FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_map.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61 /*
62 * Virtual memory mapping module.
63 */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/ktr.h>
71 #include <sys/lock.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/vmmeter.h>
75 #include <sys/mman.h>
76 #include <sys/vnode.h>
77 #include <sys/resourcevar.h>
78 #include <sys/file.h>
79 #include <sys/sysent.h>
80 #include <sys/shm.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/uma.h>
93
94 /*
95 * Virtual memory maps provide for the mapping, protection,
96 * and sharing of virtual memory objects. In addition,
97 * this module provides for an efficient virtual copy of
98 * memory from one map to another.
99 *
100 * Synchronization is required prior to most operations.
101 *
102 * Maps consist of an ordered doubly-linked list of simple
103 * entries; a single hint is used to speed up lookups.
104 *
105 * Since portions of maps are specified by start/end addresses,
106 * which may not align with existing map entries, all
107 * routines merely "clip" entries to these start/end values.
108 * [That is, an entry is split into two, bordering at a
109 * start or end value.] Note that these clippings may not
110 * always be necessary (as the two resulting entries are then
111 * not changed); however, the clipping is done for convenience.
112 *
113 * As mentioned above, virtual copy operations are performed
114 * by copying VM object references from one map to
115 * another, and then marking both regions as copy-on-write.
116 */
117
118 /*
119 * vm_map_startup:
120 *
121 * Initialize the vm_map module. Must be called before
122 * any other vm_map routines.
123 *
124 * Map and entry structures are allocated from the general
125 * purpose memory pool with some exceptions:
126 *
127 * - The kernel map and kmem submap are allocated statically.
128 * - Kernel map entries are allocated out of a static pool.
129 *
130 * These restrictions are necessary since malloc() uses the
131 * maps and requires map entries.
132 */
133
134 static struct mtx map_sleep_mtx;
135 static uma_zone_t mapentzone;
136 static uma_zone_t kmapentzone;
137 static uma_zone_t mapzone;
138 static uma_zone_t vmspace_zone;
139 static struct vm_object kmapentobj;
140 static int vmspace_zinit(void *mem, int size, int flags);
141 static void vmspace_zfini(void *mem, int size);
142 static int vm_map_zinit(void *mem, int ize, int flags);
143 static void vm_map_zfini(void *mem, int size);
144 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max);
145
146 #ifdef INVARIANTS
147 static void vm_map_zdtor(void *mem, int size, void *arg);
148 static void vmspace_zdtor(void *mem, int size, void *arg);
149 #endif
150
151 /*
152 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
153 * stable.
154 */
155 #define PROC_VMSPACE_LOCK(p) do { } while (0)
156 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
157
158 /*
159 * VM_MAP_RANGE_CHECK: [ internal use only ]
160 *
161 * Asserts that the starting and ending region
162 * addresses fall within the valid range of the map.
163 */
164 #define VM_MAP_RANGE_CHECK(map, start, end) \
165 { \
166 if (start < vm_map_min(map)) \
167 start = vm_map_min(map); \
168 if (end > vm_map_max(map)) \
169 end = vm_map_max(map); \
170 if (start > end) \
171 start = end; \
172 }
173
174 void
175 vm_map_startup(void)
176 {
177 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
178 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
179 #ifdef INVARIANTS
180 vm_map_zdtor,
181 #else
182 NULL,
183 #endif
184 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
185 uma_prealloc(mapzone, MAX_KMAP);
186 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
187 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
188 UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
189 uma_prealloc(kmapentzone, MAX_KMAPENT);
190 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
191 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
192 }
193
194 static void
195 vmspace_zfini(void *mem, int size)
196 {
197 struct vmspace *vm;
198
199 vm = (struct vmspace *)mem;
200 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
201 }
202
203 static int
204 vmspace_zinit(void *mem, int size, int flags)
205 {
206 struct vmspace *vm;
207
208 vm = (struct vmspace *)mem;
209
210 vm->vm_map.pmap = NULL;
211 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
212 return (0);
213 }
214
215 static void
216 vm_map_zfini(void *mem, int size)
217 {
218 vm_map_t map;
219
220 map = (vm_map_t)mem;
221 mtx_destroy(&map->system_mtx);
222 sx_destroy(&map->lock);
223 }
224
225 static int
226 vm_map_zinit(void *mem, int size, int flags)
227 {
228 vm_map_t map;
229
230 map = (vm_map_t)mem;
231 map->nentries = 0;
232 map->size = 0;
233 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
234 sx_init(&map->lock, "user map");
235 return (0);
236 }
237
238 #ifdef INVARIANTS
239 static void
240 vmspace_zdtor(void *mem, int size, void *arg)
241 {
242 struct vmspace *vm;
243
244 vm = (struct vmspace *)mem;
245
246 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
247 }
248 static void
249 vm_map_zdtor(void *mem, int size, void *arg)
250 {
251 vm_map_t map;
252
253 map = (vm_map_t)mem;
254 KASSERT(map->nentries == 0,
255 ("map %p nentries == %d on free.",
256 map, map->nentries));
257 KASSERT(map->size == 0,
258 ("map %p size == %lu on free.",
259 map, (unsigned long)map->size));
260 }
261 #endif /* INVARIANTS */
262
263 /*
264 * Allocate a vmspace structure, including a vm_map and pmap,
265 * and initialize those structures. The refcnt is set to 1.
266 */
267 struct vmspace *
268 vmspace_alloc(min, max)
269 vm_offset_t min, max;
270 {
271 struct vmspace *vm;
272
273 vm = uma_zalloc(vmspace_zone, M_WAITOK);
274 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
275 uma_zfree(vmspace_zone, vm);
276 return (NULL);
277 }
278 CTR1(KTR_VM, "vmspace_alloc: %p", vm);
279 _vm_map_init(&vm->vm_map, min, max);
280 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
281 vm->vm_refcnt = 1;
282 vm->vm_shm = NULL;
283 vm->vm_swrss = 0;
284 vm->vm_tsize = 0;
285 vm->vm_dsize = 0;
286 vm->vm_ssize = 0;
287 vm->vm_taddr = 0;
288 vm->vm_daddr = 0;
289 vm->vm_maxsaddr = 0;
290 return (vm);
291 }
292
293 void
294 vm_init2(void)
295 {
296 uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
297 (VM_MAX_KERNEL_ADDRESS - KERNBASE) / PAGE_SIZE) / 8 +
298 maxproc * 2 + maxfiles);
299 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
300 #ifdef INVARIANTS
301 vmspace_zdtor,
302 #else
303 NULL,
304 #endif
305 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
306 }
307
308 static inline void
309 vmspace_dofree(struct vmspace *vm)
310 {
311 CTR1(KTR_VM, "vmspace_free: %p", vm);
312
313 /*
314 * Make sure any SysV shm is freed, it might not have been in
315 * exit1().
316 */
317 shmexit(vm);
318
319 /*
320 * Lock the map, to wait out all other references to it.
321 * Delete all of the mappings and pages they hold, then call
322 * the pmap module to reclaim anything left.
323 */
324 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
325 vm->vm_map.max_offset);
326
327 /*
328 * XXX Comment out the pmap_release call for now. The
329 * vmspace_zone is marked as UMA_ZONE_NOFREE, and bugs cause
330 * pmap.resident_count to be != 0 on exit sometimes.
331 */
332 /* pmap_release(vmspace_pmap(vm)); */
333 uma_zfree(vmspace_zone, vm);
334 }
335
336 void
337 vmspace_free(struct vmspace *vm)
338 {
339 int refcnt;
340
341 if (vm->vm_refcnt == 0)
342 panic("vmspace_free: attempt to free already freed vmspace");
343
344 do
345 refcnt = vm->vm_refcnt;
346 while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
347 if (refcnt == 1)
348 vmspace_dofree(vm);
349 }
350
351 void
352 vmspace_exitfree(struct proc *p)
353 {
354 struct vmspace *vm;
355
356 PROC_VMSPACE_LOCK(p);
357 vm = p->p_vmspace;
358 p->p_vmspace = NULL;
359 PROC_VMSPACE_UNLOCK(p);
360 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
361 vmspace_free(vm);
362 }
363
364 void
365 vmspace_exit(struct thread *td)
366 {
367 int refcnt;
368 struct vmspace *vm;
369 struct proc *p;
370
371 /*
372 * Release user portion of address space.
373 * This releases references to vnodes,
374 * which could cause I/O if the file has been unlinked.
375 * Need to do this early enough that we can still sleep.
376 *
377 * The last exiting process to reach this point releases as
378 * much of the environment as it can. vmspace_dofree() is the
379 * slower fallback in case another process had a temporary
380 * reference to the vmspace.
381 */
382
383 p = td->td_proc;
384 vm = p->p_vmspace;
385 atomic_add_int(&vmspace0.vm_refcnt, 1);
386 do {
387 refcnt = vm->vm_refcnt;
388 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
389 /* Switch now since other proc might free vmspace */
390 PROC_VMSPACE_LOCK(p);
391 p->p_vmspace = &vmspace0;
392 PROC_VMSPACE_UNLOCK(p);
393 pmap_activate(td);
394 }
395 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
396 if (refcnt == 1) {
397 if (p->p_vmspace != vm) {
398 /* vmspace not yet freed, switch back */
399 PROC_VMSPACE_LOCK(p);
400 p->p_vmspace = vm;
401 PROC_VMSPACE_UNLOCK(p);
402 pmap_activate(td);
403 }
404 pmap_remove_pages(vmspace_pmap(vm));
405 /* Switch now since this proc will free vmspace */
406 PROC_VMSPACE_LOCK(p);
407 p->p_vmspace = &vmspace0;
408 PROC_VMSPACE_UNLOCK(p);
409 pmap_activate(td);
410 vmspace_dofree(vm);
411 }
412 }
413
414 /* Acquire reference to vmspace owned by another process. */
415
416 struct vmspace *
417 vmspace_acquire_ref(struct proc *p)
418 {
419 struct vmspace *vm;
420 int refcnt;
421
422 PROC_VMSPACE_LOCK(p);
423 vm = p->p_vmspace;
424 if (vm == NULL) {
425 PROC_VMSPACE_UNLOCK(p);
426 return (NULL);
427 }
428 do {
429 refcnt = vm->vm_refcnt;
430 if (refcnt <= 0) { /* Avoid 0->1 transition */
431 PROC_VMSPACE_UNLOCK(p);
432 return (NULL);
433 }
434 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
435 if (vm != p->p_vmspace) {
436 PROC_VMSPACE_UNLOCK(p);
437 vmspace_free(vm);
438 return (NULL);
439 }
440 PROC_VMSPACE_UNLOCK(p);
441 return (vm);
442 }
443
444 void
445 _vm_map_lock(vm_map_t map, const char *file, int line)
446 {
447
448 if (map->system_map)
449 _mtx_lock_flags(&map->system_mtx, 0, file, line);
450 else
451 (void)_sx_xlock(&map->lock, 0, file, line);
452 map->timestamp++;
453 }
454
455 void
456 _vm_map_unlock(vm_map_t map, const char *file, int line)
457 {
458
459 if (map->system_map)
460 _mtx_unlock_flags(&map->system_mtx, 0, file, line);
461 else
462 _sx_xunlock(&map->lock, file, line);
463 }
464
465 void
466 _vm_map_lock_read(vm_map_t map, const char *file, int line)
467 {
468
469 if (map->system_map)
470 _mtx_lock_flags(&map->system_mtx, 0, file, line);
471 else
472 (void)_sx_xlock(&map->lock, 0, file, line);
473 }
474
475 void
476 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
477 {
478
479 if (map->system_map)
480 _mtx_unlock_flags(&map->system_mtx, 0, file, line);
481 else
482 _sx_xunlock(&map->lock, file, line);
483 }
484
485 int
486 _vm_map_trylock(vm_map_t map, const char *file, int line)
487 {
488 int error;
489
490 error = map->system_map ?
491 !_mtx_trylock(&map->system_mtx, 0, file, line) :
492 !_sx_try_xlock(&map->lock, file, line);
493 if (error == 0)
494 map->timestamp++;
495 return (error == 0);
496 }
497
498 int
499 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
500 {
501 int error;
502
503 error = map->system_map ?
504 !_mtx_trylock(&map->system_mtx, 0, file, line) :
505 !_sx_try_xlock(&map->lock, file, line);
506 return (error == 0);
507 }
508
509 int
510 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
511 {
512
513 #ifdef INVARIANTS
514 if (map->system_map) {
515 _mtx_assert(&map->system_mtx, MA_OWNED, file, line);
516 } else
517 _sx_assert(&map->lock, SX_XLOCKED, file, line);
518 #endif
519 map->timestamp++;
520 return (0);
521 }
522
523 void
524 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
525 {
526
527 #ifdef INVARIANTS
528 if (map->system_map) {
529 _mtx_assert(&map->system_mtx, MA_OWNED, file, line);
530 } else
531 _sx_assert(&map->lock, SX_XLOCKED, file, line);
532 #endif
533 }
534
535 /*
536 * vm_map_unlock_and_wait:
537 */
538 int
539 vm_map_unlock_and_wait(vm_map_t map, boolean_t user_wait)
540 {
541
542 mtx_lock(&map_sleep_mtx);
543 vm_map_unlock(map);
544 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 0));
545 }
546
547 /*
548 * vm_map_wakeup:
549 */
550 void
551 vm_map_wakeup(vm_map_t map)
552 {
553
554 /*
555 * Acquire and release map_sleep_mtx to prevent a wakeup()
556 * from being performed (and lost) between the vm_map_unlock()
557 * and the msleep() in vm_map_unlock_and_wait().
