                     behav);
 2323 
 2324                         vm_object_madvise(current->object.vm_object, pstart,
 2325                             pend, behav);
 2326 
 2327                         /*
 2328                          * Pre-populate paging structures in the
 2329                          * WILLNEED case.  For wired entries, the
 2330                          * paging structures are already populated.
 2331                          */
 2332                         if (behav == MADV_WILLNEED &&
 2333                             current->wired_count == 0) {
 2334                                 vm_map_pmap_enter(map,
 2335                                     useStart,
 2336                                     current->protection,
 2337                                     current->object.vm_object,
 2338                                     pstart,
 2339                                     ptoa(pend - pstart),
 2340                                     MAP_PREFAULT_MADVISE
 2341                                 );
 2342                         }
 2343                 }
 2344                 vm_map_unlock_read(map);
 2345         }
 2346         return (0);
 2347 }
 2348 
 2349 
 2350 /*
 2351  *      vm_map_inherit:
 2352  *
 2353  *      Sets the inheritance of the specified address
 2354  *      range in the target map.  Inheritance
 2355  *      affects how the map will be shared with
 2356  *      child maps at the time of vmspace_fork.
 2357  */
 2358 int
 2359 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
 2360                vm_inherit_t new_inheritance)
 2361 {
 2362         vm_map_entry_t entry;
 2363         vm_map_entry_t temp_entry;
 2364 
 2365         switch (new_inheritance) {
 2366         case VM_INHERIT_NONE:
 2367         case VM_INHERIT_COPY:
 2368         case VM_INHERIT_SHARE:
 2369         case VM_INHERIT_ZERO:
 2370                 break;
 2371         default:
 2372                 return (KERN_INVALID_ARGUMENT);
 2373         }
 2374         if (start == end)
 2375                 return (KERN_SUCCESS);
 2376         vm_map_lock(map);
 2377         VM_MAP_RANGE_CHECK(map, start, end);
 2378         if (vm_map_lookup_entry(map, start, &temp_entry)) {
 2379                 entry = temp_entry;
 2380                 vm_map_clip_start(map, entry, start);
 2381         } else
 2382                 entry = temp_entry->next;
 2383         while (entry->start < end) {
 2384                 vm_map_clip_end(map, entry, end);
 2385                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
 2386                     new_inheritance != VM_INHERIT_ZERO)
 2387                         entry->inheritance = new_inheritance;
 2388                 vm_map_simplify_entry(map, entry);
 2389                 entry = entry->next;
 2390         }
 2391         vm_map_unlock(map);
 2392         return (KERN_SUCCESS);
 2393 }
 2394 
 2395 /*
 2396  *      vm_map_unwire:
 2397  *
 2398  *      Implements both kernel and user unwiring.
 2399  */
 2400 int
 2401 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 2402     int flags)
 2403 {
 2404         vm_map_entry_t entry, first_entry, tmp_entry;
 2405         vm_offset_t saved_start;
 2406         unsigned int last_timestamp;
 2407         int rv;
 2408         boolean_t need_wakeup, result, user_unwire;
 2409 
 2410         if (start == end)
 2411                 return (KERN_SUCCESS);
 2412         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
 2413         vm_map_lock(map);
 2414         VM_MAP_RANGE_CHECK(map, start, end);
 2415         if (!vm_map_lookup_entry(map, start, &first_entry)) {
 2416                 if (flags & VM_MAP_WIRE_HOLESOK)
 2417                         first_entry = first_entry->next;
 2418                 else {
 2419                         vm_map_unlock(map);
 2420                         return (KERN_INVALID_ADDRESS);
 2421                 }
 2422         }
 2423         last_timestamp = map->timestamp;
 2424         entry = first_entry;
 2425         while (entry->start < end) {
 2426                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
 2427                         /*
 2428                          * We have not yet clipped the entry.
 2429                          */
 2430                         saved_start = (start >= entry->start) ? start :
 2431                             entry->start;
 2432                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 2433                         if (vm_map_unlock_and_wait(map, 0)) {
 2434                                 /*
 2435                                  * Allow interruption of user unwiring?
 2436                                  */
 2437                         }
 2438                         vm_map_lock(map);
 2439                         if (last_timestamp+1 != map->timestamp) {
 2440                                 /*
 2441                                  * Look again for the entry because the map was
 2442                                  * modified while it was unlocked.
 2443                                  * Specifically, the entry may have been
 2444                                  * clipped, merged, or deleted.
 2445                                  */
 2446                                 if (!vm_map_lookup_entry(map, saved_start,
 2447                                     &tmp_entry)) {
 2448                                         if (flags & VM_MAP_WIRE_HOLESOK)
 2449                                                 tmp_entry = tmp_entry->next;
 2450                                         else {
 2451                                                 if (saved_start == start) {
 2452                                                         /*
 2453                                                          * First_entry has been deleted.
 2454                                                          */
 2455                                                         vm_map_unlock(map);
 2456                                                         return (KERN_INVALID_ADDRESS);
 2457                                                 }
 2458                                                 end = saved_start;
 2459                                                 rv = KERN_INVALID_ADDRESS;
 2460                                                 goto done;
 2461                                         }
 2462                                 }
 2463                                 if (entry == first_entry)
 2464                                         first_entry = tmp_entry;
 2465                                 else
 2466                                         first_entry = NULL;
 2467                                 entry = tmp_entry;
 2468                         }
 2469                         last_timestamp = map->timestamp;
 2470                         continue;
 2471                 }
 2472                 vm_map_clip_start(map, entry, start);
 2473                 vm_map_clip_end(map, entry, end);
 2474                 /*
 2475                  * Mark the entry in case the map lock is released.  (See
 2476                  * above.)
 2477                  */
 2478                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
 2479                     entry->wiring_thread == NULL,
 2480                     ("owned map entry %p", entry));
 2481                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
 2482                 entry->wiring_thread = curthread;
 2483                 /*
 2484                  * Check the map for holes in the specified region.
 2485                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
 2486                  */
 2487                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
 2488                     (entry->end < end && entry->next->start > entry->end)) {
 2489                         end = entry->end;
 2490                         rv = KERN_INVALID_ADDRESS;
 2491                         goto done;
 2492                 }
 2493                 /*
 2494                  * If system unwiring, require that the entry is system wired.
 2495                  */
 2496                 if (!user_unwire &&
 2497                     vm_map_entry_system_wired_count(entry) == 0) {
 2498                         end = entry->end;
 2499                         rv = KERN_INVALID_ARGUMENT;
 2500                         goto done;
 2501                 }
 2502                 entry = entry->next;
 2503         }
 2504         rv = KERN_SUCCESS;
 2505 done:
 2506         need_wakeup = FALSE;
 2507         if (first_entry == NULL) {
 2508                 result = vm_map_lookup_entry(map, start, &first_entry);
 2509                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
 2510                         first_entry = first_entry->next;
 2511                 else
 2512                         KASSERT(result, ("vm_map_unwire: lookup failed"));
 2513         }
 2514         for (entry = first_entry; entry->start < end; entry = entry->next) {
 2515                 /*
 2516                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
 2517                  * space in the unwired region could have been mapped
 2518                  * while the map lock was dropped for draining
 2519                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
 2520                  * could be simultaneously wiring this new mapping
 2521                  * entry.  Detect these cases and skip any entries
 2522                  * marked as in transition by us.
 2523                  */
 2524                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
 2525                     entry->wiring_thread != curthread) {
 2526                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
 2527                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
 2528                         continue;
 2529                 }
 2530 
 2531                 if (rv == KERN_SUCCESS && (!user_unwire ||
 2532                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
 2533                         if (user_unwire)
 2534                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
 2535                         if (entry->wired_count == 1)
 2536                                 vm_map_entry_unwire(map, entry);
 2537                         else
 2538                                 entry->wired_count--;
 2539                 }
 2540                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
 2541                     ("vm_map_unwire: in-transition flag missing %p", entry));
 2542                 KASSERT(entry->wiring_thread == curthread,
 2543                     ("vm_map_unwire: alien wire %p", entry));
 2544                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
 2545                 entry->wiring_thread = NULL;
 2546                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
 2547                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
 2548                         need_wakeup = TRUE;
 2549                 }
 2550                 vm_map_simplify_entry(map, entry);
 2551         }
 2552         vm_map_unlock(map);
 2553         if (need_wakeup)
 2554                 vm_map_wakeup(map);
 2555         return (rv);
 2556 }
 2557 
 2558 /*
 2559  *      vm_map_wire_entry_failure:
 2560  *
 2561  *      Handle a wiring failure on the given entry.
 2562  *
 2563  *      The map should be locked.
 2564  */
 2565 static void
 2566 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
 2567     vm_offset_t failed_addr)
 2568 {
 2569 
 2570         VM_MAP_ASSERT_LOCKED(map);
 2571         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
 2572             entry->wired_count == 1,
 2573             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
 2574         KASSERT(failed_addr < entry->end,
 2575             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
 2576 
 2577         /*
 2578          * If any pages at the start of this entry were successfully wired,
 2579          * then unwire them.
 2580          */
 2581         if (failed_addr > entry->start) {
 2582                 pmap_unwire(map->pmap, entry->start, failed_addr);
 2583                 vm_object_unwire(entry->object.vm_object, entry->offset,
 2584                     failed_addr - entry->start, PQ_ACTIVE);
 2585         }
 2586 
 2587         /*
 2588          * Assign an out-of-range value to represent the failure to wire this
 2589          * entry.
 2590          */
 2591         entry->wired_count = -1;
 2592 }
 2593 
 2594 /*
 2595  *      vm_map_wire:
 2596  *
 2597  *      Implements both kernel and user wiring.
