FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c
1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
35 *
36 *
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * Virtual memory object module.
65 */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/blockcount.h>
75 #include <sys/cpuset.h>
76 #include <sys/limits.h>
77 #include <sys/lock.h>
78 #include <sys/mman.h>
79 #include <sys/mount.h>
80 #include <sys/kernel.h>
81 #include <sys/pctrie.h>
82 #include <sys/sysctl.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h> /* for curproc, pageproc */
85 #include <sys/refcount.h>
86 #include <sys/socket.h>
87 #include <sys/resourcevar.h>
88 #include <sys/refcount.h>
89 #include <sys/rwlock.h>
90 #include <sys/user.h>
91 #include <sys/vnode.h>
92 #include <sys/vmmeter.h>
93 #include <sys/sx.h>
94
95 #include <vm/vm.h>
96 #include <vm/vm_param.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_phys.h>
104 #include <vm/vm_pagequeue.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/uma.h>
111
112 static int old_msync;
113 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
114 "Use old (insecure) msync behavior");
115
116 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
117 int pagerflags, int flags, boolean_t *allclean,
118 boolean_t *eio);
119 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
120 boolean_t *allclean);
121 static void vm_object_backing_remove(vm_object_t object);
122
123 /*
124 * Virtual memory objects maintain the actual data
125 * associated with allocated virtual memory. A given
126 * page of memory exists within exactly one object.
127 *
128 * An object is only deallocated when all "references"
129 * are given up. Only one "reference" to a given
130 * region of an object should be writeable.
131 *
132 * Associated with each object is a list of all resident
133 * memory pages belonging to that object; this list is
134 * maintained by the "vm_page" module, and locked by the object's
135 * lock.
136 *
137 * Each object also records a "pager" routine which is
138 * used to retrieve (and store) pages to the proper backing
139 * storage. In addition, objects may be backed by other
140 * objects from which they were virtual-copied.
141 *
142 * The only items within the object structure which are
143 * modified after time of creation are:
144 * reference count locked by object's lock
145 * pager routine locked by object's lock
146 *
147 */
148
149 struct object_q vm_object_list;
150 struct mtx vm_object_list_mtx; /* lock for object list and count */
151
152 struct vm_object kernel_object_store;
153
154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
155 "VM object stats");
156
157 static COUNTER_U64_DEFINE_EARLY(object_collapses);
158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
159 &object_collapses,
160 "VM object collapses");
161
162 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
164 &object_bypasses,
165 "VM object bypasses");
166
167 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
168 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
169 &object_collapse_waits,
170 "Number of sleeps for collapse");
171
172 static uma_zone_t obj_zone;
173
174 static int vm_object_zinit(void *mem, int size, int flags);
175
176 #ifdef INVARIANTS
177 static void vm_object_zdtor(void *mem, int size, void *arg);
178
179 static void
180 vm_object_zdtor(void *mem, int size, void *arg)
181 {
182 vm_object_t object;
183
184 object = (vm_object_t)mem;
185 KASSERT(object->ref_count == 0,
186 ("object %p ref_count = %d", object, object->ref_count));
187 KASSERT(TAILQ_EMPTY(&object->memq),
188 ("object %p has resident pages in its memq", object));
189 KASSERT(vm_radix_is_empty(&object->rtree),
190 ("object %p has resident pages in its trie", object));
191 #if VM_NRESERVLEVEL > 0
192 KASSERT(LIST_EMPTY(&object->rvq),
193 ("object %p has reservations",
194 object));
195 #endif
196 KASSERT(!vm_object_busied(object),
197 ("object %p busy = %d", object, blockcount_read(&object->busy)));
198 KASSERT(object->resident_page_count == 0,
199 ("object %p resident_page_count = %d",
200 object, object->resident_page_count));
201 KASSERT(atomic_load_int(&object->shadow_count) == 0,
202 ("object %p shadow_count = %d",
203 object, atomic_load_int(&object->shadow_count)));
204 KASSERT(object->type == OBJT_DEAD,
205 ("object %p has non-dead type %d",
206 object, object->type));
207 KASSERT(object->charge == 0 && object->cred == NULL,
208 ("object %p has non-zero charge %ju (%p)",
209 object, (uintmax_t)object->charge, object->cred));
210 }
211 #endif
212
213 static int
214 vm_object_zinit(void *mem, int size, int flags)
215 {
216 vm_object_t object;
217
218 object = (vm_object_t)mem;
219 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
220
221 /* These are true for any object that has been freed */
222 object->type = OBJT_DEAD;
223 vm_radix_init(&object->rtree);
224 refcount_init(&object->ref_count, 0);
225 blockcount_init(&object->paging_in_progress);
226 blockcount_init(&object->busy);
227 object->resident_page_count = 0;
228 atomic_store_int(&object->shadow_count, 0);
229 object->flags = OBJ_DEAD;
230
231 mtx_lock(&vm_object_list_mtx);
232 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
233 mtx_unlock(&vm_object_list_mtx);
234 return (0);
235 }
236
237 static void
238 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
239 vm_object_t object, void *handle)
240 {
241
242 TAILQ_INIT(&object->memq);
243 LIST_INIT(&object->shadow_head);
244
245 object->type = type;
246 object->flags = flags;
247 if ((flags & OBJ_SWAP) != 0) {
248 pctrie_init(&object->un_pager.swp.swp_blks);
249 object->un_pager.swp.writemappings = 0;
250 }
251
252 /*
253 * Ensure that swap_pager_swapoff() iteration over object_list
254 * sees up to date type and pctrie head if it observed
255 * non-dead object.
256 */
257 atomic_thread_fence_rel();
258
259 object->pg_color = 0;
260 object->size = size;
261 object->domain.dr_policy = NULL;
262 object->generation = 1;
263 object->cleangeneration = 1;
264 refcount_init(&object->ref_count, 1);
265 object->memattr = VM_MEMATTR_DEFAULT;
266 object->cred = NULL;
267 object->charge = 0;
268 object->handle = handle;
269 object->backing_object = NULL;
270 object->backing_object_offset = (vm_ooffset_t) 0;
271 #if VM_NRESERVLEVEL > 0
272 LIST_INIT(&object->rvq);
273 #endif
274 umtx_shm_object_init(object);
275 }
276
277 /*
278 * vm_object_init:
279 *
280 * Initialize the VM objects module.
281 */
282 void
283 vm_object_init(void)
284 {
285 TAILQ_INIT(&vm_object_list);
286 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
287
288 rw_init(&kernel_object->lock, "kernel vm object");
289 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
290 VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
291 #if VM_NRESERVLEVEL > 0
292 kernel_object->flags |= OBJ_COLORED;
293 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
294 #endif
295 kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
296
297 /*
298 * The lock portion of struct vm_object must be type stable due
299 * to vm_pageout_fallback_object_lock locking a vm object
300 * without holding any references to it.
301 *
302 * paging_in_progress is valid always. Lockless references to
303 * the objects may acquire pip and then check OBJ_DEAD.
304 */
305 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
306 #ifdef INVARIANTS
307 vm_object_zdtor,
308 #else
309 NULL,
310 #endif
311 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
312
313 vm_radix_zinit();
314 }
315
316 void
317 vm_object_clear_flag(vm_object_t object, u_short bits)
318 {
319
320 VM_OBJECT_ASSERT_WLOCKED(object);
321 object->flags &= ~bits;
322 }
323
324 /*
325 * Sets the default memory attribute for the specified object. Pages
326 * that are allocated to this object are by default assigned this memory
327 * attribute.
328 *
329 * Presently, this function must be called before any pages are allocated
330 * to the object. In the future, this requirement may be relaxed for
331 * "default" and "swap" objects.
332 */
333 int
334 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
335 {
336
337 VM_OBJECT_ASSERT_WLOCKED(object);
338
339 if (object->type == OBJT_DEAD)
340 return (KERN_INVALID_ARGUMENT);
341 if (!TAILQ_EMPTY(&object->memq))
342 return (KERN_FAILURE);
343
344 object->memattr = memattr;
345 return (KERN_SUCCESS);
346 }
347
348 void
349 vm_object_pip_add(vm_object_t object, short i)
350 {
351
352 if (i > 0)
353 blockcount_acquire(&object->paging_in_progress, i);
354 }
355
356 void
357 vm_object_pip_wakeup(vm_object_t object)
358 {
359
360 vm_object_pip_wakeupn(object, 1);
361 }
362
363 void
364 vm_object_pip_wakeupn(vm_object_t object, short i)
365 {
366
367 if (i > 0)
368 blockcount_release(&object->paging_in_progress, i);
369 }
370
371 /*
372 * Atomically drop the object lock and wait for pip to drain. This protects
373 * from sleep/wakeup races due to identity changes. The lock is not re-acquired
374 * on return.
375 */
376 static void
377 vm_object_pip_sleep(vm_object_t object, const char *waitid)
378 {
379
380 (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
381 waitid, PVM | PDROP);
382 }
383
384 void
385 vm_object_pip_wait(vm_object_t object, const char *waitid)
386 {
387
388 VM_OBJECT_ASSERT_WLOCKED(object);
389
390 blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
391 PVM);
392 }
393
394 void
395 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
396 {
397
398 VM_OBJECT_ASSERT_UNLOCKED(object);
399
400 blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
401 }
402
403 /*
404 * vm_object_allocate:
405 *
406 * Returns a new object with the given size.
407 */
408 vm_object_t
409 vm_object_allocate(objtype_t type, vm_pindex_t size)
410 {
411 vm_object_t object;
412 u_short flags;
413
414 switch (type) {
415 case OBJT_DEAD:
416 panic("vm_object_allocate: can't create OBJT_DEAD");
417 case OBJT_SWAP:
418 flags = OBJ_COLORED | OBJ_SWAP;
419 break;
420 case OBJT_DEVICE:
421 case OBJT_SG:
422 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
423 break;
424 case OBJT_MGTDEVICE:
425 flags = OBJ_FICTITIOUS;
426 break;
427 case OBJT_PHYS:
428 flags = OBJ_UNMANAGED;
429 break;
430 case OBJT_VNODE:
431 flags = 0;
432 break;
433 default:
434 panic("vm_object_allocate: type %d is undefined or dynamic",
435 type);
436 }
437 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
438 _vm_object_allocate(type, size, flags, object, NULL);
439
440 return (object);
441 }
442
443 vm_object_t
444 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags)
445 {
446 vm_object_t object;
447
448 MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */);
449 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
450 _vm_object_allocate(dyntype, size, flags, object, NULL);
451
452 return (object);
453 }
454
455 /*
456 * vm_object_allocate_anon:
457 *
458 * Returns a new default object of the given size and marked as
459 * anonymous memory for special split/collapse handling. Color
460 * to be initialized by the caller.
