The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1991, 1993, 2013
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  *
   60  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
   61  */
   62 
   63 /*
   64  *      Virtual memory object module.
   65  */
   66 
   67 #include <sys/param.h>
   68 #include <sys/systm.h>
   69 #include <sys/proc.h>           /* for curproc, pageproc */
   70 #include <sys/thread.h>
   71 #include <sys/vnode.h>
   72 #include <sys/vmmeter.h>
   73 #include <sys/mman.h>
   74 #include <sys/mount.h>
   75 #include <sys/kernel.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/refcount.h>
   78 
   79 #include <vm/vm.h>
   80 #include <vm/vm_param.h>
   81 #include <vm/pmap.h>
   82 #include <vm/vm_map.h>
   83 #include <vm/vm_object.h>
   84 #include <vm/vm_page.h>
   85 #include <vm/vm_pageout.h>
   86 #include <vm/vm_pager.h>
   87 #include <vm/swap_pager.h>
   88 #include <vm/vm_kern.h>
   89 #include <vm/vm_extern.h>
   90 #include <vm/vm_zone.h>
   91 
   92 #include <vm/vm_page2.h>
   93 
   94 #include <machine/specialreg.h>
   95 
   96 #define EASY_SCAN_FACTOR        8
   97 
   98 static void     vm_object_qcollapse(vm_object_t object,
   99                                     vm_object_t backing_object);
  100 static void     vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
  101                                              int pagerflags);
  102 static void     vm_object_lock_init(vm_object_t);
  103 
  104 
  105 /*
  106  *      Virtual memory objects maintain the actual data
  107  *      associated with allocated virtual memory.  A given
  108  *      page of memory exists within exactly one object.
  109  *
  110  *      An object is only deallocated when all "references"
  111  *      are given up.  Only one "reference" to a given
  112  *      region of an object should be writeable.
  113  *
  114  *      Associated with each object is a list of all resident
  115  *      memory pages belonging to that object; this list is
  116  *      maintained by the "vm_page" module, and locked by the object's
  117  *      lock.
  118  *
  119  *      Each object also records a "pager" routine which is
  120  *      used to retrieve (and store) pages to the proper backing
  121  *      storage.  In addition, objects may be backed by other
  122  *      objects from which they were virtual-copied.
  123  *
  124  *      The only items within the object structure which are
  125  *      modified after time of creation are:
  126  *              reference count         locked by object's lock
  127  *              pager routine           locked by object's lock
  128  *
  129  */
  130 
  131 struct vm_object kernel_object;
  132 
  133 static long vm_object_count;
  134 
  135 static long object_collapses;
  136 static long object_bypasses;
  137 static int next_index;
  138 static vm_zone_t obj_zone;
  139 static struct vm_zone obj_zone_store;
  140 #define VM_OBJECTS_INIT 256
  141 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
  142 
  143 struct object_q vm_object_lists[VMOBJ_HSIZE];
  144 struct lwkt_token vmobj_tokens[VMOBJ_HSIZE];
  145 
  146 /*
  147  * Misc low level routines
  148  */
  149 static void
  150 vm_object_lock_init(vm_object_t obj)
  151 {
  152 #if defined(DEBUG_LOCKS)
  153         int i;
  154 
  155         obj->debug_hold_bitmap = 0;
  156         obj->debug_hold_ovfl = 0;
  157         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
  158                 obj->debug_hold_thrs[i] = NULL;
  159                 obj->debug_hold_file[i] = NULL;
  160                 obj->debug_hold_line[i] = 0;
  161         }
  162 #endif
  163 }
  164 
  165 void
  166 vm_object_lock_swap(void)
  167 {
  168         lwkt_token_swap();
  169 }
  170 
  171 void
  172 vm_object_lock(vm_object_t obj)
  173 {
  174         lwkt_gettoken(&obj->token);
  175 }
  176 
  177 /*
  178  * Returns TRUE on sucesss
  179  */
  180 static int
  181 vm_object_lock_try(vm_object_t obj)
  182 {
  183         return(lwkt_trytoken(&obj->token));
  184 }
  185 
  186 void
  187 vm_object_lock_shared(vm_object_t obj)
  188 {
  189         lwkt_gettoken_shared(&obj->token);
  190 }
  191 
  192 void
  193 vm_object_unlock(vm_object_t obj)
  194 {
  195         lwkt_reltoken(&obj->token);
  196 }
  197 
  198 void
  199 vm_object_upgrade(vm_object_t obj)
  200 {
  201         lwkt_reltoken(&obj->token);
  202         lwkt_gettoken(&obj->token);
  203 }
  204 
  205 void
  206 vm_object_downgrade(vm_object_t obj)
  207 {
  208         lwkt_reltoken(&obj->token);
  209         lwkt_gettoken_shared(&obj->token);
  210 }
  211 
  212 static __inline void
  213 vm_object_assert_held(vm_object_t obj)
  214 {
  215         ASSERT_LWKT_TOKEN_HELD(&obj->token);
  216 }
  217 
  218 void
  219 #ifndef DEBUG_LOCKS
  220 vm_object_hold(vm_object_t obj)
  221 #else
  222 debugvm_object_hold(vm_object_t obj, char *file, int line)
  223 #endif
  224 {
  225         KKASSERT(obj != NULL);
  226 
  227         /*
  228          * Object must be held (object allocation is stable due to callers
  229          * context, typically already holding the token on a parent object)
  230          * prior to potentially blocking on the lock, otherwise the object
  231          * can get ripped away from us.
  232          */
  233         refcount_acquire(&obj->hold_count);
  234         vm_object_lock(obj);
  235 
  236 #if defined(DEBUG_LOCKS)
  237         int i;
  238         u_int mask;
  239 
  240         for (;;) {
  241                 mask = ~obj->debug_hold_bitmap;
  242                 cpu_ccfence();
  243                 if (mask == 0xFFFFFFFFU) {
  244                         if (obj->debug_hold_ovfl == 0)
  245                                 obj->debug_hold_ovfl = 1;
  246                         break;
  247                 }
  248                 i = ffs(mask) - 1;
  249                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
  250                                       ~mask | (1 << i))) {
  251                         obj->debug_hold_bitmap |= (1 << i);
  252                         obj->debug_hold_thrs[i] = curthread;
  253                         obj->debug_hold_file[i] = file;
  254                         obj->debug_hold_line[i] = line;
  255                         break;
  256                 }
  257         }
  258 #endif
  259 }
  260 
  261 int
  262 #ifndef DEBUG_LOCKS
  263 vm_object_hold_try(vm_object_t obj)
  264 #else
  265 debugvm_object_hold_try(vm_object_t obj, char *file, int line)
  266 #endif
  267 {
  268         KKASSERT(obj != NULL);
  269 
  270         /*
  271          * Object must be held (object allocation is stable due to callers
  272          * context, typically already holding the token on a parent object)
  273          * prior to potentially blocking on the lock, otherwise the object
  274          * can get ripped away from us.
  275          */
  276         refcount_acquire(&obj->hold_count);
  277         if (vm_object_lock_try(obj) == 0) {
  278                 if (refcount_release(&obj->hold_count)) {
  279                         if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
  280                                 zfree(obj_zone, obj);
  281                 }
  282                 return(0);
  283         }
  284 
  285 #if defined(DEBUG_LOCKS)
  286         int i;
  287         u_int mask;
  288 
  289         for (;;) {
  290                 mask = ~obj->debug_hold_bitmap;
  291                 cpu_ccfence();
  292                 if (mask == 0xFFFFFFFFU) {
  293                         if (obj->debug_hold_ovfl == 0)
  294                                 obj->debug_hold_ovfl = 1;
  295                         break;
  296                 }
  297                 i = ffs(mask) - 1;
  298                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
  299                                       ~mask | (1 << i))) {
  300                         obj->debug_hold_bitmap |= (1 << i);
  301                         obj->debug_hold_thrs[i] = curthread;
  302                         obj->debug_hold_file[i] = file;
  303                         obj->debug_hold_line[i] = line;
  304                         break;
  305                 }
  306         }
  307 #endif
  308         return(1);
  309 }
  310 
  311 void
  312 #ifndef DEBUG_LOCKS
  313 vm_object_hold_shared(vm_object_t obj)
  314 #else
  315 debugvm_object_hold_shared(vm_object_t obj, char *file, int line)
  316 #endif
  317 {
  318         KKASSERT(obj != NULL);
  319 
  320         /*
  321          * Object must be held (object allocation is stable due to callers
  322          * context, typically already holding the token on a parent object)
  323          * prior to potentially blocking on the lock, otherwise the object
  324          * can get ripped away from us.
  325          */
  326         refcount_acquire(&obj->hold_count);
  327         vm_object_lock_shared(obj);
  328 
  329 #if defined(DEBUG_LOCKS)
  330         int i;
  331         u_int mask;
  332 
  333         for (;;) {
  334                 mask = ~obj->debug_hold_bitmap;
  335                 cpu_ccfence();
  336                 if (mask == 0xFFFFFFFFU) {
  337                         if (obj->debug_hold_ovfl == 0)
  338                                 obj->debug_hold_ovfl = 1;
  339                         break;
  340                 }
  341                 i = ffs(mask) - 1;
  342                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
  343                                       ~mask | (1 << i))) {
  344                         obj->debug_hold_bitmap |= (1 << i);
  345                         obj->debug_hold_thrs[i] = curthread;
  346                         obj->debug_hold_file[i] = file;
  347                         obj->debug_hold_line[i] = line;
  348                         break;
  349                 }
  350         }
  351 #endif
  352 }
  353 
  354 /*
  355  * Drop the token and hold_count on the object.
  356  *
  357  * WARNING! Token might be shared.
  358  */
  359 void
  360 vm_object_drop(vm_object_t obj)
  361 {
  362         if (obj == NULL)
  363                 return;
  364 
  365 #if defined(DEBUG_LOCKS)
  366         int found = 0;
  367         int i;
  368 
  369         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
  370                 if ((obj->debug_hold_bitmap & (1 << i)) &&
  371                     (obj->debug_hold_thrs[i] == curthread)) {
  372                         obj->debug_hold_bitmap &= ~(1 << i);
  373                         obj->debug_hold_thrs[i] = NULL;
  374                         obj->debug_hold_file[i] = NULL;
  375                         obj->debug_hold_line[i] = 0;
  376                         found = 1;
  377                         break;
  378                 }
  379         }
  380 
  381         if (found == 0 && obj->debug_hold_ovfl == 0)
  382                 panic("vm_object: attempt to drop hold on non-self-held obj");
  383 #endif
  384 
  385         /*
  386          * No new holders should be possible once we drop hold_count 1->0 as
  387          * there is no longer any way to reference the object.
  388          */
  389         KKASSERT(obj->hold_count > 0);
  390         if (refcount_release(&obj->hold_count)) {
  391                 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
  392                         vm_object_unlock(obj);
  393                         zfree(obj_zone, obj);
  394                 } else {
  395                         vm_object_unlock(obj);
  396                 }
  397         } else {
  398                 vm_object_unlock(obj);
  399         }
  400 }
  401 
  402 /*
  403  * Initialize a freshly allocated object, returning a held object.
  404  *
  405  * Used only by vm_object_allocate() and zinitna().
  406  *
  407  * No requirements.
  408  */
  409 void
  410 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
  411 {
  412         int incr;
  413         int n;
  414 
  415         RB_INIT(&object->rb_memq);
  416         LIST_INIT(&object->shadow_head);
  417         lwkt_token_init(&object->token, "vmobj");
  418 
  419         object->type = type;
  420         object->size = size;
  421         object->ref_count = 1;
  422         object->memattr = VM_MEMATTR_DEFAULT;
  423         object->hold_count = 0;
  424         object->flags = 0;
  425         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
  426                 vm_object_set_flag(object, OBJ_ONEMAPPING);
  427         object->paging_in_progress = 0;
  428         object->resident_page_count = 0;
  429         object->agg_pv_list_count = 0;
  430         object->shadow_count = 0;
  431         /* cpu localization twist */
  432         object->pg_color = (int)(intptr_t)curthread;
  433         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
  434                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
  435         else
  436                 incr = size;
  437         next_index = (next_index + incr) & PQ_L2_MASK;
  438         object->handle = NULL;
  439         object->backing_object = NULL;
  440         object->backing_object_offset = (vm_ooffset_t)0;
  441 
  442         object->generation++;
  443         object->swblock_count = 0;
  444         RB_INIT(&object->swblock_root);
  445         vm_object_lock_init(object);
  446         pmap_object_init(object);
  447 
  448         vm_object_hold(object);
  449 
  450         n = VMOBJ_HASH(object);
  451         atomic_add_long(&vm_object_count, 1);
  452         lwkt_gettoken(&vmobj_tokens[n]);
  453         TAILQ_INSERT_TAIL(&vm_object_lists[n], object, object_list);
  454         lwkt_reltoken(&vmobj_tokens[n]);
  455 }
  456 
  457 /*
  458  * Initialize the VM objects module.
  459  *
  460  * Called from the low level boot code only.
