FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61 /*
62 * Virtual memory object module.
63 */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h> /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/vmmeter.h>
85 #include <sys/sx.h>
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_radix.h>
99 #include <vm/vm_reserv.h>
100 #include <vm/uma.h>
101
102 static int old_msync;
103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104 "Use old (insecure) msync behavior");
105
106 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107 int pagerflags, int flags, boolean_t *clearobjflags,
108 boolean_t *eio);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110 boolean_t *clearobjflags);
111 static void vm_object_qcollapse(vm_object_t object);
112 static void vm_object_vndeallocate(vm_object_t object);
113
114 /*
115 * Virtual memory objects maintain the actual data
116 * associated with allocated virtual memory. A given
117 * page of memory exists within exactly one object.
118 *
119 * An object is only deallocated when all "references"
120 * are given up. Only one "reference" to a given
121 * region of an object should be writeable.
122 *
123 * Associated with each object is a list of all resident
124 * memory pages belonging to that object; this list is
125 * maintained by the "vm_page" module, and locked by the object's
126 * lock.
127 *
128 * Each object also records a "pager" routine which is
129 * used to retrieve (and store) pages to the proper backing
130 * storage. In addition, objects may be backed by other
131 * objects from which they were virtual-copied.
132 *
133 * The only items within the object structure which are
134 * modified after time of creation are:
135 * reference count locked by object's lock
136 * pager routine locked by object's lock
137 *
138 */
139
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx; /* lock for object list and count */
142
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145
146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147 "VM object stats");
148
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151 &object_collapses, 0, "VM object collapses");
152
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155 &object_bypasses, 0, "VM object bypasses");
156
157 static uma_zone_t obj_zone;
158
159 static int vm_object_zinit(void *mem, int size, int flags);
160
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167 vm_object_t object;
168
169 object = (vm_object_t)mem;
170 KASSERT(object->ref_count == 0,
171 ("object %p ref_count = %d", object, object->ref_count));
172 KASSERT(TAILQ_EMPTY(&object->memq),
173 ("object %p has resident pages in its memq", object));
174 KASSERT(vm_radix_is_empty(&object->rtree),
175 ("object %p has resident pages in its trie", object));
176 #if VM_NRESERVLEVEL > 0
177 KASSERT(LIST_EMPTY(&object->rvq),
178 ("object %p has reservations",
179 object));
180 #endif
181 KASSERT(vm_object_cache_is_empty(object),
182 ("object %p has cached pages",
183 object));
184 KASSERT(object->paging_in_progress == 0,
185 ("object %p paging_in_progress = %d",
186 object, object->paging_in_progress));
187 KASSERT(object->resident_page_count == 0,
188 ("object %p resident_page_count = %d",
189 object, object->resident_page_count));
190 KASSERT(object->shadow_count == 0,
191 ("object %p shadow_count = %d",
192 object, object->shadow_count));
193 KASSERT(object->type == OBJT_DEAD,
194 ("object %p has non-dead type %d",
195 object, object->type));
196 }
197 #endif
198
199 static int
200 vm_object_zinit(void *mem, int size, int flags)
201 {
202 vm_object_t object;
203
204 object = (vm_object_t)mem;
205 bzero(&object->lock, sizeof(object->lock));
206 rw_init_flags(&object->lock, "vm object", RW_DUPOK);
207
208 /* These are true for any object that has been freed */
209 object->type = OBJT_DEAD;
210 object->ref_count = 0;
211 object->rtree.rt_root = 0;
212 object->rtree.rt_flags = 0;
213 object->paging_in_progress = 0;
214 object->resident_page_count = 0;
215 object->shadow_count = 0;
216 object->cache.rt_root = 0;
217 object->cache.rt_flags = 0;
218
219 mtx_lock(&vm_object_list_mtx);
220 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
221 mtx_unlock(&vm_object_list_mtx);
222 return (0);
223 }
224
225 static void
226 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
227 {
228
229 TAILQ_INIT(&object->memq);
230 LIST_INIT(&object->shadow_head);
231
232 object->type = type;
233 switch (type) {
234 case OBJT_DEAD:
235 panic("_vm_object_allocate: can't create OBJT_DEAD");
236 case OBJT_DEFAULT:
237 case OBJT_SWAP:
238 object->flags = OBJ_ONEMAPPING;
239 break;
240 case OBJT_DEVICE:
241 case OBJT_SG:
242 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
243 break;
244 case OBJT_MGTDEVICE:
245 object->flags = OBJ_FICTITIOUS;
246 break;
247 case OBJT_PHYS:
248 object->flags = OBJ_UNMANAGED;
249 break;
250 case OBJT_VNODE:
251 object->flags = 0;
252 break;
253 default:
254 panic("_vm_object_allocate: type %d is undefined", type);
255 }
256 object->size = size;
257 object->generation = 1;
258 object->ref_count = 1;
259 object->memattr = VM_MEMATTR_DEFAULT;
260 object->cred = NULL;
261 object->charge = 0;
262 object->handle = NULL;
263 object->backing_object = NULL;
264 object->backing_object_offset = (vm_ooffset_t) 0;
265 #if VM_NRESERVLEVEL > 0
266 LIST_INIT(&object->rvq);
267 #endif
268 }
269
270 /*
271 * vm_object_init:
272 *
273 * Initialize the VM objects module.
274 */
275 void
276 vm_object_init(void)
277 {
278 TAILQ_INIT(&vm_object_list);
279 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
280
281 rw_init(&kernel_object->lock, "kernel vm object");
282 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
283 kernel_object);
284 #if VM_NRESERVLEVEL > 0
285 kernel_object->flags |= OBJ_COLORED;
286 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
287 #endif
288
289 rw_init(&kmem_object->lock, "kmem vm object");
290 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
291 kmem_object);
292 #if VM_NRESERVLEVEL > 0
293 kmem_object->flags |= OBJ_COLORED;
294 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
295 #endif
296
297 /*
298 * The lock portion of struct vm_object must be type stable due
299 * to vm_pageout_fallback_object_lock locking a vm object
300 * without holding any references to it.
301 */
302 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
303 #ifdef INVARIANTS
304 vm_object_zdtor,
305 #else
306 NULL,
307 #endif
308 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
309
310 vm_radix_init();
311 }
312
313 void
314 vm_object_clear_flag(vm_object_t object, u_short bits)
315 {
316
317 VM_OBJECT_ASSERT_WLOCKED(object);
318 object->flags &= ~bits;
319 }
320
321 /*
322 * Sets the default memory attribute for the specified object. Pages
323 * that are allocated to this object are by default assigned this memory
324 * attribute.
325 *
326 * Presently, this function must be called before any pages are allocated
327 * to the object. In the future, this requirement may be relaxed for
328 * "default" and "swap" objects.
329 */
330 int
331 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
332 {
333
334 VM_OBJECT_ASSERT_WLOCKED(object);
335 switch (object->type) {
336 case OBJT_DEFAULT:
337 case OBJT_DEVICE:
338 case OBJT_MGTDEVICE:
339 case OBJT_PHYS:
340 case OBJT_SG:
341 case OBJT_SWAP:
342 case OBJT_VNODE:
343 if (!TAILQ_EMPTY(&object->memq))
344 return (KERN_FAILURE);
345 break;
346 case OBJT_DEAD:
347 return (KERN_INVALID_ARGUMENT);
348 default:
349 panic("vm_object_set_memattr: object %p is of undefined type",
350 object);
351 }
352 object->memattr = memattr;
353 return (KERN_SUCCESS);
354 }
355
356 void
357 vm_object_pip_add(vm_object_t object, short i)
358 {
359
360 VM_OBJECT_ASSERT_WLOCKED(object);
361 object->paging_in_progress += i;
362 }
363
364 void
365 vm_object_pip_subtract(vm_object_t object, short i)
366 {
367
368 VM_OBJECT_ASSERT_WLOCKED(object);
369 object->paging_in_progress -= i;
370 }
371
372 void
373 vm_object_pip_wakeup(vm_object_t object)
374 {
375
376 VM_OBJECT_ASSERT_WLOCKED(object);
377 object->paging_in_progress--;
378 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
379 vm_object_clear_flag(object, OBJ_PIPWNT);
380 wakeup(object);
381 }
382 }
383
384 void
385 vm_object_pip_wakeupn(vm_object_t object, short i)
386 {
387
388 VM_OBJECT_ASSERT_WLOCKED(object);
389 if (i)
390 object->paging_in_progress -= i;
391 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
392 vm_object_clear_flag(object, OBJ_PIPWNT);
393 wakeup(object);
394 }
395 }
396
397 void
398 vm_object_pip_wait(vm_object_t object, char *waitid)
399 {
400
401 VM_OBJECT_ASSERT_WLOCKED(object);
402 while (object->paging_in_progress) {
403 object->flags |= OBJ_PIPWNT;
404 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
405 }
406 }
407
408 /*
409 * vm_object_allocate:
410 *
411 * Returns a new object with the given size.