461 */
462 vm_object_t
463 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
464 struct ucred *cred, vm_size_t charge)
465 {
466 vm_object_t handle, object;
467
468 if (backing_object == NULL)
469 handle = NULL;
470 else if ((backing_object->flags & OBJ_ANON) != 0)
471 handle = backing_object->handle;
472 else
473 handle = backing_object;
474 object = uma_zalloc(obj_zone, M_WAITOK);
475 _vm_object_allocate(OBJT_SWAP, size,
476 OBJ_ANON | OBJ_ONEMAPPING | OBJ_SWAP, object, handle);
477 object->cred = cred;
478 object->charge = cred != NULL ? charge : 0;
479 return (object);
480 }
481
482 static void
483 vm_object_reference_vnode(vm_object_t object)
484 {
485 u_int old;
486
487 /*
488 * vnode objects need the lock for the first reference
489 * to serialize with vnode_object_deallocate().
490 */
491 if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
492 VM_OBJECT_RLOCK(object);
493 old = refcount_acquire(&object->ref_count);
494 if (object->type == OBJT_VNODE && old == 0)
495 vref(object->handle);
496 VM_OBJECT_RUNLOCK(object);
497 }
498 }
499
500 /*
501 * vm_object_reference:
502 *
503 * Acquires a reference to the given object.
504 */
505 void
506 vm_object_reference(vm_object_t object)
507 {
508
509 if (object == NULL)
510 return;
511
512 if (object->type == OBJT_VNODE)
513 vm_object_reference_vnode(object);
514 else
515 refcount_acquire(&object->ref_count);
516 KASSERT((object->flags & OBJ_DEAD) == 0,
517 ("vm_object_reference: Referenced dead object."));
518 }
519
520 /*
521 * vm_object_reference_locked:
522 *
523 * Gets another reference to the given object.
524 *
525 * The object must be locked.
526 */
527 void
528 vm_object_reference_locked(vm_object_t object)
529 {
530 u_int old;
531
532 VM_OBJECT_ASSERT_LOCKED(object);
533 old = refcount_acquire(&object->ref_count);
534 if (object->type == OBJT_VNODE && old == 0)
535 vref(object->handle);
536 KASSERT((object->flags & OBJ_DEAD) == 0,
537 ("vm_object_reference: Referenced dead object."));
538 }
539
540 /*
541 * Handle deallocating an object of type OBJT_VNODE.
542 */
543 static void
544 vm_object_deallocate_vnode(vm_object_t object)
545 {
546 struct vnode *vp = (struct vnode *) object->handle;
547 bool last;
548
549 KASSERT(object->type == OBJT_VNODE,
550 ("vm_object_deallocate_vnode: not a vnode object"));
551 KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
552
553 /* Object lock to protect handle lookup. */
554 last = refcount_release(&object->ref_count);
555 VM_OBJECT_RUNLOCK(object);
556
557 if (!last)
558 return;
559
560 if (!umtx_shm_vnobj_persistent)
561 umtx_shm_object_terminated(object);
562
563 /* vrele may need the vnode lock. */
564 vrele(vp);
565 }
566
567 /*
568 * We dropped a reference on an object and discovered that it had a
569 * single remaining shadow. This is a sibling of the reference we
570 * dropped. Attempt to collapse the sibling and backing object.
571 */
572 static vm_object_t
573 vm_object_deallocate_anon(vm_object_t backing_object)
574 {
575 vm_object_t object;
576
577 /* Fetch the final shadow. */
578 object = LIST_FIRST(&backing_object->shadow_head);
579 KASSERT(object != NULL &&
580 atomic_load_int(&backing_object->shadow_count) == 1,
581 ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
582 backing_object->ref_count,
583 atomic_load_int(&backing_object->shadow_count)));
584 KASSERT((object->flags & OBJ_ANON) != 0,
585 ("invalid shadow object %p", object));
586
587 if (!VM_OBJECT_TRYWLOCK(object)) {
588 /*
589 * Prevent object from disappearing since we do not have a
590 * reference.
591 */
592 vm_object_pip_add(object, 1);
593 VM_OBJECT_WUNLOCK(backing_object);
594 VM_OBJECT_WLOCK(object);
595 vm_object_pip_wakeup(object);
596 } else
597 VM_OBJECT_WUNLOCK(backing_object);
598
599 /*
600 * Check for a collapse/terminate race with the last reference holder.
601 */
602 if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
603 !refcount_acquire_if_not_zero(&object->ref_count)) {
604 VM_OBJECT_WUNLOCK(object);
605 return (NULL);
606 }
607 backing_object = object->backing_object;
608 if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
609 vm_object_collapse(object);
610 VM_OBJECT_WUNLOCK(object);
611
612 return (object);
613 }
614
615 /*
616 * vm_object_deallocate:
617 *
618 * Release a reference to the specified object,
619 * gained either through a vm_object_allocate
620 * or a vm_object_reference call. When all references
621 * are gone, storage associated with this object
622 * may be relinquished.
623 *
624 * No object may be locked.
625 */
626 void
627 vm_object_deallocate(vm_object_t object)
628 {
629 vm_object_t temp;
630 bool released;
631
632 while (object != NULL) {
633 /*
634 * If the reference count goes to 0 we start calling
635 * vm_object_terminate() on the object chain. A ref count
636 * of 1 may be a special case depending on the shadow count
637 * being 0 or 1. These cases require a write lock on the
638 * object.
639 */
640 if ((object->flags & OBJ_ANON) == 0)
641 released = refcount_release_if_gt(&object->ref_count, 1);
642 else
643 released = refcount_release_if_gt(&object->ref_count, 2);
644 if (released)
645 return;
646
647 if (object->type == OBJT_VNODE) {
648 VM_OBJECT_RLOCK(object);
649 if (object->type == OBJT_VNODE) {
650 vm_object_deallocate_vnode(object);
651 return;
652 }
653 VM_OBJECT_RUNLOCK(object);
654 }
655
656 VM_OBJECT_WLOCK(object);
657 KASSERT(object->ref_count > 0,
658 ("vm_object_deallocate: object deallocated too many times: %d",
659 object->type));
660
661 /*
662 * If this is not the final reference to an anonymous
663 * object we may need to collapse the shadow chain.
664 */
665 if (!refcount_release(&object->ref_count)) {
666 if (object->ref_count > 1 ||
667 atomic_load_int(&object->shadow_count) == 0) {
668 if ((object->flags & OBJ_ANON) != 0 &&
669 object->ref_count == 1)
670 vm_object_set_flag(object,
671 OBJ_ONEMAPPING);
672 VM_OBJECT_WUNLOCK(object);
673 return;
674 }
675
676 /* Handle collapsing last ref on anonymous objects. */
677 object = vm_object_deallocate_anon(object);
678 continue;
679 }
680
681 /*
682 * Handle the final reference to an object. We restart
683 * the loop with the backing object to avoid recursion.
684 */
685 umtx_shm_object_terminated(object);
686 temp = object->backing_object;
687 if (temp != NULL) {
688 KASSERT(object->type == OBJT_SWAP,
689 ("shadowed tmpfs v_object 2 %p", object));
690 vm_object_backing_remove(object);
691 }
692
693 KASSERT((object->flags & OBJ_DEAD) == 0,
694 ("vm_object_deallocate: Terminating dead object."));
695 vm_object_set_flag(object, OBJ_DEAD);
696 vm_object_terminate(object);
697 object = temp;
698 }
699 }
700
701 void
702 vm_object_destroy(vm_object_t object)
703 {
704 uma_zfree(obj_zone, object);
705 }
706
707 static void
708 vm_object_sub_shadow(vm_object_t object)
709 {
710 KASSERT(object->shadow_count >= 1,
711 ("object %p sub_shadow count zero", object));
712 atomic_subtract_int(&object->shadow_count, 1);
713 }
714
715 static void
716 vm_object_backing_remove_locked(vm_object_t object)
717 {
718 vm_object_t backing_object;
719
720 backing_object = object->backing_object;
721 VM_OBJECT_ASSERT_WLOCKED(object);
722 VM_OBJECT_ASSERT_WLOCKED(backing_object);
723
724 KASSERT((object->flags & OBJ_COLLAPSING) == 0,
725 ("vm_object_backing_remove: Removing collapsing object."));
726
727 vm_object_sub_shadow(backing_object);
728 if ((object->flags & OBJ_SHADOWLIST) != 0) {
729 LIST_REMOVE(object, shadow_list);
730 vm_object_clear_flag(object, OBJ_SHADOWLIST);
731 }
732 object->backing_object = NULL;
733 }
734
735 static void
736 vm_object_backing_remove(vm_object_t object)
737 {
738 vm_object_t backing_object;
739
740 VM_OBJECT_ASSERT_WLOCKED(object);
741
742 backing_object = object->backing_object;
743 if ((object->flags & OBJ_SHADOWLIST) != 0) {
744 VM_OBJECT_WLOCK(backing_object);
745 vm_object_backing_remove_locked(object);
746 VM_OBJECT_WUNLOCK(backing_object);
747 } else {
748 object->backing_object = NULL;
749 vm_object_sub_shadow(backing_object);
750 }
751 }
752
753 static void
754 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
755 {
756
757 VM_OBJECT_ASSERT_WLOCKED(object);
758
759 atomic_add_int(&backing_object->shadow_count, 1);
760 if ((backing_object->flags & OBJ_ANON) != 0) {
761 VM_OBJECT_ASSERT_WLOCKED(backing_object);
762 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
763 shadow_list);
764 vm_object_set_flag(object, OBJ_SHADOWLIST);
765 }
766 object->backing_object = backing_object;
767 }
768
769 static void
770 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
771 {
772
773 VM_OBJECT_ASSERT_WLOCKED(object);
774
775 if ((backing_object->flags & OBJ_ANON) != 0) {
776 VM_OBJECT_WLOCK(backing_object);
777 vm_object_backing_insert_locked(object, backing_object);
778 VM_OBJECT_WUNLOCK(backing_object);
779 } else {
780 object->backing_object = backing_object;
781 atomic_add_int(&backing_object->shadow_count, 1);
782 }
783 }
784
785 /*
786 * Insert an object into a backing_object's shadow list with an additional
787 * reference to the backing_object added.
788 */
789 static void
790 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
791 {
792
793 VM_OBJECT_ASSERT_WLOCKED(object);
794
795 if ((backing_object->flags & OBJ_ANON) != 0) {
796 VM_OBJECT_WLOCK(backing_object);
797 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
798 ("shadowing dead anonymous object"));
799 vm_object_reference_locked(backing_object);
800 vm_object_backing_insert_locked(object, backing_object);
801 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
802 VM_OBJECT_WUNLOCK(backing_object);
803 } else {
804 vm_object_reference(backing_object);
805 atomic_add_int(&backing_object->shadow_count, 1);
806 object->backing_object = backing_object;
807 }
808 }
809
810 /*
811 * Transfer a backing reference from backing_object to object.
812 */
813 static void
814 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
815 {
816 vm_object_t new_backing_object;
817
818 /*
819 * Note that the reference to backing_object->backing_object
820 * moves from within backing_object to within object.
821 */
822 vm_object_backing_remove_locked(object);
823 new_backing_object = backing_object->backing_object;
824 if (new_backing_object == NULL)
825 return;
826 if ((new_backing_object->flags & OBJ_ANON) != 0) {
827 VM_OBJECT_WLOCK(new_backing_object);
828 vm_object_backing_remove_locked(backing_object);
829 vm_object_backing_insert_locked(object, new_backing_object);
830 VM_OBJECT_WUNLOCK(new_backing_object);
831 } else {
832 /*
833 * shadow_count for new_backing_object is left
834 * unchanged, its reference provided by backing_object
835 * is replaced by object.