 2598  */
 2599 int
 2600 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 2601     int flags)
 2602 {
 2603         vm_map_entry_t entry, first_entry, tmp_entry;
 2604         vm_offset_t faddr, saved_end, saved_start;
 2605         unsigned int last_timestamp;
 2606         int rv;
 2607         boolean_t need_wakeup, result, user_wire;
 2608         vm_prot_t prot;
 2609 
 2610         if (start == end)
 2611                 return (KERN_SUCCESS);
 2612         prot = 0;
 2613         if (flags & VM_MAP_WIRE_WRITE)
 2614                 prot |= VM_PROT_WRITE;
 2615         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
 2616         vm_map_lock(map);
 2617         VM_MAP_RANGE_CHECK(map, start, end);
 2618         if (!vm_map_lookup_entry(map, start, &first_entry)) {
 2619                 if (flags & VM_MAP_WIRE_HOLESOK)
 2620                         first_entry = first_entry->next;
 2621                 else {
 2622                         vm_map_unlock(map);
 2623                         return (KERN_INVALID_ADDRESS);
 2624                 }
 2625         }
 2626         last_timestamp = map->timestamp;
 2627         entry = first_entry;
 2628         while (entry->start < end) {
 2629                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
 2630                         /*
 2631                          * We have not yet clipped the entry.
 2632                          */
 2633                         saved_start = (start >= entry->start) ? start :
 2634                             entry->start;
 2635                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 2636                         if (vm_map_unlock_and_wait(map, 0)) {
 2637                                 /*
 2638                                  * Allow interruption of user wiring?
 2639                                  */
 2640                         }
 2641                         vm_map_lock(map);
 2642                         if (last_timestamp + 1 != map->timestamp) {
 2643                                 /*
 2644                                  * Look again for the entry because the map was
 2645                                  * modified while it was unlocked.
 2646                                  * Specifically, the entry may have been
 2647                                  * clipped, merged, or deleted.
 2648                                  */
 2649                                 if (!vm_map_lookup_entry(map, saved_start,
 2650                                     &tmp_entry)) {
 2651                                         if (flags & VM_MAP_WIRE_HOLESOK)
 2652                                                 tmp_entry = tmp_entry->next;
 2653                                         else {
 2654                                                 if (saved_start == start) {
 2655                                                         /*
 2656                                                          * first_entry has been deleted.
 2657                                                          */
 2658                                                         vm_map_unlock(map);
 2659                                                         return (KERN_INVALID_ADDRESS);
 2660                                                 }
 2661                                                 end = saved_start;
 2662                                                 rv = KERN_INVALID_ADDRESS;
 2663                                                 goto done;
 2664                                         }
 2665                                 }
 2666                                 if (entry == first_entry)
 2667                                         first_entry = tmp_entry;
 2668                                 else
 2669                                         first_entry = NULL;
 2670                                 entry = tmp_entry;
 2671                         }
 2672                         last_timestamp = map->timestamp;
 2673                         continue;
 2674                 }
 2675                 vm_map_clip_start(map, entry, start);
 2676                 vm_map_clip_end(map, entry, end);
 2677                 /*
 2678                  * Mark the entry in case the map lock is released.  (See
 2679                  * above.)
 2680                  */
 2681                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
 2682                     entry->wiring_thread == NULL,
 2683                     ("owned map entry %p", entry));
 2684                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
 2685                 entry->wiring_thread = curthread;
 2686                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
 2687                     || (entry->protection & prot) != prot) {
 2688                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
 2689                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
 2690                                 end = entry->end;
 2691                                 rv = KERN_INVALID_ADDRESS;
 2692                                 goto done;
 2693                         }
 2694                         goto next_entry;
 2695                 }
 2696                 if (entry->wired_count == 0) {
 2697                         entry->wired_count++;
 2698                         saved_start = entry->start;
 2699                         saved_end = entry->end;
 2700 
 2701                         /*
 2702                          * Release the map lock, relying on the in-transition
 2703                          * mark.  Mark the map busy for fork.
 2704                          */
 2705                         vm_map_busy(map);
 2706                         vm_map_unlock(map);
 2707 
 2708                         faddr = saved_start;
 2709                         do {
 2710                                 /*
 2711                                  * Simulate a fault to get the page and enter
 2712                                  * it into the physical map.
 2713                                  */
 2714                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
 2715                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
 2716                                         break;
 2717                         } while ((faddr += PAGE_SIZE) < saved_end);
 2718                         vm_map_lock(map);
 2719                         vm_map_unbusy(map);
 2720                         if (last_timestamp + 1 != map->timestamp) {
 2721                                 /*
 2722                                  * Look again for the entry because the map was
 2723                                  * modified while it was unlocked.  The entry
 2724                                  * may have been clipped, but NOT merged or
 2725                                  * deleted.
 2726                                  */
 2727                                 result = vm_map_lookup_entry(map, saved_start,
 2728                                     &tmp_entry);
 2729                                 KASSERT(result, ("vm_map_wire: lookup failed"));
 2730                                 if (entry == first_entry)
 2731                                         first_entry = tmp_entry;
 2732                                 else
 2733                                         first_entry = NULL;
 2734                                 entry = tmp_entry;
 2735                                 while (entry->end < saved_end) {
 2736                                         /*
 2737                                          * In case of failure, handle entries
 2738                                          * that were not fully wired here;
 2739                                          * fully wired entries are handled
 2740                                          * later.
 2741                                          */
 2742                                         if (rv != KERN_SUCCESS &&
 2743                                             faddr < entry->end)
 2744                                                 vm_map_wire_entry_failure(map,
 2745                                                     entry, faddr);
 2746                                         entry = entry->next;
 2747                                 }
 2748                         }
 2749                         last_timestamp = map->timestamp;
 2750                         if (rv != KERN_SUCCESS) {
 2751                                 vm_map_wire_entry_failure(map, entry, faddr);
 2752                                 end = entry->end;
 2753                                 goto done;
 2754                         }
 2755                 } else if (!user_wire ||
 2756                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
 2757                         entry->wired_count++;
 2758                 }
 2759                 /*
 2760                  * Check the map for holes in the specified region.
 2761                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
 2762                  */
 2763         next_entry:
 2764                 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
 2765                     entry->end < end && entry->next->start > entry->end) {
 2766                         end = entry->end;
 2767                         rv = KERN_INVALID_ADDRESS;
 2768                         goto done;
 2769                 }
 2770                 entry = entry->next;
 2771         }
 2772         rv = KERN_SUCCESS;
 2773 done:
 2774         need_wakeup = FALSE;
 2775         if (first_entry == NULL) {
 2776                 result = vm_map_lookup_entry(map, start, &first_entry);
 2777                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
 2778                         first_entry = first_entry->next;
 2779                 else
 2780                         KASSERT(result, ("vm_map_wire: lookup failed"));
 2781         }
 2782         for (entry = first_entry; entry->start < end; entry = entry->next) {
 2783                 /*
 2784                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
 2785                  * space in the unwired region could have been mapped
 2786                  * while the map lock was dropped for faulting in the
 2787                  * pages or draining MAP_ENTRY_IN_TRANSITION.
 2788                  * Moreover, another thread could be simultaneously
 2789                  * wiring this new mapping entry.  Detect these cases
 2790                  * and skip any entries marked as in transition not by us.
 2791                  */
 2792                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
 2793                     entry->wiring_thread != curthread) {
 2794                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
 2795                             ("vm_map_wire: !HOLESOK and new/changed entry"));
 2796                         continue;
 2797                 }
 2798 
 2799                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
 2800                         goto next_entry_done;
 2801 
 2802                 if (rv == KERN_SUCCESS) {
 2803                         if (user_wire)
 2804                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
 2805                 } else if (entry->wired_count == -1) {
 2806                         /*
 2807                          * Wiring failed on this entry.  Thus, unwiring is
 2808                          * unnecessary.
 2809                          */
 2810                         entry->wired_count = 0;
 2811                 } else if (!user_wire ||
 2812                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
 2813                         /*
 2814                          * Undo the wiring.  Wiring succeeded on this entry
 2815                          * but failed on a later entry.  
 2816                          */
 2817                         if (entry->wired_count == 1)
 2818                                 vm_map_entry_unwire(map, entry);
 2819                         else
 2820                                 entry->wired_count--;
 2821                 }
 2822         next_entry_done:
 2823                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
 2824                     ("vm_map_wire: in-transition flag missing %p", entry));
 2825                 KASSERT(entry->wiring_thread == curthread,
 2826                     ("vm_map_wire: alien wire %p", entry));
 2827                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
 2828                     MAP_ENTRY_WIRE_SKIPPED);
 2829                 entry->wiring_thread = NULL;
 2830                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
 2831                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
 2832                         need_wakeup = TRUE;
 2833                 }
 2834                 vm_map_simplify_entry(map, entry);
 2835         }
 2836         vm_map_unlock(map);
 2837         if (need_wakeup)
 2838                 vm_map_wakeup(map);
 2839         return (rv);
 2840 }
 2841 
 2842 /*
 2843  * vm_map_sync
 2844  *
 2845  * Push any dirty cached pages in the address range to their pager.
 2846  * If syncio is TRUE, dirty pages are written synchronously.
 2847  * If invalidate is TRUE, any cached pages are freed as well.
 2848  *
 2849  * If the size of the region from start to end is zero, we are
 2850  * supposed to flush all modified pages within the region containing
 2851  * start.  Unfortunately, a region can be split or coalesced with
 2852  * neighboring regions, making it difficult to determine what the
 2853  * original region was.  Therefore, we approximate this requirement by
 2854  * flushing the current region containing start.
