The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_map.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 /*
   62  *      Virtual memory mapping module.
   63  */
   64 
   65 #include <sys/cdefs.h>
   66 __FBSDID("$FreeBSD$");
   67 
   68 #include <sys/param.h>
   69 #include <sys/systm.h>
   70 #include <sys/kernel.h>
   71 #include <sys/ktr.h>
   72 #include <sys/lock.h>
   73 #include <sys/mutex.h>
   74 #include <sys/proc.h>
   75 #include <sys/vmmeter.h>
   76 #include <sys/mman.h>
   77 #include <sys/vnode.h>
   78 #include <sys/racct.h>
   79 #include <sys/resourcevar.h>
   80 #include <sys/file.h>
   81 #include <sys/sysctl.h>
   82 #include <sys/sysent.h>
   83 #include <sys/shm.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_param.h>
   87 #include <vm/pmap.h>
   88 #include <vm/vm_map.h>
   89 #include <vm/vm_page.h>
   90 #include <vm/vm_object.h>
   91 #include <vm/vm_pager.h>
   92 #include <vm/vm_kern.h>
   93 #include <vm/vm_extern.h>
   94 #include <vm/vnode_pager.h>
   95 #include <vm/swap_pager.h>
   96 #include <vm/uma.h>
   97 
   98 /*
   99  *      Virtual memory maps provide for the mapping, protection,
  100  *      and sharing of virtual memory objects.  In addition,
  101  *      this module provides for an efficient virtual copy of
  102  *      memory from one map to another.
  103  *
  104  *      Synchronization is required prior to most operations.
  105  *
  106  *      Maps consist of an ordered doubly-linked list of simple
  107  *      entries; a self-adjusting binary search tree of these
  108  *      entries is used to speed up lookups.
  109  *
  110  *      Since portions of maps are specified by start/end addresses,
  111  *      which may not align with existing map entries, all
  112  *      routines merely "clip" entries to these start/end values.
  113  *      [That is, an entry is split into two, bordering at a
  114  *      start or end value.]  Note that these clippings may not
  115  *      always be necessary (as the two resulting entries are then
  116  *      not changed); however, the clipping is done for convenience.
  117  *
  118  *      As mentioned above, virtual copy operations are performed
  119  *      by copying VM object references from one map to
  120  *      another, and then marking both regions as copy-on-write.
  121  */
  122 
  123 static struct mtx map_sleep_mtx;
  124 static uma_zone_t mapentzone;
  125 static uma_zone_t kmapentzone;
  126 static uma_zone_t mapzone;
  127 static uma_zone_t vmspace_zone;
  128 static struct vm_object kmapentobj;
  129 static int vmspace_zinit(void *mem, int size, int flags);
  130 static void vmspace_zfini(void *mem, int size);
  131 static int vm_map_zinit(void *mem, int ize, int flags);
  132 static void vm_map_zfini(void *mem, int size);
  133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
  134     vm_offset_t max);
  135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
  136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
  137 #ifdef INVARIANTS
  138 static void vm_map_zdtor(void *mem, int size, void *arg);
  139 static void vmspace_zdtor(void *mem, int size, void *arg);
  140 #endif
  141 
  142 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
  143     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
  144      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
  145 
  146 /* 
  147  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
  148  * stable.
  149  */
  150 #define PROC_VMSPACE_LOCK(p) do { } while (0)
  151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
  152 
  153 /*
  154  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
  155  *
  156  *      Asserts that the starting and ending region
  157  *      addresses fall within the valid range of the map.
  158  */
  159 #define VM_MAP_RANGE_CHECK(map, start, end)             \
  160                 {                                       \
  161                 if (start < vm_map_min(map))            \
  162                         start = vm_map_min(map);        \
  163                 if (end > vm_map_max(map))              \
  164                         end = vm_map_max(map);          \
  165                 if (start > end)                        \
  166                         start = end;                    \
  167                 }
  168 
  169 /*
  170  *      vm_map_startup:
  171  *
  172  *      Initialize the vm_map module.  Must be called before
  173  *      any other vm_map routines.
  174  *
  175  *      Map and entry structures are allocated from the general
  176  *      purpose memory pool with some exceptions:
  177  *
  178  *      - The kernel map and kmem submap are allocated statically.
  179  *      - Kernel map entries are allocated out of a static pool.
  180  *
  181  *      These restrictions are necessary since malloc() uses the
  182  *      maps and requires map entries.
  183  */
  184 
  185 void
  186 vm_map_startup(void)
  187 {
  188         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
  189         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
  190 #ifdef INVARIANTS
  191             vm_map_zdtor,
  192 #else
  193             NULL,
  194 #endif
  195             vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  196         uma_prealloc(mapzone, MAX_KMAP);
  197         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
  198             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
  199             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
  200         uma_prealloc(kmapentzone, MAX_KMAPENT);
  201         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
  202             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  203 }
  204 
  205 static void
  206 vmspace_zfini(void *mem, int size)
  207 {
  208         struct vmspace *vm;
  209 
  210         vm = (struct vmspace *)mem;
  211         vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
  212 }
  213 
  214 static int
  215 vmspace_zinit(void *mem, int size, int flags)
  216 {
  217         struct vmspace *vm;
  218 
  219         vm = (struct vmspace *)mem;
  220 
  221         vm->vm_map.pmap = NULL;
  222         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
  223         return (0);
  224 }
  225 
  226 static void
  227 vm_map_zfini(void *mem, int size)
  228 {
  229         vm_map_t map;
  230 
  231         map = (vm_map_t)mem;
  232         mtx_destroy(&map->system_mtx);
  233         sx_destroy(&map->lock);
  234 }
  235 
  236 static int
  237 vm_map_zinit(void *mem, int size, int flags)
  238 {
  239         vm_map_t map;
  240 
  241         map = (vm_map_t)mem;
  242         map->nentries = 0;
  243         map->size = 0;
  244         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
  245         sx_init(&map->lock, "vm map (user)");
  246         return (0);
  247 }
  248 
  249 #ifdef INVARIANTS
  250 static void
  251 vmspace_zdtor(void *mem, int size, void *arg)
  252 {
  253         struct vmspace *vm;
  254 
  255         vm = (struct vmspace *)mem;
  256 
  257         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
  258 }
  259 static void
  260 vm_map_zdtor(void *mem, int size, void *arg)
  261 {
  262         vm_map_t map;
  263 
  264         map = (vm_map_t)mem;
  265         KASSERT(map->nentries == 0,
  266             ("map %p nentries == %d on free.",
  267             map, map->nentries));
  268         KASSERT(map->size == 0,
  269             ("map %p size == %lu on free.",
  270             map, (unsigned long)map->size));
  271 }
  272 #endif  /* INVARIANTS */
  273 
  274 /*
  275  * Allocate a vmspace structure, including a vm_map and pmap,
  276  * and initialize those structures.  The refcnt is set to 1.
  277  */
  278 struct vmspace *
  279 vmspace_alloc(min, max)
  280         vm_offset_t min, max;
  281 {
  282         struct vmspace *vm;
  283 
  284         vm = uma_zalloc(vmspace_zone, M_WAITOK);
  285         if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
  286                 uma_zfree(vmspace_zone, vm);
  287                 return (NULL);
  288         }
  289         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
  290         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
  291         vm->vm_refcnt = 1;
  292         vm->vm_shm = NULL;
  293         vm->vm_swrss = 0;
  294         vm->vm_tsize = 0;
  295         vm->vm_dsize = 0;
  296         vm->vm_ssize = 0;
  297         vm->vm_taddr = 0;
  298         vm->vm_daddr = 0;
  299         vm->vm_maxsaddr = 0;
  300         return (vm);
  301 }
  302 
  303 void
  304 vm_init2(void)
  305 {
  306         uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
  307             (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
  308              maxproc * 2 + maxfiles);
  309         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
  310 #ifdef INVARIANTS
  311             vmspace_zdtor,
  312 #else
  313             NULL,
  314 #endif
  315             vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  316 }
  317 
  318 static void
  319 vmspace_container_reset(struct proc *p)
  320 {
  321 
  322 #ifdef RACCT
  323         PROC_LOCK(p);
  324         racct_set(p, RACCT_DATA, 0);
  325         racct_set(p, RACCT_STACK, 0);
  326         racct_set(p, RACCT_RSS, 0);
  327         racct_set(p, RACCT_MEMLOCK, 0);
  328         racct_set(p, RACCT_VMEM, 0);
  329         PROC_UNLOCK(p);
  330 #endif
  331 }
  332 
  333 static inline void
  334 vmspace_dofree(struct vmspace *vm)
  335 {
  336 
  337         CTR1(KTR_VM, "vmspace_free: %p", vm);
  338 
  339         /*
  340          * Make sure any SysV shm is freed, it might not have been in
  341          * exit1().
  342          */
  343         shmexit(vm);
  344 
  345         /*
  346          * Lock the map, to wait out all other references to it.
  347          * Delete all of the mappings and pages they hold, then call
  348          * the pmap module to reclaim anything left.
  349          */
  350         (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
  351             vm->vm_map.max_offset);
  352 
  353         pmap_release(vmspace_pmap(vm));
  354         vm->vm_map.pmap = NULL;
  355         uma_zfree(vmspace_zone, vm);
  356 }
  357 
  358 void
  359 vmspace_free(struct vmspace *vm)
  360 {
  361 
  362         if (vm->vm_refcnt == 0)
  363                 panic("vmspace_free: attempt to free already freed vmspace");
  364 
  365         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
  366                 vmspace_dofree(vm);
  367 }
  368 
  369 void
  370 vmspace_exitfree(struct proc *p)
  371 {
  372         struct vmspace *vm;
  373 
  374         PROC_VMSPACE_LOCK(p);
  375         vm = p->p_vmspace;
  376         p->p_vmspace = NULL;
  377         PROC_VMSPACE_UNLOCK(p);
  378         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
  379         vmspace_free(vm);
  380 }
  381 
  382 void
  383 vmspace_exit(struct thread *td)
  384 {
  385         int refcnt;
  386         struct vmspace *vm;
  387         struct proc *p;
  388 
  389         /*
  390          * Release user portion of address space.
  391          * This releases references to vnodes,
  392          * which could cause I/O if the file has been unlinked.
  393          * Need to do this early enough that we can still sleep.
  394          *
  395          * The last exiting process to reach this point releases as
  396          * much of the environment as it can. vmspace_dofree() is the
  397          * slower fallback in case another process had a temporary
  398          * reference to the vmspace.
  399          */
  400 
  401         p = td->td_proc;
  402         vm = p->p_vmspace;
  403         atomic_add_int(&vmspace0.vm_refcnt, 1);
  404         do {
  405                 refcnt = vm->vm_refcnt;
  406                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
  407                         /* Switch now since other proc might free vmspace */
  408                         PROC_VMSPACE_LOCK(p);
  409                         p->p_vmspace = &vmspace0;
  410                         PROC_VMSPACE_UNLOCK(p);
  411                         pmap_activate(td);
  412                 }
  413         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
  414         if (refcnt == 1) {
  415                 if (p->p_vmspace != vm) {
  416                         /* vmspace not yet freed, switch back */
  417                         PROC_VMSPACE_LOCK(p);
  418                         p->p_vmspace = vm;
  419                         PROC_VMSPACE_UNLOCK(p);
  420                         pmap_activate(td);
  421                 }
  422                 pmap_remove_pages(vmspace_pmap(vm));
  423                 /* Switch now since this proc will free vmspace */
  424                 PROC_VMSPACE_LOCK(p);
  425                 p->p_vmspace = &vmspace0;
  426                 PROC_VMSPACE_UNLOCK(p);
  427                 pmap_activate(td);
  428                 vmspace_dofree(vm);
  429         }
  430         vmspace_container_reset(p);
  431 }
  432 
  433 /* Acquire reference to vmspace owned by another process. */
  434 
  435 struct vmspace *
  436 vmspace_acquire_ref(struct proc *p)
  437 {
  438         struct vmspace *vm;
  439         int refcnt;
  440 
  441         PROC_VMSPACE_LOCK(p);
  442         vm = p->p_vmspace;
  443         if (vm == NULL) {
  444                 PROC_VMSPACE_UNLOCK(p);
  445                 return (NULL);
  446         }
  447         do {
  448                 refcnt = vm->vm_refcnt;
  449                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
  450                         PROC_VMSPACE_UNLOCK(p);
  451                         return (NULL);
  452                 }
  453         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
  454         if (vm != p->p_vmspace) {
  455                 PROC_VMSPACE_UNLOCK(p);
  456                 vmspace_free(vm);
  457                 return (NULL);
  458         }
  459         PROC_VMSPACE_UNLOCK(p);
  460         return (vm);
  461 }
  462 
  463 void
  464 _vm_map_lock(vm_map_t map, const char *file, int line)
  465 {
  466 
  467         if (map->system_map)
  468                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
  469         else
  470                 sx_xlock_(&map->lock, file, line);
  471         map->timestamp++;
  472 }
  473 
  474 static void
  475 vm_map_process_deferred(void)
  476 {
  477         struct thread *td;
  478         vm_map_entry_t entry, next;
  479         vm_object_t object;
  480 
  481         td = curthread;
  482         entry = td->td_map_def_user;
  483         td->td_map_def_user = NULL;
  484         while (entry != NULL) {
  485                 next = entry->next;
  486                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
  487                         /*
  488                          * Decrement the object's writemappings and
  489                          * possibly the vnode's v_writecount.
  490                          */
  491                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
  492                             ("Submap with writecount"));
  493                         object = entry->object.vm_object;
  494                         KASSERT(object != NULL, ("No object for writecount"));
  495                         vnode_pager_release_writecount(object, entry->start,
  496                             entry->end);
  497                 }
  498                 vm_map_entry_deallocate(entry, FALSE);
  499                 entry = next;
  500         }
  501 }
  502 
  503 void
  504 _vm_map_unlock(vm_map_t map, const char *file, int line)
  505 {
  506 
  507         if (map->system_map)
  508                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
  509         else {
  510                 sx_xunlock_(&map->lock, file, line);
  511                 vm_map_process_deferred();
  512         }
  513 }
  514 
  515 void
  516 _vm_map_lock_read(vm_map_t map, const char *file, int line)
  517 {
  518 
  519         if (map->system_map)
  520                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
  521         else
  522                 sx_slock_(&map->lock, file, line);
  523 }
  524 
  525 void
  526 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
  527 {
  528 
  529         if (map->system_map)
  530                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
  531         else {
  532                 sx_sunlock_(&map->lock, file, line);
  533                 vm_map_process_deferred();
  534         }
  535 }
  536 
  537 int
  538 _vm_map_trylock(vm_map_t map, const char *file, int line)
  539 {
  540         int error;
  541 
  542         error = map->system_map ?
  543             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
  544             !sx_try_xlock_(&map->lock, file, line);
  545         if (error == 0)
  546                 map->timestamp++;
  547         return (error == 0);
  548 }
  549 
  550 int
  551 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
  552 {
  553         int error;
  554 
  555         error = map->system_map ?
  556             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
  557             !sx_try_slock_(&map->lock, file, line);
  558         return (error == 0);
  559 }
  560 
  561 /*
  562  *      _vm_map_lock_upgrade:   [ internal use only ]
  563  *
  564  *      Tries to upgrade a read (shared) lock on the specified map to a write
  565  *      (exclusive) lock.  Returns the value "" if the upgrade succeeds and a
  566  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
  567  *      returned without a read or write lock held.
  568  *
  569  *      Requires that the map be read locked.
  570  */
  571 int
  572 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
  573 {
  574         unsigned int last_timestamp;
  575 
  576         if (map->system_map) {
  577                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
  578         } else {
  579                 if (!sx_try_upgrade_(&map->lock, file, line)) {
  580                         last_timestamp = map->timestamp;
  581                         sx_sunlock_(&map->lock, file, line);
  582                         vm_map_process_deferred();
  583                         /*
  584                          * If the map's timestamp does not change while the
  585                          * map is unlocked, then the upgrade succeeds.
  586                          */
  587                         sx_xlock_(&map->lock, file, line);
  588                         if (last_timestamp != map->timestamp) {
  589                                 sx_xunlock_(&map->lock, file, line);
  590                                 return (1);
  591                         }
  592                 }
  593         }
  594         map->timestamp++;
  595         return (0);
  596 }
  597 
  598 void
  599 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
  600 {
  601 
  602         if (map->system_map) {
  603                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
  604         } else
  605                 sx_downgrade_(&map->lock, file, line);
  606 }
  607 
  608 /*
  609  *      vm_map_locked:
  610  *
  611  *      Returns a non-zero value if the caller holds a write (exclusive) lock
  612  *      on the specified map and the value "" otherwise.
  613  */
  614 int
  615 vm_map_locked(vm_map_t map)
  616 {
  617 
  618         if (map->system_map)
  619                 return (mtx_owned(&map->system_mtx));
  620         else
  621                 return (sx_xlocked(&map->lock));
  622 }
  623 
  624 #ifdef INVARIANTS
  625 static void
  626 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
  627 {
  628 
  629         if (map->system_map)
  630                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
  631         else
  632                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
  633 }
  634 
  635 #define VM_MAP_ASSERT_LOCKED(map) \
  636     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
  637 #else
  638 #define VM_MAP_ASSERT_LOCKED(map)
  639 #endif
  640 
  641 /*
  642  *      _vm_map_unlock_and_wait:
  643  *
  644  *      Atomically releases the lock on the specified map and puts the calling
  645  *      thread to sleep.  The calling thread will remain asleep until either
  646  *      vm_map_wakeup() is performed on the map or the specified timeout is
  647  *      exceeded.
  648  *
  649  *      WARNING!  This function does not perform deferred deallocations of
  650  *      objects and map entries.  Therefore, the calling thread is expected to
  651  *      reacquire the map lock after reawakening and later perform an ordinary
  652  *      unlock operation, such as vm_map_unlock(), before completing its
  653  *      operation on the map.
