The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 /*
   62  *      Virtual memory object module.
   63  */
   64 
   65 #include <sys/cdefs.h>
   66 __FBSDID("$FreeBSD: releng/10.1/sys/vm/vm_object.c 270920 2014-09-01 07:58:15Z kib $");
   67 
   68 #include "opt_vm.h"
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/lock.h>
   73 #include <sys/mman.h>
   74 #include <sys/mount.h>
   75 #include <sys/kernel.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/mutex.h>
   78 #include <sys/proc.h>           /* for curproc, pageproc */
   79 #include <sys/socket.h>
   80 #include <sys/resourcevar.h>
   81 #include <sys/rwlock.h>
   82 #include <sys/vnode.h>
   83 #include <sys/vmmeter.h>
   84 #include <sys/sx.h>
   85 
   86 #include <vm/vm.h>
   87 #include <vm/vm_param.h>
   88 #include <vm/pmap.h>
   89 #include <vm/vm_map.h>
   90 #include <vm/vm_object.h>
   91 #include <vm/vm_page.h>
   92 #include <vm/vm_pageout.h>
   93 #include <vm/vm_pager.h>
   94 #include <vm/swap_pager.h>
   95 #include <vm/vm_kern.h>
   96 #include <vm/vm_extern.h>
   97 #include <vm/vm_radix.h>
   98 #include <vm/vm_reserv.h>
   99 #include <vm/uma.h>
  100 
  101 static int old_msync;
  102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
  103     "Use old (insecure) msync behavior");
  104 
  105 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
  106                     int pagerflags, int flags, boolean_t *clearobjflags,
  107                     boolean_t *eio);
  108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
  109                     boolean_t *clearobjflags);
  110 static void     vm_object_qcollapse(vm_object_t object);
  111 static void     vm_object_vndeallocate(vm_object_t object);
  112 
  113 /*
  114  *      Virtual memory objects maintain the actual data
  115  *      associated with allocated virtual memory.  A given
  116  *      page of memory exists within exactly one object.
  117  *
  118  *      An object is only deallocated when all "references"
  119  *      are given up.  Only one "reference" to a given
  120  *      region of an object should be writeable.
  121  *
  122  *      Associated with each object is a list of all resident
  123  *      memory pages belonging to that object; this list is
  124  *      maintained by the "vm_page" module, and locked by the object's
  125  *      lock.
  126  *
  127  *      Each object also records a "pager" routine which is
  128  *      used to retrieve (and store) pages to the proper backing
  129  *      storage.  In addition, objects may be backed by other
  130  *      objects from which they were virtual-copied.
  131  *
  132  *      The only items within the object structure which are
  133  *      modified after time of creation are:
  134  *              reference count         locked by object's lock
  135  *              pager routine           locked by object's lock
  136  *
  137  */
  138 
  139 struct object_q vm_object_list;
  140 struct mtx vm_object_list_mtx;  /* lock for object list and count */
  141 
  142 struct vm_object kernel_object_store;
  143 struct vm_object kmem_object_store;
  144 
  145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
  146     "VM object stats");
  147 
  148 static long object_collapses;
  149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
  150     &object_collapses, 0, "VM object collapses");
  151 
  152 static long object_bypasses;
  153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
  154     &object_bypasses, 0, "VM object bypasses");
  155 
  156 static uma_zone_t obj_zone;
  157 
  158 static int vm_object_zinit(void *mem, int size, int flags);
  159 
  160 #ifdef INVARIANTS
  161 static void vm_object_zdtor(void *mem, int size, void *arg);
  162 
  163 static void
  164 vm_object_zdtor(void *mem, int size, void *arg)
  165 {
  166         vm_object_t object;
  167 
  168         object = (vm_object_t)mem;
  169         KASSERT(TAILQ_EMPTY(&object->memq),
  170             ("object %p has resident pages in its memq", object));
  171         KASSERT(vm_radix_is_empty(&object->rtree),
  172             ("object %p has resident pages in its trie", object));
  173 #if VM_NRESERVLEVEL > 0
  174         KASSERT(LIST_EMPTY(&object->rvq),
  175             ("object %p has reservations",
  176             object));
  177 #endif
  178         KASSERT(vm_object_cache_is_empty(object),
  179             ("object %p has cached pages",
  180             object));
  181         KASSERT(object->paging_in_progress == 0,
  182             ("object %p paging_in_progress = %d",
  183             object, object->paging_in_progress));
  184         KASSERT(object->resident_page_count == 0,
  185             ("object %p resident_page_count = %d",
  186             object, object->resident_page_count));
  187         KASSERT(object->shadow_count == 0,
  188             ("object %p shadow_count = %d",
  189             object, object->shadow_count));
  190 }
  191 #endif
  192 
  193 static int
  194 vm_object_zinit(void *mem, int size, int flags)
  195 {
  196         vm_object_t object;
  197 
  198         object = (vm_object_t)mem;
  199         bzero(&object->lock, sizeof(object->lock));
  200         rw_init_flags(&object->lock, "vm object", RW_DUPOK);
  201 
  202         /* These are true for any object that has been freed */
  203         object->rtree.rt_root = 0;
  204         object->rtree.rt_flags = 0;
  205         object->paging_in_progress = 0;
  206         object->resident_page_count = 0;
  207         object->shadow_count = 0;
  208         object->cache.rt_root = 0;
  209         object->cache.rt_flags = 0;
  210         return (0);
  211 }
  212 
  213 static void
  214 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
  215 {
  216 
  217         TAILQ_INIT(&object->memq);
  218         LIST_INIT(&object->shadow_head);
  219 
  220         object->type = type;
  221         switch (type) {
  222         case OBJT_DEAD:
  223                 panic("_vm_object_allocate: can't create OBJT_DEAD");
  224         case OBJT_DEFAULT:
  225         case OBJT_SWAP:
  226                 object->flags = OBJ_ONEMAPPING;
  227                 break;
  228         case OBJT_DEVICE:
  229         case OBJT_SG:
  230                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
  231                 break;
  232         case OBJT_MGTDEVICE:
  233                 object->flags = OBJ_FICTITIOUS;
  234                 break;
  235         case OBJT_PHYS:
  236                 object->flags = OBJ_UNMANAGED;
  237                 break;
  238         case OBJT_VNODE:
  239                 object->flags = 0;
  240                 break;
  241         default:
  242                 panic("_vm_object_allocate: type %d is undefined", type);
  243         }
  244         object->size = size;
  245         object->generation = 1;
  246         object->ref_count = 1;
  247         object->memattr = VM_MEMATTR_DEFAULT;
  248         object->cred = NULL;
  249         object->charge = 0;
  250         object->handle = NULL;
  251         object->backing_object = NULL;
  252         object->backing_object_offset = (vm_ooffset_t) 0;
  253 #if VM_NRESERVLEVEL > 0
  254         LIST_INIT(&object->rvq);
  255 #endif
  256 
  257         mtx_lock(&vm_object_list_mtx);
  258         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
  259         mtx_unlock(&vm_object_list_mtx);
  260 }
  261 
  262 /*
  263  *      vm_object_init:
  264  *
  265  *      Initialize the VM objects module.
  266  */
  267 void
  268 vm_object_init(void)
  269 {
  270         TAILQ_INIT(&vm_object_list);
  271         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
  272         
  273         rw_init(&kernel_object->lock, "kernel vm object");
  274         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  275             kernel_object);
  276 #if VM_NRESERVLEVEL > 0
  277         kernel_object->flags |= OBJ_COLORED;
  278         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  279 #endif
  280 
  281         rw_init(&kmem_object->lock, "kmem vm object");
  282         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  283             kmem_object);
  284 #if VM_NRESERVLEVEL > 0
  285         kmem_object->flags |= OBJ_COLORED;
  286         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  287 #endif
  288 
  289         /*
  290          * The lock portion of struct vm_object must be type stable due
  291          * to vm_pageout_fallback_object_lock locking a vm object
  292          * without holding any references to it.
  293          */
  294         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
  295 #ifdef INVARIANTS
  296             vm_object_zdtor,
  297 #else
  298             NULL,
  299 #endif
  300             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  301 
  302         vm_radix_init();
  303 }
  304 
  305 void
  306 vm_object_clear_flag(vm_object_t object, u_short bits)
  307 {
  308 
  309         VM_OBJECT_ASSERT_WLOCKED(object);
  310         object->flags &= ~bits;
  311 }
  312 
  313 /*
  314  *      Sets the default memory attribute for the specified object.  Pages
  315  *      that are allocated to this object are by default assigned this memory
  316  *      attribute.
  317  *
  318  *      Presently, this function must be called before any pages are allocated
  319  *      to the object.  In the future, this requirement may be relaxed for
  320  *      "default" and "swap" objects.
  321  */
  322 int
  323 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
  324 {
  325 
  326         VM_OBJECT_ASSERT_WLOCKED(object);
  327         switch (object->type) {
  328         case OBJT_DEFAULT:
  329         case OBJT_DEVICE:
  330         case OBJT_MGTDEVICE:
  331         case OBJT_PHYS:
  332         case OBJT_SG:
  333         case OBJT_SWAP:
  334         case OBJT_VNODE:
  335                 if (!TAILQ_EMPTY(&object->memq))
  336                         return (KERN_FAILURE);
  337                 break;
  338         case OBJT_DEAD:
  339                 return (KERN_INVALID_ARGUMENT);
  340         default:
  341                 panic("vm_object_set_memattr: object %p is of undefined type",
  342                     object);
  343         }
  344         object->memattr = memattr;
  345         return (KERN_SUCCESS);
  346 }
  347 
  348 void
  349 vm_object_pip_add(vm_object_t object, short i)
  350 {
  351 
  352         VM_OBJECT_ASSERT_WLOCKED(object);
  353         object->paging_in_progress += i;
  354 }
  355 
  356 void
  357 vm_object_pip_subtract(vm_object_t object, short i)
  358 {
  359 
  360         VM_OBJECT_ASSERT_WLOCKED(object);
  361         object->paging_in_progress -= i;
  362 }
  363 
  364 void
  365 vm_object_pip_wakeup(vm_object_t object)
  366 {
  367 
  368         VM_OBJECT_ASSERT_WLOCKED(object);
  369         object->paging_in_progress--;
  370         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  371                 vm_object_clear_flag(object, OBJ_PIPWNT);
  372                 wakeup(object);
  373         }
  374 }
  375 
  376 void
  377 vm_object_pip_wakeupn(vm_object_t object, short i)
  378 {
  379 
  380         VM_OBJECT_ASSERT_WLOCKED(object);
  381         if (i)
  382                 object->paging_in_progress -= i;
  383         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  384                 vm_object_clear_flag(object, OBJ_PIPWNT);
  385                 wakeup(object);
  386         }
  387 }
  388 
  389 void
  390 vm_object_pip_wait(vm_object_t object, char *waitid)
  391 {
  392 
  393         VM_OBJECT_ASSERT_WLOCKED(object);
  394         while (object->paging_in_progress) {
  395                 object->flags |= OBJ_PIPWNT;
  396                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
  397         }
  398 }
  399 
  400 /*
  401  *      vm_object_allocate:
  402  *
  403  *      Returns a new object with the given size.