558 */
559 mtx_lock(&map_sleep_mtx);
560 mtx_unlock(&map_sleep_mtx);
561 wakeup(&map->root);
562 }
563
564 long
565 vmspace_resident_count(struct vmspace *vmspace)
566 {
567 return pmap_resident_count(vmspace_pmap(vmspace));
568 }
569
570 long
571 vmspace_wired_count(struct vmspace *vmspace)
572 {
573 return pmap_wired_count(vmspace_pmap(vmspace));
574 }
575
576 /*
577 * vm_map_create:
578 *
579 * Creates and returns a new empty VM map with
580 * the given physical map structure, and having
581 * the given lower and upper address bounds.
582 */
583 vm_map_t
584 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
585 {
586 vm_map_t result;
587
588 result = uma_zalloc(mapzone, M_WAITOK);
589 CTR1(KTR_VM, "vm_map_create: %p", result);
590 _vm_map_init(result, min, max);
591 result->pmap = pmap;
592 return (result);
593 }
594
595 /*
596 * Initialize an existing vm_map structure
597 * such as that in the vmspace structure.
598 * The pmap is set elsewhere.
599 */
600 static void
601 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
602 {
603
604 map->header.next = map->header.prev = &map->header;
605 map->needs_wakeup = FALSE;
606 map->system_map = 0;
607 map->min_offset = min;
608 map->max_offset = max;
609 map->flags = 0;
610 map->root = NULL;
611 map->timestamp = 0;
612 }
613
614 void
615 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
616 {
617 _vm_map_init(map, min, max);
618 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
619 sx_init(&map->lock, "user map");
620 }
621
622 /*
623 * vm_map_entry_dispose: [ internal use only ]
624 *
625 * Inverse of vm_map_entry_create.
626 */
627 static void
628 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
629 {
630 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
631 }
632
633 /*
634 * vm_map_entry_create: [ internal use only ]
635 *
636 * Allocates a VM map entry for insertion.
637 * No entry fields are filled in.
638 */
639 static vm_map_entry_t
640 vm_map_entry_create(vm_map_t map)
641 {
642 vm_map_entry_t new_entry;
643
644 if (map->system_map)
645 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
646 else
647 new_entry = uma_zalloc(mapentzone, M_WAITOK);
648 if (new_entry == NULL)
649 panic("vm_map_entry_create: kernel resources exhausted");
650 return (new_entry);
651 }
652
653 /*
654 * vm_map_entry_set_behavior:
655 *
656 * Set the expected access behavior, either normal, random, or
657 * sequential.
658 */
659 static inline void
660 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
661 {
662 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
663 (behavior & MAP_ENTRY_BEHAV_MASK);
664 }
665
666 /*
667 * vm_map_entry_set_max_free:
668 *
669 * Set the max_free field in a vm_map_entry.
670 */
671 static inline void
672 vm_map_entry_set_max_free(vm_map_entry_t entry)
673 {
674
675 entry->max_free = entry->adj_free;
676 if (entry->left != NULL && entry->left->max_free > entry->max_free)
677 entry->max_free = entry->left->max_free;
678 if (entry->right != NULL && entry->right->max_free > entry->max_free)
679 entry->max_free = entry->right->max_free;
680 }
681
682 /*
683 * vm_map_entry_splay:
684 *
685 * The Sleator and Tarjan top-down splay algorithm with the
686 * following variation. Max_free must be computed bottom-up, so
687 * on the downward pass, maintain the left and right spines in
688 * reverse order. Then, make a second pass up each side to fix
689 * the pointers and compute max_free. The time bound is O(log n)
690 * amortized.
691 *
692 * The new root is the vm_map_entry containing "addr", or else an
693 * adjacent entry (lower or higher) if addr is not in the tree.
694 *
695 * The map must be locked, and leaves it so.
696 *
697 * Returns: the new root.
698 */
699 static vm_map_entry_t
700 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
701 {
702 vm_map_entry_t llist, rlist;
703 vm_map_entry_t ltree, rtree;
704 vm_map_entry_t y;
705
706 /* Special case of empty tree. */
707 if (root == NULL)
708 return (root);
709
710 /*
711 * Pass One: Splay down the tree until we find addr or a NULL
712 * pointer where addr would go. llist and rlist are the two
713 * sides in reverse order (bottom-up), with llist linked by
714 * the right pointer and rlist linked by the left pointer in
715 * the vm_map_entry. Wait until Pass Two to set max_free on
716 * the two spines.
717 */
718 llist = NULL;
719 rlist = NULL;
720 for (;;) {
721 /* root is never NULL in here. */
722 if (addr < root->start) {
723 y = root->left;
724 if (y == NULL)
725 break;
726 if (addr < y->start && y->left != NULL) {
727 /* Rotate right and put y on rlist. */
728 root->left = y->right;
729 y->right = root;
730 vm_map_entry_set_max_free(root);
731 root = y->left;
732 y->left = rlist;
733 rlist = y;
734 } else {
735 /* Put root on rlist. */
736 root->left = rlist;
737 rlist = root;
738 root = y;
739 }
740 } else {
741 y = root->right;
742 if (addr < root->end || y == NULL)
743 break;
744 if (addr >= y->end && y->right != NULL) {
745 /* Rotate left and put y on llist. */
746 root->right = y->left;
747 y->left = root;
748 vm_map_entry_set_max_free(root);
749 root = y->right;
750 y->right = llist;
751 llist = y;
752 } else {
753 /* Put root on llist. */
754 root->right = llist;
755 llist = root;
756 root = y;
757 }
758 }
759 }
760
761 /*
762 * Pass Two: Walk back up the two spines, flip the pointers
763 * and set max_free. The subtrees of the root go at the
764 * bottom of llist and rlist.
765 */
766 ltree = root->left;
767 while (llist != NULL) {
768 y = llist->right;
769 llist->right = ltree;
770 vm_map_entry_set_max_free(llist);
771 ltree = llist;
772 llist = y;
773 }
774 rtree = root->right;
775 while (rlist != NULL) {
776 y = rlist->left;
777 rlist->left = rtree;
778 vm_map_entry_set_max_free(rlist);
779 rtree = rlist;
780 rlist = y;
781 }
782
783 /*
784 * Final assembly: add ltree and rtree as subtrees of root.
785 */
786 root->left = ltree;
787 root->right = rtree;
788 vm_map_entry_set_max_free(root);
789
790 return (root);
791 }
792
793 /*
794 * vm_map_entry_{un,}link:
795 *
796 * Insert/remove entries from maps.
797 */
798 static void
799 vm_map_entry_link(vm_map_t map,
800 vm_map_entry_t after_where,
801 vm_map_entry_t entry)
802 {
803
804 CTR4(KTR_VM,
805 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
806 map->nentries, entry, after_where);
807 map->nentries++;
808 entry->prev = after_where;
809 entry->next = after_where->next;
810 entry->next->prev = entry;
811 after_where->next = entry;
812
813 if (after_where != &map->header) {
814 if (after_where != map->root)
815 vm_map_entry_splay(after_where->start, map->root);
816 entry->right = after_where->right;
817 entry->left = after_where;
818 after_where->right = NULL;
819 after_where->adj_free = entry->start - after_where->end;
820 vm_map_entry_set_max_free(after_where);
821 } else {
822 entry->right = map->root;
823 entry->left = NULL;
824 }
825 entry->adj_free = (entry->next == &map->header ? map->max_offset :
826 entry->next->start) - entry->end;
827 vm_map_entry_set_max_free(entry);
828 map->root = entry;
829 }
830
831 static void
832 vm_map_entry_unlink(vm_map_t map,
833 vm_map_entry_t entry)
834 {
835 vm_map_entry_t next, prev, root;
836
837 if (entry != map->root)
838 vm_map_entry_splay(entry->start, map->root);
839 if (entry->left == NULL)
840 root = entry->right;
841 else {
842 root = vm_map_entry_splay(entry->start, entry->left);
843 root->right = entry->right;
844 root->adj_free = (entry->next == &map->header ? map->max_offset :
845 entry->next->start) - root->end;
846 vm_map_entry_set_max_free(root);
847 }
848 map->root = root;
849
850 prev = entry->prev;
851 next = entry->next;
852 next->prev = prev;
853 prev->next = next;
854 map->nentries--;
855 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
856 map->nentries, entry);
857 }
858
859 /*
860 * vm_map_entry_resize_free:
861 *
862 * Recompute the amount of free space following a vm_map_entry
863 * and propagate that value up the tree. Call this function after
864 * resizing a map entry in-place, that is, without a call to
865 * vm_map_entry_link() or _unlink().
866 *
867 * The map must be locked, and leaves it so.
868 */
869 static void
870 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
871 {
872
873 /*
874 * Using splay trees without parent pointers, propagating
875 * max_free up the tree is done by moving the entry to the
876 * root and making the change there.
877 */
878 if (entry != map->root)
879 map->root = vm_map_entry_splay(entry->start, map->root);
880
881 entry->adj_free = (entry->next == &map->header ? map->max_offset :
882 entry->next->start) - entry->end;
883 vm_map_entry_set_max_free(entry);
884 }
885
886 /*
887 * vm_map_lookup_entry: [ internal use only ]
888 *
889 * Finds the map entry containing (or
890 * immediately preceding) the specified address
891 * in the given map; the entry is returned
892 * in the "entry" parameter. The boolean
893 * result indicates whether the address is
894 * actually contained in the map.
895 */
896 boolean_t
897 vm_map_lookup_entry(
898 vm_map_t map,
899 vm_offset_t address,
900 vm_map_entry_t *entry) /* OUT */
901 {
902 vm_map_entry_t cur;
903
904 cur = vm_map_entry_splay(address, map->root);
905 if (cur == NULL)
906 *entry = &map->header;
907 else {
908 map->root = cur;
909
910 if (address >= cur->start) {
911 *entry = cur;
912 if (cur->end > address)
913 return (TRUE);
914 } else
915 *entry = cur->prev;
916 }
917 return (FALSE);
918 }
919
920 /*
921 * vm_map_insert:
922 *
923 * Inserts the given whole VM object into the target
924 * map at the specified address range. The object's
925 * size should match that of the address range.
926 *
927 * Requires that the map be locked, and leaves it so.
928 *
929 * If object is non-NULL, ref count must be bumped by caller
930 * prior to making call to account for the new entry.
931 */
932 int
933 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
934 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
935 int cow)
936 {
937 vm_map_entry_t new_entry;
938 vm_map_entry_t prev_entry;
939 vm_map_entry_t temp_entry;
940 vm_eflags_t protoeflags;
941
942 /*
943 * Check that the start and end points are not bogus.
944 */
945 if ((start < map->min_offset) || (end > map->max_offset) ||
946 (start >= end))
947 return (KERN_INVALID_ADDRESS);
948
949 /*
950 * Find the entry prior to the proposed starting address; if it's part
951 * of an existing entry, this range is bogus.
952 */
953 if (vm_map_lookup_entry(map, start, &temp_entry))
954 return (KERN_NO_SPACE);
955
956 prev_entry = temp_entry;
957
958 /*
959 * Assert that the next entry doesn't overlap the end point.
960 */
961 if ((prev_entry->next != &map->header) &&
962 (prev_entry->next->start < end))
963 return (KERN_NO_SPACE);
964
965 protoeflags = 0;
966
967 if (cow & MAP_COPY_ON_WRITE)
968 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
969
970 if (cow & MAP_NOFAULT) {
971 protoeflags |= MAP_ENTRY_NOFAULT;
972
973 KASSERT(object == NULL,
974 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
975 }
976 if (cow & MAP_DISABLE_SYNCER)
977 protoeflags |= MAP_ENTRY_NOSYNC;
978 if (cow & MAP_DISABLE_COREDUMP)
979 protoeflags |= MAP_ENTRY_NOCOREDUMP;
980
981 if (object != NULL) {
982 /*
983 * OBJ_ONEMAPPING must be cleared unless this mapping
984 * is trivially proven to be the only mapping for any
985 * of the object's pages. (Object granularity
986 * reference counting is insufficient to recognize
987 * aliases with precision.)
988 */
989 VM_OBJECT_LOCK(object);
990 if (object->ref_count > 1 || object->shadow_count != 0)
991 vm_object_clear_flag(object, OBJ_ONEMAPPING);
992 VM_OBJECT_UNLOCK(object);
993 }
994 else if ((prev_entry != &map->header) &&
995 (prev_entry->eflags == protoeflags) &&
996 (prev_entry->end == start) &&
997 (prev_entry->wired_count == 0) &&
998 ((prev_entry->object.vm_object == NULL) ||
999 vm_object_coalesce(prev_entry->object.vm_object,
1000 prev_entry->offset,
1001 (vm_size_t)(prev_entry->end - prev_entry->start),
1002 (vm_size_t)(end - prev_entry->end)))) {
1003 /*
1004 * We were able to extend the object. Determine if we
1005 * can extend the previous map entry to include the
1006 * new range as well.