412 */
413 vm_object_t
414 vm_object_allocate(objtype_t type, vm_pindex_t size)
415 {
416 vm_object_t object;
417
418 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
419 _vm_object_allocate(type, size, object);
420 return (object);
421 }
422
423
424 /*
425 * vm_object_reference:
426 *
427 * Gets another reference to the given object. Note: OBJ_DEAD
428 * objects can be referenced during final cleaning.
429 */
430 void
431 vm_object_reference(vm_object_t object)
432 {
433 if (object == NULL)
434 return;
435 VM_OBJECT_WLOCK(object);
436 vm_object_reference_locked(object);
437 VM_OBJECT_WUNLOCK(object);
438 }
439
440 /*
441 * vm_object_reference_locked:
442 *
443 * Gets another reference to the given object.
444 *
445 * The object must be locked.
446 */
447 void
448 vm_object_reference_locked(vm_object_t object)
449 {
450 struct vnode *vp;
451
452 VM_OBJECT_ASSERT_WLOCKED(object);
453 object->ref_count++;
454 if (object->type == OBJT_VNODE) {
455 vp = object->handle;
456 vref(vp);
457 }
458 }
459
460 /*
461 * Handle deallocating an object of type OBJT_VNODE.
462 */
463 static void
464 vm_object_vndeallocate(vm_object_t object)
465 {
466 struct vnode *vp = (struct vnode *) object->handle;
467
468 VM_OBJECT_ASSERT_WLOCKED(object);
469 KASSERT(object->type == OBJT_VNODE,
470 ("vm_object_vndeallocate: not a vnode object"));
471 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
472 #ifdef INVARIANTS
473 if (object->ref_count == 0) {
474 vprint("vm_object_vndeallocate", vp);
475 panic("vm_object_vndeallocate: bad object reference count");
476 }
477 #endif
478
479 /*
480 * The test for text of vp vnode does not need a bypass to
481 * reach right VV_TEXT there, since it is obtained from
482 * object->handle.
483 */
484 if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
485 object->ref_count--;
486 VM_OBJECT_WUNLOCK(object);
487 /* vrele may need the vnode lock. */
488 vrele(vp);
489 } else {
490 vhold(vp);
491 VM_OBJECT_WUNLOCK(object);
492 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
493 vdrop(vp);
494 VM_OBJECT_WLOCK(object);
495 object->ref_count--;
496 if (object->type == OBJT_DEAD) {
497 VM_OBJECT_WUNLOCK(object);
498 VOP_UNLOCK(vp, 0);
499 } else {
500 if (object->ref_count == 0)
501 VOP_UNSET_TEXT(vp);
502 VM_OBJECT_WUNLOCK(object);
503 vput(vp);
504 }
505 }
506 }
507
508 /*
509 * vm_object_deallocate:
510 *
511 * Release a reference to the specified object,
512 * gained either through a vm_object_allocate
513 * or a vm_object_reference call. When all references
514 * are gone, storage associated with this object
515 * may be relinquished.
516 *
517 * No object may be locked.
518 */
519 void
520 vm_object_deallocate(vm_object_t object)
521 {
522 vm_object_t temp;
523 struct vnode *vp;
524
525 while (object != NULL) {
526 VM_OBJECT_WLOCK(object);
527 if (object->type == OBJT_VNODE) {
528 vm_object_vndeallocate(object);
529 return;
530 }
531
532 KASSERT(object->ref_count != 0,
533 ("vm_object_deallocate: object deallocated too many times: %d", object->type));
534
535 /*
536 * If the reference count goes to 0 we start calling
537 * vm_object_terminate() on the object chain.
538 * A ref count of 1 may be a special case depending on the
539 * shadow count being 0 or 1.
540 */
541 object->ref_count--;
542 if (object->ref_count > 1) {
543 VM_OBJECT_WUNLOCK(object);
544 return;
545 } else if (object->ref_count == 1) {
546 if (object->type == OBJT_SWAP &&
547 (object->flags & OBJ_TMPFS) != 0) {
548 vp = object->un_pager.swp.swp_tmpfs;
549 vhold(vp);
550 VM_OBJECT_WUNLOCK(object);
551 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
552 VM_OBJECT_WLOCK(object);
553 if (object->type == OBJT_DEAD ||
554 object->ref_count != 1) {
555 VM_OBJECT_WUNLOCK(object);
556 VOP_UNLOCK(vp, 0);
557 vdrop(vp);
558 return;
559 }
560 if ((object->flags & OBJ_TMPFS) != 0)
561 VOP_UNSET_TEXT(vp);
562 VOP_UNLOCK(vp, 0);
563 vdrop(vp);
564 }
565 if (object->shadow_count == 0 &&
566 object->handle == NULL &&
567 (object->type == OBJT_DEFAULT ||
568 (object->type == OBJT_SWAP &&
569 (object->flags & OBJ_TMPFS_NODE) == 0))) {
570 vm_object_set_flag(object, OBJ_ONEMAPPING);
571 } else if ((object->shadow_count == 1) &&
572 (object->handle == NULL) &&
573 (object->type == OBJT_DEFAULT ||
574 object->type == OBJT_SWAP)) {
575 vm_object_t robject;
576
577 robject = LIST_FIRST(&object->shadow_head);
578 KASSERT(robject != NULL,
579 ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
580 object->ref_count,
581 object->shadow_count));
582 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
583 ("shadowed tmpfs v_object %p", object));
584 if (!VM_OBJECT_TRYWLOCK(robject)) {
585 /*
586 * Avoid a potential deadlock.
587 */
588 object->ref_count++;
589 VM_OBJECT_WUNLOCK(object);
590 /*
591 * More likely than not the thread
592 * holding robject's lock has lower
593 * priority than the current thread.
594 * Let the lower priority thread run.
595 */
596 pause("vmo_de", 1);
597 continue;
598 }
599 /*
600 * Collapse object into its shadow unless its
601 * shadow is dead. In that case, object will
602 * be deallocated by the thread that is
603 * deallocating its shadow.
604 */
605 if ((robject->flags & OBJ_DEAD) == 0 &&
606 (robject->handle == NULL) &&
607 (robject->type == OBJT_DEFAULT ||
608 robject->type == OBJT_SWAP)) {
609
610 robject->ref_count++;
611 retry:
612 if (robject->paging_in_progress) {
613 VM_OBJECT_WUNLOCK(object);
614 vm_object_pip_wait(robject,
615 "objde1");
616 temp = robject->backing_object;
617 if (object == temp) {
618 VM_OBJECT_WLOCK(object);
619 goto retry;
620 }
621 } else if (object->paging_in_progress) {
622 VM_OBJECT_WUNLOCK(robject);
623 object->flags |= OBJ_PIPWNT;
624 VM_OBJECT_SLEEP(object, object,
625 PDROP | PVM, "objde2", 0);
626 VM_OBJECT_WLOCK(robject);
627 temp = robject->backing_object;
628 if (object == temp) {
629 VM_OBJECT_WLOCK(object);
630 goto retry;
631 }
632 } else
633 VM_OBJECT_WUNLOCK(object);
634
635 if (robject->ref_count == 1) {
636 robject->ref_count--;
637 object = robject;
638 goto doterm;
639 }
640 object = robject;
641 vm_object_collapse(object);
642 VM_OBJECT_WUNLOCK(object);
643 continue;
644 }
645 VM_OBJECT_WUNLOCK(robject);
646 }
647 VM_OBJECT_WUNLOCK(object);
648 return;
649 }
650 doterm:
651 temp = object->backing_object;
652 if (temp != NULL) {
653 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
654 ("shadowed tmpfs v_object 2 %p", object));
655 VM_OBJECT_WLOCK(temp);
656 LIST_REMOVE(object, shadow_list);
657 temp->shadow_count--;
658 VM_OBJECT_WUNLOCK(temp);
659 object->backing_object = NULL;
660 }
661 /*
662 * Don't double-terminate, we could be in a termination
663 * recursion due to the terminate having to sync data
664 * to disk.
