FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_map.c
1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
35 *
36 *
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * Virtual memory mapping module.
65 */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD: releng/12.0/sys/vm/vm_map.c 338370 2018-08-29 12:24:19Z kib $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100
101 /*
102 * Virtual memory maps provide for the mapping, protection,
103 * and sharing of virtual memory objects. In addition,
104 * this module provides for an efficient virtual copy of
105 * memory from one map to another.
106 *
107 * Synchronization is required prior to most operations.
108 *
109 * Maps consist of an ordered doubly-linked list of simple
110 * entries; a self-adjusting binary search tree of these
111 * entries is used to speed up lookups.
112 *
113 * Since portions of maps are specified by start/end addresses,
114 * which may not align with existing map entries, all
115 * routines merely "clip" entries to these start/end values.
116 * [That is, an entry is split into two, bordering at a
117 * start or end value.] Note that these clippings may not
118 * always be necessary (as the two resulting entries are then
119 * not changed); however, the clipping is done for convenience.
120 *
121 * As mentioned above, virtual copy operations are performed
122 * by copying VM object references from one map to
123 * another, and then marking both regions as copy-on-write.
124 */
125
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134 vm_offset_t max);
135 static int vm_map_alignspace(vm_map_t map, vm_object_t object,
136 vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length,
137 vm_offset_t max_addr, vm_offset_t alignment);
138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
142 vm_map_entry_t gap_entry);
143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
144 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
145 #ifdef INVARIANTS
146 static void vm_map_zdtor(void *mem, int size, void *arg);
147 static void vmspace_zdtor(void *mem, int size, void *arg);
148 #endif
149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
150 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
151 int cow);
152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
153 vm_offset_t failed_addr);
154
155 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
156 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
157 !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
158
159 /*
160 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
161 * stable.
162 */
163 #define PROC_VMSPACE_LOCK(p) do { } while (0)
164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
165
166 /*
167 * VM_MAP_RANGE_CHECK: [ internal use only ]
168 *
169 * Asserts that the starting and ending region
170 * addresses fall within the valid range of the map.
171 */
172 #define VM_MAP_RANGE_CHECK(map, start, end) \
173 { \
174 if (start < vm_map_min(map)) \
175 start = vm_map_min(map); \
176 if (end > vm_map_max(map)) \
177 end = vm_map_max(map); \
178 if (start > end) \
179 start = end; \
180 }
181
182 /*
183 * vm_map_startup:
184 *
185 * Initialize the vm_map module. Must be called before
186 * any other vm_map routines.
187 *
188 * Map and entry structures are allocated from the general
189 * purpose memory pool with some exceptions:
190 *
191 * - The kernel map and kmem submap are allocated statically.
192 * - Kernel map entries are allocated out of a static pool.
193 *
194 * These restrictions are necessary since malloc() uses the
195 * maps and requires map entries.
196 */
197
198 void
199 vm_map_startup(void)
200 {
201 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
202 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
203 #ifdef INVARIANTS
204 vm_map_zdtor,
205 #else
206 NULL,
207 #endif
208 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209 uma_prealloc(mapzone, MAX_KMAP);
210 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
211 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
212 UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
213 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
214 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
215 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
216 #ifdef INVARIANTS
217 vmspace_zdtor,
218 #else
219 NULL,
220 #endif
221 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
222 }
223
224 static int
225 vmspace_zinit(void *mem, int size, int flags)
226 {
227 struct vmspace *vm;
228
229 vm = (struct vmspace *)mem;
230
231 vm->vm_map.pmap = NULL;
232 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
233 PMAP_LOCK_INIT(vmspace_pmap(vm));
234 return (0);
235 }
236
237 static int
238 vm_map_zinit(void *mem, int size, int flags)
239 {
240 vm_map_t map;
241
242 map = (vm_map_t)mem;
243 memset(map, 0, sizeof(*map));
244 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245 sx_init(&map->lock, "vm map (user)");
246 return (0);
247 }
248
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253 struct vmspace *vm;
254
255 vm = (struct vmspace *)mem;
256
257 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262 vm_map_t map;
263
264 map = (vm_map_t)mem;
265 KASSERT(map->nentries == 0,
266 ("map %p nentries == %d on free.",
267 map, map->nentries));
268 KASSERT(map->size == 0,
269 ("map %p size == %lu on free.",
270 map, (unsigned long)map->size));
271 }
272 #endif /* INVARIANTS */
273
274 /*
275 * Allocate a vmspace structure, including a vm_map and pmap,
276 * and initialize those structures. The refcnt is set to 1.
277 *
278 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
279 */
280 struct vmspace *
281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
282 {
283 struct vmspace *vm;
284
285 vm = uma_zalloc(vmspace_zone, M_WAITOK);
286
287 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
288
289 if (pinit == NULL)
290 pinit = &pmap_pinit;
291
292 if (!pinit(vmspace_pmap(vm))) {
293 uma_zfree(vmspace_zone, vm);
294 return (NULL);
295 }
296 CTR1(KTR_VM, "vmspace_alloc: %p", vm);
297 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
298 vm->vm_refcnt = 1;
299 vm->vm_shm = NULL;
300 vm->vm_swrss = 0;
301 vm->vm_tsize = 0;
302 vm->vm_dsize = 0;
303 vm->vm_ssize = 0;
304 vm->vm_taddr = 0;
305 vm->vm_daddr = 0;
306 vm->vm_maxsaddr = 0;
307 return (vm);
308 }
309
310 #ifdef RACCT
311 static void
312 vmspace_container_reset(struct proc *p)
313 {
314
315 PROC_LOCK(p);
316 racct_set(p, RACCT_DATA, 0);
317 racct_set(p, RACCT_STACK, 0);
318 racct_set(p, RACCT_RSS, 0);
319 racct_set(p, RACCT_MEMLOCK, 0);
320 racct_set(p, RACCT_VMEM, 0);
321 PROC_UNLOCK(p);
322 }
323 #endif
324
325 static inline void
326 vmspace_dofree(struct vmspace *vm)
327 {
328
329 CTR1(KTR_VM, "vmspace_free: %p", vm);
330
331 /*
332 * Make sure any SysV shm is freed, it might not have been in
333 * exit1().
334 */
335 shmexit(vm);
336
337 /*
338 * Lock the map, to wait out all other references to it.
339 * Delete all of the mappings and pages they hold, then call
340 * the pmap module to reclaim anything left.
341 */
342 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
343 vm_map_max(&vm->vm_map));
344
345 pmap_release(vmspace_pmap(vm));
346 vm->vm_map.pmap = NULL;
347 uma_zfree(vmspace_zone, vm);
348 }
349
350 void
351 vmspace_free(struct vmspace *vm)
352 {
353
354 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
355 "vmspace_free() called");
356
357 if (vm->vm_refcnt == 0)
358 panic("vmspace_free: attempt to free already freed vmspace");
359
360 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
361 vmspace_dofree(vm);
362 }
363
364 void
365 vmspace_exitfree(struct proc *p)
366 {
367 struct vmspace *vm;
368
369 PROC_VMSPACE_LOCK(p);
370 vm = p->p_vmspace;
371 p->p_vmspace = NULL;
372 PROC_VMSPACE_UNLOCK(p);
373 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
374 vmspace_free(vm);
375 }
376
377 void
378 vmspace_exit(struct thread *td)
379 {
380 int refcnt;
381 struct vmspace *vm;
382 struct proc *p;
383
384 /*
385 * Release user portion of address space.
386 * This releases references to vnodes,
387 * which could cause I/O if the file has been unlinked.
388 * Need to do this early enough that we can still sleep.
389 *
390 * The last exiting process to reach this point releases as
391 * much of the environment as it can. vmspace_dofree() is the
392 * slower fallback in case another process had a temporary
393 * reference to the vmspace.
394 */
395
396 p = td->td_proc;
397 vm = p->p_vmspace;
398 atomic_add_int(&vmspace0.vm_refcnt, 1);
399 do {
400 refcnt = vm->vm_refcnt;
401 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
402 /* Switch now since other proc might free vmspace */
403 PROC_VMSPACE_LOCK(p);
404 p->p_vmspace = &vmspace0;
405 PROC_VMSPACE_UNLOCK(p);
406 pmap_activate(td);
407 }
408 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
409 if (refcnt == 1) {
410 if (p->p_vmspace != vm) {
411 /* vmspace not yet freed, switch back */
412 PROC_VMSPACE_LOCK(p);
413 p->p_vmspace = vm;
414 PROC_VMSPACE_UNLOCK(p);
415 pmap_activate(td);
416 }
417 pmap_remove_pages(vmspace_pmap(vm));
418 /* Switch now since this proc will free vmspace */
419 PROC_VMSPACE_LOCK(p);
420 p->p_vmspace = &vmspace0;
421 PROC_VMSPACE_UNLOCK(p);
422 pmap_activate(td);
423 vmspace_dofree(vm);
424 }
425 #ifdef RACCT
426 if (racct_enable)
427 vmspace_container_reset(p);
428 #endif
429 }
430
431 /* Acquire reference to vmspace owned by another process. */
432
433 struct vmspace *
434 vmspace_acquire_ref(struct proc *p)
435 {
436 struct vmspace *vm;
437 int refcnt;
438
439 PROC_VMSPACE_LOCK(p);
440 vm = p->p_vmspace;
441 if (vm == NULL) {
442 PROC_VMSPACE_UNLOCK(p);
443 return (NULL);
444 }
445 do {
446 refcnt = vm->vm_refcnt;
447 if (refcnt <= 0) { /* Avoid 0->1 transition */
448 PROC_VMSPACE_UNLOCK(p);
449 return (NULL);
450 }
451 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
452 if (vm != p->p_vmspace) {
453 PROC_VMSPACE_UNLOCK(p);
454 vmspace_free(vm);
455 return (NULL);
456 }
457 PROC_VMSPACE_UNLOCK(p);
458 return (vm);
459 }
460
461 /*
462 * Switch between vmspaces in an AIO kernel process.
463 *
464 * The AIO kernel processes switch to and from a user process's
465 * vmspace while performing an I/O operation on behalf of a user
466 * process. The new vmspace is either the vmspace of a user process
467 * obtained from an active AIO request or the initial vmspace of the
468 * AIO kernel process (when it is idling). Because user processes
469 * will block to drain any active AIO requests before proceeding in
470 * exit() or execve(), the vmspace reference count for these vmspaces
471 * can never be 0. This allows for a much simpler implementation than
472 * the loop in vmspace_acquire_ref() above. Similarly, AIO kernel
473 * processes hold an extra reference on their initial vmspace for the
474 * life of the process so that this guarantee is true for any vmspace
475 * passed as 'newvm'.
476 */
477 void
478 vmspace_switch_aio(struct vmspace *newvm)
479 {
480 struct vmspace *oldvm;
481
482 /* XXX: Need some way to assert that this is an aio daemon. */
483
484 KASSERT(newvm->vm_refcnt > 0,
485 ("vmspace_switch_aio: newvm unreferenced"));
486
487 oldvm = curproc->p_vmspace;
488 if (oldvm == newvm)
489 return;
490
491 /*
492 * Point to the new address space and refer to it.
493 */
494 curproc->p_vmspace = newvm;
495 atomic_add_int(&newvm->vm_refcnt, 1);
496
497 /* Activate the new mapping. */
498 pmap_activate(curthread);
499
500 /* Remove the daemon's reference to the old address space. */
501 KASSERT(oldvm->vm_refcnt > 1,
502 ("vmspace_switch_aio: oldvm dropping last reference"));
503 vmspace_free(oldvm);
504 }
505
506 void
507 _vm_map_lock(vm_map_t map, const char *file, int line)
508 {
509
510 if (map->system_map)
511 mtx_lock_flags_(&map->system_mtx, 0, file, line);
512 else
513 sx_xlock_(&map->lock, file, line);
514 map->timestamp++;
515 }
516
517 static void
518 vm_map_process_deferred(void)
519 {
520 struct thread *td;
521 vm_map_entry_t entry, next;
522 vm_object_t object;
523
524 td = curthread;
525 entry = td->td_map_def_user;
526 td->td_map_def_user = NULL;
527 while (entry != NULL) {
528 next = entry->next;
529 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
530 /*
531 * Decrement the object's writemappings and
532 * possibly the vnode's v_writecount.
533 */
534 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
535 ("Submap with writecount"));
536 object = entry->object.vm_object;
537 KASSERT(object != NULL, ("No object for writecount"));
538 vnode_pager_release_writecount(object, entry->start,
539 entry->end);
540 }
541 vm_map_entry_deallocate(entry, FALSE);
542 entry = next;
543 }
544 }
545
546 void
547 _vm_map_unlock(vm_map_t map, const char *file, int line)
548 {
549
550 if (map->system_map)
551 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
552 else {
553 sx_xunlock_(&map->lock, file, line);
554 vm_map_process_deferred();
555 }
556 }
557
558 void
559 _vm_map_lock_read(vm_map_t map, const char *file, int line)
560 {
561
562 if (map->system_map)
563 mtx_lock_flags_(&map->system_mtx, 0, file, line);
564 else
565 sx_slock_(&map->lock, file, line);
566 }
567
568 void
569 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
570 {
571
572 if (map->system_map)
573 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
574 else {
575 sx_sunlock_(&map->lock, file, line);
576 vm_map_process_deferred();
577 }
578 }
579
580 int
581 _vm_map_trylock(vm_map_t map, const char *file, int line)
582 {
583 int error;
584
585 error = map->system_map ?
586 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
587 !sx_try_xlock_(&map->lock, file, line);
588 if (error == 0)
589 map->timestamp++;
590 return (error == 0);
591 }
592
593 int
594 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
595 {
596 int error;
597
598 error = map->system_map ?
599 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
600 !sx_try_slock_(&map->lock, file, line);
601 return (error == 0);
602 }
603
604 /*
605 * _vm_map_lock_upgrade: [ internal use only ]
606 *
607 * Tries to upgrade a read (shared) lock on the specified map to a write
608 * (exclusive) lock. Returns the value "" if the upgrade succeeds and a
609 * non-zero value if the upgrade fails. If the upgrade fails, the map is
610 * returned without a read or write lock held.
611 *
612 * Requires that the map be read locked.
613 */
614 int
615 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
616 {
617 unsigned int last_timestamp;
618
619 if (map->system_map) {
620 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
621 } else {
622 if (!sx_try_upgrade_(&map->lock, file, line)) {
623 last_timestamp = map->timestamp;
624 sx_sunlock_(&map->lock, file, line);
625 vm_map_process_deferred();
626 /*
627 * If the map's timestamp does not change while the
628 * map is unlocked, then the upgrade succeeds.
629 */
630 sx_xlock_(&map->lock, file, line);
631 if (last_timestamp != map->timestamp) {
632 sx_xunlock_(&map->lock, file, line);
633 return (1);
634 }
635 }
636 }
637 map->timestamp++;
638 return (0);
639 }
640
641 void
642 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
643 {
644
645 if (map->system_map) {
646 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
647 } else
648 sx_downgrade_(&map->lock, file, line);
649 }
650
651 /*
652 * vm_map_locked:
653 *
654 * Returns a non-zero value if the caller holds a write (exclusive) lock
655 * on the specified map and the value "" otherwise.
656 */
657 int
658 vm_map_locked(vm_map_t map)
659 {
660
661 if (map->system_map)
662 return (mtx_owned(&map->system_mtx));
663 else
664 return (sx_xlocked(&map->lock));
665 }
666
667 #ifdef INVARIANTS
668 static void
669 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
670 {
671
672 if (map->system_map)
673 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
674 else
675 sx_assert_(&map->lock, SA_XLOCKED, file, line);
676 }
677
678 #define VM_MAP_ASSERT_LOCKED(map) \
679 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
680 #else
681 #define VM_MAP_ASSERT_LOCKED(map)
682 #endif
683
684 /*
685 * _vm_map_unlock_and_wait:
686 *
687 * Atomically releases the lock on the specified map and puts the calling
688 * thread to sleep. The calling thread will remain asleep until either
689 * vm_map_wakeup() is performed on the map or the specified timeout is
690 * exceeded.
691 *
692 * WARNING! This function does not perform deferred deallocations of
693 * objects and map entries. Therefore, the calling thread is expected to
694 * reacquire the map lock after reawakening and later perform an ordinary
695 * unlock operation, such as vm_map_unlock(), before completing its
696 * operation on the map.
697 */
698 int
699 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
700 {
701
702 mtx_lock(&map_sleep_mtx);
703 if (map->system_map)
704 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
705 else
706 sx_xunlock_(&map->lock, file, line);
707 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
708 timo));
709 }
710
711 /*
712 * vm_map_wakeup:
713 *
714 * Awaken any threads that have slept on the map using
715 * vm_map_unlock_and_wait().