  404  */
  405 vm_object_t
  406 vm_object_allocate(objtype_t type, vm_pindex_t size)
  407 {
  408         vm_object_t object;
  409 
  410         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
  411         _vm_object_allocate(type, size, object);
  412         return (object);
  413 }
  414 
  415 
  416 /*
  417  *      vm_object_reference:
  418  *
  419  *      Gets another reference to the given object.  Note: OBJ_DEAD
  420  *      objects can be referenced during final cleaning.
  421  */
  422 void
  423 vm_object_reference(vm_object_t object)
  424 {
  425         if (object == NULL)
  426                 return;
  427         VM_OBJECT_WLOCK(object);
  428         vm_object_reference_locked(object);
  429         VM_OBJECT_WUNLOCK(object);
  430 }
  431 
  432 /*
  433  *      vm_object_reference_locked:
  434  *
  435  *      Gets another reference to the given object.
  436  *
  437  *      The object must be locked.
  438  */
  439 void
  440 vm_object_reference_locked(vm_object_t object)
  441 {
  442         struct vnode *vp;
  443 
  444         VM_OBJECT_ASSERT_WLOCKED(object);
  445         object->ref_count++;
  446         if (object->type == OBJT_VNODE) {
  447                 vp = object->handle;
  448                 vref(vp);
  449         }
  450 }
  451 
  452 /*
  453  * Handle deallocating an object of type OBJT_VNODE.
  454  */
  455 static void
  456 vm_object_vndeallocate(vm_object_t object)
  457 {
  458         struct vnode *vp = (struct vnode *) object->handle;
  459 
  460         VM_OBJECT_ASSERT_WLOCKED(object);
  461         KASSERT(object->type == OBJT_VNODE,
  462             ("vm_object_vndeallocate: not a vnode object"));
  463         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
  464 #ifdef INVARIANTS
  465         if (object->ref_count == 0) {
  466                 vprint("vm_object_vndeallocate", vp);
  467                 panic("vm_object_vndeallocate: bad object reference count");
  468         }
  469 #endif
  470 
  471         if (object->ref_count > 1) {
  472                 object->ref_count--;
  473                 VM_OBJECT_WUNLOCK(object);
  474                 /* vrele may need the vnode lock. */
  475                 vrele(vp);
  476         } else {
  477                 vhold(vp);
  478                 VM_OBJECT_WUNLOCK(object);
  479                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  480                 vdrop(vp);
  481                 VM_OBJECT_WLOCK(object);
  482                 object->ref_count--;
  483                 if (object->type == OBJT_DEAD) {
  484                         VM_OBJECT_WUNLOCK(object);
  485                         VOP_UNLOCK(vp, 0);
  486                 } else {
  487                         if (object->ref_count == 0)
  488                                 VOP_UNSET_TEXT(vp);
  489                         VM_OBJECT_WUNLOCK(object);
  490                         vput(vp);
  491                 }
  492         }
  493 }
  494 
  495 /*
  496  *      vm_object_deallocate:
  497  *
  498  *      Release a reference to the specified object,
  499  *      gained either through a vm_object_allocate
  500  *      or a vm_object_reference call.  When all references
  501  *      are gone, storage associated with this object
  502  *      may be relinquished.
  503  *
  504  *      No object may be locked.
  505  */
  506 void
  507 vm_object_deallocate(vm_object_t object)
  508 {
  509         vm_object_t temp;
  510         struct vnode *vp;
  511 
  512         while (object != NULL) {
  513                 VM_OBJECT_WLOCK(object);
  514                 if (object->type == OBJT_VNODE) {
  515                         vm_object_vndeallocate(object);
  516                         return;
  517                 }
  518 
  519                 KASSERT(object->ref_count != 0,
  520                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
  521 
  522                 /*
  523                  * If the reference count goes to 0 we start calling
  524                  * vm_object_terminate() on the object chain.
  525                  * A ref count of 1 may be a special case depending on the
  526                  * shadow count being 0 or 1.
  527                  */
  528                 object->ref_count--;
  529                 if (object->ref_count > 1) {
  530                         VM_OBJECT_WUNLOCK(object);
  531                         return;
  532                 } else if (object->ref_count == 1) {
  533                         if (object->type == OBJT_SWAP &&
  534                             (object->flags & OBJ_TMPFS) != 0) {
  535                                 vp = object->un_pager.swp.swp_tmpfs;
  536                                 vhold(vp);
  537                                 VM_OBJECT_WUNLOCK(object);
  538                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  539                                 VM_OBJECT_WLOCK(object);
  540                                 if (object->type == OBJT_DEAD ||
  541                                     object->ref_count != 1) {
  542                                         VM_OBJECT_WUNLOCK(object);
  543                                         VOP_UNLOCK(vp, 0);
  544                                         vdrop(vp);
  545                                         return;
  546                                 }
  547                                 if ((object->flags & OBJ_TMPFS) != 0)
  548                                         VOP_UNSET_TEXT(vp);
  549                                 VOP_UNLOCK(vp, 0);
  550                                 vdrop(vp);
  551                         }
  552                         if (object->shadow_count == 0 &&
  553                             object->handle == NULL &&
  554                             (object->type == OBJT_DEFAULT ||
  555                             (object->type == OBJT_SWAP &&
  556                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
  557                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
  558                         } else if ((object->shadow_count == 1) &&
  559                             (object->handle == NULL) &&
  560                             (object->type == OBJT_DEFAULT ||
  561                              object->type == OBJT_SWAP)) {
  562                                 vm_object_t robject;
  563 
  564                                 robject = LIST_FIRST(&object->shadow_head);
  565                                 KASSERT(robject != NULL,
  566                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
  567                                          object->ref_count,
  568                                          object->shadow_count));
  569                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
  570                                     ("shadowed tmpfs v_object %p", object));
  571                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
  572                                         /*
  573                                          * Avoid a potential deadlock.
  574                                          */
  575                                         object->ref_count++;
  576                                         VM_OBJECT_WUNLOCK(object);
  577                                         /*
  578                                          * More likely than not the thread
  579                                          * holding robject's lock has lower
  580                                          * priority than the current thread.
  581                                          * Let the lower priority thread run.
  582                                          */
  583                                         pause("vmo_de", 1);
  584                                         continue;
  585                                 }
  586                                 /*
  587                                  * Collapse object into its shadow unless its
  588                                  * shadow is dead.  In that case, object will
  589                                  * be deallocated by the thread that is
  590                                  * deallocating its shadow.
  591                                  */
  592                                 if ((robject->flags & OBJ_DEAD) == 0 &&
  593                                     (robject->handle == NULL) &&
  594                                     (robject->type == OBJT_DEFAULT ||
  595                                      robject->type == OBJT_SWAP)) {
  596 
  597                                         robject->ref_count++;
  598 retry:
  599                                         if (robject->paging_in_progress) {
  600                                                 VM_OBJECT_WUNLOCK(object);
  601                                                 vm_object_pip_wait(robject,
  602                                                     "objde1");
  603                                                 temp = robject->backing_object;
  604                                                 if (object == temp) {
  605                                                         VM_OBJECT_WLOCK(object);
  606                                                         goto retry;
  607                                                 }
  608                                         } else if (object->paging_in_progress) {
  609                                                 VM_OBJECT_WUNLOCK(robject);
  610                                                 object->flags |= OBJ_PIPWNT;
  611                                                 VM_OBJECT_SLEEP(object, object,
  612                                                     PDROP | PVM, "objde2", 0);
  613                                                 VM_OBJECT_WLOCK(robject);
  614                                                 temp = robject->backing_object;
  615                                                 if (object == temp) {
  616                                                         VM_OBJECT_WLOCK(object);
  617                                                         goto retry;
  618                                                 }
  619                                         } else
  620                                                 VM_OBJECT_WUNLOCK(object);
  621 
  622                                         if (robject->ref_count == 1) {
  623                                                 robject->ref_count--;
  624                                                 object = robject;
  625                                                 goto doterm;
  626                                         }
  627                                         object = robject;
  628                                         vm_object_collapse(object);
  629                                         VM_OBJECT_WUNLOCK(object);
  630                                         continue;
  631                                 }
  632                                 VM_OBJECT_WUNLOCK(robject);
  633                         }
  634                         VM_OBJECT_WUNLOCK(object);
  635                         return;
  636                 }
  637 doterm:
  638                 temp = object->backing_object;
  639                 if (temp != NULL) {
  640                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
  641                             ("shadowed tmpfs v_object 2 %p", object));
  642                         VM_OBJECT_WLOCK(temp);
  643                         LIST_REMOVE(object, shadow_list);
  644                         temp->shadow_count--;
  645                         VM_OBJECT_WUNLOCK(temp);
  646                         object->backing_object = NULL;
  647                 }
  648                 /*
  649                  * Don't double-terminate, we could be in a termination
  650                  * recursion due to the terminate having to sync data
  651                  * to disk.
  652                  */
  653                 if ((object->flags & OBJ_DEAD) == 0)
  654                         vm_object_terminate(object);
  655                 else
  656                         VM_OBJECT_WUNLOCK(object);
  657                 object = temp;
  658         }
  659 }
  660 
  661 /*
  662  *      vm_object_destroy removes the object from the global object list
  663  *      and frees the space for the object.
  664  */
  665 void
  666 vm_object_destroy(vm_object_t object)
  667 {
  668 
  669         /*
  670          * Remove the object from the global object list.
  671          */
  672         mtx_lock(&vm_object_list_mtx);
  673         TAILQ_REMOVE(&vm_object_list, object, object_list);
  674         mtx_unlock(&vm_object_list_mtx);
  675 
  676         /*
  677          * Release the allocation charge.
  678          */
  679         if (object->cred != NULL) {
  680                 KASSERT(object->type == OBJT_DEFAULT ||
  681                     object->type == OBJT_SWAP,
  682                     ("vm_object_terminate: non-swap obj %p has cred",
  683                      object));
  684                 swap_release_by_cred(object->charge, object->cred);
  685                 object->charge = 0;
  686                 crfree(object->cred);
  687                 object->cred = NULL;
  688         }
  689 
  690         /*
  691          * Free the space for the object.
  692          */
  693         uma_zfree(obj_zone, object);
  694 }
  695 
  696 /*
  697  *      vm_object_terminate actually destroys the specified object, freeing
  698  *      up all previously used resources.
  699  *
  700  *      The object must be locked.
  701  *      This routine may block.