  654  */
  655 int
  656 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
  657 {
  658 
  659         mtx_lock(&map_sleep_mtx);
  660         if (map->system_map)
  661                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
  662         else
  663                 sx_xunlock_(&map->lock, file, line);
  664         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
  665             timo));
  666 }
  667 
  668 /*
  669  *      vm_map_wakeup:
  670  *
  671  *      Awaken any threads that have slept on the map using
  672  *      vm_map_unlock_and_wait().
  673  */
  674 void
  675 vm_map_wakeup(vm_map_t map)
  676 {
  677 
  678         /*
  679          * Acquire and release map_sleep_mtx to prevent a wakeup()
  680          * from being performed (and lost) between the map unlock
  681          * and the msleep() in _vm_map_unlock_and_wait().
  682          */
  683         mtx_lock(&map_sleep_mtx);
  684         mtx_unlock(&map_sleep_mtx);
  685         wakeup(&map->root);
  686 }
  687 
  688 void
  689 vm_map_busy(vm_map_t map)
  690 {
  691 
  692         VM_MAP_ASSERT_LOCKED(map);
  693         map->busy++;
  694 }
  695 
  696 void
  697 vm_map_unbusy(vm_map_t map)
  698 {
  699 
  700         VM_MAP_ASSERT_LOCKED(map);
  701         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
  702         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
  703                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
  704                 wakeup(&map->busy);
  705         }
  706 }
  707 
  708 void 
  709 vm_map_wait_busy(vm_map_t map)
  710 {
  711 
  712         VM_MAP_ASSERT_LOCKED(map);
  713         while (map->busy) {
  714                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
  715                 if (map->system_map)
  716                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
  717                 else
  718                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
  719         }
  720         map->timestamp++;
  721 }
  722 
  723 long
  724 vmspace_resident_count(struct vmspace *vmspace)
  725 {
  726         return pmap_resident_count(vmspace_pmap(vmspace));
  727 }
  728 
  729 /*
  730  *      vm_map_create:
  731  *
  732  *      Creates and returns a new empty VM map with
  733  *      the given physical map structure, and having
  734  *      the given lower and upper address bounds.
  735  */
  736 vm_map_t
  737 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
  738 {
  739         vm_map_t result;
  740 
  741         result = uma_zalloc(mapzone, M_WAITOK);
  742         CTR1(KTR_VM, "vm_map_create: %p", result);
  743         _vm_map_init(result, pmap, min, max);
  744         return (result);
  745 }
  746 
  747 /*
  748  * Initialize an existing vm_map structure
  749  * such as that in the vmspace structure.
  750  */
  751 static void
  752 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
  753 {
  754 
  755         map->header.next = map->header.prev = &map->header;
  756         map->needs_wakeup = FALSE;
  757         map->system_map = 0;
  758         map->pmap = pmap;
  759         map->min_offset = min;
  760         map->max_offset = max;
  761         map->flags = 0;
  762         map->root = NULL;
  763         map->timestamp = 0;
  764         map->busy = 0;
  765 }
  766 
  767 void
  768 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
  769 {
  770 
  771         _vm_map_init(map, pmap, min, max);
  772         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
  773         sx_init(&map->lock, "user map");
  774 }
  775 
  776 /*
  777  *      vm_map_entry_dispose:   [ internal use only ]
  778  *
  779  *      Inverse of vm_map_entry_create.
  780  */
  781 static void
  782 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
  783 {
  784         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
  785 }
  786 
  787 /*
  788  *      vm_map_entry_create:    [ internal use only ]
  789  *
  790  *      Allocates a VM map entry for insertion.
  791  *      No entry fields are filled in.
  792  */
  793 static vm_map_entry_t
  794 vm_map_entry_create(vm_map_t map)
  795 {
  796         vm_map_entry_t new_entry;
  797 
  798         if (map->system_map)
  799                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
  800         else
  801                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
  802         if (new_entry == NULL)
  803                 panic("vm_map_entry_create: kernel resources exhausted");
  804         return (new_entry);
  805 }
  806 
  807 /*
  808  *      vm_map_entry_set_behavior:
  809  *
  810  *      Set the expected access behavior, either normal, random, or
  811  *      sequential.
  812  */
  813 static inline void
  814 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
  815 {
  816         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
  817             (behavior & MAP_ENTRY_BEHAV_MASK);
  818 }
  819 
  820 /*
  821  *      vm_map_entry_set_max_free:
  822  *
  823  *      Set the max_free field in a vm_map_entry.
  824  */
  825 static inline void
  826 vm_map_entry_set_max_free(vm_map_entry_t entry)
  827 {
  828 
  829         entry->max_free = entry->adj_free;
  830         if (entry->left != NULL && entry->left->max_free > entry->max_free)
  831                 entry->max_free = entry->left->max_free;
  832         if (entry->right != NULL && entry->right->max_free > entry->max_free)
  833                 entry->max_free = entry->right->max_free;
  834 }
  835 
  836 /*
  837  *      vm_map_entry_splay:
  838  *
  839  *      The Sleator and Tarjan top-down splay algorithm with the
  840  *      following variation.  Max_free must be computed bottom-up, so
  841  *      on the downward pass, maintain the left and right spines in
  842  *      reverse order.  Then, make a second pass up each side to fix
  843  *      the pointers and compute max_free.  The time bound is O(log n)
  844  *      amortized.
  845  *
  846  *      The new root is the vm_map_entry containing "addr", or else an
  847  *      adjacent entry (lower or higher) if addr is not in the tree.
  848  *
  849  *      The map must be locked, and leaves it so.
  850  *
  851  *      Returns: the new root.
  852  */
  853 static vm_map_entry_t
  854 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
  855 {
  856         vm_map_entry_t llist, rlist;
  857         vm_map_entry_t ltree, rtree;
  858         vm_map_entry_t y;
  859 
  860         /* Special case of empty tree. */
  861         if (root == NULL)
  862                 return (root);
  863 
  864         /*
  865          * Pass One: Splay down the tree until we find addr or a NULL
  866          * pointer where addr would go.  llist and rlist are the two
  867          * sides in reverse order (bottom-up), with llist linked by
  868          * the right pointer and rlist linked by the left pointer in
  869          * the vm_map_entry.  Wait until Pass Two to set max_free on
  870          * the two spines.
  871          */
  872         llist = NULL;
  873         rlist = NULL;
  874         for (;;) {
  875                 /* root is never NULL in here. */
  876                 if (addr < root->start) {
  877                         y = root->left;
  878                         if (y == NULL)
  879                                 break;
  880                         if (addr < y->start && y->left != NULL) {
  881                                 /* Rotate right and put y on rlist. */
  882                                 root->left = y->right;
  883                                 y->right = root;
  884                                 vm_map_entry_set_max_free(root);
  885                                 root = y->left;
  886                                 y->left = rlist;
  887                                 rlist = y;
  888                         } else {
  889                                 /* Put root on rlist. */
  890                                 root->left = rlist;
  891                                 rlist = root;
  892                                 root = y;
  893                         }
  894                 } else if (addr >= root->end) {
  895                         y = root->right;
  896                         if (y == NULL)
  897                                 break;
  898                         if (addr >= y->end && y->right != NULL) {
  899                                 /* Rotate left and put y on llist. */
  900                                 root->right = y->left;
  901                                 y->left = root;
  902                                 vm_map_entry_set_max_free(root);
  903                                 root = y->right;
  904                                 y->right = llist;
  905                                 llist = y;
  906                         } else {
  907                                 /* Put root on llist. */
  908                                 root->right = llist;
  909                                 llist = root;
  910                                 root = y;
  911                         }
  912                 } else
  913                         break;
  914         }
  915 
  916         /*
  917          * Pass Two: Walk back up the two spines, flip the pointers
  918          * and set max_free.  The subtrees of the root go at the
  919          * bottom of llist and rlist.
  920          */
  921         ltree = root->left;
  922         while (llist != NULL) {
  923                 y = llist->right;
  924                 llist->right = ltree;
  925                 vm_map_entry_set_max_free(llist);
  926                 ltree = llist;
  927                 llist = y;
  928         }
  929         rtree = root->right;
  930         while (rlist != NULL) {
  931                 y = rlist->left;
  932                 rlist->left = rtree;
  933                 vm_map_entry_set_max_free(rlist);
  934                 rtree = rlist;
  935                 rlist = y;
  936         }
  937 
  938         /*
  939          * Final assembly: add ltree and rtree as subtrees of root.
  940          */
  941         root->left = ltree;
  942         root->right = rtree;
  943         vm_map_entry_set_max_free(root);
  944 
  945         return (root);
  946 }
  947 
  948 /*
  949  *      vm_map_entry_{un,}link:
  950  *
  951  *      Insert/remove entries from maps.
  952  */
  953 static void
  954 vm_map_entry_link(vm_map_t map,
  955                   vm_map_entry_t after_where,
  956                   vm_map_entry_t entry)
  957 {
  958 
  959         CTR4(KTR_VM,
  960             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
  961             map->nentries, entry, after_where);
  962         VM_MAP_ASSERT_LOCKED(map);
  963         map->nentries++;
  964         entry->prev = after_where;
  965         entry->next = after_where->next;
  966         entry->next->prev = entry;
  967         after_where->next = entry;
  968 
  969         if (after_where != &map->header) {
  970                 if (after_where != map->root)
  971                         vm_map_entry_splay(after_where->start, map->root);
  972                 entry->right = after_where->right;
  973                 entry->left = after_where;
  974                 after_where->right = NULL;
  975                 after_where->adj_free = entry->start - after_where->end;
  976                 vm_map_entry_set_max_free(after_where);
  977         } else {
  978                 entry->right = map->root;
  979                 entry->left = NULL;
  980         }
  981         entry->adj_free = (entry->next == &map->header ? map->max_offset :
  982             entry->next->start) - entry->end;
  983         vm_map_entry_set_max_free(entry);
  984         map->root = entry;
  985 }
  986 
  987 static void
  988 vm_map_entry_unlink(vm_map_t map,
  989                     vm_map_entry_t entry)
  990 {
  991         vm_map_entry_t next, prev, root;
  992 
  993         VM_MAP_ASSERT_LOCKED(map);
  994         if (entry != map->root)
  995                 vm_map_entry_splay(entry->start, map->root);
  996         if (entry->left == NULL)
  997                 root = entry->right;
  998         else {
  999                 root = vm_map_entry_splay(entry->start, entry->left);
 1000                 root->right = entry->right;
 1001                 root->adj_free = (entry->next == &map->header ? map->max_offset :
 1002                     entry->next->start) - root->end;
 1003                 vm_map_entry_set_max_free(root);
 1004         }
 1005         map->root = root;
 1006 
 1007         prev = entry->prev;
 1008         next = entry->next;
 1009         next->prev = prev;
 1010         prev->next = next;
 1011         map->nentries--;
 1012         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
 1013             map->nentries, entry);
 1014 }
 1015 
 1016 /*
 1017  *      vm_map_entry_resize_free:
 1018  *
 1019  *      Recompute the amount of free space following a vm_map_entry
 1020  *      and propagate that value up the tree.  Call this function after
 1021  *      resizing a map entry in-place, that is, without a call to
 1022  *      vm_map_entry_link() or _unlink().
 1023  *
 1024  *      The map must be locked, and leaves it so.
 1025  */
 1026 static void
 1027 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
 1028 {
 1029 
 1030         /*
 1031          * Using splay trees without parent pointers, propagating
 1032          * max_free up the tree is done by moving the entry to the
 1033          * root and making the change there.
 1034          */
 1035         if (entry != map->root)
 1036                 map->root = vm_map_entry_splay(entry->start, map->root);
 1037 
 1038         entry->adj_free = (entry->next == &map->header ? map->max_offset :
 1039             entry->next->start) - entry->end;
 1040         vm_map_entry_set_max_free(entry);
 1041 }
 1042 
 1043 /*
 1044  *      vm_map_lookup_entry:    [ internal use only ]
 1045  *
 1046  *      Finds the map entry containing (or
 1047  *      immediately preceding) the specified address
 1048  *      in the given map; the entry is returned
 1049  *      in the "entry" parameter.  The boolean
 1050  *      result indicates whether the address is
 1051  *      actually contained in the map.
 1052  */
 1053 boolean_t
 1054 vm_map_lookup_entry(
 1055         vm_map_t map,
 1056         vm_offset_t address,
 1057         vm_map_entry_t *entry)  /* OUT */
 1058 {
 1059         vm_map_entry_t cur;
 1060         boolean_t locked;
 1061 
 1062         /*
 1063          * If the map is empty, then the map entry immediately preceding
 1064          * "address" is the map's header.
 1065          */
 1066         cur = map->root;
 1067         if (cur == NULL)
 1068                 *entry = &map->header;
 1069         else if (address >= cur->start && cur->end > address) {
 1070                 *entry = cur;
 1071                 return (TRUE);
 1072         } else if ((locked = vm_map_locked(map)) ||
 1073             sx_try_upgrade(&map->lock)) {
 1074                 /*
 1075                  * Splay requires a write lock on the map.  However, it only
 1076                  * restructures the binary search tree; it does not otherwise
 1077                  * change the map.  Thus, the map's timestamp need not change
 1078                  * on a temporary upgrade.
 1079                  */
 1080                 map->root = cur = vm_map_entry_splay(address, cur);
 1081                 if (!locked)
 1082                         sx_downgrade(&map->lock);
 1083 
 1084                 /*
 1085                  * If "address" is contained within a map entry, the new root
 1086                  * is that map entry.  Otherwise, the new root is a map entry
 1087                  * immediately before or after "address".
 1088                  */
 1089                 if (address >= cur->start) {
 1090                         *entry = cur;
 1091                         if (cur->end > address)
 1092                                 return (TRUE);
 1093                 } else
 1094                         *entry = cur->prev;
 1095         } else
 1096                 /*
 1097                  * Since the map is only locked for read access, perform a
 1098                  * standard binary search tree lookup for "address".
 1099                  */
 1100                 for (;;) {
 1101                         if (address < cur->start) {
 1102                                 if (cur->left == NULL) {
 1103                                         *entry = cur->prev;
 1104                                         break;
 1105                                 }
 1106                                 cur = cur->left;
 1107                         } else if (cur->end > address) {
 1108                                 *entry = cur;
 1109                                 return (TRUE);
 1110                         } else {
 1111                                 if (cur->right == NULL) {
 1112                                         *entry = cur;
 1113                                         break;
 1114                                 }
 1115                                 cur = cur->right;
 1116                         }
 1117                 }
 1118         return (FALSE);
 1119 }
 1120 
 1121 /*
 1122  *      vm_map_insert:
 1123  *
 1124  *      Inserts the given whole VM object into the target
 1125  *      map at the specified address range.  The object's
 1126  *      size should match that of the address range.
 1127  *
 1128  *      Requires that the map be locked, and leaves it so.
 1129  *
 1130  *      If object is non-NULL, ref count must be bumped by caller
 1131  *      prior to making call to account for the new entry.
 1132  */
 1133 int
 1134 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 1135               vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
 1136               int cow)
 1137 {
 1138         vm_map_entry_t new_entry;
 1139         vm_map_entry_t prev_entry;
 1140         vm_map_entry_t temp_entry;
 1141         vm_eflags_t protoeflags;
 1142         struct ucred *cred;
 1143         vm_inherit_t inheritance;
 1144         boolean_t charge_prev_obj;
 1145 
 1146         VM_MAP_ASSERT_LOCKED(map);
 1147 
 1148         /*
 1149          * Check that the start and end points are not bogus.
 1150          */
 1151         if ((start < map->min_offset) || (end > map->max_offset) ||
 1152             (start >= end))
 1153                 return (KERN_INVALID_ADDRESS);
 1154 
 1155         /*
 1156          * Find the entry prior to the proposed starting address; if it's part
 1157          * of an existing entry, this range is bogus.
 1158          */
 1159         if (vm_map_lookup_entry(map, start, &temp_entry))
 1160                 return (KERN_NO_SPACE);
 1161 
 1162         prev_entry = temp_entry;
 1163 
 1164         /*
 1165          * Assert that the next entry doesn't overlap the end point.
 1166          */
 1167         if ((prev_entry->next != &map->header) &&
 1168             (prev_entry->next->start < end))
 1169                 return (KERN_NO_SPACE);
 1170 
 1171         protoeflags = 0;
 1172         charge_prev_obj = FALSE;
 1173 
 1174         if (cow & MAP_COPY_ON_WRITE)
 1175                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
 1176 
 1177         if (cow & MAP_NOFAULT) {
 1178                 protoeflags |= MAP_ENTRY_NOFAULT;
 1179 
 1180                 KASSERT(object == NULL,
 1181                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
 1182         }
 1183         if (cow & MAP_DISABLE_SYNCER)
 1184                 protoeflags |= MAP_ENTRY_NOSYNC;
 1185         if (cow & MAP_DISABLE_COREDUMP)
 1186                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
 1187         if (cow & MAP_VN_WRITECOUNT)
 1188                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
 1189         if (cow & MAP_INHERIT_SHARE)
 1190                 inheritance = VM_INHERIT_SHARE;
 1191         else
 1192                 inheritance = VM_INHERIT_DEFAULT;
 1193 
 1194         cred = NULL;
 1195         KASSERT((object != kmem_object && object != kernel_object) ||
 1196             ((object == kmem_object || object == kernel_object) &&
 1197                 !(protoeflags & MAP_ENTRY_NEEDS_COPY)),
 1198             ("kmem or kernel object and cow"));
 1199         if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
 1200                 goto charged;
 1201         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
 1202             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
 1203                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
 1204                         return (KERN_RESOURCE_SHORTAGE);
 1205                 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
 1206                     object->cred == NULL,
 1207                     ("OVERCOMMIT: vm_map_insert o %p", object));
 1208                 cred = curthread->td_ucred;
 1209                 crhold(cred);
 1210                 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
 1211                         charge_prev_obj = TRUE;
 1212         }
 1213 
 1214 charged:
 1215         /* Expand the kernel pmap, if necessary. */
 1216         if (map == kernel_map && end > kernel_vm_end)
 1217                 pmap_growkernel(end);
 1218         if (object != NULL) {
 1219                 /*
 1220                  * OBJ_ONEMAPPING must be cleared unless this mapping
 1221                  * is trivially proven to be the only mapping for any
 1222                  * of the object's pages.  (Object granularity
 1223                  * reference counting is insufficient to recognize
 1224                  * aliases with precision.)