716 */
717 void
718 vm_map_wakeup(vm_map_t map)
719 {
720
721 /*
722 * Acquire and release map_sleep_mtx to prevent a wakeup()
723 * from being performed (and lost) between the map unlock
724 * and the msleep() in _vm_map_unlock_and_wait().
725 */
726 mtx_lock(&map_sleep_mtx);
727 mtx_unlock(&map_sleep_mtx);
728 wakeup(&map->root);
729 }
730
731 void
732 vm_map_busy(vm_map_t map)
733 {
734
735 VM_MAP_ASSERT_LOCKED(map);
736 map->busy++;
737 }
738
739 void
740 vm_map_unbusy(vm_map_t map)
741 {
742
743 VM_MAP_ASSERT_LOCKED(map);
744 KASSERT(map->busy, ("vm_map_unbusy: not busy"));
745 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
746 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
747 wakeup(&map->busy);
748 }
749 }
750
751 void
752 vm_map_wait_busy(vm_map_t map)
753 {
754
755 VM_MAP_ASSERT_LOCKED(map);
756 while (map->busy) {
757 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
758 if (map->system_map)
759 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
760 else
761 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
762 }
763 map->timestamp++;
764 }
765
766 long
767 vmspace_resident_count(struct vmspace *vmspace)
768 {
769 return pmap_resident_count(vmspace_pmap(vmspace));
770 }
771
772 /*
773 * vm_map_create:
774 *
775 * Creates and returns a new empty VM map with
776 * the given physical map structure, and having
777 * the given lower and upper address bounds.
778 */
779 vm_map_t
780 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
781 {
782 vm_map_t result;
783
784 result = uma_zalloc(mapzone, M_WAITOK);
785 CTR1(KTR_VM, "vm_map_create: %p", result);
786 _vm_map_init(result, pmap, min, max);
787 return (result);
788 }
789
790 /*
791 * Initialize an existing vm_map structure
792 * such as that in the vmspace structure.
793 */
794 static void
795 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
796 {
797
798 map->header.next = map->header.prev = &map->header;
799 map->needs_wakeup = FALSE;
800 map->system_map = 0;
801 map->pmap = pmap;
802 map->header.end = min;
803 map->header.start = max;
804 map->flags = 0;
805 map->root = NULL;
806 map->timestamp = 0;
807 map->busy = 0;
808 }
809
810 void
811 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
812 {
813
814 _vm_map_init(map, pmap, min, max);
815 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
816 sx_init(&map->lock, "user map");
817 }
818
819 /*
820 * vm_map_entry_dispose: [ internal use only ]
821 *
822 * Inverse of vm_map_entry_create.
823 */
824 static void
825 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
826 {
827 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
828 }
829
830 /*
831 * vm_map_entry_create: [ internal use only ]
832 *
833 * Allocates a VM map entry for insertion.
834 * No entry fields are filled in.
835 */
836 static vm_map_entry_t
837 vm_map_entry_create(vm_map_t map)
838 {
839 vm_map_entry_t new_entry;
840
841 if (map->system_map)
842 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
843 else
844 new_entry = uma_zalloc(mapentzone, M_WAITOK);
845 if (new_entry == NULL)
846 panic("vm_map_entry_create: kernel resources exhausted");
847 return (new_entry);
848 }
849
850 /*
851 * vm_map_entry_set_behavior:
852 *
853 * Set the expected access behavior, either normal, random, or
854 * sequential.
855 */
856 static inline void
857 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
858 {
859 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
860 (behavior & MAP_ENTRY_BEHAV_MASK);
861 }
862
863 /*
864 * vm_map_entry_set_max_free:
865 *
866 * Set the max_free field in a vm_map_entry.
867 */
868 static inline void
869 vm_map_entry_set_max_free(vm_map_entry_t entry)
870 {
871
872 entry->max_free = entry->adj_free;
873 if (entry->left != NULL && entry->left->max_free > entry->max_free)
874 entry->max_free = entry->left->max_free;
875 if (entry->right != NULL && entry->right->max_free > entry->max_free)
876 entry->max_free = entry->right->max_free;
877 }
878
879 /*
880 * vm_map_entry_splay:
881 *
882 * The Sleator and Tarjan top-down splay algorithm with the
883 * following variation. Max_free must be computed bottom-up, so
884 * on the downward pass, maintain the left and right spines in
885 * reverse order. Then, make a second pass up each side to fix
886 * the pointers and compute max_free. The time bound is O(log n)
887 * amortized.
888 *
889 * The new root is the vm_map_entry containing "addr", or else an
890 * adjacent entry (lower or higher) if addr is not in the tree.
891 *
892 * The map must be locked, and leaves it so.
893 *
894 * Returns: the new root.
895 */
896 static vm_map_entry_t
897 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
898 {
899 vm_map_entry_t llist, rlist;
900 vm_map_entry_t ltree, rtree;
901 vm_map_entry_t y;
902
903 /* Special case of empty tree. */
904 if (root == NULL)
905 return (root);
906
907 /*
908 * Pass One: Splay down the tree until we find addr or a NULL
909 * pointer where addr would go. llist and rlist are the two
910 * sides in reverse order (bottom-up), with llist linked by
911 * the right pointer and rlist linked by the left pointer in
912 * the vm_map_entry. Wait until Pass Two to set max_free on
913 * the two spines.
914 */
915 llist = NULL;
916 rlist = NULL;
917 for (;;) {
918 /* root is never NULL in here. */
919 if (addr < root->start) {
920 y = root->left;
921 if (y == NULL)
922 break;
923 if (addr < y->start && y->left != NULL) {
924 /* Rotate right and put y on rlist. */
925 root->left = y->right;
926 y->right = root;
927 vm_map_entry_set_max_free(root);
928 root = y->left;
929 y->left = rlist;
930 rlist = y;
931 } else {
932 /* Put root on rlist. */
933 root->left = rlist;
934 rlist = root;
935 root = y;
936 }
937 } else if (addr >= root->end) {
938 y = root->right;
939 if (y == NULL)
940 break;
941 if (addr >= y->end && y->right != NULL) {
942 /* Rotate left and put y on llist. */
943 root->right = y->left;
944 y->left = root;
945 vm_map_entry_set_max_free(root);
946 root = y->right;
947 y->right = llist;
948 llist = y;
949 } else {
950 /* Put root on llist. */
951 root->right = llist;
952 llist = root;
953 root = y;
954 }
955 } else
956 break;
957 }
958
959 /*
960 * Pass Two: Walk back up the two spines, flip the pointers
961 * and set max_free. The subtrees of the root go at the
962 * bottom of llist and rlist.
963 */
964 ltree = root->left;
965 while (llist != NULL) {
966 y = llist->right;
967 llist->right = ltree;
968 vm_map_entry_set_max_free(llist);
969 ltree = llist;
970 llist = y;
971 }
972 rtree = root->right;
973 while (rlist != NULL) {
974 y = rlist->left;
975 rlist->left = rtree;
976 vm_map_entry_set_max_free(rlist);
977 rtree = rlist;
978 rlist = y;
979 }
980
981 /*
982 * Final assembly: add ltree and rtree as subtrees of root.
983 */
984 root->left = ltree;
985 root->right = rtree;
986 vm_map_entry_set_max_free(root);
987
988 return (root);
989 }
990
991 /*
992 * vm_map_entry_{un,}link:
993 *
994 * Insert/remove entries from maps.
995 */
996 static void
997 vm_map_entry_link(vm_map_t map,
998 vm_map_entry_t after_where,
999 vm_map_entry_t entry)
1000 {
1001
1002 CTR4(KTR_VM,
1003 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
1004 map->nentries, entry, after_where);
1005 VM_MAP_ASSERT_LOCKED(map);
1006 KASSERT(after_where->end <= entry->start,
1007 ("vm_map_entry_link: prev end %jx new start %jx overlap",
1008 (uintmax_t)after_where->end, (uintmax_t)entry->start));
1009 KASSERT(entry->end <= after_where->next->start,
1010 ("vm_map_entry_link: new end %jx next start %jx overlap",
1011 (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1012
1013 map->nentries++;
1014 entry->prev = after_where;
1015 entry->next = after_where->next;
1016 entry->next->prev = entry;
1017 after_where->next = entry;
1018
1019 if (after_where != &map->header) {
1020 if (after_where != map->root)
1021 vm_map_entry_splay(after_where->start, map->root);
1022 entry->right = after_where->right;
1023 entry->left = after_where;
1024 after_where->right = NULL;
1025 after_where->adj_free = entry->start - after_where->end;
1026 vm_map_entry_set_max_free(after_where);
1027 } else {
1028 entry->right = map->root;
1029 entry->left = NULL;
1030 }
1031 entry->adj_free = entry->next->start - entry->end;
1032 vm_map_entry_set_max_free(entry);
1033 map->root = entry;
1034 }
1035
1036 static void
1037 vm_map_entry_unlink(vm_map_t map,
1038 vm_map_entry_t entry)
1039 {
1040 vm_map_entry_t next, prev, root;
1041
1042 VM_MAP_ASSERT_LOCKED(map);
1043 if (entry != map->root)
1044 vm_map_entry_splay(entry->start, map->root);
1045 if (entry->left == NULL)
1046 root = entry->right;
1047 else {
1048 root = vm_map_entry_splay(entry->start, entry->left);
1049 root->right = entry->right;
1050 root->adj_free = entry->next->start - root->end;
1051 vm_map_entry_set_max_free(root);
1052 }
1053 map->root = root;
1054
1055 prev = entry->prev;
1056 next = entry->next;
1057 next->prev = prev;
1058 prev->next = next;
1059 map->nentries--;
1060 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1061 map->nentries, entry);
1062 }
1063
1064 /*
1065 * vm_map_entry_resize_free:
1066 *
1067 * Recompute the amount of free space following a vm_map_entry
1068 * and propagate that value up the tree. Call this function after
1069 * resizing a map entry in-place, that is, without a call to
1070 * vm_map_entry_link() or _unlink().
1071 *
1072 * The map must be locked, and leaves it so.
1073 */
1074 static void
1075 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1076 {
1077
1078 /*
1079 * Using splay trees without parent pointers, propagating
1080 * max_free up the tree is done by moving the entry to the
1081 * root and making the change there.
1082 */
1083 if (entry != map->root)
1084 map->root = vm_map_entry_splay(entry->start, map->root);
1085
1086 entry->adj_free = entry->next->start - entry->end;
1087 vm_map_entry_set_max_free(entry);
1088 }
1089
1090 /*
1091 * vm_map_lookup_entry: [ internal use only ]
1092 *
1093 * Finds the map entry containing (or
1094 * immediately preceding) the specified address
1095 * in the given map; the entry is returned
1096 * in the "entry" parameter. The boolean
1097 * result indicates whether the address is
1098 * actually contained in the map.
1099 */
1100 boolean_t
1101 vm_map_lookup_entry(
1102 vm_map_t map,
1103 vm_offset_t address,
1104 vm_map_entry_t *entry) /* OUT */
1105 {
1106 vm_map_entry_t cur;
1107 boolean_t locked;
1108
1109 /*
1110 * If the map is empty, then the map entry immediately preceding
1111 * "address" is the map's header.
1112 */
1113 cur = map->root;
1114 if (cur == NULL)
1115 *entry = &map->header;
1116 else if (address >= cur->start && cur->end > address) {
1117 *entry = cur;
1118 return (TRUE);
1119 } else if ((locked = vm_map_locked(map)) ||
1120 sx_try_upgrade(&map->lock)) {
1121 /*
1122 * Splay requires a write lock on the map. However, it only
1123 * restructures the binary search tree; it does not otherwise
1124 * change the map. Thus, the map's timestamp need not change
1125 * on a temporary upgrade.
1126 */
1127 map->root = cur = vm_map_entry_splay(address, cur);
1128 if (!locked)
1129 sx_downgrade(&map->lock);
1130
1131 /*
1132 * If "address" is contained within a map entry, the new root
1133 * is that map entry. Otherwise, the new root is a map entry
1134 * immediately before or after "address".
1135 */
1136 if (address >= cur->start) {
1137 *entry = cur;
1138 if (cur->end > address)
1139 return (TRUE);
1140 } else
1141 *entry = cur->prev;
1142 } else
1143 /*
1144 * Since the map is only locked for read access, perform a
1145 * standard binary search tree lookup for "address".
1146 */
1147 for (;;) {
1148 if (address < cur->start) {
1149 if (cur->left == NULL) {
1150 *entry = cur->prev;
1151 break;
1152 }
1153 cur = cur->left;
1154 } else if (cur->end > address) {
1155 *entry = cur;
1156 return (TRUE);
1157 } else {
1158 if (cur->right == NULL) {
1159 *entry = cur;
1160 break;
1161 }
1162 cur = cur->right;
1163 }
1164 }
1165 return (FALSE);
1166 }
1167
1168 /*
1169 * vm_map_insert:
1170 *
1171 * Inserts the given whole VM object into the target
1172 * map at the specified address range. The object's
1173 * size should match that of the address range.
1174 *
1175 * Requires that the map be locked, and leaves it so.
1176 *
1177 * If object is non-NULL, ref count must be bumped by caller
1178 * prior to making call to account for the new entry.
1179 */
1180 int
1181 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1182 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1183 {
1184 vm_map_entry_t new_entry, prev_entry, temp_entry;
1185 struct ucred *cred;
1186 vm_eflags_t protoeflags;
1187 vm_inherit_t inheritance;
1188
1189 VM_MAP_ASSERT_LOCKED(map);
1190 KASSERT(object != kernel_object ||
1191 (cow & MAP_COPY_ON_WRITE) == 0,
1192 ("vm_map_insert: kernel object and COW"));
1193 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1194 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1195 KASSERT((prot & ~max) == 0,
1196 ("prot %#x is not subset of max_prot %#x", prot, max));
1197
1198 /*
1199 * Check that the start and end points are not bogus.
1200 */
1201 if (start < vm_map_min(map) || end > vm_map_max(map) ||
1202 start >= end)
1203 return (KERN_INVALID_ADDRESS);
1204
1205 /*
1206 * Find the entry prior to the proposed starting address; if it's part
1207 * of an existing entry, this range is bogus.
1208 */
1209 if (vm_map_lookup_entry(map, start, &temp_entry))
1210 return (KERN_NO_SPACE);
1211
1212 prev_entry = temp_entry;
1213
1214 /*
1215 * Assert that the next entry doesn't overlap the end point.
1216 */
1217 if (prev_entry->next->start < end)
1218 return (KERN_NO_SPACE);
1219
1220 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1221 max != VM_PROT_NONE))
1222 return (KERN_INVALID_ARGUMENT);
1223
1224 protoeflags = 0;
1225 if (cow & MAP_COPY_ON_WRITE)
1226 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1227 if (cow & MAP_NOFAULT)
1228 protoeflags |= MAP_ENTRY_NOFAULT;
1229 if (cow & MAP_DISABLE_SYNCER)
1230 protoeflags |= MAP_ENTRY_NOSYNC;
1231 if (cow & MAP_DISABLE_COREDUMP)
1232 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1233 if (cow & MAP_STACK_GROWS_DOWN)
1234 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1235 if (cow & MAP_STACK_GROWS_UP)
1236 protoeflags |= MAP_ENTRY_GROWS_UP;
1237 if (cow & MAP_VN_WRITECOUNT)
1238 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1239 if ((cow & MAP_CREATE_GUARD) != 0)
1240 protoeflags |= MAP_ENTRY_GUARD;
1241 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1242 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1243 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1244 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1245 if (cow & MAP_INHERIT_SHARE)
1246 inheritance = VM_INHERIT_SHARE;
1247 else
1248 inheritance = VM_INHERIT_DEFAULT;
1249
1250 cred = NULL;
1251 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1252 goto charged;
1253 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1254 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1255 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1256 return (KERN_RESOURCE_SHORTAGE);
1257 KASSERT(object == NULL ||
1258 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1259 object->cred == NULL,
1260 ("overcommit: vm_map_insert o %p", object));
1261 cred = curthread->td_ucred;
1262 }
1263
1264 charged:
1265 /* Expand the kernel pmap, if necessary. */
1266 if (map == kernel_map && end > kernel_vm_end)
1267 pmap_growkernel(end);
1268 if (object != NULL) {
1269 /*
1270 * OBJ_ONEMAPPING must be cleared unless this mapping
1271 * is trivially proven to be the only mapping for any
1272 * of the object's pages. (Object granularity
1273 * reference counting is insufficient to recognize
1274 * aliases with precision.)