1007 */
1008 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1009 (prev_entry->protection == prot) &&
1010 (prev_entry->max_protection == max)) {
1011 map->size += (end - prev_entry->end);
1012 prev_entry->end = end;
1013 vm_map_entry_resize_free(map, prev_entry);
1014 vm_map_simplify_entry(map, prev_entry);
1015 return (KERN_SUCCESS);
1016 }
1017
1018 /*
1019 * If we can extend the object but cannot extend the
1020 * map entry, we have to create a new map entry. We
1021 * must bump the ref count on the extended object to
1022 * account for it. object may be NULL.
1023 */
1024 object = prev_entry->object.vm_object;
1025 offset = prev_entry->offset +
1026 (prev_entry->end - prev_entry->start);
1027 vm_object_reference(object);
1028 }
1029
1030 /*
1031 * NOTE: if conditionals fail, object can be NULL here. This occurs
1032 * in things like the buffer map where we manage kva but do not manage
1033 * backing objects.
1034 */
1035
1036 /*
1037 * Create a new entry
1038 */
1039 new_entry = vm_map_entry_create(map);
1040 new_entry->start = start;
1041 new_entry->end = end;
1042
1043 new_entry->eflags = protoeflags;
1044 new_entry->object.vm_object = object;
1045 new_entry->offset = offset;
1046 new_entry->avail_ssize = 0;
1047
1048 new_entry->inheritance = VM_INHERIT_DEFAULT;
1049 new_entry->protection = prot;
1050 new_entry->max_protection = max;
1051 new_entry->wired_count = 0;
1052
1053 /*
1054 * Insert the new entry into the list
1055 */
1056 vm_map_entry_link(map, prev_entry, new_entry);
1057 map->size += new_entry->end - new_entry->start;
1058
1059 #if 0
1060 /*
1061 * Temporarily removed to avoid MAP_STACK panic, due to
1062 * MAP_STACK being a huge hack. Will be added back in
1063 * when MAP_STACK (and the user stack mapping) is fixed.
1064 */
1065 /*
1066 * It may be possible to simplify the entry
1067 */
1068 vm_map_simplify_entry(map, new_entry);
1069 #endif
1070
1071 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1072 vm_map_pmap_enter(map, start, prot,
1073 object, OFF_TO_IDX(offset), end - start,
1074 cow & MAP_PREFAULT_PARTIAL);
1075 }
1076
1077 return (KERN_SUCCESS);
1078 }
1079
1080 /*
1081 * vm_map_findspace:
1082 *
1083 * Find the first fit (lowest VM address) for "length" free bytes
1084 * beginning at address >= start in the given map.
1085 *
1086 * In a vm_map_entry, "adj_free" is the amount of free space
1087 * adjacent (higher address) to this entry, and "max_free" is the
1088 * maximum amount of contiguous free space in its subtree. This
1089 * allows finding a free region in one path down the tree, so
1090 * O(log n) amortized with splay trees.
1091 *
1092 * The map must be locked, and leaves it so.
1093 *
1094 * Returns: 0 on success, and starting address in *addr,
1095 * 1 if insufficient space.
1096 */
1097 int
1098 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1099 vm_offset_t *addr) /* OUT */
1100 {
1101 vm_map_entry_t entry;
1102 vm_offset_t end, st;
1103
1104 /*
1105 * Request must fit within min/max VM address and must avoid
1106 * address wrap.
1107 */
1108 if (start < map->min_offset)
1109 start = map->min_offset;
1110 if (start + length > map->max_offset || start + length < start)
1111 return (1);
1112
1113 /* Empty tree means wide open address space. */
1114 if (map->root == NULL) {
1115 *addr = start;
1116 goto found;
1117 }
1118
1119 /*
1120 * After splay, if start comes before root node, then there
1121 * must be a gap from start to the root.
1122 */
1123 map->root = vm_map_entry_splay(start, map->root);
1124 if (start + length <= map->root->start) {
1125 *addr = start;
1126 goto found;
1127 }
1128
1129 /*
1130 * Root is the last node that might begin its gap before
1131 * start, and this is the last comparison where address
1132 * wrap might be a problem.
1133 */
1134 st = (start > map->root->end) ? start : map->root->end;
1135 if (length <= map->root->end + map->root->adj_free - st) {
1136 *addr = st;
1137 goto found;
1138 }
1139
1140 /* With max_free, can immediately tell if no solution. */
1141 entry = map->root->right;
1142 if (entry == NULL || length > entry->max_free)
1143 return (1);
1144
1145 /*
1146 * Search the right subtree in the order: left subtree, root,
1147 * right subtree (first fit). The previous splay implies that
1148 * all regions in the right subtree have addresses > start.
1149 */
1150 while (entry != NULL) {
1151 if (entry->left != NULL && entry->left->max_free >= length)
1152 entry = entry->left;
1153 else if (entry->adj_free >= length) {
1154 *addr = entry->end;
1155 goto found;
1156 } else
1157 entry = entry->right;
1158 }
1159
1160 /* Can't get here, so panic if we do. */
1161 panic("vm_map_findspace: max_free corrupt");
1162
1163 found:
1164 /* Expand the kernel pmap, if necessary. */
1165 if (map == kernel_map) {
1166 end = round_page(*addr + length);
1167 if (end > kernel_vm_end)
1168 pmap_growkernel(end);
1169 }
1170 return (0);
1171 }
1172
1173 int
1174 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1175 vm_offset_t *addr /* IN/OUT */, vm_size_t length, vm_prot_t prot,
1176 vm_prot_t max, int cow)
1177 {
1178 vm_offset_t start, end;
1179 int result;
1180
1181 start = *addr;
1182 vm_map_lock(map);
1183 end = start + length;
1184 VM_MAP_RANGE_CHECK(map, start, end);
1185 (void) vm_map_delete(map, start, end);
1186 result = vm_map_insert(map, object, offset, start, end, prot,
1187 max, cow);
1188 vm_map_unlock(map);
1189 return (result);
1190 }
1191
1192 /*
1193 * vm_map_find finds an unallocated region in the target address
1194 * map with the given length. The search is defined to be
1195 * first-fit from the specified address; the region found is
1196 * returned in the same parameter.
1197 *
1198 * If object is non-NULL, ref count must be bumped by caller
1199 * prior to making call to account for the new entry.
1200 */
1201 int
1202 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1203 vm_offset_t *addr, /* IN/OUT */
1204 vm_size_t length, boolean_t find_space, vm_prot_t prot,
1205 vm_prot_t max, int cow)
1206 {
1207 vm_offset_t start;
1208 int result;
1209
1210 start = *addr;
1211 vm_map_lock(map);
1212 if (find_space) {
1213 if (vm_map_findspace(map, start, length, addr)) {
1214 vm_map_unlock(map);
1215 return (KERN_NO_SPACE);
1216 }
1217 start = *addr;
1218 }
1219 result = vm_map_insert(map, object, offset,
1220 start, start + length, prot, max, cow);
1221 vm_map_unlock(map);
1222 return (result);
1223 }
1224
1225 /*
1226 * vm_map_simplify_entry:
1227 *
1228 * Simplify the given map entry by merging with either neighbor. This
1229 * routine also has the ability to merge with both neighbors.
1230 *
1231 * The map must be locked.
1232 *
1233 * This routine guarentees that the passed entry remains valid (though
1234 * possibly extended). When merging, this routine may delete one or
1235 * both neighbors.
1236 */
1237 void
1238 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1239 {
1240 vm_map_entry_t next, prev;
1241 vm_size_t prevsize, esize;
1242
1243 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1244 return;
1245
1246 prev = entry->prev;
1247 if (prev != &map->header) {
1248 prevsize = prev->end - prev->start;
1249 if ( (prev->end == entry->start) &&
1250 (prev->object.vm_object == entry->object.vm_object) &&
1251 (!prev->object.vm_object ||
1252 (prev->offset + prevsize == entry->offset)) &&
1253 (prev->eflags == entry->eflags) &&
1254 (prev->protection == entry->protection) &&
1255 (prev->max_protection == entry->max_protection) &&
1256 (prev->inheritance == entry->inheritance) &&
1257 (prev->wired_count == entry->wired_count)) {
1258 vm_map_entry_unlink(map, prev);
1259 entry->start = prev->start;
1260 entry->offset = prev->offset;
1261 if (entry->prev != &map->header)
1262 vm_map_entry_resize_free(map, entry->prev);
1263 if (prev->object.vm_object)
1264 vm_object_deallocate(prev->object.vm_object);
1265 vm_map_entry_dispose(map, prev);
1266 }
1267 }
1268
1269 next = entry->next;
1270 if (next != &map->header) {
1271 esize = entry->end - entry->start;
1272 if ((entry->end == next->start) &&
1273 (next->object.vm_object == entry->object.vm_object) &&
1274 (!entry->object.vm_object ||
1275 (entry->offset + esize == next->offset)) &&
1276 (next->eflags == entry->eflags) &&
1277 (next->protection == entry->protection) &&
1278 (next->max_protection == entry->max_protection) &&
1279 (next->inheritance == entry->inheritance) &&
1280 (next->wired_count == entry->wired_count)) {
1281 vm_map_entry_unlink(map, next);
1282 entry->end = next->end;
1283 vm_map_entry_resize_free(map, entry);
1284 if (next->object.vm_object)
1285 vm_object_deallocate(next->object.vm_object);
1286 vm_map_entry_dispose(map, next);
1287 }
1288 }
1289 }
1290 /*
1291 * vm_map_clip_start: [ internal use only ]
1292 *
1293 * Asserts that the given entry begins at or after
1294 * the specified address; if necessary,
1295 * it splits the entry into two.
1296 */
1297 #define vm_map_clip_start(map, entry, startaddr) \
1298 { \
1299 if (startaddr > entry->start) \
1300 _vm_map_clip_start(map, entry, startaddr); \
1301 }
1302
1303 /*
1304 * This routine is called only when it is known that
1305 * the entry must be split.
1306 */
1307 static void
1308 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1309 {
1310 vm_map_entry_t new_entry;
1311
1312 /*
1313 * Split off the front portion -- note that we must insert the new
1314 * entry BEFORE this one, so that this entry has the specified
1315 * starting address.
1316 */
1317 vm_map_simplify_entry(map, entry);
1318
1319 /*
1320 * If there is no object backing this entry, we might as well create
1321 * one now. If we defer it, an object can get created after the map
1322 * is clipped, and individual objects will be created for the split-up
1323 * map. This is a bit of a hack, but is also about the best place to
1324 * put this improvement.
1325 */
1326 if (entry->object.vm_object == NULL && !map->system_map) {
1327 vm_object_t object;
1328 object = vm_object_allocate(OBJT_DEFAULT,
1329 atop(entry->end - entry->start));
1330 entry->object.vm_object = object;
1331 entry->offset = 0;
1332 }
1333
1334 new_entry = vm_map_entry_create(map);
1335 *new_entry = *entry;
1336
1337 new_entry->end = start;
1338 entry->offset += (start - entry->start);
1339 entry->start = start;
1340
1341 vm_map_entry_link(map, entry->prev, new_entry);
1342
1343 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1344 vm_object_reference(new_entry->object.vm_object);
1345 }
1346 }
1347
1348 /*
1349 * vm_map_clip_end: [ internal use only ]
1350 *
1351 * Asserts that the given entry ends at or before
1352 * the specified address; if necessary,
1353 * it splits the entry into two.
1354 */
1355 #define vm_map_clip_end(map, entry, endaddr) \
1356 { \
1357 if ((endaddr) < (entry->end)) \
1358 _vm_map_clip_end((map), (entry), (endaddr)); \
1359 }
1360
1361 /*
1362 * This routine is called only when it is known that
1363 * the entry must be split.
1364 */
1365 static void
1366 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1367 {
1368 vm_map_entry_t new_entry;
1369
1370 /*
1371 * If there is no object backing this entry, we might as well create
1372 * one now. If we defer it, an object can get created after the map
1373 * is clipped, and individual objects will be created for the split-up
1374 * map. This is a bit of a hack, but is also about the best place to
1375 * put this improvement.
1376 */
1377 if (entry->object.vm_object == NULL && !map->system_map) {
1378 vm_object_t object;
1379 object = vm_object_allocate(OBJT_DEFAULT,
1380 atop(entry->end - entry->start));
1381 entry->object.vm_object = object;
1382 entry->offset = 0;
1383 }
1384
1385 /*
1386 * Create a new entry and insert it AFTER the specified entry
1387 */
1388 new_entry = vm_map_entry_create(map);
1389 *new_entry = *entry;
1390
1391 new_entry->start = entry->end = end;
1392 new_entry->offset += (end - entry->start);
1393
1394 vm_map_entry_link(map, entry, new_entry);
1395
1396 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1397 vm_object_reference(new_entry->object.vm_object);
1398 }
1399 }
1400
1401 /*
1402 * vm_map_submap: [ kernel use only ]
1403 *
1404 * Mark the given range as handled by a subordinate map.