836 */
837 object->backing_object = new_backing_object;
838 backing_object->backing_object = NULL;
839 }
840 }
841
842 /*
843 * Wait for a concurrent collapse to settle.
844 */
845 static void
846 vm_object_collapse_wait(vm_object_t object)
847 {
848
849 VM_OBJECT_ASSERT_WLOCKED(object);
850
851 while ((object->flags & OBJ_COLLAPSING) != 0) {
852 vm_object_pip_wait(object, "vmcolwait");
853 counter_u64_add(object_collapse_waits, 1);
854 }
855 }
856
857 /*
858 * Waits for a backing object to clear a pending collapse and returns
859 * it locked if it is an ANON object.
860 */
861 static vm_object_t
862 vm_object_backing_collapse_wait(vm_object_t object)
863 {
864 vm_object_t backing_object;
865
866 VM_OBJECT_ASSERT_WLOCKED(object);
867
868 for (;;) {
869 backing_object = object->backing_object;
870 if (backing_object == NULL ||
871 (backing_object->flags & OBJ_ANON) == 0)
872 return (NULL);
873 VM_OBJECT_WLOCK(backing_object);
874 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
875 break;
876 VM_OBJECT_WUNLOCK(object);
877 vm_object_pip_sleep(backing_object, "vmbckwait");
878 counter_u64_add(object_collapse_waits, 1);
879 VM_OBJECT_WLOCK(object);
880 }
881 return (backing_object);
882 }
883
884 /*
885 * vm_object_terminate_pages removes any remaining pageable pages
886 * from the object and resets the object to an empty state.
887 */
888 static void
889 vm_object_terminate_pages(vm_object_t object)
890 {
891 vm_page_t p, p_next;
892
893 VM_OBJECT_ASSERT_WLOCKED(object);
894
895 /*
896 * Free any remaining pageable pages. This also removes them from the
897 * paging queues. However, don't free wired pages, just remove them
898 * from the object. Rather than incrementally removing each page from
899 * the object, the page and object are reset to any empty state.
900 */
901 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
902 vm_page_assert_unbusied(p);
903 KASSERT(p->object == object &&
904 (p->ref_count & VPRC_OBJREF) != 0,
905 ("vm_object_terminate_pages: page %p is inconsistent", p));
906
907 p->object = NULL;
908 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
909 VM_CNT_INC(v_pfree);
910 vm_page_free(p);
911 }
912 }
913
914 /*
915 * If the object contained any pages, then reset it to an empty state.
916 * None of the object's fields, including "resident_page_count", were
917 * modified by the preceding loop.
918 */
919 if (object->resident_page_count != 0) {
920 vm_radix_reclaim_allnodes(&object->rtree);
921 TAILQ_INIT(&object->memq);
922 object->resident_page_count = 0;
923 if (object->type == OBJT_VNODE)
924 vdrop(object->handle);
925 }
926 }
927
928 /*
929 * vm_object_terminate actually destroys the specified object, freeing
930 * up all previously used resources.
931 *
932 * The object must be locked.
933 * This routine may block.
934 */
935 void
936 vm_object_terminate(vm_object_t object)
937 {
938
939 VM_OBJECT_ASSERT_WLOCKED(object);
940 KASSERT((object->flags & OBJ_DEAD) != 0,
941 ("terminating non-dead obj %p", object));
942 KASSERT((object->flags & OBJ_COLLAPSING) == 0,
943 ("terminating collapsing obj %p", object));
944 KASSERT(object->backing_object == NULL,
945 ("terminating shadow obj %p", object));
946
947 /*
948 * Wait for the pageout daemon and other current users to be
949 * done with the object. Note that new paging_in_progress
950 * users can come after this wait, but they must check
951 * OBJ_DEAD flag set (without unlocking the object), and avoid
952 * the object being terminated.
953 */
954 vm_object_pip_wait(object, "objtrm");
955
956 KASSERT(object->ref_count == 0,
957 ("vm_object_terminate: object with references, ref_count=%d",
958 object->ref_count));
959
960 if ((object->flags & OBJ_PG_DTOR) == 0)
961 vm_object_terminate_pages(object);
962
963 #if VM_NRESERVLEVEL > 0
964 if (__predict_false(!LIST_EMPTY(&object->rvq)))
965 vm_reserv_break_all(object);
966 #endif
967
968 KASSERT(object->cred == NULL || (object->flags & OBJ_SWAP) != 0,
969 ("%s: non-swap obj %p has cred", __func__, object));
970
971 /*
972 * Let the pager know object is dead.
973 */
974 vm_pager_deallocate(object);
975 VM_OBJECT_WUNLOCK(object);
976
977 vm_object_destroy(object);
978 }
979
980 /*
981 * Make the page read-only so that we can clear the object flags. However, if
982 * this is a nosync mmap then the object is likely to stay dirty so do not
983 * mess with the page and do not clear the object flags. Returns TRUE if the
984 * page should be flushed, and FALSE otherwise.
985 */
986 static boolean_t
987 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
988 {
989
990 vm_page_assert_busied(p);
991
992 /*
993 * If we have been asked to skip nosync pages and this is a
994 * nosync page, skip it. Note that the object flags were not
995 * cleared in this case so we do not have to set them.
996 */
997 if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
998 *allclean = FALSE;
999 return (FALSE);
1000 } else {
1001 pmap_remove_write(p);
1002 return (p->dirty != 0);
1003 }
1004 }
1005
1006 /*
1007 * vm_object_page_clean
1008 *
1009 * Clean all dirty pages in the specified range of object. Leaves page
1010 * on whatever queue it is currently on. If NOSYNC is set then do not
1011 * write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1012 * leaving the object dirty.
1013 *
1014 * For swap objects backing tmpfs regular files, do not flush anything,
1015 * but remove write protection on the mapped pages to update mtime through
1016 * mmaped writes.
1017 *
1018 * When stuffing pages asynchronously, allow clustering. XXX we need a
1019 * synchronous clustering mode implementation.
1020 *
1021 * Odd semantics: if start == end, we clean everything.
1022 *
1023 * The object must be locked.
1024 *
1025 * Returns FALSE if some page from the range was not written, as
1026 * reported by the pager, and TRUE otherwise.
1027 */
1028 boolean_t
1029 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1030 int flags)
1031 {
1032 vm_page_t np, p;
1033 vm_pindex_t pi, tend, tstart;
1034 int curgeneration, n, pagerflags;
1035 boolean_t eio, res, allclean;
1036
1037 VM_OBJECT_ASSERT_WLOCKED(object);
1038
1039 if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1040 return (TRUE);
1041
1042 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1043 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1044 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1045
1046 tstart = OFF_TO_IDX(start);
1047 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1048 allclean = tstart == 0 && tend >= object->size;
1049 res = TRUE;
1050
1051 rescan:
1052 curgeneration = object->generation;
1053
1054 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1055 pi = p->pindex;
1056 if (pi >= tend)
1057 break;
1058 np = TAILQ_NEXT(p, listq);
1059 if (vm_page_none_valid(p))
1060 continue;
1061 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1062 if (object->generation != curgeneration &&
1063 (flags & OBJPC_SYNC) != 0)
1064 goto rescan;
1065 np = vm_page_find_least(object, pi);
1066 continue;
1067 }
1068 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1069 vm_page_xunbusy(p);
1070 continue;
1071 }
1072 if (object->type == OBJT_VNODE) {
1073 n = vm_object_page_collect_flush(object, p, pagerflags,
1074 flags, &allclean, &eio);
1075 if (eio) {
1076 res = FALSE;
1077 allclean = FALSE;
1078 }
1079 if (object->generation != curgeneration &&
1080 (flags & OBJPC_SYNC) != 0)
1081 goto rescan;
1082
1083 /*
1084 * If the VOP_PUTPAGES() did a truncated write, so
1085 * that even the first page of the run is not fully
1086 * written, vm_pageout_flush() returns 0 as the run
1087 * length. Since the condition that caused truncated
1088 * write may be permanent, e.g. exhausted free space,
1089 * accepting n == 0 would cause an infinite loop.
1090 *
1091 * Forwarding the iterator leaves the unwritten page
1092 * behind, but there is not much we can do there if
1093 * filesystem refuses to write it.
1094 */
1095 if (n == 0) {
1096 n = 1;
1097 allclean = FALSE;
1098 }
1099 } else {
1100 n = 1;
1101 vm_page_xunbusy(p);
1102 }
1103 np = vm_page_find_least(object, pi + n);
1104 }
1105 #if 0
1106 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1107 #endif
1108
1109 /*
1110 * Leave updating cleangeneration for tmpfs objects to tmpfs
1111 * scan. It needs to update mtime, which happens for other
1112 * filesystems during page writeouts.
1113 */
1114 if (allclean && object->type == OBJT_VNODE)
1115 object->cleangeneration = curgeneration;
1116 return (res);
1117 }
1118
1119 static int
1120 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1121 int flags, boolean_t *allclean, boolean_t *eio)
1122 {
1123 vm_page_t ma[vm_pageout_page_count], p_first, tp;
1124 int count, i, mreq, runlen;
1125
1126 vm_page_lock_assert(p, MA_NOTOWNED);
1127 vm_page_assert_xbusied(p);
1128 VM_OBJECT_ASSERT_WLOCKED(object);
1129
1130 count = 1;
1131 mreq = 0;
1132
1133 for (tp = p; count < vm_pageout_page_count; count++) {
1134 tp = vm_page_next(tp);
1135 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1136 break;
1137 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1138 vm_page_xunbusy(tp);
1139 break;
1140 }
1141 }
1142
1143 for (p_first = p; count < vm_pageout_page_count; count++) {
1144 tp = vm_page_prev(p_first);
1145 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1146 break;
1147 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1148 vm_page_xunbusy(tp);
1149 break;
1150 }
1151 p_first = tp;
1152 mreq++;
1153 }
1154
1155 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1156 ma[i] = tp;
1157
1158 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1159 return (runlen);
1160 }
1161
1162 /*
1163 * Note that there is absolutely no sense in writing out
1164 * anonymous objects, so we track down the vnode object
1165 * to write out.
1166 * We invalidate (remove) all pages from the address space
1167 * for semantic correctness.
1168 *
1169 * If the backing object is a device object with unmanaged pages, then any
1170 * mappings to the specified range of pages must be removed before this
1171 * function is called.
1172 *
1173 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1174 * may start out with a NULL object.