 2855  *
 2856  * Returns an error if any part of the specified range is not mapped.
 2857  */
 2858 int
 2859 vm_map_sync(
 2860         vm_map_t map,
 2861         vm_offset_t start,
 2862         vm_offset_t end,
 2863         boolean_t syncio,
 2864         boolean_t invalidate)
 2865 {
 2866         vm_map_entry_t current;
 2867         vm_map_entry_t entry;
 2868         vm_size_t size;
 2869         vm_object_t object;
 2870         vm_ooffset_t offset;
 2871         unsigned int last_timestamp;
 2872         boolean_t failed;
 2873 
 2874         vm_map_lock_read(map);
 2875         VM_MAP_RANGE_CHECK(map, start, end);
 2876         if (!vm_map_lookup_entry(map, start, &entry)) {
 2877                 vm_map_unlock_read(map);
 2878                 return (KERN_INVALID_ADDRESS);
 2879         } else if (start == end) {
 2880                 start = entry->start;
 2881                 end = entry->end;
 2882         }
 2883         /*
 2884          * Make a first pass to check for user-wired memory and holes.
 2885          */
 2886         for (current = entry; current->start < end; current = current->next) {
 2887                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
 2888                         vm_map_unlock_read(map);
 2889                         return (KERN_INVALID_ARGUMENT);
 2890                 }
 2891                 if (end > current->end &&
 2892                     current->end != current->next->start) {
 2893                         vm_map_unlock_read(map);
 2894                         return (KERN_INVALID_ADDRESS);
 2895                 }
 2896         }
 2897 
 2898         if (invalidate)
 2899                 pmap_remove(map->pmap, start, end);
 2900         failed = FALSE;
 2901 
 2902         /*
 2903          * Make a second pass, cleaning/uncaching pages from the indicated
 2904          * objects as we go.
 2905          */
 2906         for (current = entry; current->start < end;) {
 2907                 offset = current->offset + (start - current->start);
 2908                 size = (end <= current->end ? end : current->end) - start;
 2909                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2910                         vm_map_t smap;
 2911                         vm_map_entry_t tentry;
 2912                         vm_size_t tsize;
 2913 
 2914                         smap = current->object.sub_map;
 2915                         vm_map_lock_read(smap);
 2916                         (void) vm_map_lookup_entry(smap, offset, &tentry);
 2917                         tsize = tentry->end - offset;
 2918                         if (tsize < size)
 2919                                 size = tsize;
 2920                         object = tentry->object.vm_object;
 2921                         offset = tentry->offset + (offset - tentry->start);
 2922                         vm_map_unlock_read(smap);
 2923                 } else {
 2924                         object = current->object.vm_object;
 2925                 }
 2926                 vm_object_reference(object);
 2927                 last_timestamp = map->timestamp;
 2928                 vm_map_unlock_read(map);
 2929                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
 2930                         failed = TRUE;
 2931                 start += size;
 2932                 vm_object_deallocate(object);
 2933                 vm_map_lock_read(map);
 2934                 if (last_timestamp == map->timestamp ||
 2935                     !vm_map_lookup_entry(map, start, &current))
 2936                         current = current->next;
 2937         }
 2938 
 2939         vm_map_unlock_read(map);
 2940         return (failed ? KERN_FAILURE : KERN_SUCCESS);
 2941 }
 2942 
 2943 /*
 2944  *      vm_map_entry_unwire:    [ internal use only ]
 2945  *
 2946  *      Make the region specified by this entry pageable.
 2947  *
 2948  *      The map in question should be locked.
 2949  *      [This is the reason for this routine's existence.]
 2950  */
 2951 static void
 2952 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
 2953 {
 2954 
 2955         VM_MAP_ASSERT_LOCKED(map);
 2956         KASSERT(entry->wired_count > 0,
 2957             ("vm_map_entry_unwire: entry %p isn't wired", entry));
 2958         pmap_unwire(map->pmap, entry->start, entry->end);
 2959         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
 2960             entry->start, PQ_ACTIVE);
 2961         entry->wired_count = 0;
 2962 }
 2963 
 2964 static void
 2965 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
 2966 {
 2967 
 2968         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
 2969                 vm_object_deallocate(entry->object.vm_object);
 2970         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
 2971 }
 2972 
 2973 /*
 2974  *      vm_map_entry_delete:    [ internal use only ]
 2975  *
 2976  *      Deallocate the given entry from the target map.
 2977  */
 2978 static void
 2979 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
 2980 {
 2981         vm_object_t object;
 2982         vm_pindex_t offidxstart, offidxend, count, size1;
 2983         vm_size_t size;
 2984 
 2985         vm_map_entry_unlink(map, entry);
 2986         object = entry->object.vm_object;
 2987 
 2988         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
 2989                 MPASS(entry->cred == NULL);
 2990                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
 2991                 MPASS(object == NULL);
 2992                 vm_map_entry_deallocate(entry, map->system_map);
 2993                 return;
 2994         }
 2995 
 2996         size = entry->end - entry->start;
 2997         map->size -= size;
 2998 
 2999         if (entry->cred != NULL) {
 3000                 swap_release_by_cred(size, entry->cred);
 3001                 crfree(entry->cred);
 3002         }
 3003 
 3004         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
 3005             (object != NULL)) {
 3006                 KASSERT(entry->cred == NULL || object->cred == NULL ||
 3007                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
 3008                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
 3009                 count = atop(size);
 3010                 offidxstart = OFF_TO_IDX(entry->offset);
 3011                 offidxend = offidxstart + count;
 3012                 VM_OBJECT_WLOCK(object);
 3013                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
 3014                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
 3015                     object == kernel_object || object == kmem_object)) {
 3016                         vm_object_collapse(object);
 3017 
 3018                         /*
 3019                          * The option OBJPR_NOTMAPPED can be passed here
 3020                          * because vm_map_delete() already performed
 3021                          * pmap_remove() on the only mapping to this range
 3022                          * of pages. 
 3023                          */
 3024                         vm_object_page_remove(object, offidxstart, offidxend,
 3025                             OBJPR_NOTMAPPED);
 3026                         if (object->type == OBJT_SWAP)
 3027                                 swap_pager_freespace(object, offidxstart,
 3028                                     count);
 3029                         if (offidxend >= object->size &&
 3030                             offidxstart < object->size) {
 3031                                 size1 = object->size;
 3032                                 object->size = offidxstart;
 3033                                 if (object->cred != NULL) {
 3034                                         size1 -= object->size;
 3035                                         KASSERT(object->charge >= ptoa(size1),
 3036                                             ("object %p charge < 0", object));
 3037                                         swap_release_by_cred(ptoa(size1),
 3038                                             object->cred);
 3039                                         object->charge -= ptoa(size1);
 3040                                 }
 3041                         }
 3042                 }
 3043                 VM_OBJECT_WUNLOCK(object);
 3044         } else
 3045                 entry->object.vm_object = NULL;
 3046         if (map->system_map)
 3047                 vm_map_entry_deallocate(entry, TRUE);
 3048         else {
 3049                 entry->next = curthread->td_map_def_user;
 3050                 curthread->td_map_def_user = entry;
 3051         }
 3052 }
 3053 
 3054 /*
 3055  *      vm_map_delete:  [ internal use only ]
 3056  *
 3057  *      Deallocates the given address range from the target
 3058  *      map.
 3059  */
 3060 int
 3061 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
 3062 {
 3063         vm_map_entry_t entry;
 3064         vm_map_entry_t first_entry;
 3065 
 3066         VM_MAP_ASSERT_LOCKED(map);
 3067         if (start == end)
 3068                 return (KERN_SUCCESS);
 3069 
 3070         /*
 3071          * Find the start of the region, and clip it
 3072          */
 3073         if (!vm_map_lookup_entry(map, start, &first_entry))
 3074                 entry = first_entry->next;
 3075         else {
 3076                 entry = first_entry;
 3077                 vm_map_clip_start(map, entry, start);
 3078         }
 3079 
 3080         /*
 3081          * Step through all entries in this region
 3082          */
 3083         while (entry->start < end) {
 3084                 vm_map_entry_t next;
 3085 
 3086                 /*
 3087                  * Wait for wiring or unwiring of an entry to complete.
 3088                  * Also wait for any system wirings to disappear on
 3089                  * user maps.
 3090                  */
 3091                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
 3092                     (vm_map_pmap(map) != kernel_pmap &&
 3093                     vm_map_entry_system_wired_count(entry) != 0)) {
 3094                         unsigned int last_timestamp;
 3095                         vm_offset_t saved_start;
 3096                         vm_map_entry_t tmp_entry;
 3097 
 3098                         saved_start = entry->start;
 3099                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 3100                         last_timestamp = map->timestamp;
 3101                         (void) vm_map_unlock_and_wait(map, 0);
 3102                         vm_map_lock(map);
 3103                         if (last_timestamp + 1 != map->timestamp) {
 3104                                 /*
 3105                                  * Look again for the entry because the map was
 3106                                  * modified while it was unlocked.
 3107                                  * Specifically, the entry may have been
 3108                                  * clipped, merged, or deleted.
 3109                                  */
 3110                                 if (!vm_map_lookup_entry(map, saved_start,
 3111                                                          &tmp_entry))
 3112                                         entry = tmp_entry->next;
 3113                                 else {
 3114                                         entry = tmp_entry;
 3115                                         vm_map_clip_start(map, entry,
 3116                                                           saved_start);
 3117                                 }
 3118                         }
 3119                         continue;
 3120                 }
 3121                 vm_map_clip_end(map, entry, end);
 3122 
 3123                 next = entry->next;
 3124 
 3125                 /*
 3126                  * Unwire before removing addresses from the pmap; otherwise,
 3127                  * unwiring will put the entries back in the pmap.