1275 */
1276 VM_OBJECT_WLOCK(object);
1277 if (object->ref_count > 1 || object->shadow_count != 0)
1278 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1279 VM_OBJECT_WUNLOCK(object);
1280 } else if (prev_entry != &map->header &&
1281 (prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == protoeflags &&
1282 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1283 prev_entry->end == start && (prev_entry->cred == cred ||
1284 (prev_entry->object.vm_object != NULL &&
1285 prev_entry->object.vm_object->cred == cred)) &&
1286 vm_object_coalesce(prev_entry->object.vm_object,
1287 prev_entry->offset,
1288 (vm_size_t)(prev_entry->end - prev_entry->start),
1289 (vm_size_t)(end - prev_entry->end), cred != NULL &&
1290 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1291 /*
1292 * We were able to extend the object. Determine if we
1293 * can extend the previous map entry to include the
1294 * new range as well.
1295 */
1296 if (prev_entry->inheritance == inheritance &&
1297 prev_entry->protection == prot &&
1298 prev_entry->max_protection == max &&
1299 prev_entry->wired_count == 0) {
1300 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1301 0, ("prev_entry %p has incoherent wiring",
1302 prev_entry));
1303 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1304 map->size += end - prev_entry->end;
1305 prev_entry->end = end;
1306 vm_map_entry_resize_free(map, prev_entry);
1307 vm_map_simplify_entry(map, prev_entry);
1308 return (KERN_SUCCESS);
1309 }
1310
1311 /*
1312 * If we can extend the object but cannot extend the
1313 * map entry, we have to create a new map entry. We
1314 * must bump the ref count on the extended object to
1315 * account for it. object may be NULL.
1316 */
1317 object = prev_entry->object.vm_object;
1318 offset = prev_entry->offset +
1319 (prev_entry->end - prev_entry->start);
1320 vm_object_reference(object);
1321 if (cred != NULL && object != NULL && object->cred != NULL &&
1322 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1323 /* Object already accounts for this uid. */
1324 cred = NULL;
1325 }
1326 }
1327 if (cred != NULL)
1328 crhold(cred);
1329
1330 /*
1331 * Create a new entry
1332 */
1333 new_entry = vm_map_entry_create(map);
1334 new_entry->start = start;
1335 new_entry->end = end;
1336 new_entry->cred = NULL;
1337
1338 new_entry->eflags = protoeflags;
1339 new_entry->object.vm_object = object;
1340 new_entry->offset = offset;
1341
1342 new_entry->inheritance = inheritance;
1343 new_entry->protection = prot;
1344 new_entry->max_protection = max;
1345 new_entry->wired_count = 0;
1346 new_entry->wiring_thread = NULL;
1347 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1348 new_entry->next_read = start;
1349
1350 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1351 ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1352 new_entry->cred = cred;
1353
1354 /*
1355 * Insert the new entry into the list
1356 */
1357 vm_map_entry_link(map, prev_entry, new_entry);
1358 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1359 map->size += new_entry->end - new_entry->start;
1360
1361 /*
1362 * Try to coalesce the new entry with both the previous and next
1363 * entries in the list. Previously, we only attempted to coalesce
1364 * with the previous entry when object is NULL. Here, we handle the
1365 * other cases, which are less common.
1366 */
1367 vm_map_simplify_entry(map, new_entry);
1368
1369 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1370 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1371 end - start, cow & MAP_PREFAULT_PARTIAL);
1372 }
1373
1374 return (KERN_SUCCESS);
1375 }
1376
1377 /*
1378 * vm_map_findspace:
1379 *
1380 * Find the first fit (lowest VM address) for "length" free bytes
1381 * beginning at address >= start in the given map.
1382 *
1383 * In a vm_map_entry, "adj_free" is the amount of free space
1384 * adjacent (higher address) to this entry, and "max_free" is the
1385 * maximum amount of contiguous free space in its subtree. This
1386 * allows finding a free region in one path down the tree, so
1387 * O(log n) amortized with splay trees.
1388 *
1389 * The map must be locked, and leaves it so.
1390 *
1391 * Returns: 0 on success, and starting address in *addr,
1392 * 1 if insufficient space.
1393 */
1394 int
1395 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1396 vm_offset_t *addr) /* OUT */
1397 {
1398 vm_map_entry_t entry;
1399 vm_offset_t st;
1400
1401 /*
1402 * Request must fit within min/max VM address and must avoid
1403 * address wrap.
1404 */
1405 start = MAX(start, vm_map_min(map));
1406 if (start + length > vm_map_max(map) || start + length < start)
1407 return (1);
1408
1409 /* Empty tree means wide open address space. */
1410 if (map->root == NULL) {
1411 *addr = start;
1412 return (0);
1413 }
1414
1415 /*
1416 * After splay, if start comes before root node, then there
1417 * must be a gap from start to the root.
1418 */
1419 map->root = vm_map_entry_splay(start, map->root);
1420 if (start + length <= map->root->start) {
1421 *addr = start;
1422 return (0);
1423 }
1424
1425 /*
1426 * Root is the last node that might begin its gap before
1427 * start, and this is the last comparison where address
1428 * wrap might be a problem.
1429 */
1430 st = (start > map->root->end) ? start : map->root->end;
1431 if (length <= map->root->end + map->root->adj_free - st) {
1432 *addr = st;
1433 return (0);
1434 }
1435
1436 /* With max_free, can immediately tell if no solution. */
1437 entry = map->root->right;
1438 if (entry == NULL || length > entry->max_free)
1439 return (1);
1440
1441 /*
1442 * Search the right subtree in the order: left subtree, root,
1443 * right subtree (first fit). The previous splay implies that
1444 * all regions in the right subtree have addresses > start.
1445 */
1446 while (entry != NULL) {
1447 if (entry->left != NULL && entry->left->max_free >= length)
1448 entry = entry->left;
1449 else if (entry->adj_free >= length) {
1450 *addr = entry->end;
1451 return (0);
1452 } else
1453 entry = entry->right;
1454 }
1455
1456 /* Can't get here, so panic if we do. */
1457 panic("vm_map_findspace: max_free corrupt");
1458 }
1459
1460 int
1461 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1462 vm_offset_t start, vm_size_t length, vm_prot_t prot,
1463 vm_prot_t max, int cow)
1464 {
1465 vm_offset_t end;
1466 int result;
1467
1468 end = start + length;
1469 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1470 object == NULL,
1471 ("vm_map_fixed: non-NULL backing object for stack"));
1472 vm_map_lock(map);
1473 VM_MAP_RANGE_CHECK(map, start, end);
1474 if ((cow & MAP_CHECK_EXCL) == 0)
1475 vm_map_delete(map, start, end);
1476 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1477 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1478 prot, max, cow);
1479 } else {
1480 result = vm_map_insert(map, object, offset, start, end,
1481 prot, max, cow);
1482 }
1483 vm_map_unlock(map);
1484 return (result);
1485 }
1486
1487 /*
1488 * Searches for the specified amount of free space in the given map with the
1489 * specified alignment. Performs an address-ordered, first-fit search from
1490 * the given address "*addr", with an optional upper bound "max_addr". If the
1491 * parameter "alignment" is zero, then the alignment is computed from the
1492 * given (object, offset) pair so as to enable the greatest possible use of
1493 * superpage mappings. Returns KERN_SUCCESS and the address of the free space
1494 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE.
1495 *
1496 * The map must be locked. Initially, there must be at least "length" bytes
1497 * of free space at the given address.
1498 */
1499 static int
1500 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1501 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1502 vm_offset_t alignment)
1503 {
1504 vm_offset_t aligned_addr, free_addr;
1505
1506 VM_MAP_ASSERT_LOCKED(map);
1507 free_addr = *addr;
1508 KASSERT(!vm_map_findspace(map, free_addr, length, addr) &&
1509 free_addr == *addr, ("caller provided insufficient free space"));
1510 for (;;) {
1511 /*
1512 * At the start of every iteration, the free space at address
1513 * "*addr" is at least "length" bytes.
1514 */
1515 if (alignment == 0)
1516 pmap_align_superpage(object, offset, addr, length);
1517 else if ((*addr & (alignment - 1)) != 0) {
1518 *addr &= ~(alignment - 1);
1519 *addr += alignment;
1520 }
1521 aligned_addr = *addr;
1522 if (aligned_addr == free_addr) {
1523 /*
1524 * Alignment did not change "*addr", so "*addr" must
1525 * still provide sufficient free space.
1526 */
1527 return (KERN_SUCCESS);
1528 }
1529
1530 /*
1531 * Test for address wrap on "*addr". A wrapped "*addr" could
1532 * be a valid address, in which case vm_map_findspace() cannot
1533 * be relied upon to fail.
1534 */
1535 if (aligned_addr < free_addr ||
1536 vm_map_findspace(map, aligned_addr, length, addr) ||
1537 (max_addr != 0 && *addr + length > max_addr))
1538 return (KERN_NO_SPACE);
1539 free_addr = *addr;
1540 if (free_addr == aligned_addr) {
1541 /*
1542 * If a successful call to vm_map_findspace() did not
1543 * change "*addr", then "*addr" must still be aligned
1544 * and provide sufficient free space.
1545 */
1546 return (KERN_SUCCESS);
1547 }
1548 }
1549 }
1550
1551 /*
1552 * vm_map_find finds an unallocated region in the target address
1553 * map with the given length. The search is defined to be
1554 * first-fit from the specified address; the region found is
1555 * returned in the same parameter.
1556 *
1557 * If object is non-NULL, ref count must be bumped by caller
1558 * prior to making call to account for the new entry.
1559 */
1560 int
1561 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1562 vm_offset_t *addr, /* IN/OUT */
1563 vm_size_t length, vm_offset_t max_addr, int find_space,
1564 vm_prot_t prot, vm_prot_t max, int cow)
1565 {
1566 vm_offset_t alignment, min_addr;
1567 int rv;
1568
1569 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1570 object == NULL,
1571 ("vm_map_find: non-NULL backing object for stack"));
1572 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1573 (object->flags & OBJ_COLORED) == 0))
1574 find_space = VMFS_ANY_SPACE;
1575 if (find_space >> 8 != 0) {
1576 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1577 alignment = (vm_offset_t)1 << (find_space >> 8);
1578 } else
1579 alignment = 0;
1580 vm_map_lock(map);
1581 if (find_space != VMFS_NO_SPACE) {
1582 KASSERT(find_space == VMFS_ANY_SPACE ||
1583 find_space == VMFS_OPTIMAL_SPACE ||
1584 find_space == VMFS_SUPER_SPACE ||
1585 alignment != 0, ("unexpected VMFS flag"));
1586 min_addr = *addr;
1587 again:
1588 if (vm_map_findspace(map, min_addr, length, addr) ||
1589 (max_addr != 0 && *addr + length > max_addr)) {
1590 rv = KERN_NO_SPACE;
1591 goto done;
1592 }
1593 if (find_space != VMFS_ANY_SPACE &&
1594 (rv = vm_map_alignspace(map, object, offset, addr, length,
1595 max_addr, alignment)) != KERN_SUCCESS) {
1596 if (find_space == VMFS_OPTIMAL_SPACE) {
1597 find_space = VMFS_ANY_SPACE;
1598 goto again;
1599 }
1600 goto done;
1601 }
1602 }
1603 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1604 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1605 max, cow);
1606 } else {
1607 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1608 prot, max, cow);
1609 }
1610 done:
1611 vm_map_unlock(map);
1612 return (rv);
1613 }
1614
1615 /*
1616 * vm_map_find_min() is a variant of vm_map_find() that takes an
1617 * additional parameter (min_addr) and treats the given address
1618 * (*addr) differently. Specifically, it treats *addr as a hint
1619 * and not as the minimum address where the mapping is created.
1620 *
1621 * This function works in two phases. First, it tries to
1622 * allocate above the hint. If that fails and the hint is
1623 * greater than min_addr, it performs a second pass, replacing
1624 * the hint with min_addr as the minimum address for the
1625 * allocation.
1626 */
1627 int
1628 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1629 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1630 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1631 int cow)
1632 {
1633 vm_offset_t hint;
1634 int rv;
1635
1636 hint = *addr;
1637 for (;;) {
1638 rv = vm_map_find(map, object, offset, addr, length, max_addr,
1639 find_space, prot, max, cow);
1640 if (rv == KERN_SUCCESS || min_addr >= hint)
1641 return (rv);
1642 *addr = hint = min_addr;
1643 }
1644 }
1645
1646 /*
1647 * vm_map_simplify_entry:
1648 *
1649 * Simplify the given map entry by merging with either neighbor. This
1650 * routine also has the ability to merge with both neighbors.
1651 *
1652 * The map must be locked.
1653 *
1654 * This routine guarantees that the passed entry remains valid (though
1655 * possibly extended). When merging, this routine may delete one or
1656 * both neighbors.
1657 */
1658 void
1659 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1660 {
1661 vm_map_entry_t next, prev;
1662 vm_size_t prevsize, esize;
1663
1664 if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1665 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1666 return;
1667
1668 prev = entry->prev;
1669 if (prev != &map->header) {
1670 prevsize = prev->end - prev->start;
1671 if ( (prev->end == entry->start) &&
1672 (prev->object.vm_object == entry->object.vm_object) &&
1673 (!prev->object.vm_object ||
1674 (prev->offset + prevsize == entry->offset)) &&
1675 (prev->eflags == entry->eflags) &&
1676 (prev->protection == entry->protection) &&
1677 (prev->max_protection == entry->max_protection) &&
1678 (prev->inheritance == entry->inheritance) &&
1679 (prev->wired_count == entry->wired_count) &&
1680 (prev->cred == entry->cred)) {
1681 vm_map_entry_unlink(map, prev);
1682 entry->start = prev->start;
1683 entry->offset = prev->offset;
1684 if (entry->prev != &map->header)
1685 vm_map_entry_resize_free(map, entry->prev);
1686
1687 /*
1688 * If the backing object is a vnode object,
1689 * vm_object_deallocate() calls vrele().
1690 * However, vrele() does not lock the vnode
1691 * because the vnode has additional
1692 * references. Thus, the map lock can be kept
1693 * without causing a lock-order reversal with
1694 * the vnode lock.
1695 *
1696 * Since we count the number of virtual page
1697 * mappings in object->un_pager.vnp.writemappings,
1698 * the writemappings value should not be adjusted
1699 * when the entry is disposed of.
1700 */
1701 if (prev->object.vm_object)
1702 vm_object_deallocate(prev->object.vm_object);
1703 if (prev->cred != NULL)
1704 crfree(prev->cred);
1705 vm_map_entry_dispose(map, prev);
1706 }
1707 }
1708
1709 next = entry->next;
1710 if (next != &map->header) {
1711 esize = entry->end - entry->start;
1712 if ((entry->end == next->start) &&
1713 (next->object.vm_object == entry->object.vm_object) &&
1714 (!entry->object.vm_object ||
1715 (entry->offset + esize == next->offset)) &&
1716 (next->eflags == entry->eflags) &&
1717 (next->protection == entry->protection) &&
1718 (next->max_protection == entry->max_protection) &&
1719 (next->inheritance == entry->inheritance) &&
1720 (next->wired_count == entry->wired_count) &&
1721 (next->cred == entry->cred)) {
1722 vm_map_entry_unlink(map, next);
1723 entry->end = next->end;
1724 vm_map_entry_resize_free(map, entry);
1725
1726 /*
1727 * See comment above.
1728 */
1729 if (next->object.vm_object)
1730 vm_object_deallocate(next->object.vm_object);
1731 if (next->cred != NULL)
1732 crfree(next->cred);
1733 vm_map_entry_dispose(map, next);
1734 }
1735 }
1736 }
1737 /*
1738 * vm_map_clip_start: [ internal use only ]
1739 *
1740 * Asserts that the given entry begins at or after
1741 * the specified address; if necessary,
1742 * it splits the entry into two.
1743 */
1744 #define vm_map_clip_start(map, entry, startaddr) \
1745 { \
1746 if (startaddr > entry->start) \
1747 _vm_map_clip_start(map, entry, startaddr); \
1748 }
1749
1750 /*
1751 * This routine is called only when it is known that
1752 * the entry must be split.
1753 */
1754 static void
1755 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1756 {
1757 vm_map_entry_t new_entry;
1758
1759 VM_MAP_ASSERT_LOCKED(map);
1760 KASSERT(entry->end > start && entry->start < start,
1761 ("_vm_map_clip_start: invalid clip of entry %p", entry));
1762
1763 /*
1764 * Split off the front portion -- note that we must insert the new
1765 * entry BEFORE this one, so that this entry has the specified
1766 * starting address.
1767 */
1768 vm_map_simplify_entry(map, entry);
1769
1770 /*
1771 * If there is no object backing this entry, we might as well create
1772 * one now. If we defer it, an object can get created after the map
1773 * is clipped, and individual objects will be created for the split-up
1774 * map. This is a bit of a hack, but is also about the best place to
1775 * put this improvement.