1175 */
1176 boolean_t
1177 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1178 boolean_t syncio, boolean_t invalidate)
1179 {
1180 vm_object_t backing_object;
1181 struct vnode *vp;
1182 struct mount *mp;
1183 int error, flags, fsync_after;
1184 boolean_t res;
1185
1186 if (object == NULL)
1187 return (TRUE);
1188 res = TRUE;
1189 error = 0;
1190 VM_OBJECT_WLOCK(object);
1191 while ((backing_object = object->backing_object) != NULL) {
1192 VM_OBJECT_WLOCK(backing_object);
1193 offset += object->backing_object_offset;
1194 VM_OBJECT_WUNLOCK(object);
1195 object = backing_object;
1196 if (object->size < OFF_TO_IDX(offset + size))
1197 size = IDX_TO_OFF(object->size) - offset;
1198 }
1199 /*
1200 * Flush pages if writing is allowed, invalidate them
1201 * if invalidation requested. Pages undergoing I/O
1202 * will be ignored by vm_object_page_remove().
1203 *
1204 * We cannot lock the vnode and then wait for paging
1205 * to complete without deadlocking against vm_fault.
1206 * Instead we simply call vm_object_page_remove() and
1207 * allow it to block internally on a page-by-page
1208 * basis when it encounters pages undergoing async
1209 * I/O.
1210 */
1211 if (object->type == OBJT_VNODE &&
1212 vm_object_mightbedirty(object) != 0 &&
1213 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1214 VM_OBJECT_WUNLOCK(object);
1215 (void)vn_start_write(vp, &mp, V_WAIT);
1216 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1217 if (syncio && !invalidate && offset == 0 &&
1218 atop(size) == object->size) {
1219 /*
1220 * If syncing the whole mapping of the file,
1221 * it is faster to schedule all the writes in
1222 * async mode, also allowing the clustering,
1223 * and then wait for i/o to complete.
1224 */
1225 flags = 0;
1226 fsync_after = TRUE;
1227 } else {
1228 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1229 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1230 fsync_after = FALSE;
1231 }
1232 VM_OBJECT_WLOCK(object);
1233 res = vm_object_page_clean(object, offset, offset + size,
1234 flags);
1235 VM_OBJECT_WUNLOCK(object);
1236 if (fsync_after) {
1237 for (;;) {
1238 error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1239 if (error != ERELOOKUP)
1240 break;
1241
1242 /*
1243 * Allow SU/bufdaemon to handle more
1244 * dependencies in the meantime.
1245 */
1246 VOP_UNLOCK(vp);
1247 vn_finished_write(mp);
1248
1249 (void)vn_start_write(vp, &mp, V_WAIT);
1250 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1251 }
1252 }
1253 VOP_UNLOCK(vp);
1254 vn_finished_write(mp);
1255 if (error != 0)
1256 res = FALSE;
1257 VM_OBJECT_WLOCK(object);
1258 }
1259 if ((object->type == OBJT_VNODE ||
1260 object->type == OBJT_DEVICE) && invalidate) {
1261 if (object->type == OBJT_DEVICE)
1262 /*
1263 * The option OBJPR_NOTMAPPED must be passed here
1264 * because vm_object_page_remove() cannot remove
1265 * unmanaged mappings.
1266 */
1267 flags = OBJPR_NOTMAPPED;
1268 else if (old_msync)
1269 flags = 0;
1270 else
1271 flags = OBJPR_CLEANONLY;
1272 vm_object_page_remove(object, OFF_TO_IDX(offset),
1273 OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1274 }
1275 VM_OBJECT_WUNLOCK(object);
1276 return (res);
1277 }
1278
1279 /*
1280 * Determine whether the given advice can be applied to the object. Advice is
1281 * not applied to unmanaged pages since they never belong to page queues, and
1282 * since MADV_FREE is destructive, it can apply only to anonymous pages that
1283 * have been mapped at most once.
1284 */
1285 static bool
1286 vm_object_advice_applies(vm_object_t object, int advice)
1287 {
1288
1289 if ((object->flags & OBJ_UNMANAGED) != 0)
1290 return (false);
1291 if (advice != MADV_FREE)
1292 return (true);
1293 return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1294 (OBJ_ONEMAPPING | OBJ_ANON));
1295 }
1296
1297 static void
1298 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1299 vm_size_t size)
1300 {
1301
1302 if (advice == MADV_FREE)
1303 vm_pager_freespace(object, pindex, size);
1304 }
1305
1306 /*
1307 * vm_object_madvise:
1308 *
1309 * Implements the madvise function at the object/page level.
1310 *
1311 * MADV_WILLNEED (any object)
1312 *
1313 * Activate the specified pages if they are resident.
1314 *
1315 * MADV_DONTNEED (any object)
1316 *
1317 * Deactivate the specified pages if they are resident.
1318 *
1319 * MADV_FREE (OBJT_SWAP objects, OBJ_ONEMAPPING only)
1320 *
1321 * Deactivate and clean the specified pages if they are
1322 * resident. This permits the process to reuse the pages
1323 * without faulting or the kernel to reclaim the pages
1324 * without I/O.
1325 */
1326 void
1327 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1328 int advice)
1329 {
1330 vm_pindex_t tpindex;
1331 vm_object_t backing_object, tobject;
1332 vm_page_t m, tm;
1333
1334 if (object == NULL)
1335 return;
1336
1337 relookup:
1338 VM_OBJECT_WLOCK(object);
1339 if (!vm_object_advice_applies(object, advice)) {
1340 VM_OBJECT_WUNLOCK(object);
1341 return;
1342 }
1343 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1344 tobject = object;
1345
1346 /*
1347 * If the next page isn't resident in the top-level object, we
1348 * need to search the shadow chain. When applying MADV_FREE, we
1349 * take care to release any swap space used to store
1350 * non-resident pages.
1351 */
1352 if (m == NULL || pindex < m->pindex) {
1353 /*
1354 * Optimize a common case: if the top-level object has
1355 * no backing object, we can skip over the non-resident
1356 * range in constant time.
1357 */
1358 if (object->backing_object == NULL) {
1359 tpindex = (m != NULL && m->pindex < end) ?
1360 m->pindex : end;
1361 vm_object_madvise_freespace(object, advice,
1362 pindex, tpindex - pindex);
1363 if ((pindex = tpindex) == end)
1364 break;
1365 goto next_page;
1366 }
1367
1368 tpindex = pindex;
1369 do {
1370 vm_object_madvise_freespace(tobject, advice,
1371 tpindex, 1);
1372 /*
1373 * Prepare to search the next object in the
1374 * chain.
1375 */
1376 backing_object = tobject->backing_object;
1377 if (backing_object == NULL)
1378 goto next_pindex;
1379 VM_OBJECT_WLOCK(backing_object);
1380 tpindex +=
1381 OFF_TO_IDX(tobject->backing_object_offset);
1382 if (tobject != object)
1383 VM_OBJECT_WUNLOCK(tobject);
1384 tobject = backing_object;
1385 if (!vm_object_advice_applies(tobject, advice))
1386 goto next_pindex;
1387 } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1388 NULL);
1389 } else {
1390 next_page:
1391 tm = m;
1392 m = TAILQ_NEXT(m, listq);
1393 }
1394
1395 /*
1396 * If the page is not in a normal state, skip it. The page
1397 * can not be invalidated while the object lock is held.
1398 */
1399 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1400 goto next_pindex;
1401 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1402 ("vm_object_madvise: page %p is fictitious", tm));
1403 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1404 ("vm_object_madvise: page %p is not managed", tm));
1405 if (vm_page_tryxbusy(tm) == 0) {
1406 if (object != tobject)
1407 VM_OBJECT_WUNLOCK(object);
1408 if (advice == MADV_WILLNEED) {
1409 /*
1410 * Reference the page before unlocking and
1411 * sleeping so that the page daemon is less
1412 * likely to reclaim it.
1413 */
1414 vm_page_aflag_set(tm, PGA_REFERENCED);
1415 }
1416 if (!vm_page_busy_sleep(tm, "madvpo", 0))
1417 VM_OBJECT_WUNLOCK(tobject);
1418 goto relookup;
1419 }
1420 vm_page_advise(tm, advice);
1421 vm_page_xunbusy(tm);
1422 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1423 next_pindex:
1424 if (tobject != object)
1425 VM_OBJECT_WUNLOCK(tobject);
1426 }
1427 VM_OBJECT_WUNLOCK(object);
1428 }
1429
1430 /*
1431 * vm_object_shadow:
1432 *
1433 * Create a new object which is backed by the
1434 * specified existing object range. The source
1435 * object reference is deallocated.
1436 *
1437 * The new object and offset into that object
1438 * are returned in the source parameters.
1439 */
1440 void
1441 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1442 struct ucred *cred, bool shared)
1443 {
1444 vm_object_t source;
1445 vm_object_t result;
1446
1447 source = *object;
1448
1449 /*
1450 * Don't create the new object if the old object isn't shared.
1451 *
1452 * If we hold the only reference we can guarantee that it won't
1453 * increase while we have the map locked. Otherwise the race is
1454 * harmless and we will end up with an extra shadow object that
1455 * will be collapsed later.
1456 */
1457 if (source != NULL && source->ref_count == 1 &&
1458 (source->flags & OBJ_ANON) != 0)
1459 return;
1460
1461 /*
1462 * Allocate a new object with the given length.
1463 */
1464 result = vm_object_allocate_anon(atop(length), source, cred, length);
1465
1466 /*
1467 * Store the offset into the source object, and fix up the offset into
1468 * the new object.
1469 */
1470 result->backing_object_offset = *offset;
1471
1472 if (shared || source != NULL) {
1473 VM_OBJECT_WLOCK(result);
1474
1475 /*
1476 * The new object shadows the source object, adding a
1477 * reference to it. Our caller changes his reference
1478 * to point to the new object, removing a reference to
1479 * the source object. Net result: no change of
1480 * reference count, unless the caller needs to add one
1481 * more reference due to forking a shared map entry.
1482 */
1483 if (shared) {
1484 vm_object_reference_locked(result);
1485 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1486 }
1487
1488 /*
1489 * Try to optimize the result object's page color when
1490 * shadowing in order to maintain page coloring
1491 * consistency in the combined shadowed object.
1492 */
1493 if (source != NULL) {
1494 vm_object_backing_insert(result, source);
1495 result->domain = source->domain;
1496 #if VM_NRESERVLEVEL > 0
1497 vm_object_set_flag(result,
1498 (source->flags & OBJ_COLORED));
1499 result->pg_color = (source->pg_color +
1500 OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1501 1)) - 1);
1502 #endif
1503 }
1504 VM_OBJECT_WUNLOCK(result);
1505 }
1506
1507 /*
1508 * Return the new things
1509 */
1510 *offset = 0;
1511 *object = result;
1512 }
1513
1514 /*
1515 * vm_object_split:
1516 *
1517 * Split the pages in a map entry into a new object. This affords
1518 * easier removal of unused pages, and keeps object inheritance from
1519 * being a negative impact on memory usage.
1520 */
1521 void
1522 vm_object_split(vm_map_entry_t entry)
1523 {
1524 vm_page_t m, m_next;
1525 vm_object_t orig_object, new_object, backing_object;
1526 vm_pindex_t idx, offidxstart;
1527 vm_size_t size;
1528
1529 orig_object = entry->object.vm_object;
1530 KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1531 ("vm_object_split: Splitting object with multiple mappings."));
1532 if ((orig_object->flags & OBJ_ANON) == 0)
1533 return;
1534 if (orig_object->ref_count <= 1)
1535 return;
1536 VM_OBJECT_WUNLOCK(orig_object);
1537
1538 offidxstart = OFF_TO_IDX(entry->offset);
1539 size = atop(entry->end - entry->start);
1540
1541 new_object = vm_object_allocate_anon(size, orig_object,
1542 orig_object->cred, ptoa(size));
1543
1544 /*
1545 * We must wait for the orig_object to complete any in-progress
1546 * collapse so that the swap blocks are stable below. The
1547 * additional reference on backing_object by new object will
1548 * prevent further collapse operations until split completes.