 1225                  */
 1226                 VM_OBJECT_LOCK(object);
 1227                 if (object->ref_count > 1 || object->shadow_count != 0)
 1228                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
 1229                 VM_OBJECT_UNLOCK(object);
 1230         }
 1231         else if ((prev_entry != &map->header) &&
 1232                  (prev_entry->eflags == protoeflags) &&
 1233                  (cow & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) == 0 &&
 1234                  (prev_entry->end == start) &&
 1235                  (prev_entry->wired_count == 0) &&
 1236                  (prev_entry->cred == cred ||
 1237                   (prev_entry->object.vm_object != NULL &&
 1238                    (prev_entry->object.vm_object->cred == cred))) &&
 1239                    vm_object_coalesce(prev_entry->object.vm_object,
 1240                        prev_entry->offset,
 1241                        (vm_size_t)(prev_entry->end - prev_entry->start),
 1242                        (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
 1243                 /*
 1244                  * We were able to extend the object.  Determine if we
 1245                  * can extend the previous map entry to include the
 1246                  * new range as well.
 1247                  */
 1248                 if ((prev_entry->inheritance == inheritance) &&
 1249                     (prev_entry->protection == prot) &&
 1250                     (prev_entry->max_protection == max)) {
 1251                         map->size += (end - prev_entry->end);
 1252                         prev_entry->end = end;
 1253                         vm_map_entry_resize_free(map, prev_entry);
 1254                         vm_map_simplify_entry(map, prev_entry);
 1255                         if (cred != NULL)
 1256                                 crfree(cred);
 1257                         return (KERN_SUCCESS);
 1258                 }
 1259 
 1260                 /*
 1261                  * If we can extend the object but cannot extend the
 1262                  * map entry, we have to create a new map entry.  We
 1263                  * must bump the ref count on the extended object to
 1264                  * account for it.  object may be NULL.
 1265                  */
 1266                 object = prev_entry->object.vm_object;
 1267                 offset = prev_entry->offset +
 1268                         (prev_entry->end - prev_entry->start);
 1269                 vm_object_reference(object);
 1270                 if (cred != NULL && object != NULL && object->cred != NULL &&
 1271                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
 1272                         /* Object already accounts for this uid. */
 1273                         crfree(cred);
 1274                         cred = NULL;
 1275                 }
 1276         }
 1277 
 1278         /*
 1279          * NOTE: if conditionals fail, object can be NULL here.  This occurs
 1280          * in things like the buffer map where we manage kva but do not manage
 1281          * backing objects.
 1282          */
 1283 
 1284         /*
 1285          * Create a new entry
 1286          */
 1287         new_entry = vm_map_entry_create(map);
 1288         new_entry->start = start;
 1289         new_entry->end = end;
 1290         new_entry->cred = NULL;
 1291 
 1292         new_entry->eflags = protoeflags;
 1293         new_entry->object.vm_object = object;
 1294         new_entry->offset = offset;
 1295         new_entry->avail_ssize = 0;
 1296 
 1297         new_entry->inheritance = inheritance;
 1298         new_entry->protection = prot;
 1299         new_entry->max_protection = max;
 1300         new_entry->wired_count = 0;
 1301         new_entry->wiring_thread = NULL;
 1302         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
 1303         new_entry->next_read = OFF_TO_IDX(offset);
 1304 
 1305         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
 1306             ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
 1307         new_entry->cred = cred;
 1308 
 1309         /*
 1310          * Insert the new entry into the list
 1311          */
 1312         vm_map_entry_link(map, prev_entry, new_entry);
 1313         map->size += new_entry->end - new_entry->start;
 1314 
 1315         /*
 1316          * It may be possible to merge the new entry with the next and/or
 1317          * previous entries.  However, due to MAP_STACK_* being a hack, a
 1318          * panic can result from merging such entries.
 1319          */
 1320         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
 1321                 vm_map_simplify_entry(map, new_entry);
 1322 
 1323         if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
 1324                 vm_map_pmap_enter(map, start, prot,
 1325                                     object, OFF_TO_IDX(offset), end - start,
 1326                                     cow & MAP_PREFAULT_PARTIAL);
 1327         }
 1328 
 1329         return (KERN_SUCCESS);
 1330 }
 1331 
 1332 /*
 1333  *      vm_map_findspace:
 1334  *
 1335  *      Find the first fit (lowest VM address) for "length" free bytes
 1336  *      beginning at address >= start in the given map.
 1337  *
 1338  *      In a vm_map_entry, "adj_free" is the amount of free space
 1339  *      adjacent (higher address) to this entry, and "max_free" is the
 1340  *      maximum amount of contiguous free space in its subtree.  This
 1341  *      allows finding a free region in one path down the tree, so
 1342  *      O(log n) amortized with splay trees.
 1343  *
 1344  *      The map must be locked, and leaves it so.
 1345  *
 1346  *      Returns: 0 on success, and starting address in *addr,
 1347  *               1 if insufficient space.
 1348  */
 1349 int
 1350 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
 1351     vm_offset_t *addr)  /* OUT */
 1352 {
 1353         vm_map_entry_t entry;
 1354         vm_offset_t st;
 1355 
 1356         /*
 1357          * Request must fit within min/max VM address and must avoid
 1358          * address wrap.
 1359          */
 1360         if (start < map->min_offset)
 1361                 start = map->min_offset;
 1362         if (start + length > map->max_offset || start + length < start)
 1363                 return (1);
 1364 
 1365         /* Empty tree means wide open address space. */
 1366         if (map->root == NULL) {
 1367                 *addr = start;
 1368                 return (0);
 1369         }
 1370 
 1371         /*
 1372          * After splay, if start comes before root node, then there
 1373          * must be a gap from start to the root.
 1374          */
 1375         map->root = vm_map_entry_splay(start, map->root);
 1376         if (start + length <= map->root->start) {
 1377                 *addr = start;
 1378                 return (0);
 1379         }
 1380 
 1381         /*
 1382          * Root is the last node that might begin its gap before
 1383          * start, and this is the last comparison where address
 1384          * wrap might be a problem.
 1385          */
 1386         st = (start > map->root->end) ? start : map->root->end;
 1387         if (length <= map->root->end + map->root->adj_free - st) {
 1388                 *addr = st;
 1389                 return (0);
 1390         }
 1391 
 1392         /* With max_free, can immediately tell if no solution. */
 1393         entry = map->root->right;
 1394         if (entry == NULL || length > entry->max_free)
 1395                 return (1);
 1396 
 1397         /*
 1398          * Search the right subtree in the order: left subtree, root,
 1399          * right subtree (first fit).  The previous splay implies that
 1400          * all regions in the right subtree have addresses > start.
 1401          */
 1402         while (entry != NULL) {
 1403                 if (entry->left != NULL && entry->left->max_free >= length)
 1404                         entry = entry->left;
 1405                 else if (entry->adj_free >= length) {
 1406                         *addr = entry->end;
 1407                         return (0);
 1408                 } else
 1409                         entry = entry->right;
 1410         }
 1411 
 1412         /* Can't get here, so panic if we do. */
 1413         panic("vm_map_findspace: max_free corrupt");
 1414 }
 1415 
 1416 int
 1417 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 1418     vm_offset_t start, vm_size_t length, vm_prot_t prot,
 1419     vm_prot_t max, int cow)
 1420 {
 1421         vm_offset_t end;
 1422         int result;
 1423 
 1424         end = start + length;
 1425         vm_map_lock(map);
 1426         VM_MAP_RANGE_CHECK(map, start, end);
 1427         (void) vm_map_delete(map, start, end);
 1428         result = vm_map_insert(map, object, offset, start, end, prot,
 1429             max, cow);
 1430         vm_map_unlock(map);
 1431         return (result);
 1432 }
 1433 
 1434 /*
 1435  *      vm_map_find finds an unallocated region in the target address
 1436  *      map with the given length.  The search is defined to be
 1437  *      first-fit from the specified address; the region found is
 1438  *      returned in the same parameter.
 1439  *
 1440  *      If object is non-NULL, ref count must be bumped by caller
 1441  *      prior to making call to account for the new entry.
 1442  */
 1443 int
 1444 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 1445             vm_offset_t *addr,  /* IN/OUT */
 1446             vm_size_t length, int find_space, vm_prot_t prot,
 1447             vm_prot_t max, int cow)
 1448 {
 1449         vm_offset_t alignment, initial_addr, start;
 1450         int result;
 1451 
 1452         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
 1453             (object->flags & OBJ_COLORED) == 0))
 1454                 find_space = VMFS_ANY_SPACE;
 1455         if (find_space >> 8 != 0) {
 1456                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
 1457                 alignment = (vm_offset_t)1 << (find_space >> 8);
 1458         } else
 1459                 alignment = 0;
 1460         initial_addr = *addr;
 1461 again:
 1462         start = initial_addr;
 1463         vm_map_lock(map);
 1464         do {
 1465                 if (find_space != VMFS_NO_SPACE) {
 1466                         if (vm_map_findspace(map, start, length, addr)) {
 1467                                 vm_map_unlock(map);
 1468                                 if (find_space == VMFS_OPTIMAL_SPACE) {
 1469                                         find_space = VMFS_ANY_SPACE;
 1470                                         goto again;
 1471                                 }
 1472                                 return (KERN_NO_SPACE);
 1473                         }
 1474                         switch (find_space) {
 1475                         case VMFS_SUPER_SPACE:
 1476                         case VMFS_OPTIMAL_SPACE:
 1477                                 pmap_align_superpage(object, offset, addr,
 1478                                     length);
 1479                                 break;
 1480 #ifdef VMFS_TLB_ALIGNED_SPACE
 1481                         case VMFS_TLB_ALIGNED_SPACE:
 1482                                 pmap_align_tlb(addr);
 1483                                 break;
 1484 #endif
 1485                         case VMFS_ANY_SPACE:
 1486                                 break;
 1487                         default:
 1488                                 if ((*addr & (alignment - 1)) != 0) {
 1489                                         *addr &= ~(alignment - 1);
 1490                                         *addr += alignment;
 1491                                 }
 1492                                 break;
 1493                         }
 1494 
 1495                         start = *addr;
 1496                 }
 1497                 result = vm_map_insert(map, object, offset, start, start +
 1498                     length, prot, max, cow);
 1499         } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
 1500             find_space != VMFS_ANY_SPACE);
 1501         vm_map_unlock(map);
 1502         return (result);
 1503 }
 1504 
 1505 /*
 1506  *      vm_map_simplify_entry:
 1507  *
 1508  *      Simplify the given map entry by merging with either neighbor.  This
 1509  *      routine also has the ability to merge with both neighbors.
 1510  *
 1511  *      The map must be locked.
 1512  *
 1513  *      This routine guarentees that the passed entry remains valid (though
 1514  *      possibly extended).  When merging, this routine may delete one or
 1515  *      both neighbors.
 1516  */
 1517 void
 1518 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
 1519 {
 1520         vm_map_entry_t next, prev;
 1521         vm_size_t prevsize, esize;
 1522 
 1523         if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
 1524                 return;
 1525 
 1526         prev = entry->prev;
 1527         if (prev != &map->header) {
 1528                 prevsize = prev->end - prev->start;
 1529                 if ( (prev->end == entry->start) &&
 1530                      (prev->object.vm_object == entry->object.vm_object) &&
 1531                      (!prev->object.vm_object ||
 1532                         (prev->offset + prevsize == entry->offset)) &&
 1533                      (prev->eflags == entry->eflags) &&
 1534                      (prev->protection == entry->protection) &&
 1535                      (prev->max_protection == entry->max_protection) &&
 1536                      (prev->inheritance == entry->inheritance) &&
 1537                      (prev->wired_count == entry->wired_count) &&
 1538                      (prev->cred == entry->cred)) {
 1539                         vm_map_entry_unlink(map, prev);
 1540                         entry->start = prev->start;
 1541                         entry->offset = prev->offset;
 1542                         if (entry->prev != &map->header)
 1543                                 vm_map_entry_resize_free(map, entry->prev);
 1544 
 1545                         /*
 1546                          * If the backing object is a vnode object,
 1547                          * vm_object_deallocate() calls vrele().
 1548                          * However, vrele() does not lock the vnode
 1549                          * because the vnode has additional
 1550                          * references.  Thus, the map lock can be kept
 1551                          * without causing a lock-order reversal with
 1552                          * the vnode lock.
 1553                          *
 1554                          * Since we count the number of virtual page
 1555                          * mappings in object->un_pager.vnp.writemappings,
 1556                          * the writemappings value should not be adjusted
 1557                          * when the entry is disposed of.
 1558                          */
 1559                         if (prev->object.vm_object)
 1560                                 vm_object_deallocate(prev->object.vm_object);
 1561                         if (prev->cred != NULL)
 1562                                 crfree(prev->cred);
 1563                         vm_map_entry_dispose(map, prev);
 1564                 }
 1565         }
 1566 
 1567         next = entry->next;
 1568         if (next != &map->header) {
 1569                 esize = entry->end - entry->start;
 1570                 if ((entry->end == next->start) &&
 1571                     (next->object.vm_object == entry->object.vm_object) &&
 1572                      (!entry->object.vm_object ||
 1573                         (entry->offset + esize == next->offset)) &&
 1574                     (next->eflags == entry->eflags) &&
 1575                     (next->protection == entry->protection) &&
 1576                     (next->max_protection == entry->max_protection) &&
 1577                     (next->inheritance == entry->inheritance) &&
 1578                     (next->wired_count == entry->wired_count) &&
 1579                     (next->cred == entry->cred)) {
 1580                         vm_map_entry_unlink(map, next);
 1581                         entry->end = next->end;
 1582                         vm_map_entry_resize_free(map, entry);
 1583 
 1584                         /*
 1585                          * See comment above.
 1586                          */
 1587                         if (next->object.vm_object)
 1588                                 vm_object_deallocate(next->object.vm_object);
 1589                         if (next->cred != NULL)
 1590                                 crfree(next->cred);
 1591                         vm_map_entry_dispose(map, next);
 1592                 }
 1593         }
 1594 }
 1595 /*
 1596  *      vm_map_clip_start:      [ internal use only ]
 1597  *
 1598  *      Asserts that the given entry begins at or after
 1599  *      the specified address; if necessary,
 1600  *      it splits the entry into two.
 1601  */
 1602 #define vm_map_clip_start(map, entry, startaddr) \
 1603 { \
 1604         if (startaddr > entry->start) \
 1605                 _vm_map_clip_start(map, entry, startaddr); \
 1606 }
 1607 
 1608 /*
 1609  *      This routine is called only when it is known that
 1610  *      the entry must be split.
 1611  */
 1612 static void
 1613 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
 1614 {
 1615         vm_map_entry_t new_entry;
 1616 
 1617         VM_MAP_ASSERT_LOCKED(map);
 1618 
 1619         /*
 1620          * Split off the front portion -- note that we must insert the new
 1621          * entry BEFORE this one, so that this entry has the specified
 1622          * starting address.
 1623          */
 1624         vm_map_simplify_entry(map, entry);
 1625 
 1626         /*
 1627          * If there is no object backing this entry, we might as well create
 1628          * one now.  If we defer it, an object can get created after the map
 1629          * is clipped, and individual objects will be created for the split-up
 1630          * map.  This is a bit of a hack, but is also about the best place to
 1631          * put this improvement.
 1632          */
 1633         if (entry->object.vm_object == NULL && !map->system_map) {
 1634                 vm_object_t object;
 1635                 object = vm_object_allocate(OBJT_DEFAULT,
 1636                                 atop(entry->end - entry->start));
 1637                 entry->object.vm_object = object;
 1638                 entry->offset = 0;
 1639                 if (entry->cred != NULL) {
 1640                         object->cred = entry->cred;
 1641                         object->charge = entry->end - entry->start;
 1642                         entry->cred = NULL;
 1643                 }
 1644         } else if (entry->object.vm_object != NULL &&
 1645                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
 1646                    entry->cred != NULL) {
 1647                 VM_OBJECT_LOCK(entry->object.vm_object);
 1648                 KASSERT(entry->object.vm_object->cred == NULL,
 1649                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
 1650                 entry->object.vm_object->cred = entry->cred;
 1651                 entry->object.vm_object->charge = entry->end - entry->start;
 1652                 VM_OBJECT_UNLOCK(entry->object.vm_object);
 1653                 entry->cred = NULL;
 1654         }
 1655 
 1656         new_entry = vm_map_entry_create(map);
 1657         *new_entry = *entry;
 1658 
 1659         new_entry->end = start;
 1660         entry->offset += (start - entry->start);
 1661         entry->start = start;
 1662         if (new_entry->cred != NULL)
 1663                 crhold(entry->cred);
 1664 
 1665         vm_map_entry_link(map, entry->prev, new_entry);
 1666 
 1667         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
 1668                 vm_object_reference(new_entry->object.vm_object);
 1669                 /*
 1670                  * The object->un_pager.vnp.writemappings for the
 1671                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
 1672                  * kept as is here.  The virtual pages are
 1673                  * re-distributed among the clipped entries, so the sum is
 1674                  * left the same.
 1675                  */
 1676         }
 1677 }
 1678 
 1679 /*
 1680  *      vm_map_clip_end:        [ internal use only ]
 1681  *
 1682  *      Asserts that the given entry ends at or before
 1683  *      the specified address; if necessary,
 1684  *      it splits the entry into two.
 1685  */
 1686 #define vm_map_clip_end(map, entry, endaddr) \
 1687 { \
 1688         if ((endaddr) < (entry->end)) \
 1689                 _vm_map_clip_end((map), (entry), (endaddr)); \
 1690 }
 1691 
 1692 /*
 1693  *      This routine is called only when it is known that
 1694  *      the entry must be split.