1776 */
1777 if (entry->object.vm_object == NULL && !map->system_map &&
1778 (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1779 vm_object_t object;
1780 object = vm_object_allocate(OBJT_DEFAULT,
1781 atop(entry->end - entry->start));
1782 entry->object.vm_object = object;
1783 entry->offset = 0;
1784 if (entry->cred != NULL) {
1785 object->cred = entry->cred;
1786 object->charge = entry->end - entry->start;
1787 entry->cred = NULL;
1788 }
1789 } else if (entry->object.vm_object != NULL &&
1790 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1791 entry->cred != NULL) {
1792 VM_OBJECT_WLOCK(entry->object.vm_object);
1793 KASSERT(entry->object.vm_object->cred == NULL,
1794 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1795 entry->object.vm_object->cred = entry->cred;
1796 entry->object.vm_object->charge = entry->end - entry->start;
1797 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1798 entry->cred = NULL;
1799 }
1800
1801 new_entry = vm_map_entry_create(map);
1802 *new_entry = *entry;
1803
1804 new_entry->end = start;
1805 entry->offset += (start - entry->start);
1806 entry->start = start;
1807 if (new_entry->cred != NULL)
1808 crhold(entry->cred);
1809
1810 vm_map_entry_link(map, entry->prev, new_entry);
1811
1812 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1813 vm_object_reference(new_entry->object.vm_object);
1814 /*
1815 * The object->un_pager.vnp.writemappings for the
1816 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1817 * kept as is here. The virtual pages are
1818 * re-distributed among the clipped entries, so the sum is
1819 * left the same.
1820 */
1821 }
1822 }
1823
1824 /*
1825 * vm_map_clip_end: [ internal use only ]
1826 *
1827 * Asserts that the given entry ends at or before
1828 * the specified address; if necessary,
1829 * it splits the entry into two.
1830 */
1831 #define vm_map_clip_end(map, entry, endaddr) \
1832 { \
1833 if ((endaddr) < (entry->end)) \
1834 _vm_map_clip_end((map), (entry), (endaddr)); \
1835 }
1836
1837 /*
1838 * This routine is called only when it is known that
1839 * the entry must be split.
1840 */
1841 static void
1842 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1843 {
1844 vm_map_entry_t new_entry;
1845
1846 VM_MAP_ASSERT_LOCKED(map);
1847 KASSERT(entry->start < end && entry->end > end,
1848 ("_vm_map_clip_end: invalid clip of entry %p", entry));
1849
1850 /*
1851 * If there is no object backing this entry, we might as well create
1852 * one now. If we defer it, an object can get created after the map
1853 * is clipped, and individual objects will be created for the split-up
1854 * map. This is a bit of a hack, but is also about the best place to
1855 * put this improvement.
1856 */
1857 if (entry->object.vm_object == NULL && !map->system_map &&
1858 (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1859 vm_object_t object;
1860 object = vm_object_allocate(OBJT_DEFAULT,
1861 atop(entry->end - entry->start));
1862 entry->object.vm_object = object;
1863 entry->offset = 0;
1864 if (entry->cred != NULL) {
1865 object->cred = entry->cred;
1866 object->charge = entry->end - entry->start;
1867 entry->cred = NULL;
1868 }
1869 } else if (entry->object.vm_object != NULL &&
1870 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1871 entry->cred != NULL) {
1872 VM_OBJECT_WLOCK(entry->object.vm_object);
1873 KASSERT(entry->object.vm_object->cred == NULL,
1874 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1875 entry->object.vm_object->cred = entry->cred;
1876 entry->object.vm_object->charge = entry->end - entry->start;
1877 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1878 entry->cred = NULL;
1879 }
1880
1881 /*
1882 * Create a new entry and insert it AFTER the specified entry
1883 */
1884 new_entry = vm_map_entry_create(map);
1885 *new_entry = *entry;
1886
1887 new_entry->start = entry->end = end;
1888 new_entry->offset += (end - entry->start);
1889 if (new_entry->cred != NULL)
1890 crhold(entry->cred);
1891
1892 vm_map_entry_link(map, entry, new_entry);
1893
1894 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1895 vm_object_reference(new_entry->object.vm_object);
1896 }
1897 }
1898
1899 /*
1900 * vm_map_submap: [ kernel use only ]
1901 *
1902 * Mark the given range as handled by a subordinate map.
1903 *
1904 * This range must have been created with vm_map_find,
1905 * and no other operations may have been performed on this
1906 * range prior to calling vm_map_submap.
1907 *
1908 * Only a limited number of operations can be performed
1909 * within this rage after calling vm_map_submap:
1910 * vm_fault
1911 * [Don't try vm_map_copy!]
1912 *
1913 * To remove a submapping, one must first remove the
1914 * range from the superior map, and then destroy the
1915 * submap (if desired). [Better yet, don't try it.]
1916 */
1917 int
1918 vm_map_submap(
1919 vm_map_t map,
1920 vm_offset_t start,
1921 vm_offset_t end,
1922 vm_map_t submap)
1923 {
1924 vm_map_entry_t entry;
1925 int result = KERN_INVALID_ARGUMENT;
1926
1927 vm_map_lock(map);
1928
1929 VM_MAP_RANGE_CHECK(map, start, end);
1930
1931 if (vm_map_lookup_entry(map, start, &entry)) {
1932 vm_map_clip_start(map, entry, start);
1933 } else
1934 entry = entry->next;
1935
1936 vm_map_clip_end(map, entry, end);
1937
1938 if ((entry->start == start) && (entry->end == end) &&
1939 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1940 (entry->object.vm_object == NULL)) {
1941 entry->object.sub_map = submap;
1942 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1943 result = KERN_SUCCESS;
1944 }
1945 vm_map_unlock(map);
1946
1947 return (result);
1948 }
1949
1950 /*
1951 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1952 */
1953 #define MAX_INIT_PT 96
1954
1955 /*
1956 * vm_map_pmap_enter:
1957 *
1958 * Preload the specified map's pmap with mappings to the specified
1959 * object's memory-resident pages. No further physical pages are
1960 * allocated, and no further virtual pages are retrieved from secondary
1961 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a
1962 * limited number of page mappings are created at the low-end of the
1963 * specified address range. (For this purpose, a superpage mapping
1964 * counts as one page mapping.) Otherwise, all resident pages within
1965 * the specified address range are mapped.
1966 */
1967 static void
1968 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1969 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1970 {
1971 vm_offset_t start;
1972 vm_page_t p, p_start;
1973 vm_pindex_t mask, psize, threshold, tmpidx;
1974
1975 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1976 return;
1977 VM_OBJECT_RLOCK(object);
1978 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1979 VM_OBJECT_RUNLOCK(object);
1980 VM_OBJECT_WLOCK(object);
1981 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1982 pmap_object_init_pt(map->pmap, addr, object, pindex,
1983 size);
1984 VM_OBJECT_WUNLOCK(object);
1985 return;
1986 }
1987 VM_OBJECT_LOCK_DOWNGRADE(object);
1988 }
1989
1990 psize = atop(size);
1991 if (psize + pindex > object->size) {
1992 if (object->size < pindex) {
1993 VM_OBJECT_RUNLOCK(object);
1994 return;
1995 }
1996 psize = object->size - pindex;
1997 }
1998
1999 start = 0;
2000 p_start = NULL;
2001 threshold = MAX_INIT_PT;
2002
2003 p = vm_page_find_least(object, pindex);
2004 /*
2005 * Assert: the variable p is either (1) the page with the
2006 * least pindex greater than or equal to the parameter pindex
2007 * or (2) NULL.
2008 */
2009 for (;
2010 p != NULL && (tmpidx = p->pindex - pindex) < psize;
2011 p = TAILQ_NEXT(p, listq)) {
2012 /*
2013 * don't allow an madvise to blow away our really
2014 * free pages allocating pv entries.
2015 */
2016 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2017 vm_page_count_severe()) ||
2018 ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2019 tmpidx >= threshold)) {
2020 psize = tmpidx;
2021 break;
2022 }
2023 if (p->valid == VM_PAGE_BITS_ALL) {
2024 if (p_start == NULL) {
2025 start = addr + ptoa(tmpidx);
2026 p_start = p;
2027 }
2028 /* Jump ahead if a superpage mapping is possible. */
2029 if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2030 (pagesizes[p->psind] - 1)) == 0) {
2031 mask = atop(pagesizes[p->psind]) - 1;
2032 if (tmpidx + mask < psize &&
2033 vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2034 p += mask;
2035 threshold += mask;
2036 }
2037 }
2038 } else if (p_start != NULL) {
2039 pmap_enter_object(map->pmap, start, addr +
2040 ptoa(tmpidx), p_start, prot);
2041 p_start = NULL;
2042 }
2043 }
2044 if (p_start != NULL)
2045 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2046 p_start, prot);
2047 VM_OBJECT_RUNLOCK(object);
2048 }
2049
2050 /*
2051 * vm_map_protect:
2052 *
2053 * Sets the protection of the specified address
2054 * region in the target map. If "set_max" is
2055 * specified, the maximum protection is to be set;
2056 * otherwise, only the current protection is affected.
2057 */
2058 int
2059 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2060 vm_prot_t new_prot, boolean_t set_max)
2061 {
2062 vm_map_entry_t current, entry;
2063 vm_object_t obj;
2064 struct ucred *cred;
2065 vm_prot_t old_prot;
2066
2067 if (start == end)
2068 return (KERN_SUCCESS);
2069
2070 vm_map_lock(map);
2071
2072 /*
2073 * Ensure that we are not concurrently wiring pages. vm_map_wire() may
2074 * need to fault pages into the map and will drop the map lock while
2075 * doing so, and the VM object may end up in an inconsistent state if we
2076 * update the protection on the map entry in between faults.
2077 */
2078 vm_map_wait_busy(map);
2079
2080 VM_MAP_RANGE_CHECK(map, start, end);
2081
2082 if (vm_map_lookup_entry(map, start, &entry)) {
2083 vm_map_clip_start(map, entry, start);
2084 } else {
2085 entry = entry->next;
2086 }
2087
2088 /*
2089 * Make a first pass to check for protection violations.
2090 */
2091 for (current = entry; current->start < end; current = current->next) {
2092 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2093 continue;
2094 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2095 vm_map_unlock(map);
2096 return (KERN_INVALID_ARGUMENT);
2097 }
2098 if ((new_prot & current->max_protection) != new_prot) {
2099 vm_map_unlock(map);
2100 return (KERN_PROTECTION_FAILURE);
2101 }
2102 }
2103
2104 /*
2105 * Do an accounting pass for private read-only mappings that
2106 * now will do cow due to allowed write (e.g. debugger sets
2107 * breakpoint on text segment)
2108 */
2109 for (current = entry; current->start < end; current = current->next) {
2110
2111 vm_map_clip_end(map, current, end);
2112
2113 if (set_max ||
2114 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2115 ENTRY_CHARGED(current) ||
2116 (current->eflags & MAP_ENTRY_GUARD) != 0) {
2117 continue;
2118 }
2119
2120 cred = curthread->td_ucred;
2121 obj = current->object.vm_object;
2122
2123 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2124 if (!swap_reserve(current->end - current->start)) {
2125 vm_map_unlock(map);
2126 return (KERN_RESOURCE_SHORTAGE);
2127 }
2128 crhold(cred);
2129 current->cred = cred;
2130 continue;
2131 }
2132
2133 VM_OBJECT_WLOCK(obj);
2134 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2135 VM_OBJECT_WUNLOCK(obj);
2136 continue;
2137 }
2138
2139 /*
2140 * Charge for the whole object allocation now, since
2141 * we cannot distinguish between non-charged and
2142 * charged clipped mapping of the same object later.
2143 */
2144 KASSERT(obj->charge == 0,
2145 ("vm_map_protect: object %p overcharged (entry %p)",
2146 obj, current));
2147 if (!swap_reserve(ptoa(obj->size))) {
2148 VM_OBJECT_WUNLOCK(obj);
2149 vm_map_unlock(map);
2150 return (KERN_RESOURCE_SHORTAGE);
2151 }
2152
2153 crhold(cred);
2154 obj->cred = cred;
2155 obj->charge = ptoa(obj->size);
2156 VM_OBJECT_WUNLOCK(obj);
2157 }
2158
2159 /*
2160 * Go back and fix up protections. [Note that clipping is not
2161 * necessary the second time.]
2162 */
2163 for (current = entry; current->start < end; current = current->next) {
2164 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2165 continue;
2166
2167 old_prot = current->protection;
2168
2169 if (set_max)
2170 current->protection =
2171 (current->max_protection = new_prot) &
2172 old_prot;
2173 else
2174 current->protection = new_prot;
2175
2176 /*
2177 * For user wired map entries, the normal lazy evaluation of
2178 * write access upgrades through soft page faults is
2179 * undesirable. Instead, immediately copy any pages that are
2180 * copy-on-write and enable write access in the physical map.
2181 */
2182 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2183 (current->protection & VM_PROT_WRITE) != 0 &&
2184 (old_prot & VM_PROT_WRITE) == 0)
2185 vm_fault_copy_entry(map, map, current, current, NULL);
2186
2187 /*
2188 * When restricting access, update the physical map. Worry
2189 * about copy-on-write here.
2190 */
2191 if ((old_prot & ~current->protection) != 0) {
2192 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2193 VM_PROT_ALL)
2194 pmap_protect(map->pmap, current->start,
2195 current->end,
2196 current->protection & MASK(current));
2197 #undef MASK
2198 }
2199 vm_map_simplify_entry(map, current);
2200 }
2201 vm_map_unlock(map);
2202 return (KERN_SUCCESS);
2203 }
2204
2205 /*
2206 * vm_map_madvise:
2207 *
2208 * This routine traverses a processes map handling the madvise
2209 * system call. Advisories are classified as either those effecting
2210 * the vm_map_entry structure, or those effecting the underlying
2211 * objects.
2212 */
2213 int
2214 vm_map_madvise(
2215 vm_map_t map,
2216 vm_offset_t start,
2217 vm_offset_t end,
2218 int behav)
2219 {
2220 vm_map_entry_t current, entry;
2221 bool modify_map;
2222
2223 /*
2224 * Some madvise calls directly modify the vm_map_entry, in which case
2225 * we need to use an exclusive lock on the map and we need to perform
2226 * various clipping operations. Otherwise we only need a read-lock
2227 * on the map.
2228 */
2229 switch(behav) {
2230 case MADV_NORMAL:
2231 case MADV_SEQUENTIAL:
2232 case MADV_RANDOM:
2233 case MADV_NOSYNC:
2234 case MADV_AUTOSYNC:
2235 case MADV_NOCORE:
2236 case MADV_CORE:
2237 if (start == end)
2238 return (0);
2239 modify_map = true;
2240 vm_map_lock(map);
2241 break;
2242 case MADV_WILLNEED:
2243 case MADV_DONTNEED:
2244 case MADV_FREE:
2245 if (start == end)
2246 return (0);
2247 modify_map = false;
2248 vm_map_lock_read(map);
2249 break;
2250 default:
2251 return (EINVAL);
2252 }
2253
2254 /*
2255 * Locate starting entry and clip if necessary.
2256 */
2257 VM_MAP_RANGE_CHECK(map, start, end);
2258
2259 if (vm_map_lookup_entry(map, start, &entry)) {
2260 if (modify_map)
2261 vm_map_clip_start(map, entry, start);
2262 } else {
2263 entry = entry->next;
2264 }
2265
2266 if (modify_map) {
2267 /*
2268 * madvise behaviors that are implemented in the vm_map_entry.
2269 *
2270 * We clip the vm_map_entry so that behavioral changes are
2271 * limited to the specified address range.
2272 */
2273 for (current = entry; current->start < end;
2274 current = current->next) {
2275 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2276 continue;
2277
2278 vm_map_clip_end(map, current, end);
2279
2280 switch (behav) {
2281 case MADV_NORMAL:
2282 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2283 break;
2284 case MADV_SEQUENTIAL:
2285 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2286 break;
2287 case MADV_RANDOM:
2288 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2289 break;
2290 case MADV_NOSYNC:
2291 current->eflags |= MAP_ENTRY_NOSYNC;
2292 break;
2293 case MADV_AUTOSYNC:
2294 current->eflags &= ~MAP_ENTRY_NOSYNC;
2295 break;
2296 case MADV_NOCORE:
2297 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2298 break;
2299 case MADV_CORE:
2300 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2301 break;
2302 default:
2303 break;
2304 }
2305 vm_map_simplify_entry(map, current);
2306 }
2307 vm_map_unlock(map);
2308 } else {
2309 vm_pindex_t pstart, pend;
2310
2311 /*
2312 * madvise behaviors that are implemented in the underlying
2313 * vm_object.
2314 *
2315 * Since we don't clip the vm_map_entry, we have to clip
2316 * the vm_object pindex and count.