1405 *
1406 * This range must have been created with vm_map_find,
1407 * and no other operations may have been performed on this
1408 * range prior to calling vm_map_submap.
1409 *
1410 * Only a limited number of operations can be performed
1411 * within this rage after calling vm_map_submap:
1412 * vm_fault
1413 * [Don't try vm_map_copy!]
1414 *
1415 * To remove a submapping, one must first remove the
1416 * range from the superior map, and then destroy the
1417 * submap (if desired). [Better yet, don't try it.]
1418 */
1419 int
1420 vm_map_submap(
1421 vm_map_t map,
1422 vm_offset_t start,
1423 vm_offset_t end,
1424 vm_map_t submap)
1425 {
1426 vm_map_entry_t entry;
1427 int result = KERN_INVALID_ARGUMENT;
1428
1429 vm_map_lock(map);
1430
1431 VM_MAP_RANGE_CHECK(map, start, end);
1432
1433 if (vm_map_lookup_entry(map, start, &entry)) {
1434 vm_map_clip_start(map, entry, start);
1435 } else
1436 entry = entry->next;
1437
1438 vm_map_clip_end(map, entry, end);
1439
1440 if ((entry->start == start) && (entry->end == end) &&
1441 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1442 (entry->object.vm_object == NULL)) {
1443 entry->object.sub_map = submap;
1444 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1445 result = KERN_SUCCESS;
1446 }
1447 vm_map_unlock(map);
1448
1449 return (result);
1450 }
1451
1452 /*
1453 * The maximum number of pages to map
1454 */
1455 #define MAX_INIT_PT 96
1456
1457 /*
1458 * vm_map_pmap_enter:
1459 *
1460 * Preload read-only mappings for the given object's resident pages into
1461 * the given map. This eliminates the soft faults on process startup and
1462 * immediately after an mmap(2). Unless the given flags include
1463 * MAP_PREFAULT_MADVISE, cached pages are not reactivated and mapped.
1464 */
1465 void
1466 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1467 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1468 {
1469 vm_offset_t start;
1470 vm_page_t p, p_start;
1471 vm_pindex_t psize, tmpidx;
1472 boolean_t are_queues_locked;
1473
1474 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1475 return;
1476 VM_OBJECT_LOCK(object);
1477 if (object->type == OBJT_DEVICE) {
1478 pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1479 goto unlock_return;
1480 }
1481
1482 psize = atop(size);
1483
1484 if (object->type != OBJT_VNODE ||
1485 ((flags & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
1486 (object->resident_page_count > MAX_INIT_PT))) {
1487 goto unlock_return;
1488 }
1489
1490 if (psize + pindex > object->size) {
1491 if (object->size < pindex)
1492 goto unlock_return;
1493 psize = object->size - pindex;
1494 }
1495
1496 are_queues_locked = FALSE;
1497 start = 0;
1498 p_start = NULL;
1499
1500 if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1501 if (p->pindex < pindex) {
1502 p = vm_page_splay(pindex, object->root);
1503 if ((object->root = p)->pindex < pindex)
1504 p = TAILQ_NEXT(p, listq);
1505 }
1506 }
1507 /*
1508 * Assert: the variable p is either (1) the page with the
1509 * least pindex greater than or equal to the parameter pindex
1510 * or (2) NULL.
1511 */
1512 for (;
1513 p != NULL && (tmpidx = p->pindex - pindex) < psize;
1514 p = TAILQ_NEXT(p, listq)) {
1515 /*
1516 * don't allow an madvise to blow away our really
1517 * free pages allocating pv entries.
1518 */
1519 if ((flags & MAP_PREFAULT_MADVISE) &&
1520 cnt.v_free_count < cnt.v_free_reserved) {
1521 psize = tmpidx;
1522 break;
1523 }
1524 if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
1525 (p->busy == 0)) {
1526 if (p_start == NULL) {
1527 start = addr + ptoa(tmpidx);
1528 p_start = p;
1529 }
1530 } else if (p_start != NULL) {
1531 if (!are_queues_locked) {
1532 are_queues_locked = TRUE;
1533 vm_page_lock_queues();
1534 }
1535 pmap_enter_object(map->pmap, start, addr +
1536 ptoa(tmpidx), p_start, prot);
1537 p_start = NULL;
1538 }
1539 }
1540 if (p_start != NULL) {
1541 if (!are_queues_locked) {
1542 are_queues_locked = TRUE;
1543 vm_page_lock_queues();
1544 }
1545 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1546 p_start, prot);
1547 }
1548 if (are_queues_locked)
1549 vm_page_unlock_queues();
1550 unlock_return:
1551 VM_OBJECT_UNLOCK(object);
1552 }
1553
1554 /*
1555 * vm_map_protect:
1556 *
1557 * Sets the protection of the specified address
1558 * region in the target map. If "set_max" is
1559 * specified, the maximum protection is to be set;
1560 * otherwise, only the current protection is affected.
1561 */
1562 int
1563 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1564 vm_prot_t new_prot, boolean_t set_max)
1565 {
1566 vm_map_entry_t current;
1567 vm_map_entry_t entry;
1568
1569 vm_map_lock(map);
1570
1571 VM_MAP_RANGE_CHECK(map, start, end);
1572
1573 if (vm_map_lookup_entry(map, start, &entry)) {
1574 vm_map_clip_start(map, entry, start);
1575 } else {
1576 entry = entry->next;
1577 }
1578
1579 /*
1580 * Make a first pass to check for protection violations.
1581 */
1582 current = entry;
1583 while ((current != &map->header) && (current->start < end)) {
1584 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1585 vm_map_unlock(map);
1586 return (KERN_INVALID_ARGUMENT);
1587 }
1588 if ((new_prot & current->max_protection) != new_prot) {
1589 vm_map_unlock(map);
1590 return (KERN_PROTECTION_FAILURE);
1591 }
1592 current = current->next;
1593 }
1594
1595 /*
1596 * Go back and fix up protections. [Note that clipping is not
1597 * necessary the second time.]
1598 */
1599 current = entry;
1600 while ((current != &map->header) && (current->start < end)) {
1601 vm_prot_t old_prot;
1602
1603 vm_map_clip_end(map, current, end);
1604
1605 old_prot = current->protection;
1606 if (set_max)
1607 current->protection =
1608 (current->max_protection = new_prot) &
1609 old_prot;
1610 else
1611 current->protection = new_prot;
1612
1613 /*
1614 * Update physical map if necessary. Worry about copy-on-write
1615 * here -- CHECK THIS XXX
1616 */
1617 if (current->protection != old_prot) {
1618 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1619 VM_PROT_ALL)
1620 pmap_protect(map->pmap, current->start,
1621 current->end,
1622 current->protection & MASK(current));
1623 #undef MASK
1624 }
1625 vm_map_simplify_entry(map, current);
1626 current = current->next;
1627 }
1628 vm_map_unlock(map);
1629 return (KERN_SUCCESS);
1630 }
1631
1632 /*
1633 * vm_map_madvise:
1634 *
1635 * This routine traverses a processes map handling the madvise
1636 * system call. Advisories are classified as either those effecting
1637 * the vm_map_entry structure, or those effecting the underlying
1638 * objects.
1639 */
1640 int
1641 vm_map_madvise(
1642 vm_map_t map,
1643 vm_offset_t start,
1644 vm_offset_t end,
1645 int behav)
1646 {
1647 vm_map_entry_t current, entry;
1648 int modify_map = 0;
1649
1650 /*
1651 * Some madvise calls directly modify the vm_map_entry, in which case
1652 * we need to use an exclusive lock on the map and we need to perform
1653 * various clipping operations. Otherwise we only need a read-lock
1654 * on the map.
1655 */
1656 switch(behav) {
1657 case MADV_NORMAL:
1658 case MADV_SEQUENTIAL:
1659 case MADV_RANDOM:
1660 case MADV_NOSYNC:
1661 case MADV_AUTOSYNC:
1662 case MADV_NOCORE:
1663 case MADV_CORE:
1664 modify_map = 1;
1665 vm_map_lock(map);
1666 break;
1667 case MADV_WILLNEED:
1668 case MADV_DONTNEED:
1669 case MADV_FREE:
1670 vm_map_lock_read(map);
1671 break;
1672 default:
1673 return (KERN_INVALID_ARGUMENT);
1674 }
1675
1676 /*
1677 * Locate starting entry and clip if necessary.
1678 */
1679 VM_MAP_RANGE_CHECK(map, start, end);
1680
1681 if (vm_map_lookup_entry(map, start, &entry)) {
1682 if (modify_map)
1683 vm_map_clip_start(map, entry, start);
1684 } else {
1685 entry = entry->next;
1686 }
1687
1688 if (modify_map) {
1689 /*
1690 * madvise behaviors that are implemented in the vm_map_entry.
1691 *
1692 * We clip the vm_map_entry so that behavioral changes are
1693 * limited to the specified address range.
1694 */
1695 for (current = entry;
1696 (current != &map->header) && (current->start < end);
1697 current = current->next
1698 ) {
1699 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1700 continue;
1701
1702 vm_map_clip_end(map, current, end);
1703
1704 switch (behav) {
1705 case MADV_NORMAL:
1706 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1707 break;
1708 case MADV_SEQUENTIAL:
1709 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1710 break;
1711 case MADV_RANDOM:
1712 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1713 break;
1714 case MADV_NOSYNC:
1715 current->eflags |= MAP_ENTRY_NOSYNC;
1716 break;
1717 case MADV_AUTOSYNC:
1718 current->eflags &= ~MAP_ENTRY_NOSYNC;
1719 break;
1720 case MADV_NOCORE:
1721 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1722 break;
1723 case MADV_CORE:
1724 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1725 break;
1726 default:
1727 break;
1728 }
1729 vm_map_simplify_entry(map, current);
1730 }
1731 vm_map_unlock(map);
1732 } else {
1733 vm_pindex_t pindex;
1734 int count;
1735
1736 /*
1737 * madvise behaviors that are implemented in the underlying
1738 * vm_object.
1739 *
1740 * Since we don't clip the vm_map_entry, we have to clip
1741 * the vm_object pindex and count.
1742 */
1743 for (current = entry;
1744 (current != &map->header) && (current->start < end);
1745 current = current->next
1746 ) {
1747 vm_offset_t useStart;
1748
1749 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1750 continue;
1751
1752 pindex = OFF_TO_IDX(current->offset);
1753 count = atop(current->end - current->start);
1754 useStart = current->start;
1755
1756 if (current->start < start) {
1757 pindex += atop(start - current->start);
1758 count -= atop(start - current->start);
1759 useStart = start;
1760 }
1761 if (current->end > end)
1762 count -= atop(current->end - end);
1763
1764 if (count <= 0)
1765 continue;
1766
1767 vm_object_madvise(current->object.vm_object,
1768 pindex, count, behav);
1769 if (behav == MADV_WILLNEED) {
1770 vm_map_pmap_enter(map,
1771 useStart,
1772 current->protection,
1773 current->object.vm_object,
1774 pindex,
1775 (count << PAGE_SHIFT),
1776 MAP_PREFAULT_MADVISE
1777 );
1778 }
1779 }
1780 vm_map_unlock_read(map);
1781 }
1782 return (0);
1783 }
1784
1785
1786 /*
1787 * vm_map_inherit:
1788 *
1789 * Sets the inheritance of the specified address
1790 * range in the target map. Inheritance
1791 * affects how the map will be shared with
1792 * child maps at the time of vm_map_fork.
1793 */
1794 int
1795 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1796 vm_inherit_t new_inheritance)
1797 {
1798 vm_map_entry_t entry;
1799 vm_map_entry_t temp_entry;
1800
1801 switch (new_inheritance) {
1802 case VM_INHERIT_NONE:
1803 case VM_INHERIT_COPY:
1804 case VM_INHERIT_SHARE:
1805 break;
1806 default:
1807 return (KERN_INVALID_ARGUMENT);
1808 }
1809 vm_map_lock(map);
1810 VM_MAP_RANGE_CHECK(map, start, end);
1811 if (vm_map_lookup_entry(map, start, &temp_entry)) {
1812 entry = temp_entry;
1813 vm_map_clip_start(map, entry, start);
1814 } else
1815 entry = temp_entry->next;
1816 while ((entry != &map->header) && (entry->start < end)) {
1817 vm_map_clip_end(map, entry, end);
1818 entry->inheritance = new_inheritance;
1819 vm_map_simplify_entry(map, entry);
1820 entry = entry->next;
1821 }
1822 vm_map_unlock(map);
1823 return (KERN_SUCCESS);
1824 }
1825
1826 /*
1827 * vm_map_unwire:
1828 *
1829 * Implements both kernel and user unwiring.
