The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_map.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 /*
   62  *      Virtual memory mapping module.
   63  */
   64 
   65 #include <sys/cdefs.h>
   66 __FBSDID("$FreeBSD$");
   67 
   68 #include <sys/param.h>
   69 #include <sys/systm.h>
   70 #include <sys/ktr.h>
   71 #include <sys/lock.h>
   72 #include <sys/mutex.h>
   73 #include <sys/proc.h>
   74 #include <sys/vmmeter.h>
   75 #include <sys/mman.h>
   76 #include <sys/vnode.h>
   77 #include <sys/resourcevar.h>
   78 #include <sys/file.h>
   79 #include <sys/sysent.h>
   80 #include <sys/shm.h>
   81 
   82 #include <vm/vm.h>
   83 #include <vm/vm_param.h>
   84 #include <vm/pmap.h>
   85 #include <vm/vm_map.h>
   86 #include <vm/vm_page.h>
   87 #include <vm/vm_object.h>
   88 #include <vm/vm_pager.h>
   89 #include <vm/vm_kern.h>
   90 #include <vm/vm_extern.h>
   91 #include <vm/swap_pager.h>
   92 #include <vm/uma.h>
   93 
   94 /*
   95  *      Virtual memory maps provide for the mapping, protection,
   96  *      and sharing of virtual memory objects.  In addition,
   97  *      this module provides for an efficient virtual copy of
   98  *      memory from one map to another.
   99  *
  100  *      Synchronization is required prior to most operations.
  101  *
  102  *      Maps consist of an ordered doubly-linked list of simple
  103  *      entries; a single hint is used to speed up lookups.
  104  *
  105  *      Since portions of maps are specified by start/end addresses,
  106  *      which may not align with existing map entries, all
  107  *      routines merely "clip" entries to these start/end values.
  108  *      [That is, an entry is split into two, bordering at a
  109  *      start or end value.]  Note that these clippings may not
  110  *      always be necessary (as the two resulting entries are then
  111  *      not changed); however, the clipping is done for convenience.
  112  *
  113  *      As mentioned above, virtual copy operations are performed
  114  *      by copying VM object references from one map to
  115  *      another, and then marking both regions as copy-on-write.
  116  */
  117 
  118 /*
  119  *      vm_map_startup:
  120  *
  121  *      Initialize the vm_map module.  Must be called before
  122  *      any other vm_map routines.
  123  *
  124  *      Map and entry structures are allocated from the general
  125  *      purpose memory pool with some exceptions:
  126  *
  127  *      - The kernel map and kmem submap are allocated statically.
  128  *      - Kernel map entries are allocated out of a static pool.
  129  *
  130  *      These restrictions are necessary since malloc() uses the
  131  *      maps and requires map entries.
  132  */
  133 
  134 static struct mtx map_sleep_mtx;
  135 static uma_zone_t mapentzone;
  136 static uma_zone_t kmapentzone;
  137 static uma_zone_t mapzone;
  138 static uma_zone_t vmspace_zone;
  139 static struct vm_object kmapentobj;
  140 static int vmspace_zinit(void *mem, int size, int flags);
  141 static void vmspace_zfini(void *mem, int size);
  142 static int vm_map_zinit(void *mem, int ize, int flags);
  143 static void vm_map_zfini(void *mem, int size);
  144 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max);
  145 
  146 #ifdef INVARIANTS
  147 static void vm_map_zdtor(void *mem, int size, void *arg);
  148 static void vmspace_zdtor(void *mem, int size, void *arg);
  149 #endif
  150 
  151 /* 
  152  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
  153  * stable.
  154  */
  155 #define PROC_VMSPACE_LOCK(p) do { } while (0)
  156 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
  157 
  158 /*
  159  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
  160  *
  161  *      Asserts that the starting and ending region
  162  *      addresses fall within the valid range of the map.
  163  */
  164 #define VM_MAP_RANGE_CHECK(map, start, end)             \
  165                 {                                       \
  166                 if (start < vm_map_min(map))            \
  167                         start = vm_map_min(map);        \
  168                 if (end > vm_map_max(map))              \
  169                         end = vm_map_max(map);          \
  170                 if (start > end)                        \
  171                         start = end;                    \
  172                 }
  173 
  174 void
  175 vm_map_startup(void)
  176 {
  177         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
  178         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
  179 #ifdef INVARIANTS
  180             vm_map_zdtor,
  181 #else
  182             NULL,
  183 #endif
  184             vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  185         uma_prealloc(mapzone, MAX_KMAP);
  186         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
  187             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
  188             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
  189         uma_prealloc(kmapentzone, MAX_KMAPENT);
  190         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
  191             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  192         uma_prealloc(mapentzone, MAX_MAPENT);
  193 }
  194 
  195 static void
  196 vmspace_zfini(void *mem, int size)
  197 {
  198         struct vmspace *vm;
  199 
  200         vm = (struct vmspace *)mem;
  201         pmap_release(vmspace_pmap(vm));
  202         vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
  203 }
  204 
  205 static int
  206 vmspace_zinit(void *mem, int size, int flags)
  207 {
  208         struct vmspace *vm;
  209 
  210         vm = (struct vmspace *)mem;
  211 
  212         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
  213         pmap_pinit(vmspace_pmap(vm));
  214         return (0);
  215 }
  216 
  217 static void
  218 vm_map_zfini(void *mem, int size)
  219 {
  220         vm_map_t map;
  221 
  222         map = (vm_map_t)mem;
  223         mtx_destroy(&map->system_mtx);
  224         sx_destroy(&map->lock);
  225 }
  226 
  227 static int
  228 vm_map_zinit(void *mem, int size, int flags)
  229 {
  230         vm_map_t map;
  231 
  232         map = (vm_map_t)mem;
  233         map->nentries = 0;
  234         map->size = 0;
  235         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
  236         sx_init(&map->lock, "user map");
  237         return (0);
  238 }
  239 
  240 #ifdef INVARIANTS
  241 static void
  242 vmspace_zdtor(void *mem, int size, void *arg)
  243 {
  244         struct vmspace *vm;
  245 
  246         vm = (struct vmspace *)mem;
  247 
  248         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
  249 }
  250 static void
  251 vm_map_zdtor(void *mem, int size, void *arg)
  252 {
  253         vm_map_t map;
  254 
  255         map = (vm_map_t)mem;
  256         KASSERT(map->nentries == 0,
  257             ("map %p nentries == %d on free.",
  258             map, map->nentries));
  259         KASSERT(map->size == 0,
  260             ("map %p size == %lu on free.",
  261             map, (unsigned long)map->size));
  262 }
  263 #endif  /* INVARIANTS */
  264 
  265 /*
  266  * Allocate a vmspace structure, including a vm_map and pmap,
  267  * and initialize those structures.  The refcnt is set to 1.
  268  */
  269 struct vmspace *
  270 vmspace_alloc(min, max)
  271         vm_offset_t min, max;
  272 {
  273         struct vmspace *vm;
  274 
  275         vm = uma_zalloc(vmspace_zone, M_WAITOK);
  276         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
  277         _vm_map_init(&vm->vm_map, min, max);
  278         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
  279         vm->vm_refcnt = 1;
  280         vm->vm_shm = NULL;
  281         vm->vm_swrss = 0;
  282         vm->vm_tsize = 0;
  283         vm->vm_dsize = 0;
  284         vm->vm_ssize = 0;
  285         vm->vm_taddr = 0;
  286         vm->vm_daddr = 0;
  287         vm->vm_maxsaddr = 0;
  288         return (vm);
  289 }
  290 
  291 void
  292 vm_init2(void)
  293 {
  294         uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
  295             (VM_MAX_KERNEL_ADDRESS - KERNBASE) / PAGE_SIZE) / 8 +
  296              maxproc * 2 + maxfiles);
  297         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
  298 #ifdef INVARIANTS
  299             vmspace_zdtor,
  300 #else
  301             NULL,
  302 #endif
  303             vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  304         pmap_init2();
  305 }
  306 
  307 static __inline void
  308 vmspace_dofree(struct vmspace *vm)
  309 {
  310         CTR1(KTR_VM, "vmspace_free: %p", vm);
  311 
  312         /*
  313          * Make sure any SysV shm is freed, it might not have been in
  314          * exit1().
  315          */
  316         shmexit(vm);
  317 
  318         /*
  319          * Lock the map, to wait out all other references to it.
  320          * Delete all of the mappings and pages they hold, then call
  321          * the pmap module to reclaim anything left.
  322          */
  323         vm_map_lock(&vm->vm_map);
  324         (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
  325             vm->vm_map.max_offset);
  326         vm_map_unlock(&vm->vm_map);
  327 
  328         uma_zfree(vmspace_zone, vm);
  329 }
  330 
  331 void
  332 vmspace_free(struct vmspace *vm)
  333 {
  334         int refcnt;
  335 
  336         if (vm->vm_refcnt == 0)
  337                 panic("vmspace_free: attempt to free already freed vmspace");
  338 
  339         do
  340                 refcnt = vm->vm_refcnt;
  341         while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
  342         if (refcnt == 1)
  343                 vmspace_dofree(vm);
  344 }
  345 
  346 void
  347 vmspace_exitfree(struct proc *p)
  348 {
  349         struct vmspace *vm;
  350 
  351         PROC_VMSPACE_LOCK(p);
  352         vm = p->p_vmspace;
  353         p->p_vmspace = NULL;
  354         PROC_VMSPACE_UNLOCK(p);
  355         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
  356         vmspace_free(vm);
  357 }
  358 
  359 void
  360 vmspace_exit(struct thread *td)
  361 {
  362         int refcnt;
  363         struct vmspace *vm;
  364         struct proc *p;
  365 
  366         /*
  367          * Release user portion of address space.
  368          * This releases references to vnodes,
  369          * which could cause I/O if the file has been unlinked.
  370          * Need to do this early enough that we can still sleep.
  371          *
  372          * The last exiting process to reach this point releases as
  373          * much of the environment as it can. vmspace_dofree() is the
  374          * slower fallback in case another process had a temporary
  375          * reference to the vmspace.
  376          */
  377 
  378         p = td->td_proc;
  379         vm = p->p_vmspace;
  380         atomic_add_int(&vmspace0.vm_refcnt, 1);
  381         do {
  382                 refcnt = vm->vm_refcnt;
  383                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
  384                         /* Switch now since other proc might free vmspace */
  385                         PROC_VMSPACE_LOCK(p);
  386                         p->p_vmspace = &vmspace0;
  387                         PROC_VMSPACE_UNLOCK(p);
  388                         pmap_activate(td);
  389                 }
  390         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
  391         if (refcnt == 1) {
  392                 if (p->p_vmspace != vm) {
  393                         /* vmspace not yet freed, switch back */
  394                         PROC_VMSPACE_LOCK(p);
  395                         p->p_vmspace = vm;
  396                         PROC_VMSPACE_UNLOCK(p);
  397                         pmap_activate(td);
  398                 }
  399                 pmap_remove_pages(vmspace_pmap(vm),
  400                                   vm_map_min(&vm->vm_map),
  401                                   vm_map_max(&vm->vm_map));
  402                 /* Switch now since this proc will free vmspace */
  403                 PROC_VMSPACE_LOCK(p);
  404                 p->p_vmspace = &vmspace0;
  405                 PROC_VMSPACE_UNLOCK(p);
  406                 pmap_activate(td);
  407                 vmspace_dofree(vm);
  408         }
  409 }
  410 
  411 /* Acquire reference to vmspace owned by another process. */
  412 
  413 struct vmspace *
  414 vmspace_acquire_ref(struct proc *p)
  415 {
  416         struct vmspace *vm;
  417         int refcnt;
  418 
  419         PROC_VMSPACE_LOCK(p);
  420         vm = p->p_vmspace;
  421         if (vm == NULL) {
  422                 PROC_VMSPACE_UNLOCK(p);
  423                 return (NULL);
  424         }
  425         do {
  426                 refcnt = vm->vm_refcnt;
  427                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
  428                         PROC_VMSPACE_UNLOCK(p);
  429                         return (NULL);
  430                 }
  431         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
  432         if (vm != p->p_vmspace) {
  433                 PROC_VMSPACE_UNLOCK(p);
  434                 vmspace_free(vm);
  435                 return (NULL);
  436         }
  437         PROC_VMSPACE_UNLOCK(p);
  438         return (vm);
  439 }
  440 
  441 void
  442 _vm_map_lock(vm_map_t map, const char *file, int line)
  443 {
  444 
  445         if (map->system_map)
  446                 _mtx_lock_flags(&map->system_mtx, 0, file, line);
  447         else
  448                 (void) _sx_xlock(&map->lock, 0, file, line);
  449         map->timestamp++;
  450 }
  451 
  452 void
  453 _vm_map_unlock(vm_map_t map, const char *file, int line)
  454 {
  455 
  456         if (map->system_map)
  457                 _mtx_unlock_flags(&map->system_mtx, 0, file, line);
  458         else
  459                 _sx_xunlock(&map->lock, file, line);
  460 }
  461 
  462 void
  463 _vm_map_lock_read(vm_map_t map, const char *file, int line)
  464 {
  465 
  466         if (map->system_map)
  467                 _mtx_lock_flags(&map->system_mtx, 0, file, line);
  468         else
  469                 (void) _sx_xlock(&map->lock, 0, file, line);
  470 }
  471 
  472 void
  473 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
  474 {
  475 
  476         if (map->system_map)
  477                 _mtx_unlock_flags(&map->system_mtx, 0, file, line);
  478         else
  479                 _sx_xunlock(&map->lock, file, line);
  480 }
  481 
  482 int
  483 _vm_map_trylock(vm_map_t map, const char *file, int line)
  484 {
  485         int error;
  486 
  487         error = map->system_map ?
  488             !_mtx_trylock(&map->system_mtx, 0, file, line) :
  489             !_sx_try_xlock(&map->lock, file, line);
  490         if (error == 0)
  491                 map->timestamp++;
  492         return (error == 0);
  493 }
  494 
  495 int
  496 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
  497 {
  498         int error;
  499 
  500         error = map->system_map ?