665 */
666 if ((object->flags & OBJ_DEAD) == 0)
667 vm_object_terminate(object);
668 else
669 VM_OBJECT_WUNLOCK(object);
670 object = temp;
671 }
672 }
673
674 /*
675 * vm_object_destroy removes the object from the global object list
676 * and frees the space for the object.
677 */
678 void
679 vm_object_destroy(vm_object_t object)
680 {
681
682 /*
683 * Release the allocation charge.
684 */
685 if (object->cred != NULL) {
686 swap_release_by_cred(object->charge, object->cred);
687 object->charge = 0;
688 crfree(object->cred);
689 object->cred = NULL;
690 }
691
692 /*
693 * Free the space for the object.
694 */
695 uma_zfree(obj_zone, object);
696 }
697
698 /*
699 * vm_object_terminate actually destroys the specified object, freeing
700 * up all previously used resources.
701 *
702 * The object must be locked.
703 * This routine may block.
704 */
705 void
706 vm_object_terminate(vm_object_t object)
707 {
708 vm_page_t p, p_next;
709
710 VM_OBJECT_ASSERT_WLOCKED(object);
711
712 /*
713 * Make sure no one uses us.
714 */
715 vm_object_set_flag(object, OBJ_DEAD);
716
717 /*
718 * wait for the pageout daemon to be done with the object
719 */
720 vm_object_pip_wait(object, "objtrm");
721
722 KASSERT(!object->paging_in_progress,
723 ("vm_object_terminate: pageout in progress"));
724
725 /*
726 * Clean and free the pages, as appropriate. All references to the
727 * object are gone, so we don't need to lock it.
728 */
729 if (object->type == OBJT_VNODE) {
730 struct vnode *vp = (struct vnode *)object->handle;
731
732 /*
733 * Clean pages and flush buffers.
734 */
735 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
736 VM_OBJECT_WUNLOCK(object);
737
738 vinvalbuf(vp, V_SAVE, 0, 0);
739
740 BO_LOCK(&vp->v_bufobj);
741 vp->v_bufobj.bo_flag |= BO_DEAD;
742 BO_UNLOCK(&vp->v_bufobj);
743
744 VM_OBJECT_WLOCK(object);
745 }
746
747 KASSERT(object->ref_count == 0,
748 ("vm_object_terminate: object with references, ref_count=%d",
749 object->ref_count));
750
751 /*
752 * Free any remaining pageable pages. This also removes them from the
753 * paging queues. However, don't free wired pages, just remove them
754 * from the object. Rather than incrementally removing each page from
755 * the object, the page and object are reset to any empty state.
756 */
757 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
758 vm_page_assert_unbusied(p);
759 vm_page_lock(p);
760 /*
761 * Optimize the page's removal from the object by resetting
762 * its "object" field. Specifically, if the page is not
763 * wired, then the effect of this assignment is that
764 * vm_page_free()'s call to vm_page_remove() will return
765 * immediately without modifying the page or the object.
766 */
767 p->object = NULL;
768 if (p->wire_count == 0) {
769 vm_page_free(p);
770 PCPU_INC(cnt.v_pfree);
771 }
772 vm_page_unlock(p);
773 }
774 /*
775 * If the object contained any pages, then reset it to an empty state.
776 * None of the object's fields, including "resident_page_count", were
777 * modified by the preceding loop.
778 */
779 if (object->resident_page_count != 0) {
780 vm_radix_reclaim_allnodes(&object->rtree);
781 TAILQ_INIT(&object->memq);
782 object->resident_page_count = 0;
783 if (object->type == OBJT_VNODE)
784 vdrop(object->handle);
785 }
786
787 #if VM_NRESERVLEVEL > 0
788 if (__predict_false(!LIST_EMPTY(&object->rvq)))
789 vm_reserv_break_all(object);
790 #endif
791 if (__predict_false(!vm_object_cache_is_empty(object)))
792 vm_page_cache_free(object, 0, 0);
793
794 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
795 object->type == OBJT_SWAP,
796 ("%s: non-swap obj %p has cred", __func__, object));
797
798 /*
799 * Let the pager know object is dead.
800 */
801 vm_pager_deallocate(object);
802 VM_OBJECT_WUNLOCK(object);
803
804 vm_object_destroy(object);
805 }
806
807 /*
808 * Make the page read-only so that we can clear the object flags. However, if
809 * this is a nosync mmap then the object is likely to stay dirty so do not
810 * mess with the page and do not clear the object flags. Returns TRUE if the
811 * page should be flushed, and FALSE otherwise.
812 */
813 static boolean_t
814 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
815 {
816
817 /*
818 * If we have been asked to skip nosync pages and this is a
819 * nosync page, skip it. Note that the object flags were not
820 * cleared in this case so we do not have to set them.
821 */
822 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
823 *clearobjflags = FALSE;
824 return (FALSE);
825 } else {
826 pmap_remove_write(p);
827 return (p->dirty != 0);
828 }
829 }
830
831 /*
832 * vm_object_page_clean
833 *
834 * Clean all dirty pages in the specified range of object. Leaves page
835 * on whatever queue it is currently on. If NOSYNC is set then do not
836 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
837 * leaving the object dirty.
838 *
839 * When stuffing pages asynchronously, allow clustering. XXX we need a
840 * synchronous clustering mode implementation.
841 *
842 * Odd semantics: if start == end, we clean everything.
843 *
844 * The object must be locked.
845 *
846 * Returns FALSE if some page from the range was not written, as
847 * reported by the pager, and TRUE otherwise.
848 */
849 boolean_t
850 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
851 int flags)
852 {
853 vm_page_t np, p;
854 vm_pindex_t pi, tend, tstart;
855 int curgeneration, n, pagerflags;
856 boolean_t clearobjflags, eio, res;
857
858 VM_OBJECT_ASSERT_WLOCKED(object);
859
860 /*
861 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
862 * objects. The check below prevents the function from
863 * operating on non-vnode objects.
864 */
865 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
866 object->resident_page_count == 0)
867 return (TRUE);
868
869 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
870 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
871 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
872
873 tstart = OFF_TO_IDX(start);
874 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
875 clearobjflags = tstart == 0 && tend >= object->size;
876 res = TRUE;
877
878 rescan:
879 curgeneration = object->generation;
880
881 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
882 pi = p->pindex;
883 if (pi >= tend)
884 break;
885 np = TAILQ_NEXT(p, listq);
886 if (p->valid == 0)
887 continue;
888 if (vm_page_sleep_if_busy(p, "vpcwai")) {
889 if (object->generation != curgeneration) {
890 if ((flags & OBJPC_SYNC) != 0)
891 goto rescan;
892 else
893 clearobjflags = FALSE;
894 }
895 np = vm_page_find_least(object, pi);
896 continue;
897 }
898 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
899 continue;
900
901 n = vm_object_page_collect_flush(object, p, pagerflags,
902 flags, &clearobjflags, &eio);
903 if (eio) {
904 res = FALSE;
905 clearobjflags = FALSE;
906 }
907 if (object->generation != curgeneration) {
908 if ((flags & OBJPC_SYNC) != 0)
909 goto rescan;
910 else
911 clearobjflags = FALSE;
912 }
913
914 /*
915 * If the VOP_PUTPAGES() did a truncated write, so
916 * that even the first page of the run is not fully
917 * written, vm_pageout_flush() returns 0 as the run
918 * length. Since the condition that caused truncated
919 * write may be permanent, e.g. exhausted free space,
920 * accepting n == 0 would cause an infinite loop.