1830 */
1831 int
1832 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1833 int flags)
1834 {
1835 vm_map_entry_t entry, first_entry, tmp_entry;
1836 vm_offset_t saved_start;
1837 unsigned int last_timestamp;
1838 int rv;
1839 boolean_t need_wakeup, result, user_unwire;
1840
1841 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
1842 vm_map_lock(map);
1843 VM_MAP_RANGE_CHECK(map, start, end);
1844 if (!vm_map_lookup_entry(map, start, &first_entry)) {
1845 if (flags & VM_MAP_WIRE_HOLESOK)
1846 first_entry = first_entry->next;
1847 else {
1848 vm_map_unlock(map);
1849 return (KERN_INVALID_ADDRESS);
1850 }
1851 }
1852 last_timestamp = map->timestamp;
1853 entry = first_entry;
1854 while (entry != &map->header && entry->start < end) {
1855 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1856 /*
1857 * We have not yet clipped the entry.
1858 */
1859 saved_start = (start >= entry->start) ? start :
1860 entry->start;
1861 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1862 if (vm_map_unlock_and_wait(map, user_unwire)) {
1863 /*
1864 * Allow interruption of user unwiring?
1865 */
1866 }
1867 vm_map_lock(map);
1868 if (last_timestamp+1 != map->timestamp) {
1869 /*
1870 * Look again for the entry because the map was
1871 * modified while it was unlocked.
1872 * Specifically, the entry may have been
1873 * clipped, merged, or deleted.
1874 */
1875 if (!vm_map_lookup_entry(map, saved_start,
1876 &tmp_entry)) {
1877 if (flags & VM_MAP_WIRE_HOLESOK)
1878 tmp_entry = tmp_entry->next;
1879 else {
1880 if (saved_start == start) {
1881 /*
1882 * First_entry has been deleted.
1883 */
1884 vm_map_unlock(map);
1885 return (KERN_INVALID_ADDRESS);
1886 }
1887 end = saved_start;
1888 rv = KERN_INVALID_ADDRESS;
1889 goto done;
1890 }
1891 }
1892 if (entry == first_entry)
1893 first_entry = tmp_entry;
1894 else
1895 first_entry = NULL;
1896 entry = tmp_entry;
1897 }
1898 last_timestamp = map->timestamp;
1899 continue;
1900 }
1901 vm_map_clip_start(map, entry, start);
1902 vm_map_clip_end(map, entry, end);
1903 /*
1904 * Mark the entry in case the map lock is released. (See
1905 * above.)
1906 */
1907 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1908 /*
1909 * Check the map for holes in the specified region.
1910 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
1911 */
1912 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
1913 (entry->end < end && (entry->next == &map->header ||
1914 entry->next->start > entry->end))) {
1915 end = entry->end;
1916 rv = KERN_INVALID_ADDRESS;
1917 goto done;
1918 }
1919 /*
1920 * If system unwiring, require that the entry is system wired.
1921 */
1922 if (!user_unwire &&
1923 vm_map_entry_system_wired_count(entry) == 0) {
1924 end = entry->end;
1925 rv = KERN_INVALID_ARGUMENT;
1926 goto done;
1927 }
1928 entry = entry->next;
1929 }
1930 rv = KERN_SUCCESS;
1931 done:
1932 need_wakeup = FALSE;
1933 if (first_entry == NULL) {
1934 result = vm_map_lookup_entry(map, start, &first_entry);
1935 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
1936 first_entry = first_entry->next;
1937 else
1938 KASSERT(result, ("vm_map_unwire: lookup failed"));
1939 }
1940 entry = first_entry;
1941 while (entry != &map->header && entry->start < end) {
1942 if (rv == KERN_SUCCESS && (!user_unwire ||
1943 (entry->eflags & MAP_ENTRY_USER_WIRED))) {
1944 if (user_unwire)
1945 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1946 entry->wired_count--;
1947 if (entry->wired_count == 0) {
1948 /*
1949 * Retain the map lock.
1950 */
1951 vm_fault_unwire(map, entry->start, entry->end,
1952 entry->object.vm_object != NULL &&
1953 entry->object.vm_object->type == OBJT_DEVICE);
1954 }
1955 }
1956 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1957 ("vm_map_unwire: in-transition flag missing"));
1958 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1959 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1960 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1961 need_wakeup = TRUE;
1962 }
1963 vm_map_simplify_entry(map, entry);
1964 entry = entry->next;
1965 }
1966 vm_map_unlock(map);
1967 if (need_wakeup)
1968 vm_map_wakeup(map);
1969 return (rv);
1970 }
1971
1972 /*
1973 * vm_map_wire:
1974 *
1975 * Implements both kernel and user wiring.
1976 */
1977 int
1978 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1979 int flags)
1980 {
1981 vm_map_entry_t entry, first_entry, tmp_entry;
1982 vm_offset_t saved_end, saved_start;
1983 unsigned int last_timestamp;
1984 int rv;
1985 boolean_t fictitious, need_wakeup, result, user_wire;
1986
1987 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
1988 vm_map_lock(map);
1989 VM_MAP_RANGE_CHECK(map, start, end);
1990 if (!vm_map_lookup_entry(map, start, &first_entry)) {
1991 if (flags & VM_MAP_WIRE_HOLESOK)
1992 first_entry = first_entry->next;
1993 else {
1994 vm_map_unlock(map);
1995 return (KERN_INVALID_ADDRESS);
1996 }
1997 }
1998 last_timestamp = map->timestamp;
1999 entry = first_entry;
2000 while (entry != &map->header && entry->start < end) {
2001 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2002 /*
2003 * We have not yet clipped the entry.
2004 */
2005 saved_start = (start >= entry->start) ? start :
2006 entry->start;
2007 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2008 if (vm_map_unlock_and_wait(map, user_wire)) {
2009 /*
2010 * Allow interruption of user wiring?
2011 */
2012 }
2013 vm_map_lock(map);
2014 if (last_timestamp + 1 != map->timestamp) {
2015 /*
2016 * Look again for the entry because the map was
2017 * modified while it was unlocked.
2018 * Specifically, the entry may have been
2019 * clipped, merged, or deleted.
2020 */
2021 if (!vm_map_lookup_entry(map, saved_start,
2022 &tmp_entry)) {
2023 if (flags & VM_MAP_WIRE_HOLESOK)
2024 tmp_entry = tmp_entry->next;
2025 else {
2026 if (saved_start == start) {
2027 /*
2028 * first_entry has been deleted.
2029 */
2030 vm_map_unlock(map);
2031 return (KERN_INVALID_ADDRESS);
2032 }
2033 end = saved_start;
2034 rv = KERN_INVALID_ADDRESS;
2035 goto done;
2036 }
2037 }
2038 if (entry == first_entry)
2039 first_entry = tmp_entry;
2040 else
2041 first_entry = NULL;
2042 entry = tmp_entry;
2043 }
2044 last_timestamp = map->timestamp;
2045 continue;
2046 }
2047 vm_map_clip_start(map, entry, start);
2048 vm_map_clip_end(map, entry, end);
2049 /*
2050 * Mark the entry in case the map lock is released. (See
2051 * above.)
2052 */
2053 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2054 /*
2055 *
2056 */
2057 if (entry->wired_count == 0) {
2058 entry->wired_count++;
2059 saved_start = entry->start;
2060 saved_end = entry->end;
2061 fictitious = entry->object.vm_object != NULL &&
2062 entry->object.vm_object->type == OBJT_DEVICE;
2063 /*
2064 * Release the map lock, relying on the in-transition
2065 * mark.
2066 */
2067 vm_map_unlock(map);
2068 rv = vm_fault_wire(map, saved_start, saved_end,
2069 user_wire, fictitious);
2070 vm_map_lock(map);
2071 if (last_timestamp + 1 != map->timestamp) {
2072 /*
2073 * Look again for the entry because the map was
2074 * modified while it was unlocked. The entry
2075 * may have been clipped, but NOT merged or
2076 * deleted.
2077 */
2078 result = vm_map_lookup_entry(map, saved_start,
2079 &tmp_entry);
2080 KASSERT(result, ("vm_map_wire: lookup failed"));
2081 if (entry == first_entry)
2082 first_entry = tmp_entry;
2083 else
2084 first_entry = NULL;
2085 entry = tmp_entry;
2086 while (entry->end < saved_end) {
2087 if (rv != KERN_SUCCESS) {
2088 KASSERT(entry->wired_count == 1,
2089 ("vm_map_wire: bad count"));
2090 entry->wired_count = -1;
2091 }
2092 entry = entry->next;
2093 }
2094 }
2095 last_timestamp = map->timestamp;
2096 if (rv != KERN_SUCCESS) {
2097 KASSERT(entry->wired_count == 1,
2098 ("vm_map_wire: bad count"));
2099 /*
2100 * Assign an out-of-range value to represent
2101 * the failure to wire this entry.
2102 */
2103 entry->wired_count = -1;
2104 end = entry->end;
2105 goto done;
2106 }
2107 } else if (!user_wire ||
2108 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2109 entry->wired_count++;
2110 }
2111 /*
2112 * Check the map for holes in the specified region.
2113 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2114 */
2115 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2116 (entry->end < end && (entry->next == &map->header ||
2117 entry->next->start > entry->end))) {
2118 end = entry->end;
2119 rv = KERN_INVALID_ADDRESS;
2120 goto done;
2121 }
2122 entry = entry->next;
2123 }
2124 rv = KERN_SUCCESS;
2125 done:
2126 need_wakeup = FALSE;
2127 if (first_entry == NULL) {
2128 result = vm_map_lookup_entry(map, start, &first_entry);
2129 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2130 first_entry = first_entry->next;
2131 else
2132 KASSERT(result, ("vm_map_wire: lookup failed"));
2133 }
2134 entry = first_entry;
2135 while (entry != &map->header && entry->start < end) {
2136 if (rv == KERN_SUCCESS) {
2137 if (user_wire)
2138 entry->eflags |= MAP_ENTRY_USER_WIRED;
2139 } else if (entry->wired_count == -1) {
2140 /*
2141 * Wiring failed on this entry. Thus, unwiring is
2142 * unnecessary.
2143 */
2144 entry->wired_count = 0;
2145 } else {
2146 if (!user_wire ||
2147 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2148 entry->wired_count--;
2149 if (entry->wired_count == 0) {
2150 /*
2151 * Retain the map lock.
2152 */
2153 vm_fault_unwire(map, entry->start, entry->end,
2154 entry->object.vm_object != NULL &&
2155 entry->object.vm_object->type == OBJT_DEVICE);
2156 }
2157 }
2158 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2159 ("vm_map_wire: in-transition flag missing"));
2160 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2161 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2162 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2163 need_wakeup = TRUE;
2164 }
2165 vm_map_simplify_entry(map, entry);
2166 entry = entry->next;
2167 }
2168 vm_map_unlock(map);
2169 if (need_wakeup)
2170 vm_map_wakeup(map);
2171 return (rv);
2172 }
2173
2174 /*
2175 * vm_map_sync
2176 *
2177 * Push any dirty cached pages in the address range to their pager.
2178 * If syncio is TRUE, dirty pages are written synchronously.
2179 * If invalidate is TRUE, any cached pages are freed as well.
2180 *
2181 * If the size of the region from start to end is zero, we are
2182 * supposed to flush all modified pages within the region containing
2183 * start. Unfortunately, a region can be split or coalesced with
2184 * neighboring regions, making it difficult to determine what the
2185 * original region was. Therefore, we approximate this requirement by
2186 * flushing the current region containing start.
2187 *
2188 * Returns an error if any part of the specified range is not mapped.
2189 */
2190 int
2191 vm_map_sync(
2192 vm_map_t map,
2193 vm_offset_t start,
2194 vm_offset_t end,
2195 boolean_t syncio,
2196 boolean_t invalidate)
2197 {
2198 vm_map_entry_t current;
2199 vm_map_entry_t entry;
2200 vm_size_t size;
2201 vm_object_t object;
2202 vm_ooffset_t offset;
2203
2204 vm_map_lock_read(map);
2205 VM_MAP_RANGE_CHECK(map, start, end);
2206 if (!vm_map_lookup_entry(map, start, &entry)) {
2207 vm_map_unlock_read(map);
2208 return (KERN_INVALID_ADDRESS);
2209 } else if (start == end) {
2210 start = entry->start;
2211 end = entry->end;
2212 }
2213 /*
2214 * Make a first pass to check for user-wired memory and holes.
2215 */
2216 for (current = entry; current != &map->header && current->start < end;
2217 current = current->next) {
2218 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2219 vm_map_unlock_read(map);
2220 return (KERN_INVALID_ARGUMENT);
2221 }
2222 if (end > current->end &&
2223 (current->next == &map->header ||
2224 current->end != current->next->start)) {
2225 vm_map_unlock_read(map);
2226 return (KERN_INVALID_ADDRESS);
2227 }
2228 }
2229
2230 if (invalidate)
2231 pmap_remove(map->pmap, start, end);
2232
2233 /*
2234 * Make a second pass, cleaning/uncaching pages from the indicated
2235 * objects as we go.