  461  */
  462 void
  463 vm_object_init(void)
  464 {
  465         int i;
  466 
  467         for (i = 0; i < VMOBJ_HSIZE; ++i) {
  468                 TAILQ_INIT(&vm_object_lists[i]);
  469                 lwkt_token_init(&vmobj_tokens[i], "vmobjlst");
  470         }
  471         
  472         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
  473                             &kernel_object);
  474         vm_object_drop(&kernel_object);
  475 
  476         obj_zone = &obj_zone_store;
  477         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
  478                 vm_objects_init, VM_OBJECTS_INIT);
  479 }
  480 
  481 void
  482 vm_object_init2(void)
  483 {
  484         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
  485 }
  486 
  487 /*
  488  * Allocate and return a new object of the specified type and size.
  489  *
  490  * No requirements.
  491  */
  492 vm_object_t
  493 vm_object_allocate(objtype_t type, vm_pindex_t size)
  494 {
  495         vm_object_t result;
  496 
  497         result = (vm_object_t) zalloc(obj_zone);
  498 
  499         _vm_object_allocate(type, size, result);
  500         vm_object_drop(result);
  501 
  502         return (result);
  503 }
  504 
  505 /*
  506  * This version returns a held object, allowing further atomic initialization
  507  * of the object.
  508  */
  509 vm_object_t
  510 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
  511 {
  512         vm_object_t result;
  513 
  514         result = (vm_object_t) zalloc(obj_zone);
  515 
  516         _vm_object_allocate(type, size, result);
  517 
  518         return (result);
  519 }
  520 
  521 /*
  522  * Add an additional reference to a vm_object.  The object must already be
  523  * held.  The original non-lock version is no longer supported.  The object
  524  * must NOT be chain locked by anyone at the time the reference is added.
  525  *
  526  * Referencing a chain-locked object can blow up the fairly sensitive
  527  * ref_count and shadow_count tests in the deallocator.  Most callers
  528  * will call vm_object_chain_wait() prior to calling
  529  * vm_object_reference_locked() to avoid the case.
  530  *
  531  * The object must be held, but may be held shared if desired (hence why
  532  * we use an atomic op).
  533  */
  534 void
  535 vm_object_reference_locked(vm_object_t object)
  536 {
  537         KKASSERT(object != NULL);
  538         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
  539         KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0);
  540         atomic_add_int(&object->ref_count, 1);
  541         if (object->type == OBJT_VNODE) {
  542                 vref(object->handle);
  543                 /* XXX what if the vnode is being destroyed? */
  544         }
  545 }
  546 
  547 /*
  548  * This version is only allowed for vnode objects.
  549  */
  550 void
  551 vm_object_reference_quick(vm_object_t object)
  552 {
  553         KKASSERT(object->type == OBJT_VNODE);
  554         atomic_add_int(&object->ref_count, 1);
  555         vref(object->handle);
  556 }
  557 
  558 /*
  559  * Object OBJ_CHAINLOCK lock handling.
  560  *
  561  * The caller can chain-lock backing objects recursively and then
  562  * use vm_object_chain_release_all() to undo the whole chain.
  563  *
  564  * Chain locks are used to prevent collapses and are only applicable
  565  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
  566  * on other object types are ignored.  This is also important because
  567  * it allows e.g. the vnode underlying a memory mapping to take concurrent
  568  * faults.
  569  *
  570  * The object must usually be held on entry, though intermediate
  571  * objects need not be held on release.  The object must be held exclusively,
  572  * NOT shared.  Note that the prefault path checks the shared state and
  573  * avoids using the chain functions.
  574  */
  575 void
  576 vm_object_chain_wait(vm_object_t object, int shared)
  577 {
  578         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
  579         for (;;) {
  580                 uint32_t chainlk = object->chainlk;
  581 
  582                 cpu_ccfence();
  583                 if (shared) {
  584                         if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
  585                                 tsleep_interlock(object, 0);
  586                                 if (atomic_cmpset_int(&object->chainlk,
  587                                                       chainlk,
  588                                                       chainlk | CHAINLK_WAIT)) {
  589                                         tsleep(object, PINTERLOCKED,
  590                                                "objchns", 0);
  591                                 }
  592                                 /* retry */
  593                         } else {
  594                                 break;
  595                         }
  596                         /* retry */
  597                 } else {
  598                         if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
  599                                 tsleep_interlock(object, 0);
  600                                 if (atomic_cmpset_int(&object->chainlk,
  601                                                       chainlk,
  602                                                       chainlk | CHAINLK_WAIT))
  603                                 {
  604                                         tsleep(object, PINTERLOCKED,
  605                                                "objchnx", 0);
  606                                 }
  607                                 /* retry */
  608                         } else {
  609                                 if (atomic_cmpset_int(&object->chainlk,
  610                                                       chainlk,
  611                                                       chainlk & ~CHAINLK_WAIT))
  612                                 {
  613                                         if (chainlk & CHAINLK_WAIT)
  614                                                 wakeup(object);
  615                                         break;
  616                                 }
  617                                 /* retry */
  618                         }
  619                 }
  620                 /* retry */
  621         }
  622 }
  623 
  624 void
  625 vm_object_chain_acquire(vm_object_t object, int shared)
  626 {
  627         if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
  628                 return;
  629         if (vm_shared_fault == 0)
  630                 shared = 0;
  631 
  632         for (;;) {
  633                 uint32_t chainlk = object->chainlk;
  634 
  635                 cpu_ccfence();
  636                 if (shared) {
  637                         if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
  638                                 tsleep_interlock(object, 0);
  639                                 if (atomic_cmpset_int(&object->chainlk,
  640                                                       chainlk,
  641                                                       chainlk | CHAINLK_WAIT)) {
  642                                         tsleep(object, PINTERLOCKED,
  643                                                "objchns", 0);
  644                                 }
  645                                 /* retry */
  646                         } else if (atomic_cmpset_int(&object->chainlk,
  647                                               chainlk, chainlk + 1)) {
  648                                 break;
  649                         }
  650                         /* retry */
  651                 } else {
  652                         if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
  653                                 tsleep_interlock(object, 0);
  654                                 if (atomic_cmpset_int(&object->chainlk,
  655                                                       chainlk,
  656                                                       chainlk |
  657                                                        CHAINLK_WAIT |
  658                                                        CHAINLK_EXCLREQ)) {
  659                                         tsleep(object, PINTERLOCKED,
  660                                                "objchnx", 0);
  661                                 }
  662                                 /* retry */
  663                         } else {
  664                                 if (atomic_cmpset_int(&object->chainlk,
  665                                                       chainlk,
  666                                                       (chainlk | CHAINLK_EXCL) &
  667                                                       ~(CHAINLK_EXCLREQ |
  668                                                         CHAINLK_WAIT))) {
  669                                         if (chainlk & CHAINLK_WAIT)
  670                                                 wakeup(object);
  671                                         break;
  672                                 }
  673                                 /* retry */
  674                         }
  675                 }
  676                 /* retry */
  677         }
  678 }
  679 
  680 void
  681 vm_object_chain_release(vm_object_t object)
  682 {
  683         /*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
  684         if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
  685                 return;
  686         KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
  687         for (;;) {
  688                 uint32_t chainlk = object->chainlk;
  689 
  690                 cpu_ccfence();
  691                 if (chainlk & CHAINLK_MASK) {
  692                         if ((chainlk & CHAINLK_MASK) == 1 &&
  693                             atomic_cmpset_int(&object->chainlk,
  694                                               chainlk,
  695                                               (chainlk - 1) & ~CHAINLK_WAIT)) {
  696                                 if (chainlk & CHAINLK_WAIT)
  697                                         wakeup(object);
  698                                 break;
  699                         }
  700                         if ((chainlk & CHAINLK_MASK) > 1 &&
  701                             atomic_cmpset_int(&object->chainlk,
  702                                               chainlk, chainlk - 1)) {
  703                                 break;
  704                         }
  705                         /* retry */
  706                 } else {
  707                         KKASSERT(chainlk & CHAINLK_EXCL);
  708                         if (atomic_cmpset_int(&object->chainlk,
  709                                               chainlk,
  710                                               chainlk & ~(CHAINLK_EXCL |
  711                                                           CHAINLK_WAIT))) {
  712                                 if (chainlk & CHAINLK_WAIT)
  713                                         wakeup(object);
  714                                 break;
  715                         }
  716                 }
  717         }
  718 }
  719 
  720 /*
  721  * Release the chain from first_object through and including stopobj.
  722  * The caller is typically holding the first and last object locked
  723  * (shared or exclusive) to prevent destruction races.
  724  *
  725  * We release stopobj first as an optimization as this object is most
  726  * likely to be shared across multiple processes.
  727  */
  728 void
  729 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
  730 {
  731         vm_object_t backing_object;
  732         vm_object_t object;
  733 
  734         vm_object_chain_release(stopobj);
  735         object = first_object;
  736 
  737         while (object != stopobj) {
  738                 KKASSERT(object);
  739                 backing_object = object->backing_object;
  740                 vm_object_chain_release(object);
  741                 object = backing_object;
  742         }
  743 }
  744 
  745 /*
  746  * Dereference an object and its underlying vnode.  The object may be
  747  * held shared.  On return the object will remain held.
  748  *
  749  * This function may return a vnode in *vpp which the caller must release
  750  * after the caller drops its own lock.  If vpp is NULL, we assume that
  751  * the caller was holding an exclusive lock on the object and we vrele()
  752  * the vp ourselves.
  753  */
  754 static void
  755 vm_object_vndeallocate(vm_object_t object, struct vnode **vpp)
  756 {
  757         struct vnode *vp = (struct vnode *) object->handle;
  758 
  759         KASSERT(object->type == OBJT_VNODE,
  760             ("vm_object_vndeallocate: not a vnode object"));
  761         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
  762         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
  763 #ifdef INVARIANTS
  764         if (object->ref_count == 0) {
  765                 vprint("vm_object_vndeallocate", vp);
  766                 panic("vm_object_vndeallocate: bad object reference count");
  767         }
  768 #endif
  769         for (;;) {
  770                 int count = object->ref_count;
  771                 cpu_ccfence();
  772                 if (count == 1) {
  773                         vm_object_upgrade(object);
  774                         if (atomic_cmpset_int(&object->ref_count, count, 0)) {
  775                                 vclrflags(vp, VTEXT);
  776                                 break;
  777                         }
  778                 } else {
  779                         if (atomic_cmpset_int(&object->ref_count,
  780                                               count, count - 1)) {
  781                                 break;
  782                         }
  783                 }
  784                 /* retry */
  785         }
  786 
  787         /*
  788          * vrele or return the vp to vrele.  We can only safely vrele(vp)
  789          * if the object was locked exclusively.  But there are two races
  790          * here.
  791          *
  792          * We had to upgrade the object above to safely clear VTEXT
  793          * but the alternative path where the shared lock is retained
  794          * can STILL race to 0 in other paths and cause our own vrele()
  795          * to terminate the vnode.  We can't allow that if the VM object
  796          * is still locked shared.
  797          */
  798         if (vpp)
  799                 *vpp = vp;
  800         else
  801                 vrele(vp);
  802 }
  803 
  804 /*
  805  * Release a reference to the specified object, gained either through a
  806  * vm_object_allocate or a vm_object_reference call.  When all references
  807  * are gone, storage associated with this object may be relinquished.
  808  *
  809  * The caller does not have to hold the object locked but must have control
  810  * over the reference in question in order to guarantee that the object
  811  * does not get ripped out from under us.
  812  *
  813  * XXX Currently all deallocations require an exclusive lock.
  814  */
  815 void
  816 vm_object_deallocate(vm_object_t object)
  817 {
  818         struct vnode *vp;
  819         int count;
  820 
  821         if (object == NULL)
  822                 return;
  823         for (;;) {
  824                 count = object->ref_count;
  825                 cpu_ccfence();
  826 
  827                 /*
  828                  * If decrementing the count enters into special handling
  829                  * territory (0, 1, or 2) we have to do it the hard way.
  830                  * Fortunate though, objects with only a few refs like this
  831                  * are not likely to be heavily contended anyway.
  832                  *
  833                  * For vnode objects we only care about 1->0 transitions.
  834                  */
  835                 if (count <= 3 || (object->type == OBJT_VNODE && count <= 1)) {
  836                         vm_object_hold(object);
  837                         vm_object_deallocate_locked(object);
  838                         vm_object_drop(object);
  839                         break;
  840                 }
  841 
  842                 /*
  843                  * Try to decrement ref_count without acquiring a hold on
  844                  * the object.  This is particularly important for the exec*()
  845                  * and exit*() code paths because the program binary may
  846                  * have a great deal of sharing and an exclusive lock will
  847                  * crowbar performance in those circumstances.
  848                  */
  849                 if (object->type == OBJT_VNODE) {
  850                         vp = (struct vnode *)object->handle;
  851                         if (atomic_cmpset_int(&object->ref_count,
  852                                               count, count - 1)) {
  853                                 vrele(vp);
  854                                 break;
  855                         }
  856                         /* retry */
  857                 } else {
  858                         if (atomic_cmpset_int(&object->ref_count,
  859                                               count, count - 1)) {
  860                                 break;
  861                         }
  862                         /* retry */
  863                 }
  864                 /* retry */
  865         }
  866 }
  867 
  868 void
  869 vm_object_deallocate_locked(vm_object_t object)
  870 {
  871         struct vm_object_dealloc_list *dlist = NULL;
  872         struct vm_object_dealloc_list *dtmp;
  873         vm_object_t temp;
  874         int must_drop = 0;
  875 
  876         /*
  877          * We may chain deallocate object, but additional objects may
  878          * collect on the dlist which also have to be deallocated.  We
  879          * must avoid a recursion, vm_object chains can get deep.