  501             !_mtx_trylock(&map->system_mtx, 0, file, line) :
  502             !_sx_try_xlock(&map->lock, file, line);
  503         return (error == 0);
  504 }
  505 
  506 int
  507 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
  508 {
  509 
  510 #ifdef INVARIANTS
  511         if (map->system_map) {
  512                 _mtx_assert(&map->system_mtx, MA_OWNED, file, line);
  513         } else
  514                 _sx_assert(&map->lock, SX_XLOCKED, file, line);
  515 #endif
  516         map->timestamp++;
  517         return (0);
  518 }
  519 
  520 void
  521 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
  522 {
  523 
  524 #ifdef INVARIANTS
  525         if (map->system_map) {
  526                 _mtx_assert(&map->system_mtx, MA_OWNED, file, line);
  527         } else
  528                 _sx_assert(&map->lock, SX_XLOCKED, file, line);
  529 #endif
  530 }
  531 
  532 /*
  533  *      vm_map_unlock_and_wait:
  534  */
  535 int
  536 vm_map_unlock_and_wait(vm_map_t map, boolean_t user_wait)
  537 {
  538 
  539         mtx_lock(&map_sleep_mtx);
  540         vm_map_unlock(map);
  541         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 0));
  542 }
  543 
  544 /*
  545  *      vm_map_wakeup:
  546  */
  547 void
  548 vm_map_wakeup(vm_map_t map)
  549 {
  550 
  551         /*
  552          * Acquire and release map_sleep_mtx to prevent a wakeup()
  553          * from being performed (and lost) between the vm_map_unlock()
  554          * and the msleep() in vm_map_unlock_and_wait().
  555          */
  556         mtx_lock(&map_sleep_mtx);
  557         mtx_unlock(&map_sleep_mtx);
  558         wakeup(&map->root);
  559 }
  560 
  561 long
  562 vmspace_resident_count(struct vmspace *vmspace)
  563 {
  564         return pmap_resident_count(vmspace_pmap(vmspace));
  565 }
  566 
  567 long
  568 vmspace_wired_count(struct vmspace *vmspace)
  569 {
  570         return pmap_wired_count(vmspace_pmap(vmspace));
  571 }
  572 
  573 /*
  574  *      vm_map_create:
  575  *
  576  *      Creates and returns a new empty VM map with
  577  *      the given physical map structure, and having
  578  *      the given lower and upper address bounds.
  579  */
  580 vm_map_t
  581 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
  582 {
  583         vm_map_t result;
  584 
  585         result = uma_zalloc(mapzone, M_WAITOK);
  586         CTR1(KTR_VM, "vm_map_create: %p", result);
  587         _vm_map_init(result, min, max);
  588         result->pmap = pmap;
  589         return (result);
  590 }
  591 
  592 /*
  593  * Initialize an existing vm_map structure
  594  * such as that in the vmspace structure.
  595  * The pmap is set elsewhere.
  596  */
  597 static void
  598 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
  599 {
  600 
  601         map->header.next = map->header.prev = &map->header;
  602         map->needs_wakeup = FALSE;
  603         map->system_map = 0;
  604         map->min_offset = min;
  605         map->max_offset = max;
  606         map->flags = 0;
  607         map->root = NULL;
  608         map->timestamp = 0;
  609 }
  610 
  611 void
  612 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
  613 {
  614         _vm_map_init(map, min, max);
  615         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
  616         sx_init(&map->lock, "user map");
  617 }
  618 
  619 /*
  620  *      vm_map_entry_dispose:   [ internal use only ]
  621  *
  622  *      Inverse of vm_map_entry_create.
  623  */
  624 static void
  625 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
  626 {
  627         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
  628 }
  629 
  630 /*
  631  *      vm_map_entry_create:    [ internal use only ]
  632  *
  633  *      Allocates a VM map entry for insertion.
  634  *      No entry fields are filled in.
  635  */
  636 static vm_map_entry_t
  637 vm_map_entry_create(vm_map_t map)
  638 {
  639         vm_map_entry_t new_entry;
  640 
  641         if (map->system_map)
  642                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
  643         else
  644                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
  645         if (new_entry == NULL)
  646                 panic("vm_map_entry_create: kernel resources exhausted");
  647         return (new_entry);
  648 }
  649 
  650 /*
  651  *      vm_map_entry_set_behavior:
  652  *
  653  *      Set the expected access behavior, either normal, random, or
  654  *      sequential.
  655  */
  656 static __inline void
  657 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
  658 {
  659         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
  660             (behavior & MAP_ENTRY_BEHAV_MASK);
  661 }
  662 
  663 /*
  664  *      vm_map_entry_set_max_free:
  665  *
  666  *      Set the max_free field in a vm_map_entry.
  667  */
  668 static __inline void
  669 vm_map_entry_set_max_free(vm_map_entry_t entry)
  670 {
  671 
  672         entry->max_free = entry->adj_free;
  673         if (entry->left != NULL && entry->left->max_free > entry->max_free)
  674                 entry->max_free = entry->left->max_free;
  675         if (entry->right != NULL && entry->right->max_free > entry->max_free)
  676                 entry->max_free = entry->right->max_free;
  677 }
  678 
  679 /*
  680  *      vm_map_entry_splay:
  681  *
  682  *      The Sleator and Tarjan top-down splay algorithm with the
  683  *      following variation.  Max_free must be computed bottom-up, so
  684  *      on the downward pass, maintain the left and right spines in
  685  *      reverse order.  Then, make a second pass up each side to fix
  686  *      the pointers and compute max_free.  The time bound is O(log n)
  687  *      amortized.
  688  *
  689  *      The new root is the vm_map_entry containing "addr", or else an
  690  *      adjacent entry (lower or higher) if addr is not in the tree.
  691  *
  692  *      The map must be locked, and leaves it so.
  693  *
  694  *      Returns: the new root.
  695  */
  696 static vm_map_entry_t
  697 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
  698 {
  699         vm_map_entry_t llist, rlist;
  700         vm_map_entry_t ltree, rtree;
  701         vm_map_entry_t y;
  702 
  703         /* Special case of empty tree. */
  704         if (root == NULL)
  705                 return (root);
  706 
  707         /*
  708          * Pass One: Splay down the tree until we find addr or a NULL
  709          * pointer where addr would go.  llist and rlist are the two
  710          * sides in reverse order (bottom-up), with llist linked by
  711          * the right pointer and rlist linked by the left pointer in
  712          * the vm_map_entry.  Wait until Pass Two to set max_free on
  713          * the two spines.
  714          */
  715         llist = NULL;
  716         rlist = NULL;
  717         for (;;) {
  718                 /* root is never NULL in here. */
  719                 if (addr < root->start) {
  720                         y = root->left;
  721                         if (y == NULL)
  722                                 break;
  723                         if (addr < y->start && y->left != NULL) {
  724                                 /* Rotate right and put y on rlist. */
  725                                 root->left = y->right;
  726                                 y->right = root;
  727                                 vm_map_entry_set_max_free(root);
  728                                 root = y->left;
  729                                 y->left = rlist;
  730                                 rlist = y;
  731                         } else {
  732                                 /* Put root on rlist. */
  733                                 root->left = rlist;
  734                                 rlist = root;
  735                                 root = y;
  736                         }
  737                 } else {
  738                         y = root->right;
  739                         if (addr < root->end || y == NULL)
  740                                 break;
  741                         if (addr >= y->end && y->right != NULL) {
  742                                 /* Rotate left and put y on llist. */
  743                                 root->right = y->left;
  744                                 y->left = root;
  745                                 vm_map_entry_set_max_free(root);
  746                                 root = y->right;
  747                                 y->right = llist;
  748                                 llist = y;
  749                         } else {
  750                                 /* Put root on llist. */
  751                                 root->right = llist;
  752                                 llist = root;
  753                                 root = y;
  754                         }
  755                 }
  756         }
  757 
  758         /*
  759          * Pass Two: Walk back up the two spines, flip the pointers
  760          * and set max_free.  The subtrees of the root go at the
  761          * bottom of llist and rlist.
  762          */
  763         ltree = root->left;
  764         while (llist != NULL) {
  765                 y = llist->right;
  766                 llist->right = ltree;
  767                 vm_map_entry_set_max_free(llist);
  768                 ltree = llist;
  769                 llist = y;
  770         }
  771         rtree = root->right;
  772         while (rlist != NULL) {
  773                 y = rlist->left;
  774                 rlist->left = rtree;
  775                 vm_map_entry_set_max_free(rlist);
  776                 rtree = rlist;
  777                 rlist = y;
  778         }
  779 
  780         /*
  781          * Final assembly: add ltree and rtree as subtrees of root.
  782          */
  783         root->left = ltree;
  784         root->right = rtree;
  785         vm_map_entry_set_max_free(root);
  786 
  787         return (root);
  788 }
  789 
  790 /*
  791  *      vm_map_entry_{un,}link:
  792  *
  793  *      Insert/remove entries from maps.
  794  */
  795 static void
  796 vm_map_entry_link(vm_map_t map,
  797                   vm_map_entry_t after_where,
  798                   vm_map_entry_t entry)
  799 {
  800 
  801         CTR4(KTR_VM,
  802             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
  803             map->nentries, entry, after_where);
  804         map->nentries++;
  805         entry->prev = after_where;
  806         entry->next = after_where->next;
  807         entry->next->prev = entry;
  808         after_where->next = entry;
  809 
  810         if (after_where != &map->header) {
  811                 if (after_where != map->root)
  812                         vm_map_entry_splay(after_where->start, map->root);
  813                 entry->right = after_where->right;
  814                 entry->left = after_where;
  815                 after_where->right = NULL;
  816                 after_where->adj_free = entry->start - after_where->end;
  817                 vm_map_entry_set_max_free(after_where);
  818         } else {
  819                 entry->right = map->root;
  820                 entry->left = NULL;
  821         }
  822         entry->adj_free = (entry->next == &map->header ? map->max_offset :
  823             entry->next->start) - entry->end;
  824         vm_map_entry_set_max_free(entry);
  825         map->root = entry;
  826 }
  827 
  828 static void
  829 vm_map_entry_unlink(vm_map_t map,
  830                     vm_map_entry_t entry)
  831 {
  832         vm_map_entry_t next, prev, root;
  833 
  834         if (entry != map->root)
  835                 vm_map_entry_splay(entry->start, map->root);
  836         if (entry->left == NULL)
  837                 root = entry->right;
  838         else {
  839                 root = vm_map_entry_splay(entry->start, entry->left);
  840                 root->right = entry->right;
  841                 root->adj_free = (entry->next == &map->header ? map->max_offset :
  842                     entry->next->start) - root->end;
  843                 vm_map_entry_set_max_free(root);
  844         }
  845         map->root = root;
  846 
  847         prev = entry->prev;
  848         next = entry->next;
  849         next->prev = prev;
  850         prev->next = next;
  851         map->nentries--;
  852         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
  853             map->nentries, entry);
  854 }
  855 
  856 /*
  857  *      vm_map_entry_resize_free:
  858  *
  859  *      Recompute the amount of free space following a vm_map_entry
  860  *      and propagate that value up the tree.  Call this function after
  861  *      resizing a map entry in-place, that is, without a call to
  862  *      vm_map_entry_link() or _unlink().
  863  *
  864  *      The map must be locked, and leaves it so.
  865  */
  866 static void
  867 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
  868 {
  869 
  870         /*
  871          * Using splay trees without parent pointers, propagating
  872          * max_free up the tree is done by moving the entry to the
  873          * root and making the change there.
  874          */
  875         if (entry != map->root)
  876                 map->root = vm_map_entry_splay(entry->start, map->root);
  877 
  878         entry->adj_free = (entry->next == &map->header ? map->max_offset :
  879             entry->next->start) - entry->end;
  880         vm_map_entry_set_max_free(entry);
  881 }
  882 
  883 /*
  884  *      vm_map_lookup_entry:    [ internal use only ]
  885  *
  886  *      Finds the map entry containing (or
  887  *      immediately preceding) the specified address
  888  *      in the given map; the entry is returned
  889  *      in the "entry" parameter.  The boolean
  890  *      result indicates whether the address is
  891  *      actually contained in the map.
  892  */
  893 boolean_t
  894 vm_map_lookup_entry(
  895         vm_map_t map,
  896         vm_offset_t address,
  897         vm_map_entry_t *entry)  /* OUT */
  898 {
  899         vm_map_entry_t cur;
  900 
  901         cur = vm_map_entry_splay(address, map->root);
  902         if (cur == NULL)
  903                 *entry = &map->header;
  904         else {
  905                 map->root = cur;
  906 
  907                 if (address >= cur->start) {
  908                         *entry = cur;
  909                         if (cur->end > address)
  910                                 return (TRUE);
  911                 } else
  912                         *entry = cur->prev;
  913         }
  914         return (FALSE);
  915 }
  916 
  917 /*
  918  *      vm_map_insert:
  919  *
  920  *      Inserts the given whole VM object into the target
  921  *      map at the specified address range.  The object's
  922  *      size should match that of the address range.
  923  *
  924  *      Requires that the map be locked, and leaves it so.
  925  *
  926  *      If object is non-NULL, ref count must be bumped by caller
  927  *      prior to making call to account for the new entry.
  928  */
  929 int
  930 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
  931               vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
  932               int cow)
  933 {
  934         vm_map_entry_t new_entry;
  935         vm_map_entry_t prev_entry;
  936         vm_map_entry_t temp_entry;
  937         vm_eflags_t protoeflags;
  938 
  939         /*
  940          * Check that the start and end points are not bogus.
  941          */
  942         if ((start < map->min_offset) || (end > map->max_offset) ||
  943             (start >= end))
  944                 return (KERN_INVALID_ADDRESS);
  945 
  946         /*
  947          * Find the entry prior to the proposed starting address; if it's part
  948          * of an existing entry, this range is bogus.
  949          */
  950         if (vm_map_lookup_entry(map, start, &temp_entry))
  951                 return (KERN_NO_SPACE);
  952 
  953         prev_entry = temp_entry;
  954 
  955         /*
  956          * Assert that the next entry doesn't overlap the end point.
  957          */
  958         if ((prev_entry->next != &map->header) &&
  959             (prev_entry->next->start < end))
  960                 return (KERN_NO_SPACE);
  961 
  962         protoeflags = 0;
  963 
  964         if (cow & MAP_COPY_ON_WRITE)
  965                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
  966 
  967         if (cow & MAP_NOFAULT) {
  968                 protoeflags |= MAP_ENTRY_NOFAULT;
  969 
  970                 KASSERT(object == NULL,
  971                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
  972         }
  973         if (cow & MAP_DISABLE_SYNCER)
  974                 protoeflags |= MAP_ENTRY_NOSYNC;
  975         if (cow & MAP_DISABLE_COREDUMP)
  976                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
  977 
  978         if (object != NULL) {
  979                 /*
  980                  * OBJ_ONEMAPPING must be cleared unless this mapping
  981                  * is trivially proven to be the only mapping for any
  982                  * of the object's pages.  (Object granularity
  983                  * reference counting is insufficient to recognize
  984                  * aliases with precision.)