2317 */
2318 for (current = entry; current->start < end;
2319 current = current->next) {
2320 vm_offset_t useEnd, useStart;
2321
2322 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2323 continue;
2324
2325 pstart = OFF_TO_IDX(current->offset);
2326 pend = pstart + atop(current->end - current->start);
2327 useStart = current->start;
2328 useEnd = current->end;
2329
2330 if (current->start < start) {
2331 pstart += atop(start - current->start);
2332 useStart = start;
2333 }
2334 if (current->end > end) {
2335 pend -= atop(current->end - end);
2336 useEnd = end;
2337 }
2338
2339 if (pstart >= pend)
2340 continue;
2341
2342 /*
2343 * Perform the pmap_advise() before clearing
2344 * PGA_REFERENCED in vm_page_advise(). Otherwise, a
2345 * concurrent pmap operation, such as pmap_remove(),
2346 * could clear a reference in the pmap and set
2347 * PGA_REFERENCED on the page before the pmap_advise()
2348 * had completed. Consequently, the page would appear
2349 * referenced based upon an old reference that
2350 * occurred before this pmap_advise() ran.
2351 */
2352 if (behav == MADV_DONTNEED || behav == MADV_FREE)
2353 pmap_advise(map->pmap, useStart, useEnd,
2354 behav);
2355
2356 vm_object_madvise(current->object.vm_object, pstart,
2357 pend, behav);
2358
2359 /*
2360 * Pre-populate paging structures in the
2361 * WILLNEED case. For wired entries, the
2362 * paging structures are already populated.
2363 */
2364 if (behav == MADV_WILLNEED &&
2365 current->wired_count == 0) {
2366 vm_map_pmap_enter(map,
2367 useStart,
2368 current->protection,
2369 current->object.vm_object,
2370 pstart,
2371 ptoa(pend - pstart),
2372 MAP_PREFAULT_MADVISE
2373 );
2374 }
2375 }
2376 vm_map_unlock_read(map);
2377 }
2378 return (0);
2379 }
2380
2381
2382 /*
2383 * vm_map_inherit:
2384 *
2385 * Sets the inheritance of the specified address
2386 * range in the target map. Inheritance
2387 * affects how the map will be shared with
2388 * child maps at the time of vmspace_fork.
2389 */
2390 int
2391 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2392 vm_inherit_t new_inheritance)
2393 {
2394 vm_map_entry_t entry;
2395 vm_map_entry_t temp_entry;
2396
2397 switch (new_inheritance) {
2398 case VM_INHERIT_NONE:
2399 case VM_INHERIT_COPY:
2400 case VM_INHERIT_SHARE:
2401 case VM_INHERIT_ZERO:
2402 break;
2403 default:
2404 return (KERN_INVALID_ARGUMENT);
2405 }
2406 if (start == end)
2407 return (KERN_SUCCESS);
2408 vm_map_lock(map);
2409 VM_MAP_RANGE_CHECK(map, start, end);
2410 if (vm_map_lookup_entry(map, start, &temp_entry)) {
2411 entry = temp_entry;
2412 vm_map_clip_start(map, entry, start);
2413 } else
2414 entry = temp_entry->next;
2415 while (entry->start < end) {
2416 vm_map_clip_end(map, entry, end);
2417 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2418 new_inheritance != VM_INHERIT_ZERO)
2419 entry->inheritance = new_inheritance;
2420 vm_map_simplify_entry(map, entry);
2421 entry = entry->next;
2422 }
2423 vm_map_unlock(map);
2424 return (KERN_SUCCESS);
2425 }
2426
2427 /*
2428 * vm_map_unwire:
2429 *
2430 * Implements both kernel and user unwiring.
2431 */
2432 int
2433 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2434 int flags)
2435 {
2436 vm_map_entry_t entry, first_entry, tmp_entry;
2437 vm_offset_t saved_start;
2438 unsigned int last_timestamp;
2439 int rv;
2440 boolean_t need_wakeup, result, user_unwire;
2441
2442 if (start == end)
2443 return (KERN_SUCCESS);
2444 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2445 vm_map_lock(map);
2446 VM_MAP_RANGE_CHECK(map, start, end);
2447 if (!vm_map_lookup_entry(map, start, &first_entry)) {
2448 if (flags & VM_MAP_WIRE_HOLESOK)
2449 first_entry = first_entry->next;
2450 else {
2451 vm_map_unlock(map);
2452 return (KERN_INVALID_ADDRESS);
2453 }
2454 }
2455 last_timestamp = map->timestamp;
2456 entry = first_entry;
2457 while (entry->start < end) {
2458 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2459 /*
2460 * We have not yet clipped the entry.
2461 */
2462 saved_start = (start >= entry->start) ? start :
2463 entry->start;
2464 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2465 if (vm_map_unlock_and_wait(map, 0)) {
2466 /*
2467 * Allow interruption of user unwiring?
2468 */
2469 }
2470 vm_map_lock(map);
2471 if (last_timestamp+1 != map->timestamp) {
2472 /*
2473 * Look again for the entry because the map was
2474 * modified while it was unlocked.
2475 * Specifically, the entry may have been
2476 * clipped, merged, or deleted.
2477 */
2478 if (!vm_map_lookup_entry(map, saved_start,
2479 &tmp_entry)) {
2480 if (flags & VM_MAP_WIRE_HOLESOK)
2481 tmp_entry = tmp_entry->next;
2482 else {
2483 if (saved_start == start) {
2484 /*
2485 * First_entry has been deleted.
2486 */
2487 vm_map_unlock(map);
2488 return (KERN_INVALID_ADDRESS);
2489 }
2490 end = saved_start;
2491 rv = KERN_INVALID_ADDRESS;
2492 goto done;
2493 }
2494 }
2495 if (entry == first_entry)
2496 first_entry = tmp_entry;
2497 else
2498 first_entry = NULL;
2499 entry = tmp_entry;
2500 }
2501 last_timestamp = map->timestamp;
2502 continue;
2503 }
2504 vm_map_clip_start(map, entry, start);
2505 vm_map_clip_end(map, entry, end);
2506 /*
2507 * Mark the entry in case the map lock is released. (See
2508 * above.)
2509 */
2510 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2511 entry->wiring_thread == NULL,
2512 ("owned map entry %p", entry));
2513 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2514 entry->wiring_thread = curthread;
2515 /*
2516 * Check the map for holes in the specified region.
2517 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2518 */
2519 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2520 (entry->end < end && entry->next->start > entry->end)) {
2521 end = entry->end;
2522 rv = KERN_INVALID_ADDRESS;
2523 goto done;
2524 }
2525 /*
2526 * If system unwiring, require that the entry is system wired.
2527 */
2528 if (!user_unwire &&
2529 vm_map_entry_system_wired_count(entry) == 0) {
2530 end = entry->end;
2531 rv = KERN_INVALID_ARGUMENT;
2532 goto done;
2533 }
2534 entry = entry->next;
2535 }
2536 rv = KERN_SUCCESS;
2537 done:
2538 need_wakeup = FALSE;
2539 if (first_entry == NULL) {
2540 result = vm_map_lookup_entry(map, start, &first_entry);
2541 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2542 first_entry = first_entry->next;
2543 else
2544 KASSERT(result, ("vm_map_unwire: lookup failed"));
2545 }
2546 for (entry = first_entry; entry->start < end; entry = entry->next) {
2547 /*
2548 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2549 * space in the unwired region could have been mapped
2550 * while the map lock was dropped for draining
2551 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread
2552 * could be simultaneously wiring this new mapping
2553 * entry. Detect these cases and skip any entries
2554 * marked as in transition by us.
2555 */
2556 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2557 entry->wiring_thread != curthread) {
2558 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2559 ("vm_map_unwire: !HOLESOK and new/changed entry"));
2560 continue;
2561 }
2562
2563 if (rv == KERN_SUCCESS && (!user_unwire ||
2564 (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2565 if (user_unwire)
2566 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2567 if (entry->wired_count == 1)
2568 vm_map_entry_unwire(map, entry);
2569 else
2570 entry->wired_count--;
2571 }
2572 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2573 ("vm_map_unwire: in-transition flag missing %p", entry));
2574 KASSERT(entry->wiring_thread == curthread,
2575 ("vm_map_unwire: alien wire %p", entry));
2576 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2577 entry->wiring_thread = NULL;
2578 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2579 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2580 need_wakeup = TRUE;
2581 }
2582 vm_map_simplify_entry(map, entry);
2583 }
2584 vm_map_unlock(map);
2585 if (need_wakeup)
2586 vm_map_wakeup(map);
2587 return (rv);
2588 }
2589
2590 /*
2591 * vm_map_wire_entry_failure:
2592 *
2593 * Handle a wiring failure on the given entry.
2594 *
2595 * The map should be locked.
2596 */
2597 static void
2598 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2599 vm_offset_t failed_addr)
2600 {
2601
2602 VM_MAP_ASSERT_LOCKED(map);
2603 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2604 entry->wired_count == 1,
2605 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2606 KASSERT(failed_addr < entry->end,
2607 ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2608
2609 /*
2610 * If any pages at the start of this entry were successfully wired,
2611 * then unwire them.
2612 */
2613 if (failed_addr > entry->start) {
2614 pmap_unwire(map->pmap, entry->start, failed_addr);
2615 vm_object_unwire(entry->object.vm_object, entry->offset,
2616 failed_addr - entry->start, PQ_ACTIVE);
2617 }
2618
2619 /*
2620 * Assign an out-of-range value to represent the failure to wire this
2621 * entry.
2622 */
2623 entry->wired_count = -1;
2624 }
2625
2626 /*
2627 * vm_map_wire:
2628 *
2629 * Implements both kernel and user wiring.
2630 */
2631 int
2632 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2633 int flags)
2634 {
2635 vm_map_entry_t entry, first_entry, tmp_entry;
2636 vm_offset_t faddr, saved_end, saved_start;
2637 unsigned int last_timestamp;
2638 int rv;
2639 boolean_t need_wakeup, result, user_wire;
2640 vm_prot_t prot;
2641
2642 if (start == end)
2643 return (KERN_SUCCESS);
2644 prot = 0;
2645 if (flags & VM_MAP_WIRE_WRITE)
2646 prot |= VM_PROT_WRITE;
2647 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2648 vm_map_lock(map);
2649 VM_MAP_RANGE_CHECK(map, start, end);
2650 if (!vm_map_lookup_entry(map, start, &first_entry)) {
2651 if (flags & VM_MAP_WIRE_HOLESOK)
2652 first_entry = first_entry->next;
2653 else {
2654 vm_map_unlock(map);
2655 return (KERN_INVALID_ADDRESS);
2656 }
2657 }
2658 last_timestamp = map->timestamp;
2659 entry = first_entry;
2660 while (entry->start < end) {
2661 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2662 /*
2663 * We have not yet clipped the entry.
2664 */
2665 saved_start = (start >= entry->start) ? start :
2666 entry->start;
2667 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2668 if (vm_map_unlock_and_wait(map, 0)) {
2669 /*
2670 * Allow interruption of user wiring?
2671 */
2672 }
2673 vm_map_lock(map);
2674 if (last_timestamp + 1 != map->timestamp) {
2675 /*
2676 * Look again for the entry because the map was
2677 * modified while it was unlocked.
2678 * Specifically, the entry may have been
2679 * clipped, merged, or deleted.
2680 */
2681 if (!vm_map_lookup_entry(map, saved_start,
2682 &tmp_entry)) {
2683 if (flags & VM_MAP_WIRE_HOLESOK)
2684 tmp_entry = tmp_entry->next;
2685 else {
2686 if (saved_start == start) {
2687 /*
2688 * first_entry has been deleted.
2689 */
2690 vm_map_unlock(map);
2691 return (KERN_INVALID_ADDRESS);
2692 }
2693 end = saved_start;
2694 rv = KERN_INVALID_ADDRESS;
2695 goto done;
2696 }
2697 }
2698 if (entry == first_entry)
2699 first_entry = tmp_entry;
2700 else
2701 first_entry = NULL;
2702 entry = tmp_entry;
2703 }
2704 last_timestamp = map->timestamp;
2705 continue;
2706 }
2707 vm_map_clip_start(map, entry, start);
2708 vm_map_clip_end(map, entry, end);
2709 /*
2710 * Mark the entry in case the map lock is released. (See
2711 * above.)
2712 */
2713 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2714 entry->wiring_thread == NULL,
2715 ("owned map entry %p", entry));
2716 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2717 entry->wiring_thread = curthread;
2718 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2719 || (entry->protection & prot) != prot) {
2720 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2721 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2722 end = entry->end;
2723 rv = KERN_INVALID_ADDRESS;
2724 goto done;
2725 }
2726 goto next_entry;
2727 }
2728 if (entry->wired_count == 0) {
2729 entry->wired_count++;
2730 saved_start = entry->start;
2731 saved_end = entry->end;
2732
2733 /*
2734 * Release the map lock, relying on the in-transition
2735 * mark. Mark the map busy for fork.
2736 */
2737 vm_map_busy(map);
2738 vm_map_unlock(map);
2739
2740 faddr = saved_start;
2741 do {
2742 /*
2743 * Simulate a fault to get the page and enter
2744 * it into the physical map.
2745 */
2746 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2747 VM_FAULT_WIRE)) != KERN_SUCCESS)
2748 break;
2749 } while ((faddr += PAGE_SIZE) < saved_end);
2750 vm_map_lock(map);
2751 vm_map_unbusy(map);
2752 if (last_timestamp + 1 != map->timestamp) {
2753 /*
2754 * Look again for the entry because the map was
2755 * modified while it was unlocked. The entry
2756 * may have been clipped, but NOT merged or
2757 * deleted.
2758 */
2759 result = vm_map_lookup_entry(map, saved_start,
2760 &tmp_entry);
2761 KASSERT(result, ("vm_map_wire: lookup failed"));
2762 if (entry == first_entry)
2763 first_entry = tmp_entry;
2764 else
2765 first_entry = NULL;
2766 entry = tmp_entry;
2767 while (entry->end < saved_end) {
2768 /*
2769 * In case of failure, handle entries
2770 * that were not fully wired here;
2771 * fully wired entries are handled
2772 * later.
2773 */
2774 if (rv != KERN_SUCCESS &&
2775 faddr < entry->end)
2776 vm_map_wire_entry_failure(map,
2777 entry, faddr);
2778 entry = entry->next;
2779 }
2780 }
2781 last_timestamp = map->timestamp;
2782 if (rv != KERN_SUCCESS) {
2783 vm_map_wire_entry_failure(map, entry, faddr);
2784 end = entry->end;
2785 goto done;
2786 }
2787 } else if (!user_wire ||
2788 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2789 entry->wired_count++;
2790 }
2791 /*
2792 * Check the map for holes in the specified region.
2793 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2794 */
2795 next_entry:
2796 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2797 entry->end < end && entry->next->start > entry->end) {
2798 end = entry->end;
2799 rv = KERN_INVALID_ADDRESS;
2800 goto done;
2801 }
2802 entry = entry->next;
2803 }
2804 rv = KERN_SUCCESS;
2805 done:
2806 need_wakeup = FALSE;
2807 if (first_entry == NULL) {
2808 result = vm_map_lookup_entry(map, start, &first_entry);
2809 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2810 first_entry = first_entry->next;
2811 else
2812 KASSERT(result, ("vm_map_wire: lookup failed"));
2813 }
2814 for (entry = first_entry; entry->start < end; entry = entry->next) {
2815 /*
2816 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2817 * space in the unwired region could have been mapped
2818 * while the map lock was dropped for faulting in the
2819 * pages or draining MAP_ENTRY_IN_TRANSITION.
2820 * Moreover, another thread could be simultaneously
2821 * wiring this new mapping entry. Detect these cases
2822 * and skip any entries marked as in transition not by us.
2823 */
2824 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2825 entry->wiring_thread != curthread) {
2826 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2827 ("vm_map_wire: !HOLESOK and new/changed entry"));
2828 continue;
2829 }
2830
2831 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2832 goto next_entry_done;
2833
2834 if (rv == KERN_SUCCESS) {
2835 if (user_wire)
2836 entry->eflags |= MAP_ENTRY_USER_WIRED;
2837 } else if (entry->wired_count == -1) {
2838 /*
2839 * Wiring failed on this entry. Thus, unwiring is
2840 * unnecessary.
2841 */
2842 entry->wired_count = 0;
2843 } else if (!user_wire ||
2844 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2845 /*
2846 * Undo the wiring. Wiring succeeded on this entry
2847 * but failed on a later entry.
2848 */
2849 if (entry->wired_count == 1)
2850 vm_map_entry_unwire(map, entry);
2851 else
2852 entry->wired_count--;
2853 }
2854 next_entry_done:
2855 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2856 ("vm_map_wire: in-transition flag missing %p", entry));
2857 KASSERT(entry->wiring_thread == curthread,
2858 ("vm_map_wire: alien wire %p", entry));
2859 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2860 MAP_ENTRY_WIRE_SKIPPED);
2861 entry->wiring_thread = NULL;
2862 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2863 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2864 need_wakeup = TRUE;
2865 }
2866 vm_map_simplify_entry(map, entry);
2867 }
2868 vm_map_unlock(map);
2869 if (need_wakeup)
2870 vm_map_wakeup(map);
2871 return (rv);
2872 }
2873
2874 /*
2875 * vm_map_sync
2876 *
2877 * Push any dirty cached pages in the address range to their pager.