  880          */
  881 
  882 again:
  883         while (object != NULL) {
  884                 /*
  885                  * vnode case, caller either locked the object exclusively
  886                  * or this is a recursion with must_drop != 0 and the vnode
  887                  * object will be locked shared.
  888                  *
  889                  * If locked shared we have to drop the object before we can
  890                  * call vrele() or risk a shared/exclusive livelock.
  891                  */
  892                 if (object->type == OBJT_VNODE) {
  893                         ASSERT_LWKT_TOKEN_HELD(&object->token);
  894                         if (must_drop) {
  895                                 struct vnode *tmp_vp;
  896 
  897                                 vm_object_vndeallocate(object, &tmp_vp);
  898                                 vm_object_drop(object);
  899                                 must_drop = 0;
  900                                 object = NULL;
  901                                 vrele(tmp_vp);
  902                         } else {
  903                                 vm_object_vndeallocate(object, NULL);
  904                         }
  905                         break;
  906                 }
  907                 ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
  908 
  909                 /*
  910                  * Normal case (object is locked exclusively)
  911                  */
  912                 if (object->ref_count == 0) {
  913                         panic("vm_object_deallocate: object deallocated "
  914                               "too many times: %d", object->type);
  915                 }
  916                 if (object->ref_count > 2) {
  917                         atomic_add_int(&object->ref_count, -1);
  918                         break;
  919                 }
  920 
  921                 /*
  922                  * Here on ref_count of one or two, which are special cases for
  923                  * objects.
  924                  *
  925                  * Nominal ref_count > 1 case if the second ref is not from
  926                  * a shadow.
  927                  *
  928                  * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
  929                  */
  930                 if (object->ref_count == 2 && object->shadow_count == 0) {
  931                         if (object->type == OBJT_DEFAULT ||
  932                             object->type == OBJT_SWAP) {
  933                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
  934                         }
  935                         atomic_add_int(&object->ref_count, -1);
  936                         break;
  937                 }
  938 
  939                 /*
  940                  * If the second ref is from a shadow we chain along it
  941                  * upwards if object's handle is exhausted.
  942                  *
  943                  * We have to decrement object->ref_count before potentially
  944                  * collapsing the first shadow object or the collapse code
  945                  * will not be able to handle the degenerate case to remove
  946                  * object.  However, if we do it too early the object can
  947                  * get ripped out from under us.
  948                  */
  949                 if (object->ref_count == 2 && object->shadow_count == 1 &&
  950                     object->handle == NULL && (object->type == OBJT_DEFAULT ||
  951                                                object->type == OBJT_SWAP)) {
  952                         temp = LIST_FIRST(&object->shadow_head);
  953                         KKASSERT(temp != NULL);
  954                         vm_object_hold(temp);
  955 
  956                         /*
  957                          * Wait for any paging to complete so the collapse
  958                          * doesn't (or isn't likely to) qcollapse.  pip
  959                          * waiting must occur before we acquire the
  960                          * chainlock.
  961                          */
  962                         while (
  963                                 temp->paging_in_progress ||
  964                                 object->paging_in_progress
  965                         ) {
  966                                 vm_object_pip_wait(temp, "objde1");
  967                                 vm_object_pip_wait(object, "objde2");
  968                         }
  969 
  970                         /*
  971                          * If the parent is locked we have to give up, as
  972                          * otherwise we would be acquiring locks in the
  973                          * wrong order and potentially deadlock.
  974                          */
  975                         if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) {
  976                                 vm_object_drop(temp);
  977                                 goto skip;
  978                         }
  979                         vm_object_chain_acquire(temp, 0);
  980 
  981                         /*
  982                          * Recheck/retry after the hold and the paging
  983                          * wait, both of which can block us.
  984                          */
  985                         if (object->ref_count != 2 ||
  986                             object->shadow_count != 1 ||
  987                             object->handle ||
  988                             LIST_FIRST(&object->shadow_head) != temp ||
  989                             (object->type != OBJT_DEFAULT &&
  990                              object->type != OBJT_SWAP)) {
  991                                 vm_object_chain_release(temp);
  992                                 vm_object_drop(temp);
  993                                 continue;
  994                         }
  995 
  996                         /*
  997                          * We can safely drop object's ref_count now.
  998                          */
  999                         KKASSERT(object->ref_count == 2);
 1000                         atomic_add_int(&object->ref_count, -1);
 1001 
 1002                         /*
 1003                          * If our single parent is not collapseable just
 1004                          * decrement ref_count (2->1) and stop.
 1005                          */
 1006                         if (temp->handle || (temp->type != OBJT_DEFAULT &&
 1007                                              temp->type != OBJT_SWAP)) {
 1008                                 vm_object_chain_release(temp);
 1009                                 vm_object_drop(temp);
 1010                                 break;
 1011                         }
 1012 
 1013                         /*
 1014                          * At this point we have already dropped object's
 1015                          * ref_count so it is possible for a race to
 1016                          * deallocate obj out from under us.  Any collapse
 1017                          * will re-check the situation.  We must not block
 1018                          * until we are able to collapse.
 1019                          *
 1020                          * Bump temp's ref_count to avoid an unwanted
 1021                          * degenerate recursion (can't call
 1022                          * vm_object_reference_locked() because it asserts
 1023                          * that CHAINLOCK is not set).
 1024                          */
 1025                         atomic_add_int(&temp->ref_count, 1);
 1026                         KKASSERT(temp->ref_count > 1);
 1027 
 1028                         /*
 1029                          * Collapse temp, then deallocate the extra ref
 1030                          * formally.
 1031                          */
 1032                         vm_object_collapse(temp, &dlist);
 1033                         vm_object_chain_release(temp);
 1034                         if (must_drop) {
 1035                                 vm_object_lock_swap();
 1036                                 vm_object_drop(object);
 1037                         }
 1038                         object = temp;
 1039                         must_drop = 1;
 1040                         continue;
 1041                 }
 1042 
 1043                 /*
 1044                  * Drop the ref and handle termination on the 1->0 transition.
 1045                  * We may have blocked above so we have to recheck.
 1046                  */
 1047 skip:
 1048                 KKASSERT(object->ref_count != 0);
 1049                 if (object->ref_count >= 2) {
 1050                         atomic_add_int(&object->ref_count, -1);
 1051                         break;
 1052                 }
 1053                 KKASSERT(object->ref_count == 1);
 1054 
 1055                 /*
 1056                  * 1->0 transition.  Chain through the backing_object.
 1057                  * Maintain the ref until we've located the backing object,
 1058                  * then re-check.
 1059                  */
 1060                 while ((temp = object->backing_object) != NULL) {
 1061                         if (temp->type == OBJT_VNODE)
 1062                                 vm_object_hold_shared(temp);
 1063                         else
 1064                                 vm_object_hold(temp);
 1065                         if (temp == object->backing_object)
 1066                                 break;
 1067                         vm_object_drop(temp);
 1068                 }
 1069 
 1070                 /*
 1071                  * 1->0 transition verified, retry if ref_count is no longer
 1072                  * 1.  Otherwise disconnect the backing_object (temp) and
 1073                  * clean up.
 1074                  */
 1075                 if (object->ref_count != 1) {
 1076                         vm_object_drop(temp);
 1077                         continue;
 1078                 }
 1079 
 1080                 /*
 1081                  * It shouldn't be possible for the object to be chain locked
 1082                  * if we're removing the last ref on it.
 1083                  */
 1084                 KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0);
 1085 
 1086                 if (temp) {
 1087                         if (object->flags & OBJ_ONSHADOW) {
 1088                                 LIST_REMOVE(object, shadow_list);
 1089                                 temp->shadow_count--;
 1090                                 temp->generation++;
 1091                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
 1092                         }
 1093                         object->backing_object = NULL;
 1094                 }
 1095 
 1096                 atomic_add_int(&object->ref_count, -1);
 1097                 if ((object->flags & OBJ_DEAD) == 0)
 1098                         vm_object_terminate(object);
 1099                 if (must_drop && temp)
 1100                         vm_object_lock_swap();
 1101                 if (must_drop)
 1102                         vm_object_drop(object);
 1103                 object = temp;
 1104                 must_drop = 1;
 1105         }
 1106 
 1107         if (must_drop && object)
 1108                 vm_object_drop(object);
 1109 
 1110         /*
 1111          * Additional tail recursion on dlist.  Avoid a recursion.  Objects
 1112          * on the dlist have a hold count but are not locked.
 1113          */
 1114         if ((dtmp = dlist) != NULL) {
 1115                 dlist = dtmp->next;
 1116                 object = dtmp->object;
 1117                 kfree(dtmp, M_TEMP);
 1118 
 1119                 vm_object_lock(object); /* already held, add lock */
 1120                 must_drop = 1;          /* and we're responsible for it */
 1121                 goto again;
 1122         }
 1123 }
 1124 
 1125 /*
 1126  * Destroy the specified object, freeing up related resources.
 1127  *
 1128  * The object must have zero references.
 1129  *
 1130  * The object must held.  The caller is responsible for dropping the object
 1131  * after terminate returns.  Terminate does NOT drop the object.
 1132  */
 1133 static int vm_object_terminate_callback(vm_page_t p, void *data);
 1134 
 1135 void
 1136 vm_object_terminate(vm_object_t object)
 1137 {
 1138         int n;
 1139 
 1140         /*
 1141          * Make sure no one uses us.  Once we set OBJ_DEAD we should be
 1142          * able to safely block.
 1143          */
 1144         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
 1145         KKASSERT((object->flags & OBJ_DEAD) == 0);
 1146         vm_object_set_flag(object, OBJ_DEAD);
 1147 
 1148         /*
 1149          * Wait for the pageout daemon to be done with the object
 1150          */
 1151         vm_object_pip_wait(object, "objtrm1");
 1152 
 1153         KASSERT(!object->paging_in_progress,
 1154                 ("vm_object_terminate: pageout in progress"));
 1155 
 1156         /*
 1157          * Clean and free the pages, as appropriate. All references to the
 1158          * object are gone, so we don't need to lock it.
 1159          */
 1160         if (object->type == OBJT_VNODE) {
 1161                 struct vnode *vp;
 1162 
 1163                 /*
 1164                  * Clean pages and flush buffers.
 1165                  *
 1166                  * NOTE!  TMPFS buffer flushes do not typically flush the
 1167                  *        actual page to swap as this would be highly
 1168                  *        inefficient, and normal filesystems usually wrap
 1169                  *        page flushes with buffer cache buffers.
 1170                  *
 1171                  *        To deal with this we have to call vinvalbuf() both
 1172                  *        before and after the vm_object_page_clean().
 1173                  */
 1174                 vp = (struct vnode *) object->handle;
 1175                 vinvalbuf(vp, V_SAVE, 0, 0);
 1176                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
 1177                 vinvalbuf(vp, V_SAVE, 0, 0);
 1178         }
 1179 
 1180         /*
 1181          * Wait for any I/O to complete, after which there had better not
 1182          * be any references left on the object.
 1183          */
 1184         vm_object_pip_wait(object, "objtrm2");
 1185 
 1186         if (object->ref_count != 0) {
 1187                 panic("vm_object_terminate: object with references, "
 1188                       "ref_count=%d", object->ref_count);
 1189         }
 1190 
 1191         /*
 1192          * Cleanup any shared pmaps associated with this object.
 1193          */
 1194         pmap_object_free(object);
 1195 
 1196         /*
 1197          * Now free any remaining pages. For internal objects, this also
 1198          * removes them from paging queues. Don't free wired pages, just
 1199          * remove them from the object. 
 1200          */
 1201         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
 1202                                 vm_object_terminate_callback, NULL);
 1203 
 1204         /*
 1205          * Let the pager know object is dead.
 1206          */
 1207         vm_pager_deallocate(object);
 1208 
 1209         /*
 1210          * Wait for the object hold count to hit 1, clean out pages as
 1211          * we go.  vmobj_token interlocks any race conditions that might
 1212          * pick the object up from the vm_object_list after we have cleared
 1213          * rb_memq.
 1214          */
 1215         for (;;) {
 1216                 if (RB_ROOT(&object->rb_memq) == NULL)
 1217                         break;
 1218                 kprintf("vm_object_terminate: Warning, object %p "
 1219                         "still has %d pages\n",
 1220                         object, object->resident_page_count);
 1221                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
 1222                                         vm_object_terminate_callback, NULL);
 1223         }
 1224 
 1225         /*
 1226          * There had better not be any pages left
 1227          */
 1228         KKASSERT(object->resident_page_count == 0);
 1229 
 1230         /*
 1231          * Remove the object from the global object list.
 1232          */
 1233         n = VMOBJ_HASH(object);
 1234         lwkt_gettoken(&vmobj_tokens[n]);
 1235         TAILQ_REMOVE(&vm_object_lists[n], object, object_list);
 1236         lwkt_reltoken(&vmobj_tokens[n]);
 1237         atomic_add_long(&vm_object_count, -1);
 1238 
 1239         if (object->ref_count != 0) {
 1240                 panic("vm_object_terminate2: object with references, "
 1241                       "ref_count=%d", object->ref_count);
 1242         }
 1243 
 1244         /*
 1245          * NOTE: The object hold_count is at least 1, so we cannot zfree()
 1246          *       the object here.  See vm_object_drop().