1549 */
1550 VM_OBJECT_WLOCK(orig_object);
1551 vm_object_collapse_wait(orig_object);
1552
1553 /*
1554 * At this point, the new object is still private, so the order in
1555 * which the original and new objects are locked does not matter.
1556 */
1557 VM_OBJECT_WLOCK(new_object);
1558 new_object->domain = orig_object->domain;
1559 backing_object = orig_object->backing_object;
1560 if (backing_object != NULL) {
1561 vm_object_backing_insert_ref(new_object, backing_object);
1562 new_object->backing_object_offset =
1563 orig_object->backing_object_offset + entry->offset;
1564 }
1565 if (orig_object->cred != NULL) {
1566 crhold(orig_object->cred);
1567 KASSERT(orig_object->charge >= ptoa(size),
1568 ("orig_object->charge < 0"));
1569 orig_object->charge -= ptoa(size);
1570 }
1571
1572 /*
1573 * Mark the split operation so that swap_pager_getpages() knows
1574 * that the object is in transition.
1575 */
1576 vm_object_set_flag(orig_object, OBJ_SPLIT);
1577 #ifdef INVARIANTS
1578 idx = 0;
1579 #endif
1580 retry:
1581 m = vm_page_find_least(orig_object, offidxstart);
1582 KASSERT(m == NULL || idx <= m->pindex - offidxstart,
1583 ("%s: object %p was repopulated", __func__, orig_object));
1584 for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1585 m = m_next) {
1586 m_next = TAILQ_NEXT(m, listq);
1587
1588 /*
1589 * We must wait for pending I/O to complete before we can
1590 * rename the page.
1591 *
1592 * We do not have to VM_PROT_NONE the page as mappings should
1593 * not be changed by this operation.
1594 */
1595 if (vm_page_tryxbusy(m) == 0) {
1596 VM_OBJECT_WUNLOCK(new_object);
1597 if (vm_page_busy_sleep(m, "spltwt", 0))
1598 VM_OBJECT_WLOCK(orig_object);
1599 VM_OBJECT_WLOCK(new_object);
1600 goto retry;
1601 }
1602
1603 /*
1604 * The page was left invalid. Likely placed there by
1605 * an incomplete fault. Just remove and ignore.
1606 */
1607 if (vm_page_none_valid(m)) {
1608 if (vm_page_remove(m))
1609 vm_page_free(m);
1610 continue;
1611 }
1612
1613 /* vm_page_rename() will dirty the page. */
1614 if (vm_page_rename(m, new_object, idx)) {
1615 vm_page_xunbusy(m);
1616 VM_OBJECT_WUNLOCK(new_object);
1617 VM_OBJECT_WUNLOCK(orig_object);
1618 vm_radix_wait();
1619 VM_OBJECT_WLOCK(orig_object);
1620 VM_OBJECT_WLOCK(new_object);
1621 goto retry;
1622 }
1623
1624 #if VM_NRESERVLEVEL > 0
1625 /*
1626 * If some of the reservation's allocated pages remain with
1627 * the original object, then transferring the reservation to
1628 * the new object is neither particularly beneficial nor
1629 * particularly harmful as compared to leaving the reservation
1630 * with the original object. If, however, all of the
1631 * reservation's allocated pages are transferred to the new
1632 * object, then transferring the reservation is typically
1633 * beneficial. Determining which of these two cases applies
1634 * would be more costly than unconditionally renaming the
1635 * reservation.
1636 */
1637 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1638 #endif
1639 }
1640
1641 /*
1642 * swap_pager_copy() can sleep, in which case the orig_object's
1643 * and new_object's locks are released and reacquired.
1644 */
1645 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1646
1647 TAILQ_FOREACH(m, &new_object->memq, listq)
1648 vm_page_xunbusy(m);
1649
1650 vm_object_clear_flag(orig_object, OBJ_SPLIT);
1651 VM_OBJECT_WUNLOCK(orig_object);
1652 VM_OBJECT_WUNLOCK(new_object);
1653 entry->object.vm_object = new_object;
1654 entry->offset = 0LL;
1655 vm_object_deallocate(orig_object);
1656 VM_OBJECT_WLOCK(new_object);
1657 }
1658
1659 static vm_page_t
1660 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1661 {
1662 vm_object_t backing_object;
1663
1664 VM_OBJECT_ASSERT_WLOCKED(object);
1665 backing_object = object->backing_object;
1666 VM_OBJECT_ASSERT_WLOCKED(backing_object);
1667
1668 KASSERT(p == NULL || p->object == object || p->object == backing_object,
1669 ("invalid ownership %p %p %p", p, object, backing_object));
1670 /* The page is only NULL when rename fails. */
1671 if (p == NULL) {
1672 VM_OBJECT_WUNLOCK(object);
1673 VM_OBJECT_WUNLOCK(backing_object);
1674 vm_radix_wait();
1675 VM_OBJECT_WLOCK(object);
1676 } else if (p->object == object) {
1677 VM_OBJECT_WUNLOCK(backing_object);
1678 if (vm_page_busy_sleep(p, "vmocol", 0))
1679 VM_OBJECT_WLOCK(object);
1680 } else {
1681 VM_OBJECT_WUNLOCK(object);
1682 if (!vm_page_busy_sleep(p, "vmocol", 0))
1683 VM_OBJECT_WUNLOCK(backing_object);
1684 VM_OBJECT_WLOCK(object);
1685 }
1686 VM_OBJECT_WLOCK(backing_object);
1687 return (TAILQ_FIRST(&backing_object->memq));
1688 }
1689
1690 static bool
1691 vm_object_scan_all_shadowed(vm_object_t object)
1692 {
1693 vm_object_t backing_object;
1694 vm_page_t p, pp;
1695 vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1696
1697 VM_OBJECT_ASSERT_WLOCKED(object);
1698 VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1699
1700 backing_object = object->backing_object;
1701
1702 if ((backing_object->flags & OBJ_ANON) == 0)
1703 return (false);
1704
1705 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1706 p = vm_page_find_least(backing_object, pi);
1707 ps = swap_pager_find_least(backing_object, pi);
1708
1709 /*
1710 * Only check pages inside the parent object's range and
1711 * inside the parent object's mapping of the backing object.
1712 */
1713 for (;; pi++) {
1714 if (p != NULL && p->pindex < pi)
1715 p = TAILQ_NEXT(p, listq);
1716 if (ps < pi)
1717 ps = swap_pager_find_least(backing_object, pi);
1718 if (p == NULL && ps >= backing_object->size)
1719 break;
1720 else if (p == NULL)
1721 pi = ps;
1722 else
1723 pi = MIN(p->pindex, ps);
1724
1725 new_pindex = pi - backing_offset_index;
1726 if (new_pindex >= object->size)
1727 break;
1728
1729 if (p != NULL) {
1730 /*
1731 * If the backing object page is busy a
1732 * grandparent or older page may still be
1733 * undergoing CoW. It is not safe to collapse
1734 * the backing object until it is quiesced.
1735 */
1736 if (vm_page_tryxbusy(p) == 0)
1737 return (false);
1738
1739 /*
1740 * We raced with the fault handler that left
1741 * newly allocated invalid page on the object
1742 * queue and retried.
1743 */
1744 if (!vm_page_all_valid(p))
1745 goto unbusy_ret;
1746 }
1747
1748 /*
1749 * See if the parent has the page or if the parent's object
1750 * pager has the page. If the parent has the page but the page
1751 * is not valid, the parent's object pager must have the page.
1752 *
1753 * If this fails, the parent does not completely shadow the
1754 * object and we might as well give up now.
1755 */
1756 pp = vm_page_lookup(object, new_pindex);
1757
1758 /*
1759 * The valid check here is stable due to object lock
1760 * being required to clear valid and initiate paging.
1761 * Busy of p disallows fault handler to validate pp.
1762 */
1763 if ((pp == NULL || vm_page_none_valid(pp)) &&
1764 !vm_pager_has_page(object, new_pindex, NULL, NULL))
1765 goto unbusy_ret;
1766 if (p != NULL)
1767 vm_page_xunbusy(p);
1768 }
1769 return (true);
1770
1771 unbusy_ret:
1772 if (p != NULL)
1773 vm_page_xunbusy(p);
1774 return (false);
1775 }
1776
1777 static void
1778 vm_object_collapse_scan(vm_object_t object)
1779 {
1780 vm_object_t backing_object;
1781 vm_page_t next, p, pp;
1782 vm_pindex_t backing_offset_index, new_pindex;
1783
1784 VM_OBJECT_ASSERT_WLOCKED(object);
1785 VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1786
1787 backing_object = object->backing_object;
1788 backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1789
1790 /*
1791 * Our scan
1792 */
1793 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1794 next = TAILQ_NEXT(p, listq);
1795 new_pindex = p->pindex - backing_offset_index;
1796
1797 /*
1798 * Check for busy page
1799 */
1800 if (vm_page_tryxbusy(p) == 0) {
1801 next = vm_object_collapse_scan_wait(object, p);
1802 continue;
1803 }
1804
1805 KASSERT(object->backing_object == backing_object,
1806 ("vm_object_collapse_scan: backing object mismatch %p != %p",
1807 object->backing_object, backing_object));
1808 KASSERT(p->object == backing_object,
1809 ("vm_object_collapse_scan: object mismatch %p != %p",
1810 p->object, backing_object));
1811
1812 if (p->pindex < backing_offset_index ||
1813 new_pindex >= object->size) {
1814 vm_pager_freespace(backing_object, p->pindex, 1);
1815
1816 KASSERT(!pmap_page_is_mapped(p),
1817 ("freeing mapped page %p", p));
1818 if (vm_page_remove(p))
1819 vm_page_free(p);
1820 continue;
1821 }
1822
1823 if (!vm_page_all_valid(p)) {
1824 KASSERT(!pmap_page_is_mapped(p),
1825 ("freeing mapped page %p", p));
1826 if (vm_page_remove(p))
1827 vm_page_free(p);
1828 continue;
1829 }
1830
1831 pp = vm_page_lookup(object, new_pindex);
1832 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1833 vm_page_xunbusy(p);
1834 /*
1835 * The page in the parent is busy and possibly not
1836 * (yet) valid. Until its state is finalized by the
1837 * busy bit owner, we can't tell whether it shadows the
1838 * original page.
1839 */
1840 next = vm_object_collapse_scan_wait(object, pp);
1841 continue;
1842 }
1843
1844 if (pp != NULL && vm_page_none_valid(pp)) {
1845 /*
1846 * The page was invalid in the parent. Likely placed
1847 * there by an incomplete fault. Just remove and
1848 * ignore. p can replace it.