2878 * If syncio is TRUE, dirty pages are written synchronously.
2879 * If invalidate is TRUE, any cached pages are freed as well.
2880 *
2881 * If the size of the region from start to end is zero, we are
2882 * supposed to flush all modified pages within the region containing
2883 * start. Unfortunately, a region can be split or coalesced with
2884 * neighboring regions, making it difficult to determine what the
2885 * original region was. Therefore, we approximate this requirement by
2886 * flushing the current region containing start.
2887 *
2888 * Returns an error if any part of the specified range is not mapped.
2889 */
2890 int
2891 vm_map_sync(
2892 vm_map_t map,
2893 vm_offset_t start,
2894 vm_offset_t end,
2895 boolean_t syncio,
2896 boolean_t invalidate)
2897 {
2898 vm_map_entry_t current;
2899 vm_map_entry_t entry;
2900 vm_size_t size;
2901 vm_object_t object;
2902 vm_ooffset_t offset;
2903 unsigned int last_timestamp;
2904 boolean_t failed;
2905
2906 vm_map_lock_read(map);
2907 VM_MAP_RANGE_CHECK(map, start, end);
2908 if (!vm_map_lookup_entry(map, start, &entry)) {
2909 vm_map_unlock_read(map);
2910 return (KERN_INVALID_ADDRESS);
2911 } else if (start == end) {
2912 start = entry->start;
2913 end = entry->end;
2914 }
2915 /*
2916 * Make a first pass to check for user-wired memory and holes.
2917 */
2918 for (current = entry; current->start < end; current = current->next) {
2919 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2920 vm_map_unlock_read(map);
2921 return (KERN_INVALID_ARGUMENT);
2922 }
2923 if (end > current->end &&
2924 current->end != current->next->start) {
2925 vm_map_unlock_read(map);
2926 return (KERN_INVALID_ADDRESS);
2927 }
2928 }
2929
2930 if (invalidate)
2931 pmap_remove(map->pmap, start, end);
2932 failed = FALSE;
2933
2934 /*
2935 * Make a second pass, cleaning/uncaching pages from the indicated
2936 * objects as we go.
2937 */
2938 for (current = entry; current->start < end;) {
2939 offset = current->offset + (start - current->start);
2940 size = (end <= current->end ? end : current->end) - start;
2941 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2942 vm_map_t smap;
2943 vm_map_entry_t tentry;
2944 vm_size_t tsize;
2945
2946 smap = current->object.sub_map;
2947 vm_map_lock_read(smap);
2948 (void) vm_map_lookup_entry(smap, offset, &tentry);
2949 tsize = tentry->end - offset;
2950 if (tsize < size)
2951 size = tsize;
2952 object = tentry->object.vm_object;
2953 offset = tentry->offset + (offset - tentry->start);
2954 vm_map_unlock_read(smap);
2955 } else {
2956 object = current->object.vm_object;
2957 }
2958 vm_object_reference(object);
2959 last_timestamp = map->timestamp;
2960 vm_map_unlock_read(map);
2961 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2962 failed = TRUE;
2963 start += size;
2964 vm_object_deallocate(object);
2965 vm_map_lock_read(map);
2966 if (last_timestamp == map->timestamp ||
2967 !vm_map_lookup_entry(map, start, ¤t))
2968 current = current->next;
2969 }
2970
2971 vm_map_unlock_read(map);
2972 return (failed ? KERN_FAILURE : KERN_SUCCESS);
2973 }
2974
2975 /*
2976 * vm_map_entry_unwire: [ internal use only ]
2977 *
2978 * Make the region specified by this entry pageable.
2979 *
2980 * The map in question should be locked.
2981 * [This is the reason for this routine's existence.]
2982 */
2983 static void
2984 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2985 {
2986
2987 VM_MAP_ASSERT_LOCKED(map);
2988 KASSERT(entry->wired_count > 0,
2989 ("vm_map_entry_unwire: entry %p isn't wired", entry));
2990 pmap_unwire(map->pmap, entry->start, entry->end);
2991 vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2992 entry->start, PQ_ACTIVE);
2993 entry->wired_count = 0;
2994 }
2995
2996 static void
2997 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2998 {
2999
3000 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3001 vm_object_deallocate(entry->object.vm_object);
3002 uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3003 }
3004
3005 /*
3006 * vm_map_entry_delete: [ internal use only ]
3007 *
3008 * Deallocate the given entry from the target map.
3009 */
3010 static void
3011 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3012 {
3013 vm_object_t object;
3014 vm_pindex_t offidxstart, offidxend, count, size1;
3015 vm_size_t size;
3016
3017 vm_map_entry_unlink(map, entry);
3018 object = entry->object.vm_object;
3019
3020 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3021 MPASS(entry->cred == NULL);
3022 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3023 MPASS(object == NULL);
3024 vm_map_entry_deallocate(entry, map->system_map);
3025 return;
3026 }
3027
3028 size = entry->end - entry->start;
3029 map->size -= size;
3030
3031 if (entry->cred != NULL) {
3032 swap_release_by_cred(size, entry->cred);
3033 crfree(entry->cred);
3034 }
3035
3036 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3037 (object != NULL)) {
3038 KASSERT(entry->cred == NULL || object->cred == NULL ||
3039 (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3040 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3041 count = atop(size);
3042 offidxstart = OFF_TO_IDX(entry->offset);
3043 offidxend = offidxstart + count;
3044 VM_OBJECT_WLOCK(object);
3045 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3046 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3047 object == kernel_object)) {
3048 vm_object_collapse(object);
3049
3050 /*
3051 * The option OBJPR_NOTMAPPED can be passed here
3052 * because vm_map_delete() already performed
3053 * pmap_remove() on the only mapping to this range
3054 * of pages.
3055 */
3056 vm_object_page_remove(object, offidxstart, offidxend,
3057 OBJPR_NOTMAPPED);
3058 if (object->type == OBJT_SWAP)
3059 swap_pager_freespace(object, offidxstart,
3060 count);
3061 if (offidxend >= object->size &&
3062 offidxstart < object->size) {
3063 size1 = object->size;
3064 object->size = offidxstart;
3065 if (object->cred != NULL) {
3066 size1 -= object->size;
3067 KASSERT(object->charge >= ptoa(size1),
3068 ("object %p charge < 0", object));
3069 swap_release_by_cred(ptoa(size1),
3070 object->cred);
3071 object->charge -= ptoa(size1);
3072 }
3073 }
3074 }
3075 VM_OBJECT_WUNLOCK(object);
3076 } else
3077 entry->object.vm_object = NULL;
3078 if (map->system_map)
3079 vm_map_entry_deallocate(entry, TRUE);
3080 else {
3081 entry->next = curthread->td_map_def_user;
3082 curthread->td_map_def_user = entry;
3083 }
3084 }
3085
3086 /*
3087 * vm_map_delete: [ internal use only ]
3088 *
3089 * Deallocates the given address range from the target
3090 * map.
3091 */
3092 int
3093 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3094 {
3095 vm_map_entry_t entry;
3096 vm_map_entry_t first_entry;
3097
3098 VM_MAP_ASSERT_LOCKED(map);
3099 if (start == end)
3100 return (KERN_SUCCESS);
3101
3102 /*
3103 * Find the start of the region, and clip it
3104 */
3105 if (!vm_map_lookup_entry(map, start, &first_entry))
3106 entry = first_entry->next;
3107 else {
3108 entry = first_entry;
3109 vm_map_clip_start(map, entry, start);
3110 }
3111
3112 /*
3113 * Step through all entries in this region
3114 */
3115 while (entry->start < end) {
3116 vm_map_entry_t next;
3117
3118 /*
3119 * Wait for wiring or unwiring of an entry to complete.
3120 * Also wait for any system wirings to disappear on
3121 * user maps.
3122 */
3123 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3124 (vm_map_pmap(map) != kernel_pmap &&
3125 vm_map_entry_system_wired_count(entry) != 0)) {
3126 unsigned int last_timestamp;
3127 vm_offset_t saved_start;
3128 vm_map_entry_t tmp_entry;
3129
3130 saved_start = entry->start;
3131 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3132 last_timestamp = map->timestamp;
3133 (void) vm_map_unlock_and_wait(map, 0);
3134 vm_map_lock(map);
3135 if (last_timestamp + 1 != map->timestamp) {
3136 /*
3137 * Look again for the entry because the map was
3138 * modified while it was unlocked.
3139 * Specifically, the entry may have been
3140 * clipped, merged, or deleted.
3141 */
3142 if (!vm_map_lookup_entry(map, saved_start,
3143 &tmp_entry))
3144 entry = tmp_entry->next;
3145 else {
3146 entry = tmp_entry;
3147 vm_map_clip_start(map, entry,
3148 saved_start);
3149 }
3150 }
3151 continue;
3152 }
3153 vm_map_clip_end(map, entry, end);
3154
3155 next = entry->next;
3156
3157 /*
3158 * Unwire before removing addresses from the pmap; otherwise,
3159 * unwiring will put the entries back in the pmap.
3160 */
3161 if (entry->wired_count != 0)
3162 vm_map_entry_unwire(map, entry);
3163
3164 /*
3165 * Remove mappings for the pages, but only if the
3166 * mappings could exist. For instance, it does not
3167 * make sense to call pmap_remove() for guard entries.
3168 */
3169 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3170 entry->object.vm_object != NULL)
3171 pmap_remove(map->pmap, entry->start, entry->end);
3172
3173 /*
3174 * Delete the entry only after removing all pmap
3175 * entries pointing to its pages. (Otherwise, its
3176 * page frames may be reallocated, and any modify bits
3177 * will be set in the wrong object!)
3178 */
3179 vm_map_entry_delete(map, entry);
3180 entry = next;
3181 }
3182 return (KERN_SUCCESS);
3183 }
3184
3185 /*
3186 * vm_map_remove:
3187 *
3188 * Remove the given address range from the target map.
3189 * This is the exported form of vm_map_delete.
3190 */
3191 int
3192 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3193 {
3194 int result;
3195
3196 vm_map_lock(map);
3197 VM_MAP_RANGE_CHECK(map, start, end);
3198 result = vm_map_delete(map, start, end);
3199 vm_map_unlock(map);
3200 return (result);
3201 }
3202
3203 /*
3204 * vm_map_check_protection:
3205 *
3206 * Assert that the target map allows the specified privilege on the
3207 * entire address region given. The entire region must be allocated.
3208 *
3209 * WARNING! This code does not and should not check whether the
3210 * contents of the region is accessible. For example a smaller file
3211 * might be mapped into a larger address space.
3212 *
3213 * NOTE! This code is also called by munmap().
3214 *
3215 * The map must be locked. A read lock is sufficient.
3216 */
3217 boolean_t
3218 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3219 vm_prot_t protection)
3220 {
3221 vm_map_entry_t entry;
3222 vm_map_entry_t tmp_entry;
3223
3224 if (!vm_map_lookup_entry(map, start, &tmp_entry))
3225 return (FALSE);
3226 entry = tmp_entry;
3227
3228 while (start < end) {
3229 /*
3230 * No holes allowed!
3231 */
3232 if (start < entry->start)
3233 return (FALSE);
3234 /*
3235 * Check protection associated with entry.
3236 */
3237 if ((entry->protection & protection) != protection)
3238 return (FALSE);
3239 /* go to next entry */
3240 start = entry->end;
3241 entry = entry->next;
3242 }
3243 return (TRUE);
3244 }
3245
3246 /*
3247 * vm_map_copy_entry:
3248 *
3249 * Copies the contents of the source entry to the destination
3250 * entry. The entries *must* be aligned properly.
3251 */
3252 static void
3253 vm_map_copy_entry(
3254 vm_map_t src_map,
3255 vm_map_t dst_map,
3256 vm_map_entry_t src_entry,
3257 vm_map_entry_t dst_entry,
3258 vm_ooffset_t *fork_charge)
3259 {
3260 vm_object_t src_object;
3261 vm_map_entry_t fake_entry;
3262 vm_offset_t size;
3263 struct ucred *cred;
3264 int charged;
3265
3266 VM_MAP_ASSERT_LOCKED(dst_map);
3267
3268 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3269 return;
3270
3271 if (src_entry->wired_count == 0 ||
3272 (src_entry->protection & VM_PROT_WRITE) == 0) {
3273 /*
3274 * If the source entry is marked needs_copy, it is already
3275 * write-protected.
3276 */
3277 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3278 (src_entry->protection & VM_PROT_WRITE) != 0) {
3279 pmap_protect(src_map->pmap,
3280 src_entry->start,
3281 src_entry->end,
3282 src_entry->protection & ~VM_PROT_WRITE);
3283 }
3284
3285 /*
3286 * Make a copy of the object.
3287 */
3288 size = src_entry->end - src_entry->start;
3289 if ((src_object = src_entry->object.vm_object) != NULL) {
3290 VM_OBJECT_WLOCK(src_object);
3291 charged = ENTRY_CHARGED(src_entry);
3292 if (src_object->handle == NULL &&
3293 (src_object->type == OBJT_DEFAULT ||
3294 src_object->type == OBJT_SWAP)) {
3295 vm_object_collapse(src_object);
3296 if ((src_object->flags & (OBJ_NOSPLIT |
3297 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3298 vm_object_split(src_entry);
3299 src_object =
3300 src_entry->object.vm_object;
3301 }
3302 }
3303 vm_object_reference_locked(src_object);
3304 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3305 if (src_entry->cred != NULL &&
3306 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3307 KASSERT(src_object->cred == NULL,
3308 ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3309 src_object));
3310 src_object->cred = src_entry->cred;
3311 src_object->charge = size;
3312 }
3313 VM_OBJECT_WUNLOCK(src_object);
3314 dst_entry->object.vm_object = src_object;
3315 if (charged) {
3316 cred = curthread->td_ucred;
3317 crhold(cred);
3318 dst_entry->cred = cred;
3319 *fork_charge += size;
3320 if (!(src_entry->eflags &
3321 MAP_ENTRY_NEEDS_COPY)) {
3322 crhold(cred);
3323 src_entry->cred = cred;
3324 *fork_charge += size;
3325 }
3326 }
3327 src_entry->eflags |= MAP_ENTRY_COW |
3328 MAP_ENTRY_NEEDS_COPY;
3329 dst_entry->eflags |= MAP_ENTRY_COW |
3330 MAP_ENTRY_NEEDS_COPY;
3331 dst_entry->offset = src_entry->offset;
3332 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3333 /*
3334 * MAP_ENTRY_VN_WRITECNT cannot
3335 * indicate write reference from
3336 * src_entry, since the entry is
3337 * marked as needs copy. Allocate a
3338 * fake entry that is used to
3339 * decrement object->un_pager.vnp.writecount
3340 * at the appropriate time. Attach
3341 * fake_entry to the deferred list.
3342 */
3343 fake_entry = vm_map_entry_create(dst_map);
3344 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3345 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3346 vm_object_reference(src_object);
3347 fake_entry->object.vm_object = src_object;
3348 fake_entry->start = src_entry->start;
3349 fake_entry->end = src_entry->end;
3350 fake_entry->next = curthread->td_map_def_user;
3351 curthread->td_map_def_user = fake_entry;
3352 }
3353
3354 pmap_copy(dst_map->pmap, src_map->pmap,
3355 dst_entry->start, dst_entry->end - dst_entry->start,
3356 src_entry->start);
3357 } else {
3358 dst_entry->object.vm_object = NULL;
3359 dst_entry->offset = 0;
3360 if (src_entry->cred != NULL) {
3361 dst_entry->cred = curthread->td_ucred;
3362 crhold(dst_entry->cred);
3363 *fork_charge += size;
3364 }
3365 }
3366 } else {
3367 /*
3368 * We don't want to make writeable wired pages copy-on-write.
3369 * Immediately copy these pages into the new map by simulating
3370 * page faults. The new pages are pageable.
3371 */
3372 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3373 fork_charge);
3374 }
3375 }
3376
3377 /*
3378 * vmspace_map_entry_forked:
3379 * Update the newly-forked vmspace each time a map entry is inherited
3380 * or copied. The values for vm_dsize and vm_tsize are approximate
3381 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3382 */
3383 static void
3384 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3385 vm_map_entry_t entry)
3386 {
3387 vm_size_t entrysize;
3388 vm_offset_t newend;
3389
3390 if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3391 return;
3392 entrysize = entry->end - entry->start;
3393 vm2->vm_map.size += entrysize;
3394 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3395 vm2->vm_ssize += btoc(entrysize);
3396 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3397 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3398 newend = MIN(entry->end,
3399 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3400 vm2->vm_dsize += btoc(newend - entry->start);
3401 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3402 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3403 newend = MIN(entry->end,
3404 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3405 vm2->vm_tsize += btoc(newend - entry->start);
3406 }
3407 }
3408
3409 /*
3410 * vmspace_fork:
3411 * Create a new process vmspace structure and vm_map
3412 * based on those of an existing process. The new map
3413 * is based on the old map, according to the inheritance
3414 * values on the regions in that map.