 1247          */
 1248 }
 1249 
 1250 /*
 1251  * The caller must hold the object.
 1252  */
 1253 static int
 1254 vm_object_terminate_callback(vm_page_t p, void *data __unused)
 1255 {
 1256         vm_object_t object;
 1257 
 1258         object = p->object;
 1259         vm_page_busy_wait(p, TRUE, "vmpgtrm");
 1260         if (object != p->object) {
 1261                 kprintf("vm_object_terminate: Warning: Encountered "
 1262                         "busied page %p on queue %d\n", p, p->queue);
 1263                 vm_page_wakeup(p);
 1264         } else if (p->wire_count == 0) {
 1265                 /*
 1266                  * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
 1267                  */
 1268                 vm_page_free(p);
 1269                 mycpu->gd_cnt.v_pfree++;
 1270         } else {
 1271                 if (p->queue != PQ_NONE)
 1272                         kprintf("vm_object_terminate: Warning: Encountered "
 1273                                 "wired page %p on queue %d\n", p, p->queue);
 1274                 vm_page_remove(p);
 1275                 vm_page_wakeup(p);
 1276         }
 1277         lwkt_yield();
 1278         return(0);
 1279 }
 1280 
 1281 /*
 1282  * Clean all dirty pages in the specified range of object.  Leaves page
 1283  * on whatever queue it is currently on.   If NOSYNC is set then do not
 1284  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
 1285  * leaving the object dirty.
 1286  *
 1287  * When stuffing pages asynchronously, allow clustering.  XXX we need a
 1288  * synchronous clustering mode implementation.
 1289  *
 1290  * Odd semantics: if start == end, we clean everything.
 1291  *
 1292  * The object must be locked? XXX
 1293  */
 1294 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
 1295 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
 1296 
 1297 void
 1298 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 1299                      int flags)
 1300 {
 1301         struct rb_vm_page_scan_info info;
 1302         struct vnode *vp;
 1303         int wholescan;
 1304         int pagerflags;
 1305         int generation;
 1306 
 1307         vm_object_hold(object);
 1308         if (object->type != OBJT_VNODE ||
 1309             (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
 1310                 vm_object_drop(object);
 1311                 return;
 1312         }
 1313 
 1314         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
 1315                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
 1316         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
 1317 
 1318         vp = object->handle;
 1319 
 1320         /*
 1321          * Interlock other major object operations.  This allows us to 
 1322          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
 1323          */
 1324         vm_object_set_flag(object, OBJ_CLEANING);
 1325 
 1326         /*
 1327          * Handle 'entire object' case
 1328          */
 1329         info.start_pindex = start;
 1330         if (end == 0) {
 1331                 info.end_pindex = object->size - 1;
 1332         } else {
 1333                 info.end_pindex = end - 1;
 1334         }
 1335         wholescan = (start == 0 && info.end_pindex == object->size - 1);
 1336         info.limit = flags;
 1337         info.pagerflags = pagerflags;
 1338         info.object = object;
 1339 
 1340         /*
 1341          * If cleaning the entire object do a pass to mark the pages read-only.
 1342          * If everything worked out ok, clear OBJ_WRITEABLE and
 1343          * OBJ_MIGHTBEDIRTY.
 1344          */
 1345         if (wholescan) {
 1346                 info.error = 0;
 1347                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
 1348                                         vm_object_page_clean_pass1, &info);
 1349                 if (info.error == 0) {
 1350                         vm_object_clear_flag(object,
 1351                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
 1352                         if (object->type == OBJT_VNODE &&
 1353                             (vp = (struct vnode *)object->handle) != NULL) {
 1354                                 /*
 1355                                  * Use new-style interface to clear VISDIRTY
 1356                                  * because the vnode is not necessarily removed
 1357                                  * from the syncer list(s) as often as it was
 1358                                  * under the old interface, which can leave
 1359                                  * the vnode on the syncer list after reclaim.
 1360                                  */
 1361                                 vclrobjdirty(vp);
 1362                         }
 1363                 }
 1364         }
 1365 
 1366         /*
 1367          * Do a pass to clean all the dirty pages we find.
 1368          */
 1369         do {
 1370                 info.error = 0;
 1371                 generation = object->generation;
 1372                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
 1373                                         vm_object_page_clean_pass2, &info);
 1374         } while (info.error || generation != object->generation);
 1375 
 1376         vm_object_clear_flag(object, OBJ_CLEANING);
 1377         vm_object_drop(object);
 1378 }
 1379 
 1380 /*
 1381  * The caller must hold the object.
 1382  */
 1383 static 
 1384 int
 1385 vm_object_page_clean_pass1(struct vm_page *p, void *data)
 1386 {
 1387         struct rb_vm_page_scan_info *info = data;
 1388 
 1389         vm_page_flag_set(p, PG_CLEANCHK);
 1390         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
 1391                 info->error = 1;
 1392         } else if (vm_page_busy_try(p, FALSE) == 0) {
 1393                 vm_page_protect(p, VM_PROT_READ);       /* must not block */
 1394                 vm_page_wakeup(p);
 1395         } else {
 1396                 info->error = 1;
 1397         }
 1398         lwkt_yield();
 1399         return(0);
 1400 }
 1401 
 1402 /*
 1403  * The caller must hold the object
 1404  */
 1405 static 
 1406 int
 1407 vm_object_page_clean_pass2(struct vm_page *p, void *data)
 1408 {
 1409         struct rb_vm_page_scan_info *info = data;
 1410         int generation;
 1411 
 1412         /*
 1413          * Do not mess with pages that were inserted after we started
 1414          * the cleaning pass.
 1415          */
 1416         if ((p->flags & PG_CLEANCHK) == 0)
 1417                 goto done;
 1418 
 1419         generation = info->object->generation;
 1420         vm_page_busy_wait(p, TRUE, "vpcwai");
 1421         if (p->object != info->object ||
 1422             info->object->generation != generation) {
 1423                 info->error = 1;
 1424                 vm_page_wakeup(p);
 1425                 goto done;
 1426         }
 1427 
 1428         /*
 1429          * Before wasting time traversing the pmaps, check for trivial
 1430          * cases where the page cannot be dirty.
 1431          */
 1432         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
 1433                 KKASSERT((p->dirty & p->valid) == 0 &&
 1434                          (p->flags & PG_NEED_COMMIT) == 0);
 1435                 vm_page_wakeup(p);
 1436                 goto done;
 1437         }
 1438 
 1439         /*
 1440          * Check whether the page is dirty or not.  The page has been set
 1441          * to be read-only so the check will not race a user dirtying the
 1442          * page.
 1443          */
 1444         vm_page_test_dirty(p);
 1445         if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
 1446                 vm_page_flag_clear(p, PG_CLEANCHK);
 1447                 vm_page_wakeup(p);
 1448                 goto done;
 1449         }
 1450 
 1451         /*
 1452          * If we have been asked to skip nosync pages and this is a
 1453          * nosync page, skip it.  Note that the object flags were
 1454          * not cleared in this case (because pass1 will have returned an
 1455          * error), so we do not have to set them.
 1456          */
 1457         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
 1458                 vm_page_flag_clear(p, PG_CLEANCHK);
 1459                 vm_page_wakeup(p);
 1460                 goto done;
 1461         }
 1462 
 1463         /*
 1464          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
 1465          * the pages that get successfully flushed.  Set info->error if
 1466          * we raced an object modification.
 1467          */
 1468         vm_object_page_collect_flush(info->object, p, info->pagerflags);
 1469         vm_wait_nominal();
 1470 done:
 1471         lwkt_yield();
 1472         return(0);
 1473 }
 1474 
 1475 /*
 1476  * Collect the specified page and nearby pages and flush them out.
 1477  * The number of pages flushed is returned.  The passed page is busied
 1478  * by the caller and we are responsible for its disposition.
 1479  *
 1480  * The caller must hold the object.
 1481  */
 1482 static void
 1483 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
 1484 {
 1485         int error;
 1486         int is;
 1487         int ib;
 1488         int i;
 1489         int page_base;
 1490         vm_pindex_t pi;
 1491         vm_page_t ma[BLIST_MAX_ALLOC];
 1492 
 1493         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
 1494 
 1495         pi = p->pindex;
 1496         page_base = pi % BLIST_MAX_ALLOC;
 1497         ma[page_base] = p;
 1498         ib = page_base - 1;
 1499         is = page_base + 1;
 1500 
 1501         while (ib >= 0) {
 1502                 vm_page_t tp;
 1503 
 1504                 tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
 1505                                              TRUE, &error);
 1506                 if (error)
 1507                         break;
 1508                 if (tp == NULL)
 1509                         break;
 1510                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
 1511                     (tp->flags & PG_CLEANCHK) == 0) {
 1512                         vm_page_wakeup(tp);
 1513                         break;
 1514                 }
 1515                 if ((tp->queue - tp->pc) == PQ_CACHE) {
 1516                         vm_page_flag_clear(tp, PG_CLEANCHK);
 1517                         vm_page_wakeup(tp);
 1518                         break;
 1519                 }
 1520                 vm_page_test_dirty(tp);
 1521                 if ((tp->dirty & tp->valid) == 0 &&
 1522                     (tp->flags & PG_NEED_COMMIT) == 0) {
 1523                         vm_page_flag_clear(tp, PG_CLEANCHK);
 1524                         vm_page_wakeup(tp);
 1525                         break;
 1526                 }
 1527                 ma[ib] = tp;
 1528                 --ib;
 1529         }
 1530         ++ib;   /* fixup */
 1531 
 1532         while (is < BLIST_MAX_ALLOC &&
 1533                pi - page_base + is < object->size) {
 1534                 vm_page_t tp;
 1535 
 1536                 tp = vm_page_lookup_busy_try(object, pi - page_base + is,
 1537                                              TRUE, &error);
 1538                 if (error)
 1539                         break;
 1540                 if (tp == NULL)
 1541                         break;
 1542                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
 1543                     (tp->flags & PG_CLEANCHK) == 0) {
 1544                         vm_page_wakeup(tp);
 1545                         break;
 1546                 }
 1547                 if ((tp->queue - tp->pc) == PQ_CACHE) {
 1548                         vm_page_flag_clear(tp, PG_CLEANCHK);
 1549                         vm_page_wakeup(tp);
 1550                         break;
 1551                 }
 1552                 vm_page_test_dirty(tp);
 1553                 if ((tp->dirty & tp->valid) == 0 &&
 1554                     (tp->flags & PG_NEED_COMMIT) == 0) {
 1555                         vm_page_flag_clear(tp, PG_CLEANCHK);
 1556                         vm_page_wakeup(tp);
 1557                         break;
 1558                 }
 1559                 ma[is] = tp;
 1560                 ++is;
 1561         }
 1562 
 1563         /*
 1564          * All pages in the ma[] array are busied now
 1565          */
 1566         for (i = ib; i < is; ++i) {
 1567                 vm_page_flag_clear(ma[i], PG_CLEANCHK);
 1568                 vm_page_hold(ma[i]);    /* XXX need this any more? */
 1569         }
 1570         vm_pageout_flush(&ma[ib], is - ib, pagerflags);
 1571         for (i = ib; i < is; ++i)       /* XXX need this any more? */
 1572                 vm_page_unhold(ma[i]);
 1573 }
 1574 
 1575 /*
 1576  * Same as vm_object_pmap_copy, except range checking really
 1577  * works, and is meant for small sections of an object.
 1578  *
 1579  * This code protects resident pages by making them read-only
 1580  * and is typically called on a fork or split when a page
 1581  * is converted to copy-on-write.  
 1582  *
 1583  * NOTE: If the page is already at VM_PROT_NONE, calling
 1584  * vm_page_protect will have no effect.
 1585  */
 1586 void
 1587 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1588 {
 1589         vm_pindex_t idx;
 1590         vm_page_t p;
 1591 
 1592         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
 1593                 return;
 1594 
 1595         vm_object_hold(object);
 1596         for (idx = start; idx < end; idx++) {
 1597                 p = vm_page_lookup(object, idx);
 1598                 if (p == NULL)
 1599                         continue;
 1600                 vm_page_protect(p, VM_PROT_READ);
 1601         }
 1602         vm_object_drop(object);
 1603 }
 1604 
 1605 /*
 1606  * Removes all physical pages in the specified object range from all
 1607  * physical maps.
 1608  *
 1609  * The object must *not* be locked.
 1610  */
 1611 
 1612 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
 1613 
 1614 void
 1615 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1616 {
 1617         struct rb_vm_page_scan_info info;
 1618 
 1619         if (object == NULL)
 1620                 return;
 1621         info.start_pindex = start;
 1622         info.end_pindex = end - 1;
 1623 
 1624         vm_object_hold(object);
 1625         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
 1626                                 vm_object_pmap_remove_callback, &info);
 1627         if (start == 0 && end == object->size)
 1628                 vm_object_clear_flag(object, OBJ_WRITEABLE);
 1629         vm_object_drop(object);
 1630 }
 1631 
 1632 /*
 1633  * The caller must hold the object
 1634  */
 1635 static int
 1636 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
 1637 {
 1638         vm_page_protect(p, VM_PROT_NONE);
 1639         return(0);
 1640 }
 1641 
 1642 /*
 1643  * Implements the madvise function at the object/page level.