 1695  */
 1696 static void
 1697 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
 1698 {
 1699         vm_map_entry_t new_entry;
 1700 
 1701         VM_MAP_ASSERT_LOCKED(map);
 1702 
 1703         /*
 1704          * If there is no object backing this entry, we might as well create
 1705          * one now.  If we defer it, an object can get created after the map
 1706          * is clipped, and individual objects will be created for the split-up
 1707          * map.  This is a bit of a hack, but is also about the best place to
 1708          * put this improvement.
 1709          */
 1710         if (entry->object.vm_object == NULL && !map->system_map) {
 1711                 vm_object_t object;
 1712                 object = vm_object_allocate(OBJT_DEFAULT,
 1713                                 atop(entry->end - entry->start));
 1714                 entry->object.vm_object = object;
 1715                 entry->offset = 0;
 1716                 if (entry->cred != NULL) {
 1717                         object->cred = entry->cred;
 1718                         object->charge = entry->end - entry->start;
 1719                         entry->cred = NULL;
 1720                 }
 1721         } else if (entry->object.vm_object != NULL &&
 1722                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
 1723                    entry->cred != NULL) {
 1724                 VM_OBJECT_LOCK(entry->object.vm_object);
 1725                 KASSERT(entry->object.vm_object->cred == NULL,
 1726                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
 1727                 entry->object.vm_object->cred = entry->cred;
 1728                 entry->object.vm_object->charge = entry->end - entry->start;
 1729                 VM_OBJECT_UNLOCK(entry->object.vm_object);
 1730                 entry->cred = NULL;
 1731         }
 1732 
 1733         /*
 1734          * Create a new entry and insert it AFTER the specified entry
 1735          */
 1736         new_entry = vm_map_entry_create(map);
 1737         *new_entry = *entry;
 1738 
 1739         new_entry->start = entry->end = end;
 1740         new_entry->offset += (end - entry->start);
 1741         if (new_entry->cred != NULL)
 1742                 crhold(entry->cred);
 1743 
 1744         vm_map_entry_link(map, entry, new_entry);
 1745 
 1746         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
 1747                 vm_object_reference(new_entry->object.vm_object);
 1748         }
 1749 }
 1750 
 1751 /*
 1752  *      vm_map_submap:          [ kernel use only ]
 1753  *
 1754  *      Mark the given range as handled by a subordinate map.
 1755  *
 1756  *      This range must have been created with vm_map_find,
 1757  *      and no other operations may have been performed on this
 1758  *      range prior to calling vm_map_submap.
 1759  *
 1760  *      Only a limited number of operations can be performed
 1761  *      within this rage after calling vm_map_submap:
 1762  *              vm_fault
 1763  *      [Don't try vm_map_copy!]
 1764  *
 1765  *      To remove a submapping, one must first remove the
 1766  *      range from the superior map, and then destroy the
 1767  *      submap (if desired).  [Better yet, don't try it.]
 1768  */
 1769 int
 1770 vm_map_submap(
 1771         vm_map_t map,
 1772         vm_offset_t start,
 1773         vm_offset_t end,
 1774         vm_map_t submap)
 1775 {
 1776         vm_map_entry_t entry;
 1777         int result = KERN_INVALID_ARGUMENT;
 1778 
 1779         vm_map_lock(map);
 1780 
 1781         VM_MAP_RANGE_CHECK(map, start, end);
 1782 
 1783         if (vm_map_lookup_entry(map, start, &entry)) {
 1784                 vm_map_clip_start(map, entry, start);
 1785         } else
 1786                 entry = entry->next;
 1787 
 1788         vm_map_clip_end(map, entry, end);
 1789 
 1790         if ((entry->start == start) && (entry->end == end) &&
 1791             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
 1792             (entry->object.vm_object == NULL)) {
 1793                 entry->object.sub_map = submap;
 1794                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
 1795                 result = KERN_SUCCESS;
 1796         }
 1797         vm_map_unlock(map);
 1798 
 1799         return (result);
 1800 }
 1801 
 1802 /*
 1803  * The maximum number of pages to map
 1804  */
 1805 #define MAX_INIT_PT     96
 1806 
 1807 /*
 1808  *      vm_map_pmap_enter:
 1809  *
 1810  *      Preload read-only mappings for the given object's resident pages into
 1811  *      the given map.  This eliminates the soft faults on process startup and
 1812  *      immediately after an mmap(2).  Because these are speculative mappings,
 1813  *      cached pages are not reactivated and mapped.
 1814  */
 1815 void
 1816 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
 1817     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
 1818 {
 1819         vm_offset_t start;
 1820         vm_page_t p, p_start;
 1821         vm_pindex_t psize, tmpidx;
 1822 
 1823         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
 1824                 return;
 1825         VM_OBJECT_LOCK(object);
 1826         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
 1827                 pmap_object_init_pt(map->pmap, addr, object, pindex, size);
 1828                 goto unlock_return;
 1829         }
 1830 
 1831         psize = atop(size);
 1832 
 1833         if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT &&
 1834             object->resident_page_count > MAX_INIT_PT)
 1835                 goto unlock_return;
 1836 
 1837         if (psize + pindex > object->size) {
 1838                 if (object->size < pindex)
 1839                         goto unlock_return;
 1840                 psize = object->size - pindex;
 1841         }
 1842 
 1843         start = 0;
 1844         p_start = NULL;
 1845 
 1846         p = vm_page_find_least(object, pindex);
 1847         /*
 1848          * Assert: the variable p is either (1) the page with the
 1849          * least pindex greater than or equal to the parameter pindex
 1850          * or (2) NULL.
 1851          */
 1852         for (;
 1853              p != NULL && (tmpidx = p->pindex - pindex) < psize;
 1854              p = TAILQ_NEXT(p, listq)) {
 1855                 /*
 1856                  * don't allow an madvise to blow away our really
 1857                  * free pages allocating pv entries.
 1858                  */
 1859                 if ((flags & MAP_PREFAULT_MADVISE) &&
 1860                     cnt.v_free_count < cnt.v_free_reserved) {
 1861                         psize = tmpidx;
 1862                         break;
 1863                 }
 1864                 if (p->valid == VM_PAGE_BITS_ALL) {
 1865                         if (p_start == NULL) {
 1866                                 start = addr + ptoa(tmpidx);
 1867                                 p_start = p;
 1868                         }
 1869                 } else if (p_start != NULL) {
 1870                         pmap_enter_object(map->pmap, start, addr +
 1871                             ptoa(tmpidx), p_start, prot);
 1872                         p_start = NULL;
 1873                 }
 1874         }
 1875         if (p_start != NULL)
 1876                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
 1877                     p_start, prot);
 1878 unlock_return:
 1879         VM_OBJECT_UNLOCK(object);
 1880 }
 1881 
 1882 /*
 1883  *      vm_map_protect:
 1884  *
 1885  *      Sets the protection of the specified address
 1886  *      region in the target map.  If "set_max" is
 1887  *      specified, the maximum protection is to be set;
 1888  *      otherwise, only the current protection is affected.
 1889  */
 1890 int
 1891 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1892                vm_prot_t new_prot, boolean_t set_max)
 1893 {
 1894         vm_map_entry_t current, entry;
 1895         vm_object_t obj;
 1896         struct ucred *cred;
 1897         vm_prot_t old_prot;
 1898 
 1899         if (start == end)
 1900                 return (KERN_SUCCESS);
 1901 
 1902         vm_map_lock(map);
 1903 
 1904         VM_MAP_RANGE_CHECK(map, start, end);
 1905 
 1906         if (vm_map_lookup_entry(map, start, &entry)) {
 1907                 vm_map_clip_start(map, entry, start);
 1908         } else {
 1909                 entry = entry->next;
 1910         }
 1911 
 1912         /*
 1913          * Make a first pass to check for protection violations.
 1914          */
 1915         current = entry;
 1916         while ((current != &map->header) && (current->start < end)) {
 1917                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
 1918                         vm_map_unlock(map);
 1919                         return (KERN_INVALID_ARGUMENT);
 1920                 }
 1921                 if ((new_prot & current->max_protection) != new_prot) {
 1922                         vm_map_unlock(map);
 1923                         return (KERN_PROTECTION_FAILURE);
 1924                 }
 1925                 current = current->next;
 1926         }
 1927 
 1928 
 1929         /*
 1930          * Do an accounting pass for private read-only mappings that
 1931          * now will do cow due to allowed write (e.g. debugger sets
 1932          * breakpoint on text segment)
 1933          */
 1934         for (current = entry; (current != &map->header) &&
 1935              (current->start < end); current = current->next) {
 1936 
 1937                 vm_map_clip_end(map, current, end);
 1938 
 1939                 if (set_max ||
 1940                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
 1941                     ENTRY_CHARGED(current)) {
 1942                         continue;
 1943                 }
 1944 
 1945                 cred = curthread->td_ucred;
 1946                 obj = current->object.vm_object;
 1947 
 1948                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
 1949                         if (!swap_reserve(current->end - current->start)) {
 1950                                 vm_map_unlock(map);
 1951                                 return (KERN_RESOURCE_SHORTAGE);
 1952                         }
 1953                         crhold(cred);
 1954                         current->cred = cred;
 1955                         continue;
 1956                 }
 1957 
 1958                 VM_OBJECT_LOCK(obj);
 1959                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
 1960                         VM_OBJECT_UNLOCK(obj);
 1961                         continue;
 1962                 }
 1963 
 1964                 /*
 1965                  * Charge for the whole object allocation now, since
 1966                  * we cannot distinguish between non-charged and
 1967                  * charged clipped mapping of the same object later.
 1968                  */
 1969                 KASSERT(obj->charge == 0,
 1970                     ("vm_map_protect: object %p overcharged (entry %p)",
 1971                     obj, current));
 1972                 if (!swap_reserve(ptoa(obj->size))) {
 1973                         VM_OBJECT_UNLOCK(obj);
 1974                         vm_map_unlock(map);
 1975                         return (KERN_RESOURCE_SHORTAGE);
 1976                 }
 1977 
 1978                 crhold(cred);
 1979                 obj->cred = cred;
 1980                 obj->charge = ptoa(obj->size);
 1981                 VM_OBJECT_UNLOCK(obj);
 1982         }
 1983 
 1984         /*
 1985          * Go back and fix up protections. [Note that clipping is not
 1986          * necessary the second time.]
 1987          */
 1988         current = entry;
 1989         while ((current != &map->header) && (current->start < end)) {
 1990                 old_prot = current->protection;
 1991 
 1992                 if (set_max)
 1993                         current->protection =
 1994                             (current->max_protection = new_prot) &
 1995                             old_prot;
 1996                 else
 1997                         current->protection = new_prot;
 1998 
 1999                 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
 2000                      == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
 2001                     (current->protection & VM_PROT_WRITE) != 0 &&
 2002                     (old_prot & VM_PROT_WRITE) == 0) {
 2003                         vm_fault_copy_entry(map, map, current, current, NULL);
 2004                 }
 2005 
 2006                 /*
 2007                  * When restricting access, update the physical map.  Worry
 2008                  * about copy-on-write here.
 2009                  */
 2010                 if ((old_prot & ~current->protection) != 0) {
 2011 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
 2012                                                         VM_PROT_ALL)
 2013                         pmap_protect(map->pmap, current->start,
 2014                             current->end,
 2015                             current->protection & MASK(current));
 2016 #undef  MASK
 2017                 }
 2018                 vm_map_simplify_entry(map, current);
 2019                 current = current->next;
 2020         }
 2021         vm_map_unlock(map);
 2022         return (KERN_SUCCESS);
 2023 }
 2024 
 2025 /*
 2026  *      vm_map_madvise:
 2027  *
 2028  *      This routine traverses a processes map handling the madvise
 2029  *      system call.  Advisories are classified as either those effecting
 2030  *      the vm_map_entry structure, or those effecting the underlying
 2031  *      objects.
 2032  */
 2033 int
 2034 vm_map_madvise(
 2035         vm_map_t map,
 2036         vm_offset_t start,
 2037         vm_offset_t end,
 2038         int behav)
 2039 {
 2040         vm_map_entry_t current, entry;
 2041         int modify_map = 0;
 2042 
 2043         /*
 2044          * Some madvise calls directly modify the vm_map_entry, in which case
 2045          * we need to use an exclusive lock on the map and we need to perform
 2046          * various clipping operations.  Otherwise we only need a read-lock
 2047          * on the map.
 2048          */
 2049         switch(behav) {
 2050         case MADV_NORMAL:
 2051         case MADV_SEQUENTIAL:
 2052         case MADV_RANDOM:
 2053         case MADV_NOSYNC:
 2054         case MADV_AUTOSYNC:
 2055         case MADV_NOCORE:
 2056         case MADV_CORE:
 2057                 if (start == end)
 2058                         return (KERN_SUCCESS);
 2059                 modify_map = 1;
 2060                 vm_map_lock(map);
 2061                 break;
 2062         case MADV_WILLNEED:
 2063         case MADV_DONTNEED:
 2064         case MADV_FREE:
 2065                 if (start == end)
 2066                         return (KERN_SUCCESS);
 2067                 vm_map_lock_read(map);
 2068                 break;
 2069         default:
 2070                 return (KERN_INVALID_ARGUMENT);
 2071         }
 2072 
 2073         /*
 2074          * Locate starting entry and clip if necessary.
 2075          */
 2076         VM_MAP_RANGE_CHECK(map, start, end);
 2077 
 2078         if (vm_map_lookup_entry(map, start, &entry)) {
 2079                 if (modify_map)
 2080                         vm_map_clip_start(map, entry, start);
 2081         } else {
 2082                 entry = entry->next;
 2083         }
 2084 
 2085         if (modify_map) {
 2086                 /*
 2087                  * madvise behaviors that are implemented in the vm_map_entry.
 2088                  *
 2089                  * We clip the vm_map_entry so that behavioral changes are
 2090                  * limited to the specified address range.
 2091                  */
 2092                 for (current = entry;
 2093                      (current != &map->header) && (current->start < end);
 2094                      current = current->next
 2095                 ) {
 2096                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
 2097                                 continue;
 2098 
 2099                         vm_map_clip_end(map, current, end);
 2100 
 2101                         switch (behav) {
 2102                         case MADV_NORMAL:
 2103                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
 2104                                 break;
 2105                         case MADV_SEQUENTIAL:
 2106                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
 2107                                 break;
 2108                         case MADV_RANDOM:
 2109                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
 2110                                 break;
 2111                         case MADV_NOSYNC:
 2112                                 current->eflags |= MAP_ENTRY_NOSYNC;
 2113                                 break;
 2114                         case MADV_AUTOSYNC:
 2115                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
 2116                                 break;
 2117                         case MADV_NOCORE:
 2118                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
 2119                                 break;
 2120                         case MADV_CORE:
 2121                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
 2122                                 break;
 2123                         default:
 2124                                 break;
 2125                         }
 2126                         vm_map_simplify_entry(map, current);
 2127                 }
 2128                 vm_map_unlock(map);
 2129         } else {
 2130                 vm_pindex_t pstart, pend;
 2131 
 2132                 /*
 2133                  * madvise behaviors that are implemented in the underlying
 2134                  * vm_object.
 2135                  *
 2136                  * Since we don't clip the vm_map_entry, we have to clip
 2137                  * the vm_object pindex and count.
 2138                  */
 2139                 for (current = entry;
 2140                      (current != &map->header) && (current->start < end);
 2141                      current = current->next
 2142                 ) {
 2143                         vm_offset_t useStart;
 2144 
 2145                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
 2146                                 continue;
 2147 
 2148                         pstart = OFF_TO_IDX(current->offset);
 2149                         pend = pstart + atop(current->end - current->start);
 2150                         useStart = current->start;
 2151 
 2152                         if (current->start < start) {
 2153                                 pstart += atop(start - current->start);
 2154                                 useStart = start;
 2155                         }
 2156                         if (current->end > end)
 2157                                 pend -= atop(current->end - end);
 2158 
 2159                         if (pstart >= pend)
 2160                                 continue;
 2161 
 2162                         vm_object_madvise(current->object.vm_object, pstart,
 2163                             pend, behav);
 2164                         if (behav == MADV_WILLNEED) {
 2165                                 vm_map_pmap_enter(map,
 2166                                     useStart,
 2167                                     current->protection,
 2168                                     current->object.vm_object,
 2169                                     pstart,
 2170                                     ptoa(pend - pstart),
 2171                                     MAP_PREFAULT_MADVISE
 2172                                 );
 2173                         }
 2174                 }
 2175                 vm_map_unlock_read(map);
 2176         }
 2177         return (0);
 2178 }
 2179 
 2180 
 2181 /*
 2182  *      vm_map_inherit:
 2183  *
 2184  *      Sets the inheritance of the specified address
 2185  *      range in the target map.  Inheritance
 2186  *      affects how the map will be shared with
 2187  *      child maps at the time of vmspace_fork.
 2188  */
 2189 int
 2190 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
 2191                vm_inherit_t new_inheritance)
 2192 {
 2193         vm_map_entry_t entry;
 2194         vm_map_entry_t temp_entry;
 2195 
 2196         switch (new_inheritance) {
 2197         case VM_INHERIT_NONE:
 2198         case VM_INHERIT_COPY:
 2199         case VM_INHERIT_SHARE:
 2200                 break;
 2201         default:
 2202                 return (KERN_INVALID_ARGUMENT);
 2203         }
 2204         if (start == end)
 2205                 return (KERN_SUCCESS);
 2206         vm_map_lock(map);
 2207         VM_MAP_RANGE_CHECK(map, start, end);
 2208         if (vm_map_lookup_entry(map, start, &temp_entry)) {
 2209                 entry = temp_entry;
 2210                 vm_map_clip_start(map, entry, start);
 2211         } else
 2212                 entry = temp_entry->next;
 2213         while ((entry != &map->header) && (entry->start < end)) {
 2214                 vm_map_clip_end(map, entry, end);
 2215                 entry->inheritance = new_inheritance;
 2216                 vm_map_simplify_entry(map, entry);
 2217                 entry = entry->next;
 2218         }
 2219         vm_map_unlock(map);
 2220         return (KERN_SUCCESS);
 2221 }
 2222 
 2223 /*
 2224  *      vm_map_unwire:
 2225  *
 2226  *      Implements both kernel and user unwiring.