1849 */
1850 if (vm_page_remove(pp))
1851 vm_page_free(pp);
1852 pp = NULL;
1853 }
1854
1855 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1856 NULL)) {
1857 /*
1858 * The page already exists in the parent OR swap exists
1859 * for this location in the parent. Leave the parent's
1860 * page alone. Destroy the original page from the
1861 * backing object.
1862 */
1863 vm_pager_freespace(backing_object, p->pindex, 1);
1864 KASSERT(!pmap_page_is_mapped(p),
1865 ("freeing mapped page %p", p));
1866 if (vm_page_remove(p))
1867 vm_page_free(p);
1868 if (pp != NULL)
1869 vm_page_xunbusy(pp);
1870 continue;
1871 }
1872
1873 /*
1874 * Page does not exist in parent, rename the page from the
1875 * backing object to the main object.
1876 *
1877 * If the page was mapped to a process, it can remain mapped
1878 * through the rename. vm_page_rename() will dirty the page.
1879 */
1880 if (vm_page_rename(p, object, new_pindex)) {
1881 vm_page_xunbusy(p);
1882 next = vm_object_collapse_scan_wait(object, NULL);
1883 continue;
1884 }
1885
1886 /* Use the old pindex to free the right page. */
1887 vm_pager_freespace(backing_object, new_pindex +
1888 backing_offset_index, 1);
1889
1890 #if VM_NRESERVLEVEL > 0
1891 /*
1892 * Rename the reservation.
1893 */
1894 vm_reserv_rename(p, object, backing_object,
1895 backing_offset_index);
1896 #endif
1897 vm_page_xunbusy(p);
1898 }
1899 return;
1900 }
1901
1902 /*
1903 * vm_object_collapse:
1904 *
1905 * Collapse an object with the object backing it.
1906 * Pages in the backing object are moved into the
1907 * parent, and the backing object is deallocated.
1908 */
1909 void
1910 vm_object_collapse(vm_object_t object)
1911 {
1912 vm_object_t backing_object, new_backing_object;
1913
1914 VM_OBJECT_ASSERT_WLOCKED(object);
1915
1916 while (TRUE) {
1917 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1918 ("collapsing invalid object"));
1919
1920 /*
1921 * Wait for the backing_object to finish any pending
1922 * collapse so that the caller sees the shortest possible
1923 * shadow chain.
1924 */
1925 backing_object = vm_object_backing_collapse_wait(object);
1926 if (backing_object == NULL)
1927 return;
1928
1929 KASSERT(object->ref_count > 0 &&
1930 object->ref_count > atomic_load_int(&object->shadow_count),
1931 ("collapse with invalid ref %d or shadow %d count.",
1932 object->ref_count, atomic_load_int(&object->shadow_count)));
1933 KASSERT((backing_object->flags &
1934 (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1935 ("vm_object_collapse: Backing object already collapsing."));
1936 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1937 ("vm_object_collapse: object is already collapsing."));
1938
1939 /*
1940 * We know that we can either collapse the backing object if
1941 * the parent is the only reference to it, or (perhaps) have
1942 * the parent bypass the object if the parent happens to shadow
1943 * all the resident pages in the entire backing object.
1944 */
1945 if (backing_object->ref_count == 1) {
1946 KASSERT(atomic_load_int(&backing_object->shadow_count)
1947 == 1,
1948 ("vm_object_collapse: shadow_count: %d",
1949 atomic_load_int(&backing_object->shadow_count)));
1950 vm_object_pip_add(object, 1);
1951 vm_object_set_flag(object, OBJ_COLLAPSING);
1952 vm_object_pip_add(backing_object, 1);
1953 vm_object_set_flag(backing_object, OBJ_DEAD);
1954
1955 /*
1956 * If there is exactly one reference to the backing
1957 * object, we can collapse it into the parent.
1958 */
1959 vm_object_collapse_scan(object);
1960
1961 #if VM_NRESERVLEVEL > 0
1962 /*
1963 * Break any reservations from backing_object.
1964 */
1965 if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1966 vm_reserv_break_all(backing_object);
1967 #endif
1968
1969 /*
1970 * Move the pager from backing_object to object.
1971 *
1972 * swap_pager_copy() can sleep, in which case the
1973 * backing_object's and object's locks are released and
1974 * reacquired.
1975 */
1976 swap_pager_copy(backing_object, object,
1977 OFF_TO_IDX(object->backing_object_offset), TRUE);
1978
1979 /*
1980 * Object now shadows whatever backing_object did.
1981 */
1982 vm_object_clear_flag(object, OBJ_COLLAPSING);
1983 vm_object_backing_transfer(object, backing_object);
1984 object->backing_object_offset +=
1985 backing_object->backing_object_offset;
1986 VM_OBJECT_WUNLOCK(object);
1987 vm_object_pip_wakeup(object);
1988
1989 /*
1990 * Discard backing_object.
1991 *
1992 * Since the backing object has no pages, no pager left,
1993 * and no object references within it, all that is
1994 * necessary is to dispose of it.
1995 */
1996 KASSERT(backing_object->ref_count == 1, (
1997 "backing_object %p was somehow re-referenced during collapse!",
1998 backing_object));
1999 vm_object_pip_wakeup(backing_object);
2000 (void)refcount_release(&backing_object->ref_count);
2001 vm_object_terminate(backing_object);
2002 counter_u64_add(object_collapses, 1);
2003 VM_OBJECT_WLOCK(object);
2004 } else {
2005 /*
2006 * If we do not entirely shadow the backing object,
2007 * there is nothing we can do so we give up.
2008 *
2009 * The object lock and backing_object lock must not
2010 * be dropped during this sequence.
2011 */
2012 if (!vm_object_scan_all_shadowed(object)) {
2013 VM_OBJECT_WUNLOCK(backing_object);
2014 break;
2015 }
2016
2017 /*
2018 * Make the parent shadow the next object in the
2019 * chain. Deallocating backing_object will not remove
2020 * it, since its reference count is at least 2.
2021 */
2022 vm_object_backing_remove_locked(object);
2023 new_backing_object = backing_object->backing_object;
2024 if (new_backing_object != NULL) {
2025 vm_object_backing_insert_ref(object,
2026 new_backing_object);
2027 object->backing_object_offset +=
2028 backing_object->backing_object_offset;
2029 }
2030
2031 /*
2032 * Drop the reference count on backing_object. Since
2033 * its ref_count was at least 2, it will not vanish.
2034 */
2035 (void)refcount_release(&backing_object->ref_count);
2036 KASSERT(backing_object->ref_count >= 1, (
2037 "backing_object %p was somehow dereferenced during collapse!",
2038 backing_object));
2039 VM_OBJECT_WUNLOCK(backing_object);
2040 counter_u64_add(object_bypasses, 1);
2041 }
2042
2043 /*
2044 * Try again with this object's new backing object.
2045 */
2046 }
2047 }
2048
2049 /*
2050 * vm_object_page_remove:
2051 *
2052 * For the given object, either frees or invalidates each of the
2053 * specified pages. In general, a page is freed. However, if a page is
2054 * wired for any reason other than the existence of a managed, wired
2055 * mapping, then it may be invalidated but not removed from the object.
2056 * Pages are specified by the given range ["start", "end") and the option
2057 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range
2058 * extends from "start" to the end of the object. If the option
2059 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2060 * specified range are affected. If the option OBJPR_NOTMAPPED is
2061 * specified, then the pages within the specified range must have no
2062 * mappings. Otherwise, if this option is not specified, any mappings to
2063 * the specified pages are removed before the pages are freed or
2064 * invalidated.
2065 *
2066 * In general, this operation should only be performed on objects that
2067 * contain managed pages. There are, however, two exceptions. First, it
2068 * is performed on the kernel and kmem objects by vm_map_entry_delete().
2069 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2070 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must
2071 * not be specified and the option OBJPR_NOTMAPPED must be specified.
2072 *
2073 * The object must be locked.
2074 */
2075 void
2076 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2077 int options)
2078 {
2079 vm_page_t p, next;
2080
2081 VM_OBJECT_ASSERT_WLOCKED(object);
2082 KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2083 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2084 ("vm_object_page_remove: illegal options for object %p", object));
2085 if (object->resident_page_count == 0)
2086 return;
2087 vm_object_pip_add(object, 1);
2088 again:
2089 p = vm_page_find_least(object, start);
2090
2091 /*
2092 * Here, the variable "p" is either (1) the page with the least pindex
2093 * greater than or equal to the parameter "start" or (2) NULL.
2094 */
2095 for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2096 next = TAILQ_NEXT(p, listq);
2097
2098 /*
2099 * Skip invalid pages if asked to do so. Try to avoid acquiring
2100 * the busy lock, as some consumers rely on this to avoid
2101 * deadlocks.
2102 *
2103 * A thread may concurrently transition the page from invalid to
2104 * valid using only the busy lock, so the result of this check
2105 * is immediately stale. It is up to consumers to handle this,
2106 * for instance by ensuring that all invalid->valid transitions
2107 * happen with a mutex held, as may be possible for a
2108 * filesystem.
2109 */
2110 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p))
2111 continue;
2112
2113 /*
2114 * If the page is wired for any reason besides the existence
2115 * of managed, wired mappings, then it cannot be freed. For
2116 * example, fictitious pages, which represent device memory,
2117 * are inherently wired and cannot be freed. They can,
2118 * however, be invalidated if the option OBJPR_CLEANONLY is
2119 * not specified.
2120 */
2121 if (vm_page_tryxbusy(p) == 0) {
2122 if (vm_page_busy_sleep(p, "vmopar", 0))
2123 VM_OBJECT_WLOCK(object);
2124 goto again;
2125 }
2126 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) {
2127 vm_page_xunbusy(p);
2128 continue;
2129 }
2130 if (vm_page_wired(p)) {
2131 wired:
2132 if ((options & OBJPR_NOTMAPPED) == 0 &&
2133 object->ref_count != 0)
2134 pmap_remove_all(p);
2135 if ((options & OBJPR_CLEANONLY) == 0) {
2136 vm_page_invalid(p);
2137 vm_page_undirty(p);
2138 }
2139 vm_page_xunbusy(p);
2140 continue;
2141 }
2142 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2143 ("vm_object_page_remove: page %p is fictitious", p));
2144 if ((options & OBJPR_CLEANONLY) != 0 &&
2145 !vm_page_none_valid(p)) {
2146 if ((options & OBJPR_NOTMAPPED) == 0 &&
2147 object->ref_count != 0 &&
2148 !vm_page_try_remove_write(p))
2149 goto wired;
2150 if (p->dirty != 0) {
2151 vm_page_xunbusy(p);
2152 continue;
2153 }
2154 }
2155 if ((options & OBJPR_NOTMAPPED) == 0 &&
2156 object->ref_count != 0 && !vm_page_try_remove_all(p))
2157 goto wired;
2158 vm_page_free(p);
2159 }
2160 vm_object_pip_wakeup(object);
2161
2162 vm_pager_freespace(object, start, (end == 0 ? object->size : end) -
2163 start);
2164 }
2165
2166 /*
2167 * vm_object_page_noreuse:
2168 *
2169 * For the given object, attempt to move the specified pages to
2170 * the head of the inactive queue. This bypasses regular LRU
2171 * operation and allows the pages to be reused quickly under memory
2172 * pressure. If a page is wired for any reason, then it will not
2173 * be queued. Pages are specified by the range ["start", "end").