 1644  *
 1645  * MADV_WILLNEED        (any object)
 1646  *
 1647  *      Activate the specified pages if they are resident.
 1648  *
 1649  * MADV_DONTNEED        (any object)
 1650  *
 1651  *      Deactivate the specified pages if they are resident.
 1652  *
 1653  * MADV_FREE    (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
 1654  *
 1655  *      Deactivate and clean the specified pages if they are
 1656  *      resident.  This permits the process to reuse the pages
 1657  *      without faulting or the kernel to reclaim the pages
 1658  *      without I/O.
 1659  *
 1660  * No requirements.
 1661  */
 1662 void
 1663 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
 1664 {
 1665         vm_pindex_t end, tpindex;
 1666         vm_object_t tobject;
 1667         vm_object_t xobj;
 1668         vm_page_t m;
 1669         int error;
 1670 
 1671         if (object == NULL)
 1672                 return;
 1673 
 1674         end = pindex + count;
 1675 
 1676         vm_object_hold(object);
 1677         tobject = object;
 1678 
 1679         /*
 1680          * Locate and adjust resident pages
 1681          */
 1682         for (; pindex < end; pindex += 1) {
 1683 relookup:
 1684                 if (tobject != object)
 1685                         vm_object_drop(tobject);
 1686                 tobject = object;
 1687                 tpindex = pindex;
 1688 shadowlookup:
 1689                 /*
 1690                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
 1691                  * and those pages must be OBJ_ONEMAPPING.
 1692                  */
 1693                 if (advise == MADV_FREE) {
 1694                         if ((tobject->type != OBJT_DEFAULT &&
 1695                              tobject->type != OBJT_SWAP) ||
 1696                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
 1697                                 continue;
 1698                         }
 1699                 }
 1700 
 1701                 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
 1702 
 1703                 if (error) {
 1704                         vm_page_sleep_busy(m, TRUE, "madvpo");
 1705                         goto relookup;
 1706                 }
 1707                 if (m == NULL) {
 1708                         /*
 1709                          * There may be swap even if there is no backing page
 1710                          */
 1711                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1712                                 swap_pager_freespace(tobject, tpindex, 1);
 1713 
 1714                         /*
 1715                          * next object
 1716                          */
 1717                         while ((xobj = tobject->backing_object) != NULL) {
 1718                                 KKASSERT(xobj != object);
 1719                                 vm_object_hold(xobj);
 1720                                 if (xobj == tobject->backing_object)
 1721                                         break;
 1722                                 vm_object_drop(xobj);
 1723                         }
 1724                         if (xobj == NULL)
 1725                                 continue;
 1726                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
 1727                         if (tobject != object) {
 1728                                 vm_object_lock_swap();
 1729                                 vm_object_drop(tobject);
 1730                         }
 1731                         tobject = xobj;
 1732                         goto shadowlookup;
 1733                 }
 1734 
 1735                 /*
 1736                  * If the page is not in a normal active state, we skip it.
 1737                  * If the page is not managed there are no page queues to
 1738                  * mess with.  Things can break if we mess with pages in
 1739                  * any of the below states.
 1740                  */
 1741                 if (m->wire_count ||
 1742                     (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
 1743                     m->valid != VM_PAGE_BITS_ALL
 1744                 ) {
 1745                         vm_page_wakeup(m);
 1746                         continue;
 1747                 }
 1748 
 1749                 /*
 1750                  * Theoretically once a page is known not to be busy, an
 1751                  * interrupt cannot come along and rip it out from under us.
 1752                  */
 1753 
 1754                 if (advise == MADV_WILLNEED) {
 1755                         vm_page_activate(m);
 1756                 } else if (advise == MADV_DONTNEED) {
 1757                         vm_page_dontneed(m);
 1758                 } else if (advise == MADV_FREE) {
 1759                         /*
 1760                          * Mark the page clean.  This will allow the page
 1761                          * to be freed up by the system.  However, such pages
 1762                          * are often reused quickly by malloc()/free()
 1763                          * so we do not do anything that would cause
 1764                          * a page fault if we can help it.
 1765                          *
 1766                          * Specifically, we do not try to actually free
 1767                          * the page now nor do we try to put it in the
 1768                          * cache (which would cause a page fault on reuse).
 1769                          *
 1770                          * But we do make the page is freeable as we
 1771                          * can without actually taking the step of unmapping
 1772                          * it.
 1773                          */
 1774                         pmap_clear_modify(m);
 1775                         m->dirty = 0;
 1776                         m->act_count = 0;
 1777                         vm_page_dontneed(m);
 1778                         if (tobject->type == OBJT_SWAP)
 1779                                 swap_pager_freespace(tobject, tpindex, 1);
 1780                 }
 1781                 vm_page_wakeup(m);
 1782         }       
 1783         if (tobject != object)
 1784                 vm_object_drop(tobject);
 1785         vm_object_drop(object);
 1786 }
 1787 
 1788 /*
 1789  * Create a new object which is backed by the specified existing object
 1790  * range.  Replace the pointer and offset that was pointing at the existing
 1791  * object with the pointer/offset for the new object.
 1792  *
 1793  * No other requirements.
 1794  */
 1795 void
 1796 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
 1797                  int addref)
 1798 {
 1799         vm_object_t source;
 1800         vm_object_t result;
 1801         int useshadowlist;
 1802 
 1803         source = *objectp;
 1804 
 1805         /*
 1806          * Don't create the new object if the old object isn't shared.
 1807          * We have to chain wait before adding the reference to avoid
 1808          * racing a collapse or deallocation.
 1809          *
 1810          * Add the additional ref to source here to avoid racing a later
 1811          * collapse or deallocation. Clear the ONEMAPPING flag whether
 1812          * addref is TRUE or not in this case because the original object
 1813          * will be shadowed.
 1814          */
 1815         useshadowlist = 0;
 1816         if (source) {
 1817                 if (source->type != OBJT_VNODE) {
 1818                         useshadowlist = 1;
 1819                         vm_object_hold(source);
 1820                         vm_object_chain_wait(source, 0);
 1821                         if (source->ref_count == 1 &&
 1822                             source->handle == NULL &&
 1823                             (source->type == OBJT_DEFAULT ||
 1824                              source->type == OBJT_SWAP)) {
 1825                                 if (addref) {
 1826                                         vm_object_reference_locked(source);
 1827                                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1828                                 }
 1829                                 vm_object_drop(source);
 1830                                 return;
 1831                         }
 1832                         vm_object_reference_locked(source);
 1833                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1834                 } else {
 1835                         vm_object_reference_quick(source);
 1836                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1837                 }
 1838         }
 1839 
 1840         /*
 1841          * Allocate a new object with the given length.  The new object
 1842          * is returned referenced but we may have to add another one.
 1843          * If we are adding a second reference we must clear OBJ_ONEMAPPING.
 1844          * (typically because the caller is about to clone a vm_map_entry).
 1845          *
 1846          * The source object currently has an extra reference to prevent
 1847          * collapses into it while we mess with its shadow list, which
 1848          * we will remove later in this routine.
 1849          */
 1850         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
 1851                 panic("vm_object_shadow: no object for shadowing");
 1852         vm_object_hold(result);
 1853         if (addref) {
 1854                 vm_object_reference_locked(result);
 1855                 vm_object_clear_flag(result, OBJ_ONEMAPPING);
 1856         }
 1857 
 1858         /*
 1859          * The new object shadows the source object.  Chain wait before
 1860          * adjusting shadow_count or the shadow list to avoid races.
 1861          *
 1862          * Try to optimize the result object's page color when shadowing
 1863          * in order to maintain page coloring consistency in the combined 
 1864          * shadowed object.
 1865          *
 1866          * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
 1867          */
 1868         KKASSERT(result->backing_object == NULL);
 1869         result->backing_object = source;
 1870         if (source) {
 1871                 if (useshadowlist) {
 1872                         vm_object_chain_wait(source, 0);
 1873                         LIST_INSERT_HEAD(&source->shadow_head,
 1874                                          result, shadow_list);
 1875                         source->shadow_count++;
 1876                         source->generation++;
 1877                         vm_object_set_flag(result, OBJ_ONSHADOW);
 1878                 }
 1879                 /* cpu localization twist */
 1880                 result->pg_color = (int)(intptr_t)curthread;
 1881         }
 1882 
 1883         /*
 1884          * Adjust the return storage.  Drop the ref on source before
 1885          * returning.
 1886          */
 1887         result->backing_object_offset = *offset;
 1888         vm_object_drop(result);
 1889         *offset = 0;
 1890         if (source) {
 1891                 if (useshadowlist) {
 1892                         vm_object_deallocate_locked(source);
 1893                         vm_object_drop(source);
 1894                 } else {
 1895                         vm_object_deallocate(source);
 1896                 }
 1897         }
 1898 
 1899         /*
 1900          * Return the new things
 1901          */
 1902         *objectp = result;
 1903 }
 1904 
 1905 #define OBSC_TEST_ALL_SHADOWED  0x0001
 1906 #define OBSC_COLLAPSE_NOWAIT    0x0002
 1907 #define OBSC_COLLAPSE_WAIT      0x0004
 1908 
 1909 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
 1910 
 1911 /*
 1912  * The caller must hold the object.
 1913  */
 1914 static __inline int
 1915 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
 1916 {
 1917         struct rb_vm_page_scan_info info;
 1918         int n;
 1919 
 1920         vm_object_assert_held(object);
 1921         vm_object_assert_held(backing_object);
 1922 
 1923         KKASSERT(backing_object == object->backing_object);
 1924         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1925 
 1926         /*
 1927          * Initial conditions
 1928          */
 1929         if (op & OBSC_TEST_ALL_SHADOWED) {
 1930                 /*
 1931                  * We do not want to have to test for the existence of
 1932                  * swap pages in the backing object.  XXX but with the
 1933                  * new swapper this would be pretty easy to do.
 1934                  *
 1935                  * XXX what about anonymous MAP_SHARED memory that hasn't
 1936                  * been ZFOD faulted yet?  If we do not test for this, the
 1937                  * shadow test may succeed! XXX
 1938                  */
 1939                 if (backing_object->type != OBJT_DEFAULT)
 1940                         return(0);
 1941         }
 1942         if (op & OBSC_COLLAPSE_WAIT) {
 1943                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
 1944                 vm_object_set_flag(backing_object, OBJ_DEAD);
 1945 
 1946                 n = VMOBJ_HASH(backing_object);
 1947                 lwkt_gettoken(&vmobj_tokens[n]);
 1948                 TAILQ_REMOVE(&vm_object_lists[n], backing_object, object_list);
 1949                 lwkt_reltoken(&vmobj_tokens[n]);
 1950                 atomic_add_long(&vm_object_count, -1);
 1951         }
 1952 
 1953         /*
 1954          * Our scan.   We have to retry if a negative error code is returned,
 1955          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
 1956          * the scan had to be stopped because the parent does not completely
 1957          * shadow the child.
 1958          */
 1959         info.object = object;
 1960         info.backing_object = backing_object;
 1961         info.limit = op;
 1962         do {
 1963                 info.error = 1;
 1964                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
 1965                                         vm_object_backing_scan_callback,
 1966                                         &info);
 1967         } while (info.error < 0);
 1968 
 1969         return(info.error);
 1970 }
 1971 
 1972 /*
 1973  * The caller must hold the object.
 1974  */
 1975 static int
 1976 vm_object_backing_scan_callback(vm_page_t p, void *data)
 1977 {
 1978         struct rb_vm_page_scan_info *info = data;
 1979         vm_object_t backing_object;
 1980         vm_object_t object;
 1981         vm_pindex_t pindex;
 1982         vm_pindex_t new_pindex;
 1983         vm_pindex_t backing_offset_index;
 1984         int op;
 1985 
 1986         pindex = p->pindex;
 1987         new_pindex = pindex - info->backing_offset_index;
 1988         op = info->limit;
 1989         object = info->object;
 1990         backing_object = info->backing_object;
 1991         backing_offset_index = info->backing_offset_index;
 1992 
 1993         if (op & OBSC_TEST_ALL_SHADOWED) {
 1994                 vm_page_t pp;
 1995 
 1996                 /*
 1997                  * Ignore pages outside the parent object's range
 1998                  * and outside the parent object's mapping of the 
 1999                  * backing object.
 2000                  *
 2001                  * note that we do not busy the backing object's
 2002                  * page.
 2003                  */
 2004                 if (pindex < backing_offset_index ||
 2005                     new_pindex >= object->size
 2006                 ) {
 2007                         return(0);
 2008                 }
 2009 
 2010                 /*
 2011                  * See if the parent has the page or if the parent's
 2012                  * object pager has the page.  If the parent has the
 2013                  * page but the page is not valid, the parent's
 2014                  * object pager must have the page.
 2015                  *
 2016                  * If this fails, the parent does not completely shadow
 2017                  * the object and we might as well give up now.
 2018                  */
 2019                 pp = vm_page_lookup(object, new_pindex);
 2020                 if ((pp == NULL || pp->valid == 0) &&
 2021                     !vm_pager_has_page(object, new_pindex)
 2022                 ) {
 2023                         info->error = 0;        /* problemo */
 2024                         return(-1);             /* stop the scan */
 2025                 }
 2026         }
 2027 
 2028         /*
 2029          * Check for busy page.  Note that we may have lost (p) when we
 2030          * possibly blocked above.