921 *
922 * Forwarding the iterator leaves the unwritten page
923 * behind, but there is not much we can do there if
924 * filesystem refuses to write it.
925 */
926 if (n == 0) {
927 n = 1;
928 clearobjflags = FALSE;
929 }
930 np = vm_page_find_least(object, pi + n);
931 }
932 #if 0
933 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
934 #endif
935
936 if (clearobjflags)
937 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
938 return (res);
939 }
940
941 static int
942 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
943 int flags, boolean_t *clearobjflags, boolean_t *eio)
944 {
945 vm_page_t ma[vm_pageout_page_count], p_first, tp;
946 int count, i, mreq, runlen;
947
948 vm_page_lock_assert(p, MA_NOTOWNED);
949 VM_OBJECT_ASSERT_WLOCKED(object);
950
951 count = 1;
952 mreq = 0;
953
954 for (tp = p; count < vm_pageout_page_count; count++) {
955 tp = vm_page_next(tp);
956 if (tp == NULL || vm_page_busied(tp))
957 break;
958 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
959 break;
960 }
961
962 for (p_first = p; count < vm_pageout_page_count; count++) {
963 tp = vm_page_prev(p_first);
964 if (tp == NULL || vm_page_busied(tp))
965 break;
966 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
967 break;
968 p_first = tp;
969 mreq++;
970 }
971
972 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
973 ma[i] = tp;
974
975 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
976 return (runlen);
977 }
978
979 /*
980 * Note that there is absolutely no sense in writing out
981 * anonymous objects, so we track down the vnode object
982 * to write out.
983 * We invalidate (remove) all pages from the address space
984 * for semantic correctness.
985 *
986 * If the backing object is a device object with unmanaged pages, then any
987 * mappings to the specified range of pages must be removed before this
988 * function is called.
989 *
990 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
991 * may start out with a NULL object.
992 */
993 boolean_t
994 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
995 boolean_t syncio, boolean_t invalidate)
996 {
997 vm_object_t backing_object;
998 struct vnode *vp;
999 struct mount *mp;
1000 int error, flags, fsync_after;
1001 boolean_t res;
1002
1003 if (object == NULL)
1004 return (TRUE);
1005 res = TRUE;
1006 error = 0;
1007 VM_OBJECT_WLOCK(object);
1008 while ((backing_object = object->backing_object) != NULL) {
1009 VM_OBJECT_WLOCK(backing_object);
1010 offset += object->backing_object_offset;
1011 VM_OBJECT_WUNLOCK(object);
1012 object = backing_object;
1013 if (object->size < OFF_TO_IDX(offset + size))
1014 size = IDX_TO_OFF(object->size) - offset;
1015 }
1016 /*
1017 * Flush pages if writing is allowed, invalidate them
1018 * if invalidation requested. Pages undergoing I/O
1019 * will be ignored by vm_object_page_remove().
1020 *
1021 * We cannot lock the vnode and then wait for paging
1022 * to complete without deadlocking against vm_fault.
1023 * Instead we simply call vm_object_page_remove() and
1024 * allow it to block internally on a page-by-page
1025 * basis when it encounters pages undergoing async
1026 * I/O.
1027 */
1028 if (object->type == OBJT_VNODE &&
1029 (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1030 vp = object->handle;
1031 VM_OBJECT_WUNLOCK(object);
1032 (void) vn_start_write(vp, &mp, V_WAIT);
1033 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1034 if (syncio && !invalidate && offset == 0 &&
1035 OFF_TO_IDX(size) == object->size) {
1036 /*
1037 * If syncing the whole mapping of the file,
1038 * it is faster to schedule all the writes in
1039 * async mode, also allowing the clustering,
1040 * and then wait for i/o to complete.
1041 */
1042 flags = 0;
1043 fsync_after = TRUE;
1044 } else {
1045 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1046 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1047 fsync_after = FALSE;
1048 }
1049 VM_OBJECT_WLOCK(object);
1050 res = vm_object_page_clean(object, offset, offset + size,
1051 flags);
1052 VM_OBJECT_WUNLOCK(object);
1053 if (fsync_after)
1054 error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1055 VOP_UNLOCK(vp, 0);
1056 vn_finished_write(mp);
1057 if (error != 0)
1058 res = FALSE;
1059 VM_OBJECT_WLOCK(object);
1060 }
1061 if ((object->type == OBJT_VNODE ||
1062 object->type == OBJT_DEVICE) && invalidate) {
1063 if (object->type == OBJT_DEVICE)
1064 /*
1065 * The option OBJPR_NOTMAPPED must be passed here
1066 * because vm_object_page_remove() cannot remove
1067 * unmanaged mappings.
1068 */
1069 flags = OBJPR_NOTMAPPED;
1070 else if (old_msync)
1071 flags = 0;
1072 else
1073 flags = OBJPR_CLEANONLY;
1074 vm_object_page_remove(object, OFF_TO_IDX(offset),
1075 OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1076 }
1077 VM_OBJECT_WUNLOCK(object);
1078 return (res);
1079 }
1080
1081 /*
1082 * vm_object_madvise:
1083 *
1084 * Implements the madvise function at the object/page level.
1085 *
1086 * MADV_WILLNEED (any object)
1087 *
1088 * Activate the specified pages if they are resident.
1089 *
1090 * MADV_DONTNEED (any object)
1091 *
1092 * Deactivate the specified pages if they are resident.
1093 *
1094 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects,
1095 * OBJ_ONEMAPPING only)
1096 *
1097 * Deactivate and clean the specified pages if they are
1098 * resident. This permits the process to reuse the pages
1099 * without faulting or the kernel to reclaim the pages
1100 * without I/O.
1101 */
1102 void
1103 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1104 int advise)
1105 {
1106 vm_pindex_t tpindex;
1107 vm_object_t backing_object, tobject;
1108 vm_page_t m;
1109
1110 if (object == NULL)
1111 return;
1112 VM_OBJECT_WLOCK(object);
1113 /*
1114 * Locate and adjust resident pages
1115 */
1116 for (; pindex < end; pindex += 1) {
1117 relookup:
1118 tobject = object;
1119 tpindex = pindex;
1120 shadowlookup:
1121 /*
1122 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1123 * and those pages must be OBJ_ONEMAPPING.
1124 */
1125 if (advise == MADV_FREE) {
1126 if ((tobject->type != OBJT_DEFAULT &&
1127 tobject->type != OBJT_SWAP) ||
1128 (tobject->flags & OBJ_ONEMAPPING) == 0) {
1129 goto unlock_tobject;
1130 }
1131 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1132 goto unlock_tobject;
1133 m = vm_page_lookup(tobject, tpindex);
1134 if (m == NULL && advise == MADV_WILLNEED) {
1135 /*
1136 * If the page is cached, reactivate it.
1137 */
1138 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1139 VM_ALLOC_NOBUSY);
1140 }
1141 if (m == NULL) {
1142 /*
1143 * There may be swap even if there is no backing page
1144 */
1145 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1146 swap_pager_freespace(tobject, tpindex, 1);
1147 /*
1148 * next object
1149 */
1150 backing_object = tobject->backing_object;
1151 if (backing_object == NULL)
1152 goto unlock_tobject;
1153 VM_OBJECT_WLOCK(backing_object);
1154 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1155 if (tobject != object)
1156 VM_OBJECT_WUNLOCK(tobject);
1157 tobject = backing_object;
1158 goto shadowlookup;
1159 } else if (m->valid != VM_PAGE_BITS_ALL)
1160 goto unlock_tobject;
1161 /*
1162 * If the page is not in a normal state, skip it.