2236 */
2237 for (current = entry; current != &map->header && current->start < end;
2238 current = current->next) {
2239 offset = current->offset + (start - current->start);
2240 size = (end <= current->end ? end : current->end) - start;
2241 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2242 vm_map_t smap;
2243 vm_map_entry_t tentry;
2244 vm_size_t tsize;
2245
2246 smap = current->object.sub_map;
2247 vm_map_lock_read(smap);
2248 (void) vm_map_lookup_entry(smap, offset, &tentry);
2249 tsize = tentry->end - offset;
2250 if (tsize < size)
2251 size = tsize;
2252 object = tentry->object.vm_object;
2253 offset = tentry->offset + (offset - tentry->start);
2254 vm_map_unlock_read(smap);
2255 } else {
2256 object = current->object.vm_object;
2257 }
2258 vm_object_sync(object, offset, size, syncio, invalidate);
2259 start += size;
2260 }
2261
2262 vm_map_unlock_read(map);
2263 return (KERN_SUCCESS);
2264 }
2265
2266 /*
2267 * vm_map_entry_unwire: [ internal use only ]
2268 *
2269 * Make the region specified by this entry pageable.
2270 *
2271 * The map in question should be locked.
2272 * [This is the reason for this routine's existence.]
2273 */
2274 static void
2275 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2276 {
2277 vm_fault_unwire(map, entry->start, entry->end,
2278 entry->object.vm_object != NULL &&
2279 entry->object.vm_object->type == OBJT_DEVICE);
2280 entry->wired_count = 0;
2281 }
2282
2283 /*
2284 * vm_map_entry_delete: [ internal use only ]
2285 *
2286 * Deallocate the given entry from the target map.
2287 */
2288 static void
2289 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2290 {
2291 vm_object_t object;
2292 vm_pindex_t offidxstart, offidxend, count;
2293
2294 vm_map_entry_unlink(map, entry);
2295 map->size -= entry->end - entry->start;
2296
2297 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2298 (object = entry->object.vm_object) != NULL) {
2299 count = OFF_TO_IDX(entry->end - entry->start);
2300 offidxstart = OFF_TO_IDX(entry->offset);
2301 offidxend = offidxstart + count;
2302 VM_OBJECT_LOCK(object);
2303 if (object->ref_count != 1 &&
2304 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2305 object == kernel_object || object == kmem_object)) {
2306 vm_object_collapse(object);
2307 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2308 if (object->type == OBJT_SWAP)
2309 swap_pager_freespace(object, offidxstart, count);
2310 if (offidxend >= object->size &&
2311 offidxstart < object->size)
2312 object->size = offidxstart;
2313 }
2314 VM_OBJECT_UNLOCK(object);
2315 vm_object_deallocate(object);
2316 }
2317
2318 vm_map_entry_dispose(map, entry);
2319 }
2320
2321 /*
2322 * vm_map_delete: [ internal use only ]
2323 *
2324 * Deallocates the given address range from the target
2325 * map.
2326 */
2327 int
2328 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2329 {
2330 vm_map_entry_t entry;
2331 vm_map_entry_t first_entry;
2332
2333 /*
2334 * Find the start of the region, and clip it
2335 */
2336 if (!vm_map_lookup_entry(map, start, &first_entry))
2337 entry = first_entry->next;
2338 else {
2339 entry = first_entry;
2340 vm_map_clip_start(map, entry, start);
2341 }
2342
2343 /*
2344 * Step through all entries in this region
2345 */
2346 while ((entry != &map->header) && (entry->start < end)) {
2347 vm_map_entry_t next;
2348
2349 /*
2350 * Wait for wiring or unwiring of an entry to complete.
2351 * Also wait for any system wirings to disappear on
2352 * user maps.
2353 */
2354 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2355 (vm_map_pmap(map) != kernel_pmap &&
2356 vm_map_entry_system_wired_count(entry) != 0)) {
2357 unsigned int last_timestamp;
2358 vm_offset_t saved_start;
2359 vm_map_entry_t tmp_entry;
2360
2361 saved_start = entry->start;
2362 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2363 last_timestamp = map->timestamp;
2364 (void) vm_map_unlock_and_wait(map, FALSE);
2365 vm_map_lock(map);
2366 if (last_timestamp + 1 != map->timestamp) {
2367 /*
2368 * Look again for the entry because the map was
2369 * modified while it was unlocked.
2370 * Specifically, the entry may have been
2371 * clipped, merged, or deleted.
2372 */
2373 if (!vm_map_lookup_entry(map, saved_start,
2374 &tmp_entry))
2375 entry = tmp_entry->next;
2376 else {
2377 entry = tmp_entry;
2378 vm_map_clip_start(map, entry,
2379 saved_start);
2380 }
2381 }
2382 continue;
2383 }
2384 vm_map_clip_end(map, entry, end);
2385
2386 next = entry->next;
2387
2388 /*
2389 * Unwire before removing addresses from the pmap; otherwise,
2390 * unwiring will put the entries back in the pmap.
2391 */
2392 if (entry->wired_count != 0) {
2393 vm_map_entry_unwire(map, entry);
2394 }
2395
2396 pmap_remove(map->pmap, entry->start, entry->end);
2397
2398 /*
2399 * Delete the entry (which may delete the object) only after
2400 * removing all pmap entries pointing to its pages.
2401 * (Otherwise, its page frames may be reallocated, and any
2402 * modify bits will be set in the wrong object!)
2403 */
2404 vm_map_entry_delete(map, entry);
2405 entry = next;
2406 }
2407 return (KERN_SUCCESS);
2408 }
2409
2410 /*
2411 * vm_map_remove:
2412 *
2413 * Remove the given address range from the target map.
2414 * This is the exported form of vm_map_delete.
2415 */
2416 int
2417 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2418 {
2419 int result;
2420
2421 vm_map_lock(map);
2422 VM_MAP_RANGE_CHECK(map, start, end);
2423 result = vm_map_delete(map, start, end);
2424 vm_map_unlock(map);
2425 return (result);
2426 }
2427
2428 /*
2429 * vm_map_check_protection:
2430 *
2431 * Assert that the target map allows the specified privilege on the
2432 * entire address region given. The entire region must be allocated.
2433 *
2434 * WARNING! This code does not and should not check whether the
2435 * contents of the region is accessible. For example a smaller file
2436 * might be mapped into a larger address space.
2437 *
2438 * NOTE! This code is also called by munmap().
2439 *
2440 * The map must be locked. A read lock is sufficient.
2441 */
2442 boolean_t
2443 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2444 vm_prot_t protection)
2445 {
2446 vm_map_entry_t entry;
2447 vm_map_entry_t tmp_entry;
2448
2449 if (!vm_map_lookup_entry(map, start, &tmp_entry))
2450 return (FALSE);
2451 entry = tmp_entry;
2452
2453 while (start < end) {
2454 if (entry == &map->header)
2455 return (FALSE);
2456 /*
2457 * No holes allowed!
2458 */
2459 if (start < entry->start)
2460 return (FALSE);
2461 /*
2462 * Check protection associated with entry.
2463 */
2464 if ((entry->protection & protection) != protection)
2465 return (FALSE);
2466 /* go to next entry */
2467 start = entry->end;
2468 entry = entry->next;
2469 }
2470 return (TRUE);
2471 }
2472
2473 /*
2474 * vm_map_copy_entry:
2475 *
2476 * Copies the contents of the source entry to the destination
2477 * entry. The entries *must* be aligned properly.
2478 */
2479 static void
2480 vm_map_copy_entry(
2481 vm_map_t src_map,
2482 vm_map_t dst_map,
2483 vm_map_entry_t src_entry,
2484 vm_map_entry_t dst_entry)
2485 {
2486 vm_object_t src_object;
2487
2488 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2489 return;
2490
2491 if (src_entry->wired_count == 0) {
2492
2493 /*
2494 * If the source entry is marked needs_copy, it is already
2495 * write-protected.
2496 */
2497 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2498 pmap_protect(src_map->pmap,
2499 src_entry->start,
2500 src_entry->end,
2501 src_entry->protection & ~VM_PROT_WRITE);
2502 }
2503
2504 /*
2505 * Make a copy of the object.
2506 */
2507 if ((src_object = src_entry->object.vm_object) != NULL) {
2508 VM_OBJECT_LOCK(src_object);
2509 if ((src_object->handle == NULL) &&
2510 (src_object->type == OBJT_DEFAULT ||
2511 src_object->type == OBJT_SWAP)) {
2512 vm_object_collapse(src_object);
2513 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2514 vm_object_split(src_entry);
2515 src_object = src_entry->object.vm_object;
2516 }
2517 }
2518 vm_object_reference_locked(src_object);
2519 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2520 VM_OBJECT_UNLOCK(src_object);
2521 dst_entry->object.vm_object = src_object;
2522 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2523 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2524 dst_entry->offset = src_entry->offset;
2525 } else {
2526 dst_entry->object.vm_object = NULL;
2527 dst_entry->offset = 0;
2528 }
2529
2530 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2531 dst_entry->end - dst_entry->start, src_entry->start);
2532 } else {
2533 /*
2534 * Of course, wired down pages can't be set copy-on-write.
2535 * Cause wired pages to be copied into the new map by
2536 * simulating faults (the new pages are pageable)
2537 */
2538 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2539 }
2540 }
2541
2542 /*
2543 * vmspace_map_entry_forked:
2544 * Update the newly-forked vmspace each time a map entry is inherited
2545 * or copied. The values for vm_dsize and vm_tsize are approximate
2546 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
2547 */
2548 static void
2549 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
2550 vm_map_entry_t entry)
2551 {
2552 vm_size_t entrysize;
2553 vm_offset_t newend;
2554
2555 entrysize = entry->end - entry->start;
2556 vm2->vm_map.size += entrysize;
2557 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
2558 vm2->vm_ssize += btoc(entrysize);
2559 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
2560 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
2561 newend = MIN(entry->end,
2562 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
2563 vm2->vm_dsize += btoc(newend - entry->start);
2564 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
2565 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
2566 newend = MIN(entry->end,
2567 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
2568 vm2->vm_tsize += btoc(newend - entry->start);
2569 }
2570 }
2571
2572 /*
2573 * vmspace_fork:
2574 * Create a new process vmspace structure and vm_map
2575 * based on those of an existing process. The new map
2576 * is based on the old map, according to the inheritance
2577 * values on the regions in that map.
2578 *
2579 * XXX It might be worth coalescing the entries added to the new vmspace.
2580 *
2581 * The source map must not be locked.
2582 */
2583 struct vmspace *
2584 vmspace_fork(struct vmspace *vm1)
2585 {
2586 struct vmspace *vm2;
2587 vm_map_t old_map = &vm1->vm_map;
2588 vm_map_t new_map;
2589 vm_map_entry_t old_entry;
2590 vm_map_entry_t new_entry;
2591 vm_object_t object;
2592
2593 vm_map_lock(old_map);
2594
2595 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2596 if (vm2 == NULL)
2597 goto unlock_and_return;
2598 vm2->vm_taddr = vm1->vm_taddr;
2599 vm2->vm_daddr = vm1->vm_daddr;
2600 vm2->vm_maxsaddr = vm1->vm_maxsaddr;
2601 new_map = &vm2->vm_map; /* XXX */
2602 new_map->timestamp = 1;
2603
2604 old_entry = old_map->header.next;
2605
2606 while (old_entry != &old_map->header) {
2607 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2608 panic("vm_map_fork: encountered a submap");
2609
2610 switch (old_entry->inheritance) {
2611 case VM_INHERIT_NONE:
2612 break;
2613
2614 case VM_INHERIT_SHARE:
2615 /*
2616 * Clone the entry, creating the shared object if necessary.
2617 */
2618 object = old_entry->object.vm_object;
2619 if (object == NULL) {
2620 object = vm_object_allocate(OBJT_DEFAULT,
2621 atop(old_entry->end - old_entry->start));
2622 old_entry->object.vm_object = object;
2623 old_entry->offset = 0;
2624 }
2625
2626 /*
2627 * Add the reference before calling vm_object_shadow
2628 * to insure that a shadow object is created.
2629 */
2630 vm_object_reference(object);
2631 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2632 vm_object_shadow(&old_entry->object.vm_object,
2633 &old_entry->offset,
2634 atop(old_entry->end - old_entry->start));
2635 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2636 /* Transfer the second reference too. */
2637 vm_object_reference(
2638 old_entry->object.vm_object);
2639 vm_object_deallocate(object);
2640 object = old_entry->object.vm_object;
2641 }
2642 VM_OBJECT_LOCK(object);
2643 vm_object_clear_flag(object, OBJ_ONEMAPPING);
2644 VM_OBJECT_UNLOCK(object);
2645
2646 /*
2647 * Clone the entry, referencing the shared object.
2648 */
2649 new_entry = vm_map_entry_create(new_map);
2650 *new_entry = *old_entry;
2651 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2652 new_entry->wired_count = 0;
2653
2654 /*
2655 * Insert the entry into the new map -- we know we're
2656 * inserting at the end of the new map.