  702  */
  703 void
  704 vm_object_terminate(vm_object_t object)
  705 {
  706         vm_page_t p, p_next;
  707 
  708         VM_OBJECT_ASSERT_WLOCKED(object);
  709 
  710         /*
  711          * Make sure no one uses us.
  712          */
  713         vm_object_set_flag(object, OBJ_DEAD);
  714 
  715         /*
  716          * wait for the pageout daemon to be done with the object
  717          */
  718         vm_object_pip_wait(object, "objtrm");
  719 
  720         KASSERT(!object->paging_in_progress,
  721                 ("vm_object_terminate: pageout in progress"));
  722 
  723         /*
  724          * Clean and free the pages, as appropriate. All references to the
  725          * object are gone, so we don't need to lock it.
  726          */
  727         if (object->type == OBJT_VNODE) {
  728                 struct vnode *vp = (struct vnode *)object->handle;
  729 
  730                 /*
  731                  * Clean pages and flush buffers.
  732                  */
  733                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  734                 VM_OBJECT_WUNLOCK(object);
  735 
  736                 vinvalbuf(vp, V_SAVE, 0, 0);
  737 
  738                 VM_OBJECT_WLOCK(object);
  739         }
  740 
  741         KASSERT(object->ref_count == 0, 
  742                 ("vm_object_terminate: object with references, ref_count=%d",
  743                 object->ref_count));
  744 
  745         /*
  746          * Free any remaining pageable pages.  This also removes them from the
  747          * paging queues.  However, don't free wired pages, just remove them
  748          * from the object.  Rather than incrementally removing each page from
  749          * the object, the page and object are reset to any empty state. 
  750          */
  751         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
  752                 vm_page_assert_unbusied(p);
  753                 vm_page_lock(p);
  754                 /*
  755                  * Optimize the page's removal from the object by resetting
  756                  * its "object" field.  Specifically, if the page is not
  757                  * wired, then the effect of this assignment is that
  758                  * vm_page_free()'s call to vm_page_remove() will return
  759                  * immediately without modifying the page or the object.
  760                  */ 
  761                 p->object = NULL;
  762                 if (p->wire_count == 0) {
  763                         vm_page_free(p);
  764                         PCPU_INC(cnt.v_pfree);
  765                 }
  766                 vm_page_unlock(p);
  767         }
  768         /*
  769          * If the object contained any pages, then reset it to an empty state.
  770          * None of the object's fields, including "resident_page_count", were
  771          * modified by the preceding loop.
  772          */
  773         if (object->resident_page_count != 0) {
  774                 vm_radix_reclaim_allnodes(&object->rtree);
  775                 TAILQ_INIT(&object->memq);
  776                 object->resident_page_count = 0;
  777                 if (object->type == OBJT_VNODE)
  778                         vdrop(object->handle);
  779         }
  780 
  781 #if VM_NRESERVLEVEL > 0
  782         if (__predict_false(!LIST_EMPTY(&object->rvq)))
  783                 vm_reserv_break_all(object);
  784 #endif
  785         if (__predict_false(!vm_object_cache_is_empty(object)))
  786                 vm_page_cache_free(object, 0, 0);
  787 
  788         /*
  789          * Let the pager know object is dead.
  790          */
  791         vm_pager_deallocate(object);
  792         VM_OBJECT_WUNLOCK(object);
  793 
  794         vm_object_destroy(object);
  795 }
  796 
  797 /*
  798  * Make the page read-only so that we can clear the object flags.  However, if
  799  * this is a nosync mmap then the object is likely to stay dirty so do not
  800  * mess with the page and do not clear the object flags.  Returns TRUE if the
  801  * page should be flushed, and FALSE otherwise.
  802  */
  803 static boolean_t
  804 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
  805 {
  806 
  807         /*
  808          * If we have been asked to skip nosync pages and this is a
  809          * nosync page, skip it.  Note that the object flags were not
  810          * cleared in this case so we do not have to set them.
  811          */
  812         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
  813                 *clearobjflags = FALSE;
  814                 return (FALSE);
  815         } else {
  816                 pmap_remove_write(p);
  817                 return (p->dirty != 0);
  818         }
  819 }
  820 
  821 /*
  822  *      vm_object_page_clean
  823  *
  824  *      Clean all dirty pages in the specified range of object.  Leaves page 
  825  *      on whatever queue it is currently on.   If NOSYNC is set then do not
  826  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
  827  *      leaving the object dirty.
  828  *
  829  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
  830  *      synchronous clustering mode implementation.
  831  *
  832  *      Odd semantics: if start == end, we clean everything.
  833  *
  834  *      The object must be locked.
  835  *
  836  *      Returns FALSE if some page from the range was not written, as
  837  *      reported by the pager, and TRUE otherwise.
  838  */
  839 boolean_t
  840 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
  841     int flags)
  842 {
  843         vm_page_t np, p;
  844         vm_pindex_t pi, tend, tstart;
  845         int curgeneration, n, pagerflags;
  846         boolean_t clearobjflags, eio, res;
  847 
  848         VM_OBJECT_ASSERT_WLOCKED(object);
  849 
  850         /*
  851          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
  852          * objects.  The check below prevents the function from
  853          * operating on non-vnode objects.
  854          */
  855         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
  856             object->resident_page_count == 0)
  857                 return (TRUE);
  858 
  859         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
  860             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
  861         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
  862 
  863         tstart = OFF_TO_IDX(start);
  864         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
  865         clearobjflags = tstart == 0 && tend >= object->size;
  866         res = TRUE;
  867 
  868 rescan:
  869         curgeneration = object->generation;
  870 
  871         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
  872                 pi = p->pindex;
  873                 if (pi >= tend)
  874                         break;
  875                 np = TAILQ_NEXT(p, listq);
  876                 if (p->valid == 0)
  877                         continue;
  878                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
  879                         if (object->generation != curgeneration) {
  880                                 if ((flags & OBJPC_SYNC) != 0)
  881                                         goto rescan;
  882                                 else
  883                                         clearobjflags = FALSE;
  884                         }
  885                         np = vm_page_find_least(object, pi);
  886                         continue;
  887                 }
  888                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
  889                         continue;
  890 
  891                 n = vm_object_page_collect_flush(object, p, pagerflags,
  892                     flags, &clearobjflags, &eio);
  893                 if (eio) {
  894                         res = FALSE;
  895                         clearobjflags = FALSE;
  896                 }
  897                 if (object->generation != curgeneration) {
  898                         if ((flags & OBJPC_SYNC) != 0)
  899                                 goto rescan;
  900                         else
  901                                 clearobjflags = FALSE;
  902                 }
  903 
  904                 /*
  905                  * If the VOP_PUTPAGES() did a truncated write, so
  906                  * that even the first page of the run is not fully
  907                  * written, vm_pageout_flush() returns 0 as the run
  908                  * length.  Since the condition that caused truncated
  909                  * write may be permanent, e.g. exhausted free space,
  910                  * accepting n == 0 would cause an infinite loop.
  911                  *
  912                  * Forwarding the iterator leaves the unwritten page
  913                  * behind, but there is not much we can do there if
  914                  * filesystem refuses to write it.
  915                  */
  916                 if (n == 0) {
  917                         n = 1;
  918                         clearobjflags = FALSE;
  919                 }
  920                 np = vm_page_find_least(object, pi + n);
  921         }
  922 #if 0
  923         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
  924 #endif
  925 
  926         if (clearobjflags)
  927                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
  928         return (res);
  929 }
  930 
  931 static int
  932 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
  933     int flags, boolean_t *clearobjflags, boolean_t *eio)
  934 {
  935         vm_page_t ma[vm_pageout_page_count], p_first, tp;
  936         int count, i, mreq, runlen;
  937 
  938         vm_page_lock_assert(p, MA_NOTOWNED);
  939         VM_OBJECT_ASSERT_WLOCKED(object);
  940 
  941         count = 1;
  942         mreq = 0;
  943 
  944         for (tp = p; count < vm_pageout_page_count; count++) {
  945                 tp = vm_page_next(tp);
  946                 if (tp == NULL || vm_page_busied(tp))
  947                         break;
  948                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  949                         break;
  950         }
  951 
  952         for (p_first = p; count < vm_pageout_page_count; count++) {
  953                 tp = vm_page_prev(p_first);
  954                 if (tp == NULL || vm_page_busied(tp))
  955                         break;
  956                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  957                         break;
  958                 p_first = tp;
  959                 mreq++;
  960         }
  961 
  962         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
  963                 ma[i] = tp;
  964 
  965         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
  966         return (runlen);
  967 }
  968 
  969 /*
  970  * Note that there is absolutely no sense in writing out
  971  * anonymous objects, so we track down the vnode object
  972  * to write out.
  973  * We invalidate (remove) all pages from the address space
  974  * for semantic correctness.
  975  *
  976  * If the backing object is a device object with unmanaged pages, then any
  977  * mappings to the specified range of pages must be removed before this
  978  * function is called.
  979  *
  980  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
  981  * may start out with a NULL object.
  982  */
  983 boolean_t
  984 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
  985     boolean_t syncio, boolean_t invalidate)
  986 {
  987         vm_object_t backing_object;
  988         struct vnode *vp;
  989         struct mount *mp;
  990         int error, flags, fsync_after;
  991         boolean_t res;
  992 
  993         if (object == NULL)
  994                 return (TRUE);
  995         res = TRUE;
  996         error = 0;
  997         VM_OBJECT_WLOCK(object);
  998         while ((backing_object = object->backing_object) != NULL) {
  999                 VM_OBJECT_WLOCK(backing_object);
 1000                 offset += object->backing_object_offset;
 1001                 VM_OBJECT_WUNLOCK(object);
 1002                 object = backing_object;
 1003                 if (object->size < OFF_TO_IDX(offset + size))
 1004                         size = IDX_TO_OFF(object->size) - offset;
 1005         }
 1006         /*
 1007          * Flush pages if writing is allowed, invalidate them
 1008          * if invalidation requested.  Pages undergoing I/O
 1009          * will be ignored by vm_object_page_remove().
 1010          *
 1011          * We cannot lock the vnode and then wait for paging
 1012          * to complete without deadlocking against vm_fault.
 1013          * Instead we simply call vm_object_page_remove() and
 1014          * allow it to block internally on a page-by-page
 1015          * basis when it encounters pages undergoing async
 1016          * I/O.
 1017          */
 1018         if (object->type == OBJT_VNODE &&
 1019             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
 1020                 vp = object->handle;
 1021                 VM_OBJECT_WUNLOCK(object);
 1022                 (void) vn_start_write(vp, &mp, V_WAIT);
 1023                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1024                 if (syncio && !invalidate && offset == 0 &&
 1025                     OFF_TO_IDX(size) == object->size) {
 1026                         /*
 1027                          * If syncing the whole mapping of the file,
 1028                          * it is faster to schedule all the writes in
 1029                          * async mode, also allowing the clustering,
 1030                          * and then wait for i/o to complete.