2174 * As a special case, if "end" is zero, then the range extends from
2175 * "start" to the end of the object.
2176 *
2177 * This operation should only be performed on objects that
2178 * contain non-fictitious, managed pages.
2179 *
2180 * The object must be locked.
2181 */
2182 void
2183 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2184 {
2185 vm_page_t p, next;
2186
2187 VM_OBJECT_ASSERT_LOCKED(object);
2188 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2189 ("vm_object_page_noreuse: illegal object %p", object));
2190 if (object->resident_page_count == 0)
2191 return;
2192 p = vm_page_find_least(object, start);
2193
2194 /*
2195 * Here, the variable "p" is either (1) the page with the least pindex
2196 * greater than or equal to the parameter "start" or (2) NULL.
2197 */
2198 for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2199 next = TAILQ_NEXT(p, listq);
2200 vm_page_deactivate_noreuse(p);
2201 }
2202 }
2203
2204 /*
2205 * Populate the specified range of the object with valid pages. Returns
2206 * TRUE if the range is successfully populated and FALSE otherwise.
2207 *
2208 * Note: This function should be optimized to pass a larger array of
2209 * pages to vm_pager_get_pages() before it is applied to a non-
2210 * OBJT_DEVICE object.
2211 *
2212 * The object must be locked.
2213 */
2214 boolean_t
2215 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2216 {
2217 vm_page_t m;
2218 vm_pindex_t pindex;
2219 int rv;
2220
2221 VM_OBJECT_ASSERT_WLOCKED(object);
2222 for (pindex = start; pindex < end; pindex++) {
2223 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2224 if (rv != VM_PAGER_OK)
2225 break;
2226
2227 /*
2228 * Keep "m" busy because a subsequent iteration may unlock
2229 * the object.
2230 */
2231 }
2232 if (pindex > start) {
2233 m = vm_page_lookup(object, start);
2234 while (m != NULL && m->pindex < pindex) {
2235 vm_page_xunbusy(m);
2236 m = TAILQ_NEXT(m, listq);
2237 }
2238 }
2239 return (pindex == end);
2240 }
2241
2242 /*
2243 * Routine: vm_object_coalesce
2244 * Function: Coalesces two objects backing up adjoining
2245 * regions of memory into a single object.
2246 *
2247 * returns TRUE if objects were combined.
2248 *
2249 * NOTE: Only works at the moment if the second object is NULL -
2250 * if it's not, which object do we lock first?
2251 *
2252 * Parameters:
2253 * prev_object First object to coalesce
2254 * prev_offset Offset into prev_object
2255 * prev_size Size of reference to prev_object
2256 * next_size Size of reference to the second object
2257 * reserved Indicator that extension region has
2258 * swap accounted for
2259 *
2260 * Conditions:
2261 * The object must *not* be locked.
2262 */
2263 boolean_t
2264 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2265 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2266 {
2267 vm_pindex_t next_pindex;
2268
2269 if (prev_object == NULL)
2270 return (TRUE);
2271 if ((prev_object->flags & OBJ_ANON) == 0)
2272 return (FALSE);
2273
2274 VM_OBJECT_WLOCK(prev_object);
2275 /*
2276 * Try to collapse the object first.
2277 */
2278 vm_object_collapse(prev_object);
2279
2280 /*
2281 * Can't coalesce if: . more than one reference . paged out . shadows
2282 * another object . has a copy elsewhere (any of which mean that the
2283 * pages not mapped to prev_entry may be in use anyway)
2284 */
2285 if (prev_object->backing_object != NULL) {
2286 VM_OBJECT_WUNLOCK(prev_object);
2287 return (FALSE);
2288 }
2289
2290 prev_size >>= PAGE_SHIFT;
2291 next_size >>= PAGE_SHIFT;
2292 next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2293
2294 if (prev_object->ref_count > 1 &&
2295 prev_object->size != next_pindex &&
2296 (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2297 VM_OBJECT_WUNLOCK(prev_object);
2298 return (FALSE);
2299 }
2300
2301 /*
2302 * Account for the charge.
2303 */
2304 if (prev_object->cred != NULL) {
2305 /*
2306 * If prev_object was charged, then this mapping,
2307 * although not charged now, may become writable
2308 * later. Non-NULL cred in the object would prevent
2309 * swap reservation during enabling of the write
2310 * access, so reserve swap now. Failed reservation
2311 * cause allocation of the separate object for the map
2312 * entry, and swap reservation for this entry is
2313 * managed in appropriate time.
2314 */
2315 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2316 prev_object->cred)) {
2317 VM_OBJECT_WUNLOCK(prev_object);
2318 return (FALSE);
2319 }
2320 prev_object->charge += ptoa(next_size);
2321 }
2322
2323 /*
2324 * Remove any pages that may still be in the object from a previous
2325 * deallocation.
2326 */
2327 if (next_pindex < prev_object->size) {
2328 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2329 next_size, 0);
2330 #if 0
2331 if (prev_object->cred != NULL) {
2332 KASSERT(prev_object->charge >=
2333 ptoa(prev_object->size - next_pindex),
2334 ("object %p overcharged 1 %jx %jx", prev_object,
2335 (uintmax_t)next_pindex, (uintmax_t)next_size));
2336 prev_object->charge -= ptoa(prev_object->size -
2337 next_pindex);
2338 }
2339 #endif
2340 }
2341
2342 /*
2343 * Extend the object if necessary.
2344 */
2345 if (next_pindex + next_size > prev_object->size)
2346 prev_object->size = next_pindex + next_size;
2347
2348 VM_OBJECT_WUNLOCK(prev_object);
2349 return (TRUE);
2350 }
2351
2352 void
2353 vm_object_set_writeable_dirty_(vm_object_t object)
2354 {
2355 atomic_add_int(&object->generation, 1);
2356 }
2357
2358 bool
2359 vm_object_mightbedirty_(vm_object_t object)
2360 {
2361 return (object->generation != object->cleangeneration);
2362 }
2363
2364 /*
2365 * vm_object_unwire:
2366 *
2367 * For each page offset within the specified range of the given object,
2368 * find the highest-level page in the shadow chain and unwire it. A page
2369 * must exist at every page offset, and the highest-level page must be
2370 * wired.
2371 */
2372 void
2373 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2374 uint8_t queue)
2375 {
2376 vm_object_t tobject, t1object;
2377 vm_page_t m, tm;
2378 vm_pindex_t end_pindex, pindex, tpindex;
2379 int depth, locked_depth;
2380
2381 KASSERT((offset & PAGE_MASK) == 0,
2382 ("vm_object_unwire: offset is not page aligned"));
2383 KASSERT((length & PAGE_MASK) == 0,
2384 ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2385 /* The wired count of a fictitious page never changes. */
2386 if ((object->flags & OBJ_FICTITIOUS) != 0)
2387 return;
2388 pindex = OFF_TO_IDX(offset);
2389 end_pindex = pindex + atop(length);
2390 again:
2391 locked_depth = 1;
2392 VM_OBJECT_RLOCK(object);
2393 m = vm_page_find_least(object, pindex);
2394 while (pindex < end_pindex) {
2395 if (m == NULL || pindex < m->pindex) {
2396 /*
2397 * The first object in the shadow chain doesn't
2398 * contain a page at the current index. Therefore,
2399 * the page must exist in a backing object.
2400 */
2401 tobject = object;
2402 tpindex = pindex;
2403 depth = 0;
2404 do {
2405 tpindex +=
2406 OFF_TO_IDX(tobject->backing_object_offset);
2407 tobject = tobject->backing_object;
2408 KASSERT(tobject != NULL,
2409 ("vm_object_unwire: missing page"));
2410 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2411 goto next_page;
2412 depth++;
2413 if (depth == locked_depth) {
2414 locked_depth++;
2415 VM_OBJECT_RLOCK(tobject);
2416 }
2417 } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2418 NULL);
2419 } else {
2420 tm = m;
2421 m = TAILQ_NEXT(m, listq);
2422 }
2423 if (vm_page_trysbusy(tm) == 0) {
2424 for (tobject = object; locked_depth >= 1;
2425 locked_depth--) {
2426 t1object = tobject->backing_object;
2427 if (tm->object != tobject)
2428 VM_OBJECT_RUNLOCK(tobject);
2429 tobject = t1object;
2430 }
2431 tobject = tm->object;
2432 if (!vm_page_busy_sleep(tm, "unwbo",
2433 VM_ALLOC_IGN_SBUSY))
2434 VM_OBJECT_RUNLOCK(tobject);
2435 goto again;
2436 }
2437 vm_page_unwire(tm, queue);
2438 vm_page_sunbusy(tm);
2439 next_page:
2440 pindex++;
2441 }
2442 /* Release the accumulated object locks. */
2443 for (tobject = object; locked_depth >= 1; locked_depth--) {
2444 t1object = tobject->backing_object;
2445 VM_OBJECT_RUNLOCK(tobject);
2446 tobject = t1object;
2447 }
2448 }
2449
2450 /*
2451 * Return the vnode for the given object, or NULL if none exists.
2452 * For tmpfs objects, the function may return NULL if there is
2453 * no vnode allocated at the time of the call.
2454 */
2455 struct vnode *
2456 vm_object_vnode(vm_object_t object)
2457 {
2458 struct vnode *vp;
2459
2460 VM_OBJECT_ASSERT_LOCKED(object);
2461 vm_pager_getvp(object, &vp, NULL);
2462 return (vp);
2463 }
2464
2465 /*
2466 * Busy the vm object. This prevents new pages belonging to the object from
2467 * becoming busy. Existing pages persist as busy. Callers are responsible
2468 * for checking page state before proceeding.
2469 */
2470 void
2471 vm_object_busy(vm_object_t obj)
2472 {
2473
2474 VM_OBJECT_ASSERT_LOCKED(obj);
2475
2476 blockcount_acquire(&obj->busy, 1);
2477 /* The fence is required to order loads of page busy. */
2478 atomic_thread_fence_acq_rel();
2479 }
2480
2481 void
2482 vm_object_unbusy(vm_object_t obj)
2483 {
2484
2485 blockcount_release(&obj->busy, 1);
2486 }
2487
2488 void
2489 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2490 {
2491
2492 VM_OBJECT_ASSERT_UNLOCKED(obj);
2493
2494 (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2495 }
2496
2497 /*
2498 * This function aims to determine if the object is mapped,
2499 * specifically, if it is referenced by a vm_map_entry. Because
2500 * objects occasionally acquire transient references that do not
2501 * represent a mapping, the method used here is inexact. However, it
2502 * has very low overhead and is good enough for the advisory
2503 * vm.vmtotal sysctl.