1163 */
1164 vm_page_lock(m);
1165 if (m->hold_count != 0 || m->wire_count != 0) {
1166 vm_page_unlock(m);
1167 goto unlock_tobject;
1168 }
1169 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1170 ("vm_object_madvise: page %p is fictitious", m));
1171 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1172 ("vm_object_madvise: page %p is not managed", m));
1173 if (vm_page_busied(m)) {
1174 if (advise == MADV_WILLNEED) {
1175 /*
1176 * Reference the page before unlocking and
1177 * sleeping so that the page daemon is less
1178 * likely to reclaim it.
1179 */
1180 vm_page_aflag_set(m, PGA_REFERENCED);
1181 }
1182 if (object != tobject)
1183 VM_OBJECT_WUNLOCK(object);
1184 VM_OBJECT_WUNLOCK(tobject);
1185 vm_page_busy_sleep(m, "madvpo", false);
1186 VM_OBJECT_WLOCK(object);
1187 goto relookup;
1188 }
1189 if (advise == MADV_WILLNEED) {
1190 vm_page_activate(m);
1191 } else {
1192 vm_page_advise(m, advise);
1193 }
1194 vm_page_unlock(m);
1195 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1196 swap_pager_freespace(tobject, tpindex, 1);
1197 unlock_tobject:
1198 if (tobject != object)
1199 VM_OBJECT_WUNLOCK(tobject);
1200 }
1201 VM_OBJECT_WUNLOCK(object);
1202 }
1203
1204 /*
1205 * vm_object_shadow:
1206 *
1207 * Create a new object which is backed by the
1208 * specified existing object range. The source
1209 * object reference is deallocated.
1210 *
1211 * The new object and offset into that object
1212 * are returned in the source parameters.
1213 */
1214 void
1215 vm_object_shadow(
1216 vm_object_t *object, /* IN/OUT */
1217 vm_ooffset_t *offset, /* IN/OUT */
1218 vm_size_t length)
1219 {
1220 vm_object_t source;
1221 vm_object_t result;
1222
1223 source = *object;
1224
1225 /*
1226 * Don't create the new object if the old object isn't shared.
1227 */
1228 if (source != NULL) {
1229 VM_OBJECT_WLOCK(source);
1230 if (source->ref_count == 1 &&
1231 source->handle == NULL &&
1232 (source->type == OBJT_DEFAULT ||
1233 source->type == OBJT_SWAP)) {
1234 VM_OBJECT_WUNLOCK(source);
1235 return;
1236 }
1237 VM_OBJECT_WUNLOCK(source);
1238 }
1239
1240 /*
1241 * Allocate a new object with the given length.
1242 */
1243 result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1244
1245 /*
1246 * The new object shadows the source object, adding a reference to it.
1247 * Our caller changes his reference to point to the new object,
1248 * removing a reference to the source object. Net result: no change
1249 * of reference count.
1250 *
1251 * Try to optimize the result object's page color when shadowing
1252 * in order to maintain page coloring consistency in the combined
1253 * shadowed object.
1254 */
1255 result->backing_object = source;
1256 /*
1257 * Store the offset into the source object, and fix up the offset into
1258 * the new object.
1259 */
1260 result->backing_object_offset = *offset;
1261 if (source != NULL) {
1262 VM_OBJECT_WLOCK(source);
1263 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1264 source->shadow_count++;
1265 #if VM_NRESERVLEVEL > 0
1266 result->flags |= source->flags & OBJ_COLORED;
1267 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1268 ((1 << (VM_NFREEORDER - 1)) - 1);
1269 #endif
1270 VM_OBJECT_WUNLOCK(source);
1271 }
1272
1273
1274 /*
1275 * Return the new things
1276 */
1277 *offset = 0;
1278 *object = result;
1279 }
1280
1281 /*
1282 * vm_object_split:
1283 *
1284 * Split the pages in a map entry into a new object. This affords
1285 * easier removal of unused pages, and keeps object inheritance from
1286 * being a negative impact on memory usage.
1287 */
1288 void
1289 vm_object_split(vm_map_entry_t entry)
1290 {
1291 vm_page_t m, m_next;
1292 vm_object_t orig_object, new_object, source;
1293 vm_pindex_t idx, offidxstart;
1294 vm_size_t size;
1295
1296 orig_object = entry->object.vm_object;
1297 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1298 return;
1299 if (orig_object->ref_count <= 1)
1300 return;
1301 VM_OBJECT_WUNLOCK(orig_object);
1302
1303 offidxstart = OFF_TO_IDX(entry->offset);
1304 size = atop(entry->end - entry->start);
1305
1306 /*
1307 * If swap_pager_copy() is later called, it will convert new_object
1308 * into a swap object.
1309 */
1310 new_object = vm_object_allocate(OBJT_DEFAULT, size);
1311
1312 /*
1313 * At this point, the new object is still private, so the order in
1314 * which the original and new objects are locked does not matter.
1315 */
1316 VM_OBJECT_WLOCK(new_object);
1317 VM_OBJECT_WLOCK(orig_object);
1318 source = orig_object->backing_object;
1319 if (source != NULL) {
1320 VM_OBJECT_WLOCK(source);
1321 if ((source->flags & OBJ_DEAD) != 0) {
1322 VM_OBJECT_WUNLOCK(source);
1323 VM_OBJECT_WUNLOCK(orig_object);
1324 VM_OBJECT_WUNLOCK(new_object);
1325 vm_object_deallocate(new_object);
1326 VM_OBJECT_WLOCK(orig_object);
1327 return;
1328 }
1329 LIST_INSERT_HEAD(&source->shadow_head,
1330 new_object, shadow_list);
1331 source->shadow_count++;
1332 vm_object_reference_locked(source); /* for new_object */
1333 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1334 VM_OBJECT_WUNLOCK(source);
1335 new_object->backing_object_offset =
1336 orig_object->backing_object_offset + entry->offset;
1337 new_object->backing_object = source;
1338 }
1339 if (orig_object->cred != NULL) {
1340 new_object->cred = orig_object->cred;
1341 crhold(orig_object->cred);
1342 new_object->charge = ptoa(size);
1343 KASSERT(orig_object->charge >= ptoa(size),
1344 ("orig_object->charge < 0"));
1345 orig_object->charge -= ptoa(size);
1346 }
1347 retry:
1348 m = vm_page_find_least(orig_object, offidxstart);
1349 for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1350 m = m_next) {
1351 m_next = TAILQ_NEXT(m, listq);
1352
1353 /*
1354 * We must wait for pending I/O to complete before we can
1355 * rename the page.
1356 *
1357 * We do not have to VM_PROT_NONE the page as mappings should
1358 * not be changed by this operation.
1359 */
1360 if (vm_page_busied(m)) {
1361 VM_OBJECT_WUNLOCK(new_object);
1362 vm_page_lock(m);
1363 VM_OBJECT_WUNLOCK(orig_object);
1364 vm_page_busy_sleep(m, "spltwt", false);
1365 VM_OBJECT_WLOCK(orig_object);
1366 VM_OBJECT_WLOCK(new_object);
1367 goto retry;
1368 }
1369
1370 /* vm_page_rename() will handle dirty and cache. */
1371 if (vm_page_rename(m, new_object, idx)) {
1372 VM_OBJECT_WUNLOCK(new_object);
1373 VM_OBJECT_WUNLOCK(orig_object);
1374 VM_WAIT;
1375 VM_OBJECT_WLOCK(orig_object);
1376 VM_OBJECT_WLOCK(new_object);
1377 goto retry;
1378 }
1379 #if VM_NRESERVLEVEL > 0
1380 /*
1381 * If some of the reservation's allocated pages remain with
1382 * the original object, then transferring the reservation to
1383 * the new object is neither particularly beneficial nor
1384 * particularly harmful as compared to leaving the reservation
1385 * with the original object. If, however, all of the
1386 * reservation's allocated pages are transferred to the new
1387 * object, then transferring the reservation is typically
1388 * beneficial. Determining which of these two cases applies
1389 * would be more costly than unconditionally renaming the
1390 * reservation.