 2227  */
 2228 int
 2229 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 2230     int flags)
 2231 {
 2232         vm_map_entry_t entry, first_entry, tmp_entry;
 2233         vm_offset_t saved_start;
 2234         unsigned int last_timestamp;
 2235         int rv;
 2236         boolean_t need_wakeup, result, user_unwire;
 2237 
 2238         if (start == end)
 2239                 return (KERN_SUCCESS);
 2240         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
 2241         vm_map_lock(map);
 2242         VM_MAP_RANGE_CHECK(map, start, end);
 2243         if (!vm_map_lookup_entry(map, start, &first_entry)) {
 2244                 if (flags & VM_MAP_WIRE_HOLESOK)
 2245                         first_entry = first_entry->next;
 2246                 else {
 2247                         vm_map_unlock(map);
 2248                         return (KERN_INVALID_ADDRESS);
 2249                 }
 2250         }
 2251         last_timestamp = map->timestamp;
 2252         entry = first_entry;
 2253         while (entry != &map->header && entry->start < end) {
 2254                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
 2255                         /*
 2256                          * We have not yet clipped the entry.
 2257                          */
 2258                         saved_start = (start >= entry->start) ? start :
 2259                             entry->start;
 2260                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 2261                         if (vm_map_unlock_and_wait(map, 0)) {
 2262                                 /*
 2263                                  * Allow interruption of user unwiring?
 2264                                  */
 2265                         }
 2266                         vm_map_lock(map);
 2267                         if (last_timestamp+1 != map->timestamp) {
 2268                                 /*
 2269                                  * Look again for the entry because the map was
 2270                                  * modified while it was unlocked.
 2271                                  * Specifically, the entry may have been
 2272                                  * clipped, merged, or deleted.
 2273                                  */
 2274                                 if (!vm_map_lookup_entry(map, saved_start,
 2275                                     &tmp_entry)) {
 2276                                         if (flags & VM_MAP_WIRE_HOLESOK)
 2277                                                 tmp_entry = tmp_entry->next;
 2278                                         else {
 2279                                                 if (saved_start == start) {
 2280                                                         /*
 2281                                                          * First_entry has been deleted.
 2282                                                          */
 2283                                                         vm_map_unlock(map);
 2284                                                         return (KERN_INVALID_ADDRESS);
 2285                                                 }
 2286                                                 end = saved_start;
 2287                                                 rv = KERN_INVALID_ADDRESS;
 2288                                                 goto done;
 2289                                         }
 2290                                 }
 2291                                 if (entry == first_entry)
 2292                                         first_entry = tmp_entry;
 2293                                 else
 2294                                         first_entry = NULL;
 2295                                 entry = tmp_entry;
 2296                         }
 2297                         last_timestamp = map->timestamp;
 2298                         continue;
 2299                 }
 2300                 vm_map_clip_start(map, entry, start);
 2301                 vm_map_clip_end(map, entry, end);
 2302                 /*
 2303                  * Mark the entry in case the map lock is released.  (See
 2304                  * above.)
 2305                  */
 2306                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
 2307                     entry->wiring_thread == NULL,
 2308                     ("owned map entry %p", entry));
 2309                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
 2310                 entry->wiring_thread = curthread;
 2311                 /*
 2312                  * Check the map for holes in the specified region.
 2313                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
 2314                  */
 2315                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
 2316                     (entry->end < end && (entry->next == &map->header ||
 2317                     entry->next->start > entry->end))) {
 2318                         end = entry->end;
 2319                         rv = KERN_INVALID_ADDRESS;
 2320                         goto done;
 2321                 }
 2322                 /*
 2323                  * If system unwiring, require that the entry is system wired.
 2324                  */
 2325                 if (!user_unwire &&
 2326                     vm_map_entry_system_wired_count(entry) == 0) {
 2327                         end = entry->end;
 2328                         rv = KERN_INVALID_ARGUMENT;
 2329                         goto done;
 2330                 }
 2331                 entry = entry->next;
 2332         }
 2333         rv = KERN_SUCCESS;
 2334 done:
 2335         need_wakeup = FALSE;
 2336         if (first_entry == NULL) {
 2337                 result = vm_map_lookup_entry(map, start, &first_entry);
 2338                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
 2339                         first_entry = first_entry->next;
 2340                 else
 2341                         KASSERT(result, ("vm_map_unwire: lookup failed"));
 2342         }
 2343         for (entry = first_entry; entry != &map->header && entry->start < end;
 2344             entry = entry->next) {
 2345                 /*
 2346                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
 2347                  * space in the unwired region could have been mapped
 2348                  * while the map lock was dropped for draining
 2349                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
 2350                  * could be simultaneously wiring this new mapping
 2351                  * entry.  Detect these cases and skip any entries
 2352                  * marked as in transition by us.
 2353                  */
 2354                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
 2355                     entry->wiring_thread != curthread) {
 2356                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
 2357                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
 2358                         continue;
 2359                 }
 2360 
 2361                 if (rv == KERN_SUCCESS && (!user_unwire ||
 2362                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
 2363                         if (user_unwire)
 2364                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
 2365                         entry->wired_count--;
 2366                         if (entry->wired_count == 0) {
 2367                                 /*
 2368                                  * Retain the map lock.
 2369                                  */
 2370                                 vm_fault_unwire(map, entry->start, entry->end,
 2371                                     entry->object.vm_object != NULL &&
 2372                                     (entry->object.vm_object->type == OBJT_DEVICE ||
 2373                                     entry->object.vm_object->type == OBJT_SG));
 2374                         }
 2375                 }
 2376                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
 2377                     ("vm_map_unwire: in-transition flag missing %p", entry));
 2378                 KASSERT(entry->wiring_thread == curthread,
 2379                     ("vm_map_unwire: alien wire %p", entry));
 2380                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
 2381                 entry->wiring_thread = NULL;
 2382                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
 2383                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
 2384                         need_wakeup = TRUE;
 2385                 }
 2386                 vm_map_simplify_entry(map, entry);
 2387         }
 2388         vm_map_unlock(map);
 2389         if (need_wakeup)
 2390                 vm_map_wakeup(map);
 2391         return (rv);
 2392 }
 2393 
 2394 /*
 2395  *      vm_map_wire:
 2396  *
 2397  *      Implements both kernel and user wiring.
 2398  */
 2399 int
 2400 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 2401     int flags)
 2402 {
 2403         vm_map_entry_t entry, first_entry, tmp_entry;
 2404         vm_offset_t saved_end, saved_start;
 2405         unsigned int last_timestamp;
 2406         int rv;
 2407         boolean_t fictitious, need_wakeup, result, user_wire;
 2408         vm_prot_t prot;
 2409 
 2410         if (start == end)
 2411                 return (KERN_SUCCESS);
 2412         prot = 0;
 2413         if (flags & VM_MAP_WIRE_WRITE)
 2414                 prot |= VM_PROT_WRITE;
 2415         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
 2416         vm_map_lock(map);
 2417         VM_MAP_RANGE_CHECK(map, start, end);
 2418         if (!vm_map_lookup_entry(map, start, &first_entry)) {
 2419                 if (flags & VM_MAP_WIRE_HOLESOK)
 2420                         first_entry = first_entry->next;
 2421                 else {
 2422                         vm_map_unlock(map);
 2423                         return (KERN_INVALID_ADDRESS);
 2424                 }
 2425         }
 2426         last_timestamp = map->timestamp;
 2427         entry = first_entry;
 2428         while (entry != &map->header && entry->start < end) {
 2429                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
 2430                         /*
 2431                          * We have not yet clipped the entry.
 2432                          */
 2433                         saved_start = (start >= entry->start) ? start :
 2434                             entry->start;
 2435                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 2436                         if (vm_map_unlock_and_wait(map, 0)) {
 2437                                 /*
 2438                                  * Allow interruption of user wiring?
 2439                                  */
 2440                         }
 2441                         vm_map_lock(map);
 2442                         if (last_timestamp + 1 != map->timestamp) {
 2443                                 /*
 2444                                  * Look again for the entry because the map was
 2445                                  * modified while it was unlocked.
 2446                                  * Specifically, the entry may have been
 2447                                  * clipped, merged, or deleted.
 2448                                  */
 2449                                 if (!vm_map_lookup_entry(map, saved_start,
 2450                                     &tmp_entry)) {
 2451                                         if (flags & VM_MAP_WIRE_HOLESOK)
 2452                                                 tmp_entry = tmp_entry->next;
 2453                                         else {
 2454                                                 if (saved_start == start) {
 2455                                                         /*
 2456                                                          * first_entry has been deleted.
 2457                                                          */
 2458                                                         vm_map_unlock(map);
 2459                                                         return (KERN_INVALID_ADDRESS);
 2460                                                 }
 2461                                                 end = saved_start;
 2462                                                 rv = KERN_INVALID_ADDRESS;
 2463                                                 goto done;
 2464                                         }
 2465                                 }
 2466                                 if (entry == first_entry)
 2467                                         first_entry = tmp_entry;
 2468                                 else
 2469                                         first_entry = NULL;
 2470                                 entry = tmp_entry;
 2471                         }
 2472                         last_timestamp = map->timestamp;
 2473                         continue;
 2474                 }
 2475                 vm_map_clip_start(map, entry, start);
 2476                 vm_map_clip_end(map, entry, end);
 2477                 /*
 2478                  * Mark the entry in case the map lock is released.  (See
 2479                  * above.)
 2480                  */
 2481                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
 2482                     entry->wiring_thread == NULL,
 2483                     ("owned map entry %p", entry));
 2484                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
 2485                 entry->wiring_thread = curthread;
 2486                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
 2487                     || (entry->protection & prot) != prot) {
 2488                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
 2489                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
 2490                                 end = entry->end;
 2491                                 rv = KERN_INVALID_ADDRESS;
 2492                                 goto done;
 2493                         }
 2494                         goto next_entry;
 2495                 }
 2496                 if (entry->wired_count == 0) {
 2497                         entry->wired_count++;
 2498                         saved_start = entry->start;
 2499                         saved_end = entry->end;
 2500                         fictitious = entry->object.vm_object != NULL &&
 2501                             (entry->object.vm_object->type == OBJT_DEVICE ||
 2502                             entry->object.vm_object->type == OBJT_SG);
 2503                         /*
 2504                          * Release the map lock, relying on the in-transition
 2505                          * mark.  Mark the map busy for fork.
 2506                          */
 2507                         vm_map_busy(map);
 2508                         vm_map_unlock(map);
 2509                         rv = vm_fault_wire(map, saved_start, saved_end,
 2510                             fictitious);
 2511                         vm_map_lock(map);
 2512                         vm_map_unbusy(map);
 2513                         if (last_timestamp + 1 != map->timestamp) {
 2514                                 /*
 2515                                  * Look again for the entry because the map was
 2516                                  * modified while it was unlocked.  The entry
 2517                                  * may have been clipped, but NOT merged or
 2518                                  * deleted.
 2519                                  */
 2520                                 result = vm_map_lookup_entry(map, saved_start,
 2521                                     &tmp_entry);
 2522                                 KASSERT(result, ("vm_map_wire: lookup failed"));
 2523                                 if (entry == first_entry)
 2524                                         first_entry = tmp_entry;
 2525                                 else
 2526                                         first_entry = NULL;
 2527                                 entry = tmp_entry;
 2528                                 while (entry->end < saved_end) {
 2529                                         if (rv != KERN_SUCCESS) {
 2530                                                 KASSERT(entry->wired_count == 1,
 2531                                                     ("vm_map_wire: bad count"));
 2532                                                 entry->wired_count = -1;
 2533                                         }
 2534                                         entry = entry->next;
 2535                                 }
 2536                         }
 2537                         last_timestamp = map->timestamp;
 2538                         if (rv != KERN_SUCCESS) {
 2539                                 KASSERT(entry->wired_count == 1,
 2540                                     ("vm_map_wire: bad count"));
 2541                                 /*
 2542                                  * Assign an out-of-range value to represent
 2543                                  * the failure to wire this entry.
 2544                                  */
 2545                                 entry->wired_count = -1;
 2546                                 end = entry->end;
 2547                                 goto done;
 2548                         }
 2549                 } else if (!user_wire ||
 2550                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
 2551                         entry->wired_count++;
 2552                 }
 2553                 /*
 2554                  * Check the map for holes in the specified region.
 2555                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
 2556                  */
 2557         next_entry:
 2558                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
 2559                     (entry->end < end && (entry->next == &map->header ||
 2560                     entry->next->start > entry->end))) {
 2561                         end = entry->end;
 2562                         rv = KERN_INVALID_ADDRESS;
 2563                         goto done;
 2564                 }
 2565                 entry = entry->next;
 2566         }
 2567         rv = KERN_SUCCESS;
 2568 done:
 2569         need_wakeup = FALSE;
 2570         if (first_entry == NULL) {
 2571                 result = vm_map_lookup_entry(map, start, &first_entry);
 2572                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
 2573                         first_entry = first_entry->next;
 2574                 else
 2575                         KASSERT(result, ("vm_map_wire: lookup failed"));
 2576         }
 2577         for (entry = first_entry; entry != &map->header && entry->start < end;
 2578             entry = entry->next) {
 2579                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
 2580                         goto next_entry_done;
 2581 
 2582                 /*
 2583                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
 2584                  * space in the unwired region could have been mapped
 2585                  * while the map lock was dropped for faulting in the
 2586                  * pages or draining MAP_ENTRY_IN_TRANSITION.
 2587                  * Moreover, another thread could be simultaneously
 2588                  * wiring this new mapping entry.  Detect these cases
 2589                  * and skip any entries marked as in transition by us.
 2590                  */
 2591                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
 2592                     entry->wiring_thread != curthread) {
 2593                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
 2594                             ("vm_map_wire: !HOLESOK and new/changed entry"));
 2595                         continue;
 2596                 }
 2597 
 2598                 if (rv == KERN_SUCCESS) {
 2599                         if (user_wire)
 2600                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
 2601                 } else if (entry->wired_count == -1) {
 2602                         /*
 2603                          * Wiring failed on this entry.  Thus, unwiring is
 2604                          * unnecessary.
 2605                          */
 2606                         entry->wired_count = 0;
 2607                 } else {
 2608                         if (!user_wire ||
 2609                             (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
 2610                                 entry->wired_count--;
 2611                         if (entry->wired_count == 0) {
 2612                                 /*
 2613                                  * Retain the map lock.
 2614                                  */
 2615                                 vm_fault_unwire(map, entry->start, entry->end,
 2616                                     entry->object.vm_object != NULL &&
 2617                                     (entry->object.vm_object->type == OBJT_DEVICE ||
 2618                                     entry->object.vm_object->type == OBJT_SG));
 2619                         }
 2620                 }
 2621         next_entry_done:
 2622                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
 2623                     ("vm_map_wire: in-transition flag missing %p", entry));
 2624                 KASSERT(entry->wiring_thread == curthread,
 2625                     ("vm_map_wire: alien wire %p", entry));
 2626                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
 2627                     MAP_ENTRY_WIRE_SKIPPED);
 2628                 entry->wiring_thread = NULL;
 2629                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
 2630                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
 2631                         need_wakeup = TRUE;
 2632                 }
 2633                 vm_map_simplify_entry(map, entry);
 2634         }
 2635         vm_map_unlock(map);
 2636         if (need_wakeup)
 2637                 vm_map_wakeup(map);
 2638         return (rv);
 2639 }
 2640 
 2641 /*
 2642  * vm_map_sync
 2643  *
 2644  * Push any dirty cached pages in the address range to their pager.
 2645  * If syncio is TRUE, dirty pages are written synchronously.
 2646  * If invalidate is TRUE, any cached pages are freed as well.
 2647  *
 2648  * If the size of the region from start to end is zero, we are
 2649  * supposed to flush all modified pages within the region containing
 2650  * start.  Unfortunately, a region can be split or coalesced with
 2651  * neighboring regions, making it difficult to determine what the
 2652  * original region was.  Therefore, we approximate this requirement by
 2653  * flushing the current region containing start.
 2654  *
 2655  * Returns an error if any part of the specified range is not mapped.
 2656  */
 2657 int
 2658 vm_map_sync(
 2659         vm_map_t map,
 2660         vm_offset_t start,
 2661         vm_offset_t end,
 2662         boolean_t syncio,
 2663         boolean_t invalidate)
 2664 {
 2665         vm_map_entry_t current;
 2666         vm_map_entry_t entry;
 2667         vm_size_t size;
 2668         vm_object_t object;
 2669         vm_ooffset_t offset;
 2670         unsigned int last_timestamp;
 2671         boolean_t failed;
 2672 
 2673         vm_map_lock_read(map);
 2674         VM_MAP_RANGE_CHECK(map, start, end);
 2675         if (!vm_map_lookup_entry(map, start, &entry)) {
 2676                 vm_map_unlock_read(map);
 2677                 return (KERN_INVALID_ADDRESS);
 2678         } else if (start == end) {
 2679                 start = entry->start;
 2680                 end = entry->end;
 2681         }
 2682         /*
 2683          * Make a first pass to check for user-wired memory and holes.
 2684          */
 2685         for (current = entry; current != &map->header && current->start < end;
 2686             current = current->next) {
 2687                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
 2688                         vm_map_unlock_read(map);
 2689                         return (KERN_INVALID_ARGUMENT);
 2690                 }
 2691                 if (end > current->end &&
 2692                     (current->next == &map->header ||
 2693                         current->end != current->next->start)) {
 2694                         vm_map_unlock_read(map);
 2695                         return (KERN_INVALID_ADDRESS);
 2696                 }
 2697         }
 2698 
 2699         if (invalidate)
 2700                 pmap_remove(map->pmap, start, end);
 2701         failed = FALSE;
 2702 
 2703         /*
 2704          * Make a second pass, cleaning/uncaching pages from the indicated
 2705          * objects as we go.