 2031          */
 2032         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
 2033                 vm_page_t pp;
 2034 
 2035                 if (vm_page_busy_try(p, TRUE)) {
 2036                         if (op & OBSC_COLLAPSE_NOWAIT) {
 2037                                 return(0);
 2038                         } else {
 2039                                 /*
 2040                                  * If we slept, anything could have
 2041                                  * happened.   Ask that the scan be restarted.
 2042                                  *
 2043                                  * Since the object is marked dead, the
 2044                                  * backing offset should not have changed.  
 2045                                  */
 2046                                 vm_page_sleep_busy(p, TRUE, "vmocol");
 2047                                 info->error = -1;
 2048                                 return(-1);
 2049                         }
 2050                 }
 2051 
 2052                 /*
 2053                  * If (p) is no longer valid restart the scan.
 2054                  */
 2055                 if (p->object != backing_object || p->pindex != pindex) {
 2056                         kprintf("vm_object_backing_scan: Warning: page "
 2057                                 "%p ripped out from under us\n", p);
 2058                         vm_page_wakeup(p);
 2059                         info->error = -1;
 2060                         return(-1);
 2061                 }
 2062 
 2063                 if (op & OBSC_COLLAPSE_NOWAIT) {
 2064                         if (p->valid == 0 ||
 2065                             p->wire_count ||
 2066                             (p->flags & PG_NEED_COMMIT)) {
 2067                                 vm_page_wakeup(p);
 2068                                 return(0);
 2069                         }
 2070                 } else {
 2071                         /* XXX what if p->valid == 0 , hold_count, etc? */
 2072                 }
 2073 
 2074                 KASSERT(
 2075                     p->object == backing_object,
 2076                     ("vm_object_qcollapse(): object mismatch")
 2077                 );
 2078 
 2079                 /*
 2080                  * Destroy any associated swap
 2081                  */
 2082                 if (backing_object->type == OBJT_SWAP)
 2083                         swap_pager_freespace(backing_object, p->pindex, 1);
 2084 
 2085                 if (
 2086                     p->pindex < backing_offset_index ||
 2087                     new_pindex >= object->size
 2088                 ) {
 2089                         /*
 2090                          * Page is out of the parent object's range, we 
 2091                          * can simply destroy it. 
 2092                          */
 2093                         vm_page_protect(p, VM_PROT_NONE);
 2094                         vm_page_free(p);
 2095                         return(0);
 2096                 }
 2097 
 2098                 pp = vm_page_lookup(object, new_pindex);
 2099                 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
 2100                         /*
 2101                          * page already exists in parent OR swap exists
 2102                          * for this location in the parent.  Destroy 
 2103                          * the original page from the backing object.
 2104                          *
 2105                          * Leave the parent's page alone
 2106                          */
 2107                         vm_page_protect(p, VM_PROT_NONE);
 2108                         vm_page_free(p);
 2109                         return(0);
 2110                 }
 2111 
 2112                 /*
 2113                  * Page does not exist in parent, rename the
 2114                  * page from the backing object to the main object. 
 2115                  *
 2116                  * If the page was mapped to a process, it can remain 
 2117                  * mapped through the rename.
 2118                  */
 2119                 if ((p->queue - p->pc) == PQ_CACHE)
 2120                         vm_page_deactivate(p);
 2121 
 2122                 vm_page_rename(p, object, new_pindex);
 2123                 vm_page_wakeup(p);
 2124                 /* page automatically made dirty by rename */
 2125         }
 2126         return(0);
 2127 }
 2128 
 2129 /*
 2130  * This version of collapse allows the operation to occur earlier and
 2131  * when paging_in_progress is true for an object...  This is not a complete
 2132  * operation, but should plug 99.9% of the rest of the leaks.
 2133  *
 2134  * The caller must hold the object and backing_object and both must be
 2135  * chainlocked.
 2136  *
 2137  * (only called from vm_object_collapse)
 2138  */
 2139 static void
 2140 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
 2141 {
 2142         if (backing_object->ref_count == 1) {
 2143                 atomic_add_int(&backing_object->ref_count, 2);
 2144                 vm_object_backing_scan(object, backing_object,
 2145                                        OBSC_COLLAPSE_NOWAIT);
 2146                 atomic_add_int(&backing_object->ref_count, -2);
 2147         }
 2148 }
 2149 
 2150 /*
 2151  * Collapse an object with the object backing it.  Pages in the backing
 2152  * object are moved into the parent, and the backing object is deallocated.
 2153  * Any conflict is resolved in favor of the parent's existing pages.
 2154  *
 2155  * object must be held and chain-locked on call.
 2156  *
 2157  * The caller must have an extra ref on object to prevent a race from
 2158  * destroying it during the collapse.
 2159  */
 2160 void
 2161 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
 2162 {
 2163         struct vm_object_dealloc_list *dlist = NULL;
 2164         vm_object_t backing_object;
 2165 
 2166         /*
 2167          * Only one thread is attempting a collapse at any given moment.
 2168          * There are few restrictions for (object) that callers of this
 2169          * function check so reentrancy is likely.
 2170          */
 2171         KKASSERT(object != NULL);
 2172         vm_object_assert_held(object);
 2173         KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
 2174 
 2175         for (;;) {
 2176                 vm_object_t bbobj;
 2177                 int dodealloc;
 2178 
 2179                 /*
 2180                  * We can only collapse a DEFAULT/SWAP object with a
 2181                  * DEFAULT/SWAP object.
 2182                  */
 2183                 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) {
 2184                         backing_object = NULL;
 2185                         break;
 2186                 }
 2187 
 2188                 backing_object = object->backing_object;
 2189                 if (backing_object == NULL)
 2190                         break;
 2191                 if (backing_object->type != OBJT_DEFAULT &&
 2192                     backing_object->type != OBJT_SWAP) {
 2193                         backing_object = NULL;
 2194                         break;
 2195                 }
 2196 
 2197                 /*
 2198                  * Hold the backing_object and check for races
 2199                  */
 2200                 vm_object_hold(backing_object);
 2201                 if (backing_object != object->backing_object ||
 2202                     (backing_object->type != OBJT_DEFAULT &&
 2203                      backing_object->type != OBJT_SWAP)) {
 2204                         vm_object_drop(backing_object);
 2205                         continue;
 2206                 }
 2207 
 2208                 /*
 2209                  * Chain-lock the backing object too because if we
 2210                  * successfully merge its pages into the top object we
 2211                  * will collapse backing_object->backing_object as the
 2212                  * new backing_object.  Re-check that it is still our
 2213                  * backing object.
 2214                  */
 2215                 vm_object_chain_acquire(backing_object, 0);
 2216                 if (backing_object != object->backing_object) {
 2217                         vm_object_chain_release(backing_object);
 2218                         vm_object_drop(backing_object);
 2219                         continue;
 2220                 }
 2221 
 2222                 /*
 2223                  * we check the backing object first, because it is most likely
 2224                  * not collapsable.
 2225                  */
 2226                 if (backing_object->handle != NULL ||
 2227                     (backing_object->type != OBJT_DEFAULT &&
 2228                      backing_object->type != OBJT_SWAP) ||
 2229                     (backing_object->flags & OBJ_DEAD) ||
 2230                     object->handle != NULL ||
 2231                     (object->type != OBJT_DEFAULT &&
 2232                      object->type != OBJT_SWAP) ||
 2233                     (object->flags & OBJ_DEAD)) {
 2234                         break;
 2235                 }
 2236 
 2237                 /*
 2238                  * If paging is in progress we can't do a normal collapse.
 2239                  */
 2240                 if (
 2241                     object->paging_in_progress != 0 ||
 2242                     backing_object->paging_in_progress != 0
 2243                 ) {
 2244                         vm_object_qcollapse(object, backing_object);
 2245                         break;
 2246                 }
 2247 
 2248                 /*
 2249                  * We know that we can either collapse the backing object (if
 2250                  * the parent is the only reference to it) or (perhaps) have
 2251                  * the parent bypass the object if the parent happens to shadow
 2252                  * all the resident pages in the entire backing object.
 2253                  *
 2254                  * This is ignoring pager-backed pages such as swap pages.
 2255                  * vm_object_backing_scan fails the shadowing test in this
 2256                  * case.
 2257                  */
 2258                 if (backing_object->ref_count == 1) {
 2259                         /*
 2260                          * If there is exactly one reference to the backing
 2261                          * object, we can collapse it into the parent.  
 2262                          */
 2263                         KKASSERT(object->backing_object == backing_object);
 2264                         vm_object_backing_scan(object, backing_object,
 2265                                                OBSC_COLLAPSE_WAIT);
 2266 
 2267                         /*
 2268                          * Move the pager from backing_object to object.
 2269                          */
 2270                         if (backing_object->type == OBJT_SWAP) {
 2271                                 vm_object_pip_add(backing_object, 1);
 2272 
 2273                                 /*
 2274                                  * scrap the paging_offset junk and do a 
 2275                                  * discrete copy.  This also removes major 
 2276                                  * assumptions about how the swap-pager 
 2277                                  * works from where it doesn't belong.  The
 2278                                  * new swapper is able to optimize the
 2279                                  * destroy-source case.
 2280                                  */
 2281                                 vm_object_pip_add(object, 1);
 2282                                 swap_pager_copy(backing_object, object,
 2283                                     OFF_TO_IDX(object->backing_object_offset),
 2284                                     TRUE);
 2285                                 vm_object_pip_wakeup(object);
 2286                                 vm_object_pip_wakeup(backing_object);
 2287                         }
 2288 
 2289                         /*
 2290                          * Object now shadows whatever backing_object did.
 2291                          * Remove object from backing_object's shadow_list.
 2292                          */
 2293                         KKASSERT(object->backing_object == backing_object);
 2294                         if (object->flags & OBJ_ONSHADOW) {
 2295                                 LIST_REMOVE(object, shadow_list);
 2296                                 backing_object->shadow_count--;
 2297                                 backing_object->generation++;
 2298                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
 2299                         }
 2300 
 2301                         /*
 2302                          * backing_object->backing_object moves from within
 2303                          * backing_object to within object.
 2304                          *
 2305                          * OBJT_VNODE bbobj's should have empty shadow lists.
 2306                          */
 2307                         while ((bbobj = backing_object->backing_object) != NULL) {
 2308                                 if (bbobj->type == OBJT_VNODE)
 2309                                         vm_object_hold_shared(bbobj);
 2310                                 else
 2311                                         vm_object_hold(bbobj);
 2312                                 if (bbobj == backing_object->backing_object)
 2313                                         break;
 2314                                 vm_object_drop(bbobj);
 2315                         }
 2316                         if (bbobj) {
 2317                                 if (backing_object->flags & OBJ_ONSHADOW) {
 2318                                         /* not locked exclusively if vnode */
 2319                                         KKASSERT(bbobj->type != OBJT_VNODE);
 2320                                         LIST_REMOVE(backing_object,
 2321                                                     shadow_list);
 2322                                         bbobj->shadow_count--;
 2323                                         bbobj->generation++;
 2324                                         vm_object_clear_flag(backing_object,
 2325                                                              OBJ_ONSHADOW);
 2326                                 }
 2327                                 backing_object->backing_object = NULL;
 2328                         }
 2329                         object->backing_object = bbobj;
 2330                         if (bbobj) {
 2331                                 if (bbobj->type != OBJT_VNODE) {
 2332                                         LIST_INSERT_HEAD(&bbobj->shadow_head,
 2333                                                          object, shadow_list);
 2334                                         bbobj->shadow_count++;
 2335                                         bbobj->generation++;
 2336                                         vm_object_set_flag(object,
 2337                                                            OBJ_ONSHADOW);
 2338                                 }
 2339                         }
 2340 
 2341                         object->backing_object_offset +=
 2342                                 backing_object->backing_object_offset;
 2343 
 2344                         vm_object_drop(bbobj);
 2345 
 2346                         /*
 2347                          * Discard the old backing_object.  Nothing should be
 2348                          * able to ref it, other than a vm_map_split(),
 2349                          * and vm_map_split() will stall on our chain lock.
 2350                          * And we control the parent so it shouldn't be
 2351                          * possible for it to go away either.
 2352                          *
 2353                          * Since the backing object has no pages, no pager
 2354                          * left, and no object references within it, all
 2355                          * that is necessary is to dispose of it.
 2356                          */
 2357                         KASSERT(backing_object->ref_count == 1,
 2358                                 ("backing_object %p was somehow "
 2359                                  "re-referenced during collapse!",
 2360                                  backing_object));
 2361                         KASSERT(RB_EMPTY(&backing_object->rb_memq),
 2362                                 ("backing_object %p somehow has left "
 2363                                  "over pages during collapse!",
 2364                                  backing_object));
 2365 
 2366                         /*
 2367                          * The object can be destroyed.
 2368                          *
 2369                          * XXX just fall through and dodealloc instead
 2370                          *     of forcing destruction?
 2371                          */
 2372                         atomic_add_int(&backing_object->ref_count, -1);
 2373                         if ((backing_object->flags & OBJ_DEAD) == 0)
 2374                                 vm_object_terminate(backing_object);
 2375                         object_collapses++;
 2376                         dodealloc = 0;
 2377                 } else {
 2378                         /*
 2379                          * If we do not entirely shadow the backing object,
 2380                          * there is nothing we can do so we give up.