  985                  */
  986                 VM_OBJECT_LOCK(object);
  987                 if (object->ref_count > 1 || object->shadow_count != 0)
  988                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
  989                 VM_OBJECT_UNLOCK(object);
  990         }
  991         else if ((prev_entry != &map->header) &&
  992                  (prev_entry->eflags == protoeflags) &&
  993                  (prev_entry->end == start) &&
  994                  (prev_entry->wired_count == 0) &&
  995                  ((prev_entry->object.vm_object == NULL) ||
  996                   vm_object_coalesce(prev_entry->object.vm_object,
  997                                      prev_entry->offset,
  998                                      (vm_size_t)(prev_entry->end - prev_entry->start),
  999                                      (vm_size_t)(end - prev_entry->end)))) {
 1000                 /*
 1001                  * We were able to extend the object.  Determine if we
 1002                  * can extend the previous map entry to include the
 1003                  * new range as well.
 1004                  */
 1005                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
 1006                     (prev_entry->protection == prot) &&
 1007                     (prev_entry->max_protection == max)) {
 1008                         map->size += (end - prev_entry->end);
 1009                         prev_entry->end = end;
 1010                         vm_map_entry_resize_free(map, prev_entry);
 1011                         vm_map_simplify_entry(map, prev_entry);
 1012                         return (KERN_SUCCESS);
 1013                 }
 1014 
 1015                 /*
 1016                  * If we can extend the object but cannot extend the
 1017                  * map entry, we have to create a new map entry.  We
 1018                  * must bump the ref count on the extended object to
 1019                  * account for it.  object may be NULL.
 1020                  */
 1021                 object = prev_entry->object.vm_object;
 1022                 offset = prev_entry->offset +
 1023                         (prev_entry->end - prev_entry->start);
 1024                 vm_object_reference(object);
 1025         }
 1026 
 1027         /*
 1028          * NOTE: if conditionals fail, object can be NULL here.  This occurs
 1029          * in things like the buffer map where we manage kva but do not manage
 1030          * backing objects.
 1031          */
 1032 
 1033         /*
 1034          * Create a new entry
 1035          */
 1036         new_entry = vm_map_entry_create(map);
 1037         new_entry->start = start;
 1038         new_entry->end = end;
 1039 
 1040         new_entry->eflags = protoeflags;
 1041         new_entry->object.vm_object = object;
 1042         new_entry->offset = offset;
 1043         new_entry->avail_ssize = 0;
 1044 
 1045         new_entry->inheritance = VM_INHERIT_DEFAULT;
 1046         new_entry->protection = prot;
 1047         new_entry->max_protection = max;
 1048         new_entry->wired_count = 0;
 1049 
 1050         /*
 1051          * Insert the new entry into the list
 1052          */
 1053         vm_map_entry_link(map, prev_entry, new_entry);
 1054         map->size += new_entry->end - new_entry->start;
 1055 
 1056 #if 0
 1057         /*
 1058          * Temporarily removed to avoid MAP_STACK panic, due to
 1059          * MAP_STACK being a huge hack.  Will be added back in
 1060          * when MAP_STACK (and the user stack mapping) is fixed.
 1061          */
 1062         /*
 1063          * It may be possible to simplify the entry
 1064          */
 1065         vm_map_simplify_entry(map, new_entry);
 1066 #endif
 1067 
 1068         if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
 1069                 vm_map_pmap_enter(map, start, prot,
 1070                                     object, OFF_TO_IDX(offset), end - start,
 1071                                     cow & MAP_PREFAULT_PARTIAL);
 1072         }
 1073 
 1074         return (KERN_SUCCESS);
 1075 }
 1076 
 1077 /*
 1078  *      vm_map_findspace:
 1079  *
 1080  *      Find the first fit (lowest VM address) for "length" free bytes
 1081  *      beginning at address >= start in the given map.
 1082  *
 1083  *      In a vm_map_entry, "adj_free" is the amount of free space
 1084  *      adjacent (higher address) to this entry, and "max_free" is the
 1085  *      maximum amount of contiguous free space in its subtree.  This
 1086  *      allows finding a free region in one path down the tree, so
 1087  *      O(log n) amortized with splay trees.
 1088  *
 1089  *      The map must be locked, and leaves it so.
 1090  *
 1091  *      Returns: 0 on success, and starting address in *addr,
 1092  *               1 if insufficient space.
 1093  */
 1094 int
 1095 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
 1096     vm_offset_t *addr)  /* OUT */
 1097 {
 1098         vm_map_entry_t entry;
 1099         vm_offset_t end, st;
 1100 
 1101         /*
 1102          * Request must fit within min/max VM address and must avoid
 1103          * address wrap.
 1104          */
 1105         if (start < map->min_offset)
 1106                 start = map->min_offset;
 1107         if (start + length > map->max_offset || start + length < start)
 1108                 return (1);
 1109 
 1110         /* Empty tree means wide open address space. */
 1111         if (map->root == NULL) {
 1112                 *addr = start;
 1113                 goto found;
 1114         }
 1115 
 1116         /*
 1117          * After splay, if start comes before root node, then there
 1118          * must be a gap from start to the root.
 1119          */
 1120         map->root = vm_map_entry_splay(start, map->root);
 1121         if (start + length <= map->root->start) {
 1122                 *addr = start;
 1123                 goto found;
 1124         }
 1125 
 1126         /*
 1127          * Root is the last node that might begin its gap before
 1128          * start, and this is the last comparison where address
 1129          * wrap might be a problem.
 1130          */
 1131         st = (start > map->root->end) ? start : map->root->end;
 1132         if (length <= map->root->end + map->root->adj_free - st) {
 1133                 *addr = st;
 1134                 goto found;
 1135         }
 1136 
 1137         /* With max_free, can immediately tell if no solution. */
 1138         entry = map->root->right;
 1139         if (entry == NULL || length > entry->max_free)
 1140                 return (1);
 1141 
 1142         /*
 1143          * Search the right subtree in the order: left subtree, root,
 1144          * right subtree (first fit).  The previous splay implies that
 1145          * all regions in the right subtree have addresses > start.
 1146          */
 1147         while (entry != NULL) {
 1148                 if (entry->left != NULL && entry->left->max_free >= length)
 1149                         entry = entry->left;
 1150                 else if (entry->adj_free >= length) {
 1151                         *addr = entry->end;
 1152                         goto found;
 1153                 } else
 1154                         entry = entry->right;
 1155         }
 1156 
 1157         /* Can't get here, so panic if we do. */
 1158         panic("vm_map_findspace: max_free corrupt");
 1159 
 1160 found:
 1161         /* Expand the kernel pmap, if necessary. */
 1162         if (map == kernel_map) {
 1163                 end = round_page(*addr + length);
 1164                 if (end > kernel_vm_end)
 1165                         pmap_growkernel(end);
 1166         }
 1167         return (0);
 1168 }
 1169 
 1170 int
 1171 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 1172     vm_offset_t *addr /* IN/OUT */, vm_size_t length, vm_prot_t prot,
 1173     vm_prot_t max, int cow)
 1174 {
 1175         vm_offset_t start, end;
 1176         int result;
 1177 
 1178         start = *addr;
 1179         vm_map_lock(map);
 1180         end = start + length;
 1181         VM_MAP_RANGE_CHECK(map, start, end);
 1182         (void) vm_map_delete(map, start, end);
 1183         result = vm_map_insert(map, object, offset, start, end, prot,
 1184             max, cow);
 1185         vm_map_unlock(map);
 1186         return (result);
 1187 }
 1188 
 1189 /*
 1190  *      vm_map_find finds an unallocated region in the target address
 1191  *      map with the given length.  The search is defined to be
 1192  *      first-fit from the specified address; the region found is
 1193  *      returned in the same parameter.
 1194  *
 1195  *      If object is non-NULL, ref count must be bumped by caller
 1196  *      prior to making call to account for the new entry.
 1197  */
 1198 int
 1199 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 1200             vm_offset_t *addr,  /* IN/OUT */
 1201             vm_size_t length, boolean_t find_space, vm_prot_t prot,
 1202             vm_prot_t max, int cow)
 1203 {
 1204         vm_offset_t start;
 1205         int result;
 1206 
 1207         start = *addr;
 1208         vm_map_lock(map);
 1209         if (find_space) {
 1210                 if (vm_map_findspace(map, start, length, addr)) {
 1211                         vm_map_unlock(map);
 1212                         return (KERN_NO_SPACE);
 1213                 }
 1214                 start = *addr;
 1215         }
 1216         result = vm_map_insert(map, object, offset,
 1217                 start, start + length, prot, max, cow);
 1218         vm_map_unlock(map);
 1219         return (result);
 1220 }
 1221 
 1222 /*
 1223  *      vm_map_simplify_entry:
 1224  *
 1225  *      Simplify the given map entry by merging with either neighbor.  This
 1226  *      routine also has the ability to merge with both neighbors.
 1227  *
 1228  *      The map must be locked.
 1229  *
 1230  *      This routine guarentees that the passed entry remains valid (though
 1231  *      possibly extended).  When merging, this routine may delete one or
 1232  *      both neighbors.
 1233  */
 1234 void
 1235 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
 1236 {
 1237         vm_map_entry_t next, prev;
 1238         vm_size_t prevsize, esize;
 1239 
 1240         if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
 1241                 return;
 1242 
 1243         prev = entry->prev;
 1244         if (prev != &map->header) {
 1245                 prevsize = prev->end - prev->start;
 1246                 if ( (prev->end == entry->start) &&
 1247                      (prev->object.vm_object == entry->object.vm_object) &&
 1248                      (!prev->object.vm_object ||
 1249                         (prev->offset + prevsize == entry->offset)) &&
 1250                      (prev->eflags == entry->eflags) &&
 1251                      (prev->protection == entry->protection) &&
 1252                      (prev->max_protection == entry->max_protection) &&
 1253                      (prev->inheritance == entry->inheritance) &&
 1254                      (prev->wired_count == entry->wired_count)) {
 1255                         vm_map_entry_unlink(map, prev);
 1256                         entry->start = prev->start;
 1257                         entry->offset = prev->offset;
 1258                         if (entry->prev != &map->header)
 1259                                 vm_map_entry_resize_free(map, entry->prev);
 1260                         if (prev->object.vm_object)
 1261                                 vm_object_deallocate(prev->object.vm_object);
 1262                         vm_map_entry_dispose(map, prev);
 1263                 }
 1264         }
 1265 
 1266         next = entry->next;
 1267         if (next != &map->header) {
 1268                 esize = entry->end - entry->start;
 1269                 if ((entry->end == next->start) &&
 1270                     (next->object.vm_object == entry->object.vm_object) &&
 1271                      (!entry->object.vm_object ||
 1272                         (entry->offset + esize == next->offset)) &&
 1273                     (next->eflags == entry->eflags) &&
 1274                     (next->protection == entry->protection) &&
 1275                     (next->max_protection == entry->max_protection) &&
 1276                     (next->inheritance == entry->inheritance) &&
 1277                     (next->wired_count == entry->wired_count)) {
 1278                         vm_map_entry_unlink(map, next);
 1279                         entry->end = next->end;
 1280                         vm_map_entry_resize_free(map, entry);
 1281                         if (next->object.vm_object)
 1282                                 vm_object_deallocate(next->object.vm_object);
 1283                         vm_map_entry_dispose(map, next);
 1284                 }
 1285         }
 1286 }
 1287 /*
 1288  *      vm_map_clip_start:      [ internal use only ]
 1289  *
 1290  *      Asserts that the given entry begins at or after
 1291  *      the specified address; if necessary,
 1292  *      it splits the entry into two.
 1293  */
 1294 #define vm_map_clip_start(map, entry, startaddr) \
 1295 { \
 1296         if (startaddr > entry->start) \
 1297                 _vm_map_clip_start(map, entry, startaddr); \
 1298 }
 1299 
 1300 /*
 1301  *      This routine is called only when it is known that
 1302  *      the entry must be split.
 1303  */
 1304 static void
 1305 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
 1306 {
 1307         vm_map_entry_t new_entry;
 1308 
 1309         /*
 1310          * Split off the front portion -- note that we must insert the new
 1311          * entry BEFORE this one, so that this entry has the specified
 1312          * starting address.
 1313          */
 1314         vm_map_simplify_entry(map, entry);
 1315 
 1316         /*
 1317          * If there is no object backing this entry, we might as well create
 1318          * one now.  If we defer it, an object can get created after the map
 1319          * is clipped, and individual objects will be created for the split-up
 1320          * map.  This is a bit of a hack, but is also about the best place to
 1321          * put this improvement.
 1322          */
 1323         if (entry->object.vm_object == NULL && !map->system_map) {
 1324                 vm_object_t object;
 1325                 object = vm_object_allocate(OBJT_DEFAULT,
 1326                                 atop(entry->end - entry->start));
 1327                 entry->object.vm_object = object;
 1328                 entry->offset = 0;
 1329         }
 1330 
 1331         new_entry = vm_map_entry_create(map);
 1332         *new_entry = *entry;
 1333 
 1334         new_entry->end = start;
 1335         entry->offset += (start - entry->start);
 1336         entry->start = start;
 1337 
 1338         vm_map_entry_link(map, entry->prev, new_entry);
 1339 
 1340         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
 1341                 vm_object_reference(new_entry->object.vm_object);
 1342         }
 1343 }
 1344 
 1345 /*
 1346  *      vm_map_clip_end:        [ internal use only ]
 1347  *
 1348  *      Asserts that the given entry ends at or before
 1349  *      the specified address; if necessary,
 1350  *      it splits the entry into two.
 1351  */
 1352 #define vm_map_clip_end(map, entry, endaddr) \
 1353 { \
 1354         if ((endaddr) < (entry->end)) \
 1355                 _vm_map_clip_end((map), (entry), (endaddr)); \
 1356 }
 1357 
 1358 /*
 1359  *      This routine is called only when it is known that
 1360  *      the entry must be split.
 1361  */
 1362 static void
 1363 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
 1364 {
 1365         vm_map_entry_t new_entry;
 1366 
 1367         /*
 1368          * If there is no object backing this entry, we might as well create
 1369          * one now.  If we defer it, an object can get created after the map
 1370          * is clipped, and individual objects will be created for the split-up
 1371          * map.  This is a bit of a hack, but is also about the best place to
 1372          * put this improvement.
 1373          */
 1374         if (entry->object.vm_object == NULL && !map->system_map) {
 1375                 vm_object_t object;
 1376                 object = vm_object_allocate(OBJT_DEFAULT,
 1377                                 atop(entry->end - entry->start));
 1378                 entry->object.vm_object = object;
 1379                 entry->offset = 0;
 1380         }
 1381 
 1382         /*
 1383          * Create a new entry and insert it AFTER the specified entry
 1384          */
 1385         new_entry = vm_map_entry_create(map);
 1386         *new_entry = *entry;
 1387 
 1388         new_entry->start = entry->end = end;
 1389         new_entry->offset += (end - entry->start);
 1390 
 1391         vm_map_entry_link(map, entry, new_entry);
 1392 
 1393         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
 1394                 vm_object_reference(new_entry->object.vm_object);
 1395         }
 1396 }
 1397 
 1398 /*
 1399  *      vm_map_submap:          [ kernel use only ]
 1400  *
 1401  *      Mark the given range as handled by a subordinate map.