3415 *
3416 * XXX It might be worth coalescing the entries added to the new vmspace.
3417 *
3418 * The source map must not be locked.
3419 */
3420 struct vmspace *
3421 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3422 {
3423 struct vmspace *vm2;
3424 vm_map_t new_map, old_map;
3425 vm_map_entry_t new_entry, old_entry;
3426 vm_object_t object;
3427 int locked;
3428 vm_inherit_t inh;
3429
3430 old_map = &vm1->vm_map;
3431 /* Copy immutable fields of vm1 to vm2. */
3432 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), NULL);
3433 if (vm2 == NULL)
3434 return (NULL);
3435 vm2->vm_taddr = vm1->vm_taddr;
3436 vm2->vm_daddr = vm1->vm_daddr;
3437 vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3438 vm_map_lock(old_map);
3439 if (old_map->busy)
3440 vm_map_wait_busy(old_map);
3441 new_map = &vm2->vm_map;
3442 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3443 KASSERT(locked, ("vmspace_fork: lock failed"));
3444
3445 old_entry = old_map->header.next;
3446
3447 while (old_entry != &old_map->header) {
3448 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3449 panic("vm_map_fork: encountered a submap");
3450
3451 inh = old_entry->inheritance;
3452 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3453 inh != VM_INHERIT_NONE)
3454 inh = VM_INHERIT_COPY;
3455
3456 switch (inh) {
3457 case VM_INHERIT_NONE:
3458 break;
3459
3460 case VM_INHERIT_SHARE:
3461 /*
3462 * Clone the entry, creating the shared object if necessary.
3463 */
3464 object = old_entry->object.vm_object;
3465 if (object == NULL) {
3466 object = vm_object_allocate(OBJT_DEFAULT,
3467 atop(old_entry->end - old_entry->start));
3468 old_entry->object.vm_object = object;
3469 old_entry->offset = 0;
3470 if (old_entry->cred != NULL) {
3471 object->cred = old_entry->cred;
3472 object->charge = old_entry->end -
3473 old_entry->start;
3474 old_entry->cred = NULL;
3475 }
3476 }
3477
3478 /*
3479 * Add the reference before calling vm_object_shadow
3480 * to insure that a shadow object is created.
3481 */
3482 vm_object_reference(object);
3483 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3484 vm_object_shadow(&old_entry->object.vm_object,
3485 &old_entry->offset,
3486 old_entry->end - old_entry->start);
3487 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3488 /* Transfer the second reference too. */
3489 vm_object_reference(
3490 old_entry->object.vm_object);
3491
3492 /*
3493 * As in vm_map_simplify_entry(), the
3494 * vnode lock will not be acquired in
3495 * this call to vm_object_deallocate().
3496 */
3497 vm_object_deallocate(object);
3498 object = old_entry->object.vm_object;
3499 }
3500 VM_OBJECT_WLOCK(object);
3501 vm_object_clear_flag(object, OBJ_ONEMAPPING);
3502 if (old_entry->cred != NULL) {
3503 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3504 object->cred = old_entry->cred;
3505 object->charge = old_entry->end - old_entry->start;
3506 old_entry->cred = NULL;
3507 }
3508
3509 /*
3510 * Assert the correct state of the vnode
3511 * v_writecount while the object is locked, to
3512 * not relock it later for the assertion
3513 * correctness.
3514 */
3515 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3516 object->type == OBJT_VNODE) {
3517 KASSERT(((struct vnode *)object->handle)->
3518 v_writecount > 0,
3519 ("vmspace_fork: v_writecount %p", object));
3520 KASSERT(object->un_pager.vnp.writemappings > 0,
3521 ("vmspace_fork: vnp.writecount %p",
3522 object));
3523 }
3524 VM_OBJECT_WUNLOCK(object);
3525
3526 /*
3527 * Clone the entry, referencing the shared object.
3528 */
3529 new_entry = vm_map_entry_create(new_map);
3530 *new_entry = *old_entry;
3531 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3532 MAP_ENTRY_IN_TRANSITION);
3533 new_entry->wiring_thread = NULL;
3534 new_entry->wired_count = 0;
3535 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3536 vnode_pager_update_writecount(object,
3537 new_entry->start, new_entry->end);
3538 }
3539
3540 /*
3541 * Insert the entry into the new map -- we know we're
3542 * inserting at the end of the new map.
3543 */
3544 vm_map_entry_link(new_map, new_map->header.prev,
3545 new_entry);
3546 vmspace_map_entry_forked(vm1, vm2, new_entry);
3547
3548 /*
3549 * Update the physical map
3550 */
3551 pmap_copy(new_map->pmap, old_map->pmap,
3552 new_entry->start,
3553 (old_entry->end - old_entry->start),
3554 old_entry->start);
3555 break;
3556
3557 case VM_INHERIT_COPY:
3558 /*
3559 * Clone the entry and link into the map.
3560 */
3561 new_entry = vm_map_entry_create(new_map);
3562 *new_entry = *old_entry;
3563 /*
3564 * Copied entry is COW over the old object.
3565 */
3566 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3567 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3568 new_entry->wiring_thread = NULL;
3569 new_entry->wired_count = 0;
3570 new_entry->object.vm_object = NULL;
3571 new_entry->cred = NULL;
3572 vm_map_entry_link(new_map, new_map->header.prev,
3573 new_entry);
3574 vmspace_map_entry_forked(vm1, vm2, new_entry);
3575 vm_map_copy_entry(old_map, new_map, old_entry,
3576 new_entry, fork_charge);
3577 break;
3578
3579 case VM_INHERIT_ZERO:
3580 /*
3581 * Create a new anonymous mapping entry modelled from
3582 * the old one.
3583 */
3584 new_entry = vm_map_entry_create(new_map);
3585 memset(new_entry, 0, sizeof(*new_entry));
3586
3587 new_entry->start = old_entry->start;
3588 new_entry->end = old_entry->end;
3589 new_entry->eflags = old_entry->eflags &
3590 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3591 MAP_ENTRY_VN_WRITECNT);
3592 new_entry->protection = old_entry->protection;
3593 new_entry->max_protection = old_entry->max_protection;
3594 new_entry->inheritance = VM_INHERIT_ZERO;
3595
3596 vm_map_entry_link(new_map, new_map->header.prev,
3597 new_entry);
3598 vmspace_map_entry_forked(vm1, vm2, new_entry);
3599
3600 new_entry->cred = curthread->td_ucred;
3601 crhold(new_entry->cred);
3602 *fork_charge += (new_entry->end - new_entry->start);
3603
3604 break;
3605 }
3606 old_entry = old_entry->next;
3607 }
3608 /*
3609 * Use inlined vm_map_unlock() to postpone handling the deferred
3610 * map entries, which cannot be done until both old_map and
3611 * new_map locks are released.
3612 */
3613 sx_xunlock(&old_map->lock);
3614 sx_xunlock(&new_map->lock);
3615 vm_map_process_deferred();
3616
3617 return (vm2);
3618 }
3619
3620 /*
3621 * Create a process's stack for exec_new_vmspace(). This function is never
3622 * asked to wire the newly created stack.
3623 */
3624 int
3625 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3626 vm_prot_t prot, vm_prot_t max, int cow)
3627 {
3628 vm_size_t growsize, init_ssize;
3629 rlim_t vmemlim;
3630 int rv;
3631
3632 MPASS((map->flags & MAP_WIREFUTURE) == 0);
3633 growsize = sgrowsiz;
3634 init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3635 vm_map_lock(map);
3636 vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3637 /* If we would blow our VMEM resource limit, no go */
3638 if (map->size + init_ssize > vmemlim) {
3639 rv = KERN_NO_SPACE;
3640 goto out;
3641 }
3642 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3643 max, cow);
3644 out:
3645 vm_map_unlock(map);
3646 return (rv);
3647 }
3648
3649 static int stack_guard_page = 1;
3650 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3651 &stack_guard_page, 0,
3652 "Specifies the number of guard pages for a stack that grows");
3653
3654 static int
3655 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3656 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3657 {
3658 vm_map_entry_t new_entry, prev_entry;
3659 vm_offset_t bot, gap_bot, gap_top, top;
3660 vm_size_t init_ssize, sgp;
3661 int orient, rv;
3662
3663 /*
3664 * The stack orientation is piggybacked with the cow argument.
3665 * Extract it into orient and mask the cow argument so that we
3666 * don't pass it around further.
3667 */
3668 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3669 KASSERT(orient != 0, ("No stack grow direction"));
3670 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3671 ("bi-dir stack"));
3672
3673 if (addrbos < vm_map_min(map) ||
3674 addrbos + max_ssize > vm_map_max(map) ||
3675 addrbos + max_ssize <= addrbos)
3676 return (KERN_INVALID_ADDRESS);
3677 sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3678 if (sgp >= max_ssize)
3679 return (KERN_INVALID_ARGUMENT);
3680
3681 init_ssize = growsize;
3682 if (max_ssize < init_ssize + sgp)
3683 init_ssize = max_ssize - sgp;
3684
3685 /* If addr is already mapped, no go */
3686 if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3687 return (KERN_NO_SPACE);
3688
3689 /*
3690 * If we can't accommodate max_ssize in the current mapping, no go.
3691 */
3692 if (prev_entry->next->start < addrbos + max_ssize)
3693 return (KERN_NO_SPACE);
3694
3695 /*
3696 * We initially map a stack of only init_ssize. We will grow as
3697 * needed later. Depending on the orientation of the stack (i.e.
3698 * the grow direction) we either map at the top of the range, the
3699 * bottom of the range or in the middle.
3700 *
3701 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3702 * and cow to be 0. Possibly we should eliminate these as input
3703 * parameters, and just pass these values here in the insert call.
3704 */
3705 if (orient == MAP_STACK_GROWS_DOWN) {
3706 bot = addrbos + max_ssize - init_ssize;
3707 top = bot + init_ssize;
3708 gap_bot = addrbos;
3709 gap_top = bot;
3710 } else /* if (orient == MAP_STACK_GROWS_UP) */ {
3711 bot = addrbos;
3712 top = bot + init_ssize;
3713 gap_bot = top;
3714 gap_top = addrbos + max_ssize;
3715 }
3716 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3717 if (rv != KERN_SUCCESS)
3718 return (rv);
3719 new_entry = prev_entry->next;
3720 KASSERT(new_entry->end == top || new_entry->start == bot,
3721 ("Bad entry start/end for new stack entry"));
3722 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3723 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3724 ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3725 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3726 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3727 ("new entry lacks MAP_ENTRY_GROWS_UP"));
3728 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3729 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3730 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3731 if (rv != KERN_SUCCESS)
3732 (void)vm_map_delete(map, bot, top);
3733 return (rv);
3734 }
3735
3736 /*
3737 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we
3738 * successfully grow the stack.
3739 */
3740 static int
3741 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3742 {
3743 vm_map_entry_t stack_entry;
3744 struct proc *p;
3745 struct vmspace *vm;
3746 struct ucred *cred;
3747 vm_offset_t gap_end, gap_start, grow_start;
3748 size_t grow_amount, guard, max_grow;
3749 rlim_t lmemlim, stacklim, vmemlim;
3750 int rv, rv1;
3751 bool gap_deleted, grow_down, is_procstack;
3752 #ifdef notyet
3753 uint64_t limit;
3754 #endif
3755 #ifdef RACCT
3756 int error;
3757 #endif
3758
3759 p = curproc;
3760 vm = p->p_vmspace;
3761
3762 /*
3763 * Disallow stack growth when the access is performed by a
3764 * debugger or AIO daemon. The reason is that the wrong
3765 * resource limits are applied.
3766 */
3767 if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3768 return (KERN_FAILURE);
3769
3770 MPASS(!map->system_map);
3771
3772 guard = stack_guard_page * PAGE_SIZE;
3773 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3774 stacklim = lim_cur(curthread, RLIMIT_STACK);
3775 vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3776 retry:
3777 /* If addr is not in a hole for a stack grow area, no need to grow. */
3778 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3779 return (KERN_FAILURE);
3780 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3781 return (KERN_SUCCESS);
3782 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3783 stack_entry = gap_entry->next;
3784 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3785 stack_entry->start != gap_entry->end)
3786 return (KERN_FAILURE);
3787 grow_amount = round_page(stack_entry->start - addr);
3788 grow_down = true;
3789 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3790 stack_entry = gap_entry->prev;
3791 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3792 stack_entry->end != gap_entry->start)
3793 return (KERN_FAILURE);
3794 grow_amount = round_page(addr + 1 - stack_entry->end);
3795 grow_down = false;
3796 } else {
3797 return (KERN_FAILURE);
3798 }
3799 max_grow = gap_entry->end - gap_entry->start;
3800 if (guard > max_grow)
3801 return (KERN_NO_SPACE);
3802 max_grow -= guard;
3803 if (grow_amount > max_grow)
3804 return (KERN_NO_SPACE);
3805
3806 /*
3807 * If this is the main process stack, see if we're over the stack
3808 * limit.
3809 */
3810 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3811 addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3812 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3813 return (KERN_NO_SPACE);
3814
3815 #ifdef RACCT
3816 if (racct_enable) {
3817 PROC_LOCK(p);
3818 if (is_procstack && racct_set(p, RACCT_STACK,
3819 ctob(vm->vm_ssize) + grow_amount)) {
3820 PROC_UNLOCK(p);
3821 return (KERN_NO_SPACE);
3822 }
3823 PROC_UNLOCK(p);
3824 }
3825 #endif
3826
3827 grow_amount = roundup(grow_amount, sgrowsiz);
3828 if (grow_amount > max_grow)
3829 grow_amount = max_grow;
3830 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3831 grow_amount = trunc_page((vm_size_t)stacklim) -
3832 ctob(vm->vm_ssize);
3833 }
3834
3835 #ifdef notyet
3836 PROC_LOCK(p);
3837 limit = racct_get_available(p, RACCT_STACK);
3838 PROC_UNLOCK(p);
3839 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3840 grow_amount = limit - ctob(vm->vm_ssize);
3841 #endif
3842
3843 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3844 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3845 rv = KERN_NO_SPACE;
3846 goto out;
3847 }
3848 #ifdef RACCT
3849 if (racct_enable) {
3850 PROC_LOCK(p);
3851 if (racct_set(p, RACCT_MEMLOCK,
3852 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3853 PROC_UNLOCK(p);
3854 rv = KERN_NO_SPACE;
3855 goto out;
3856 }
3857 PROC_UNLOCK(p);
3858 }
3859 #endif
3860 }
3861
3862 /* If we would blow our VMEM resource limit, no go */
3863 if (map->size + grow_amount > vmemlim) {
3864 rv = KERN_NO_SPACE;
3865 goto out;
3866 }
3867 #ifdef RACCT
3868 if (racct_enable) {
3869 PROC_LOCK(p);
3870 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3871 PROC_UNLOCK(p);
3872 rv = KERN_NO_SPACE;
3873 goto out;
3874 }
3875 PROC_UNLOCK(p);
3876 }
3877 #endif
3878
3879 if (vm_map_lock_upgrade(map)) {
3880 gap_entry = NULL;
3881 vm_map_lock_read(map);
3882 goto retry;
3883 }
3884
3885 if (grow_down) {
3886 grow_start = gap_entry->end - grow_amount;
3887 if (gap_entry->start + grow_amount == gap_entry->end) {
3888 gap_start = gap_entry->start;
3889 gap_end = gap_entry->end;
3890 vm_map_entry_delete(map, gap_entry);
3891 gap_deleted = true;
3892 } else {
3893 MPASS(gap_entry->start < gap_entry->end - grow_amount);
3894 gap_entry->end -= grow_amount;
3895 vm_map_entry_resize_free(map, gap_entry);
3896 gap_deleted = false;
3897 }
3898 rv = vm_map_insert(map, NULL, 0, grow_start,
3899 grow_start + grow_amount,
3900 stack_entry->protection, stack_entry->max_protection,
3901 MAP_STACK_GROWS_DOWN);
3902 if (rv != KERN_SUCCESS) {
3903 if (gap_deleted) {
3904 rv1 = vm_map_insert(map, NULL, 0, gap_start,
3905 gap_end, VM_PROT_NONE, VM_PROT_NONE,
3906 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3907 MPASS(rv1 == KERN_SUCCESS);
3908 } else {
3909 gap_entry->end += grow_amount;
3910 vm_map_entry_resize_free(map, gap_entry);
3911 }
3912 }
3913 } else {
3914 grow_start = stack_entry->end;
3915 cred = stack_entry->cred;
3916 if (cred == NULL && stack_entry->object.vm_object != NULL)
3917 cred = stack_entry->object.vm_object->cred;
3918 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3919 rv = KERN_NO_SPACE;
3920 /* Grow the underlying object if applicable. */
3921 else if (stack_entry->object.vm_object == NULL ||
3922 vm_object_coalesce(stack_entry->object.vm_object,
3923 stack_entry->offset,
3924 (vm_size_t)(stack_entry->end - stack_entry->start),
3925 (vm_size_t)grow_amount, cred != NULL)) {
3926 if (gap_entry->start + grow_amount == gap_entry->end)
3927 vm_map_entry_delete(map, gap_entry);
3928 else
3929 gap_entry->start += grow_amount;
3930 stack_entry->end += grow_amount;
3931 map->size += grow_amount;
3932 vm_map_entry_resize_free(map, stack_entry);
3933 rv = KERN_SUCCESS;
3934 } else
3935 rv = KERN_FAILURE;
3936 }
3937 if (rv == KERN_SUCCESS && is_procstack)
3938 vm->vm_ssize += btoc(grow_amount);
3939
3940 /*
3941 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3942 */
3943 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3944 vm_map_unlock(map);
3945 vm_map_wire(map, grow_start, grow_start + grow_amount,
3946 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3947 vm_map_lock_read(map);
3948 } else
3949 vm_map_lock_downgrade(map);
3950
3951 out:
3952 #ifdef RACCT
3953 if (racct_enable && rv != KERN_SUCCESS) {
3954 PROC_LOCK(p);
3955 error = racct_set(p, RACCT_VMEM, map->size);
3956 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3957 if (!old_mlock) {
3958 error = racct_set(p, RACCT_MEMLOCK,
3959 ptoa(pmap_wired_count(map->pmap)));
3960 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3961 }
3962 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3963 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3964 PROC_UNLOCK(p);
3965 }
3966 #endif
3967
3968 return (rv);
3969 }
3970
3971 /*
3972 * Unshare the specified VM space for exec. If other processes are
3973 * mapped to it, then create a new one. The new vmspace is null.