1391 */
1392 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1393 #endif
1394 if (orig_object->type == OBJT_SWAP)
1395 vm_page_xbusy(m);
1396 }
1397 if (orig_object->type == OBJT_SWAP) {
1398 /*
1399 * swap_pager_copy() can sleep, in which case the orig_object's
1400 * and new_object's locks are released and reacquired.
1401 */
1402 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1403 TAILQ_FOREACH(m, &new_object->memq, listq)
1404 vm_page_xunbusy(m);
1405
1406 /*
1407 * Transfer any cached pages from orig_object to new_object.
1408 * If swap_pager_copy() found swapped out pages within the
1409 * specified range of orig_object, then it changed
1410 * new_object's type to OBJT_SWAP when it transferred those
1411 * pages to new_object. Otherwise, new_object's type
1412 * should still be OBJT_DEFAULT and orig_object should not
1413 * contain any cached pages within the specified range.
1414 */
1415 if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1416 vm_page_cache_transfer(orig_object, offidxstart,
1417 new_object);
1418 }
1419 VM_OBJECT_WUNLOCK(orig_object);
1420 VM_OBJECT_WUNLOCK(new_object);
1421 entry->object.vm_object = new_object;
1422 entry->offset = 0LL;
1423 vm_object_deallocate(orig_object);
1424 VM_OBJECT_WLOCK(new_object);
1425 }
1426
1427 #define OBSC_TEST_ALL_SHADOWED 0x0001
1428 #define OBSC_COLLAPSE_NOWAIT 0x0002
1429 #define OBSC_COLLAPSE_WAIT 0x0004
1430
1431 static vm_page_t
1432 vm_object_backing_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1433 int op)
1434 {
1435 vm_object_t backing_object;
1436
1437 VM_OBJECT_ASSERT_WLOCKED(object);
1438 backing_object = object->backing_object;
1439 VM_OBJECT_ASSERT_WLOCKED(backing_object);
1440
1441 KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1442 KASSERT(p == NULL || p->object == object || p->object == backing_object,
1443 ("invalid ownership %p %p %p", p, object, backing_object));
1444 if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1445 return (next);
1446 if (p != NULL)
1447 vm_page_lock(p);
1448 VM_OBJECT_WUNLOCK(object);
1449 VM_OBJECT_WUNLOCK(backing_object);
1450 if (p == NULL)
1451 VM_WAIT;
1452 else
1453 vm_page_busy_sleep(p, "vmocol", false);
1454 VM_OBJECT_WLOCK(object);
1455 VM_OBJECT_WLOCK(backing_object);
1456 return (TAILQ_FIRST(&backing_object->memq));
1457 }
1458
1459 static bool
1460 vm_object_backing_scan(vm_object_t object, int op)
1461 {
1462 vm_object_t backing_object;
1463 vm_page_t next, p, pp;
1464 vm_pindex_t backing_offset_index, new_pindex;
1465
1466 VM_OBJECT_ASSERT_WLOCKED(object);
1467 VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1468
1469 backing_object = object->backing_object;
1470 backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1471
1472 /*
1473 * Initial conditions
1474 */
1475 if (op & OBSC_TEST_ALL_SHADOWED) {
1476 /*
1477 * We do not want to have to test for the existence of cache
1478 * or swap pages in the backing object. XXX but with the
1479 * new swapper this would be pretty easy to do.
1480 *
1481 * XXX what about anonymous MAP_SHARED memory that hasn't
1482 * been ZFOD faulted yet? If we do not test for this, the
1483 * shadow test may succeed! XXX
1484 */
1485 if (backing_object->type != OBJT_DEFAULT) {
1486 return (false);
1487 }
1488 }
1489 if (op & OBSC_COLLAPSE_WAIT) {
1490 vm_object_set_flag(backing_object, OBJ_DEAD);
1491 }
1492
1493 /*
1494 * Our scan
1495 */
1496 p = TAILQ_FIRST(&backing_object->memq);
1497 while (p) {
1498 next = TAILQ_NEXT(p, listq);
1499 new_pindex = p->pindex - backing_offset_index;
1500 if (op & OBSC_TEST_ALL_SHADOWED) {
1501 /*
1502 * Ignore pages outside the parent object's range
1503 * and outside the parent object's mapping of the
1504 * backing object.
1505 *
1506 * Note that we do not busy the backing object's
1507 * page.
1508 */
1509 if (p->pindex < backing_offset_index ||
1510 new_pindex >= object->size) {
1511 p = next;
1512 continue;
1513 }
1514
1515 /*
1516 * See if the parent has the page or if the parent's
1517 * object pager has the page. If the parent has the
1518 * page but the page is not valid, the parent's
1519 * object pager must have the page.
1520 *
1521 * If this fails, the parent does not completely shadow
1522 * the object and we might as well give up now.
1523 */
1524
1525 pp = vm_page_lookup(object, new_pindex);
1526 if ((pp == NULL || pp->valid == 0) &&
1527 !vm_pager_has_page(object, new_pindex, NULL, NULL))
1528 return (false);
1529 }
1530
1531 /*
1532 * Check for busy page
1533 */
1534 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1535 if (vm_page_busied(p)) {
1536 p = vm_object_backing_scan_wait(object, p,
1537 next, op);
1538 continue;
1539 }
1540
1541 KASSERT(p->object == backing_object,
1542 ("vm_object_backing_scan: object mismatch"));
1543
1544 if (p->pindex < backing_offset_index ||
1545 new_pindex >= object->size) {
1546 if (backing_object->type == OBJT_SWAP)
1547 swap_pager_freespace(backing_object,
1548 p->pindex, 1);
1549
1550 /*
1551 * Page is out of the parent object's range, we
1552 * can simply destroy it.
1553 */
1554 vm_page_lock(p);
1555 KASSERT(!pmap_page_is_mapped(p),
1556 ("freeing mapped page %p", p));
1557 if (p->wire_count == 0)
1558 vm_page_free(p);
1559 else
1560 vm_page_remove(p);
1561 vm_page_unlock(p);
1562 p = next;
1563 continue;
1564 }
1565
1566 pp = vm_page_lookup(object, new_pindex);
1567 if (pp != NULL && vm_page_busied(pp)) {
1568 /*
1569 * The page in the parent is busy and
1570 * possibly not (yet) valid. Until
1571 * its state is finalized by the busy
1572 * bit owner, we can't tell whether it
1573 * shadows the original page.
1574 * Therefore, we must either skip it
1575 * and the original (backing_object)
1576 * page or wait for its state to be
1577 * finalized.
1578 *
1579 * This is due to a race with vm_fault()
1580 * where we must unbusy the original
1581 * (backing_obj) page before we can
1582 * (re)lock the parent. Hence we can
1583 * get here.
1584 */
1585 p = vm_object_backing_scan_wait(object, pp,
1586 next, op);
1587 continue;
1588 }
1589
1590 KASSERT(pp == NULL || pp->valid != 0,
1591 ("unbusy invalid page %p", pp));
1592
1593 if (pp != NULL || vm_pager_has_page(object,
1594 new_pindex, NULL, NULL)) {
1595 /*
1596 * The page already exists in the
1597 * parent OR swap exists for this
1598 * location in the parent. Leave the
1599 * parent's page alone. Destroy the
1600 * original page from the backing
1601 * object.
1602 */
1603 if (backing_object->type == OBJT_SWAP)
1604 swap_pager_freespace(backing_object,
1605 p->pindex, 1);
1606 vm_page_lock(p);
1607 KASSERT(!pmap_page_is_mapped(p),
1608 ("freeing mapped page %p", p));
1609 if (p->wire_count == 0)
1610 vm_page_free(p);
1611 else
1612 vm_page_remove(p);
1613 vm_page_unlock(p);
1614 p = next;
1615 continue;
1616 }
1617
1618 /*
1619 * Page does not exist in parent, rename the
1620 * page from the backing object to the main object.
1621 *
1622 * If the page was mapped to a process, it can remain
1623 * mapped through the rename.
1624 * vm_page_rename() will handle dirty and cache.