 2706          */
 2707         for (current = entry; current != &map->header && current->start < end;) {
 2708                 offset = current->offset + (start - current->start);
 2709                 size = (end <= current->end ? end : current->end) - start;
 2710                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2711                         vm_map_t smap;
 2712                         vm_map_entry_t tentry;
 2713                         vm_size_t tsize;
 2714 
 2715                         smap = current->object.sub_map;
 2716                         vm_map_lock_read(smap);
 2717                         (void) vm_map_lookup_entry(smap, offset, &tentry);
 2718                         tsize = tentry->end - offset;
 2719                         if (tsize < size)
 2720                                 size = tsize;
 2721                         object = tentry->object.vm_object;
 2722                         offset = tentry->offset + (offset - tentry->start);
 2723                         vm_map_unlock_read(smap);
 2724                 } else {
 2725                         object = current->object.vm_object;
 2726                 }
 2727                 vm_object_reference(object);
 2728                 last_timestamp = map->timestamp;
 2729                 vm_map_unlock_read(map);
 2730                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
 2731                         failed = TRUE;
 2732                 start += size;
 2733                 vm_object_deallocate(object);
 2734                 vm_map_lock_read(map);
 2735                 if (last_timestamp == map->timestamp ||
 2736                     !vm_map_lookup_entry(map, start, &current))
 2737                         current = current->next;
 2738         }
 2739 
 2740         vm_map_unlock_read(map);
 2741         return (failed ? KERN_FAILURE : KERN_SUCCESS);
 2742 }
 2743 
 2744 /*
 2745  *      vm_map_entry_unwire:    [ internal use only ]
 2746  *
 2747  *      Make the region specified by this entry pageable.
 2748  *
 2749  *      The map in question should be locked.
 2750  *      [This is the reason for this routine's existence.]
 2751  */
 2752 static void
 2753 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
 2754 {
 2755         vm_fault_unwire(map, entry->start, entry->end,
 2756             entry->object.vm_object != NULL &&
 2757             (entry->object.vm_object->type == OBJT_DEVICE ||
 2758             entry->object.vm_object->type == OBJT_SG));
 2759         entry->wired_count = 0;
 2760 }
 2761 
 2762 static void
 2763 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
 2764 {
 2765 
 2766         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
 2767                 vm_object_deallocate(entry->object.vm_object);
 2768         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
 2769 }
 2770 
 2771 /*
 2772  *      vm_map_entry_delete:    [ internal use only ]
 2773  *
 2774  *      Deallocate the given entry from the target map.
 2775  */
 2776 static void
 2777 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
 2778 {
 2779         vm_object_t object;
 2780         vm_pindex_t offidxstart, offidxend, count, size1;
 2781         vm_ooffset_t size;
 2782 
 2783         vm_map_entry_unlink(map, entry);
 2784         object = entry->object.vm_object;
 2785         size = entry->end - entry->start;
 2786         map->size -= size;
 2787 
 2788         if (entry->cred != NULL) {
 2789                 swap_release_by_cred(size, entry->cred);
 2790                 crfree(entry->cred);
 2791         }
 2792 
 2793         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
 2794             (object != NULL)) {
 2795                 KASSERT(entry->cred == NULL || object->cred == NULL ||
 2796                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
 2797                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
 2798                 count = OFF_TO_IDX(size);
 2799                 offidxstart = OFF_TO_IDX(entry->offset);
 2800                 offidxend = offidxstart + count;
 2801                 VM_OBJECT_LOCK(object);
 2802                 if (object->ref_count != 1 &&
 2803                     ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
 2804                     object == kernel_object || object == kmem_object)) {
 2805                         vm_object_collapse(object);
 2806 
 2807                         /*
 2808                          * The option OBJPR_NOTMAPPED can be passed here
 2809                          * because vm_map_delete() already performed
 2810                          * pmap_remove() on the only mapping to this range
 2811                          * of pages. 
 2812                          */
 2813                         vm_object_page_remove(object, offidxstart, offidxend,
 2814                             OBJPR_NOTMAPPED);
 2815                         if (object->type == OBJT_SWAP)
 2816                                 swap_pager_freespace(object, offidxstart, count);
 2817                         if (offidxend >= object->size &&
 2818                             offidxstart < object->size) {
 2819                                 size1 = object->size;
 2820                                 object->size = offidxstart;
 2821                                 if (object->cred != NULL) {
 2822                                         size1 -= object->size;
 2823                                         KASSERT(object->charge >= ptoa(size1),
 2824                                             ("vm_map_entry_delete: object->charge < 0"));
 2825                                         swap_release_by_cred(ptoa(size1), object->cred);
 2826                                         object->charge -= ptoa(size1);
 2827                                 }
 2828                         }
 2829                 }
 2830                 VM_OBJECT_UNLOCK(object);
 2831         } else
 2832                 entry->object.vm_object = NULL;
 2833         if (map->system_map)
 2834                 vm_map_entry_deallocate(entry, TRUE);
 2835         else {
 2836                 entry->next = curthread->td_map_def_user;
 2837                 curthread->td_map_def_user = entry;
 2838         }
 2839 }
 2840 
 2841 /*
 2842  *      vm_map_delete:  [ internal use only ]
 2843  *
 2844  *      Deallocates the given address range from the target
 2845  *      map.
 2846  */
 2847 int
 2848 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
 2849 {
 2850         vm_map_entry_t entry;
 2851         vm_map_entry_t first_entry;
 2852 
 2853         VM_MAP_ASSERT_LOCKED(map);
 2854         if (start == end)
 2855                 return (KERN_SUCCESS);
 2856 
 2857         /*
 2858          * Find the start of the region, and clip it
 2859          */
 2860         if (!vm_map_lookup_entry(map, start, &first_entry))
 2861                 entry = first_entry->next;
 2862         else {
 2863                 entry = first_entry;
 2864                 vm_map_clip_start(map, entry, start);
 2865         }
 2866 
 2867         /*
 2868          * Step through all entries in this region
 2869          */
 2870         while ((entry != &map->header) && (entry->start < end)) {
 2871                 vm_map_entry_t next;
 2872 
 2873                 /*
 2874                  * Wait for wiring or unwiring of an entry to complete.
 2875                  * Also wait for any system wirings to disappear on
 2876                  * user maps.
 2877                  */
 2878                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
 2879                     (vm_map_pmap(map) != kernel_pmap &&
 2880                     vm_map_entry_system_wired_count(entry) != 0)) {
 2881                         unsigned int last_timestamp;
 2882                         vm_offset_t saved_start;
 2883                         vm_map_entry_t tmp_entry;
 2884 
 2885                         saved_start = entry->start;
 2886                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 2887                         last_timestamp = map->timestamp;
 2888                         (void) vm_map_unlock_and_wait(map, 0);
 2889                         vm_map_lock(map);
 2890                         if (last_timestamp + 1 != map->timestamp) {
 2891                                 /*
 2892                                  * Look again for the entry because the map was
 2893                                  * modified while it was unlocked.
 2894                                  * Specifically, the entry may have been
 2895                                  * clipped, merged, or deleted.
 2896                                  */
 2897                                 if (!vm_map_lookup_entry(map, saved_start,
 2898                                                          &tmp_entry))
 2899                                         entry = tmp_entry->next;
 2900                                 else {
 2901                                         entry = tmp_entry;
 2902                                         vm_map_clip_start(map, entry,
 2903                                                           saved_start);
 2904                                 }
 2905                         }
 2906                         continue;
 2907                 }
 2908                 vm_map_clip_end(map, entry, end);
 2909 
 2910                 next = entry->next;
 2911 
 2912                 /*
 2913                  * Unwire before removing addresses from the pmap; otherwise,
 2914                  * unwiring will put the entries back in the pmap.
 2915                  */
 2916                 if (entry->wired_count != 0) {
 2917                         vm_map_entry_unwire(map, entry);
 2918                 }
 2919 
 2920                 pmap_remove(map->pmap, entry->start, entry->end);
 2921 
 2922                 /*
 2923                  * Delete the entry only after removing all pmap
 2924                  * entries pointing to its pages.  (Otherwise, its
 2925                  * page frames may be reallocated, and any modify bits
 2926                  * will be set in the wrong object!)
 2927                  */
 2928                 vm_map_entry_delete(map, entry);
 2929                 entry = next;
 2930         }
 2931         return (KERN_SUCCESS);
 2932 }
 2933 
 2934 /*
 2935  *      vm_map_remove:
 2936  *
 2937  *      Remove the given address range from the target map.
 2938  *      This is the exported form of vm_map_delete.
 2939  */
 2940 int
 2941 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
 2942 {
 2943         int result;
 2944 
 2945         vm_map_lock(map);
 2946         VM_MAP_RANGE_CHECK(map, start, end);
 2947         result = vm_map_delete(map, start, end);
 2948         vm_map_unlock(map);
 2949         return (result);
 2950 }
 2951 
 2952 /*
 2953  *      vm_map_check_protection:
 2954  *
 2955  *      Assert that the target map allows the specified privilege on the
 2956  *      entire address region given.  The entire region must be allocated.
 2957  *
 2958  *      WARNING!  This code does not and should not check whether the
 2959  *      contents of the region is accessible.  For example a smaller file
 2960  *      might be mapped into a larger address space.
 2961  *
 2962  *      NOTE!  This code is also called by munmap().
 2963  *
 2964  *      The map must be locked.  A read lock is sufficient.
 2965  */
 2966 boolean_t
 2967 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
 2968                         vm_prot_t protection)
 2969 {
 2970         vm_map_entry_t entry;
 2971         vm_map_entry_t tmp_entry;
 2972 
 2973         if (!vm_map_lookup_entry(map, start, &tmp_entry))
 2974                 return (FALSE);
 2975         entry = tmp_entry;
 2976 
 2977         while (start < end) {
 2978                 if (entry == &map->header)
 2979                         return (FALSE);
 2980                 /*
 2981                  * No holes allowed!
 2982                  */
 2983                 if (start < entry->start)
 2984                         return (FALSE);
 2985                 /*
 2986                  * Check protection associated with entry.
 2987                  */
 2988                 if ((entry->protection & protection) != protection)
 2989                         return (FALSE);
 2990                 /* go to next entry */
 2991                 start = entry->end;
 2992                 entry = entry->next;
 2993         }
 2994         return (TRUE);
 2995 }
 2996 
 2997 /*
 2998  *      vm_map_copy_entry:
 2999  *
 3000  *      Copies the contents of the source entry to the destination
 3001  *      entry.  The entries *must* be aligned properly.
 3002  */
 3003 static void
 3004 vm_map_copy_entry(
 3005         vm_map_t src_map,
 3006         vm_map_t dst_map,
 3007         vm_map_entry_t src_entry,
 3008         vm_map_entry_t dst_entry,
 3009         vm_ooffset_t *fork_charge)
 3010 {
 3011         vm_object_t src_object;
 3012         vm_map_entry_t fake_entry;
 3013         vm_offset_t size;
 3014         struct ucred *cred;
 3015         int charged;
 3016 
 3017         VM_MAP_ASSERT_LOCKED(dst_map);
 3018 
 3019         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
 3020                 return;
 3021 
 3022         if (src_entry->wired_count == 0) {
 3023 
 3024                 /*
 3025                  * If the source entry is marked needs_copy, it is already
 3026                  * write-protected.
 3027                  */
 3028                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
 3029                         pmap_protect(src_map->pmap,
 3030                             src_entry->start,
 3031                             src_entry->end,
 3032                             src_entry->protection & ~VM_PROT_WRITE);
 3033                 }
 3034 
 3035                 /*
 3036                  * Make a copy of the object.
 3037                  */
 3038                 size = src_entry->end - src_entry->start;
 3039                 if ((src_object = src_entry->object.vm_object) != NULL) {
 3040                         VM_OBJECT_LOCK(src_object);
 3041                         charged = ENTRY_CHARGED(src_entry);
 3042                         if ((src_object->handle == NULL) &&
 3043                                 (src_object->type == OBJT_DEFAULT ||
 3044                                  src_object->type == OBJT_SWAP)) {
 3045                                 vm_object_collapse(src_object);
 3046                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
 3047                                         vm_object_split(src_entry);
 3048                                         src_object = src_entry->object.vm_object;
 3049                                 }
 3050                         }
 3051                         vm_object_reference_locked(src_object);
 3052                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
 3053                         if (src_entry->cred != NULL &&
 3054                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
 3055                                 KASSERT(src_object->cred == NULL,
 3056                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
 3057                                      src_object));
 3058                                 src_object->cred = src_entry->cred;
 3059                                 src_object->charge = size;
 3060                         }
 3061                         VM_OBJECT_UNLOCK(src_object);
 3062                         dst_entry->object.vm_object = src_object;
 3063                         if (charged) {
 3064                                 cred = curthread->td_ucred;
 3065                                 crhold(cred);
 3066                                 dst_entry->cred = cred;
 3067                                 *fork_charge += size;
 3068                                 if (!(src_entry->eflags &
 3069                                       MAP_ENTRY_NEEDS_COPY)) {
 3070                                         crhold(cred);
 3071                                         src_entry->cred = cred;
 3072                                         *fork_charge += size;
 3073                                 }
 3074                         }
 3075                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
 3076                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
 3077                         dst_entry->offset = src_entry->offset;
 3078                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
 3079                                 /*
 3080                                  * MAP_ENTRY_VN_WRITECNT cannot
 3081                                  * indicate write reference from
 3082                                  * src_entry, since the entry is
 3083                                  * marked as needs copy.  Allocate a
 3084                                  * fake entry that is used to
 3085                                  * decrement object->un_pager.vnp.writecount
 3086                                  * at the appropriate time.  Attach
 3087                                  * fake_entry to the deferred list.
 3088                                  */
 3089                                 fake_entry = vm_map_entry_create(dst_map);
 3090                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
 3091                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
 3092                                 vm_object_reference(src_object);
 3093                                 fake_entry->object.vm_object = src_object;
 3094                                 fake_entry->start = src_entry->start;
 3095                                 fake_entry->end = src_entry->end;
 3096                                 fake_entry->next = curthread->td_map_def_user;
 3097                                 curthread->td_map_def_user = fake_entry;
 3098                         }
 3099                 } else {
 3100                         dst_entry->object.vm_object = NULL;
 3101                         dst_entry->offset = 0;
 3102                         if (src_entry->cred != NULL) {
 3103                                 dst_entry->cred = curthread->td_ucred;
 3104                                 crhold(dst_entry->cred);
 3105                                 *fork_charge += size;
 3106                         }
 3107                 }
 3108 
 3109                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
 3110                     dst_entry->end - dst_entry->start, src_entry->start);
 3111         } else {
 3112                 /*
 3113                  * Of course, wired down pages can't be set copy-on-write.
 3114                  * Cause wired pages to be copied into the new map by
 3115                  * simulating faults (the new pages are pageable)
 3116                  */
 3117                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
 3118                     fork_charge);
 3119         }
 3120 }
 3121 
 3122 /*
 3123  * vmspace_map_entry_forked:
 3124  * Update the newly-forked vmspace each time a map entry is inherited
 3125  * or copied.  The values for vm_dsize and vm_tsize are approximate
 3126  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
 3127  */
 3128 static void
 3129 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
 3130     vm_map_entry_t entry)
 3131 {
 3132         vm_size_t entrysize;
 3133         vm_offset_t newend;
 3134 
 3135         entrysize = entry->end - entry->start;
 3136         vm2->vm_map.size += entrysize;
 3137         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
 3138                 vm2->vm_ssize += btoc(entrysize);
 3139         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
 3140             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
 3141                 newend = MIN(entry->end,
 3142                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
 3143                 vm2->vm_dsize += btoc(newend - entry->start);
 3144         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
 3145             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
 3146                 newend = MIN(entry->end,
 3147                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
 3148                 vm2->vm_tsize += btoc(newend - entry->start);
 3149         }
 3150 }
 3151 
 3152 /*
 3153  * vmspace_fork:
 3154  * Create a new process vmspace structure and vm_map
 3155  * based on those of an existing process.  The new map
 3156  * is based on the old map, according to the inheritance
 3157  * values on the regions in that map.
 3158  *
 3159  * XXX It might be worth coalescing the entries added to the new vmspace.
 3160  *
 3161  * The source map must not be locked.
 3162  */
 3163 struct vmspace *
 3164 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
 3165 {
 3166         struct vmspace *vm2;
 3167         vm_map_t new_map, old_map;
 3168         vm_map_entry_t new_entry, old_entry;
 3169         vm_object_t object;
 3170         int locked;
 3171 
 3172         old_map = &vm1->vm_map;
 3173         /* Copy immutable fields of vm1 to vm2. */
 3174         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
 3175         if (vm2 == NULL)
 3176                 return (NULL);
 3177         vm2->vm_taddr = vm1->vm_taddr;
 3178         vm2->vm_daddr = vm1->vm_daddr;
 3179         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
 3180         vm_map_lock(old_map);
 3181         if (old_map->busy)
 3182                 vm_map_wait_busy(old_map);
 3183         new_map = &vm2->vm_map;
 3184         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
 3185         KASSERT(locked, ("vmspace_fork: lock failed"));
 3186 
 3187         old_entry = old_map->header.next;
 3188 
 3189         while (old_entry != &old_map->header) {
 3190                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 3191                         panic("vm_map_fork: encountered a submap");
 3192 
 3193                 switch (old_entry->inheritance) {
 3194                 case VM_INHERIT_NONE:
 3195                         break;
 3196 
 3197                 case VM_INHERIT_SHARE:
 3198                         /*
 3199                          * Clone the entry, creating the shared object if necessary.
 3200                          */
 3201                         object = old_entry->object.vm_object;
 3202                         if (object == NULL) {
 3203                                 object = vm_object_allocate(OBJT_DEFAULT,
 3204                                         atop(old_entry->end - old_entry->start));
 3205                                 old_entry->object.vm_object = object;
 3206                                 old_entry->offset = 0;
 3207                                 if (old_entry->cred != NULL) {
 3208                                         object->cred = old_entry->cred;
 3209                                         object->charge = old_entry->end -
 3210                                             old_entry->start;
 3211                                         old_entry->cred = NULL;
 3212                                 }
 3213                         }
 3214 
 3215                         /*
 3216                          * Add the reference before calling vm_object_shadow
 3217                          * to insure that a shadow object is created.