 3128                  */
 3129                 if (entry->wired_count != 0)
 3130                         vm_map_entry_unwire(map, entry);
 3131 
 3132                 /*
 3133                  * Remove mappings for the pages, but only if the
 3134                  * mappings could exist.  For instance, it does not
 3135                  * make sense to call pmap_remove() for guard entries.
 3136                  */
 3137                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
 3138                     entry->object.vm_object != NULL)
 3139                         pmap_remove(map->pmap, entry->start, entry->end);
 3140 
 3141                 /*
 3142                  * Delete the entry only after removing all pmap
 3143                  * entries pointing to its pages.  (Otherwise, its
 3144                  * page frames may be reallocated, and any modify bits
 3145                  * will be set in the wrong object!)
 3146                  */
 3147                 vm_map_entry_delete(map, entry);
 3148                 entry = next;
 3149         }
 3150         return (KERN_SUCCESS);
 3151 }
 3152 
 3153 /*
 3154  *      vm_map_remove:
 3155  *
 3156  *      Remove the given address range from the target map.
 3157  *      This is the exported form of vm_map_delete.
 3158  */
 3159 int
 3160 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
 3161 {
 3162         int result;
 3163 
 3164         vm_map_lock(map);
 3165         VM_MAP_RANGE_CHECK(map, start, end);
 3166         result = vm_map_delete(map, start, end);
 3167         vm_map_unlock(map);
 3168         return (result);
 3169 }
 3170 
 3171 /*
 3172  *      vm_map_check_protection:
 3173  *
 3174  *      Assert that the target map allows the specified privilege on the
 3175  *      entire address region given.  The entire region must be allocated.
 3176  *
 3177  *      WARNING!  This code does not and should not check whether the
 3178  *      contents of the region is accessible.  For example a smaller file
 3179  *      might be mapped into a larger address space.
 3180  *
 3181  *      NOTE!  This code is also called by munmap().
 3182  *
 3183  *      The map must be locked.  A read lock is sufficient.
 3184  */
 3185 boolean_t
 3186 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
 3187                         vm_prot_t protection)
 3188 {
 3189         vm_map_entry_t entry;
 3190         vm_map_entry_t tmp_entry;
 3191 
 3192         if (!vm_map_lookup_entry(map, start, &tmp_entry))
 3193                 return (FALSE);
 3194         entry = tmp_entry;
 3195 
 3196         while (start < end) {
 3197                 /*
 3198                  * No holes allowed!
 3199                  */
 3200                 if (start < entry->start)
 3201                         return (FALSE);
 3202                 /*
 3203                  * Check protection associated with entry.
 3204                  */
 3205                 if ((entry->protection & protection) != protection)
 3206                         return (FALSE);
 3207                 /* go to next entry */
 3208                 start = entry->end;
 3209                 entry = entry->next;
 3210         }
 3211         return (TRUE);
 3212 }
 3213 
 3214 /*
 3215  *      vm_map_copy_entry:
 3216  *
 3217  *      Copies the contents of the source entry to the destination
 3218  *      entry.  The entries *must* be aligned properly.
 3219  */
 3220 static void
 3221 vm_map_copy_entry(
 3222         vm_map_t src_map,
 3223         vm_map_t dst_map,
 3224         vm_map_entry_t src_entry,
 3225         vm_map_entry_t dst_entry,
 3226         vm_ooffset_t *fork_charge)
 3227 {
 3228         vm_object_t src_object;
 3229         vm_map_entry_t fake_entry;
 3230         vm_offset_t size;
 3231         struct ucred *cred;
 3232         int charged;
 3233 
 3234         VM_MAP_ASSERT_LOCKED(dst_map);
 3235 
 3236         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
 3237                 return;
 3238 
 3239         if (src_entry->wired_count == 0 ||
 3240             (src_entry->protection & VM_PROT_WRITE) == 0) {
 3241                 /*
 3242                  * If the source entry is marked needs_copy, it is already
 3243                  * write-protected.
 3244                  */
 3245                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
 3246                     (src_entry->protection & VM_PROT_WRITE) != 0) {
 3247                         pmap_protect(src_map->pmap,
 3248                             src_entry->start,
 3249                             src_entry->end,
 3250                             src_entry->protection & ~VM_PROT_WRITE);
 3251                 }
 3252 
 3253                 /*
 3254                  * Make a copy of the object.
 3255                  */
 3256                 size = src_entry->end - src_entry->start;
 3257                 if ((src_object = src_entry->object.vm_object) != NULL) {
 3258                         VM_OBJECT_WLOCK(src_object);
 3259                         charged = ENTRY_CHARGED(src_entry);
 3260                         if (src_object->handle == NULL &&
 3261                             (src_object->type == OBJT_DEFAULT ||
 3262                             src_object->type == OBJT_SWAP)) {
 3263                                 vm_object_collapse(src_object);
 3264                                 if ((src_object->flags & (OBJ_NOSPLIT |
 3265                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
 3266                                         vm_object_split(src_entry);
 3267                                         src_object =
 3268                                             src_entry->object.vm_object;
 3269                                 }
 3270                         }
 3271                         vm_object_reference_locked(src_object);
 3272                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
 3273                         if (src_entry->cred != NULL &&
 3274                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
 3275                                 KASSERT(src_object->cred == NULL,
 3276                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
 3277                                      src_object));
 3278                                 src_object->cred = src_entry->cred;
 3279                                 src_object->charge = size;
 3280                         }
 3281                         VM_OBJECT_WUNLOCK(src_object);
 3282                         dst_entry->object.vm_object = src_object;
 3283                         if (charged) {
 3284                                 cred = curthread->td_ucred;
 3285                                 crhold(cred);
 3286                                 dst_entry->cred = cred;
 3287                                 *fork_charge += size;
 3288                                 if (!(src_entry->eflags &
 3289                                       MAP_ENTRY_NEEDS_COPY)) {
 3290                                         crhold(cred);
 3291                                         src_entry->cred = cred;
 3292                                         *fork_charge += size;
 3293                                 }
 3294                         }
 3295                         src_entry->eflags |= MAP_ENTRY_COW |
 3296                             MAP_ENTRY_NEEDS_COPY;
 3297                         dst_entry->eflags |= MAP_ENTRY_COW |
 3298                             MAP_ENTRY_NEEDS_COPY;
 3299                         dst_entry->offset = src_entry->offset;
 3300                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
 3301                                 /*
 3302                                  * MAP_ENTRY_VN_WRITECNT cannot
 3303                                  * indicate write reference from
 3304                                  * src_entry, since the entry is
 3305                                  * marked as needs copy.  Allocate a
 3306                                  * fake entry that is used to
 3307                                  * decrement object->un_pager.vnp.writecount
 3308                                  * at the appropriate time.  Attach
 3309                                  * fake_entry to the deferred list.
 3310                                  */
 3311                                 fake_entry = vm_map_entry_create(dst_map);
 3312                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
 3313                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
 3314                                 vm_object_reference(src_object);
 3315                                 fake_entry->object.vm_object = src_object;
 3316                                 fake_entry->start = src_entry->start;
 3317                                 fake_entry->end = src_entry->end;
 3318                                 fake_entry->next = curthread->td_map_def_user;
 3319                                 curthread->td_map_def_user = fake_entry;
 3320                         }
 3321 
 3322                         pmap_copy(dst_map->pmap, src_map->pmap,
 3323                             dst_entry->start, dst_entry->end - dst_entry->start,
 3324                             src_entry->start);
 3325                 } else {
 3326                         dst_entry->object.vm_object = NULL;
 3327                         dst_entry->offset = 0;
 3328                         if (src_entry->cred != NULL) {
 3329                                 dst_entry->cred = curthread->td_ucred;
 3330                                 crhold(dst_entry->cred);
 3331                                 *fork_charge += size;
 3332                         }
 3333                 }
 3334         } else {
 3335                 /*
 3336                  * We don't want to make writeable wired pages copy-on-write.
 3337                  * Immediately copy these pages into the new map by simulating
 3338                  * page faults.  The new pages are pageable.
 3339                  */
 3340                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
 3341                     fork_charge);
 3342         }
 3343 }
 3344 
 3345 /*
 3346  * vmspace_map_entry_forked:
 3347  * Update the newly-forked vmspace each time a map entry is inherited
 3348  * or copied.  The values for vm_dsize and vm_tsize are approximate
 3349  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
 3350  */
 3351 static void
 3352 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
 3353     vm_map_entry_t entry)
 3354 {
 3355         vm_size_t entrysize;
 3356         vm_offset_t newend;
 3357 
 3358         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
 3359                 return;
 3360         entrysize = entry->end - entry->start;
 3361         vm2->vm_map.size += entrysize;
 3362         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
 3363                 vm2->vm_ssize += btoc(entrysize);
 3364         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
 3365             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
 3366                 newend = MIN(entry->end,
 3367                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
 3368                 vm2->vm_dsize += btoc(newend - entry->start);
 3369         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
 3370             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
 3371                 newend = MIN(entry->end,
 3372                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
 3373                 vm2->vm_tsize += btoc(newend - entry->start);
 3374         }
 3375 }
 3376 
 3377 /*
 3378  * vmspace_fork:
 3379  * Create a new process vmspace structure and vm_map
 3380  * based on those of an existing process.  The new map
 3381  * is based on the old map, according to the inheritance
 3382  * values on the regions in that map.