 1031                          */
 1032                         flags = 0;
 1033                         fsync_after = TRUE;
 1034                 } else {
 1035                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
 1036                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
 1037                         fsync_after = FALSE;
 1038                 }
 1039                 VM_OBJECT_WLOCK(object);
 1040                 res = vm_object_page_clean(object, offset, offset + size,
 1041                     flags);
 1042                 VM_OBJECT_WUNLOCK(object);
 1043                 if (fsync_after)
 1044                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
 1045                 VOP_UNLOCK(vp, 0);
 1046                 vn_finished_write(mp);
 1047                 if (error != 0)
 1048                         res = FALSE;
 1049                 VM_OBJECT_WLOCK(object);
 1050         }
 1051         if ((object->type == OBJT_VNODE ||
 1052              object->type == OBJT_DEVICE) && invalidate) {
 1053                 if (object->type == OBJT_DEVICE)
 1054                         /*
 1055                          * The option OBJPR_NOTMAPPED must be passed here
 1056                          * because vm_object_page_remove() cannot remove
 1057                          * unmanaged mappings.
 1058                          */
 1059                         flags = OBJPR_NOTMAPPED;
 1060                 else if (old_msync)
 1061                         flags = OBJPR_NOTWIRED;
 1062                 else
 1063                         flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED;
 1064                 vm_object_page_remove(object, OFF_TO_IDX(offset),
 1065                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
 1066         }
 1067         VM_OBJECT_WUNLOCK(object);
 1068         return (res);
 1069 }
 1070 
 1071 /*
 1072  *      vm_object_madvise:
 1073  *
 1074  *      Implements the madvise function at the object/page level.
 1075  *
 1076  *      MADV_WILLNEED   (any object)
 1077  *
 1078  *          Activate the specified pages if they are resident.
 1079  *
 1080  *      MADV_DONTNEED   (any object)
 1081  *
 1082  *          Deactivate the specified pages if they are resident.
 1083  *
 1084  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
 1085  *                       OBJ_ONEMAPPING only)
 1086  *
 1087  *          Deactivate and clean the specified pages if they are
 1088  *          resident.  This permits the process to reuse the pages
 1089  *          without faulting or the kernel to reclaim the pages
 1090  *          without I/O.
 1091  */
 1092 void
 1093 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
 1094     int advise)
 1095 {
 1096         vm_pindex_t tpindex;
 1097         vm_object_t backing_object, tobject;
 1098         vm_page_t m;
 1099 
 1100         if (object == NULL)
 1101                 return;
 1102         VM_OBJECT_WLOCK(object);
 1103         /*
 1104          * Locate and adjust resident pages
 1105          */
 1106         for (; pindex < end; pindex += 1) {
 1107 relookup:
 1108                 tobject = object;
 1109                 tpindex = pindex;
 1110 shadowlookup:
 1111                 /*
 1112                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
 1113                  * and those pages must be OBJ_ONEMAPPING.
 1114                  */
 1115                 if (advise == MADV_FREE) {
 1116                         if ((tobject->type != OBJT_DEFAULT &&
 1117                              tobject->type != OBJT_SWAP) ||
 1118                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
 1119                                 goto unlock_tobject;
 1120                         }
 1121                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
 1122                         goto unlock_tobject;
 1123                 m = vm_page_lookup(tobject, tpindex);
 1124                 if (m == NULL && advise == MADV_WILLNEED) {
 1125                         /*
 1126                          * If the page is cached, reactivate it.
 1127                          */
 1128                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
 1129                             VM_ALLOC_NOBUSY);
 1130                 }
 1131                 if (m == NULL) {
 1132                         /*
 1133                          * There may be swap even if there is no backing page
 1134                          */
 1135                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1136                                 swap_pager_freespace(tobject, tpindex, 1);
 1137                         /*
 1138                          * next object
 1139                          */
 1140                         backing_object = tobject->backing_object;
 1141                         if (backing_object == NULL)
 1142                                 goto unlock_tobject;
 1143                         VM_OBJECT_WLOCK(backing_object);
 1144                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
 1145                         if (tobject != object)
 1146                                 VM_OBJECT_WUNLOCK(tobject);
 1147                         tobject = backing_object;
 1148                         goto shadowlookup;
 1149                 } else if (m->valid != VM_PAGE_BITS_ALL)
 1150                         goto unlock_tobject;
 1151                 /*
 1152                  * If the page is not in a normal state, skip it.
 1153                  */
 1154                 vm_page_lock(m);
 1155                 if (m->hold_count != 0 || m->wire_count != 0) {
 1156                         vm_page_unlock(m);
 1157                         goto unlock_tobject;
 1158                 }
 1159                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
 1160                     ("vm_object_madvise: page %p is fictitious", m));
 1161                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1162                     ("vm_object_madvise: page %p is not managed", m));
 1163                 if (vm_page_busied(m)) {
 1164                         if (advise == MADV_WILLNEED) {
 1165                                 /*
 1166                                  * Reference the page before unlocking and
 1167                                  * sleeping so that the page daemon is less
 1168                                  * likely to reclaim it. 
 1169                                  */
 1170                                 vm_page_aflag_set(m, PGA_REFERENCED);
 1171                         }
 1172                         if (object != tobject)
 1173                                 VM_OBJECT_WUNLOCK(object);
 1174                         VM_OBJECT_WUNLOCK(tobject);
 1175                         vm_page_busy_sleep(m, "madvpo");
 1176                         VM_OBJECT_WLOCK(object);
 1177                         goto relookup;
 1178                 }
 1179                 if (advise == MADV_WILLNEED) {
 1180                         vm_page_activate(m);
 1181                 } else {
 1182                         vm_page_advise(m, advise);
 1183                 }
 1184                 vm_page_unlock(m);
 1185                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1186                         swap_pager_freespace(tobject, tpindex, 1);
 1187 unlock_tobject:
 1188                 if (tobject != object)
 1189                         VM_OBJECT_WUNLOCK(tobject);
 1190         }       
 1191         VM_OBJECT_WUNLOCK(object);
 1192 }
 1193 
 1194 /*
 1195  *      vm_object_shadow:
 1196  *
 1197  *      Create a new object which is backed by the
 1198  *      specified existing object range.  The source
 1199  *      object reference is deallocated.
 1200  *
 1201  *      The new object and offset into that object
 1202  *      are returned in the source parameters.
 1203  */
 1204 void
 1205 vm_object_shadow(
 1206         vm_object_t *object,    /* IN/OUT */
 1207         vm_ooffset_t *offset,   /* IN/OUT */
 1208         vm_size_t length)
 1209 {
 1210         vm_object_t source;
 1211         vm_object_t result;
 1212 
 1213         source = *object;
 1214 
 1215         /*
 1216          * Don't create the new object if the old object isn't shared.
 1217          */
 1218         if (source != NULL) {
 1219                 VM_OBJECT_WLOCK(source);
 1220                 if (source->ref_count == 1 &&
 1221                     source->handle == NULL &&
 1222                     (source->type == OBJT_DEFAULT ||
 1223                      source->type == OBJT_SWAP)) {
 1224                         VM_OBJECT_WUNLOCK(source);
 1225                         return;
 1226                 }
 1227                 VM_OBJECT_WUNLOCK(source);
 1228         }
 1229 
 1230         /*
 1231          * Allocate a new object with the given length.
 1232          */
 1233         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
 1234 
 1235         /*
 1236          * The new object shadows the source object, adding a reference to it.
 1237          * Our caller changes his reference to point to the new object,
 1238          * removing a reference to the source object.  Net result: no change
 1239          * of reference count.
 1240          *
 1241          * Try to optimize the result object's page color when shadowing
 1242          * in order to maintain page coloring consistency in the combined 
 1243          * shadowed object.
 1244          */
 1245         result->backing_object = source;
 1246         /*
 1247          * Store the offset into the source object, and fix up the offset into
 1248          * the new object.
 1249          */
 1250         result->backing_object_offset = *offset;
 1251         if (source != NULL) {
 1252                 VM_OBJECT_WLOCK(source);
 1253                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
 1254                 source->shadow_count++;
 1255 #if VM_NRESERVLEVEL > 0
 1256                 result->flags |= source->flags & OBJ_COLORED;
 1257                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
 1258                     ((1 << (VM_NFREEORDER - 1)) - 1);
 1259 #endif
 1260                 VM_OBJECT_WUNLOCK(source);
 1261         }
 1262 
 1263 
 1264         /*
 1265          * Return the new things
 1266          */
 1267         *offset = 0;
 1268         *object = result;
 1269 }
 1270 
 1271 /*
 1272  *      vm_object_split:
 1273  *
 1274  * Split the pages in a map entry into a new object.  This affords
 1275  * easier removal of unused pages, and keeps object inheritance from
 1276  * being a negative impact on memory usage.
 1277  */
 1278 void
 1279 vm_object_split(vm_map_entry_t entry)
 1280 {
 1281         vm_page_t m, m_next;
 1282         vm_object_t orig_object, new_object, source;
 1283         vm_pindex_t idx, offidxstart;
 1284         vm_size_t size;
 1285 
 1286         orig_object = entry->object.vm_object;
 1287         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
 1288                 return;
 1289         if (orig_object->ref_count <= 1)
 1290                 return;
 1291         VM_OBJECT_WUNLOCK(orig_object);
 1292 
 1293         offidxstart = OFF_TO_IDX(entry->offset);
 1294         size = atop(entry->end - entry->start);
 1295 
 1296         /*
 1297          * If swap_pager_copy() is later called, it will convert new_object
 1298          * into a swap object.
 1299          */
 1300         new_object = vm_object_allocate(OBJT_DEFAULT, size);
 1301 
 1302         /*
 1303          * At this point, the new object is still private, so the order in
 1304          * which the original and new objects are locked does not matter.
 1305          */
 1306         VM_OBJECT_WLOCK(new_object);
 1307         VM_OBJECT_WLOCK(orig_object);
 1308         source = orig_object->backing_object;
 1309         if (source != NULL) {
 1310                 VM_OBJECT_WLOCK(source);
 1311                 if ((source->flags & OBJ_DEAD) != 0) {
 1312                         VM_OBJECT_WUNLOCK(source);
 1313                         VM_OBJECT_WUNLOCK(orig_object);
 1314                         VM_OBJECT_WUNLOCK(new_object);
 1315                         vm_object_deallocate(new_object);
 1316                         VM_OBJECT_WLOCK(orig_object);
 1317                         return;
 1318                 }
 1319                 LIST_INSERT_HEAD(&source->shadow_head,
 1320                                   new_object, shadow_list);
 1321                 source->shadow_count++;
 1322                 vm_object_reference_locked(source);     /* for new_object */
 1323                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1324                 VM_OBJECT_WUNLOCK(source);
 1325                 new_object->backing_object_offset = 
 1326                         orig_object->backing_object_offset + entry->offset;
 1327                 new_object->backing_object = source;
 1328         }
 1329         if (orig_object->cred != NULL) {
 1330                 new_object->cred = orig_object->cred;
 1331                 crhold(orig_object->cred);
 1332                 new_object->charge = ptoa(size);
 1333                 KASSERT(orig_object->charge >= ptoa(size),
 1334                     ("orig_object->charge < 0"));
 1335                 orig_object->charge -= ptoa(size);
 1336         }
 1337 retry:
 1338         m = vm_page_find_least(orig_object, offidxstart);
 1339         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
 1340             m = m_next) {
 1341                 m_next = TAILQ_NEXT(m, listq);
 1342 
 1343                 /*
 1344                  * We must wait for pending I/O to complete before we can
 1345                  * rename the page.