2657 */
2658 vm_map_entry_link(new_map, new_map->header.prev,
2659 new_entry);
2660 vmspace_map_entry_forked(vm1, vm2, new_entry);
2661
2662 /*
2663 * Update the physical map
2664 */
2665 pmap_copy(new_map->pmap, old_map->pmap,
2666 new_entry->start,
2667 (old_entry->end - old_entry->start),
2668 old_entry->start);
2669 break;
2670
2671 case VM_INHERIT_COPY:
2672 /*
2673 * Clone the entry and link into the map.
2674 */
2675 new_entry = vm_map_entry_create(new_map);
2676 *new_entry = *old_entry;
2677 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2678 new_entry->wired_count = 0;
2679 new_entry->object.vm_object = NULL;
2680 vm_map_entry_link(new_map, new_map->header.prev,
2681 new_entry);
2682 vmspace_map_entry_forked(vm1, vm2, new_entry);
2683 vm_map_copy_entry(old_map, new_map, old_entry,
2684 new_entry);
2685 break;
2686 }
2687 old_entry = old_entry->next;
2688 }
2689 unlock_and_return:
2690 vm_map_unlock(old_map);
2691
2692 return (vm2);
2693 }
2694
2695 int
2696 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2697 vm_prot_t prot, vm_prot_t max, int cow)
2698 {
2699 vm_map_entry_t new_entry, prev_entry;
2700 vm_offset_t bot, top;
2701 vm_size_t init_ssize;
2702 int orient, rv;
2703 rlim_t vmemlim;
2704
2705 /*
2706 * The stack orientation is piggybacked with the cow argument.
2707 * Extract it into orient and mask the cow argument so that we
2708 * don't pass it around further.
2709 * NOTE: We explicitly allow bi-directional stacks.
2710 */
2711 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
2712 cow &= ~orient;
2713 KASSERT(orient != 0, ("No stack grow direction"));
2714
2715 if (addrbos < vm_map_min(map) ||
2716 addrbos > vm_map_max(map) ||
2717 addrbos + max_ssize < addrbos)
2718 return (KERN_NO_SPACE);
2719
2720 init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz;
2721
2722 PROC_LOCK(curthread->td_proc);
2723 vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM);
2724 PROC_UNLOCK(curthread->td_proc);
2725
2726 vm_map_lock(map);
2727
2728 /* If addr is already mapped, no go */
2729 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2730 vm_map_unlock(map);
2731 return (KERN_NO_SPACE);
2732 }
2733
2734 /* If we would blow our VMEM resource limit, no go */
2735 if (map->size + init_ssize > vmemlim) {
2736 vm_map_unlock(map);
2737 return (KERN_NO_SPACE);
2738 }
2739
2740 /*
2741 * If we can't accomodate max_ssize in the current mapping, no go.
2742 * However, we need to be aware that subsequent user mappings might
2743 * map into the space we have reserved for stack, and currently this
2744 * space is not protected.
2745 *
2746 * Hopefully we will at least detect this condition when we try to
2747 * grow the stack.
2748 */
2749 if ((prev_entry->next != &map->header) &&
2750 (prev_entry->next->start < addrbos + max_ssize)) {
2751 vm_map_unlock(map);
2752 return (KERN_NO_SPACE);
2753 }
2754
2755 /*
2756 * We initially map a stack of only init_ssize. We will grow as
2757 * needed later. Depending on the orientation of the stack (i.e.
2758 * the grow direction) we either map at the top of the range, the
2759 * bottom of the range or in the middle.
2760 *
2761 * Note: we would normally expect prot and max to be VM_PROT_ALL,
2762 * and cow to be 0. Possibly we should eliminate these as input
2763 * parameters, and just pass these values here in the insert call.
2764 */
2765 if (orient == MAP_STACK_GROWS_DOWN)
2766 bot = addrbos + max_ssize - init_ssize;
2767 else if (orient == MAP_STACK_GROWS_UP)
2768 bot = addrbos;
2769 else
2770 bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
2771 top = bot + init_ssize;
2772 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
2773
2774 /* Now set the avail_ssize amount. */
2775 if (rv == KERN_SUCCESS) {
2776 if (prev_entry != &map->header)
2777 vm_map_clip_end(map, prev_entry, bot);
2778 new_entry = prev_entry->next;
2779 if (new_entry->end != top || new_entry->start != bot)
2780 panic("Bad entry start/end for new stack entry");
2781
2782 new_entry->avail_ssize = max_ssize - init_ssize;
2783 if (orient & MAP_STACK_GROWS_DOWN)
2784 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
2785 if (orient & MAP_STACK_GROWS_UP)
2786 new_entry->eflags |= MAP_ENTRY_GROWS_UP;
2787 }
2788
2789 vm_map_unlock(map);
2790 return (rv);
2791 }
2792
2793 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
2794 * desired address is already mapped, or if we successfully grow
2795 * the stack. Also returns KERN_SUCCESS if addr is outside the
2796 * stack range (this is strange, but preserves compatibility with
2797 * the grow function in vm_machdep.c).
2798 */
2799 int
2800 vm_map_growstack(struct proc *p, vm_offset_t addr)
2801 {
2802 vm_map_entry_t next_entry, prev_entry;
2803 vm_map_entry_t new_entry, stack_entry;
2804 struct vmspace *vm = p->p_vmspace;
2805 vm_map_t map = &vm->vm_map;
2806 vm_offset_t end;
2807 size_t grow_amount, max_grow;
2808 rlim_t stacklim, vmemlim;
2809 int is_procstack, rv;
2810
2811 Retry:
2812 PROC_LOCK(p);
2813 stacklim = lim_cur(p, RLIMIT_STACK);
2814 vmemlim = lim_cur(p, RLIMIT_VMEM);
2815 PROC_UNLOCK(p);
2816
2817 vm_map_lock_read(map);
2818
2819 /* If addr is already in the entry range, no need to grow.*/
2820 if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2821 vm_map_unlock_read(map);
2822 return (KERN_SUCCESS);
2823 }
2824
2825 next_entry = prev_entry->next;
2826 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
2827 /*
2828 * This entry does not grow upwards. Since the address lies
2829 * beyond this entry, the next entry (if one exists) has to
2830 * be a downward growable entry. The entry list header is
2831 * never a growable entry, so it suffices to check the flags.
2832 */
2833 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
2834 vm_map_unlock_read(map);
2835 return (KERN_SUCCESS);
2836 }
2837 stack_entry = next_entry;
2838 } else {
2839 /*
2840 * This entry grows upward. If the next entry does not at
2841 * least grow downwards, this is the entry we need to grow.
2842 * otherwise we have two possible choices and we have to
2843 * select one.
2844 */
2845 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
2846 /*
2847 * We have two choices; grow the entry closest to
2848 * the address to minimize the amount of growth.
2849 */
2850 if (addr - prev_entry->end <= next_entry->start - addr)
2851 stack_entry = prev_entry;
2852 else
2853 stack_entry = next_entry;
2854 } else
2855 stack_entry = prev_entry;
2856 }
2857
2858 if (stack_entry == next_entry) {
2859 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
2860 KASSERT(addr < stack_entry->start, ("foo"));
2861 end = (prev_entry != &map->header) ? prev_entry->end :
2862 stack_entry->start - stack_entry->avail_ssize;
2863 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
2864 max_grow = stack_entry->start - end;
2865 } else {
2866 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
2867 KASSERT(addr >= stack_entry->end, ("foo"));
2868 end = (next_entry != &map->header) ? next_entry->start :
2869 stack_entry->end + stack_entry->avail_ssize;
2870 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
2871 max_grow = end - stack_entry->end;
2872 }
2873
2874 if (grow_amount > stack_entry->avail_ssize) {
2875 vm_map_unlock_read(map);
2876 return (KERN_NO_SPACE);
2877 }
2878
2879 /*
2880 * If there is no longer enough space between the entries nogo, and
2881 * adjust the available space. Note: this should only happen if the
2882 * user has mapped into the stack area after the stack was created,
2883 * and is probably an error.
2884 *
2885 * This also effectively destroys any guard page the user might have
2886 * intended by limiting the stack size.
2887 */
2888 if (grow_amount > max_grow) {
2889 if (vm_map_lock_upgrade(map))
2890 goto Retry;
2891
2892 stack_entry->avail_ssize = max_grow;
2893
2894 vm_map_unlock(map);
2895 return (KERN_NO_SPACE);
2896 }
2897
2898 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
2899
2900 /*
2901 * If this is the main process stack, see if we're over the stack
2902 * limit.
2903 */
2904 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
2905 vm_map_unlock_read(map);
2906 return (KERN_NO_SPACE);
2907 }
2908
2909 /* Round up the grow amount modulo SGROWSIZ */
2910 grow_amount = roundup (grow_amount, sgrowsiz);
2911 if (grow_amount > stack_entry->avail_ssize)
2912 grow_amount = stack_entry->avail_ssize;
2913 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
2914 grow_amount = stacklim - ctob(vm->vm_ssize);
2915 }
2916
2917 /* If we would blow our VMEM resource limit, no go */
2918 if (map->size + grow_amount > vmemlim) {
2919 vm_map_unlock_read(map);
2920 return (KERN_NO_SPACE);
2921 }
2922
2923 if (vm_map_lock_upgrade(map))
2924 goto Retry;
2925
2926 if (stack_entry == next_entry) {
2927 /*
2928 * Growing downward.
2929 */
2930 /* Get the preliminary new entry start value */
2931 addr = stack_entry->start - grow_amount;
2932
2933 /*
2934 * If this puts us into the previous entry, cut back our
2935 * growth to the available space. Also, see the note above.
2936 */
2937 if (addr < end) {
2938 stack_entry->avail_ssize = max_grow;
2939 addr = end;
2940 }
2941
2942 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2943 p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
2944
2945 /* Adjust the available stack space by the amount we grew. */
2946 if (rv == KERN_SUCCESS) {
2947 if (prev_entry != &map->header)
2948 vm_map_clip_end(map, prev_entry, addr);
2949 new_entry = prev_entry->next;
2950 KASSERT(new_entry == stack_entry->prev, ("foo"));
2951 KASSERT(new_entry->end == stack_entry->start, ("foo"));
2952 KASSERT(new_entry->start == addr, ("foo"));
2953 grow_amount = new_entry->end - new_entry->start;
2954 new_entry->avail_ssize = stack_entry->avail_ssize -
2955 grow_amount;
2956 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
2957 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
2958 }
2959 } else {
2960 /*
2961 * Growing upward.
2962 */
2963 addr = stack_entry->end + grow_amount;
2964
2965 /*
2966 * If this puts us into the next entry, cut back our growth
2967 * to the available space. Also, see the note above.
2968 */
2969 if (addr > end) {
2970 stack_entry->avail_ssize = end - stack_entry->end;
2971 addr = end;
2972 }
2973
2974 grow_amount = addr - stack_entry->end;
2975
2976 /* Grow the underlying object if applicable. */
2977 if (stack_entry->object.vm_object == NULL ||
2978 vm_object_coalesce(stack_entry->object.vm_object,
2979 stack_entry->offset,
2980 (vm_size_t)(stack_entry->end - stack_entry->start),
2981 (vm_size_t)grow_amount)) {
2982 map->size += (addr - stack_entry->end);
2983 /* Update the current entry. */
2984 stack_entry->end = addr;
2985 stack_entry->avail_ssize -= grow_amount;
2986 vm_map_entry_resize_free(map, stack_entry);
2987 rv = KERN_SUCCESS;
2988
2989 if (next_entry != &map->header)
2990 vm_map_clip_start(map, next_entry, addr);
2991 } else
2992 rv = KERN_FAILURE;
2993 }
2994
2995 if (rv == KERN_SUCCESS && is_procstack)
2996 vm->vm_ssize += btoc(grow_amount);
2997
2998 vm_map_unlock(map);
2999
3000 /*
3001 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3002 */
3003 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3004 vm_map_wire(map,
3005 (stack_entry == next_entry) ? addr : addr - grow_amount,
3006 (stack_entry == next_entry) ? stack_entry->start : addr,
3007 (p->p_flag & P_SYSTEM)
3008 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3009 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3010 }
3011
3012 return (rv);
3013 }
3014
3015 /*
3016 * Unshare the specified VM space for exec. If other processes are
3017 * mapped to it, then create a new one. The new vmspace is null.
3018 */
3019 int
3020 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3021 {
3022 struct vmspace *oldvmspace = p->p_vmspace;
3023 struct vmspace *newvmspace;
3024
3025 newvmspace = vmspace_alloc(minuser, maxuser);
3026 if (newvmspace == NULL)
3027 return (ENOMEM);
3028 newvmspace->vm_swrss = oldvmspace->vm_swrss;
3029 /*
3030 * This code is written like this for prototype purposes. The
3031 * goal is to avoid running down the vmspace here, but let the
3032 * other process's that are still using the vmspace to finally
3033 * run it down. Even though there is little or no chance of blocking
3034 * here, it is a good idea to keep this form for future mods.