3974 */
3975 int
3976 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3977 {
3978 struct vmspace *oldvmspace = p->p_vmspace;
3979 struct vmspace *newvmspace;
3980
3981 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3982 ("vmspace_exec recursed"));
3983 newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3984 if (newvmspace == NULL)
3985 return (ENOMEM);
3986 newvmspace->vm_swrss = oldvmspace->vm_swrss;
3987 /*
3988 * This code is written like this for prototype purposes. The
3989 * goal is to avoid running down the vmspace here, but let the
3990 * other process's that are still using the vmspace to finally
3991 * run it down. Even though there is little or no chance of blocking
3992 * here, it is a good idea to keep this form for future mods.
3993 */
3994 PROC_VMSPACE_LOCK(p);
3995 p->p_vmspace = newvmspace;
3996 PROC_VMSPACE_UNLOCK(p);
3997 if (p == curthread->td_proc)
3998 pmap_activate(curthread);
3999 curthread->td_pflags |= TDP_EXECVMSPC;
4000 return (0);
4001 }
4002
4003 /*
4004 * Unshare the specified VM space for forcing COW. This
4005 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4006 */
4007 int
4008 vmspace_unshare(struct proc *p)
4009 {
4010 struct vmspace *oldvmspace = p->p_vmspace;
4011 struct vmspace *newvmspace;
4012 vm_ooffset_t fork_charge;
4013
4014 if (oldvmspace->vm_refcnt == 1)
4015 return (0);
4016 fork_charge = 0;
4017 newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4018 if (newvmspace == NULL)
4019 return (ENOMEM);
4020 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4021 vmspace_free(newvmspace);
4022 return (ENOMEM);
4023 }
4024 PROC_VMSPACE_LOCK(p);
4025 p->p_vmspace = newvmspace;
4026 PROC_VMSPACE_UNLOCK(p);
4027 if (p == curthread->td_proc)
4028 pmap_activate(curthread);
4029 vmspace_free(oldvmspace);
4030 return (0);
4031 }
4032
4033 /*
4034 * vm_map_lookup:
4035 *
4036 * Finds the VM object, offset, and
4037 * protection for a given virtual address in the
4038 * specified map, assuming a page fault of the
4039 * type specified.
4040 *
4041 * Leaves the map in question locked for read; return
4042 * values are guaranteed until a vm_map_lookup_done
4043 * call is performed. Note that the map argument
4044 * is in/out; the returned map must be used in
4045 * the call to vm_map_lookup_done.
4046 *
4047 * A handle (out_entry) is returned for use in
4048 * vm_map_lookup_done, to make that fast.
4049 *
4050 * If a lookup is requested with "write protection"
4051 * specified, the map may be changed to perform virtual
4052 * copying operations, although the data referenced will
4053 * remain the same.
4054 */
4055 int
4056 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
4057 vm_offset_t vaddr,
4058 vm_prot_t fault_typea,
4059 vm_map_entry_t *out_entry, /* OUT */
4060 vm_object_t *object, /* OUT */
4061 vm_pindex_t *pindex, /* OUT */
4062 vm_prot_t *out_prot, /* OUT */
4063 boolean_t *wired) /* OUT */
4064 {
4065 vm_map_entry_t entry;
4066 vm_map_t map = *var_map;
4067 vm_prot_t prot;
4068 vm_prot_t fault_type = fault_typea;
4069 vm_object_t eobject;
4070 vm_size_t size;
4071 struct ucred *cred;
4072
4073 RetryLookup:
4074
4075 vm_map_lock_read(map);
4076
4077 RetryLookupLocked:
4078 /*
4079 * Lookup the faulting address.
4080 */
4081 if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4082 vm_map_unlock_read(map);
4083 return (KERN_INVALID_ADDRESS);
4084 }
4085
4086 entry = *out_entry;
4087
4088 /*
4089 * Handle submaps.
4090 */
4091 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4092 vm_map_t old_map = map;
4093
4094 *var_map = map = entry->object.sub_map;
4095 vm_map_unlock_read(old_map);
4096 goto RetryLookup;
4097 }
4098
4099 /*
4100 * Check whether this task is allowed to have this page.
4101 */
4102 prot = entry->protection;
4103 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4104 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4105 if (prot == VM_PROT_NONE && map != kernel_map &&
4106 (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4107 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4108 MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4109 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4110 goto RetryLookupLocked;
4111 }
4112 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4113 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4114 vm_map_unlock_read(map);
4115 return (KERN_PROTECTION_FAILURE);
4116 }
4117 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4118 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4119 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4120 ("entry %p flags %x", entry, entry->eflags));
4121 if ((fault_typea & VM_PROT_COPY) != 0 &&
4122 (entry->max_protection & VM_PROT_WRITE) == 0 &&
4123 (entry->eflags & MAP_ENTRY_COW) == 0) {
4124 vm_map_unlock_read(map);
4125 return (KERN_PROTECTION_FAILURE);
4126 }
4127
4128 /*
4129 * If this page is not pageable, we have to get it for all possible
4130 * accesses.
4131 */
4132 *wired = (entry->wired_count != 0);
4133 if (*wired)
4134 fault_type = entry->protection;
4135 size = entry->end - entry->start;
4136 /*
4137 * If the entry was copy-on-write, we either ...
4138 */
4139 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4140 /*
4141 * If we want to write the page, we may as well handle that
4142 * now since we've got the map locked.
4143 *
4144 * If we don't need to write the page, we just demote the
4145 * permissions allowed.
4146 */
4147 if ((fault_type & VM_PROT_WRITE) != 0 ||
4148 (fault_typea & VM_PROT_COPY) != 0) {
4149 /*
4150 * Make a new object, and place it in the object
4151 * chain. Note that no new references have appeared
4152 * -- one just moved from the map to the new
4153 * object.
4154 */
4155 if (vm_map_lock_upgrade(map))
4156 goto RetryLookup;
4157
4158 if (entry->cred == NULL) {
4159 /*
4160 * The debugger owner is charged for
4161 * the memory.
4162 */
4163 cred = curthread->td_ucred;
4164 crhold(cred);
4165 if (!swap_reserve_by_cred(size, cred)) {
4166 crfree(cred);
4167 vm_map_unlock(map);
4168 return (KERN_RESOURCE_SHORTAGE);
4169 }
4170 entry->cred = cred;
4171 }
4172 vm_object_shadow(&entry->object.vm_object,
4173 &entry->offset, size);
4174 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4175 eobject = entry->object.vm_object;
4176 if (eobject->cred != NULL) {
4177 /*
4178 * The object was not shadowed.
4179 */
4180 swap_release_by_cred(size, entry->cred);
4181 crfree(entry->cred);
4182 entry->cred = NULL;
4183 } else if (entry->cred != NULL) {
4184 VM_OBJECT_WLOCK(eobject);
4185 eobject->cred = entry->cred;
4186 eobject->charge = size;
4187 VM_OBJECT_WUNLOCK(eobject);
4188 entry->cred = NULL;
4189 }
4190
4191 vm_map_lock_downgrade(map);
4192 } else {
4193 /*
4194 * We're attempting to read a copy-on-write page --
4195 * don't allow writes.
4196 */
4197 prot &= ~VM_PROT_WRITE;
4198 }
4199 }
4200
4201 /*
4202 * Create an object if necessary.
4203 */
4204 if (entry->object.vm_object == NULL &&
4205 !map->system_map) {
4206 if (vm_map_lock_upgrade(map))
4207 goto RetryLookup;
4208 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4209 atop(size));
4210 entry->offset = 0;
4211 if (entry->cred != NULL) {
4212 VM_OBJECT_WLOCK(entry->object.vm_object);
4213 entry->object.vm_object->cred = entry->cred;
4214 entry->object.vm_object->charge = size;
4215 VM_OBJECT_WUNLOCK(entry->object.vm_object);
4216 entry->cred = NULL;
4217 }
4218 vm_map_lock_downgrade(map);
4219 }
4220
4221 /*
4222 * Return the object/offset from this entry. If the entry was
4223 * copy-on-write or empty, it has been fixed up.
4224 */
4225 *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4226 *object = entry->object.vm_object;
4227
4228 *out_prot = prot;
4229 return (KERN_SUCCESS);
4230 }
4231
4232 /*
4233 * vm_map_lookup_locked:
4234 *
4235 * Lookup the faulting address. A version of vm_map_lookup that returns
4236 * KERN_FAILURE instead of blocking on map lock or memory allocation.
4237 */
4238 int
4239 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */
4240 vm_offset_t vaddr,
4241 vm_prot_t fault_typea,
4242 vm_map_entry_t *out_entry, /* OUT */
4243 vm_object_t *object, /* OUT */
4244 vm_pindex_t *pindex, /* OUT */
4245 vm_prot_t *out_prot, /* OUT */
4246 boolean_t *wired) /* OUT */
4247 {
4248 vm_map_entry_t entry;
4249 vm_map_t map = *var_map;
4250 vm_prot_t prot;
4251 vm_prot_t fault_type = fault_typea;
4252
4253 /*
4254 * Lookup the faulting address.
4255 */
4256 if (!vm_map_lookup_entry(map, vaddr, out_entry))
4257 return (KERN_INVALID_ADDRESS);
4258
4259 entry = *out_entry;
4260
4261 /*
4262 * Fail if the entry refers to a submap.
4263 */
4264 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4265 return (KERN_FAILURE);
4266
4267 /*
4268 * Check whether this task is allowed to have this page.
4269 */
4270 prot = entry->protection;
4271 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4272 if ((fault_type & prot) != fault_type)
4273 return (KERN_PROTECTION_FAILURE);
4274
4275 /*
4276 * If this page is not pageable, we have to get it for all possible
4277 * accesses.
4278 */
4279 *wired = (entry->wired_count != 0);
4280 if (*wired)
4281 fault_type = entry->protection;
4282
4283 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4284 /*
4285 * Fail if the entry was copy-on-write for a write fault.
4286 */
4287 if (fault_type & VM_PROT_WRITE)
4288 return (KERN_FAILURE);
4289 /*
4290 * We're attempting to read a copy-on-write page --
4291 * don't allow writes.
4292 */
4293 prot &= ~VM_PROT_WRITE;
4294 }
4295
4296 /*
4297 * Fail if an object should be created.
4298 */
4299 if (entry->object.vm_object == NULL && !map->system_map)
4300 return (KERN_FAILURE);
4301
4302 /*
4303 * Return the object/offset from this entry. If the entry was
4304 * copy-on-write or empty, it has been fixed up.
4305 */
4306 *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4307 *object = entry->object.vm_object;
4308
4309 *out_prot = prot;
4310 return (KERN_SUCCESS);
4311 }
4312
4313 /*
4314 * vm_map_lookup_done:
4315 *
4316 * Releases locks acquired by a vm_map_lookup
4317 * (according to the handle returned by that lookup).
4318 */
4319 void
4320 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4321 {
4322 /*
4323 * Unlock the main-level map
4324 */
4325 vm_map_unlock_read(map);
4326 }
4327
4328 vm_offset_t
4329 vm_map_max_KBI(const struct vm_map *map)
4330 {
4331
4332 return (vm_map_max(map));
4333 }
4334
4335 vm_offset_t
4336 vm_map_min_KBI(const struct vm_map *map)
4337 {
4338
4339 return (vm_map_min(map));
4340 }
4341
4342 pmap_t
4343 vm_map_pmap_KBI(vm_map_t map)
4344 {
4345
4346 return (map->pmap);
4347 }
4348
4349 #include "opt_ddb.h"
4350 #ifdef DDB
4351 #include <sys/kernel.h>
4352
4353 #include <ddb/ddb.h>
4354
4355 static void
4356 vm_map_print(vm_map_t map)
4357 {
4358 vm_map_entry_t entry;
4359
4360 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4361 (void *)map,
4362 (void *)map->pmap, map->nentries, map->timestamp);
4363
4364 db_indent += 2;
4365 for (entry = map->header.next; entry != &map->header;
4366 entry = entry->next) {
4367 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4368 (void *)entry, (void *)entry->start, (void *)entry->end,
4369 entry->eflags);
4370 {
4371 static char *inheritance_name[4] =
4372 {"share", "copy", "none", "donate_copy"};
4373
4374 db_iprintf(" prot=%x/%x/%s",
4375 entry->protection,
4376 entry->max_protection,
4377 inheritance_name[(int)(unsigned char)entry->inheritance]);
4378 if (entry->wired_count != 0)
4379 db_printf(", wired");
4380 }
4381 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4382 db_printf(", share=%p, offset=0x%jx\n",
4383 (void *)entry->object.sub_map,
4384 (uintmax_t)entry->offset);
4385 if ((entry->prev == &map->header) ||
4386 (entry->prev->object.sub_map !=
4387 entry->object.sub_map)) {
4388 db_indent += 2;
4389 vm_map_print((vm_map_t)entry->object.sub_map);
4390 db_indent -= 2;
4391 }
4392 } else {
4393 if (entry->cred != NULL)
4394 db_printf(", ruid %d", entry->cred->cr_ruid);
4395 db_printf(", object=%p, offset=0x%jx",
4396 (void *)entry->object.vm_object,
4397 (uintmax_t)entry->offset);
4398 if (entry->object.vm_object && entry->object.vm_object->cred)
4399 db_printf(", obj ruid %d charge %jx",
4400 entry->object.vm_object->cred->cr_ruid,
4401 (uintmax_t)entry->object.vm_object->charge);
4402 if (entry->eflags & MAP_ENTRY_COW)
4403 db_printf(", copy (%s)",
4404 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4405 db_printf("\n");
4406
4407 if ((entry->prev == &map->header) ||
4408 (entry->prev->object.vm_object !=
4409 entry->object.vm_object)) {
4410 db_indent += 2;
4411 vm_object_print((db_expr_t)(intptr_t)
4412 entry->object.vm_object,
4413 0, 0, (char *)0);
4414 db_indent -= 2;
4415 }
4416 }
4417 }
4418 db_indent -= 2;
4419 }
4420
4421 DB_SHOW_COMMAND(map, map)
4422 {
4423
4424 if (!have_addr) {
4425 db_printf("usage: show map <addr>\n");
4426 return;
4427 }
4428 vm_map_print((vm_map_t)addr);
4429 }
4430
4431 DB_SHOW_COMMAND(procvm, procvm)
4432 {
4433 struct proc *p;
4434
4435 if (have_addr) {
4436 p = db_lookup_proc(addr);
4437 } else {
4438 p = curproc;
4439 }
4440
4441 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4442 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4443 (void *)vmspace_pmap(p->p_vmspace));
4444
4445 vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4446 }
4447
4448 #endif /* DDB */
Cache object: 25c0f9cdec76cd91146421612ba413cd
|