 1402  *
 1403  *      This range must have been created with vm_map_find,
 1404  *      and no other operations may have been performed on this
 1405  *      range prior to calling vm_map_submap.
 1406  *
 1407  *      Only a limited number of operations can be performed
 1408  *      within this rage after calling vm_map_submap:
 1409  *              vm_fault
 1410  *      [Don't try vm_map_copy!]
 1411  *
 1412  *      To remove a submapping, one must first remove the
 1413  *      range from the superior map, and then destroy the
 1414  *      submap (if desired).  [Better yet, don't try it.]
 1415  */
 1416 int
 1417 vm_map_submap(
 1418         vm_map_t map,
 1419         vm_offset_t start,
 1420         vm_offset_t end,
 1421         vm_map_t submap)
 1422 {
 1423         vm_map_entry_t entry;
 1424         int result = KERN_INVALID_ARGUMENT;
 1425 
 1426         vm_map_lock(map);
 1427 
 1428         VM_MAP_RANGE_CHECK(map, start, end);
 1429 
 1430         if (vm_map_lookup_entry(map, start, &entry)) {
 1431                 vm_map_clip_start(map, entry, start);
 1432         } else
 1433                 entry = entry->next;
 1434 
 1435         vm_map_clip_end(map, entry, end);
 1436 
 1437         if ((entry->start == start) && (entry->end == end) &&
 1438             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
 1439             (entry->object.vm_object == NULL)) {
 1440                 entry->object.sub_map = submap;
 1441                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
 1442                 result = KERN_SUCCESS;
 1443         }
 1444         vm_map_unlock(map);
 1445 
 1446         return (result);
 1447 }
 1448 
 1449 /*
 1450  * The maximum number of pages to map
 1451  */
 1452 #define MAX_INIT_PT     96
 1453 
 1454 /*
 1455  *      vm_map_pmap_enter:
 1456  *
 1457  *      Preload read-only mappings for the given object into the specified
 1458  *      map.  This eliminates the soft faults on process startup and
 1459  *      immediately after an mmap(2).
 1460  */
 1461 void
 1462 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
 1463     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
 1464 {
 1465         vm_offset_t start;
 1466         vm_page_t p, p_start;
 1467         vm_pindex_t psize, tmpidx;
 1468         boolean_t are_queues_locked;
 1469 
 1470         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
 1471                 return;
 1472         VM_OBJECT_LOCK(object);
 1473         if (object->type == OBJT_DEVICE) {
 1474                 pmap_object_init_pt(map->pmap, addr, object, pindex, size);
 1475                 goto unlock_return;
 1476         }
 1477 
 1478         psize = atop(size);
 1479 
 1480         if (object->type != OBJT_VNODE ||
 1481             ((flags & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
 1482              (object->resident_page_count > MAX_INIT_PT))) {
 1483                 goto unlock_return;
 1484         }
 1485 
 1486         if (psize + pindex > object->size) {
 1487                 if (object->size < pindex)
 1488                         goto unlock_return;
 1489                 psize = object->size - pindex;
 1490         }
 1491 
 1492         are_queues_locked = FALSE;
 1493         start = 0;
 1494         p_start = NULL;
 1495 
 1496         if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
 1497                 if (p->pindex < pindex) {
 1498                         p = vm_page_splay(pindex, object->root);
 1499                         if ((object->root = p)->pindex < pindex)
 1500                                 p = TAILQ_NEXT(p, listq);
 1501                 }
 1502         }
 1503         /*
 1504          * Assert: the variable p is either (1) the page with the
 1505          * least pindex greater than or equal to the parameter pindex
 1506          * or (2) NULL.
 1507          */
 1508         for (;
 1509              p != NULL && (tmpidx = p->pindex - pindex) < psize;
 1510              p = TAILQ_NEXT(p, listq)) {
 1511                 /*
 1512                  * don't allow an madvise to blow away our really
 1513                  * free pages allocating pv entries.
 1514                  */
 1515                 if ((flags & MAP_PREFAULT_MADVISE) &&
 1516                     cnt.v_free_count < cnt.v_free_reserved) {
 1517                         psize = tmpidx;
 1518                         break;
 1519                 }
 1520                 if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
 1521                     (p->busy == 0)) {
 1522                         if (p_start == NULL) {
 1523                                 start = addr + ptoa(tmpidx);
 1524                                 p_start = p;
 1525                         }
 1526                         if (!are_queues_locked) {
 1527                                 are_queues_locked = TRUE;
 1528                                 vm_page_lock_queues();
 1529                         }
 1530                         if ((p->queue - p->pc) == PQ_CACHE)
 1531                                 vm_page_deactivate(p);
 1532                 } else if (p_start != NULL) {
 1533                         pmap_enter_object(map->pmap, start, addr +
 1534                             ptoa(tmpidx), p_start, prot);
 1535                         p_start = NULL;
 1536                 }
 1537         }
 1538         if (p_start != NULL)
 1539                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
 1540                     p_start, prot);
 1541         if (are_queues_locked)
 1542                 vm_page_unlock_queues();
 1543 unlock_return:
 1544         VM_OBJECT_UNLOCK(object);
 1545 }
 1546 
 1547 /*
 1548  *      vm_map_protect:
 1549  *
 1550  *      Sets the protection of the specified address
 1551  *      region in the target map.  If "set_max" is
 1552  *      specified, the maximum protection is to be set;
 1553  *      otherwise, only the current protection is affected.
 1554  */
 1555 int
 1556 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1557                vm_prot_t new_prot, boolean_t set_max)
 1558 {
 1559         vm_map_entry_t current;
 1560         vm_map_entry_t entry;
 1561 
 1562         vm_map_lock(map);
 1563 
 1564         VM_MAP_RANGE_CHECK(map, start, end);
 1565 
 1566         if (vm_map_lookup_entry(map, start, &entry)) {
 1567                 vm_map_clip_start(map, entry, start);
 1568         } else {
 1569                 entry = entry->next;
 1570         }
 1571 
 1572         /*
 1573          * Make a first pass to check for protection violations.
 1574          */
 1575         current = entry;
 1576         while ((current != &map->header) && (current->start < end)) {
 1577                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
 1578                         vm_map_unlock(map);
 1579                         return (KERN_INVALID_ARGUMENT);
 1580                 }
 1581                 if ((new_prot & current->max_protection) != new_prot) {
 1582                         vm_map_unlock(map);
 1583                         return (KERN_PROTECTION_FAILURE);
 1584                 }
 1585                 current = current->next;
 1586         }
 1587 
 1588         /*
 1589          * Go back and fix up protections. [Note that clipping is not
 1590          * necessary the second time.]
 1591          */
 1592         current = entry;
 1593         while ((current != &map->header) && (current->start < end)) {
 1594                 vm_prot_t old_prot;
 1595 
 1596                 vm_map_clip_end(map, current, end);
 1597 
 1598                 old_prot = current->protection;
 1599                 if (set_max)
 1600                         current->protection =
 1601                             (current->max_protection = new_prot) &
 1602                             old_prot;
 1603                 else
 1604                         current->protection = new_prot;
 1605 
 1606                 /*
 1607                  * Update physical map if necessary. Worry about copy-on-write
 1608                  * here -- CHECK THIS XXX
 1609                  */
 1610                 if (current->protection != old_prot) {
 1611 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
 1612                                                         VM_PROT_ALL)
 1613                         pmap_protect(map->pmap, current->start,
 1614                             current->end,
 1615                             current->protection & MASK(current));
 1616 #undef  MASK
 1617                 }
 1618                 vm_map_simplify_entry(map, current);
 1619                 current = current->next;
 1620         }
 1621         vm_map_unlock(map);
 1622         return (KERN_SUCCESS);
 1623 }
 1624 
 1625 /*
 1626  *      vm_map_madvise:
 1627  *
 1628  *      This routine traverses a processes map handling the madvise
 1629  *      system call.  Advisories are classified as either those effecting
 1630  *      the vm_map_entry structure, or those effecting the underlying
 1631  *      objects.
 1632  */
 1633 int
 1634 vm_map_madvise(
 1635         vm_map_t map,
 1636         vm_offset_t start,
 1637         vm_offset_t end,
 1638         int behav)
 1639 {
 1640         vm_map_entry_t current, entry;
 1641         int modify_map = 0;
 1642 
 1643         /*
 1644          * Some madvise calls directly modify the vm_map_entry, in which case
 1645          * we need to use an exclusive lock on the map and we need to perform
 1646          * various clipping operations.  Otherwise we only need a read-lock
 1647          * on the map.
 1648          */
 1649         switch(behav) {
 1650         case MADV_NORMAL:
 1651         case MADV_SEQUENTIAL:
 1652         case MADV_RANDOM:
 1653         case MADV_NOSYNC:
 1654         case MADV_AUTOSYNC:
 1655         case MADV_NOCORE:
 1656         case MADV_CORE:
 1657                 modify_map = 1;
 1658                 vm_map_lock(map);
 1659                 break;
 1660         case MADV_WILLNEED:
 1661         case MADV_DONTNEED:
 1662         case MADV_FREE:
 1663                 vm_map_lock_read(map);
 1664                 break;
 1665         default:
 1666                 return (KERN_INVALID_ARGUMENT);
 1667         }
 1668 
 1669         /*
 1670          * Locate starting entry and clip if necessary.
 1671          */
 1672         VM_MAP_RANGE_CHECK(map, start, end);
 1673 
 1674         if (vm_map_lookup_entry(map, start, &entry)) {
 1675                 if (modify_map)
 1676                         vm_map_clip_start(map, entry, start);
 1677         } else {
 1678                 entry = entry->next;
 1679         }
 1680 
 1681         if (modify_map) {
 1682                 /*
 1683                  * madvise behaviors that are implemented in the vm_map_entry.
 1684                  *
 1685                  * We clip the vm_map_entry so that behavioral changes are
 1686                  * limited to the specified address range.
 1687                  */
 1688                 for (current = entry;
 1689                      (current != &map->header) && (current->start < end);
 1690                      current = current->next
 1691                 ) {
 1692                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
 1693                                 continue;
 1694 
 1695                         vm_map_clip_end(map, current, end);
 1696 
 1697                         switch (behav) {
 1698                         case MADV_NORMAL:
 1699                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
 1700                                 break;
 1701                         case MADV_SEQUENTIAL:
 1702                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
 1703                                 break;
 1704                         case MADV_RANDOM:
 1705                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
 1706                                 break;
 1707                         case MADV_NOSYNC:
 1708                                 current->eflags |= MAP_ENTRY_NOSYNC;
 1709                                 break;
 1710                         case MADV_AUTOSYNC:
 1711                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
 1712                                 break;
 1713                         case MADV_NOCORE:
 1714                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
 1715                                 break;
 1716                         case MADV_CORE:
 1717                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
 1718                                 break;
 1719                         default:
 1720                                 break;
 1721                         }
 1722                         vm_map_simplify_entry(map, current);
 1723                 }
 1724                 vm_map_unlock(map);
 1725         } else {
 1726                 vm_pindex_t pindex;
 1727                 int count;
 1728 
 1729                 /*
 1730                  * madvise behaviors that are implemented in the underlying
 1731                  * vm_object.
 1732                  *
 1733                  * Since we don't clip the vm_map_entry, we have to clip
 1734                  * the vm_object pindex and count.
 1735                  */
 1736                 for (current = entry;
 1737                      (current != &map->header) && (current->start < end);
 1738                      current = current->next
 1739                 ) {
 1740                         vm_offset_t useStart;
 1741 
 1742                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
 1743                                 continue;
 1744 
 1745                         pindex = OFF_TO_IDX(current->offset);
 1746                         count = atop(current->end - current->start);
 1747                         useStart = current->start;
 1748 
 1749                         if (current->start < start) {
 1750                                 pindex += atop(start - current->start);
 1751                                 count -= atop(start - current->start);
 1752                                 useStart = start;
 1753                         }
 1754                         if (current->end > end)
 1755                                 count -= atop(current->end - end);
 1756 
 1757                         if (count <= 0)
 1758                                 continue;
 1759 
 1760                         vm_object_madvise(current->object.vm_object,
 1761                                           pindex, count, behav);
 1762                         if (behav == MADV_WILLNEED) {
 1763                                 vm_map_pmap_enter(map,
 1764                                     useStart,
 1765                                     current->protection,
 1766                                     current->object.vm_object,
 1767                                     pindex,
 1768                                     (count << PAGE_SHIFT),
 1769                                     MAP_PREFAULT_MADVISE
 1770                                 );
 1771                         }
 1772                 }
 1773                 vm_map_unlock_read(map);
 1774         }
 1775         return (0);
 1776 }
 1777 
 1778 
 1779 /*
 1780  *      vm_map_inherit:
 1781  *
 1782  *      Sets the inheritance of the specified address
 1783  *      range in the target map.  Inheritance
 1784  *      affects how the map will be shared with
 1785  *      child maps at the time of vm_map_fork.
 1786  */
 1787 int
 1788 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1789                vm_inherit_t new_inheritance)
 1790 {
 1791         vm_map_entry_t entry;
 1792         vm_map_entry_t temp_entry;
 1793 
 1794         switch (new_inheritance) {
 1795         case VM_INHERIT_NONE:
 1796         case VM_INHERIT_COPY:
 1797         case VM_INHERIT_SHARE:
 1798                 break;
 1799         default:
 1800                 return (KERN_INVALID_ARGUMENT);
 1801         }
 1802         vm_map_lock(map);
 1803         VM_MAP_RANGE_CHECK(map, start, end);
 1804         if (vm_map_lookup_entry(map, start, &temp_entry)) {
 1805                 entry = temp_entry;
 1806                 vm_map_clip_start(map, entry, start);
 1807         } else
 1808                 entry = temp_entry->next;
 1809         while ((entry != &map->header) && (entry->start < end)) {
 1810                 vm_map_clip_end(map, entry, end);
 1811                 entry->inheritance = new_inheritance;
 1812                 vm_map_simplify_entry(map, entry);
 1813                 entry = entry->next;
 1814         }
 1815         vm_map_unlock(map);
 1816         return (KERN_SUCCESS);
 1817 }
 1818 
 1819 /*
 1820  *      vm_map_unwire:
 1821  *
 1822  *      Implements both kernel and user unwiring.