 3383  *
 3384  * XXX It might be worth coalescing the entries added to the new vmspace.
 3385  *
 3386  * The source map must not be locked.
 3387  */
 3388 struct vmspace *
 3389 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
 3390 {
 3391         struct vmspace *vm2;
 3392         vm_map_t new_map, old_map;
 3393         vm_map_entry_t new_entry, old_entry;
 3394         vm_object_t object;
 3395         int locked;
 3396         vm_inherit_t inh;
 3397 
 3398         old_map = &vm1->vm_map;
 3399         /* Copy immutable fields of vm1 to vm2. */
 3400         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
 3401             pmap_pinit);
 3402         if (vm2 == NULL)
 3403                 return (NULL);
 3404         vm2->vm_taddr = vm1->vm_taddr;
 3405         vm2->vm_daddr = vm1->vm_daddr;
 3406         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
 3407         vm_map_lock(old_map);
 3408         if (old_map->busy)
 3409                 vm_map_wait_busy(old_map);
 3410         new_map = &vm2->vm_map;
 3411         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
 3412         KASSERT(locked, ("vmspace_fork: lock failed"));
 3413 
 3414         old_entry = old_map->header.next;
 3415 
 3416         while (old_entry != &old_map->header) {
 3417                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 3418                         panic("vm_map_fork: encountered a submap");
 3419 
 3420                 inh = old_entry->inheritance;
 3421                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
 3422                     inh != VM_INHERIT_NONE)
 3423                         inh = VM_INHERIT_COPY;
 3424 
 3425                 switch (inh) {
 3426                 case VM_INHERIT_NONE:
 3427                         break;
 3428 
 3429                 case VM_INHERIT_SHARE:
 3430                         /*
 3431                          * Clone the entry, creating the shared object if necessary.
 3432                          */
 3433                         object = old_entry->object.vm_object;
 3434                         if (object == NULL) {
 3435                                 object = vm_object_allocate(OBJT_DEFAULT,
 3436                                         atop(old_entry->end - old_entry->start));
 3437                                 old_entry->object.vm_object = object;
 3438                                 old_entry->offset = 0;
 3439                                 if (old_entry->cred != NULL) {
 3440                                         object->cred = old_entry->cred;
 3441                                         object->charge = old_entry->end -
 3442                                             old_entry->start;
 3443                                         old_entry->cred = NULL;
 3444                                 }
 3445                         }
 3446 
 3447                         /*
 3448                          * Add the reference before calling vm_object_shadow
 3449                          * to insure that a shadow object is created.
 3450                          */
 3451                         vm_object_reference(object);
 3452                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 3453                                 vm_object_shadow(&old_entry->object.vm_object,
 3454                                     &old_entry->offset,
 3455                                     old_entry->end - old_entry->start);
 3456                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
 3457                                 /* Transfer the second reference too. */
 3458                                 vm_object_reference(
 3459                                     old_entry->object.vm_object);
 3460 
 3461                                 /*
 3462                                  * As in vm_map_simplify_entry(), the
 3463                                  * vnode lock will not be acquired in
 3464                                  * this call to vm_object_deallocate().
 3465                                  */
 3466                                 vm_object_deallocate(object);
 3467                                 object = old_entry->object.vm_object;
 3468                         }
 3469                         VM_OBJECT_WLOCK(object);
 3470                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
 3471                         if (old_entry->cred != NULL) {
 3472                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
 3473                                 object->cred = old_entry->cred;
 3474                                 object->charge = old_entry->end - old_entry->start;
 3475                                 old_entry->cred = NULL;
 3476                         }
 3477 
 3478                         /*
 3479                          * Assert the correct state of the vnode
 3480                          * v_writecount while the object is locked, to
 3481                          * not relock it later for the assertion
 3482                          * correctness.
 3483                          */
 3484                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
 3485                             object->type == OBJT_VNODE) {
 3486                                 KASSERT(((struct vnode *)object->handle)->
 3487                                     v_writecount > 0,
 3488                                     ("vmspace_fork: v_writecount %p", object));
 3489                                 KASSERT(object->un_pager.vnp.writemappings > 0,
 3490                                     ("vmspace_fork: vnp.writecount %p",
 3491                                     object));
 3492                         }
 3493                         VM_OBJECT_WUNLOCK(object);
 3494 
 3495                         /*
 3496                          * Clone the entry, referencing the shared object.
 3497                          */
 3498                         new_entry = vm_map_entry_create(new_map);
 3499                         *new_entry = *old_entry;
 3500                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
 3501                             MAP_ENTRY_IN_TRANSITION);
 3502                         new_entry->wiring_thread = NULL;
 3503                         new_entry->wired_count = 0;
 3504                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
 3505                                 vnode_pager_update_writecount(object,
 3506                                     new_entry->start, new_entry->end);
 3507                         }
 3508 
 3509                         /*
 3510                          * Insert the entry into the new map -- we know we're
 3511                          * inserting at the end of the new map.
 3512                          */
 3513                         vm_map_entry_link(new_map, new_map->header.prev,
 3514                             new_entry);
 3515                         vmspace_map_entry_forked(vm1, vm2, new_entry);
 3516 
 3517                         /*
 3518                          * Update the physical map
 3519                          */
 3520                         pmap_copy(new_map->pmap, old_map->pmap,
 3521                             new_entry->start,
 3522                             (old_entry->end - old_entry->start),
 3523                             old_entry->start);
 3524                         break;
 3525 
 3526                 case VM_INHERIT_COPY:
 3527                         /*
 3528                          * Clone the entry and link into the map.
 3529                          */
 3530                         new_entry = vm_map_entry_create(new_map);
 3531                         *new_entry = *old_entry;
 3532                         /*
 3533                          * Copied entry is COW over the old object.
 3534                          */
 3535                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
 3536                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
 3537                         new_entry->wiring_thread = NULL;
 3538                         new_entry->wired_count = 0;
 3539                         new_entry->object.vm_object = NULL;
 3540                         new_entry->cred = NULL;
 3541                         vm_map_entry_link(new_map, new_map->header.prev,
 3542                             new_entry);
 3543                         vmspace_map_entry_forked(vm1, vm2, new_entry);
 3544                         vm_map_copy_entry(old_map, new_map, old_entry,
 3545                             new_entry, fork_charge);
 3546                         break;
 3547 
 3548                 case VM_INHERIT_ZERO:
 3549                         /*
 3550                          * Create a new anonymous mapping entry modelled from
 3551                          * the old one.
 3552                          */
 3553                         new_entry = vm_map_entry_create(new_map);
 3554                         memset(new_entry, 0, sizeof(*new_entry));
 3555 
 3556                         new_entry->start = old_entry->start;
 3557                         new_entry->end = old_entry->end;
 3558                         new_entry->eflags = old_entry->eflags &
 3559                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
 3560                             MAP_ENTRY_VN_WRITECNT);
 3561                         new_entry->protection = old_entry->protection;
 3562                         new_entry->max_protection = old_entry->max_protection;
 3563                         new_entry->inheritance = VM_INHERIT_ZERO;
 3564 
 3565                         vm_map_entry_link(new_map, new_map->header.prev,
 3566                             new_entry);
 3567                         vmspace_map_entry_forked(vm1, vm2, new_entry);
 3568 
 3569                         new_entry->cred = curthread->td_ucred;
 3570                         crhold(new_entry->cred);
 3571                         *fork_charge += (new_entry->end - new_entry->start);
 3572 
 3573                         break;
 3574                 }
 3575                 old_entry = old_entry->next;
 3576         }
 3577         /*
 3578          * Use inlined vm_map_unlock() to postpone handling the deferred
 3579          * map entries, which cannot be done until both old_map and
 3580          * new_map locks are released.
 3581          */
 3582         sx_xunlock(&old_map->lock);
 3583         sx_xunlock(&new_map->lock);
 3584         vm_map_process_deferred();
 3585 
 3586         return (vm2);
 3587 }
 3588 
 3589 /*
 3590  * Create a process's stack for exec_new_vmspace().  This function is never
 3591  * asked to wire the newly created stack.
 3592  */
 3593 int
 3594 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
 3595     vm_prot_t prot, vm_prot_t max, int cow)
 3596 {
 3597         vm_size_t growsize, init_ssize;
 3598         rlim_t vmemlim;
 3599         int rv;
 3600 
 3601         MPASS((map->flags & MAP_WIREFUTURE) == 0);
 3602         growsize = sgrowsiz;
 3603         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
 3604         vm_map_lock(map);
 3605         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
 3606         /* If we would blow our VMEM resource limit, no go */
 3607         if (map->size + init_ssize > vmemlim) {
 3608                 rv = KERN_NO_SPACE;
 3609                 goto out;
 3610         }
 3611         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
 3612             max, cow);
 3613 out:
 3614         vm_map_unlock(map);
 3615         return (rv);
 3616 }
 3617 
 3618 static int stack_guard_page = 1;
 3619 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
 3620     &stack_guard_page, 0,
 3621     "Specifies the number of guard pages for a stack that grows");
 3622 
 3623 static int
 3624 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
 3625     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
 3626 {
 3627         vm_map_entry_t new_entry, prev_entry;
 3628         vm_offset_t bot, gap_bot, gap_top, top;
 3629         vm_size_t init_ssize, sgp;
 3630         int orient, rv;
 3631 
 3632         /*
 3633          * The stack orientation is piggybacked with the cow argument.
 3634          * Extract it into orient and mask the cow argument so that we
 3635          * don't pass it around further.