 1346                  *
 1347                  * We do not have to VM_PROT_NONE the page as mappings should
 1348                  * not be changed by this operation.
 1349                  */
 1350                 if (vm_page_busied(m)) {
 1351                         VM_OBJECT_WUNLOCK(new_object);
 1352                         vm_page_lock(m);
 1353                         VM_OBJECT_WUNLOCK(orig_object);
 1354                         vm_page_busy_sleep(m, "spltwt");
 1355                         VM_OBJECT_WLOCK(orig_object);
 1356                         VM_OBJECT_WLOCK(new_object);
 1357                         goto retry;
 1358                 }
 1359 
 1360                 /* vm_page_rename() will handle dirty and cache. */
 1361                 if (vm_page_rename(m, new_object, idx)) {
 1362                         VM_OBJECT_WUNLOCK(new_object);
 1363                         VM_OBJECT_WUNLOCK(orig_object);
 1364                         VM_WAIT;
 1365                         VM_OBJECT_WLOCK(orig_object);
 1366                         VM_OBJECT_WLOCK(new_object);
 1367                         goto retry;
 1368                 }
 1369 #if VM_NRESERVLEVEL > 0
 1370                 /*
 1371                  * If some of the reservation's allocated pages remain with
 1372                  * the original object, then transferring the reservation to
 1373                  * the new object is neither particularly beneficial nor
 1374                  * particularly harmful as compared to leaving the reservation
 1375                  * with the original object.  If, however, all of the
 1376                  * reservation's allocated pages are transferred to the new
 1377                  * object, then transferring the reservation is typically
 1378                  * beneficial.  Determining which of these two cases applies
 1379                  * would be more costly than unconditionally renaming the
 1380                  * reservation.
 1381                  */
 1382                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
 1383 #endif
 1384                 if (orig_object->type == OBJT_SWAP)
 1385                         vm_page_xbusy(m);
 1386         }
 1387         if (orig_object->type == OBJT_SWAP) {
 1388                 /*
 1389                  * swap_pager_copy() can sleep, in which case the orig_object's
 1390                  * and new_object's locks are released and reacquired. 
 1391                  */
 1392                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
 1393                 TAILQ_FOREACH(m, &new_object->memq, listq)
 1394                         vm_page_xunbusy(m);
 1395 
 1396                 /*
 1397                  * Transfer any cached pages from orig_object to new_object.
 1398                  * If swap_pager_copy() found swapped out pages within the
 1399                  * specified range of orig_object, then it changed
 1400                  * new_object's type to OBJT_SWAP when it transferred those
 1401                  * pages to new_object.  Otherwise, new_object's type
 1402                  * should still be OBJT_DEFAULT and orig_object should not
 1403                  * contain any cached pages within the specified range.
 1404                  */
 1405                 if (__predict_false(!vm_object_cache_is_empty(orig_object)))
 1406                         vm_page_cache_transfer(orig_object, offidxstart,
 1407                             new_object);
 1408         }
 1409         VM_OBJECT_WUNLOCK(orig_object);
 1410         VM_OBJECT_WUNLOCK(new_object);
 1411         entry->object.vm_object = new_object;
 1412         entry->offset = 0LL;
 1413         vm_object_deallocate(orig_object);
 1414         VM_OBJECT_WLOCK(new_object);
 1415 }
 1416 
 1417 #define OBSC_TEST_ALL_SHADOWED  0x0001
 1418 #define OBSC_COLLAPSE_NOWAIT    0x0002
 1419 #define OBSC_COLLAPSE_WAIT      0x0004
 1420 
 1421 static int
 1422 vm_object_backing_scan(vm_object_t object, int op)
 1423 {
 1424         int r = 1;
 1425         vm_page_t p;
 1426         vm_object_t backing_object;
 1427         vm_pindex_t backing_offset_index;
 1428 
 1429         VM_OBJECT_ASSERT_WLOCKED(object);
 1430         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
 1431 
 1432         backing_object = object->backing_object;
 1433         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1434 
 1435         /*
 1436          * Initial conditions
 1437          */
 1438         if (op & OBSC_TEST_ALL_SHADOWED) {
 1439                 /*
 1440                  * We do not want to have to test for the existence of cache
 1441                  * or swap pages in the backing object.  XXX but with the
 1442                  * new swapper this would be pretty easy to do.
 1443                  *
 1444                  * XXX what about anonymous MAP_SHARED memory that hasn't
 1445                  * been ZFOD faulted yet?  If we do not test for this, the
 1446                  * shadow test may succeed! XXX
 1447                  */
 1448                 if (backing_object->type != OBJT_DEFAULT) {
 1449                         return (0);
 1450                 }
 1451         }
 1452         if (op & OBSC_COLLAPSE_WAIT) {
 1453                 vm_object_set_flag(backing_object, OBJ_DEAD);
 1454         }
 1455 
 1456         /*
 1457          * Our scan
 1458          */
 1459         p = TAILQ_FIRST(&backing_object->memq);
 1460         while (p) {
 1461                 vm_page_t next = TAILQ_NEXT(p, listq);
 1462                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
 1463 
 1464                 if (op & OBSC_TEST_ALL_SHADOWED) {
 1465                         vm_page_t pp;
 1466 
 1467                         /*
 1468                          * Ignore pages outside the parent object's range
 1469                          * and outside the parent object's mapping of the 
 1470                          * backing object.
 1471                          *
 1472                          * note that we do not busy the backing object's
 1473                          * page.
 1474                          */
 1475                         if (
 1476                             p->pindex < backing_offset_index ||
 1477                             new_pindex >= object->size
 1478                         ) {
 1479                                 p = next;
 1480                                 continue;
 1481                         }
 1482 
 1483                         /*
 1484                          * See if the parent has the page or if the parent's
 1485                          * object pager has the page.  If the parent has the
 1486                          * page but the page is not valid, the parent's
 1487                          * object pager must have the page.
 1488                          *
 1489                          * If this fails, the parent does not completely shadow
 1490                          * the object and we might as well give up now.
 1491                          */
 1492 
 1493                         pp = vm_page_lookup(object, new_pindex);
 1494                         if (
 1495                             (pp == NULL || pp->valid == 0) &&
 1496                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
 1497                         ) {
 1498                                 r = 0;
 1499                                 break;
 1500                         }
 1501                 }
 1502 
 1503                 /*
 1504                  * Check for busy page
 1505                  */
 1506                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
 1507                         vm_page_t pp;
 1508 
 1509                         if (op & OBSC_COLLAPSE_NOWAIT) {
 1510                                 if (!p->valid || vm_page_busied(p)) {
 1511                                         p = next;
 1512                                         continue;
 1513                                 }
 1514                         } else if (op & OBSC_COLLAPSE_WAIT) {
 1515                                 if (vm_page_busied(p)) {
 1516                                         VM_OBJECT_WUNLOCK(object);
 1517                                         vm_page_lock(p);
 1518                                         VM_OBJECT_WUNLOCK(backing_object);
 1519                                         vm_page_busy_sleep(p, "vmocol");
 1520                                         VM_OBJECT_WLOCK(object);
 1521                                         VM_OBJECT_WLOCK(backing_object);
 1522                                         /*
 1523                                          * If we slept, anything could have
 1524                                          * happened.  Since the object is
 1525                                          * marked dead, the backing offset
 1526                                          * should not have changed so we
 1527                                          * just restart our scan.
 1528                                          */
 1529                                         p = TAILQ_FIRST(&backing_object->memq);
 1530                                         continue;
 1531                                 }
 1532                         }
 1533 
 1534                         KASSERT(
 1535                             p->object == backing_object,
 1536                             ("vm_object_backing_scan: object mismatch")
 1537                         );
 1538 
 1539                         if (
 1540                             p->pindex < backing_offset_index ||
 1541                             new_pindex >= object->size
 1542                         ) {
 1543                                 if (backing_object->type == OBJT_SWAP)
 1544                                         swap_pager_freespace(backing_object, 
 1545                                             p->pindex, 1);
 1546 
 1547                                 /*
 1548                                  * Page is out of the parent object's range, we 
 1549                                  * can simply destroy it. 
 1550                                  */
 1551                                 vm_page_lock(p);
 1552                                 KASSERT(!pmap_page_is_mapped(p),
 1553                                     ("freeing mapped page %p", p));
 1554                                 if (p->wire_count == 0)
 1555                                         vm_page_free(p);
 1556                                 else
 1557                                         vm_page_remove(p);
 1558                                 vm_page_unlock(p);
 1559                                 p = next;
 1560                                 continue;
 1561                         }
 1562 
 1563                         pp = vm_page_lookup(object, new_pindex);
 1564                         if (
 1565                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
 1566                             (pp != NULL && pp->valid == 0)
 1567                         ) {
 1568                                 if (backing_object->type == OBJT_SWAP)
 1569                                         swap_pager_freespace(backing_object, 
 1570                                             p->pindex, 1);
 1571 
 1572                                 /*
 1573                                  * The page in the parent is not (yet) valid.
 1574                                  * We don't know anything about the state of
 1575                                  * the original page.  It might be mapped,
 1576                                  * so we must avoid the next if here.
 1577                                  *
 1578                                  * This is due to a race in vm_fault() where
 1579                                  * we must unbusy the original (backing_obj)
 1580                                  * page before we can (re)lock the parent.
 1581                                  * Hence we can get here.
 1582                                  */
 1583                                 p = next;
 1584                                 continue;
 1585                         }
 1586                         if (
 1587                             pp != NULL ||
 1588                             vm_pager_has_page(object, new_pindex, NULL, NULL)
 1589                         ) {
 1590                                 if (backing_object->type == OBJT_SWAP)
 1591                                         swap_pager_freespace(backing_object, 
 1592                                             p->pindex, 1);
 1593 
 1594                                 /*
 1595                                  * page already exists in parent OR swap exists
 1596                                  * for this location in the parent.  Destroy 
 1597                                  * the original page from the backing object.