 2381                          */
 2382                         if (vm_object_backing_scan(object, backing_object,
 2383                                                 OBSC_TEST_ALL_SHADOWED) == 0) {
 2384                                 break;
 2385                         }
 2386 
 2387                         /*
 2388                          * bbobj is backing_object->backing_object.  Since
 2389                          * object completely shadows backing_object we can
 2390                          * bypass it and become backed by bbobj instead.
 2391                          *
 2392                          * The shadow list for vnode backing objects is not
 2393                          * used and a shared hold is allowed.
 2394                          */
 2395                         while ((bbobj = backing_object->backing_object) != NULL) {
 2396                                 if (bbobj->type == OBJT_VNODE)
 2397                                         vm_object_hold_shared(bbobj);
 2398                                 else
 2399                                         vm_object_hold(bbobj);
 2400                                 if (bbobj == backing_object->backing_object)
 2401                                         break;
 2402                                 vm_object_drop(bbobj);
 2403                         }
 2404 
 2405                         /*
 2406                          * Make object shadow bbobj instead of backing_object.
 2407                          * Remove object from backing_object's shadow list.
 2408                          *
 2409                          * Deallocating backing_object will not remove
 2410                          * it, since its reference count is at least 2.
 2411                          */
 2412                         KKASSERT(object->backing_object == backing_object);
 2413                         if (object->flags & OBJ_ONSHADOW) {
 2414                                 LIST_REMOVE(object, shadow_list);
 2415                                 backing_object->shadow_count--;
 2416                                 backing_object->generation++;
 2417                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
 2418                         }
 2419 
 2420                         /*
 2421                          * Add a ref to bbobj, bbobj now shadows object.
 2422                          *
 2423                          * NOTE: backing_object->backing_object still points
 2424                          *       to bbobj.  That relationship remains intact
 2425                          *       because backing_object has > 1 ref, so
 2426                          *       someone else is pointing to it (hence why
 2427                          *       we can't collapse it into object and can
 2428                          *       only handle the all-shadowed bypass case).
 2429                          */
 2430                         if (bbobj) {
 2431                                 if (bbobj->type != OBJT_VNODE) {
 2432                                         vm_object_chain_wait(bbobj, 0);
 2433                                         vm_object_reference_locked(bbobj);
 2434                                         LIST_INSERT_HEAD(&bbobj->shadow_head,
 2435                                                          object, shadow_list);
 2436                                         bbobj->shadow_count++;
 2437                                         bbobj->generation++;
 2438                                         vm_object_set_flag(object,
 2439                                                            OBJ_ONSHADOW);
 2440                                 } else {
 2441                                         vm_object_reference_quick(bbobj);
 2442                                 }
 2443                                 object->backing_object_offset +=
 2444                                         backing_object->backing_object_offset;
 2445                                 object->backing_object = bbobj;
 2446                                 vm_object_drop(bbobj);
 2447                         } else {
 2448                                 object->backing_object = NULL;
 2449                         }
 2450 
 2451                         /*
 2452                          * Drop the reference count on backing_object.  To
 2453                          * handle ref_count races properly we can't assume
 2454                          * that the ref_count is still at least 2 so we
 2455                          * have to actually call vm_object_deallocate()
 2456                          * (after clearing the chainlock).
 2457                          */
 2458                         object_bypasses++;
 2459                         dodealloc = 1;
 2460                 }
 2461 
 2462                 /*
 2463                  * Ok, we want to loop on the new object->bbobj association,
 2464                  * possibly collapsing it further.  However if dodealloc is
 2465                  * non-zero we have to deallocate the backing_object which
 2466                  * itself can potentially undergo a collapse, creating a
 2467                  * recursion depth issue with the LWKT token subsystem.
 2468                  *
 2469                  * In the case where we must deallocate the backing_object
 2470                  * it is possible now that the backing_object has a single
 2471                  * shadow count on some other object (not represented here
 2472                  * as yet), since it no longer shadows us.  Thus when we
 2473                  * call vm_object_deallocate() it may attempt to collapse
 2474                  * itself into its remaining parent.
 2475                  */
 2476                 if (dodealloc) {
 2477                         struct vm_object_dealloc_list *dtmp;
 2478 
 2479                         vm_object_chain_release(backing_object);
 2480                         vm_object_unlock(backing_object);
 2481                         /* backing_object remains held */
 2482 
 2483                         /*
 2484                          * Auto-deallocation list for caller convenience.
 2485                          */
 2486                         if (dlistp == NULL)
 2487                                 dlistp = &dlist;
 2488 
 2489                         dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
 2490                         dtmp->object = backing_object;
 2491                         dtmp->next = *dlistp;
 2492                         *dlistp = dtmp;
 2493                 } else {
 2494                         vm_object_chain_release(backing_object);
 2495                         vm_object_drop(backing_object);
 2496                 }
 2497                 /* backing_object = NULL; not needed */
 2498                 /* loop */
 2499         }
 2500 
 2501         /*
 2502          * Clean up any left over backing_object
 2503          */
 2504         if (backing_object) {
 2505                 vm_object_chain_release(backing_object);
 2506                 vm_object_drop(backing_object);
 2507         }
 2508 
 2509         /*
 2510          * Clean up any auto-deallocation list.  This is a convenience
 2511          * for top-level callers so they don't have to pass &dlist.
 2512          * Do not clean up any caller-passed dlistp, the caller will
 2513          * do that.
 2514          */
 2515         if (dlist)
 2516                 vm_object_deallocate_list(&dlist);
 2517 
 2518 }
 2519 
 2520 /*
 2521  * vm_object_collapse() may collect additional objects in need of
 2522  * deallocation.  This routine deallocates these objects.  The
 2523  * deallocation itself can trigger additional collapses (which the
 2524  * deallocate function takes care of).  This procedure is used to
 2525  * reduce procedural recursion since these vm_object shadow chains
 2526  * can become quite long.
 2527  */
 2528 void
 2529 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
 2530 {
 2531         struct vm_object_dealloc_list *dlist;
 2532 
 2533         while ((dlist = *dlistp) != NULL) {
 2534                 *dlistp = dlist->next;
 2535                 vm_object_lock(dlist->object);
 2536                 vm_object_deallocate_locked(dlist->object);
 2537                 vm_object_drop(dlist->object);
 2538                 kfree(dlist, M_TEMP);
 2539         }
 2540 }
 2541 
 2542 /*
 2543  * Removes all physical pages in the specified object range from the
 2544  * object's list of pages.
 2545  *
 2546  * No requirements.
 2547  */
 2548 static int vm_object_page_remove_callback(vm_page_t p, void *data);
 2549 
 2550 void
 2551 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 2552                       boolean_t clean_only)
 2553 {
 2554         struct rb_vm_page_scan_info info;
 2555         int all;
 2556 
 2557         /*
 2558          * Degenerate cases and assertions
 2559          */
 2560         vm_object_hold(object);
 2561         if (object == NULL ||
 2562             (object->resident_page_count == 0 && object->swblock_count == 0)) {
 2563                 vm_object_drop(object);
 2564                 return;
 2565         }
 2566         KASSERT(object->type != OBJT_PHYS, 
 2567                 ("attempt to remove pages from a physical object"));
 2568 
 2569         /*
 2570          * Indicate that paging is occuring on the object
 2571          */
 2572         vm_object_pip_add(object, 1);
 2573 
 2574         /*
 2575          * Figure out the actual removal range and whether we are removing
 2576          * the entire contents of the object or not.  If removing the entire
 2577          * contents, be sure to get all pages, even those that might be 
 2578          * beyond the end of the object.
 2579          */
 2580         info.start_pindex = start;
 2581         if (end == 0)
 2582                 info.end_pindex = (vm_pindex_t)-1;
 2583         else
 2584                 info.end_pindex = end - 1;
 2585         info.limit = clean_only;
 2586         all = (start == 0 && info.end_pindex >= object->size - 1);
 2587 
 2588         /*
 2589          * Loop until we are sure we have gotten them all.
 2590          */
 2591         do {
 2592                 info.error = 0;
 2593                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
 2594                                         vm_object_page_remove_callback, &info);
 2595         } while (info.error);
 2596 
 2597         /*
 2598          * Remove any related swap if throwing away pages, or for
 2599          * non-swap objects (the swap is a clean copy in that case).
 2600          */
 2601         if (object->type != OBJT_SWAP || clean_only == FALSE) {
 2602                 if (all)
 2603                         swap_pager_freespace_all(object);
 2604                 else
 2605                         swap_pager_freespace(object, info.start_pindex,
 2606                              info.end_pindex - info.start_pindex + 1);
 2607         }
 2608 
 2609         /*
 2610          * Cleanup
 2611          */
 2612         vm_object_pip_wakeup(object);
 2613         vm_object_drop(object);
 2614 }
 2615 
 2616 /*
 2617  * The caller must hold the object
 2618  */
 2619 static int
 2620 vm_object_page_remove_callback(vm_page_t p, void *data)
 2621 {
 2622         struct rb_vm_page_scan_info *info = data;
 2623 
 2624         if (vm_page_busy_try(p, TRUE)) {
 2625                 vm_page_sleep_busy(p, TRUE, "vmopar");
 2626                 info->error = 1;
 2627                 return(0);
 2628         }
 2629 
 2630         /*
 2631          * Wired pages cannot be destroyed, but they can be invalidated
 2632          * and we do so if clean_only (limit) is not set.
 2633          *
 2634          * WARNING!  The page may be wired due to being part of a buffer
 2635          *           cache buffer, and the buffer might be marked B_CACHE.
 2636          *           This is fine as part of a truncation but VFSs must be
 2637          *           sure to fix the buffer up when re-extending the file.
 2638          *
 2639          * NOTE!     PG_NEED_COMMIT is ignored.
 2640          */
 2641         if (p->wire_count != 0) {
 2642                 vm_page_protect(p, VM_PROT_NONE);
 2643                 if (info->limit == 0)
 2644                         p->valid = 0;
 2645                 vm_page_wakeup(p);
 2646                 return(0);
 2647         }
 2648 
 2649         /*
 2650          * limit is our clean_only flag.  If set and the page is dirty or
 2651          * requires a commit, do not free it.  If set and the page is being
 2652          * held by someone, do not free it.
 2653          */
 2654         if (info->limit && p->valid) {
 2655                 vm_page_test_dirty(p);
 2656                 if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
 2657                         vm_page_wakeup(p);
 2658                         return(0);
 2659                 }
 2660         }
 2661 
 2662         /*
 2663          * Destroy the page
 2664          */
 2665         vm_page_protect(p, VM_PROT_NONE);
 2666         vm_page_free(p);
 2667         return(0);
 2668 }
 2669 
 2670 /*
 2671  * Coalesces two objects backing up adjoining regions of memory into a
 2672  * single object.
 2673  *
 2674  * returns TRUE if objects were combined.
 2675  *
 2676  * NOTE: Only works at the moment if the second object is NULL -
 2677  *       if it's not, which object do we lock first?
 2678  *
 2679  * Parameters:
 2680  *      prev_object     First object to coalesce
 2681  *      prev_offset     Offset into prev_object
 2682  *      next_object     Second object into coalesce
 2683  *      next_offset     Offset into next_object
 2684  *
 2685  *      prev_size       Size of reference to prev_object
 2686  *      next_size       Size of reference to next_object
 2687  *
 2688  * The caller does not need to hold (prev_object) but must have a stable
 2689  * pointer to it (typically by holding the vm_map locked).
 2690  */
 2691 boolean_t
 2692 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
 2693                    vm_size_t prev_size, vm_size_t next_size)
 2694 {
 2695         vm_pindex_t next_pindex;
 2696 
 2697         if (prev_object == NULL)
 2698                 return (TRUE);
 2699 
 2700         vm_object_hold(prev_object);
 2701 
 2702         if (prev_object->type != OBJT_DEFAULT &&
 2703             prev_object->type != OBJT_SWAP) {
 2704                 vm_object_drop(prev_object);
 2705                 return (FALSE);
 2706         }
 2707 
 2708         /*
 2709          * Try to collapse the object first
 2710          */
 2711         vm_object_chain_acquire(prev_object, 0);
 2712         vm_object_collapse(prev_object, NULL);
 2713 
 2714         /*
 2715          * Can't coalesce if: . more than one reference . paged out . shadows
 2716          * another object . has a copy elsewhere (any of which mean that the
 2717          * pages not mapped to prev_entry may be in use anyway)
 2718          */
 2719 
 2720         if (prev_object->backing_object != NULL) {
 2721                 vm_object_chain_release(prev_object);
 2722                 vm_object_drop(prev_object);
 2723                 return (FALSE);
 2724         }
 2725 
 2726         prev_size >>= PAGE_SHIFT;
 2727         next_size >>= PAGE_SHIFT;
 2728         next_pindex = prev_pindex + prev_size;
 2729 
 2730         if ((prev_object->ref_count > 1) &&
 2731             (prev_object->size != next_pindex)) {
 2732                 vm_object_chain_release(prev_object);
 2733                 vm_object_drop(prev_object);
 2734                 return (FALSE);
 2735         }
 2736 
 2737         /*
 2738          * Remove any pages that may still be in the object from a previous
 2739          * deallocation.