 3636          */
 3637         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
 3638         KASSERT(orient != 0, ("No stack grow direction"));
 3639         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
 3640             ("bi-dir stack"));
 3641 
 3642         if (addrbos < vm_map_min(map) ||
 3643             addrbos + max_ssize > vm_map_max(map) ||
 3644             addrbos + max_ssize <= addrbos)
 3645                 return (KERN_INVALID_ADDRESS);
 3646         sgp = (curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ? 0 :
 3647             (vm_size_t)stack_guard_page * PAGE_SIZE;
 3648         if (sgp >= max_ssize)
 3649                 return (KERN_INVALID_ARGUMENT);
 3650 
 3651         init_ssize = growsize;
 3652         if (max_ssize < init_ssize + sgp)
 3653                 init_ssize = max_ssize - sgp;
 3654 
 3655         /* If addr is already mapped, no go */
 3656         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
 3657                 return (KERN_NO_SPACE);
 3658 
 3659         /*
 3660          * If we can't accommodate max_ssize in the current mapping, no go.
 3661          */
 3662         if (prev_entry->next->start < addrbos + max_ssize)
 3663                 return (KERN_NO_SPACE);
 3664 
 3665         /*
 3666          * We initially map a stack of only init_ssize.  We will grow as
 3667          * needed later.  Depending on the orientation of the stack (i.e.
 3668          * the grow direction) we either map at the top of the range, the
 3669          * bottom of the range or in the middle.
 3670          *
 3671          * Note: we would normally expect prot and max to be VM_PROT_ALL,
 3672          * and cow to be 0.  Possibly we should eliminate these as input
 3673          * parameters, and just pass these values here in the insert call.
 3674          */
 3675         if (orient == MAP_STACK_GROWS_DOWN) {
 3676                 bot = addrbos + max_ssize - init_ssize;
 3677                 top = bot + init_ssize;
 3678                 gap_bot = addrbos;
 3679                 gap_top = bot;
 3680         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
 3681                 bot = addrbos;
 3682                 top = bot + init_ssize;
 3683                 gap_bot = top;
 3684                 gap_top = addrbos + max_ssize;
 3685         }
 3686         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
 3687         if (rv != KERN_SUCCESS)
 3688                 return (rv);
 3689         new_entry = prev_entry->next;
 3690         KASSERT(new_entry->end == top || new_entry->start == bot,
 3691             ("Bad entry start/end for new stack entry"));
 3692         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
 3693             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
 3694             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
 3695         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
 3696             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
 3697             ("new entry lacks MAP_ENTRY_GROWS_UP"));
 3698         if (gap_bot == gap_top)
 3699                 return (KERN_SUCCESS);
 3700         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
 3701             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
 3702             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
 3703         if (rv == KERN_SUCCESS) {
 3704                 /*
 3705                  * Gap can never successfully handle a fault, so
 3706                  * read-ahead logic is never used for it.  Re-use
 3707                  * next_read of the gap entry to store
 3708                  * stack_guard_page for vm_map_growstack().
 3709                  */
 3710                 if (orient == MAP_STACK_GROWS_DOWN)
 3711                         new_entry->prev->next_read = sgp;
 3712                 else
 3713                         new_entry->next->next_read = sgp;
 3714         } else {
 3715                 (void)vm_map_delete(map, bot, top);
 3716         }
 3717         return (rv);
 3718 }
 3719 
 3720 /*
 3721  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
 3722  * successfully grow the stack.
 3723  */
 3724 static int
 3725 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
 3726 {
 3727         vm_map_entry_t stack_entry;
 3728         struct proc *p;
 3729         struct vmspace *vm;
 3730         struct ucred *cred;
 3731         vm_offset_t gap_end, gap_start, grow_start;
 3732         size_t grow_amount, guard, max_grow;
 3733         rlim_t lmemlim, stacklim, vmemlim;
 3734         int rv, rv1;
 3735         bool gap_deleted, grow_down, is_procstack;
 3736 #ifdef notyet
 3737         uint64_t limit;
 3738 #endif
 3739 #ifdef RACCT
 3740         int error;
 3741 #endif
 3742 
 3743         p = curproc;
 3744         vm = p->p_vmspace;
 3745 
 3746         /*
 3747          * Disallow stack growth when the access is performed by a
 3748          * debugger or AIO daemon.  The reason is that the wrong
 3749          * resource limits are applied.
 3750          */
 3751         if (p != initproc && (map != &p->p_vmspace->vm_map ||
 3752             p->p_textvp == NULL))
 3753                 return (KERN_FAILURE);
 3754 
 3755         MPASS(!map->system_map);
 3756 
 3757         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
 3758         stacklim = lim_cur(curthread, RLIMIT_STACK);
 3759         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
 3760 retry:
 3761         /* If addr is not in a hole for a stack grow area, no need to grow. */
 3762         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
 3763                 return (KERN_FAILURE);
 3764         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
 3765                 return (KERN_SUCCESS);
 3766         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
 3767                 stack_entry = gap_entry->next;
 3768                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
 3769                     stack_entry->start != gap_entry->end)
 3770                         return (KERN_FAILURE);
 3771                 grow_amount = round_page(stack_entry->start - addr);
 3772                 grow_down = true;
 3773         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
 3774                 stack_entry = gap_entry->prev;
 3775                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
 3776                     stack_entry->end != gap_entry->start)
 3777                         return (KERN_FAILURE);
 3778                 grow_amount = round_page(addr + 1 - stack_entry->end);
 3779                 grow_down = false;
 3780         } else {
 3781                 return (KERN_FAILURE);
 3782         }
 3783         guard = (curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ? 0 :
 3784             gap_entry->next_read;
 3785         max_grow = gap_entry->end - gap_entry->start;
 3786         if (guard > max_grow)
 3787                 return (KERN_NO_SPACE);
 3788         max_grow -= guard;
 3789         if (grow_amount > max_grow)
 3790                 return (KERN_NO_SPACE);
 3791 
 3792         /*
 3793          * If this is the main process stack, see if we're over the stack
 3794          * limit.
 3795          */
 3796         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
 3797             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
 3798         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
 3799                 return (KERN_NO_SPACE);
 3800 
 3801 #ifdef RACCT
 3802         if (racct_enable) {
 3803                 PROC_LOCK(p);
 3804                 if (is_procstack && racct_set(p, RACCT_STACK,
 3805                     ctob(vm->vm_ssize) + grow_amount)) {
 3806                         PROC_UNLOCK(p);
 3807                         return (KERN_NO_SPACE);
 3808                 }
 3809                 PROC_UNLOCK(p);
 3810         }
 3811 #endif
 3812 
 3813         grow_amount = roundup(grow_amount, sgrowsiz);
 3814         if (grow_amount > max_grow)
 3815                 grow_amount = max_grow;
 3816         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
 3817                 grow_amount = trunc_page((vm_size_t)stacklim) -
 3818                     ctob(vm->vm_ssize);
 3819         }
 3820 
 3821 #ifdef notyet
 3822         PROC_LOCK(p);
 3823         limit = racct_get_available(p, RACCT_STACK);
 3824         PROC_UNLOCK(p);
 3825         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
 3826                 grow_amount = limit - ctob(vm->vm_ssize);
 3827 #endif
 3828 
 3829         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
 3830                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
 3831                         rv = KERN_NO_SPACE;
 3832                         goto out;
 3833                 }
 3834 #ifdef RACCT
 3835                 if (racct_enable) {
 3836                         PROC_LOCK(p);
 3837                         if (racct_set(p, RACCT_MEMLOCK,
 3838                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
 3839                                 PROC_UNLOCK(p);
 3840                                 rv = KERN_NO_SPACE;
 3841                                 goto out;
 3842                         }
 3843                         PROC_UNLOCK(p);
 3844                 }
 3845 #endif
 3846         }
 3847 
 3848         /* If we would blow our VMEM resource limit, no go */
 3849         if (map->size + grow_amount > vmemlim) {
 3850                 rv = KERN_NO_SPACE;
 3851                 goto out;
 3852         }
 3853 #ifdef RACCT
 3854         if (racct_enable) {
 3855                 PROC_LOCK(p);
 3856                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
 3857                         PROC_UNLOCK(p);
 3858                         rv = KERN_NO_SPACE;
 3859                         goto out;
 3860                 }
 3861                 PROC_UNLOCK(p);
 3862         }
 3863 #endif
 3864 
 3865         if (vm_map_lock_upgrade(map)) {
 3866                 gap_entry = NULL;
 3867                 vm_map_lock_read(map);
 3868                 goto retry;
 3869         }
 3870 
 3871         if (grow_down) {
 3872                 grow_start = gap_entry->end - grow_amount;
 3873                 if (gap_entry->start + grow_amount == gap_entry->end) {
 3874                         gap_start = gap_entry->start;
 3875                         gap_end = gap_entry->end;
 3876                         vm_map_entry_delete(map, gap_entry);
 3877                         gap_deleted = true;
 3878                 } else {
 3879                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
 3880                         gap_entry->end -= grow_amount;
 3881                         vm_map_entry_resize_free(map, gap_entry);
 3882                         gap_deleted = false;
 3883                 }
 3884                 rv = vm_map_insert(map, NULL, 0, grow_start,
 3885                     grow_start + grow_amount,
 3886                     stack_entry->protection, stack_entry->max_protection,
 3887                     MAP_STACK_GROWS_DOWN);
 3888                 if (rv != KERN_SUCCESS) {
 3889                         if (gap_deleted) {
 3890                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
 3891                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
 3892                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
 3893                                 MPASS(rv1 == KERN_SUCCESS);
 3894                         } else {
 3895                                 gap_entry->end += grow_amount;
 3896                                 vm_map_entry_resize_free(map, gap_entry);
 3897                         }
 3898                 }
 3899         } else {
 3900                 grow_start = stack_entry->end;
 3901                 cred = stack_entry->cred;
 3902                 if (cred == NULL && stack_entry->object.vm_object != NULL)
 3903                         cred = stack_entry->object.vm_object->cred;
 3904                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
 3905                         rv = KERN_NO_SPACE;
 3906                 /* Grow the underlying object if applicable. */
 3907                 else if (stack_entry->object.vm_object == NULL ||
 3908                     vm_object_coalesce(stack_entry->object.vm_object,
 3909                     stack_entry->offset,
 3910                     (vm_size_t)(stack_entry->end - stack_entry->start),
 3911                     (vm_size_t)grow_amount, cred != NULL)) {
 3912                         if (gap_entry->start + grow_amount == gap_entry->end)
 3913                                 vm_map_entry_delete(map, gap_entry);
 3914                         else
 3915                                 gap_entry->start += grow_amount;
 3916                         stack_entry->end += grow_amount;
 3917                         map->size += grow_amount;
 3918                         vm_map_entry_resize_free(map, stack_entry);
 3919                         rv = KERN_SUCCESS;
 3920                 } else
 3921                         rv = KERN_FAILURE;
 3922         }
 3923         if (rv == KERN_SUCCESS && is_procstack)
 3924                 vm->vm_ssize += btoc(grow_amount);
 3925 
 3926         /*
 3927          * Heed the MAP_WIREFUTURE flag if it was set for this process.