 1598                                  *
 1599                                  * Leave the parent's page alone
 1600                                  */
 1601                                 vm_page_lock(p);
 1602                                 KASSERT(!pmap_page_is_mapped(p),
 1603                                     ("freeing mapped page %p", p));
 1604                                 if (p->wire_count == 0)
 1605                                         vm_page_free(p);
 1606                                 else
 1607                                         vm_page_remove(p);
 1608                                 vm_page_unlock(p);
 1609                                 p = next;
 1610                                 continue;
 1611                         }
 1612 
 1613                         /*
 1614                          * Page does not exist in parent, rename the
 1615                          * page from the backing object to the main object. 
 1616                          *
 1617                          * If the page was mapped to a process, it can remain 
 1618                          * mapped through the rename.
 1619                          * vm_page_rename() will handle dirty and cache.
 1620                          */
 1621                         if (vm_page_rename(p, object, new_pindex)) {
 1622                                 if (op & OBSC_COLLAPSE_NOWAIT) {
 1623                                         p = next;
 1624                                         continue;
 1625                                 }
 1626                                 VM_OBJECT_WLOCK(backing_object);
 1627                                 VM_OBJECT_WUNLOCK(object);
 1628                                 VM_WAIT;
 1629                                 VM_OBJECT_WLOCK(object);
 1630                                 VM_OBJECT_WLOCK(backing_object);
 1631                                 p = TAILQ_FIRST(&backing_object->memq);
 1632                                 continue;
 1633                         }
 1634 
 1635                         /* Use the old pindex to free the right page. */
 1636                         if (backing_object->type == OBJT_SWAP)
 1637                                 swap_pager_freespace(backing_object,
 1638                                     new_pindex + backing_offset_index, 1);
 1639 
 1640 #if VM_NRESERVLEVEL > 0
 1641                         /*
 1642                          * Rename the reservation.
 1643                          */
 1644                         vm_reserv_rename(p, object, backing_object,
 1645                             backing_offset_index);
 1646 #endif
 1647                 }
 1648                 p = next;
 1649         }
 1650         return (r);
 1651 }
 1652 
 1653 
 1654 /*
 1655  * this version of collapse allows the operation to occur earlier and
 1656  * when paging_in_progress is true for an object...  This is not a complete
 1657  * operation, but should plug 99.9% of the rest of the leaks.
 1658  */
 1659 static void
 1660 vm_object_qcollapse(vm_object_t object)
 1661 {
 1662         vm_object_t backing_object = object->backing_object;
 1663 
 1664         VM_OBJECT_ASSERT_WLOCKED(object);
 1665         VM_OBJECT_ASSERT_WLOCKED(backing_object);
 1666 
 1667         if (backing_object->ref_count != 1)
 1668                 return;
 1669 
 1670         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
 1671 }
 1672 
 1673 /*
 1674  *      vm_object_collapse:
 1675  *
 1676  *      Collapse an object with the object backing it.
 1677  *      Pages in the backing object are moved into the
 1678  *      parent, and the backing object is deallocated.
 1679  */
 1680 void
 1681 vm_object_collapse(vm_object_t object)
 1682 {
 1683         VM_OBJECT_ASSERT_WLOCKED(object);
 1684         
 1685         while (TRUE) {
 1686                 vm_object_t backing_object;
 1687 
 1688                 /*
 1689                  * Verify that the conditions are right for collapse:
 1690                  *
 1691                  * The object exists and the backing object exists.
 1692                  */
 1693                 if ((backing_object = object->backing_object) == NULL)
 1694                         break;
 1695 
 1696                 /*
 1697                  * we check the backing object first, because it is most likely
 1698                  * not collapsable.
 1699                  */
 1700                 VM_OBJECT_WLOCK(backing_object);
 1701                 if (backing_object->handle != NULL ||
 1702                     (backing_object->type != OBJT_DEFAULT &&
 1703                      backing_object->type != OBJT_SWAP) ||
 1704                     (backing_object->flags & OBJ_DEAD) ||
 1705                     object->handle != NULL ||
 1706                     (object->type != OBJT_DEFAULT &&
 1707                      object->type != OBJT_SWAP) ||
 1708                     (object->flags & OBJ_DEAD)) {
 1709                         VM_OBJECT_WUNLOCK(backing_object);
 1710                         break;
 1711                 }
 1712 
 1713                 if (
 1714                     object->paging_in_progress != 0 ||
 1715                     backing_object->paging_in_progress != 0
 1716                 ) {
 1717                         vm_object_qcollapse(object);
 1718                         VM_OBJECT_WUNLOCK(backing_object);
 1719                         break;
 1720                 }
 1721                 /*
 1722                  * We know that we can either collapse the backing object (if
 1723                  * the parent is the only reference to it) or (perhaps) have
 1724                  * the parent bypass the object if the parent happens to shadow
 1725                  * all the resident pages in the entire backing object.
 1726                  *
 1727                  * This is ignoring pager-backed pages such as swap pages.
 1728                  * vm_object_backing_scan fails the shadowing test in this
 1729                  * case.
 1730                  */
 1731                 if (backing_object->ref_count == 1) {
 1732                         /*
 1733                          * If there is exactly one reference to the backing
 1734                          * object, we can collapse it into the parent.  
 1735                          */
 1736                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
 1737 
 1738 #if VM_NRESERVLEVEL > 0
 1739                         /*
 1740                          * Break any reservations from backing_object.
 1741                          */
 1742                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
 1743                                 vm_reserv_break_all(backing_object);
 1744 #endif
 1745 
 1746                         /*
 1747                          * Move the pager from backing_object to object.
 1748                          */
 1749                         if (backing_object->type == OBJT_SWAP) {
 1750                                 /*
 1751                                  * swap_pager_copy() can sleep, in which case
 1752                                  * the backing_object's and object's locks are
 1753                                  * released and reacquired.
 1754                                  * Since swap_pager_copy() is being asked to
 1755                                  * destroy the source, it will change the
 1756                                  * backing_object's type to OBJT_DEFAULT.
 1757                                  */
 1758                                 swap_pager_copy(
 1759                                     backing_object,
 1760                                     object,
 1761                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
 1762 
 1763                                 /*
 1764                                  * Free any cached pages from backing_object.
 1765                                  */
 1766                                 if (__predict_false(
 1767                                     !vm_object_cache_is_empty(backing_object)))
 1768                                         vm_page_cache_free(backing_object, 0, 0);
 1769                         }
 1770                         /*
 1771                          * Object now shadows whatever backing_object did.
 1772                          * Note that the reference to 
 1773                          * backing_object->backing_object moves from within 
 1774                          * backing_object to within object.
 1775                          */
 1776                         LIST_REMOVE(object, shadow_list);
 1777                         backing_object->shadow_count--;
 1778                         if (backing_object->backing_object) {
 1779                                 VM_OBJECT_WLOCK(backing_object->backing_object);
 1780                                 LIST_REMOVE(backing_object, shadow_list);
 1781                                 LIST_INSERT_HEAD(
 1782                                     &backing_object->backing_object->shadow_head,
 1783                                     object, shadow_list);
 1784                                 /*
 1785                                  * The shadow_count has not changed.
 1786                                  */
 1787                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
 1788                         }
 1789                         object->backing_object = backing_object->backing_object;
 1790                         object->backing_object_offset +=
 1791                             backing_object->backing_object_offset;
 1792 
 1793                         /*
 1794                          * Discard backing_object.
 1795                          *
 1796                          * Since the backing object has no pages, no pager left,
 1797                          * and no object references within it, all that is
 1798                          * necessary is to dispose of it.
 1799                          */
 1800                         KASSERT(backing_object->ref_count == 1, (
 1801 "backing_object %p was somehow re-referenced during collapse!",
 1802                             backing_object));
 1803                         VM_OBJECT_WUNLOCK(backing_object);
 1804                         vm_object_destroy(backing_object);
 1805 
 1806                         object_collapses++;
 1807                 } else {
 1808                         vm_object_t new_backing_object;
 1809 
 1810                         /*
 1811                          * If we do not entirely shadow the backing object,
 1812                          * there is nothing we can do so we give up.
 1813                          */
 1814                         if (object->resident_page_count != object->size &&
 1815                             vm_object_backing_scan(object,
 1816                             OBSC_TEST_ALL_SHADOWED) == 0) {
 1817                                 VM_OBJECT_WUNLOCK(backing_object);
 1818                                 break;
 1819                         }
 1820 
 1821                         /*
 1822                          * Make the parent shadow the next object in the
 1823                          * chain.  Deallocating backing_object will not remove
 1824                          * it, since its reference count is at least 2.
 1825                          */
 1826                         LIST_REMOVE(object, shadow_list);
 1827                         backing_object->shadow_count--;
 1828 
 1829                         new_backing_object = backing_object->backing_object;
 1830                         if ((object->backing_object = new_backing_object) != NULL) {
 1831                                 VM_OBJECT_WLOCK(new_backing_object);
 1832                                 LIST_INSERT_HEAD(
 1833                                     &new_backing_object->shadow_head,
 1834                                     object,
 1835                                     shadow_list
 1836                                 );
 1837                                 new_backing_object->shadow_count++;
 1838                                 vm_object_reference_locked(new_backing_object);
 1839                                 VM_OBJECT_WUNLOCK(new_backing_object);
 1840                                 object->backing_object_offset +=
 1841                                         backing_object->backing_object_offset;
 1842                         }
 1843 
 1844                         /*
 1845                          * Drop the reference count on backing_object. Since
 1846                          * its ref_count was at least 2, it will not vanish.
 1847                          */
 1848                         backing_object->ref_count--;
 1849                         VM_OBJECT_WUNLOCK(backing_object);
 1850                         object_bypasses++;
 1851                 }
 1852 
 1853                 /*
 1854                  * Try again with this object's new backing object.
 1855                  */
 1856         }
 1857 }
 1858 
 1859 /*
 1860  *      vm_object_page_remove:
 1861  *
 1862  *      For the given object, either frees or invalidates each of the
 1863  *      specified pages.  In general, a page is freed.  However, if a page is
 1864  *      wired for any reason other than the existence of a managed, wired
 1865  *      mapping, then it may be invalidated but not removed from the object.
 1866  *      Pages are specified by the given range ["start", "end") and the option
 1867  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
 1868  *      extends from "start" to the end of the object.  If the option
 1869  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
 1870  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
 1871  *      specified, then the pages within the specified range must have no
 1872  *      mappings.  Otherwise, if this option is not specified, any mappings to
 1873  *      the specified pages are removed before the pages are freed or
 1874  *      invalidated.
 1875  *
 1876  *      In general, this operation should only be performed on objects that
 1877  *      contain managed pages.  There are, however, two exceptions.  First, it
 1878  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
 1879  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
 1880  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
 1881  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
 1882  *
 1883  *      The object must be locked.