 3218                          */
 3219                         vm_object_reference(object);
 3220                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 3221                                 vm_object_shadow(&old_entry->object.vm_object,
 3222                                     &old_entry->offset,
 3223                                     old_entry->end - old_entry->start);
 3224                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
 3225                                 /* Transfer the second reference too. */
 3226                                 vm_object_reference(
 3227                                     old_entry->object.vm_object);
 3228 
 3229                                 /*
 3230                                  * As in vm_map_simplify_entry(), the
 3231                                  * vnode lock will not be acquired in
 3232                                  * this call to vm_object_deallocate().
 3233                                  */
 3234                                 vm_object_deallocate(object);
 3235                                 object = old_entry->object.vm_object;
 3236                         }
 3237                         VM_OBJECT_LOCK(object);
 3238                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
 3239                         if (old_entry->cred != NULL) {
 3240                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
 3241                                 object->cred = old_entry->cred;
 3242                                 object->charge = old_entry->end - old_entry->start;
 3243                                 old_entry->cred = NULL;
 3244                         }
 3245 
 3246                         /*
 3247                          * Assert the correct state of the vnode
 3248                          * v_writecount while the object is locked, to
 3249                          * not relock it later for the assertion
 3250                          * correctness.
 3251                          */
 3252                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
 3253                             object->type == OBJT_VNODE) {
 3254                                 KASSERT(((struct vnode *)object->handle)->
 3255                                     v_writecount > 0,
 3256                                     ("vmspace_fork: v_writecount %p", object));
 3257                                 KASSERT(object->un_pager.vnp.writemappings > 0,
 3258                                     ("vmspace_fork: vnp.writecount %p",
 3259                                     object));
 3260                         }
 3261                         VM_OBJECT_UNLOCK(object);
 3262 
 3263                         /*
 3264                          * Clone the entry, referencing the shared object.
 3265                          */
 3266                         new_entry = vm_map_entry_create(new_map);
 3267                         *new_entry = *old_entry;
 3268                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
 3269                             MAP_ENTRY_IN_TRANSITION);
 3270                         new_entry->wiring_thread = NULL;
 3271                         new_entry->wired_count = 0;
 3272                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
 3273                                 vnode_pager_update_writecount(object,
 3274                                     new_entry->start, new_entry->end);
 3275                         }
 3276 
 3277                         /*
 3278                          * Insert the entry into the new map -- we know we're
 3279                          * inserting at the end of the new map.
 3280                          */
 3281                         vm_map_entry_link(new_map, new_map->header.prev,
 3282                             new_entry);
 3283                         vmspace_map_entry_forked(vm1, vm2, new_entry);
 3284 
 3285                         /*
 3286                          * Update the physical map
 3287                          */
 3288                         pmap_copy(new_map->pmap, old_map->pmap,
 3289                             new_entry->start,
 3290                             (old_entry->end - old_entry->start),
 3291                             old_entry->start);
 3292                         break;
 3293 
 3294                 case VM_INHERIT_COPY:
 3295                         /*
 3296                          * Clone the entry and link into the map.
 3297                          */
 3298                         new_entry = vm_map_entry_create(new_map);
 3299                         *new_entry = *old_entry;
 3300                         /*
 3301                          * Copied entry is COW over the old object.
 3302                          */
 3303                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
 3304                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
 3305                         new_entry->wiring_thread = NULL;
 3306                         new_entry->wired_count = 0;
 3307                         new_entry->object.vm_object = NULL;
 3308                         new_entry->cred = NULL;
 3309                         vm_map_entry_link(new_map, new_map->header.prev,
 3310                             new_entry);
 3311                         vmspace_map_entry_forked(vm1, vm2, new_entry);
 3312                         vm_map_copy_entry(old_map, new_map, old_entry,
 3313                             new_entry, fork_charge);
 3314                         break;
 3315                 }
 3316                 old_entry = old_entry->next;
 3317         }
 3318         /*
 3319          * Use inlined vm_map_unlock() to postpone handling the deferred
 3320          * map entries, which cannot be done until both old_map and
 3321          * new_map locks are released.
 3322          */
 3323         sx_xunlock(&old_map->lock);
 3324         sx_xunlock(&new_map->lock);
 3325         vm_map_process_deferred();
 3326 
 3327         return (vm2);
 3328 }
 3329 
 3330 int
 3331 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
 3332     vm_prot_t prot, vm_prot_t max, int cow)
 3333 {
 3334         vm_map_entry_t new_entry, prev_entry;
 3335         vm_offset_t bot, top;
 3336         vm_size_t growsize, init_ssize;
 3337         int orient, rv;
 3338         rlim_t lmemlim, vmemlim;
 3339 
 3340         /*
 3341          * The stack orientation is piggybacked with the cow argument.
 3342          * Extract it into orient and mask the cow argument so that we
 3343          * don't pass it around further.
 3344          * NOTE: We explicitly allow bi-directional stacks.
 3345          */
 3346         orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
 3347         KASSERT(orient != 0, ("No stack grow direction"));
 3348 
 3349         if (addrbos < vm_map_min(map) ||
 3350             addrbos > vm_map_max(map) ||
 3351             addrbos + max_ssize < addrbos)
 3352                 return (KERN_NO_SPACE);
 3353 
 3354         growsize = sgrowsiz;
 3355         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
 3356 
 3357         PROC_LOCK(curproc);
 3358         lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
 3359         vmemlim = lim_cur(curproc, RLIMIT_VMEM);
 3360         PROC_UNLOCK(curproc);
 3361 
 3362         vm_map_lock(map);
 3363 
 3364         /* If addr is already mapped, no go */
 3365         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
 3366                 vm_map_unlock(map);
 3367                 return (KERN_NO_SPACE);
 3368         }
 3369 
 3370         if (!old_mlock && map->flags & MAP_WIREFUTURE) {
 3371                 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
 3372                         vm_map_unlock(map);
 3373                         return (KERN_NO_SPACE);
 3374                 }
 3375         }
 3376 
 3377         /* If we would blow our VMEM resource limit, no go */
 3378         if (map->size + init_ssize > vmemlim) {
 3379                 vm_map_unlock(map);
 3380                 return (KERN_NO_SPACE);
 3381         }
 3382 
 3383         /*
 3384          * If we can't accomodate max_ssize in the current mapping, no go.
 3385          * However, we need to be aware that subsequent user mappings might
 3386          * map into the space we have reserved for stack, and currently this
 3387          * space is not protected.
 3388          *
 3389          * Hopefully we will at least detect this condition when we try to
 3390          * grow the stack.
 3391          */
 3392         if ((prev_entry->next != &map->header) &&
 3393             (prev_entry->next->start < addrbos + max_ssize)) {
 3394                 vm_map_unlock(map);
 3395                 return (KERN_NO_SPACE);
 3396         }
 3397 
 3398         /*
 3399          * We initially map a stack of only init_ssize.  We will grow as
 3400          * needed later.  Depending on the orientation of the stack (i.e.
 3401          * the grow direction) we either map at the top of the range, the
 3402          * bottom of the range or in the middle.
 3403          *
 3404          * Note: we would normally expect prot and max to be VM_PROT_ALL,
 3405          * and cow to be 0.  Possibly we should eliminate these as input
 3406          * parameters, and just pass these values here in the insert call.
 3407          */
 3408         if (orient == MAP_STACK_GROWS_DOWN)
 3409                 bot = addrbos + max_ssize - init_ssize;
 3410         else if (orient == MAP_STACK_GROWS_UP)
 3411                 bot = addrbos;
 3412         else
 3413                 bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
 3414         top = bot + init_ssize;
 3415         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
 3416 
 3417         /* Now set the avail_ssize amount. */
 3418         if (rv == KERN_SUCCESS) {
 3419                 if (prev_entry != &map->header)
 3420                         vm_map_clip_end(map, prev_entry, bot);
 3421                 new_entry = prev_entry->next;
 3422                 if (new_entry->end != top || new_entry->start != bot)
 3423                         panic("Bad entry start/end for new stack entry");
 3424 
 3425                 new_entry->avail_ssize = max_ssize - init_ssize;
 3426                 if (orient & MAP_STACK_GROWS_DOWN)
 3427                         new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
 3428                 if (orient & MAP_STACK_GROWS_UP)
 3429                         new_entry->eflags |= MAP_ENTRY_GROWS_UP;
 3430         }
 3431 
 3432         vm_map_unlock(map);
 3433         return (rv);
 3434 }
 3435 
 3436 static int stack_guard_page = 0;
 3437 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
 3438 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
 3439     &stack_guard_page, 0,
 3440     "Insert stack guard page ahead of the growable segments.");
 3441 
 3442 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
 3443  * desired address is already mapped, or if we successfully grow
 3444  * the stack.  Also returns KERN_SUCCESS if addr is outside the
 3445  * stack range (this is strange, but preserves compatibility with
 3446  * the grow function in vm_machdep.c).
 3447  */
 3448 int
 3449 vm_map_growstack(struct proc *p, vm_offset_t addr)
 3450 {
 3451         vm_map_entry_t next_entry, prev_entry;
 3452         vm_map_entry_t new_entry, stack_entry;
 3453         struct vmspace *vm = p->p_vmspace;
 3454         vm_map_t map = &vm->vm_map;
 3455         vm_offset_t end;
 3456         vm_size_t growsize;
 3457         size_t grow_amount, max_grow;
 3458         rlim_t lmemlim, stacklim, vmemlim;
 3459         int is_procstack, rv;
 3460         struct ucred *cred;
 3461 #ifdef notyet
 3462         uint64_t limit;
 3463 #endif
 3464 #ifdef RACCT
 3465         int error;
 3466 #endif
 3467 
 3468 Retry:
 3469         PROC_LOCK(p);
 3470         lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
 3471         stacklim = lim_cur(p, RLIMIT_STACK);
 3472         vmemlim = lim_cur(p, RLIMIT_VMEM);
 3473         PROC_UNLOCK(p);
 3474 
 3475         vm_map_lock_read(map);
 3476 
 3477         /* If addr is already in the entry range, no need to grow.*/
 3478         if (vm_map_lookup_entry(map, addr, &prev_entry)) {
 3479                 vm_map_unlock_read(map);
 3480                 return (KERN_SUCCESS);
 3481         }
 3482 
 3483         next_entry = prev_entry->next;
 3484         if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
 3485                 /*
 3486                  * This entry does not grow upwards. Since the address lies
 3487                  * beyond this entry, the next entry (if one exists) has to
 3488                  * be a downward growable entry. The entry list header is
 3489                  * never a growable entry, so it suffices to check the flags.
 3490                  */
 3491                 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
 3492                         vm_map_unlock_read(map);
 3493                         return (KERN_SUCCESS);
 3494                 }
 3495                 stack_entry = next_entry;
 3496         } else {
 3497                 /*
 3498                  * This entry grows upward. If the next entry does not at
 3499                  * least grow downwards, this is the entry we need to grow.
 3500                  * otherwise we have two possible choices and we have to
 3501                  * select one.
 3502                  */
 3503                 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
 3504                         /*
 3505                          * We have two choices; grow the entry closest to
 3506                          * the address to minimize the amount of growth.
 3507                          */
 3508                         if (addr - prev_entry->end <= next_entry->start - addr)
 3509                                 stack_entry = prev_entry;
 3510                         else
 3511                                 stack_entry = next_entry;
 3512                 } else
 3513                         stack_entry = prev_entry;
 3514         }
 3515 
 3516         if (stack_entry == next_entry) {
 3517                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
 3518                 KASSERT(addr < stack_entry->start, ("foo"));
 3519                 end = (prev_entry != &map->header) ? prev_entry->end :
 3520                     stack_entry->start - stack_entry->avail_ssize;
 3521                 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
 3522                 max_grow = stack_entry->start - end;
 3523         } else {
 3524                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
 3525                 KASSERT(addr >= stack_entry->end, ("foo"));
 3526                 end = (next_entry != &map->header) ? next_entry->start :
 3527                     stack_entry->end + stack_entry->avail_ssize;
 3528                 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
 3529                 max_grow = end - stack_entry->end;
 3530         }
 3531 
 3532         if (grow_amount > stack_entry->avail_ssize) {
 3533                 vm_map_unlock_read(map);
 3534                 return (KERN_NO_SPACE);
 3535         }
 3536 
 3537         /*
 3538          * If there is no longer enough space between the entries nogo, and
 3539          * adjust the available space.  Note: this  should only happen if the
 3540          * user has mapped into the stack area after the stack was created,
 3541          * and is probably an error.
 3542          *
 3543          * This also effectively destroys any guard page the user might have
 3544          * intended by limiting the stack size.
 3545          */
 3546         if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
 3547                 if (vm_map_lock_upgrade(map))
 3548                         goto Retry;
 3549 
 3550                 stack_entry->avail_ssize = max_grow;
 3551 
 3552                 vm_map_unlock(map);
 3553                 return (KERN_NO_SPACE);
 3554         }
 3555 
 3556         is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
 3557 
 3558         /*
 3559          * If this is the main process stack, see if we're over the stack
 3560          * limit.
 3561          */
 3562         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
 3563                 vm_map_unlock_read(map);
 3564                 return (KERN_NO_SPACE);
 3565         }
 3566 #ifdef RACCT
 3567         PROC_LOCK(p);
 3568         if (is_procstack &&
 3569             racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
 3570                 PROC_UNLOCK(p);
 3571                 vm_map_unlock_read(map);
 3572                 return (KERN_NO_SPACE);
 3573         }
 3574         PROC_UNLOCK(p);
 3575 #endif
 3576 
 3577         /* Round up the grow amount modulo sgrowsiz */
 3578         growsize = sgrowsiz;
 3579         grow_amount = roundup(grow_amount, growsize);
 3580         if (grow_amount > stack_entry->avail_ssize)
 3581                 grow_amount = stack_entry->avail_ssize;
 3582         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
 3583                 grow_amount = trunc_page((vm_size_t)stacklim) -
 3584                     ctob(vm->vm_ssize);
 3585         }
 3586 #ifdef notyet
 3587         PROC_LOCK(p);
 3588         limit = racct_get_available(p, RACCT_STACK);
 3589         PROC_UNLOCK(p);
 3590         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
 3591                 grow_amount = limit - ctob(vm->vm_ssize);
 3592 #endif
 3593         if (!old_mlock && map->flags & MAP_WIREFUTURE) {
 3594                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
 3595                         vm_map_unlock_read(map);
 3596                         rv = KERN_NO_SPACE;
 3597                         goto out;
 3598                 }
 3599 #ifdef RACCT
 3600                 PROC_LOCK(p);
 3601                 if (racct_set(p, RACCT_MEMLOCK,
 3602                     ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
 3603                         PROC_UNLOCK(p);
 3604                         vm_map_unlock_read(map);
 3605                         rv = KERN_NO_SPACE;
 3606                         goto out;
 3607                 }
 3608                 PROC_UNLOCK(p);
 3609 #endif
 3610         }
 3611         /* If we would blow our VMEM resource limit, no go */
 3612         if (map->size + grow_amount > vmemlim) {
 3613                 vm_map_unlock_read(map);
 3614                 rv = KERN_NO_SPACE;
 3615                 goto out;
 3616         }
 3617 #ifdef RACCT
 3618         PROC_LOCK(p);
 3619         if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
 3620                 PROC_UNLOCK(p);
 3621                 vm_map_unlock_read(map);
 3622                 rv = KERN_NO_SPACE;
 3623                 goto out;
 3624         }
 3625         PROC_UNLOCK(p);
 3626 #endif
 3627 
 3628         if (vm_map_lock_upgrade(map))
 3629                 goto Retry;
 3630 
 3631         if (stack_entry == next_entry) {
 3632                 /*
 3633                  * Growing downward.
 3634                  */
 3635                 /* Get the preliminary new entry start value */
 3636                 addr = stack_entry->start - grow_amount;
 3637 
 3638                 /*
 3639                  * If this puts us into the previous entry, cut back our
 3640                  * growth to the available space. Also, see the note above.
 3641                  */
 3642                 if (addr < end) {
 3643                         stack_entry->avail_ssize = max_grow;
 3644                         addr = end;
 3645                         if (stack_guard_page)
 3646                                 addr += PAGE_SIZE;
 3647                 }
 3648 
 3649                 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
 3650                     next_entry->protection, next_entry->max_protection, 0);
 3651 
 3652                 /* Adjust the available stack space by the amount we grew. */
 3653                 if (rv == KERN_SUCCESS) {
 3654                         if (prev_entry != &map->header)
 3655                                 vm_map_clip_end(map, prev_entry, addr);
 3656                         new_entry = prev_entry->next;
 3657                         KASSERT(new_entry == stack_entry->prev, ("foo"));
 3658                         KASSERT(new_entry->end == stack_entry->start, ("foo"));
 3659                         KASSERT(new_entry->start == addr, ("foo"));
 3660                         grow_amount = new_entry->end - new_entry->start;
 3661                         new_entry->avail_ssize = stack_entry->avail_ssize -
 3662                             grow_amount;
 3663                         stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
 3664                         new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
 3665                 }
 3666         } else {
 3667                 /*
 3668                  * Growing upward.
 3669                  */
 3670                 addr = stack_entry->end + grow_amount;
 3671 
 3672                 /*
 3673                  * If this puts us into the next entry, cut back our growth
 3674                  * to the available space. Also, see the note above.