 3928          */
 3929         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
 3930                 vm_map_unlock(map);
 3931                 vm_map_wire(map, grow_start, grow_start + grow_amount,
 3932                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
 3933                 vm_map_lock_read(map);
 3934         } else
 3935                 vm_map_lock_downgrade(map);
 3936 
 3937 out:
 3938 #ifdef RACCT
 3939         if (racct_enable && rv != KERN_SUCCESS) {
 3940                 PROC_LOCK(p);
 3941                 error = racct_set(p, RACCT_VMEM, map->size);
 3942                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
 3943                 if (!old_mlock) {
 3944                         error = racct_set(p, RACCT_MEMLOCK,
 3945                             ptoa(pmap_wired_count(map->pmap)));
 3946                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
 3947                 }
 3948                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
 3949                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
 3950                 PROC_UNLOCK(p);
 3951         }
 3952 #endif
 3953 
 3954         return (rv);
 3955 }
 3956 
 3957 /*
 3958  * Unshare the specified VM space for exec.  If other processes are
 3959  * mapped to it, then create a new one.  The new vmspace is null.
 3960  */
 3961 int
 3962 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
 3963 {
 3964         struct vmspace *oldvmspace = p->p_vmspace;
 3965         struct vmspace *newvmspace;
 3966 
 3967         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
 3968             ("vmspace_exec recursed"));
 3969         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
 3970         if (newvmspace == NULL)
 3971                 return (ENOMEM);
 3972         newvmspace->vm_swrss = oldvmspace->vm_swrss;
 3973         /*
 3974          * This code is written like this for prototype purposes.  The
 3975          * goal is to avoid running down the vmspace here, but let the
 3976          * other process's that are still using the vmspace to finally
 3977          * run it down.  Even though there is little or no chance of blocking
 3978          * here, it is a good idea to keep this form for future mods.
 3979          */
 3980         PROC_VMSPACE_LOCK(p);
 3981         p->p_vmspace = newvmspace;
 3982         PROC_VMSPACE_UNLOCK(p);
 3983         if (p == curthread->td_proc)
 3984                 pmap_activate(curthread);
 3985         curthread->td_pflags |= TDP_EXECVMSPC;
 3986         return (0);
 3987 }
 3988 
 3989 /*
 3990  * Unshare the specified VM space for forcing COW.  This
 3991  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
 3992  */
 3993 int
 3994 vmspace_unshare(struct proc *p)
 3995 {
 3996         struct vmspace *oldvmspace = p->p_vmspace;
 3997         struct vmspace *newvmspace;
 3998         vm_ooffset_t fork_charge;
 3999 
 4000         if (oldvmspace->vm_refcnt == 1)
 4001                 return (0);
 4002         fork_charge = 0;
 4003         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
 4004         if (newvmspace == NULL)
 4005                 return (ENOMEM);
 4006         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
 4007                 vmspace_free(newvmspace);
 4008                 return (ENOMEM);
 4009         }
 4010         PROC_VMSPACE_LOCK(p);
 4011         p->p_vmspace = newvmspace;
 4012         PROC_VMSPACE_UNLOCK(p);
 4013         if (p == curthread->td_proc)
 4014                 pmap_activate(curthread);
 4015         vmspace_free(oldvmspace);
 4016         return (0);
 4017 }
 4018 
 4019 /*
 4020  *      vm_map_lookup:
 4021  *
 4022  *      Finds the VM object, offset, and
 4023  *      protection for a given virtual address in the
 4024  *      specified map, assuming a page fault of the
 4025  *      type specified.
 4026  *
 4027  *      Leaves the map in question locked for read; return
 4028  *      values are guaranteed until a vm_map_lookup_done
 4029  *      call is performed.  Note that the map argument
 4030  *      is in/out; the returned map must be used in
 4031  *      the call to vm_map_lookup_done.
 4032  *
 4033  *      A handle (out_entry) is returned for use in
 4034  *      vm_map_lookup_done, to make that fast.
 4035  *
 4036  *      If a lookup is requested with "write protection"
 4037  *      specified, the map may be changed to perform virtual
 4038  *      copying operations, although the data referenced will
 4039  *      remain the same.
 4040  */
 4041 int
 4042 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
 4043               vm_offset_t vaddr,
 4044               vm_prot_t fault_typea,
 4045               vm_map_entry_t *out_entry,        /* OUT */
 4046               vm_object_t *object,              /* OUT */
 4047               vm_pindex_t *pindex,              /* OUT */
 4048               vm_prot_t *out_prot,              /* OUT */
 4049               boolean_t *wired)                 /* OUT */
 4050 {
 4051         vm_map_entry_t entry;
 4052         vm_map_t map = *var_map;
 4053         vm_prot_t prot;
 4054         vm_prot_t fault_type = fault_typea;
 4055         vm_object_t eobject;
 4056         vm_size_t size;
 4057         struct ucred *cred;
 4058 
 4059 RetryLookup:
 4060 
 4061         vm_map_lock_read(map);
 4062 
 4063 RetryLookupLocked:
 4064         /*
 4065          * Lookup the faulting address.
 4066          */
 4067         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
 4068                 vm_map_unlock_read(map);
 4069                 return (KERN_INVALID_ADDRESS);
 4070         }
 4071 
 4072         entry = *out_entry;
 4073 
 4074         /*
 4075          * Handle submaps.
 4076          */
 4077         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 4078                 vm_map_t old_map = map;
 4079 
 4080                 *var_map = map = entry->object.sub_map;
 4081                 vm_map_unlock_read(old_map);
 4082                 goto RetryLookup;
 4083         }
 4084 
 4085         /*
 4086          * Check whether this task is allowed to have this page.
 4087          */
 4088         prot = entry->protection;
 4089         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
 4090                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
 4091                 if (prot == VM_PROT_NONE && map != kernel_map &&
 4092                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
 4093                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
 4094                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
 4095                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
 4096                         goto RetryLookupLocked;
 4097         }
 4098         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
 4099         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
 4100                 vm_map_unlock_read(map);
 4101                 return (KERN_PROTECTION_FAILURE);
 4102         }
 4103         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
 4104             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
 4105             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
 4106             ("entry %p flags %x", entry, entry->eflags));
 4107         if ((fault_typea & VM_PROT_COPY) != 0 &&
 4108             (entry->max_protection & VM_PROT_WRITE) == 0 &&
 4109             (entry->eflags & MAP_ENTRY_COW) == 0) {
 4110                 vm_map_unlock_read(map);
 4111                 return (KERN_PROTECTION_FAILURE);
 4112         }
 4113 
 4114         /*
 4115          * If this page is not pageable, we have to get it for all possible
 4116          * accesses.
 4117          */
 4118         *wired = (entry->wired_count != 0);
 4119         if (*wired)
 4120                 fault_type = entry->protection;
 4121         size = entry->end - entry->start;
 4122         /*
 4123          * If the entry was copy-on-write, we either ...
 4124          */
 4125         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 4126                 /*
 4127                  * If we want to write the page, we may as well handle that
 4128                  * now since we've got the map locked.
 4129                  *
 4130                  * If we don't need to write the page, we just demote the
 4131                  * permissions allowed.
 4132                  */
 4133                 if ((fault_type & VM_PROT_WRITE) != 0 ||
 4134                     (fault_typea & VM_PROT_COPY) != 0) {
 4135                         /*
 4136                          * Make a new object, and place it in the object
 4137                          * chain.  Note that no new references have appeared
 4138                          * -- one just moved from the map to the new
 4139                          * object.
 4140                          */
 4141                         if (vm_map_lock_upgrade(map))
 4142                                 goto RetryLookup;
 4143 
 4144                         if (entry->cred == NULL) {
 4145                                 /*
 4146                                  * The debugger owner is charged for
 4147                                  * the memory.