1625 */
1626 if (vm_page_rename(p, object, new_pindex)) {
1627 p = vm_object_backing_scan_wait(object, NULL,
1628 next, op);
1629 continue;
1630 }
1631
1632 /* Use the old pindex to free the right page. */
1633 if (backing_object->type == OBJT_SWAP)
1634 swap_pager_freespace(backing_object,
1635 new_pindex + backing_offset_index, 1);
1636
1637 #if VM_NRESERVLEVEL > 0
1638 /*
1639 * Rename the reservation.
1640 */
1641 vm_reserv_rename(p, object, backing_object,
1642 backing_offset_index);
1643 #endif
1644 }
1645 p = next;
1646 }
1647 return (true);
1648 }
1649
1650
1651 /*
1652 * this version of collapse allows the operation to occur earlier and
1653 * when paging_in_progress is true for an object... This is not a complete
1654 * operation, but should plug 99.9% of the rest of the leaks.
1655 */
1656 static void
1657 vm_object_qcollapse(vm_object_t object)
1658 {
1659 vm_object_t backing_object = object->backing_object;
1660
1661 VM_OBJECT_ASSERT_WLOCKED(object);
1662 VM_OBJECT_ASSERT_WLOCKED(backing_object);
1663
1664 if (backing_object->ref_count != 1)
1665 return;
1666
1667 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1668 }
1669
1670 /*
1671 * vm_object_collapse:
1672 *
1673 * Collapse an object with the object backing it.
1674 * Pages in the backing object are moved into the
1675 * parent, and the backing object is deallocated.
1676 */
1677 void
1678 vm_object_collapse(vm_object_t object)
1679 {
1680 vm_object_t backing_object, new_backing_object;
1681
1682 VM_OBJECT_ASSERT_WLOCKED(object);
1683
1684 while (TRUE) {
1685 /*
1686 * Verify that the conditions are right for collapse:
1687 *
1688 * The object exists and the backing object exists.
1689 */
1690 if ((backing_object = object->backing_object) == NULL)
1691 break;
1692
1693 /*
1694 * we check the backing object first, because it is most likely
1695 * not collapsable.
1696 */
1697 VM_OBJECT_WLOCK(backing_object);
1698 if (backing_object->handle != NULL ||
1699 (backing_object->type != OBJT_DEFAULT &&
1700 backing_object->type != OBJT_SWAP) ||
1701 (backing_object->flags & OBJ_DEAD) ||
1702 object->handle != NULL ||
1703 (object->type != OBJT_DEFAULT &&
1704 object->type != OBJT_SWAP) ||
1705 (object->flags & OBJ_DEAD)) {
1706 VM_OBJECT_WUNLOCK(backing_object);
1707 break;
1708 }
1709
1710 if (object->paging_in_progress != 0 ||
1711 backing_object->paging_in_progress != 0) {
1712 vm_object_qcollapse(object);
1713 VM_OBJECT_WUNLOCK(backing_object);
1714 break;
1715 }
1716
1717 /*
1718 * We know that we can either collapse the backing object (if
1719 * the parent is the only reference to it) or (perhaps) have
1720 * the parent bypass the object if the parent happens to shadow
1721 * all the resident pages in the entire backing object.
1722 *
1723 * This is ignoring pager-backed pages such as swap pages.
1724 * vm_object_backing_scan fails the shadowing test in this
1725 * case.
1726 */
1727 if (backing_object->ref_count == 1) {
1728 vm_object_pip_add(object, 1);
1729 vm_object_pip_add(backing_object, 1);
1730
1731 /*
1732 * If there is exactly one reference to the backing
1733 * object, we can collapse it into the parent.
1734 */
1735 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1736
1737 #if VM_NRESERVLEVEL > 0
1738 /*
1739 * Break any reservations from backing_object.
1740 */
1741 if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1742 vm_reserv_break_all(backing_object);
1743 #endif
1744
1745 /*
1746 * Move the pager from backing_object to object.
1747 */
1748 if (backing_object->type == OBJT_SWAP) {
1749 /*
1750 * swap_pager_copy() can sleep, in which case
1751 * the backing_object's and object's locks are
1752 * released and reacquired.
1753 * Since swap_pager_copy() is being asked to
1754 * destroy the source, it will change the
1755 * backing_object's type to OBJT_DEFAULT.
1756 */
1757 swap_pager_copy(
1758 backing_object,
1759 object,
1760 OFF_TO_IDX(object->backing_object_offset), TRUE);
1761
1762 /*
1763 * Free any cached pages from backing_object.
1764 */
1765 if (__predict_false(
1766 !vm_object_cache_is_empty(backing_object)))
1767 vm_page_cache_free(backing_object, 0, 0);
1768 }
1769 /*
1770 * Object now shadows whatever backing_object did.
1771 * Note that the reference to
1772 * backing_object->backing_object moves from within
1773 * backing_object to within object.
1774 */
1775 LIST_REMOVE(object, shadow_list);
1776 backing_object->shadow_count--;
1777 if (backing_object->backing_object) {
1778 VM_OBJECT_WLOCK(backing_object->backing_object);
1779 LIST_REMOVE(backing_object, shadow_list);
1780 LIST_INSERT_HEAD(
1781 &backing_object->backing_object->shadow_head,
1782 object, shadow_list);
1783 /*
1784 * The shadow_count has not changed.
1785 */
1786 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1787 }
1788 object->backing_object = backing_object->backing_object;
1789 object->backing_object_offset +=
1790 backing_object->backing_object_offset;
1791
1792 /*
1793 * Discard backing_object.
1794 *
1795 * Since the backing object has no pages, no pager left,
1796 * and no object references within it, all that is
1797 * necessary is to dispose of it.
1798 */
1799 KASSERT(backing_object->ref_count == 1, (
1800 "backing_object %p was somehow re-referenced during collapse!",
1801 backing_object));
1802 vm_object_pip_wakeup(backing_object);
1803 backing_object->type = OBJT_DEAD;
1804 backing_object->ref_count = 0;
1805 VM_OBJECT_WUNLOCK(backing_object);
1806 vm_object_destroy(backing_object);
1807
1808 vm_object_pip_wakeup(object);
1809 object_collapses++;
1810 } else {
1811 /*
1812 * If we do not entirely shadow the backing object,
1813 * there is nothing we can do so we give up.
1814 */
1815 if (object->resident_page_count != object->size &&
1816 !vm_object_backing_scan(object,
1817 OBSC_TEST_ALL_SHADOWED)) {
1818 VM_OBJECT_WUNLOCK(backing_object);
1819 break;
1820 }
1821
1822 /*
1823 * Make the parent shadow the next object in the
1824 * chain. Deallocating backing_object will not remove
1825 * it, since its reference count is at least 2.
1826 */
1827 LIST_REMOVE(object, shadow_list);
1828 backing_object->shadow_count--;
1829
1830 new_backing_object = backing_object->backing_object;
1831 if ((object->backing_object = new_backing_object) != NULL) {
1832 VM_OBJECT_WLOCK(new_backing_object);
1833 LIST_INSERT_HEAD(
1834 &new_backing_object->shadow_head,
1835 object,
1836 shadow_list
1837 );
1838 new_backing_object->shadow_count++;
1839 vm_object_reference_locked(new_backing_object);
1840 VM_OBJECT_WUNLOCK(new_backing_object);
1841 object->backing_object_offset +=
1842 backing_object->backing_object_offset;
1843 }
1844
1845 /*
1846 * Drop the reference count on backing_object. Since
1847 * its ref_count was at least 2, it will not vanish.
1848 */
1849 backing_object->ref_count--;
1850 VM_OBJECT_WUNLOCK(backing_object);
1851 object_bypasses++;
1852 }
1853
1854 /*
1855 * Try again with this object's new backing object.
1856 */
1857 }
1858 }
1859
1860 /*
1861 * vm_object_page_remove:
1862 *
1863 * For the given object, either frees or invalidates each of the
1864 * specified pages. In general, a page is freed. However, if a page is
1865 * wired for any reason other than the existence of a managed, wired
1866 * mapping, then it may be invalidated but not removed from the object.