 1823  */
 1824 int
 1825 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1826     int flags)
 1827 {
 1828         vm_map_entry_t entry, first_entry, tmp_entry;
 1829         vm_offset_t saved_start;
 1830         unsigned int last_timestamp;
 1831         int rv;
 1832         boolean_t need_wakeup, result, user_unwire;
 1833 
 1834         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
 1835         vm_map_lock(map);
 1836         VM_MAP_RANGE_CHECK(map, start, end);
 1837         if (!vm_map_lookup_entry(map, start, &first_entry)) {
 1838                 if (flags & VM_MAP_WIRE_HOLESOK)
 1839                         first_entry = first_entry->next;
 1840                 else {
 1841                         vm_map_unlock(map);
 1842                         return (KERN_INVALID_ADDRESS);
 1843                 }
 1844         }
 1845         last_timestamp = map->timestamp;
 1846         entry = first_entry;
 1847         while (entry != &map->header && entry->start < end) {
 1848                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
 1849                         /*
 1850                          * We have not yet clipped the entry.
 1851                          */
 1852                         saved_start = (start >= entry->start) ? start :
 1853                             entry->start;
 1854                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 1855                         if (vm_map_unlock_and_wait(map, user_unwire)) {
 1856                                 /*
 1857                                  * Allow interruption of user unwiring?
 1858                                  */
 1859                         }
 1860                         vm_map_lock(map);
 1861                         if (last_timestamp+1 != map->timestamp) {
 1862                                 /*
 1863                                  * Look again for the entry because the map was
 1864                                  * modified while it was unlocked.
 1865                                  * Specifically, the entry may have been
 1866                                  * clipped, merged, or deleted.
 1867                                  */
 1868                                 if (!vm_map_lookup_entry(map, saved_start,
 1869                                     &tmp_entry)) {
 1870                                         if (flags & VM_MAP_WIRE_HOLESOK)
 1871                                                 tmp_entry = tmp_entry->next;
 1872                                         else {
 1873                                                 if (saved_start == start) {
 1874                                                         /*
 1875                                                          * First_entry has been deleted.
 1876                                                          */
 1877                                                         vm_map_unlock(map);
 1878                                                         return (KERN_INVALID_ADDRESS);
 1879                                                 }
 1880                                                 end = saved_start;
 1881                                                 rv = KERN_INVALID_ADDRESS;
 1882                                                 goto done;
 1883                                         }
 1884                                 }
 1885                                 if (entry == first_entry)
 1886                                         first_entry = tmp_entry;
 1887                                 else
 1888                                         first_entry = NULL;
 1889                                 entry = tmp_entry;
 1890                         }
 1891                         last_timestamp = map->timestamp;
 1892                         continue;
 1893                 }
 1894                 vm_map_clip_start(map, entry, start);
 1895                 vm_map_clip_end(map, entry, end);
 1896                 /*
 1897                  * Mark the entry in case the map lock is released.  (See
 1898                  * above.)
 1899                  */
 1900                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
 1901                 /*
 1902                  * Check the map for holes in the specified region.
 1903                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
 1904                  */
 1905                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
 1906                     (entry->end < end && (entry->next == &map->header ||
 1907                     entry->next->start > entry->end))) {
 1908                         end = entry->end;
 1909                         rv = KERN_INVALID_ADDRESS;
 1910                         goto done;
 1911                 }
 1912                 /*
 1913                  * If system unwiring, require that the entry is system wired.
 1914                  */
 1915                 if (!user_unwire &&
 1916                     vm_map_entry_system_wired_count(entry) == 0) {
 1917                         end = entry->end;
 1918                         rv = KERN_INVALID_ARGUMENT;
 1919                         goto done;
 1920                 }
 1921                 entry = entry->next;
 1922         }
 1923         rv = KERN_SUCCESS;
 1924 done:
 1925         need_wakeup = FALSE;
 1926         if (first_entry == NULL) {
 1927                 result = vm_map_lookup_entry(map, start, &first_entry);
 1928                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
 1929                         first_entry = first_entry->next;
 1930                 else
 1931                         KASSERT(result, ("vm_map_unwire: lookup failed"));
 1932         }
 1933         entry = first_entry;
 1934         while (entry != &map->header && entry->start < end) {
 1935                 if (rv == KERN_SUCCESS && (!user_unwire ||
 1936                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
 1937                         if (user_unwire)
 1938                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
 1939                         entry->wired_count--;
 1940                         if (entry->wired_count == 0) {
 1941                                 /*
 1942                                  * Retain the map lock.
 1943                                  */
 1944                                 vm_fault_unwire(map, entry->start, entry->end,
 1945                                     entry->object.vm_object != NULL &&
 1946                                     entry->object.vm_object->type == OBJT_DEVICE);
 1947                         }
 1948                 }
 1949                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
 1950                         ("vm_map_unwire: in-transition flag missing"));
 1951                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
 1952                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
 1953                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
 1954                         need_wakeup = TRUE;
 1955                 }
 1956                 vm_map_simplify_entry(map, entry);
 1957                 entry = entry->next;
 1958         }
 1959         vm_map_unlock(map);
 1960         if (need_wakeup)
 1961                 vm_map_wakeup(map);
 1962         return (rv);
 1963 }
 1964 
 1965 /*
 1966  *      vm_map_wire:
 1967  *
 1968  *      Implements both kernel and user wiring.
 1969  */
 1970 int
 1971 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1972     int flags)
 1973 {
 1974         vm_map_entry_t entry, first_entry, tmp_entry;
 1975         vm_offset_t saved_end, saved_start;
 1976         unsigned int last_timestamp;
 1977         int rv;
 1978         boolean_t fictitious, need_wakeup, result, user_wire;
 1979 
 1980         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
 1981         vm_map_lock(map);
 1982         VM_MAP_RANGE_CHECK(map, start, end);
 1983         if (!vm_map_lookup_entry(map, start, &first_entry)) {
 1984                 if (flags & VM_MAP_WIRE_HOLESOK)
 1985                         first_entry = first_entry->next;
 1986                 else {
 1987                         vm_map_unlock(map);
 1988                         return (KERN_INVALID_ADDRESS);
 1989                 }
 1990         }
 1991         last_timestamp = map->timestamp;
 1992         entry = first_entry;
 1993         while (entry != &map->header && entry->start < end) {
 1994                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
 1995                         /*
 1996                          * We have not yet clipped the entry.
 1997                          */
 1998                         saved_start = (start >= entry->start) ? start :
 1999                             entry->start;
 2000                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 2001                         if (vm_map_unlock_and_wait(map, user_wire)) {
 2002                                 /*
 2003                                  * Allow interruption of user wiring?
 2004                                  */
 2005                         }
 2006                         vm_map_lock(map);
 2007                         if (last_timestamp + 1 != map->timestamp) {
 2008                                 /*
 2009                                  * Look again for the entry because the map was
 2010                                  * modified while it was unlocked.
 2011                                  * Specifically, the entry may have been
 2012                                  * clipped, merged, or deleted.
 2013                                  */
 2014                                 if (!vm_map_lookup_entry(map, saved_start,
 2015                                     &tmp_entry)) {
 2016                                         if (flags & VM_MAP_WIRE_HOLESOK)
 2017                                                 tmp_entry = tmp_entry->next;
 2018                                         else {
 2019                                                 if (saved_start == start) {
 2020                                                         /*
 2021                                                          * first_entry has been deleted.
 2022                                                          */
 2023                                                         vm_map_unlock(map);
 2024                                                         return (KERN_INVALID_ADDRESS);
 2025                                                 }
 2026                                                 end = saved_start;
 2027                                                 rv = KERN_INVALID_ADDRESS;
 2028                                                 goto done;
 2029                                         }
 2030                                 }
 2031                                 if (entry == first_entry)
 2032                                         first_entry = tmp_entry;
 2033                                 else
 2034                                         first_entry = NULL;
 2035                                 entry = tmp_entry;
 2036                         }
 2037                         last_timestamp = map->timestamp;
 2038                         continue;
 2039                 }
 2040                 vm_map_clip_start(map, entry, start);
 2041                 vm_map_clip_end(map, entry, end);
 2042                 /*
 2043                  * Mark the entry in case the map lock is released.  (See
 2044                  * above.)
 2045                  */
 2046                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
 2047                 /*
 2048                  *
 2049                  */
 2050                 if (entry->wired_count == 0) {
 2051                         entry->wired_count++;
 2052                         saved_start = entry->start;
 2053                         saved_end = entry->end;
 2054                         fictitious = entry->object.vm_object != NULL &&
 2055                             entry->object.vm_object->type == OBJT_DEVICE;
 2056                         /*
 2057                          * Release the map lock, relying on the in-transition
 2058                          * mark.
 2059                          */
 2060                         vm_map_unlock(map);
 2061                         rv = vm_fault_wire(map, saved_start, saved_end,
 2062                             user_wire, fictitious);
 2063                         vm_map_lock(map);
 2064                         if (last_timestamp + 1 != map->timestamp) {
 2065                                 /*
 2066                                  * Look again for the entry because the map was
 2067                                  * modified while it was unlocked.  The entry
 2068                                  * may have been clipped, but NOT merged or
 2069                                  * deleted.
 2070                                  */
 2071                                 result = vm_map_lookup_entry(map, saved_start,
 2072                                     &tmp_entry);
 2073                                 KASSERT(result, ("vm_map_wire: lookup failed"));
 2074                                 if (entry == first_entry)
 2075                                         first_entry = tmp_entry;
 2076                                 else
 2077                                         first_entry = NULL;
 2078                                 entry = tmp_entry;
 2079                                 while (entry->end < saved_end) {
 2080                                         if (rv != KERN_SUCCESS) {
 2081                                                 KASSERT(entry->wired_count == 1,
 2082                                                     ("vm_map_wire: bad count"));
 2083                                                 entry->wired_count = -1;
 2084                                         }
 2085                                         entry = entry->next;
 2086                                 }
 2087                         }
 2088                         last_timestamp = map->timestamp;
 2089                         if (rv != KERN_SUCCESS) {
 2090                                 KASSERT(entry->wired_count == 1,
 2091                                     ("vm_map_wire: bad count"));
 2092                                 /*
 2093                                  * Assign an out-of-range value to represent
 2094                                  * the failure to wire this entry.
 2095                                  */
 2096                                 entry->wired_count = -1;
 2097                                 end = entry->end;
 2098                                 goto done;
 2099                         }
 2100                 } else if (!user_wire ||
 2101                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
 2102                         entry->wired_count++;
 2103                 }
 2104                 /*
 2105                  * Check the map for holes in the specified region.
 2106                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
 2107                  */
 2108                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
 2109                     (entry->end < end && (entry->next == &map->header ||
 2110                     entry->next->start > entry->end))) {
 2111                         end = entry->end;
 2112                         rv = KERN_INVALID_ADDRESS;
 2113                         goto done;
 2114                 }
 2115                 entry = entry->next;
 2116         }
 2117         rv = KERN_SUCCESS;
 2118 done:
 2119         need_wakeup = FALSE;
 2120         if (first_entry == NULL) {
 2121                 result = vm_map_lookup_entry(map, start, &first_entry);
 2122                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
 2123                         first_entry = first_entry->next;
 2124                 else
 2125                         KASSERT(result, ("vm_map_wire: lookup failed"));
 2126         }
 2127         entry = first_entry;
 2128         while (entry != &map->header && entry->start < end) {
 2129                 if (rv == KERN_SUCCESS) {
 2130                         if (user_wire)
 2131                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
 2132                 } else if (entry->wired_count == -1) {
 2133                         /*
 2134                          * Wiring failed on this entry.  Thus, unwiring is
 2135                          * unnecessary.
 2136                          */
 2137                         entry->wired_count = 0;
 2138                 } else {
 2139                         if (!user_wire ||
 2140                             (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
 2141                                 entry->wired_count--;
 2142                         if (entry->wired_count == 0) {
 2143                                 /*
 2144                                  * Retain the map lock.
 2145                                  */
 2146                                 vm_fault_unwire(map, entry->start, entry->end,
 2147                                     entry->object.vm_object != NULL &&
 2148                                     entry->object.vm_object->type == OBJT_DEVICE);
 2149                         }
 2150                 }
 2151                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
 2152                         ("vm_map_wire: in-transition flag missing"));
 2153                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
 2154                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
 2155                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
 2156                         need_wakeup = TRUE;
 2157                 }
 2158                 vm_map_simplify_entry(map, entry);
 2159                 entry = entry->next;
 2160         }
 2161         vm_map_unlock(map);
 2162         if (need_wakeup)
 2163                 vm_map_wakeup(map);
 2164         return (rv);
 2165 }
 2166 
 2167 /*
 2168  * vm_map_sync
 2169  *
 2170  * Push any dirty cached pages in the address range to their pager.
 2171  * If syncio is TRUE, dirty pages are written synchronously.
 2172  * If invalidate is TRUE, any cached pages are freed as well.
 2173  *
 2174  * If the size of the region from start to end is zero, we are
 2175  * supposed to flush all modified pages within the region containing
 2176  * start.  Unfortunately, a region can be split or coalesced with
 2177  * neighboring regions, making it difficult to determine what the
 2178  * original region was.  Therefore, we approximate this requirement by
 2179  * flushing the current region containing start.
 2180  *
 2181  * Returns an error if any part of the specified range is not mapped.
 2182  */
 2183 int
 2184 vm_map_sync(
 2185         vm_map_t map,
 2186         vm_offset_t start,
 2187         vm_offset_t end,
 2188         boolean_t syncio,
 2189         boolean_t invalidate)
 2190 {
 2191         vm_map_entry_t current;
 2192         vm_map_entry_t entry;
 2193         vm_size_t size;
 2194         vm_object_t object;
 2195         vm_ooffset_t offset;
 2196 
 2197         vm_map_lock_read(map);
 2198         VM_MAP_RANGE_CHECK(map, start, end);
 2199         if (!vm_map_lookup_entry(map, start, &entry)) {
 2200                 vm_map_unlock_read(map);
 2201                 return (KERN_INVALID_ADDRESS);
 2202         } else if (start == end) {
 2203                 start = entry->start;
 2204                 end = entry->end;
 2205         }
 2206         /*
 2207          * Make a first pass to check for user-wired memory and holes.
 2208          */
 2209         for (current = entry; current != &map->header && current->start < end;
 2210             current = current->next) {
 2211                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
 2212                         vm_map_unlock_read(map);
 2213                         return (KERN_INVALID_ARGUMENT);
 2214                 }
 2215                 if (end > current->end &&
 2216                     (current->next == &map->header ||
 2217                         current->end != current->next->start)) {
 2218                         vm_map_unlock_read(map);
 2219                         return (KERN_INVALID_ADDRESS);
 2220                 }
 2221         }
 2222 
 2223         if (invalidate) {
 2224                 VM_LOCK_GIANT();
 2225                 pmap_remove(map->pmap, start, end);
 2226                 VM_UNLOCK_GIANT();
 2227         }
 2228         /*
 2229          * Make a second pass, cleaning/uncaching pages from the indicated
 2230          * objects as we go.