2504 */
2505 bool
2506 vm_object_is_active(vm_object_t obj)
2507 {
2508
2509 return (obj->ref_count > atomic_load_int(&obj->shadow_count));
2510 }
2511
2512 static int
2513 vm_object_list_handler(struct sysctl_req *req, bool swap_only)
2514 {
2515 struct kinfo_vmobject *kvo;
2516 char *fullpath, *freepath;
2517 struct vnode *vp;
2518 struct vattr va;
2519 vm_object_t obj;
2520 vm_page_t m;
2521 u_long sp;
2522 int count, error;
2523
2524 if (req->oldptr == NULL) {
2525 /*
2526 * If an old buffer has not been provided, generate an
2527 * estimate of the space needed for a subsequent call.
2528 */
2529 mtx_lock(&vm_object_list_mtx);
2530 count = 0;
2531 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2532 if (obj->type == OBJT_DEAD)
2533 continue;
2534 count++;
2535 }
2536 mtx_unlock(&vm_object_list_mtx);
2537 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2538 count * 11 / 10));
2539 }
2540
2541 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK | M_ZERO);
2542 error = 0;
2543
2544 /*
2545 * VM objects are type stable and are never removed from the
2546 * list once added. This allows us to safely read obj->object_list
2547 * after reacquiring the VM object lock.
2548 */
2549 mtx_lock(&vm_object_list_mtx);
2550 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2551 if (obj->type == OBJT_DEAD ||
2552 (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0))
2553 continue;
2554 VM_OBJECT_RLOCK(obj);
2555 if (obj->type == OBJT_DEAD ||
2556 (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) {
2557 VM_OBJECT_RUNLOCK(obj);
2558 continue;
2559 }
2560 mtx_unlock(&vm_object_list_mtx);
2561 kvo->kvo_size = ptoa(obj->size);
2562 kvo->kvo_resident = obj->resident_page_count;
2563 kvo->kvo_ref_count = obj->ref_count;
2564 kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count);
2565 kvo->kvo_memattr = obj->memattr;
2566 kvo->kvo_active = 0;
2567 kvo->kvo_inactive = 0;
2568 if (!swap_only) {
2569 TAILQ_FOREACH(m, &obj->memq, listq) {
2570 /*
2571 * A page may belong to the object but be
2572 * dequeued and set to PQ_NONE while the
2573 * object lock is not held. This makes the
2574 * reads of m->queue below racy, and we do not
2575 * count pages set to PQ_NONE. However, this
2576 * sysctl is only meant to give an
2577 * approximation of the system anyway.
2578 */
2579 if (m->a.queue == PQ_ACTIVE)
2580 kvo->kvo_active++;
2581 else if (m->a.queue == PQ_INACTIVE)
2582 kvo->kvo_inactive++;
2583 }
2584 }
2585
2586 kvo->kvo_vn_fileid = 0;
2587 kvo->kvo_vn_fsid = 0;
2588 kvo->kvo_vn_fsid_freebsd11 = 0;
2589 freepath = NULL;
2590 fullpath = "";
2591 vp = NULL;
2592 kvo->kvo_type = vm_object_kvme_type(obj, swap_only ? NULL : &vp);
2593 if (vp != NULL) {
2594 vref(vp);
2595 } else if ((obj->flags & OBJ_ANON) != 0) {
2596 MPASS(kvo->kvo_type == KVME_TYPE_SWAP);
2597 kvo->kvo_me = (uintptr_t)obj;
2598 /* tmpfs objs are reported as vnodes */
2599 kvo->kvo_backing_obj = (uintptr_t)obj->backing_object;
2600 sp = swap_pager_swapped_pages(obj);
2601 kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp;
2602 }
2603 VM_OBJECT_RUNLOCK(obj);
2604 if (vp != NULL) {
2605 vn_fullpath(vp, &fullpath, &freepath);
2606 vn_lock(vp, LK_SHARED | LK_RETRY);
2607 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2608 kvo->kvo_vn_fileid = va.va_fileid;
2609 kvo->kvo_vn_fsid = va.va_fsid;
2610 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2611 /* truncate */
2612 }
2613 vput(vp);
2614 }
2615
2616 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2617 if (freepath != NULL)
2618 free(freepath, M_TEMP);
2619
2620 /* Pack record size down */
2621 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2622 + strlen(kvo->kvo_path) + 1;
2623 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2624 sizeof(uint64_t));
2625 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2626 maybe_yield();
2627 mtx_lock(&vm_object_list_mtx);
2628 if (error)
2629 break;
2630 }
2631 mtx_unlock(&vm_object_list_mtx);
2632 free(kvo, M_TEMP);
2633 return (error);
2634 }
2635
2636 static int
2637 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2638 {
2639 return (vm_object_list_handler(req, false));
2640 }
2641
2642 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2643 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2644 "List of VM objects");
2645
2646 static int
2647 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS)
2648 {
2649 return (vm_object_list_handler(req, true));
2650 }
2651
2652 /*
2653 * This sysctl returns list of the anonymous or swap objects. Intent
2654 * is to provide stripped optimized list useful to analyze swap use.
2655 * Since technically non-swap (default) objects participate in the
2656 * shadow chains, and are converted to swap type as needed by swap
2657 * pager, we must report them.
2658 */
2659 SYSCTL_PROC(_vm, OID_AUTO, swap_objects,
2660 CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0,
2661 sysctl_vm_object_list_swap, "S,kinfo_vmobject",
2662 "List of swap VM objects");
2663
2664 #include "opt_ddb.h"
2665 #ifdef DDB
2666 #include <sys/kernel.h>
2667
2668 #include <sys/cons.h>
2669
2670 #include <ddb/ddb.h>
2671
2672 static int
2673 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2674 {
2675 vm_map_t tmpm;
2676 vm_map_entry_t tmpe;
2677 vm_object_t obj;
2678
2679 if (map == 0)
2680 return 0;
2681
2682 if (entry == 0) {
2683 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2684 if (_vm_object_in_map(map, object, tmpe)) {
2685 return 1;
2686 }
2687 }
2688 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2689 tmpm = entry->object.sub_map;
2690 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2691 if (_vm_object_in_map(tmpm, object, tmpe)) {
2692 return 1;
2693 }
2694 }
2695 } else if ((obj = entry->object.vm_object) != NULL) {
2696 for (; obj; obj = obj->backing_object)
2697 if (obj == object) {
2698 return 1;
2699 }
2700 }
2701 return 0;
2702 }
2703
2704 static int
2705 vm_object_in_map(vm_object_t object)
2706 {
2707 struct proc *p;
2708
2709 /* sx_slock(&allproc_lock); */
2710 FOREACH_PROC_IN_SYSTEM(p) {
2711 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2712 continue;
2713 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2714 /* sx_sunlock(&allproc_lock); */
2715 return 1;
2716 }
2717 }
2718 /* sx_sunlock(&allproc_lock); */
2719 if (_vm_object_in_map(kernel_map, object, 0))
2720 return 1;
2721 return 0;
2722 }
2723
2724 DB_SHOW_COMMAND_FLAGS(vmochk, vm_object_check, DB_CMD_MEMSAFE)
2725 {
2726 vm_object_t object;
2727
2728 /*
2729 * make sure that internal objs are in a map somewhere
2730 * and none have zero ref counts.
2731 */
2732 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2733 if ((object->flags & OBJ_ANON) != 0) {
2734 if (object->ref_count == 0) {
2735 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2736 (long)object->size);
2737 }
2738 if (!vm_object_in_map(object)) {
2739 db_printf(
2740 "vmochk: internal obj is not in a map: "
2741 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2742 object->ref_count, (u_long)object->size,
2743 (u_long)object->size,
2744 (void *)object->backing_object);
2745 }
2746 }
2747 if (db_pager_quit)
2748 return;
2749 }
2750 }
2751
2752 /*
2753 * vm_object_print: [ debug ]
2754 */
2755 DB_SHOW_COMMAND(object, vm_object_print_static)
2756 {
2757 /* XXX convert args. */
2758 vm_object_t object = (vm_object_t)addr;
2759 boolean_t full = have_addr;
2760
2761 vm_page_t p;
2762
2763 /* XXX count is an (unused) arg. Avoid shadowing it. */
2764 #define count was_count
2765
2766 int count;
2767
2768 if (object == NULL)
2769 return;
2770
2771 db_iprintf(
2772 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2773 object, (int)object->type, (uintmax_t)object->size,
2774 object->resident_page_count, object->ref_count, object->flags,
2775 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2776 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2777 atomic_load_int(&object->shadow_count),
2778 object->backing_object ? object->backing_object->ref_count : 0,
2779 object->backing_object, (uintmax_t)object->backing_object_offset);
2780
2781 if (!full)
2782 return;
2783
2784 db_indent += 2;
2785 count = 0;
2786 TAILQ_FOREACH(p, &object->memq, listq) {
2787 if (count == 0)
2788 db_iprintf("memory:=");
2789 else if (count == 6) {
2790 db_printf("\n");
2791 db_iprintf(" ...");
2792 count = 0;
2793 } else
2794 db_printf(",");
2795 count++;
2796
2797 db_printf("(off=0x%jx,page=0x%jx)",
2798 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2799
2800 if (db_pager_quit)
2801 break;
2802 }
2803 if (count != 0)
2804 db_printf("\n");
2805 db_indent -= 2;
2806 }
2807
2808 /* XXX. */
2809 #undef count
2810
2811 /* XXX need this non-static entry for calling from vm_map_print. */
2812 void
2813 vm_object_print(
2814 /* db_expr_t */ long addr,
2815 boolean_t have_addr,
2816 /* db_expr_t */ long count,
2817 char *modif)
2818 {
2819 vm_object_print_static(addr, have_addr, count, modif);
2820 }
2821
2822 DB_SHOW_COMMAND_FLAGS(vmopag, vm_object_print_pages, DB_CMD_MEMSAFE)
2823 {
2824 vm_object_t object;
2825 vm_pindex_t fidx;
2826 vm_paddr_t pa;
2827 vm_page_t m, prev_m;
2828 int rcount;
2829
2830 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2831 db_printf("new object: %p\n", (void *)object);
2832 if (db_pager_quit)
2833 return;
2834
2835 rcount = 0;
2836 fidx = 0;
2837 pa = -1;
2838 TAILQ_FOREACH(m, &object->memq, listq) {
2839 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2840 prev_m->pindex + 1 != m->pindex) {
2841 if (rcount) {
2842 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2843 (long)fidx, rcount, (long)pa);
2844 if (db_pager_quit)
2845 return;
2846 rcount = 0;
2847 }
2848 }
2849 if (rcount &&
2850 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2851 ++rcount;
2852 continue;
2853 }
2854 if (rcount) {
2855 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2856 (long)fidx, rcount, (long)pa);
2857 if (db_pager_quit)
2858 return;
2859 }
2860 fidx = m->pindex;
2861 pa = VM_PAGE_TO_PHYS(m);
2862 rcount = 1;
2863 }
2864 if (rcount) {
2865 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2866 (long)fidx, rcount, (long)pa);
2867 if (db_pager_quit)
2868 return;
2869 }
2870 }
2871 }
2872 #endif /* DDB */
Cache object: c02f8cfbbba8f3bb9be5a47fdfa3772d
|