 2740          */
 2741         if (next_pindex < prev_object->size) {
 2742                 vm_object_page_remove(prev_object,
 2743                                       next_pindex,
 2744                                       next_pindex + next_size, FALSE);
 2745                 if (prev_object->type == OBJT_SWAP)
 2746                         swap_pager_freespace(prev_object,
 2747                                              next_pindex, next_size);
 2748         }
 2749 
 2750         /*
 2751          * Extend the object if necessary.
 2752          */
 2753         if (next_pindex + next_size > prev_object->size)
 2754                 prev_object->size = next_pindex + next_size;
 2755 
 2756         vm_object_chain_release(prev_object);
 2757         vm_object_drop(prev_object);
 2758         return (TRUE);
 2759 }
 2760 
 2761 /*
 2762  * Make the object writable and flag is being possibly dirty.
 2763  *
 2764  * The object might not be held (or might be held but held shared),
 2765  * the related vnode is probably not held either.  Object and vnode are
 2766  * stable by virtue of the vm_page busied by the caller preventing
 2767  * destruction.
 2768  *
 2769  * If the related mount is flagged MNTK_THR_SYNC we need to call
 2770  * vsetobjdirty().  Filesystems using this option usually shortcut
 2771  * synchronization by only scanning the syncer list.
 2772  */
 2773 void
 2774 vm_object_set_writeable_dirty(vm_object_t object)
 2775 {
 2776         struct vnode *vp;
 2777 
 2778         /*vm_object_assert_held(object);*/
 2779         /*
 2780          * Avoid contention in vm fault path by checking the state before
 2781          * issuing an atomic op on it.
 2782          */
 2783         if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
 2784             (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
 2785                 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
 2786         }
 2787         if (object->type == OBJT_VNODE &&
 2788             (vp = (struct vnode *)object->handle) != NULL) {
 2789                 if ((vp->v_flag & VOBJDIRTY) == 0) {
 2790                         if (vp->v_mount &&
 2791                             (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
 2792                                 /*
 2793                                  * New style THR_SYNC places vnodes on the
 2794                                  * syncer list more deterministically.
 2795                                  */
 2796                                 vsetobjdirty(vp);
 2797                         } else {
 2798                                 /*
 2799                                  * Old style scan would not necessarily place
 2800                                  * a vnode on the syncer list when possibly
 2801                                  * modified via mmap.
 2802                                  */
 2803                                 vsetflags(vp, VOBJDIRTY);
 2804                         }
 2805                 }
 2806         }
 2807 }
 2808 
 2809 #include "opt_ddb.h"
 2810 #ifdef DDB
 2811 #include <sys/kernel.h>
 2812 
 2813 #include <sys/cons.h>
 2814 
 2815 #include <ddb/ddb.h>
 2816 
 2817 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
 2818                                        vm_map_entry_t entry);
 2819 static int      vm_object_in_map (vm_object_t object);
 2820 
 2821 /*
 2822  * The caller must hold the object.
 2823  */
 2824 static int
 2825 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
 2826 {
 2827         vm_map_t tmpm;
 2828         vm_map_entry_t tmpe;
 2829         vm_object_t obj, nobj;
 2830         int entcount;
 2831 
 2832         if (map == 0)
 2833                 return 0;
 2834         if (entry == 0) {
 2835                 tmpe = map->header.next;
 2836                 entcount = map->nentries;
 2837                 while (entcount-- && (tmpe != &map->header)) {
 2838                         if( _vm_object_in_map(map, object, tmpe)) {
 2839                                 return 1;
 2840                         }
 2841                         tmpe = tmpe->next;
 2842                 }
 2843                 return (0);
 2844         }
 2845         switch(entry->maptype) {
 2846         case VM_MAPTYPE_SUBMAP:
 2847                 tmpm = entry->object.sub_map;
 2848                 tmpe = tmpm->header.next;
 2849                 entcount = tmpm->nentries;
 2850                 while (entcount-- && tmpe != &tmpm->header) {
 2851                         if( _vm_object_in_map(tmpm, object, tmpe)) {
 2852                                 return 1;
 2853                         }
 2854                         tmpe = tmpe->next;
 2855                 }
 2856                 break;
 2857         case VM_MAPTYPE_NORMAL:
 2858         case VM_MAPTYPE_VPAGETABLE:
 2859                 obj = entry->object.vm_object;
 2860                 while (obj) {
 2861                         if (obj == object) {
 2862                                 if (obj != entry->object.vm_object)
 2863                                         vm_object_drop(obj);
 2864                                 return 1;
 2865                         }
 2866                         while ((nobj = obj->backing_object) != NULL) {
 2867                                 vm_object_hold(nobj);
 2868                                 if (nobj == obj->backing_object)
 2869                                         break;
 2870                                 vm_object_drop(nobj);
 2871                         }
 2872                         if (obj != entry->object.vm_object) {
 2873                                 if (nobj)
 2874                                         vm_object_lock_swap();
 2875                                 vm_object_drop(obj);
 2876                         }
 2877                         obj = nobj;
 2878                 }
 2879                 break;
 2880         default:
 2881                 break;
 2882         }
 2883         return 0;
 2884 }
 2885 
 2886 static int vm_object_in_map_callback(struct proc *p, void *data);
 2887 
 2888 struct vm_object_in_map_info {
 2889         vm_object_t object;
 2890         int rv;
 2891 };
 2892 
 2893 /*
 2894  * Debugging only
 2895  */
 2896 static int
 2897 vm_object_in_map(vm_object_t object)
 2898 {
 2899         struct vm_object_in_map_info info;
 2900 
 2901         info.rv = 0;
 2902         info.object = object;
 2903 
 2904         allproc_scan(vm_object_in_map_callback, &info);
 2905         if (info.rv)
 2906                 return 1;
 2907         if( _vm_object_in_map(&kernel_map, object, 0))
 2908                 return 1;
 2909         if( _vm_object_in_map(&pager_map, object, 0))
 2910                 return 1;
 2911         if( _vm_object_in_map(&buffer_map, object, 0))
 2912                 return 1;
 2913         return 0;
 2914 }
 2915 
 2916 /*
 2917  * Debugging only
 2918  */
 2919 static int
 2920 vm_object_in_map_callback(struct proc *p, void *data)
 2921 {
 2922         struct vm_object_in_map_info *info = data;
 2923 
 2924         if (p->p_vmspace) {
 2925                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
 2926                         info->rv = 1;
 2927                         return -1;
 2928                 }
 2929         }
 2930         return (0);
 2931 }
 2932 
 2933 DB_SHOW_COMMAND(vmochk, vm_object_check)
 2934 {
 2935         vm_object_t object;
 2936         int n;
 2937 
 2938         /*
 2939          * make sure that internal objs are in a map somewhere
 2940          * and none have zero ref counts.
 2941          */
 2942         for (n = 0; n < VMOBJ_HSIZE; ++n) {
 2943                 for (object = TAILQ_FIRST(&vm_object_lists[n]);
 2944                                 object != NULL;
 2945                                 object = TAILQ_NEXT(object, object_list)) {
 2946                         if (object->type == OBJT_MARKER)
 2947                                 continue;
 2948                         if (object->handle != NULL ||
 2949                             (object->type != OBJT_DEFAULT &&
 2950                              object->type != OBJT_SWAP)) {
 2951                                 continue;
 2952                         }
 2953                         if (object->ref_count == 0) {
 2954                                 db_printf("vmochk: internal obj has "
 2955                                           "zero ref count: %ld\n",
 2956                                           (long)object->size);
 2957                         }
 2958                         if (vm_object_in_map(object))
 2959                                 continue;
 2960                         db_printf("vmochk: internal obj is not in a map: "
 2961                                   "ref: %d, size: %lu: 0x%lx, "
 2962                                   "backing_object: %p\n",
 2963                                   object->ref_count, (u_long)object->size,
 2964                                   (u_long)object->size,
 2965                                   (void *)object->backing_object);
 2966                 }
 2967         }
 2968 }
 2969 
 2970 /*
 2971  * Debugging only
 2972  */
 2973 DB_SHOW_COMMAND(object, vm_object_print_static)
 2974 {
 2975         /* XXX convert args. */
 2976         vm_object_t object = (vm_object_t)addr;
 2977         boolean_t full = have_addr;
 2978 
 2979         vm_page_t p;
 2980 
 2981         /* XXX count is an (unused) arg.  Avoid shadowing it. */
 2982 #define count   was_count
 2983 
 2984         int count;
 2985 
 2986         if (object == NULL)
 2987                 return;
 2988 
 2989         db_iprintf(
 2990             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
 2991             object, (int)object->type, (u_long)object->size,
 2992             object->resident_page_count, object->ref_count, object->flags);
 2993         /*
 2994          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
 2995          */
 2996         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
 2997             object->shadow_count, 
 2998             object->backing_object ? object->backing_object->ref_count : 0,
 2999             object->backing_object, (long)object->backing_object_offset);
 3000 
 3001         if (!full)
 3002                 return;
 3003 
 3004         db_indent += 2;
 3005         count = 0;
 3006         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
 3007                 if (count == 0)
 3008                         db_iprintf("memory:=");
 3009                 else if (count == 6) {
 3010                         db_printf("\n");
 3011                         db_iprintf(" ...");
 3012                         count = 0;
 3013                 } else
 3014                         db_printf(",");
 3015                 count++;
 3016 
 3017                 db_printf("(off=0x%lx,page=0x%lx)",
 3018                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
 3019         }
 3020         if (count != 0)
 3021                 db_printf("\n");
 3022         db_indent -= 2;
 3023 }
 3024 
 3025 /* XXX. */
 3026 #undef count
 3027 
 3028 /*
 3029  * XXX need this non-static entry for calling from vm_map_print.
 3030  *
 3031  * Debugging only
 3032  */
 3033 void
 3034 vm_object_print(/* db_expr_t */ long addr,
 3035                 boolean_t have_addr,
 3036                 /* db_expr_t */ long count,
 3037                 char *modif)
 3038 {
 3039         vm_object_print_static(addr, have_addr, count, modif);
 3040 }
 3041 
 3042 /*
 3043  * Debugging only
 3044  */
 3045 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
 3046 {
 3047         vm_object_t object;
 3048         int nl = 0;
 3049         int c;
 3050         int n;
 3051 
 3052         for (n = 0; n < VMOBJ_HSIZE; ++n) {
 3053                 for (object = TAILQ_FIRST(&vm_object_lists[n]);
 3054                                 object != NULL;
 3055                                 object = TAILQ_NEXT(object, object_list)) {
 3056                         vm_pindex_t idx, fidx;
 3057                         vm_pindex_t osize;
 3058                         vm_paddr_t pa = -1, padiff;
 3059                         int rcount;
 3060                         vm_page_t m;
 3061 
 3062                         if (object->type == OBJT_MARKER)
 3063                                 continue;
 3064                         db_printf("new object: %p\n", (void *)object);
 3065                         if ( nl > 18) {
 3066                                 c = cngetc();
 3067                                 if (c != ' ')
 3068                                         return;
 3069                                 nl = 0;
 3070                         }
 3071                         nl++;
 3072                         rcount = 0;
 3073                         fidx = 0;
 3074                         osize = object->size;
 3075                         if (osize > 128)
 3076                                 osize = 128;
 3077                         for (idx = 0; idx < osize; idx++) {
 3078                                 m = vm_page_lookup(object, idx);
 3079                                 if (m == NULL) {
 3080                                         if (rcount) {
 3081                                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 3082                                                         (long)fidx, rcount, (long)pa);
 3083                                                 if ( nl > 18) {
 3084                                                         c = cngetc();
 3085                                                         if (c != ' ')
 3086                                                                 return;
 3087                                                         nl = 0;
 3088                                                 }
 3089                                                 nl++;
 3090                                                 rcount = 0;
 3091                                         }
 3092                                         continue;
 3093                                 }
 3094 
 3095                                 if (rcount &&
 3096                                         (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
 3097                                         ++rcount;
 3098                                         continue;
 3099                                 }
 3100                                 if (rcount) {
 3101                                         padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
 3102                                         padiff >>= PAGE_SHIFT;
 3103                                         padiff &= PQ_L2_MASK;
 3104                                         if (padiff == 0) {
 3105                                                 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
 3106                                                 ++rcount;
 3107                                                 continue;
 3108                                         }
 3109                                         db_printf(" index(%ld)run(%d)pa(0x%lx)",
 3110                                                 (long)fidx, rcount, (long)pa);
 3111                                         db_printf("pd(%ld)\n", (long)padiff);
 3112                                         if ( nl > 18) {
 3113                                                 c = cngetc();
 3114                                                 if (c != ' ')
 3115                                                         return;
 3116                                                 nl = 0;
 3117                                         }
 3118                                         nl++;
 3119                                 }
 3120                                 fidx = idx;
 3121                                 pa = VM_PAGE_TO_PHYS(m);
 3122                                 rcount = 1;
 3123                         }
 3124                         if (rcount) {
 3125                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 3126                                         (long)fidx, rcount, (long)pa);
 3127                                 if ( nl > 18) {
 3128                                         c = cngetc();
 3129                                         if (c != ' ')
 3130                                                 return;
 3131                                         nl = 0;
 3132                                 }
 3133                                 nl++;
 3134                         }
 3135                 }
 3136         }
 3137 }
 3138 #endif /* DDB */

Cache object: 3a81d8b20a10dc830863aa88fc332bc4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.