 3675                  */
 3676                 if (addr > end) {
 3677                         stack_entry->avail_ssize = end - stack_entry->end;
 3678                         addr = end;
 3679                         if (stack_guard_page)
 3680                                 addr -= PAGE_SIZE;
 3681                 }
 3682 
 3683                 grow_amount = addr - stack_entry->end;
 3684                 cred = stack_entry->cred;
 3685                 if (cred == NULL && stack_entry->object.vm_object != NULL)
 3686                         cred = stack_entry->object.vm_object->cred;
 3687                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
 3688                         rv = KERN_NO_SPACE;
 3689                 /* Grow the underlying object if applicable. */
 3690                 else if (stack_entry->object.vm_object == NULL ||
 3691                          vm_object_coalesce(stack_entry->object.vm_object,
 3692                          stack_entry->offset,
 3693                          (vm_size_t)(stack_entry->end - stack_entry->start),
 3694                          (vm_size_t)grow_amount, cred != NULL)) {
 3695                         map->size += (addr - stack_entry->end);
 3696                         /* Update the current entry. */
 3697                         stack_entry->end = addr;
 3698                         stack_entry->avail_ssize -= grow_amount;
 3699                         vm_map_entry_resize_free(map, stack_entry);
 3700                         rv = KERN_SUCCESS;
 3701 
 3702                         if (next_entry != &map->header)
 3703                                 vm_map_clip_start(map, next_entry, addr);
 3704                 } else
 3705                         rv = KERN_FAILURE;
 3706         }
 3707 
 3708         if (rv == KERN_SUCCESS && is_procstack)
 3709                 vm->vm_ssize += btoc(grow_amount);
 3710 
 3711         vm_map_unlock(map);
 3712 
 3713         /*
 3714          * Heed the MAP_WIREFUTURE flag if it was set for this process.
 3715          */
 3716         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
 3717                 vm_map_wire(map,
 3718                     (stack_entry == next_entry) ? addr : addr - grow_amount,
 3719                     (stack_entry == next_entry) ? stack_entry->start : addr,
 3720                     (p->p_flag & P_SYSTEM)
 3721                     ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
 3722                     : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
 3723         }
 3724 
 3725 out:
 3726 #ifdef RACCT
 3727         if (rv != KERN_SUCCESS) {
 3728                 PROC_LOCK(p);
 3729                 error = racct_set(p, RACCT_VMEM, map->size);
 3730                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
 3731                 if (!old_mlock) {
 3732                         error = racct_set(p, RACCT_MEMLOCK,
 3733                             ptoa(pmap_wired_count(map->pmap)));
 3734                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
 3735                 }
 3736                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
 3737                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
 3738                 PROC_UNLOCK(p);
 3739         }
 3740 #endif
 3741 
 3742         return (rv);
 3743 }
 3744 
 3745 /*
 3746  * Unshare the specified VM space for exec.  If other processes are
 3747  * mapped to it, then create a new one.  The new vmspace is null.
 3748  */
 3749 int
 3750 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
 3751 {
 3752         struct vmspace *oldvmspace = p->p_vmspace;
 3753         struct vmspace *newvmspace;
 3754 
 3755         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
 3756             ("vmspace_exec recursed"));
 3757         newvmspace = vmspace_alloc(minuser, maxuser);
 3758         if (newvmspace == NULL)
 3759                 return (ENOMEM);
 3760         newvmspace->vm_swrss = oldvmspace->vm_swrss;
 3761         /*
 3762          * This code is written like this for prototype purposes.  The
 3763          * goal is to avoid running down the vmspace here, but let the
 3764          * other process's that are still using the vmspace to finally
 3765          * run it down.  Even though there is little or no chance of blocking
 3766          * here, it is a good idea to keep this form for future mods.
 3767          */
 3768         PROC_VMSPACE_LOCK(p);
 3769         p->p_vmspace = newvmspace;
 3770         PROC_VMSPACE_UNLOCK(p);
 3771         if (p == curthread->td_proc)
 3772                 pmap_activate(curthread);
 3773         curthread->td_pflags |= TDP_EXECVMSPC;
 3774         return (0);
 3775 }
 3776 
 3777 /*
 3778  * Unshare the specified VM space for forcing COW.  This
 3779  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
 3780  */
 3781 int
 3782 vmspace_unshare(struct proc *p)
 3783 {
 3784         struct vmspace *oldvmspace = p->p_vmspace;
 3785         struct vmspace *newvmspace;
 3786         vm_ooffset_t fork_charge;
 3787 
 3788         if (oldvmspace->vm_refcnt == 1)
 3789                 return (0);
 3790         fork_charge = 0;
 3791         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
 3792         if (newvmspace == NULL)
 3793                 return (ENOMEM);
 3794         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
 3795                 vmspace_free(newvmspace);
 3796                 return (ENOMEM);
 3797         }
 3798         PROC_VMSPACE_LOCK(p);
 3799         p->p_vmspace = newvmspace;
 3800         PROC_VMSPACE_UNLOCK(p);
 3801         if (p == curthread->td_proc)
 3802                 pmap_activate(curthread);
 3803         vmspace_free(oldvmspace);
 3804         return (0);
 3805 }
 3806 
 3807 /*
 3808  *      vm_map_lookup:
 3809  *
 3810  *      Finds the VM object, offset, and
 3811  *      protection for a given virtual address in the
 3812  *      specified map, assuming a page fault of the
 3813  *      type specified.
 3814  *
 3815  *      Leaves the map in question locked for read; return
 3816  *      values are guaranteed until a vm_map_lookup_done
 3817  *      call is performed.  Note that the map argument
 3818  *      is in/out; the returned map must be used in
 3819  *      the call to vm_map_lookup_done.
 3820  *
 3821  *      A handle (out_entry) is returned for use in
 3822  *      vm_map_lookup_done, to make that fast.
 3823  *
 3824  *      If a lookup is requested with "write protection"
 3825  *      specified, the map may be changed to perform virtual
 3826  *      copying operations, although the data referenced will
 3827  *      remain the same.
 3828  */
 3829 int
 3830 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
 3831               vm_offset_t vaddr,
 3832               vm_prot_t fault_typea,
 3833               vm_map_entry_t *out_entry,        /* OUT */
 3834               vm_object_t *object,              /* OUT */
 3835               vm_pindex_t *pindex,              /* OUT */
 3836               vm_prot_t *out_prot,              /* OUT */
 3837               boolean_t *wired)                 /* OUT */
 3838 {
 3839         vm_map_entry_t entry;
 3840         vm_map_t map = *var_map;
 3841         vm_prot_t prot;
 3842         vm_prot_t fault_type = fault_typea;
 3843         vm_object_t eobject;
 3844         vm_size_t size;
 3845         struct ucred *cred;
 3846 
 3847 RetryLookup:;
 3848 
 3849         vm_map_lock_read(map);
 3850 
 3851         /*
 3852          * Lookup the faulting address.
 3853          */
 3854         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
 3855                 vm_map_unlock_read(map);
 3856                 return (KERN_INVALID_ADDRESS);
 3857         }
 3858 
 3859         entry = *out_entry;
 3860 
 3861         /*
 3862          * Handle submaps.
 3863          */
 3864         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 3865                 vm_map_t old_map = map;
 3866 
 3867                 *var_map = map = entry->object.sub_map;
 3868                 vm_map_unlock_read(old_map);
 3869                 goto RetryLookup;
 3870         }
 3871 
 3872         /*
 3873          * Check whether this task is allowed to have this page.
 3874          */
 3875         prot = entry->protection;
 3876         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
 3877         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
 3878                 vm_map_unlock_read(map);
 3879                 return (KERN_PROTECTION_FAILURE);
 3880         }
 3881         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
 3882             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
 3883             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
 3884             ("entry %p flags %x", entry, entry->eflags));
 3885         if ((fault_typea & VM_PROT_COPY) != 0 &&
 3886             (entry->max_protection & VM_PROT_WRITE) == 0 &&
 3887             (entry->eflags & MAP_ENTRY_COW) == 0) {
 3888                 vm_map_unlock_read(map);
 3889                 return (KERN_PROTECTION_FAILURE);
 3890         }
 3891 
 3892         /*
 3893          * If this page is not pageable, we have to get it for all possible
 3894          * accesses.
 3895          */
 3896         *wired = (entry->wired_count != 0);
 3897         if (*wired)
 3898                 fault_type = entry->protection;
 3899         size = entry->end - entry->start;
 3900         /*
 3901          * If the entry was copy-on-write, we either ...
 3902          */
 3903         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 3904                 /*
 3905                  * If we want to write the page, we may as well handle that
 3906                  * now since we've got the map locked.
 3907                  *
 3908                  * If we don't need to write the page, we just demote the
 3909                  * permissions allowed.
 3910                  */
 3911                 if ((fault_type & VM_PROT_WRITE) != 0 ||
 3912                     (fault_typea & VM_PROT_COPY) != 0) {
 3913                         /*
 3914                          * Make a new object, and place it in the object
 3915                          * chain.  Note that no new references have appeared
 3916                          * -- one just moved from the map to the new
 3917                          * object.
 3918                          */
 3919                         if (vm_map_lock_upgrade(map))
 3920                                 goto RetryLookup;
 3921 
 3922                         if (entry->cred == NULL) {
 3923                                 /*
 3924                                  * The debugger owner is charged for
 3925                                  * the memory.
 3926                                  */
 3927                                 cred = curthread->td_ucred;
 3928                                 crhold(cred);
 3929                                 if (!swap_reserve_by_cred(size, cred)) {
 3930                                         crfree(cred);
 3931                                         vm_map_unlock(map);
 3932                                         return (KERN_RESOURCE_SHORTAGE);
 3933                                 }
 3934                                 entry->cred = cred;
 3935                         }
 3936                         vm_object_shadow(&entry->object.vm_object,
 3937                             &entry->offset, size);
 3938                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
 3939                         eobject = entry->object.vm_object;
 3940                         if (eobject->cred != NULL) {
 3941                                 /*
 3942                                  * The object was not shadowed.
 3943                                  */
 3944                                 swap_release_by_cred(size, entry->cred);
 3945                                 crfree(entry->cred);
 3946                                 entry->cred = NULL;
 3947                         } else if (entry->cred != NULL) {
 3948                                 VM_OBJECT_LOCK(eobject);
 3949                                 eobject->cred = entry->cred;
 3950                                 eobject->charge = size;
 3951                                 VM_OBJECT_UNLOCK(eobject);
 3952                                 entry->cred = NULL;
 3953                         }
 3954 
 3955                         vm_map_lock_downgrade(map);
 3956                 } else {
 3957                         /*
 3958                          * We're attempting to read a copy-on-write page --
 3959                          * don't allow writes.
 3960                          */
 3961                         prot &= ~VM_PROT_WRITE;
 3962                 }
 3963         }
 3964 
 3965         /*
 3966          * Create an object if necessary.
 3967          */
 3968         if (entry->object.vm_object == NULL &&
 3969             !map->system_map) {
 3970                 if (vm_map_lock_upgrade(map))
 3971                         goto RetryLookup;
 3972                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
 3973                     atop(size));
 3974                 entry->offset = 0;
 3975                 if (entry->cred != NULL) {
 3976                         VM_OBJECT_LOCK(entry->object.vm_object);
 3977                         entry->object.vm_object->cred = entry->cred;
 3978                         entry->object.vm_object->charge = size;
 3979                         VM_OBJECT_UNLOCK(entry->object.vm_object);
 3980                         entry->cred = NULL;
 3981                 }
 3982                 vm_map_lock_downgrade(map);
 3983         }
 3984 
 3985         /*
 3986          * Return the object/offset from this entry.  If the entry was
 3987          * copy-on-write or empty, it has been fixed up.
 3988          */
 3989         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
 3990         *object = entry->object.vm_object;
 3991 
 3992         *out_prot = prot;
 3993         return (KERN_SUCCESS);
 3994 }
 3995 
 3996 /*
 3997  *      vm_map_lookup_locked:
 3998  *
 3999  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
 4000  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
 4001  */
 4002 int
 4003 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
 4004                      vm_offset_t vaddr,
 4005                      vm_prot_t fault_typea,
 4006                      vm_map_entry_t *out_entry, /* OUT */
 4007                      vm_object_t *object,       /* OUT */
 4008                      vm_pindex_t *pindex,       /* OUT */
 4009                      vm_prot_t *out_prot,       /* OUT */
 4010                      boolean_t *wired)          /* OUT */
 4011 {
 4012         vm_map_entry_t entry;
 4013         vm_map_t map = *var_map;
 4014         vm_prot_t prot;
 4015         vm_prot_t fault_type = fault_typea;
 4016 
 4017         /*
 4018          * Lookup the faulting address.
 4019          */
 4020         if (!vm_map_lookup_entry(map, vaddr, out_entry))
 4021                 return (KERN_INVALID_ADDRESS);
 4022 
 4023         entry = *out_entry;
 4024 
 4025         /*
 4026          * Fail if the entry refers to a submap.
 4027          */
 4028         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 4029                 return (KERN_FAILURE);
 4030 
 4031         /*
 4032          * Check whether this task is allowed to have this page.
 4033          */
 4034         prot = entry->protection;
 4035         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
 4036         if ((fault_type & prot) != fault_type)
 4037                 return (KERN_PROTECTION_FAILURE);
 4038 
 4039         /*
 4040          * If this page is not pageable, we have to get it for all possible
 4041          * accesses.
 4042          */
 4043         *wired = (entry->wired_count != 0);
 4044         if (*wired)
 4045                 fault_type = entry->protection;
 4046 
 4047         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 4048                 /*
 4049                  * Fail if the entry was copy-on-write for a write fault.
 4050                  */
 4051                 if (fault_type & VM_PROT_WRITE)
 4052                         return (KERN_FAILURE);
 4053                 /*
 4054                  * We're attempting to read a copy-on-write page --
 4055                  * don't allow writes.
 4056                  */
 4057                 prot &= ~VM_PROT_WRITE;
 4058         }
 4059 
 4060         /*
 4061          * Fail if an object should be created.
 4062          */
 4063         if (entry->object.vm_object == NULL && !map->system_map)
 4064                 return (KERN_FAILURE);
 4065 
 4066         /*
 4067          * Return the object/offset from this entry.  If the entry was
 4068          * copy-on-write or empty, it has been fixed up.
 4069          */
 4070         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
 4071         *object = entry->object.vm_object;
 4072 
 4073         *out_prot = prot;
 4074         return (KERN_SUCCESS);
 4075 }
 4076 
 4077 /*
 4078  *      vm_map_lookup_done:
 4079  *
 4080  *      Releases locks acquired by a vm_map_lookup
 4081  *      (according to the handle returned by that lookup).
 4082  */
 4083 void
 4084 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
 4085 {
 4086         /*
 4087          * Unlock the main-level map
 4088          */
 4089         vm_map_unlock_read(map);
 4090 }
 4091 
 4092 #include "opt_ddb.h"
 4093 #ifdef DDB
 4094 #include <sys/kernel.h>
 4095 
 4096 #include <ddb/ddb.h>
 4097 
 4098 /*
 4099  *      vm_map_print:   [ debug ]
 4100  */
 4101 DB_SHOW_COMMAND(map, vm_map_print)
 4102 {
 4103         static int nlines;
 4104         /* XXX convert args. */
 4105         vm_map_t map = (vm_map_t)addr;
 4106         boolean_t full = have_addr;
 4107 
 4108         vm_map_entry_t entry;
 4109 
 4110         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
 4111             (void *)map,
 4112             (void *)map->pmap, map->nentries, map->timestamp);
 4113         nlines++;
 4114 
 4115         if (!full && db_indent)
 4116                 return;
 4117 
 4118         db_indent += 2;
 4119         for (entry = map->header.next; entry != &map->header;
 4120             entry = entry->next) {
 4121                 db_iprintf("map entry %p: start=%p, end=%p\n",
 4122                     (void *)entry, (void *)entry->start, (void *)entry->end);
 4123                 nlines++;
 4124                 {
 4125                         static char *inheritance_name[4] =
 4126                         {"share", "copy", "none", "donate_copy"};
 4127 
 4128                         db_iprintf(" prot=%x/%x/%s",
 4129                             entry->protection,
 4130                             entry->max_protection,
 4131                             inheritance_name[(int)(unsigned char)entry->inheritance]);
 4132                         if (entry->wired_count != 0)
 4133                                 db_printf(", wired");
 4134                 }
 4135                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 4136                         db_printf(", share=%p, offset=0x%jx\n",
 4137                             (void *)entry->object.sub_map,
 4138                             (uintmax_t)entry->offset);
 4139                         nlines++;
 4140                         if ((entry->prev == &map->header) ||
 4141                             (entry->prev->object.sub_map !=
 4142                                 entry->object.sub_map)) {
 4143                                 db_indent += 2;
 4144                                 vm_map_print((db_expr_t)(intptr_t)
 4145                                              entry->object.sub_map,
 4146                                              full, 0, (char *)0);
 4147                                 db_indent -= 2;
 4148                         }
 4149                 } else {
 4150                         if (entry->cred != NULL)
 4151                                 db_printf(", ruid %d", entry->cred->cr_ruid);
 4152                         db_printf(", object=%p, offset=0x%jx",
 4153                             (void *)entry->object.vm_object,
 4154                             (uintmax_t)entry->offset);
 4155                         if (entry->object.vm_object && entry->object.vm_object->cred)
 4156                                 db_printf(", obj ruid %d charge %jx",
 4157                                     entry->object.vm_object->cred->cr_ruid,
 4158                                     (uintmax_t)entry->object.vm_object->charge);
 4159                         if (entry->eflags & MAP_ENTRY_COW)
 4160                                 db_printf(", copy (%s)",
 4161                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
 4162                         db_printf("\n");
 4163                         nlines++;
 4164 
 4165                         if ((entry->prev == &map->header) ||
 4166                             (entry->prev->object.vm_object !=
 4167                                 entry->object.vm_object)) {
 4168                                 db_indent += 2;
 4169                                 vm_object_print((db_expr_t)(intptr_t)
 4170                                                 entry->object.vm_object,
 4171                                                 full, 0, (char *)0);
 4172                                 nlines += 4;
 4173                                 db_indent -= 2;
 4174                         }
 4175                 }
 4176         }
 4177         db_indent -= 2;
 4178         if (db_indent == 0)
 4179                 nlines = 0;
 4180 }
 4181 
 4182 
 4183 DB_SHOW_COMMAND(procvm, procvm)
 4184 {
 4185         struct proc *p;
 4186 
 4187         if (have_addr) {
 4188                 p = (struct proc *) addr;
 4189         } else {
 4190                 p = curproc;
 4191         }
 4192 
 4193         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
 4194             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
 4195             (void *)vmspace_pmap(p->p_vmspace));
 4196 
 4197         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
 4198 }
 4199 
 4200 #endif /* DDB */

Cache object: d70b5370c946d754e597febfce220cbd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.