3035 */
3036 PROC_VMSPACE_LOCK(p);
3037 p->p_vmspace = newvmspace;
3038 PROC_VMSPACE_UNLOCK(p);
3039 if (p == curthread->td_proc) /* XXXKSE ? */
3040 pmap_activate(curthread);
3041 vmspace_free(oldvmspace);
3042 return (0);
3043 }
3044
3045 /*
3046 * Unshare the specified VM space for forcing COW. This
3047 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3048 */
3049 int
3050 vmspace_unshare(struct proc *p)
3051 {
3052 struct vmspace *oldvmspace = p->p_vmspace;
3053 struct vmspace *newvmspace;
3054
3055 if (oldvmspace->vm_refcnt == 1)
3056 return (0);
3057 newvmspace = vmspace_fork(oldvmspace);
3058 if (newvmspace == NULL)
3059 return (ENOMEM);
3060 PROC_VMSPACE_LOCK(p);
3061 p->p_vmspace = newvmspace;
3062 PROC_VMSPACE_UNLOCK(p);
3063 if (p == curthread->td_proc) /* XXXKSE ? */
3064 pmap_activate(curthread);
3065 vmspace_free(oldvmspace);
3066 return (0);
3067 }
3068
3069 /*
3070 * vm_map_lookup:
3071 *
3072 * Finds the VM object, offset, and
3073 * protection for a given virtual address in the
3074 * specified map, assuming a page fault of the
3075 * type specified.
3076 *
3077 * Leaves the map in question locked for read; return
3078 * values are guaranteed until a vm_map_lookup_done
3079 * call is performed. Note that the map argument
3080 * is in/out; the returned map must be used in
3081 * the call to vm_map_lookup_done.
3082 *
3083 * A handle (out_entry) is returned for use in
3084 * vm_map_lookup_done, to make that fast.
3085 *
3086 * If a lookup is requested with "write protection"
3087 * specified, the map may be changed to perform virtual
3088 * copying operations, although the data referenced will
3089 * remain the same.
3090 */
3091 int
3092 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
3093 vm_offset_t vaddr,
3094 vm_prot_t fault_typea,
3095 vm_map_entry_t *out_entry, /* OUT */
3096 vm_object_t *object, /* OUT */
3097 vm_pindex_t *pindex, /* OUT */
3098 vm_prot_t *out_prot, /* OUT */
3099 boolean_t *wired) /* OUT */
3100 {
3101 vm_map_entry_t entry;
3102 vm_map_t map = *var_map;
3103 vm_prot_t prot;
3104 vm_prot_t fault_type = fault_typea;
3105
3106 RetryLookup:;
3107 /*
3108 * Lookup the faulting address.
3109 */
3110
3111 vm_map_lock_read(map);
3112 #define RETURN(why) \
3113 { \
3114 vm_map_unlock_read(map); \
3115 return (why); \
3116 }
3117
3118 /*
3119 * If the map has an interesting hint, try it before calling full
3120 * blown lookup routine.
3121 */
3122 entry = map->root;
3123 *out_entry = entry;
3124 if (entry == NULL ||
3125 (vaddr < entry->start) || (vaddr >= entry->end)) {
3126 /*
3127 * Entry was either not a valid hint, or the vaddr was not
3128 * contained in the entry, so do a full lookup.
3129 */
3130 if (!vm_map_lookup_entry(map, vaddr, out_entry))
3131 RETURN(KERN_INVALID_ADDRESS);
3132
3133 entry = *out_entry;
3134 }
3135
3136 /*
3137 * Handle submaps.
3138 */
3139 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3140 vm_map_t old_map = map;
3141
3142 *var_map = map = entry->object.sub_map;
3143 vm_map_unlock_read(old_map);
3144 goto RetryLookup;
3145 }
3146
3147 /*
3148 * Check whether this task is allowed to have this page.
3149 * Note the special case for MAP_ENTRY_COW
3150 * pages with an override. This is to implement a forced
3151 * COW for debuggers.
3152 */
3153 if (fault_type & VM_PROT_OVERRIDE_WRITE)
3154 prot = entry->max_protection;
3155 else
3156 prot = entry->protection;
3157 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3158 if ((fault_type & prot) != fault_type) {
3159 RETURN(KERN_PROTECTION_FAILURE);
3160 }
3161 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3162 (entry->eflags & MAP_ENTRY_COW) &&
3163 (fault_type & VM_PROT_WRITE) &&
3164 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3165 RETURN(KERN_PROTECTION_FAILURE);
3166 }
3167
3168 /*
3169 * If this page is not pageable, we have to get it for all possible
3170 * accesses.
3171 */
3172 *wired = (entry->wired_count != 0);
3173 if (*wired)
3174 prot = fault_type = entry->protection;
3175
3176 /*
3177 * If the entry was copy-on-write, we either ...
3178 */
3179 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3180 /*
3181 * If we want to write the page, we may as well handle that
3182 * now since we've got the map locked.
3183 *
3184 * If we don't need to write the page, we just demote the
3185 * permissions allowed.
3186 */
3187 if (fault_type & VM_PROT_WRITE) {
3188 /*
3189 * Make a new object, and place it in the object
3190 * chain. Note that no new references have appeared
3191 * -- one just moved from the map to the new
3192 * object.
3193 */
3194 if (vm_map_lock_upgrade(map))
3195 goto RetryLookup;
3196
3197 vm_object_shadow(
3198 &entry->object.vm_object,
3199 &entry->offset,
3200 atop(entry->end - entry->start));
3201 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3202
3203 vm_map_lock_downgrade(map);
3204 } else {
3205 /*
3206 * We're attempting to read a copy-on-write page --
3207 * don't allow writes.
3208 */
3209 prot &= ~VM_PROT_WRITE;
3210 }
3211 }
3212
3213 /*
3214 * Create an object if necessary.
3215 */
3216 if (entry->object.vm_object == NULL &&
3217 !map->system_map) {
3218 if (vm_map_lock_upgrade(map))
3219 goto RetryLookup;
3220 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3221 atop(entry->end - entry->start));
3222 entry->offset = 0;
3223 vm_map_lock_downgrade(map);
3224 }
3225
3226 /*
3227 * Return the object/offset from this entry. If the entry was
3228 * copy-on-write or empty, it has been fixed up.
3229 */
3230 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3231 *object = entry->object.vm_object;
3232
3233 *out_prot = prot;
3234 return (KERN_SUCCESS);
3235
3236 #undef RETURN
3237 }
3238
3239 /*
3240 * vm_map_lookup_locked:
3241 *
3242 * Lookup the faulting address. A version of vm_map_lookup that returns
3243 * KERN_FAILURE instead of blocking on map lock or memory allocation.
3244 */
3245 int
3246 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */
3247 vm_offset_t vaddr,
3248 vm_prot_t fault_typea,
3249 vm_map_entry_t *out_entry, /* OUT */
3250 vm_object_t *object, /* OUT */
3251 vm_pindex_t *pindex, /* OUT */
3252 vm_prot_t *out_prot, /* OUT */
3253 boolean_t *wired) /* OUT */
3254 {
3255 vm_map_entry_t entry;
3256 vm_map_t map = *var_map;
3257 vm_prot_t prot;
3258 vm_prot_t fault_type = fault_typea;
3259
3260 /*
3261 * If the map has an interesting hint, try it before calling full
3262 * blown lookup routine.
3263 */
3264 entry = map->root;
3265 *out_entry = entry;
3266 if (entry == NULL ||
3267 (vaddr < entry->start) || (vaddr >= entry->end)) {
3268 /*
3269 * Entry was either not a valid hint, or the vaddr was not
3270 * contained in the entry, so do a full lookup.
3271 */
3272 if (!vm_map_lookup_entry(map, vaddr, out_entry))
3273 return (KERN_INVALID_ADDRESS);
3274
3275 entry = *out_entry;
3276 }
3277
3278 /*
3279 * Fail if the entry refers to a submap.
3280 */
3281 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3282 return (KERN_FAILURE);
3283
3284 /*
3285 * Check whether this task is allowed to have this page.
3286 * Note the special case for MAP_ENTRY_COW
3287 * pages with an override. This is to implement a forced
3288 * COW for debuggers.
3289 */
3290 if (fault_type & VM_PROT_OVERRIDE_WRITE)
3291 prot = entry->max_protection;
3292 else
3293 prot = entry->protection;
3294 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3295 if ((fault_type & prot) != fault_type)
3296 return (KERN_PROTECTION_FAILURE);
3297 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3298 (entry->eflags & MAP_ENTRY_COW) &&
3299 (fault_type & VM_PROT_WRITE) &&
3300 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0)
3301 return (KERN_PROTECTION_FAILURE);
3302
3303 /*
3304 * If this page is not pageable, we have to get it for all possible
3305 * accesses.
3306 */
3307 *wired = (entry->wired_count != 0);
3308 if (*wired)
3309 prot = fault_type = entry->protection;
3310
3311 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3312 /*
3313 * Fail if the entry was copy-on-write for a write fault.
3314 */
3315 if (fault_type & VM_PROT_WRITE)
3316 return (KERN_FAILURE);
3317 /*
3318 * We're attempting to read a copy-on-write page --
3319 * don't allow writes.
3320 */
3321 prot &= ~VM_PROT_WRITE;
3322 }
3323
3324 /*
3325 * Fail if an object should be created.
3326 */
3327 if (entry->object.vm_object == NULL && !map->system_map)
3328 return (KERN_FAILURE);
3329
3330 /*
3331 * Return the object/offset from this entry. If the entry was
3332 * copy-on-write or empty, it has been fixed up.
3333 */
3334 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3335 *object = entry->object.vm_object;
3336
3337 *out_prot = prot;
3338 return (KERN_SUCCESS);
3339 }
3340
3341 /*
3342 * vm_map_lookup_done:
3343 *
3344 * Releases locks acquired by a vm_map_lookup
3345 * (according to the handle returned by that lookup).
3346 */
3347 void
3348 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3349 {
3350 /*
3351 * Unlock the main-level map
3352 */
3353 vm_map_unlock_read(map);
3354 }
3355
3356 #include "opt_ddb.h"
3357 #ifdef DDB
3358 #include <sys/kernel.h>
3359
3360 #include <ddb/ddb.h>
3361
3362 /*
3363 * vm_map_print: [ debug ]
3364 */
3365 DB_SHOW_COMMAND(map, vm_map_print)
3366 {
3367 static int nlines;
3368 /* XXX convert args. */
3369 vm_map_t map = (vm_map_t)addr;
3370 boolean_t full = have_addr;
3371
3372 vm_map_entry_t entry;
3373
3374 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3375 (void *)map,
3376 (void *)map->pmap, map->nentries, map->timestamp);
3377 nlines++;
3378
3379 if (!full && db_indent)
3380 return;
3381
3382 db_indent += 2;
3383 for (entry = map->header.next; entry != &map->header;
3384 entry = entry->next) {
3385 db_iprintf("map entry %p: start=%p, end=%p\n",
3386 (void *)entry, (void *)entry->start, (void *)entry->end);
3387 nlines++;
3388 {
3389 static char *inheritance_name[4] =
3390 {"share", "copy", "none", "donate_copy"};
3391
3392 db_iprintf(" prot=%x/%x/%s",
3393 entry->protection,
3394 entry->max_protection,
3395 inheritance_name[(int)(unsigned char)entry->inheritance]);
3396 if (entry->wired_count != 0)
3397 db_printf(", wired");
3398 }
3399 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3400 db_printf(", share=%p, offset=0x%jx\n",
3401 (void *)entry->object.sub_map,
3402 (uintmax_t)entry->offset);
3403 nlines++;
3404 if ((entry->prev == &map->header) ||
3405 (entry->prev->object.sub_map !=
3406 entry->object.sub_map)) {
3407 db_indent += 2;
3408 vm_map_print((db_expr_t)(intptr_t)
3409 entry->object.sub_map,
3410 full, 0, (char *)0);
3411 db_indent -= 2;
3412 }
3413 } else {
3414 db_printf(", object=%p, offset=0x%jx",
3415 (void *)entry->object.vm_object,
3416 (uintmax_t)entry->offset);
3417 if (entry->eflags & MAP_ENTRY_COW)
3418 db_printf(", copy (%s)",
3419 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3420 db_printf("\n");
3421 nlines++;
3422
3423 if ((entry->prev == &map->header) ||
3424 (entry->prev->object.vm_object !=
3425 entry->object.vm_object)) {
3426 db_indent += 2;
3427 vm_object_print((db_expr_t)(intptr_t)
3428 entry->object.vm_object,
3429 full, 0, (char *)0);
3430 nlines += 4;
3431 db_indent -= 2;
3432 }
3433 }
3434 }
3435 db_indent -= 2;
3436 if (db_indent == 0)
3437 nlines = 0;
3438 }
3439
3440
3441 DB_SHOW_COMMAND(procvm, procvm)
3442 {
3443 struct proc *p;
3444
3445 if (have_addr) {
3446 p = (struct proc *) addr;
3447 } else {
3448 p = curproc;
3449 }
3450
3451 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3452 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3453 (void *)vmspace_pmap(p->p_vmspace));
3454
3455 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3456 }
3457
3458 #endif /* DDB */
Cache object: e1eed8452fd83e7bb7d153da126a0c62
|