 1884  */
 1885 void
 1886 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 1887     int options)
 1888 {
 1889         vm_page_t p, next;
 1890         int wirings;
 1891 
 1892         VM_OBJECT_ASSERT_WLOCKED(object);
 1893         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
 1894             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
 1895             ("vm_object_page_remove: illegal options for object %p", object));
 1896         if (object->resident_page_count == 0)
 1897                 goto skipmemq;
 1898         vm_object_pip_add(object, 1);
 1899 again:
 1900         p = vm_page_find_least(object, start);
 1901 
 1902         /*
 1903          * Here, the variable "p" is either (1) the page with the least pindex
 1904          * greater than or equal to the parameter "start" or (2) NULL. 
 1905          */
 1906         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 1907                 next = TAILQ_NEXT(p, listq);
 1908 
 1909                 /*
 1910                  * If the page is wired for any reason besides the existence
 1911                  * of managed, wired mappings, then it cannot be freed.  For
 1912                  * example, fictitious pages, which represent device memory,
 1913                  * are inherently wired and cannot be freed.  They can,
 1914                  * however, be invalidated if the option OBJPR_CLEANONLY is
 1915                  * not specified.
 1916                  */
 1917                 vm_page_lock(p);
 1918                 if (vm_page_xbusied(p)) {
 1919                         VM_OBJECT_WUNLOCK(object);
 1920                         vm_page_busy_sleep(p, "vmopax");
 1921                         VM_OBJECT_WLOCK(object);
 1922                         goto again;
 1923                 }
 1924                 if ((wirings = p->wire_count) != 0 &&
 1925                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
 1926                         if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) ==
 1927                             0) {
 1928                                 pmap_remove_all(p);
 1929                                 /* Account for removal of wired mappings. */
 1930                                 if (wirings != 0)
 1931                                         p->wire_count -= wirings;
 1932                         }
 1933                         if ((options & OBJPR_CLEANONLY) == 0) {
 1934                                 p->valid = 0;
 1935                                 vm_page_undirty(p);
 1936                         }
 1937                         goto next;
 1938                 }
 1939                 if (vm_page_busied(p)) {
 1940                         VM_OBJECT_WUNLOCK(object);
 1941                         vm_page_busy_sleep(p, "vmopar");
 1942                         VM_OBJECT_WLOCK(object);
 1943                         goto again;
 1944                 }
 1945                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
 1946                     ("vm_object_page_remove: page %p is fictitious", p));
 1947                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
 1948                         if ((options & OBJPR_NOTMAPPED) == 0)
 1949                                 pmap_remove_write(p);
 1950                         if (p->dirty)
 1951                                 goto next;
 1952                 }
 1953                 if ((options & OBJPR_NOTMAPPED) == 0) {
 1954                         if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0)
 1955                                 goto next;
 1956                         pmap_remove_all(p);
 1957                         /* Account for removal of wired mappings. */
 1958                         if (wirings != 0) {
 1959                                 KASSERT(p->wire_count == wirings,
 1960                                     ("inconsistent wire count %d %d %p",
 1961                                     p->wire_count, wirings, p));
 1962                                 p->wire_count = 0;
 1963                                 atomic_subtract_int(&cnt.v_wire_count, 1);
 1964                         }
 1965                 }
 1966                 vm_page_free(p);
 1967 next:
 1968                 vm_page_unlock(p);
 1969         }
 1970         vm_object_pip_wakeup(object);
 1971 skipmemq:
 1972         if (__predict_false(!vm_object_cache_is_empty(object)))
 1973                 vm_page_cache_free(object, start, end);
 1974 }
 1975 
 1976 /*
 1977  *      vm_object_page_cache:
 1978  *
 1979  *      For the given object, attempt to move the specified clean
 1980  *      pages to the cache queue.  If a page is wired for any reason,
 1981  *      then it will not be changed.  Pages are specified by the given
 1982  *      range ["start", "end").  As a special case, if "end" is zero,
 1983  *      then the range extends from "start" to the end of the object.
 1984  *      Any mappings to the specified pages are removed before the
 1985  *      pages are moved to the cache queue.
 1986  *
 1987  *      This operation should only be performed on objects that
 1988  *      contain non-fictitious, managed pages.
 1989  *
 1990  *      The object must be locked.
 1991  */
 1992 void
 1993 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1994 {
 1995         struct mtx *mtx, *new_mtx;
 1996         vm_page_t p, next;
 1997 
 1998         VM_OBJECT_ASSERT_WLOCKED(object);
 1999         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
 2000             ("vm_object_page_cache: illegal object %p", object));
 2001         if (object->resident_page_count == 0)
 2002                 return;
 2003         p = vm_page_find_least(object, start);
 2004 
 2005         /*
 2006          * Here, the variable "p" is either (1) the page with the least pindex
 2007          * greater than or equal to the parameter "start" or (2) NULL. 
 2008          */
 2009         mtx = NULL;
 2010         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 2011                 next = TAILQ_NEXT(p, listq);
 2012 
 2013                 /*
 2014                  * Avoid releasing and reacquiring the same page lock.
 2015                  */
 2016                 new_mtx = vm_page_lockptr(p);
 2017                 if (mtx != new_mtx) {
 2018                         if (mtx != NULL)
 2019                                 mtx_unlock(mtx);
 2020                         mtx = new_mtx;
 2021                         mtx_lock(mtx);
 2022                 }
 2023                 vm_page_try_to_cache(p);
 2024         }
 2025         if (mtx != NULL)
 2026                 mtx_unlock(mtx);
 2027 }
 2028 
 2029 /*
 2030  *      Populate the specified range of the object with valid pages.  Returns
 2031  *      TRUE if the range is successfully populated and FALSE otherwise.
 2032  *
 2033  *      Note: This function should be optimized to pass a larger array of
 2034  *      pages to vm_pager_get_pages() before it is applied to a non-
 2035  *      OBJT_DEVICE object.
 2036  *
 2037  *      The object must be locked.
 2038  */
 2039 boolean_t
 2040 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 2041 {
 2042         vm_page_t m, ma[1];
 2043         vm_pindex_t pindex;
 2044         int rv;
 2045 
 2046         VM_OBJECT_ASSERT_WLOCKED(object);
 2047         for (pindex = start; pindex < end; pindex++) {
 2048                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
 2049                 if (m->valid != VM_PAGE_BITS_ALL) {
 2050                         ma[0] = m;
 2051                         rv = vm_pager_get_pages(object, ma, 1, 0);
 2052                         m = vm_page_lookup(object, pindex);
 2053                         if (m == NULL)
 2054                                 break;
 2055                         if (rv != VM_PAGER_OK) {
 2056                                 vm_page_lock(m);
 2057                                 vm_page_free(m);
 2058                                 vm_page_unlock(m);
 2059                                 break;
 2060                         }
 2061                 }
 2062                 /*
 2063                  * Keep "m" busy because a subsequent iteration may unlock
 2064                  * the object.
 2065                  */
 2066         }
 2067         if (pindex > start) {
 2068                 m = vm_page_lookup(object, start);
 2069                 while (m != NULL && m->pindex < pindex) {
 2070                         vm_page_xunbusy(m);
 2071                         m = TAILQ_NEXT(m, listq);
 2072                 }
 2073         }
 2074         return (pindex == end);
 2075 }
 2076 
 2077 /*
 2078  *      Routine:        vm_object_coalesce
 2079  *      Function:       Coalesces two objects backing up adjoining
 2080  *                      regions of memory into a single object.
 2081  *
 2082  *      returns TRUE if objects were combined.
 2083  *
 2084  *      NOTE:   Only works at the moment if the second object is NULL -
 2085  *              if it's not, which object do we lock first?
 2086  *
 2087  *      Parameters:
 2088  *              prev_object     First object to coalesce
 2089  *              prev_offset     Offset into prev_object
 2090  *              prev_size       Size of reference to prev_object
 2091  *              next_size       Size of reference to the second object
 2092  *              reserved        Indicator that extension region has
 2093  *                              swap accounted for
 2094  *
 2095  *      Conditions:
 2096  *      The object must *not* be locked.
 2097  */
 2098 boolean_t
 2099 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
 2100     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
 2101 {
 2102         vm_pindex_t next_pindex;
 2103 
 2104         if (prev_object == NULL)
 2105                 return (TRUE);
 2106         VM_OBJECT_WLOCK(prev_object);
 2107         if ((prev_object->type != OBJT_DEFAULT &&
 2108             prev_object->type != OBJT_SWAP) ||
 2109             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
 2110                 VM_OBJECT_WUNLOCK(prev_object);
 2111                 return (FALSE);
 2112         }
 2113 
 2114         /*
 2115          * Try to collapse the object first
 2116          */
 2117         vm_object_collapse(prev_object);
 2118 
 2119         /*
 2120          * Can't coalesce if: . more than one reference . paged out . shadows
 2121          * another object . has a copy elsewhere (any of which mean that the
 2122          * pages not mapped to prev_entry may be in use anyway)
 2123          */
 2124         if (prev_object->backing_object != NULL) {
 2125                 VM_OBJECT_WUNLOCK(prev_object);
 2126                 return (FALSE);
 2127         }
 2128 
 2129         prev_size >>= PAGE_SHIFT;
 2130         next_size >>= PAGE_SHIFT;
 2131         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
 2132 
 2133         if ((prev_object->ref_count > 1) &&
 2134             (prev_object->size != next_pindex)) {
 2135                 VM_OBJECT_WUNLOCK(prev_object);
 2136                 return (FALSE);
 2137         }
 2138 
 2139         /*
 2140          * Account for the charge.
 2141          */
 2142         if (prev_object->cred != NULL) {
 2143 
 2144                 /*
 2145                  * If prev_object was charged, then this mapping,
 2146                  * althought not charged now, may become writable
 2147                  * later. Non-NULL cred in the object would prevent
 2148                  * swap reservation during enabling of the write
 2149                  * access, so reserve swap now. Failed reservation
 2150                  * cause allocation of the separate object for the map
 2151                  * entry, and swap reservation for this entry is
 2152                  * managed in appropriate time.
 2153                  */
 2154                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
 2155                     prev_object->cred)) {
 2156                         return (FALSE);
 2157                 }
 2158                 prev_object->charge += ptoa(next_size);
 2159         }
 2160 
 2161         /*
 2162          * Remove any pages that may still be in the object from a previous
 2163          * deallocation.
 2164          */
 2165         if (next_pindex < prev_object->size) {
 2166                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
 2167                     next_size, 0);
 2168                 if (prev_object->type == OBJT_SWAP)
 2169                         swap_pager_freespace(prev_object,
 2170                                              next_pindex, next_size);
 2171 #if 0
 2172                 if (prev_object->cred != NULL) {
 2173                         KASSERT(prev_object->charge >=
 2174                             ptoa(prev_object->size - next_pindex),
 2175                             ("object %p overcharged 1 %jx %jx", prev_object,
 2176                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
 2177                         prev_object->charge -= ptoa(prev_object->size -
 2178                             next_pindex);
 2179                 }
 2180 #endif
 2181         }
 2182 
 2183         /*
 2184          * Extend the object if necessary.