 2231          */
 2232         for (current = entry; current != &map->header && current->start < end;
 2233             current = current->next) {
 2234                 offset = current->offset + (start - current->start);
 2235                 size = (end <= current->end ? end : current->end) - start;
 2236                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2237                         vm_map_t smap;
 2238                         vm_map_entry_t tentry;
 2239                         vm_size_t tsize;
 2240 
 2241                         smap = current->object.sub_map;
 2242                         vm_map_lock_read(smap);
 2243                         (void) vm_map_lookup_entry(smap, offset, &tentry);
 2244                         tsize = tentry->end - offset;
 2245                         if (tsize < size)
 2246                                 size = tsize;
 2247                         object = tentry->object.vm_object;
 2248                         offset = tentry->offset + (offset - tentry->start);
 2249                         vm_map_unlock_read(smap);
 2250                 } else {
 2251                         object = current->object.vm_object;
 2252                 }
 2253                 vm_object_sync(object, offset, size, syncio, invalidate);
 2254                 start += size;
 2255         }
 2256 
 2257         vm_map_unlock_read(map);
 2258         return (KERN_SUCCESS);
 2259 }
 2260 
 2261 /*
 2262  *      vm_map_entry_unwire:    [ internal use only ]
 2263  *
 2264  *      Make the region specified by this entry pageable.
 2265  *
 2266  *      The map in question should be locked.
 2267  *      [This is the reason for this routine's existence.]
 2268  */
 2269 static void
 2270 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
 2271 {
 2272         vm_fault_unwire(map, entry->start, entry->end,
 2273             entry->object.vm_object != NULL &&
 2274             entry->object.vm_object->type == OBJT_DEVICE);
 2275         entry->wired_count = 0;
 2276 }
 2277 
 2278 /*
 2279  *      vm_map_entry_delete:    [ internal use only ]
 2280  *
 2281  *      Deallocate the given entry from the target map.
 2282  */
 2283 static void
 2284 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
 2285 {
 2286         vm_object_t object;
 2287         vm_pindex_t offidxstart, offidxend, count;
 2288 
 2289         vm_map_entry_unlink(map, entry);
 2290         map->size -= entry->end - entry->start;
 2291 
 2292         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
 2293             (object = entry->object.vm_object) != NULL) {
 2294                 count = OFF_TO_IDX(entry->end - entry->start);
 2295                 offidxstart = OFF_TO_IDX(entry->offset);
 2296                 offidxend = offidxstart + count;
 2297                 VM_OBJECT_LOCK(object);
 2298                 if (object->ref_count != 1 &&
 2299                     ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
 2300                      object == kernel_object || object == kmem_object) &&
 2301                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
 2302                         vm_object_collapse(object);
 2303                         vm_object_page_remove(object, offidxstart, offidxend, FALSE);
 2304                         if (object->type == OBJT_SWAP)
 2305                                 swap_pager_freespace(object, offidxstart, count);
 2306                         if (offidxend >= object->size &&
 2307                             offidxstart < object->size)
 2308                                 object->size = offidxstart;
 2309                 }
 2310                 VM_OBJECT_UNLOCK(object);
 2311                 vm_object_deallocate(object);
 2312         }
 2313 
 2314         vm_map_entry_dispose(map, entry);
 2315 }
 2316 
 2317 /*
 2318  *      vm_map_delete:  [ internal use only ]
 2319  *
 2320  *      Deallocates the given address range from the target
 2321  *      map.
 2322  */
 2323 int
 2324 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
 2325 {
 2326         vm_map_entry_t entry;
 2327         vm_map_entry_t first_entry;
 2328 
 2329         /*
 2330          * Find the start of the region, and clip it
 2331          */
 2332         if (!vm_map_lookup_entry(map, start, &first_entry))
 2333                 entry = first_entry->next;
 2334         else {
 2335                 entry = first_entry;
 2336                 vm_map_clip_start(map, entry, start);
 2337         }
 2338 
 2339         /*
 2340          * Step through all entries in this region
 2341          */
 2342         while ((entry != &map->header) && (entry->start < end)) {
 2343                 vm_map_entry_t next;
 2344 
 2345                 /*
 2346                  * Wait for wiring or unwiring of an entry to complete.
 2347                  * Also wait for any system wirings to disappear on
 2348                  * user maps.
 2349                  */
 2350                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
 2351                     (vm_map_pmap(map) != kernel_pmap &&
 2352                     vm_map_entry_system_wired_count(entry) != 0)) {
 2353                         unsigned int last_timestamp;
 2354                         vm_offset_t saved_start;
 2355                         vm_map_entry_t tmp_entry;
 2356 
 2357                         saved_start = entry->start;
 2358                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 2359                         last_timestamp = map->timestamp;
 2360                         (void) vm_map_unlock_and_wait(map, FALSE);
 2361                         vm_map_lock(map);
 2362                         if (last_timestamp + 1 != map->timestamp) {
 2363                                 /*
 2364                                  * Look again for the entry because the map was
 2365                                  * modified while it was unlocked.
 2366                                  * Specifically, the entry may have been
 2367                                  * clipped, merged, or deleted.
 2368                                  */
 2369                                 if (!vm_map_lookup_entry(map, saved_start,
 2370                                                          &tmp_entry))
 2371                                         entry = tmp_entry->next;
 2372                                 else {
 2373                                         entry = tmp_entry;
 2374                                         vm_map_clip_start(map, entry,
 2375                                                           saved_start);
 2376                                 }
 2377                         }
 2378                         continue;
 2379                 }
 2380                 vm_map_clip_end(map, entry, end);
 2381 
 2382                 next = entry->next;
 2383 
 2384                 /*
 2385                  * Unwire before removing addresses from the pmap; otherwise,
 2386                  * unwiring will put the entries back in the pmap.
 2387                  */
 2388                 if (entry->wired_count != 0) {
 2389                         vm_map_entry_unwire(map, entry);
 2390                 }
 2391 
 2392                 if (!map->system_map)
 2393                         VM_LOCK_GIANT();
 2394                 pmap_remove(map->pmap, entry->start, entry->end);
 2395                 if (!map->system_map)
 2396                         VM_UNLOCK_GIANT();
 2397 
 2398                 /*
 2399                  * Delete the entry (which may delete the object) only after
 2400                  * removing all pmap entries pointing to its pages.
 2401                  * (Otherwise, its page frames may be reallocated, and any
 2402                  * modify bits will be set in the wrong object!)
 2403                  */
 2404                 vm_map_entry_delete(map, entry);
 2405                 entry = next;
 2406         }
 2407         return (KERN_SUCCESS);
 2408 }
 2409 
 2410 /*
 2411  *      vm_map_remove:
 2412  *
 2413  *      Remove the given address range from the target map.
 2414  *      This is the exported form of vm_map_delete.
 2415  */
 2416 int
 2417 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
 2418 {
 2419         int result;
 2420 
 2421         vm_map_lock(map);
 2422         VM_MAP_RANGE_CHECK(map, start, end);
 2423         result = vm_map_delete(map, start, end);
 2424         vm_map_unlock(map);
 2425         return (result);
 2426 }
 2427 
 2428 /*
 2429  *      vm_map_check_protection:
 2430  *
 2431  *      Assert that the target map allows the specified privilege on the
 2432  *      entire address region given.  The entire region must be allocated.
 2433  *
 2434  *      WARNING!  This code does not and should not check whether the
 2435  *      contents of the region is accessible.  For example a smaller file
 2436  *      might be mapped into a larger address space.
 2437  *
 2438  *      NOTE!  This code is also called by munmap().
 2439  *
 2440  *      The map must be locked.  A read lock is sufficient.
 2441  */
 2442 boolean_t
 2443 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
 2444                         vm_prot_t protection)
 2445 {
 2446         vm_map_entry_t entry;
 2447         vm_map_entry_t tmp_entry;
 2448 
 2449         if (!vm_map_lookup_entry(map, start, &tmp_entry))
 2450                 return (FALSE);
 2451         entry = tmp_entry;
 2452 
 2453         while (start < end) {
 2454                 if (entry == &map->header)
 2455                         return (FALSE);
 2456                 /*
 2457                  * No holes allowed!
 2458                  */
 2459                 if (start < entry->start)
 2460                         return (FALSE);
 2461                 /*
 2462                  * Check protection associated with entry.
 2463                  */
 2464                 if ((entry->protection & protection) != protection)
 2465                         return (FALSE);
 2466                 /* go to next entry */
 2467                 start = entry->end;
 2468                 entry = entry->next;
 2469         }
 2470         return (TRUE);
 2471 }
 2472 
 2473 /*
 2474  *      vm_map_copy_entry:
 2475  *
 2476  *      Copies the contents of the source entry to the destination
 2477  *      entry.  The entries *must* be aligned properly.
 2478  */
 2479 static void
 2480 vm_map_copy_entry(
 2481         vm_map_t src_map,
 2482         vm_map_t dst_map,
 2483         vm_map_entry_t src_entry,
 2484         vm_map_entry_t dst_entry)
 2485 {
 2486         vm_object_t src_object;
 2487 
 2488         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
 2489                 return;
 2490 
 2491         if (src_entry->wired_count == 0) {
 2492 
 2493                 /*
 2494                  * If the source entry is marked needs_copy, it is already
 2495                  * write-protected.
 2496                  */
 2497                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
 2498                         pmap_protect(src_map->pmap,
 2499                             src_entry->start,
 2500                             src_entry->end,
 2501                             src_entry->protection & ~VM_PROT_WRITE);
 2502                 }
 2503 
 2504                 /*
 2505                  * Make a copy of the object.
 2506                  */
 2507                 if ((src_object = src_entry->object.vm_object) != NULL) {
 2508                         VM_OBJECT_LOCK(src_object);
 2509                         if ((src_object->handle == NULL) &&
 2510                                 (src_object->type == OBJT_DEFAULT ||
 2511                                  src_object->type == OBJT_SWAP)) {
 2512                                 vm_object_collapse(src_object);
 2513                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
 2514                                         vm_object_split(src_entry);
 2515                                         src_object = src_entry->object.vm_object;
 2516                                 }
 2517                         }
 2518                         vm_object_reference_locked(src_object);
 2519                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
 2520                         VM_OBJECT_UNLOCK(src_object);
 2521                         dst_entry->object.vm_object = src_object;
 2522                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
 2523                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
 2524                         dst_entry->offset = src_entry->offset;
 2525                 } else {
 2526                         dst_entry->object.vm_object = NULL;
 2527                         dst_entry->offset = 0;
 2528                 }
 2529 
 2530                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
 2531                     dst_entry->end - dst_entry->start, src_entry->start);
 2532         } else {
 2533                 /*
 2534                  * Of course, wired down pages can't be set copy-on-write.
 2535                  * Cause wired pages to be copied into the new map by
 2536                  * simulating faults (the new pages are pageable)
 2537                  */
 2538                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
 2539         }
 2540 }
 2541 
 2542 /*
 2543  * vmspace_map_entry_forked:
 2544  * Update the newly-forked vmspace each time a map entry is inherited
 2545  * or copied.  The values for vm_dsize and vm_tsize are approximate
 2546  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
 2547  */
 2548 static void
 2549 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
 2550     vm_map_entry_t entry)
 2551 {
 2552         vm_size_t entrysize;
 2553         vm_offset_t newend;
 2554 
 2555         entrysize = entry->end - entry->start;
 2556         vm2->vm_map.size += entrysize;
 2557         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
 2558                 vm2->vm_ssize += btoc(entrysize);
 2559         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
 2560             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
 2561                 newend = MIN(entry->end,
 2562                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
 2563                 vm2->vm_dsize += btoc(newend - entry->start);
 2564         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
 2565             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
 2566                 newend = MIN(entry->end,
 2567                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
 2568                 vm2->vm_tsize += btoc(newend - entry->start);
 2569         }
 2570 }
 2571 
 2572 /*
 2573  * vmspace_fork:
 2574  * Create a new process vmspace structure and vm_map
 2575  * based on those of an existing process.  The new map
 2576  * is based on the old map, according to the inheritance
 2577  * values on the regions in that map.
 2578  *
 2579  * XXX It might be worth coalescing the entries added to the new vmspace.
 2580  *
 2581  * The source map must not be locked.
 2582  */
 2583 struct vmspace *
 2584 vmspace_fork(struct vmspace *vm1)
 2585 {
 2586         struct vmspace *vm2;
 2587         vm_map_t old_map = &vm1->vm_map;
 2588         vm_map_t new_map;
 2589         vm_map_entry_t old_entry;
 2590         vm_map_entry_t new_entry;
 2591         vm_object_t object;
 2592 
 2593         vm_map_lock(old_map);
 2594 
 2595         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
 2596         vm2->vm_taddr = vm1->vm_taddr;
 2597         vm2->vm_daddr = vm1->vm_daddr;
 2598         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
 2599         new_map = &vm2->vm_map; /* XXX */
 2600         new_map->timestamp = 1;
 2601 
 2602         /* Do not inherit the MAP_WIREFUTURE property. */
 2603         if ((new_map->flags & MAP_WIREFUTURE) == MAP_WIREFUTURE)
 2604                 new_map->flags &= ~MAP_WIREFUTURE;
 2605 
 2606         old_entry = old_map->header.next;
 2607 
 2608         while (old_entry != &old_map->header) {
 2609                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2610                         panic("vm_map_fork: encountered a submap");
 2611 
 2612                 switch (old_entry->inheritance) {
 2613                 case VM_INHERIT_NONE:
 2614                         break;
 2615 
 2616                 case VM_INHERIT_SHARE:
 2617                         /*
 2618                          * Clone the entry, creating the shared object if necessary.
 2619                          */
 2620                         object = old_entry->object.vm_object;
 2621                         if (object == NULL) {
 2622                                 object = vm_object_allocate(OBJT_DEFAULT,
 2623                                         atop(old_entry->end - old_entry->start));
 2624                                 old_entry->object.vm_object = object;
 2625                                 old_entry->offset = 0;
 2626                         }
 2627 
 2628                         /*
 2629                          * Add the reference before calling vm_object_shadow
 2630                          * to insure that a shadow object is created.
 2631                          */
 2632                         vm_object_reference(object);
 2633                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 2634                                 vm_object_shadow(&old_entry->object.vm_object,
 2635                                         &old_entry->offset,
 2636                                         atop(old_entry->end - old_entry->start));
 2637                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
 2638                                 /* Transfer the second reference too. */
 2639                                 vm_object_reference(
 2640                                     old_entry->object.vm_object);
 2641                                 vm_object_deallocate(object);
 2642                                 object = old_entry->object.vm_object;
 2643                         }
 2644                         VM_OBJECT_LOCK(object);
 2645                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
 2646                         VM_OBJECT_UNLOCK(object);
 2647 
 2648                         /*
 2649                          * Clone the entry, referencing the shared object.