 4148                                  */
 4149                                 cred = curthread->td_ucred;
 4150                                 crhold(cred);
 4151                                 if (!swap_reserve_by_cred(size, cred)) {
 4152                                         crfree(cred);
 4153                                         vm_map_unlock(map);
 4154                                         return (KERN_RESOURCE_SHORTAGE);
 4155                                 }
 4156                                 entry->cred = cred;
 4157                         }
 4158                         vm_object_shadow(&entry->object.vm_object,
 4159                             &entry->offset, size);
 4160                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
 4161                         eobject = entry->object.vm_object;
 4162                         if (eobject->cred != NULL) {
 4163                                 /*
 4164                                  * The object was not shadowed.
 4165                                  */
 4166                                 swap_release_by_cred(size, entry->cred);
 4167                                 crfree(entry->cred);
 4168                                 entry->cred = NULL;
 4169                         } else if (entry->cred != NULL) {
 4170                                 VM_OBJECT_WLOCK(eobject);
 4171                                 eobject->cred = entry->cred;
 4172                                 eobject->charge = size;
 4173                                 VM_OBJECT_WUNLOCK(eobject);
 4174                                 entry->cred = NULL;
 4175                         }
 4176 
 4177                         vm_map_lock_downgrade(map);
 4178                 } else {
 4179                         /*
 4180                          * We're attempting to read a copy-on-write page --
 4181                          * don't allow writes.
 4182                          */
 4183                         prot &= ~VM_PROT_WRITE;
 4184                 }
 4185         }
 4186 
 4187         /*
 4188          * Create an object if necessary.
 4189          */
 4190         if (entry->object.vm_object == NULL &&
 4191             !map->system_map) {
 4192                 if (vm_map_lock_upgrade(map))
 4193                         goto RetryLookup;
 4194                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
 4195                     atop(size));
 4196                 entry->offset = 0;
 4197                 if (entry->cred != NULL) {
 4198                         VM_OBJECT_WLOCK(entry->object.vm_object);
 4199                         entry->object.vm_object->cred = entry->cred;
 4200                         entry->object.vm_object->charge = size;
 4201                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
 4202                         entry->cred = NULL;
 4203                 }
 4204                 vm_map_lock_downgrade(map);
 4205         }
 4206 
 4207         /*
 4208          * Return the object/offset from this entry.  If the entry was
 4209          * copy-on-write or empty, it has been fixed up.
 4210          */
 4211         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
 4212         *object = entry->object.vm_object;
 4213 
 4214         *out_prot = prot;
 4215         return (KERN_SUCCESS);
 4216 }
 4217 
 4218 /*
 4219  *      vm_map_lookup_locked:
 4220  *
 4221  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
 4222  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
 4223  */
 4224 int
 4225 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
 4226                      vm_offset_t vaddr,
 4227                      vm_prot_t fault_typea,
 4228                      vm_map_entry_t *out_entry, /* OUT */
 4229                      vm_object_t *object,       /* OUT */
 4230                      vm_pindex_t *pindex,       /* OUT */
 4231                      vm_prot_t *out_prot,       /* OUT */
 4232                      boolean_t *wired)          /* OUT */
 4233 {
 4234         vm_map_entry_t entry;
 4235         vm_map_t map = *var_map;
 4236         vm_prot_t prot;
 4237         vm_prot_t fault_type = fault_typea;
 4238 
 4239         /*
 4240          * Lookup the faulting address.
 4241          */
 4242         if (!vm_map_lookup_entry(map, vaddr, out_entry))
 4243                 return (KERN_INVALID_ADDRESS);
 4244 
 4245         entry = *out_entry;
 4246 
 4247         /*
 4248          * Fail if the entry refers to a submap.
 4249          */
 4250         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 4251                 return (KERN_FAILURE);
 4252 
 4253         /*
 4254          * Check whether this task is allowed to have this page.
 4255          */
 4256         prot = entry->protection;
 4257         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
 4258         if ((fault_type & prot) != fault_type)
 4259                 return (KERN_PROTECTION_FAILURE);
 4260 
 4261         /*
 4262          * If this page is not pageable, we have to get it for all possible
 4263          * accesses.
 4264          */
 4265         *wired = (entry->wired_count != 0);
 4266         if (*wired)
 4267                 fault_type = entry->protection;
 4268 
 4269         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 4270                 /*
 4271                  * Fail if the entry was copy-on-write for a write fault.
 4272                  */
 4273                 if (fault_type & VM_PROT_WRITE)
 4274                         return (KERN_FAILURE);
 4275                 /*
 4276                  * We're attempting to read a copy-on-write page --
 4277                  * don't allow writes.
 4278                  */
 4279                 prot &= ~VM_PROT_WRITE;
 4280         }
 4281 
 4282         /*
 4283          * Fail if an object should be created.
 4284          */
 4285         if (entry->object.vm_object == NULL && !map->system_map)
 4286                 return (KERN_FAILURE);
 4287 
 4288         /*
 4289          * Return the object/offset from this entry.  If the entry was
 4290          * copy-on-write or empty, it has been fixed up.
 4291          */
 4292         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
 4293         *object = entry->object.vm_object;
 4294 
 4295         *out_prot = prot;
 4296         return (KERN_SUCCESS);
 4297 }
 4298 
 4299 /*
 4300  *      vm_map_lookup_done:
 4301  *
 4302  *      Releases locks acquired by a vm_map_lookup
 4303  *      (according to the handle returned by that lookup).
 4304  */
 4305 void
 4306 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
 4307 {
 4308         /*
 4309          * Unlock the main-level map
 4310          */
 4311         vm_map_unlock_read(map);
 4312 }
 4313 
 4314 vm_offset_t
 4315 vm_map_max_KBI(const struct vm_map *map)
 4316 {
 4317 
 4318         return (vm_map_max(map));
 4319 }
 4320 
 4321 vm_offset_t
 4322 vm_map_min_KBI(const struct vm_map *map)
 4323 {
 4324 
 4325         return (vm_map_min(map));
 4326 }
 4327 
 4328 pmap_t
 4329 vm_map_pmap_KBI(vm_map_t map)
 4330 {
 4331 
 4332         return (map->pmap);
 4333 }
 4334 
 4335 #include "opt_ddb.h"
 4336 #ifdef DDB
 4337 #include <sys/kernel.h>
 4338 
 4339 #include <ddb/ddb.h>
 4340 
 4341 static void
 4342 vm_map_print(vm_map_t map)
 4343 {
 4344         vm_map_entry_t entry;
 4345 
 4346         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
 4347             (void *)map,
 4348             (void *)map->pmap, map->nentries, map->timestamp);
 4349 
 4350         db_indent += 2;
 4351         for (entry = map->header.next; entry != &map->header;
 4352             entry = entry->next) {
 4353                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
 4354                     (void *)entry, (void *)entry->start, (void *)entry->end,
 4355                     entry->eflags);
 4356                 {
 4357                         static char *inheritance_name[4] =
 4358                         {"share", "copy", "none", "donate_copy"};
 4359 
 4360                         db_iprintf(" prot=%x/%x/%s",
 4361                             entry->protection,
 4362                             entry->max_protection,
 4363                             inheritance_name[(int)(unsigned char)entry->inheritance]);
 4364                         if (entry->wired_count != 0)
 4365                                 db_printf(", wired");
 4366                 }
 4367                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 4368                         db_printf(", share=%p, offset=0x%jx\n",
 4369                             (void *)entry->object.sub_map,
 4370                             (uintmax_t)entry->offset);
 4371                         if ((entry->prev == &map->header) ||
 4372                             (entry->prev->object.sub_map !=
 4373                                 entry->object.sub_map)) {
 4374                                 db_indent += 2;
 4375                                 vm_map_print((vm_map_t)entry->object.sub_map);
 4376                                 db_indent -= 2;
 4377                         }
 4378                 } else {
 4379                         if (entry->cred != NULL)
 4380                                 db_printf(", ruid %d", entry->cred->cr_ruid);
 4381                         db_printf(", object=%p, offset=0x%jx",
 4382                             (void *)entry->object.vm_object,
 4383                             (uintmax_t)entry->offset);
 4384                         if (entry->object.vm_object && entry->object.vm_object->cred)
 4385                                 db_printf(", obj ruid %d charge %jx",
 4386                                     entry->object.vm_object->cred->cr_ruid,
 4387                                     (uintmax_t)entry->object.vm_object->charge);
 4388                         if (entry->eflags & MAP_ENTRY_COW)
 4389                                 db_printf(", copy (%s)",
 4390                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
 4391                         db_printf("\n");
 4392 
 4393                         if ((entry->prev == &map->header) ||
 4394                             (entry->prev->object.vm_object !=
 4395                                 entry->object.vm_object)) {
 4396                                 db_indent += 2;
 4397                                 vm_object_print((db_expr_t)(intptr_t)
 4398                                                 entry->object.vm_object,
 4399                                                 0, 0, (char *)0);
 4400                                 db_indent -= 2;
 4401                         }
 4402                 }
 4403         }
 4404         db_indent -= 2;
 4405 }
 4406 
 4407 DB_SHOW_COMMAND(map, map)
 4408 {
 4409 
 4410         if (!have_addr) {
 4411                 db_printf("usage: show map <addr>\n");
 4412                 return;
 4413         }
 4414         vm_map_print((vm_map_t)addr);
 4415 }
 4416 
 4417 DB_SHOW_COMMAND(procvm, procvm)
 4418 {
 4419         struct proc *p;
 4420 
 4421         if (have_addr) {
 4422                 p = db_lookup_proc(addr);
 4423         } else {
 4424                 p = curproc;
 4425         }
 4426 
 4427         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
 4428             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
 4429             (void *)vmspace_pmap(p->p_vmspace));
 4430 
 4431         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
 4432 }
 4433 
 4434 #endif /* DDB */

Cache object: 8db99337125bfc1b609035691bef8e2f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.