 2185          */
 2186         if (next_pindex + next_size > prev_object->size)
 2187                 prev_object->size = next_pindex + next_size;
 2188 
 2189         VM_OBJECT_WUNLOCK(prev_object);
 2190         return (TRUE);
 2191 }
 2192 
 2193 void
 2194 vm_object_set_writeable_dirty(vm_object_t object)
 2195 {
 2196 
 2197         VM_OBJECT_ASSERT_WLOCKED(object);
 2198         if (object->type != OBJT_VNODE)
 2199                 return;
 2200         object->generation++;
 2201         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
 2202                 return;
 2203         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
 2204 }
 2205 
 2206 /*
 2207  *      vm_object_unwire:
 2208  *
 2209  *      For each page offset within the specified range of the given object,
 2210  *      find the highest-level page in the shadow chain and unwire it.  A page
 2211  *      must exist at every page offset, and the highest-level page must be
 2212  *      wired.
 2213  */
 2214 void
 2215 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
 2216     uint8_t queue)
 2217 {
 2218         vm_object_t tobject;
 2219         vm_page_t m, tm;
 2220         vm_pindex_t end_pindex, pindex, tpindex;
 2221         int depth, locked_depth;
 2222 
 2223         KASSERT((offset & PAGE_MASK) == 0,
 2224             ("vm_object_unwire: offset is not page aligned"));
 2225         KASSERT((length & PAGE_MASK) == 0,
 2226             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
 2227         /* The wired count of a fictitious page never changes. */
 2228         if ((object->flags & OBJ_FICTITIOUS) != 0)
 2229                 return;
 2230         pindex = OFF_TO_IDX(offset);
 2231         end_pindex = pindex + atop(length);
 2232         locked_depth = 1;
 2233         VM_OBJECT_RLOCK(object);
 2234         m = vm_page_find_least(object, pindex);
 2235         while (pindex < end_pindex) {
 2236                 if (m == NULL || pindex < m->pindex) {
 2237                         /*
 2238                          * The first object in the shadow chain doesn't
 2239                          * contain a page at the current index.  Therefore,
 2240                          * the page must exist in a backing object.
 2241                          */
 2242                         tobject = object;
 2243                         tpindex = pindex;
 2244                         depth = 0;
 2245                         do {
 2246                                 tpindex +=
 2247                                     OFF_TO_IDX(tobject->backing_object_offset);
 2248                                 tobject = tobject->backing_object;
 2249                                 KASSERT(tobject != NULL,
 2250                                     ("vm_object_unwire: missing page"));
 2251                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
 2252                                         goto next_page;
 2253                                 depth++;
 2254                                 if (depth == locked_depth) {
 2255                                         locked_depth++;
 2256                                         VM_OBJECT_RLOCK(tobject);
 2257                                 }
 2258                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
 2259                             NULL);
 2260                 } else {
 2261                         tm = m;
 2262                         m = TAILQ_NEXT(m, listq);
 2263                 }
 2264                 vm_page_lock(tm);
 2265                 vm_page_unwire(tm, queue);
 2266                 vm_page_unlock(tm);
 2267 next_page:
 2268                 pindex++;
 2269         }
 2270         /* Release the accumulated object locks. */
 2271         for (depth = 0; depth < locked_depth; depth++) {
 2272                 tobject = object->backing_object;
 2273                 VM_OBJECT_RUNLOCK(object);
 2274                 object = tobject;
 2275         }
 2276 }
 2277 
 2278 #include "opt_ddb.h"
 2279 #ifdef DDB
 2280 #include <sys/kernel.h>
 2281 
 2282 #include <sys/cons.h>
 2283 
 2284 #include <ddb/ddb.h>
 2285 
 2286 static int
 2287 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
 2288 {
 2289         vm_map_t tmpm;
 2290         vm_map_entry_t tmpe;
 2291         vm_object_t obj;
 2292         int entcount;
 2293 
 2294         if (map == 0)
 2295                 return 0;
 2296 
 2297         if (entry == 0) {
 2298                 tmpe = map->header.next;
 2299                 entcount = map->nentries;
 2300                 while (entcount-- && (tmpe != &map->header)) {
 2301                         if (_vm_object_in_map(map, object, tmpe)) {
 2302                                 return 1;
 2303                         }
 2304                         tmpe = tmpe->next;
 2305                 }
 2306         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2307                 tmpm = entry->object.sub_map;
 2308                 tmpe = tmpm->header.next;
 2309                 entcount = tmpm->nentries;
 2310                 while (entcount-- && tmpe != &tmpm->header) {
 2311                         if (_vm_object_in_map(tmpm, object, tmpe)) {
 2312                                 return 1;
 2313                         }
 2314                         tmpe = tmpe->next;
 2315                 }
 2316         } else if ((obj = entry->object.vm_object) != NULL) {
 2317                 for (; obj; obj = obj->backing_object)
 2318                         if (obj == object) {
 2319                                 return 1;
 2320                         }
 2321         }
 2322         return 0;
 2323 }
 2324 
 2325 static int
 2326 vm_object_in_map(vm_object_t object)
 2327 {
 2328         struct proc *p;
 2329 
 2330         /* sx_slock(&allproc_lock); */
 2331         FOREACH_PROC_IN_SYSTEM(p) {
 2332                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
 2333                         continue;
 2334                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
 2335                         /* sx_sunlock(&allproc_lock); */
 2336                         return 1;
 2337                 }
 2338         }
 2339         /* sx_sunlock(&allproc_lock); */
 2340         if (_vm_object_in_map(kernel_map, object, 0))
 2341                 return 1;
 2342         return 0;
 2343 }
 2344 
 2345 DB_SHOW_COMMAND(vmochk, vm_object_check)
 2346 {
 2347         vm_object_t object;
 2348 
 2349         /*
 2350          * make sure that internal objs are in a map somewhere
 2351          * and none have zero ref counts.
 2352          */
 2353         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2354                 if (object->handle == NULL &&
 2355                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
 2356                         if (object->ref_count == 0) {
 2357                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
 2358                                         (long)object->size);
 2359                         }
 2360                         if (!vm_object_in_map(object)) {
 2361                                 db_printf(
 2362                         "vmochk: internal obj is not in a map: "
 2363                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
 2364                                     object->ref_count, (u_long)object->size, 
 2365                                     (u_long)object->size,
 2366                                     (void *)object->backing_object);
 2367                         }
 2368                 }
 2369         }
 2370 }
 2371 
 2372 /*
 2373  *      vm_object_print:        [ debug ]
 2374  */
 2375 DB_SHOW_COMMAND(object, vm_object_print_static)
 2376 {
 2377         /* XXX convert args. */
 2378         vm_object_t object = (vm_object_t)addr;
 2379         boolean_t full = have_addr;
 2380 
 2381         vm_page_t p;
 2382 
 2383         /* XXX count is an (unused) arg.  Avoid shadowing it. */
 2384 #define count   was_count
 2385 
 2386         int count;
 2387 
 2388         if (object == NULL)
 2389                 return;
 2390 
 2391         db_iprintf(
 2392             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
 2393             object, (int)object->type, (uintmax_t)object->size,
 2394             object->resident_page_count, object->ref_count, object->flags,
 2395             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
 2396         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
 2397             object->shadow_count, 
 2398             object->backing_object ? object->backing_object->ref_count : 0,
 2399             object->backing_object, (uintmax_t)object->backing_object_offset);
 2400 
 2401         if (!full)
 2402                 return;
 2403 
 2404         db_indent += 2;
 2405         count = 0;
 2406         TAILQ_FOREACH(p, &object->memq, listq) {
 2407                 if (count == 0)
 2408                         db_iprintf("memory:=");
 2409                 else if (count == 6) {
 2410                         db_printf("\n");
 2411                         db_iprintf(" ...");
 2412                         count = 0;
 2413                 } else
 2414                         db_printf(",");
 2415                 count++;
 2416 
 2417                 db_printf("(off=0x%jx,page=0x%jx)",
 2418                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
 2419         }
 2420         if (count != 0)
 2421                 db_printf("\n");
 2422         db_indent -= 2;
 2423 }
 2424 
 2425 /* XXX. */
 2426 #undef count
 2427 
 2428 /* XXX need this non-static entry for calling from vm_map_print. */
 2429 void
 2430 vm_object_print(
 2431         /* db_expr_t */ long addr,
 2432         boolean_t have_addr,
 2433         /* db_expr_t */ long count,
 2434         char *modif)
 2435 {
 2436         vm_object_print_static(addr, have_addr, count, modif);
 2437 }
 2438 
 2439 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
 2440 {
 2441         vm_object_t object;
 2442         vm_pindex_t fidx;
 2443         vm_paddr_t pa;
 2444         vm_page_t m, prev_m;
 2445         int rcount, nl, c;
 2446 
 2447         nl = 0;
 2448         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2449                 db_printf("new object: %p\n", (void *)object);
 2450                 if (nl > 18) {
 2451                         c = cngetc();
 2452                         if (c != ' ')
 2453                                 return;
 2454                         nl = 0;
 2455                 }
 2456                 nl++;
 2457                 rcount = 0;
 2458                 fidx = 0;
 2459                 pa = -1;
 2460                 TAILQ_FOREACH(m, &object->memq, listq) {
 2461                         if (m->pindex > 128)
 2462                                 break;
 2463                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
 2464                             prev_m->pindex + 1 != m->pindex) {
 2465                                 if (rcount) {
 2466                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2467                                                 (long)fidx, rcount, (long)pa);
 2468                                         if (nl > 18) {
 2469                                                 c = cngetc();
 2470                                                 if (c != ' ')
 2471                                                         return;
 2472                                                 nl = 0;
 2473                                         }
 2474                                         nl++;
 2475                                         rcount = 0;
 2476                                 }
 2477                         }                               
 2478                         if (rcount &&
 2479                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
 2480                                 ++rcount;
 2481                                 continue;
 2482                         }
 2483                         if (rcount) {
 2484                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2485                                         (long)fidx, rcount, (long)pa);
 2486                                 if (nl > 18) {
 2487                                         c = cngetc();
 2488                                         if (c != ' ')
 2489                                                 return;
 2490                                         nl = 0;
 2491                                 }
 2492                                 nl++;
 2493                         }
 2494                         fidx = m->pindex;
 2495                         pa = VM_PAGE_TO_PHYS(m);
 2496                         rcount = 1;
 2497                 }
 2498                 if (rcount) {
 2499                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2500                                 (long)fidx, rcount, (long)pa);
 2501                         if (nl > 18) {
 2502                                 c = cngetc();
 2503                                 if (c != ' ')
 2504                                         return;
 2505                                 nl = 0;
 2506                         }
 2507                         nl++;
 2508                 }
 2509         }
 2510 }
 2511 #endif /* DDB */

Cache object: a1322b164aa8d685a48f26ab954d4b74


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.