 2650                          */
 2651                         new_entry = vm_map_entry_create(new_map);
 2652                         *new_entry = *old_entry;
 2653                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
 2654                         new_entry->wired_count = 0;
 2655 
 2656                         /*
 2657                          * Insert the entry into the new map -- we know we're
 2658                          * inserting at the end of the new map.
 2659                          */
 2660                         vm_map_entry_link(new_map, new_map->header.prev,
 2661                             new_entry);
 2662                         vmspace_map_entry_forked(vm1, vm2, new_entry);
 2663 
 2664                         /*
 2665                          * Update the physical map
 2666                          */
 2667                         pmap_copy(new_map->pmap, old_map->pmap,
 2668                             new_entry->start,
 2669                             (old_entry->end - old_entry->start),
 2670                             old_entry->start);
 2671                         break;
 2672 
 2673                 case VM_INHERIT_COPY:
 2674                         /*
 2675                          * Clone the entry and link into the map.
 2676                          */
 2677                         new_entry = vm_map_entry_create(new_map);
 2678                         *new_entry = *old_entry;
 2679                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
 2680                         new_entry->wired_count = 0;
 2681                         new_entry->object.vm_object = NULL;
 2682                         vm_map_entry_link(new_map, new_map->header.prev,
 2683                             new_entry);
 2684                         vmspace_map_entry_forked(vm1, vm2, new_entry);
 2685                         vm_map_copy_entry(old_map, new_map, old_entry,
 2686                             new_entry);
 2687                         break;
 2688                 }
 2689                 old_entry = old_entry->next;
 2690         }
 2691 
 2692         vm_map_unlock(old_map);
 2693 
 2694         return (vm2);
 2695 }
 2696 
 2697 int
 2698 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
 2699     vm_prot_t prot, vm_prot_t max, int cow)
 2700 {
 2701         vm_map_entry_t new_entry, prev_entry;
 2702         vm_offset_t bot, top;
 2703         vm_size_t init_ssize;
 2704         int orient, rv;
 2705         rlim_t vmemlim;
 2706 
 2707         /*
 2708          * The stack orientation is piggybacked with the cow argument.
 2709          * Extract it into orient and mask the cow argument so that we
 2710          * don't pass it around further.
 2711          * NOTE: We explicitly allow bi-directional stacks.
 2712          */
 2713         orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
 2714         cow &= ~orient;
 2715         KASSERT(orient != 0, ("No stack grow direction"));
 2716 
 2717         if (addrbos < vm_map_min(map) ||
 2718             addrbos > vm_map_max(map) ||
 2719             addrbos + max_ssize < addrbos)
 2720                 return (KERN_NO_SPACE);
 2721 
 2722         init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz;
 2723 
 2724         PROC_LOCK(curthread->td_proc);
 2725         vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM);
 2726         PROC_UNLOCK(curthread->td_proc);
 2727 
 2728         vm_map_lock(map);
 2729 
 2730         /* If addr is already mapped, no go */
 2731         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
 2732                 vm_map_unlock(map);
 2733                 return (KERN_NO_SPACE);
 2734         }
 2735 
 2736         /* If we would blow our VMEM resource limit, no go */
 2737         if (map->size + init_ssize > vmemlim) {
 2738                 vm_map_unlock(map);
 2739                 return (KERN_NO_SPACE);
 2740         }
 2741 
 2742         /*
 2743          * If we can't accomodate max_ssize in the current mapping, no go.
 2744          * However, we need to be aware that subsequent user mappings might
 2745          * map into the space we have reserved for stack, and currently this
 2746          * space is not protected.
 2747          *
 2748          * Hopefully we will at least detect this condition when we try to
 2749          * grow the stack.
 2750          */
 2751         if ((prev_entry->next != &map->header) &&
 2752             (prev_entry->next->start < addrbos + max_ssize)) {
 2753                 vm_map_unlock(map);
 2754                 return (KERN_NO_SPACE);
 2755         }
 2756 
 2757         /*
 2758          * We initially map a stack of only init_ssize.  We will grow as
 2759          * needed later.  Depending on the orientation of the stack (i.e.
 2760          * the grow direction) we either map at the top of the range, the
 2761          * bottom of the range or in the middle.
 2762          *
 2763          * Note: we would normally expect prot and max to be VM_PROT_ALL,
 2764          * and cow to be 0.  Possibly we should eliminate these as input
 2765          * parameters, and just pass these values here in the insert call.
 2766          */
 2767         if (orient == MAP_STACK_GROWS_DOWN)
 2768                 bot = addrbos + max_ssize - init_ssize;
 2769         else if (orient == MAP_STACK_GROWS_UP)
 2770                 bot = addrbos;
 2771         else
 2772                 bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
 2773         top = bot + init_ssize;
 2774         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
 2775 
 2776         /* Now set the avail_ssize amount. */
 2777         if (rv == KERN_SUCCESS) {
 2778                 if (prev_entry != &map->header)
 2779                         vm_map_clip_end(map, prev_entry, bot);
 2780                 new_entry = prev_entry->next;
 2781                 if (new_entry->end != top || new_entry->start != bot)
 2782                         panic("Bad entry start/end for new stack entry");
 2783 
 2784                 new_entry->avail_ssize = max_ssize - init_ssize;
 2785                 if (orient & MAP_STACK_GROWS_DOWN)
 2786                         new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
 2787                 if (orient & MAP_STACK_GROWS_UP)
 2788                         new_entry->eflags |= MAP_ENTRY_GROWS_UP;
 2789         }
 2790 
 2791         vm_map_unlock(map);
 2792         return (rv);
 2793 }
 2794 
 2795 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
 2796  * desired address is already mapped, or if we successfully grow
 2797  * the stack.  Also returns KERN_SUCCESS if addr is outside the
 2798  * stack range (this is strange, but preserves compatibility with
 2799  * the grow function in vm_machdep.c).
 2800  */
 2801 int
 2802 vm_map_growstack(struct proc *p, vm_offset_t addr)
 2803 {
 2804         vm_map_entry_t next_entry, prev_entry;
 2805         vm_map_entry_t new_entry, stack_entry;
 2806         struct vmspace *vm = p->p_vmspace;
 2807         vm_map_t map = &vm->vm_map;
 2808         vm_offset_t end;
 2809         size_t grow_amount, max_grow;
 2810         rlim_t stacklim, vmemlim;
 2811         int is_procstack, rv;
 2812 
 2813 Retry:
 2814         PROC_LOCK(p);
 2815         stacklim = lim_cur(p, RLIMIT_STACK);
 2816         vmemlim = lim_cur(p, RLIMIT_VMEM);
 2817         PROC_UNLOCK(p);
 2818 
 2819         vm_map_lock_read(map);
 2820 
 2821         /* If addr is already in the entry range, no need to grow.*/
 2822         if (vm_map_lookup_entry(map, addr, &prev_entry)) {
 2823                 vm_map_unlock_read(map);
 2824                 return (KERN_SUCCESS);
 2825         }
 2826 
 2827         next_entry = prev_entry->next;
 2828         if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
 2829                 /*
 2830                  * This entry does not grow upwards. Since the address lies
 2831                  * beyond this entry, the next entry (if one exists) has to
 2832                  * be a downward growable entry. The entry list header is
 2833                  * never a growable entry, so it suffices to check the flags.
 2834                  */
 2835                 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
 2836                         vm_map_unlock_read(map);
 2837                         return (KERN_SUCCESS);
 2838                 }
 2839                 stack_entry = next_entry;
 2840         } else {
 2841                 /*
 2842                  * This entry grows upward. If the next entry does not at
 2843                  * least grow downwards, this is the entry we need to grow.
 2844                  * otherwise we have two possible choices and we have to
 2845                  * select one.
 2846                  */
 2847                 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
 2848                         /*
 2849                          * We have two choices; grow the entry closest to
 2850                          * the address to minimize the amount of growth.
 2851                          */
 2852                         if (addr - prev_entry->end <= next_entry->start - addr)
 2853                                 stack_entry = prev_entry;
 2854                         else
 2855                                 stack_entry = next_entry;
 2856                 } else
 2857                         stack_entry = prev_entry;
 2858         }
 2859 
 2860         if (stack_entry == next_entry) {
 2861                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
 2862                 KASSERT(addr < stack_entry->start, ("foo"));
 2863                 end = (prev_entry != &map->header) ? prev_entry->end :
 2864                     stack_entry->start - stack_entry->avail_ssize;
 2865                 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
 2866                 max_grow = stack_entry->start - end;
 2867         } else {
 2868                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
 2869                 KASSERT(addr >= stack_entry->end, ("foo"));
 2870                 end = (next_entry != &map->header) ? next_entry->start :
 2871                     stack_entry->end + stack_entry->avail_ssize;
 2872                 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
 2873                 max_grow = end - stack_entry->end;
 2874         }
 2875 
 2876         if (grow_amount > stack_entry->avail_ssize) {
 2877                 vm_map_unlock_read(map);
 2878                 return (KERN_NO_SPACE);
 2879         }
 2880 
 2881         /*
 2882          * If there is no longer enough space between the entries nogo, and
 2883          * adjust the available space.  Note: this  should only happen if the
 2884          * user has mapped into the stack area after the stack was created,
 2885          * and is probably an error.
 2886          *
 2887          * This also effectively destroys any guard page the user might have
 2888          * intended by limiting the stack size.
 2889          */
 2890         if (grow_amount > max_grow) {
 2891                 if (vm_map_lock_upgrade(map))
 2892                         goto Retry;
 2893 
 2894                 stack_entry->avail_ssize = max_grow;
 2895 
 2896                 vm_map_unlock(map);
 2897                 return (KERN_NO_SPACE);
 2898         }
 2899 
 2900         is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
 2901 
 2902         /*
 2903          * If this is the main process stack, see if we're over the stack
 2904          * limit.
 2905          */
 2906         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
 2907                 vm_map_unlock_read(map);
 2908                 return (KERN_NO_SPACE);
 2909         }
 2910 
 2911         /* Round up the grow amount modulo SGROWSIZ */
 2912         grow_amount = roundup (grow_amount, sgrowsiz);
 2913         if (grow_amount > stack_entry->avail_ssize)
 2914                 grow_amount = stack_entry->avail_ssize;
 2915         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
 2916                 grow_amount = stacklim - ctob(vm->vm_ssize);
 2917         }
 2918 
 2919         /* If we would blow our VMEM resource limit, no go */
 2920         if (map->size + grow_amount > vmemlim) {
 2921                 vm_map_unlock_read(map);
 2922                 return (KERN_NO_SPACE);
 2923         }
 2924 
 2925         if (vm_map_lock_upgrade(map))
 2926                 goto Retry;
 2927 
 2928         if (stack_entry == next_entry) {
 2929                 /*
 2930                  * Growing downward.
 2931                  */
 2932                 /* Get the preliminary new entry start value */
 2933                 addr = stack_entry->start - grow_amount;
 2934 
 2935                 /*
 2936                  * If this puts us into the previous entry, cut back our
 2937                  * growth to the available space. Also, see the note above.
 2938                  */
 2939                 if (addr < end) {
 2940                         stack_entry->avail_ssize = max_grow;
 2941                         addr = end;
 2942                 }
 2943 
 2944                 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
 2945                     p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
 2946 
 2947                 /* Adjust the available stack space by the amount we grew. */
 2948                 if (rv == KERN_SUCCESS) {
 2949                         if (prev_entry != &map->header)
 2950                                 vm_map_clip_end(map, prev_entry, addr);
 2951                         new_entry = prev_entry->next;
 2952                         KASSERT(new_entry == stack_entry->prev, ("foo"));
 2953                         KASSERT(new_entry->end == stack_entry->start, ("foo"));
 2954                         KASSERT(new_entry->start == addr, ("foo"));
 2955                         grow_amount = new_entry->end - new_entry->start;
 2956                         new_entry->avail_ssize = stack_entry->avail_ssize -
 2957                             grow_amount;
 2958                         stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
 2959                         new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
 2960                 }
 2961         } else {
 2962                 /*
 2963                  * Growing upward.
 2964                  */
 2965                 addr = stack_entry->end + grow_amount;
 2966 
 2967                 /*
 2968                  * If this puts us into the next entry, cut back our growth
 2969                  * to the available space. Also, see the note above.
 2970                  */
 2971                 if (addr > end) {
 2972                         stack_entry->avail_ssize = end - stack_entry->end;
 2973                         addr = end;
 2974                 }
 2975 
 2976                 grow_amount = addr - stack_entry->end;
 2977 
 2978                 /* Grow the underlying object if applicable. */
 2979                 if (stack_entry->object.vm_object == NULL ||
 2980                     vm_object_coalesce(stack_entry->object.vm_object,
 2981                     stack_entry->offset,
 2982                     (vm_size_t)(stack_entry->end - stack_entry->start),
 2983                     (vm_size_t)grow_amount)) {
 2984                         map->size += (addr - stack_entry->end);
 2985                         /* Update the current entry. */
 2986                         stack_entry->end = addr;
 2987                         stack_entry->avail_ssize -= grow_amount;
 2988                         vm_map_entry_resize_free(map, stack_entry);
 2989                         rv = KERN_SUCCESS;
 2990 
 2991                         if (next_entry != &map->header)
 2992                                 vm_map_clip_start(map, next_entry, addr);
 2993                 } else
 2994                         rv = KERN_FAILURE;
 2995         }
 2996 
 2997         if (rv == KERN_SUCCESS && is_procstack)
 2998                 vm->vm_ssize += btoc(grow_amount);
 2999 
 3000         vm_map_unlock(map);
 3001 
 3002         /*
 3003          * Heed the MAP_WIREFUTURE flag if it was set for this process.
 3004          */
 3005         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
 3006                 vm_map_wire(map,
 3007                     (stack_entry == next_entry) ? addr : addr - grow_amount,
 3008                     (stack_entry == next_entry) ? stack_entry->start : addr,
 3009                     (p->p_flag & P_SYSTEM)
 3010                     ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
 3011                     : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
 3012         }
 3013 
 3014         return (rv);
 3015 }
 3016 
 3017 /*
 3018  * Unshare the specified VM space for exec.  If other processes are
 3019  * mapped to it, then create a new one.  The new vmspace is null.
 3020  */
 3021 void
 3022 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
 3023 {
 3024         struct vmspace *oldvmspace = p->p_vmspace;
 3025         struct vmspace *newvmspace;
 3026 
 3027         newvmspace = vmspace_alloc(minuser, maxuser);
 3028         newvmspace->vm_swrss = oldvmspace->vm_swrss;
 3029         /*
 3030          * This code is written like this for prototype purposes.  The
 3031          * goal is to avoid running down the vmspace here, but let the
 3032          * other process's that are still using the vmspace to finally
 3033          * run it down.  Even though there is little or no chance of blocking
 3034          * here, it is a good idea to keep this form for future mods.
 3035          */
 3036         PROC_VMSPACE_LOCK(p);
 3037         p->p_vmspace = newvmspace;
 3038         PROC_VMSPACE_UNLOCK(p);
 3039         if (p == curthread->td_proc)            /* XXXKSE ? */
 3040                 pmap_activate(curthread);
 3041         vmspace_free(oldvmspace);
 3042 }
 3043 
 3044 /*
 3045  * Unshare the specified VM space for forcing COW.  This
 3046  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
 3047  */
 3048 void
 3049 vmspace_unshare(struct proc *p)
 3050 {
 3051         struct vmspace *oldvmspace = p->p_vmspace;
 3052         struct vmspace *newvmspace;
 3053 
 3054         if (oldvmspace->vm_refcnt == 1)
 3055                 return;
 3056         newvmspace = vmspace_fork(oldvmspace);
 3057         PROC_VMSPACE_LOCK(p);
 3058         p->p_vmspace = newvmspace;
 3059         PROC_VMSPACE_UNLOCK(p);
 3060         if (p == curthread->td_proc)            /* XXXKSE ? */
 3061                 pmap_activate(curthread);
 3062         vmspace_free(oldvmspace);
 3063 }
 3064 
 3065 /*
 3066  *      vm_map_lookup:
 3067  *
 3068  *      Finds the VM object, offset, and
 3069  *      protection for a given virtual address in the
 3070  *      specified map, assuming a page fault of the
 3071  *      type specified.
 3072  *
 3073  *      Leaves the map in question locked for read; return
 3074  *      values are guaranteed until a vm_map_lookup_done
 3075  *      call is performed.  Note that the map argument
 3076  *      is in/out; the returned map must be used in
 3077  *      the call to vm_map_lookup_done.
 3078  *
 3079  *      A handle (out_entry) is returned for use in
 3080  *      vm_map_lookup_done, to make that fast.
 3081  *
 3082  *      If a lookup is requested with "write protection"
 3083  *      specified, the map may be changed to perform virtual
 3084  *      copying operations, although the data referenced will
 3085  *      remain the same.
 3086  */
 3087 int
 3088 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
 3089               vm_offset_t vaddr,
 3090               vm_prot_t fault_typea,
 3091               vm_map_entry_t *out_entry,        /* OUT */
 3092               vm_object_t *object,              /* OUT */
 3093               vm_pindex_t *pindex,              /* OUT */
 3094               vm_prot_t *out_prot,              /* OUT */
 3095               boolean_t *wired)                 /* OUT */
 3096 {
 3097         vm_map_entry_t entry;
 3098         vm_map_t map = *var_map;
 3099         vm_prot_t prot;
 3100         vm_prot_t fault_type = fault_typea;
 3101 
 3102 RetryLookup:;
 3103         /*
 3104          * Lookup the faulting address.
 3105          */
 3106 
 3107         vm_map_lock_read(map);
 3108 #define RETURN(why) \
 3109                 { \
 3110                 vm_map_unlock_read(map); \
 3111                 return (why); \
 3112                 }
 3113 
 3114         /*
 3115          * If the map has an interesting hint, try it before calling full
 3116          * blown lookup routine.
 3117          */
 3118         entry = map->root;
 3119         *out_entry = entry;
 3120         if (entry == NULL ||
 3121             (vaddr < entry->start) || (vaddr >= entry->end)) {
 3122                 /*
 3123                  * Entry was either not a valid hint, or the vaddr was not
 3124                  * contained in the entry, so do a full lookup.
 3125                  */
 3126                 if (!vm_map_lookup_entry(map, vaddr, out_entry))
 3127                         RETURN(KERN_INVALID_ADDRESS);
 3128 
 3129                 entry = *out_entry;
 3130         }
 3131 
 3132         /*
 3133          * Handle submaps.
 3134          */
 3135         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 3136                 vm_map_t old_map = map;
 3137 
 3138                 *var_map = map = entry->object.sub_map;
 3139                 vm_map_unlock_read(old_map);
 3140                 goto RetryLookup;
 3141         }
 3142 
 3143         /*
 3144          * Check whether this task is allowed to have this page.
 3145          * Note the special case for MAP_ENTRY_COW
 3146          * pages with an override.  This is to implement a forced
 3147          * COW for debuggers.
 3148          */
 3149         if (fault_type & VM_PROT_OVERRIDE_WRITE)
 3150                 prot = entry->max_protection;
 3151         else
 3152                 prot = entry->protection;
 3153         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
 3154         if ((fault_type & prot) != fault_type) {
 3155                         RETURN(KERN_PROTECTION_FAILURE);
 3156         }
 3157         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
 3158             (entry->eflags & MAP_ENTRY_COW) &&
 3159             (fault_type & VM_PROT_WRITE) &&
 3160             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
 3161                 RETURN(KERN_PROTECTION_FAILURE);
 3162         }
 3163 
 3164         /*
 3165          * If this page is not pageable, we have to get it for all possible
 3166          * accesses.
 3167          */
 3168         *wired = (entry->wired_count != 0);
 3169         if (*wired)
 3170                 prot = fault_type = entry->protection;
 3171 
 3172         /*
 3173          * If the entry was copy-on-write, we either ...
 3174          */
 3175         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 3176                 /*
 3177                  * If we want to write the page, we may as well handle that
 3178                  * now since we've got the map locked.
 3179                  *
 3180                  * If we don't need to write the page, we just demote the
 3181                  * permissions allowed.
 3182                  */
 3183                 if (fault_type & VM_PROT_WRITE) {
 3184                         /*
 3185                          * Make a new object, and place it in the object
 3186                          * chain.  Note that no new references have appeared
 3187                          * -- one just moved from the map to the new
 3188                          * object.
 3189                          */
 3190                         if (vm_map_lock_upgrade(map))
 3191                                 goto RetryLookup;
 3192 
 3193                         vm_object_shadow(
 3194                             &entry->object.vm_object,
 3195                             &entry->offset,
 3196                             atop(entry->end - entry->start));
 3197                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
 3198 
 3199                         vm_map_lock_downgrade(map);
 3200                 } else {
 3201                         /*
 3202                          * We're attempting to read a copy-on-write page --
 3203                          * don't allow writes.
 3204                          */
 3205                         prot &= ~VM_PROT_WRITE;
 3206                 }
 3207         }
 3208 
 3209         /*
 3210          * Create an object if necessary.
 3211          */
 3212         if (entry->object.vm_object == NULL &&
 3213             !map->system_map) {
 3214                 if (vm_map_lock_upgrade(map))
 3215                         goto RetryLookup;
 3216                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
 3217                     atop(entry->end - entry->start));
 3218                 entry->offset = 0;
 3219                 vm_map_lock_downgrade(map);
 3220         }
 3221 
 3222         /*
 3223          * Return the object/offset from this entry.  If the entry was
 3224          * copy-on-write or empty, it has been fixed up.
 3225          */
 3226         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
 3227         *object = entry->object.vm_object;
 3228 
 3229         *out_prot = prot;
 3230         return (KERN_SUCCESS);
 3231 
 3232 #undef  RETURN
 3233 }
 3234 
 3235 /*
 3236  *      vm_map_lookup_locked:
 3237  *
 3238  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
 3239  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
 3240  */
 3241 int
 3242 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
 3243                      vm_offset_t vaddr,
 3244                      vm_prot_t fault_typea,
 3245                      vm_map_entry_t *out_entry, /* OUT */
 3246                      vm_object_t *object,       /* OUT */
 3247                      vm_pindex_t *pindex,       /* OUT */
 3248                      vm_prot_t *out_prot,       /* OUT */
 3249                      boolean_t *wired)          /* OUT */
 3250 {
 3251         vm_map_entry_t entry;
 3252         vm_map_t map = *var_map;
 3253         vm_prot_t prot;
 3254         vm_prot_t fault_type = fault_typea;
 3255 
 3256         /*
 3257          * If the map has an interesting hint, try it before calling full
 3258          * blown lookup routine.
 3259          */
 3260         entry = map->root;
 3261         *out_entry = entry;
 3262         if (entry == NULL ||
 3263             (vaddr < entry->start) || (vaddr >= entry->end)) {
 3264                 /*
 3265                  * Entry was either not a valid hint, or the vaddr was not
 3266                  * contained in the entry, so do a full lookup.
 3267                  */
 3268                 if (!vm_map_lookup_entry(map, vaddr, out_entry))
 3269                         return (KERN_INVALID_ADDRESS);
 3270 
 3271                 entry = *out_entry;
 3272         }
 3273 
 3274         /*
 3275          * Fail if the entry refers to a submap.
 3276          */
 3277         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 3278                 return (KERN_FAILURE);
 3279 
 3280         /*
 3281          * Check whether this task is allowed to have this page.
 3282          * Note the special case for MAP_ENTRY_COW
 3283          * pages with an override.  This is to implement a forced
 3284          * COW for debuggers.
 3285          */
 3286         if (fault_type & VM_PROT_OVERRIDE_WRITE)
 3287                 prot = entry->max_protection;
 3288         else
 3289                 prot = entry->protection;
 3290         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
 3291         if ((fault_type & prot) != fault_type)
 3292                 return (KERN_PROTECTION_FAILURE);
 3293         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
 3294             (entry->eflags & MAP_ENTRY_COW) &&
 3295             (fault_type & VM_PROT_WRITE) &&
 3296             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0)
 3297                 return (KERN_PROTECTION_FAILURE);
 3298 
 3299         /*
 3300          * If this page is not pageable, we have to get it for all possible
 3301          * accesses.
 3302          */
 3303         *wired = (entry->wired_count != 0);
 3304         if (*wired)
 3305                 prot = fault_type = entry->protection;
 3306 
 3307         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 3308                 /*
 3309                  * Fail if the entry was copy-on-write for a write fault.
 3310                  */
 3311                 if (fault_type & VM_PROT_WRITE)
 3312                         return (KERN_FAILURE);
 3313                 /*
 3314                  * We're attempting to read a copy-on-write page --
 3315                  * don't allow writes.
 3316                  */
 3317                 prot &= ~VM_PROT_WRITE;
 3318         }
 3319 
 3320         /*
 3321          * Fail if an object should be created.
 3322          */
 3323         if (entry->object.vm_object == NULL && !map->system_map)
 3324                 return (KERN_FAILURE);
 3325 
 3326         /*
 3327          * Return the object/offset from this entry.  If the entry was
 3328          * copy-on-write or empty, it has been fixed up.
 3329          */
 3330         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
 3331         *object = entry->object.vm_object;
 3332 
 3333         *out_prot = prot;
 3334         return (KERN_SUCCESS);
 3335 }
 3336 
 3337 /*
 3338  *      vm_map_lookup_done:
 3339  *
 3340  *      Releases locks acquired by a vm_map_lookup
 3341  *      (according to the handle returned by that lookup).
 3342  */
 3343 void
 3344 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
 3345 {
 3346         /*
 3347          * Unlock the main-level map
 3348          */
 3349         vm_map_unlock_read(map);
 3350 }
 3351 
 3352 #include "opt_ddb.h"
 3353 #ifdef DDB
 3354 #include <sys/kernel.h>
 3355 
 3356 #include <ddb/ddb.h>
 3357 
 3358 /*
 3359  *      vm_map_print:   [ debug ]
 3360  */
 3361 DB_SHOW_COMMAND(map, vm_map_print)
 3362 {
 3363         static int nlines;
 3364         /* XXX convert args. */
 3365         vm_map_t map = (vm_map_t)addr;
 3366         boolean_t full = have_addr;
 3367 
 3368         vm_map_entry_t entry;
 3369 
 3370         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
 3371             (void *)map,
 3372             (void *)map->pmap, map->nentries, map->timestamp);
 3373         nlines++;
 3374 
 3375         if (!full && db_indent)
 3376                 return;
 3377 
 3378         db_indent += 2;
 3379         for (entry = map->header.next; entry != &map->header;
 3380             entry = entry->next) {
 3381                 db_iprintf("map entry %p: start=%p, end=%p\n",
 3382                     (void *)entry, (void *)entry->start, (void *)entry->end);
 3383                 nlines++;
 3384                 {
 3385                         static char *inheritance_name[4] =
 3386                         {"share", "copy", "none", "donate_copy"};
 3387 
 3388                         db_iprintf(" prot=%x/%x/%s",
 3389                             entry->protection,
 3390                             entry->max_protection,
 3391                             inheritance_name[(int)(unsigned char)entry->inheritance]);
 3392                         if (entry->wired_count != 0)
 3393                                 db_printf(", wired");
 3394                 }
 3395                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 3396                         db_printf(", share=%p, offset=0x%jx\n",
 3397                             (void *)entry->object.sub_map,
 3398                             (uintmax_t)entry->offset);
 3399                         nlines++;
 3400                         if ((entry->prev == &map->header) ||
 3401                             (entry->prev->object.sub_map !=
 3402                                 entry->object.sub_map)) {
 3403                                 db_indent += 2;
 3404                                 vm_map_print((db_expr_t)(intptr_t)
 3405                                              entry->object.sub_map,
 3406                                              full, 0, (char *)0);
 3407                                 db_indent -= 2;
 3408                         }
 3409                 } else {
 3410                         db_printf(", object=%p, offset=0x%jx",
 3411                             (void *)entry->object.vm_object,
 3412                             (uintmax_t)entry->offset);
 3413                         if (entry->eflags & MAP_ENTRY_COW)
 3414                                 db_printf(", copy (%s)",
 3415                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
 3416                         db_printf("\n");
 3417                         nlines++;
 3418 
 3419                         if ((entry->prev == &map->header) ||
 3420                             (entry->prev->object.vm_object !=
 3421                                 entry->object.vm_object)) {
 3422                                 db_indent += 2;
 3423                                 vm_object_print((db_expr_t)(intptr_t)
 3424                                                 entry->object.vm_object,
 3425                                                 full, 0, (char *)0);
 3426                                 nlines += 4;
 3427                                 db_indent -= 2;
 3428                         }
 3429                 }
 3430         }
 3431         db_indent -= 2;
 3432         if (db_indent == 0)
 3433                 nlines = 0;
 3434 }
 3435 
 3436 
 3437 DB_SHOW_COMMAND(procvm, procvm)
 3438 {
 3439         struct proc *p;
 3440 
 3441         if (have_addr) {
 3442                 p = (struct proc *) addr;
 3443         } else {
 3444                 p = curproc;
 3445         }
 3446 
 3447         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
 3448             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
 3449             (void *)vmspace_pmap(p->p_vmspace));
 3450 
 3451         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
 3452 }
 3453 
 3454 #endif /* DDB */

Cache object: 4f61af6fe5660a50804180539dbbc348


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.