1867 * Pages are specified by the given range ["start", "end") and the option
1868 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range
1869 * extends from "start" to the end of the object. If the option
1870 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1871 * specified range are affected. If the option OBJPR_NOTMAPPED is
1872 * specified, then the pages within the specified range must have no
1873 * mappings. Otherwise, if this option is not specified, any mappings to
1874 * the specified pages are removed before the pages are freed or
1875 * invalidated.
1876 *
1877 * In general, this operation should only be performed on objects that
1878 * contain managed pages. There are, however, two exceptions. First, it
1879 * is performed on the kernel and kmem objects by vm_map_entry_delete().
1880 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1881 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must
1882 * not be specified and the option OBJPR_NOTMAPPED must be specified.
1883 *
1884 * The object must be locked.
1885 */
1886 void
1887 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1888 int options)
1889 {
1890 vm_page_t p, next;
1891
1892 VM_OBJECT_ASSERT_WLOCKED(object);
1893 KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1894 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1895 ("vm_object_page_remove: illegal options for object %p", object));
1896 if (object->resident_page_count == 0)
1897 goto skipmemq;
1898 vm_object_pip_add(object, 1);
1899 again:
1900 p = vm_page_find_least(object, start);
1901
1902 /*
1903 * Here, the variable "p" is either (1) the page with the least pindex
1904 * greater than or equal to the parameter "start" or (2) NULL.
1905 */
1906 for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1907 next = TAILQ_NEXT(p, listq);
1908
1909 /*
1910 * If the page is wired for any reason besides the existence
1911 * of managed, wired mappings, then it cannot be freed. For
1912 * example, fictitious pages, which represent device memory,
1913 * are inherently wired and cannot be freed. They can,
1914 * however, be invalidated if the option OBJPR_CLEANONLY is
1915 * not specified.
1916 */
1917 vm_page_lock(p);
1918 if (vm_page_xbusied(p)) {
1919 VM_OBJECT_WUNLOCK(object);
1920 vm_page_busy_sleep(p, "vmopax", true);
1921 VM_OBJECT_WLOCK(object);
1922 goto again;
1923 }
1924 if (p->wire_count != 0) {
1925 if ((options & OBJPR_NOTMAPPED) == 0)
1926 pmap_remove_all(p);
1927 if ((options & OBJPR_CLEANONLY) == 0) {
1928 p->valid = 0;
1929 vm_page_undirty(p);
1930 }
1931 goto next;
1932 }
1933 if (vm_page_busied(p)) {
1934 VM_OBJECT_WUNLOCK(object);
1935 vm_page_busy_sleep(p, "vmopar", false);
1936 VM_OBJECT_WLOCK(object);
1937 goto again;
1938 }
1939 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1940 ("vm_object_page_remove: page %p is fictitious", p));
1941 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1942 if ((options & OBJPR_NOTMAPPED) == 0)
1943 pmap_remove_write(p);
1944 if (p->dirty)
1945 goto next;
1946 }
1947 if ((options & OBJPR_NOTMAPPED) == 0)
1948 pmap_remove_all(p);
1949 vm_page_free(p);
1950 next:
1951 vm_page_unlock(p);
1952 }
1953 vm_object_pip_wakeup(object);
1954 skipmemq:
1955 if (__predict_false(!vm_object_cache_is_empty(object)))
1956 vm_page_cache_free(object, start, end);
1957 }
1958
1959 /*
1960 * vm_object_page_cache:
1961 *
1962 * For the given object, attempt to move the specified clean
1963 * pages to the cache queue. If a page is wired for any reason,
1964 * then it will not be changed. Pages are specified by the given
1965 * range ["start", "end"). As a special case, if "end" is zero,
1966 * then the range extends from "start" to the end of the object.
1967 * Any mappings to the specified pages are removed before the
1968 * pages are moved to the cache queue.
1969 *
1970 * This operation should only be performed on objects that
1971 * contain non-fictitious, managed pages.
1972 *
1973 * The object must be locked.
1974 */
1975 void
1976 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1977 {
1978 struct mtx *mtx, *new_mtx;
1979 vm_page_t p, next;
1980
1981 VM_OBJECT_ASSERT_WLOCKED(object);
1982 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1983 ("vm_object_page_cache: illegal object %p", object));
1984 if (object->resident_page_count == 0)
1985 return;
1986 p = vm_page_find_least(object, start);
1987
1988 /*
1989 * Here, the variable "p" is either (1) the page with the least pindex
1990 * greater than or equal to the parameter "start" or (2) NULL.
1991 */
1992 mtx = NULL;
1993 for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1994 next = TAILQ_NEXT(p, listq);
1995
1996 /*
1997 * Avoid releasing and reacquiring the same page lock.
1998 */
1999 new_mtx = vm_page_lockptr(p);
2000 if (mtx != new_mtx) {
2001 if (mtx != NULL)
2002 mtx_unlock(mtx);
2003 mtx = new_mtx;
2004 mtx_lock(mtx);
2005 }
2006 vm_page_try_to_cache(p);
2007 }
2008 if (mtx != NULL)
2009 mtx_unlock(mtx);
2010 }
2011
2012 /*
2013 * Populate the specified range of the object with valid pages. Returns
2014 * TRUE if the range is successfully populated and FALSE otherwise.
2015 *
2016 * Note: This function should be optimized to pass a larger array of
2017 * pages to vm_pager_get_pages() before it is applied to a non-
2018 * OBJT_DEVICE object.
2019 *
2020 * The object must be locked.
2021 */
2022 boolean_t
2023 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2024 {
2025 vm_page_t m, ma[1];
2026 vm_pindex_t pindex;
2027 int rv;
2028
2029 VM_OBJECT_ASSERT_WLOCKED(object);
2030 for (pindex = start; pindex < end; pindex++) {
2031 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2032 if (m->valid != VM_PAGE_BITS_ALL) {
2033 ma[0] = m;
2034 rv = vm_pager_get_pages(object, ma, 1, 0);
2035 m = vm_page_lookup(object, pindex);
2036 if (m == NULL)
2037 break;
2038 if (rv != VM_PAGER_OK) {
2039 vm_page_lock(m);
2040 vm_page_free(m);
2041 vm_page_unlock(m);
2042 break;
2043 }
2044 }
2045 /*
2046 * Keep "m" busy because a subsequent iteration may unlock
2047 * the object.
2048 */
2049 }
2050 if (pindex > start) {
2051 m = vm_page_lookup(object, start);
2052 while (m != NULL && m->pindex < pindex) {
2053 vm_page_xunbusy(m);
2054 m = TAILQ_NEXT(m, listq);
2055 }
2056 }
2057 return (pindex == end);
2058 }
2059
2060 /*
2061 * Routine: vm_object_coalesce
2062 * Function: Coalesces two objects backing up adjoining
2063 * regions of memory into a single object.
2064 *
2065 * returns TRUE if objects were combined.
2066 *
2067 * NOTE: Only works at the moment if the second object is NULL -
2068 * if it's not, which object do we lock first?
2069 *
2070 * Parameters:
2071 * prev_object First object to coalesce
2072 * prev_offset Offset into prev_object
2073 * prev_size Size of reference to prev_object
2074 * next_size Size of reference to the second object
2075 * reserved Indicator that extension region has
2076 * swap accounted for
2077 *
2078 * Conditions:
2079 * The object must *not* be locked.
2080 */
2081 boolean_t
2082 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2083 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2084 {
2085 vm_pindex_t next_pindex;
2086
2087 if (prev_object == NULL)
2088 return (TRUE);
2089 VM_OBJECT_WLOCK(prev_object);
2090 if ((prev_object->type != OBJT_DEFAULT &&
2091 prev_object->type != OBJT_SWAP) ||
2092 (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2093 VM_OBJECT_WUNLOCK(prev_object);
2094 return (FALSE);
2095 }
2096
2097 /*
2098 * Try to collapse the object first
2099 */
2100 vm_object_collapse(prev_object);
2101
2102 /*
2103 * Can't coalesce if: . more than one reference . paged out . shadows
2104 * another object . has a copy elsewhere (any of which mean that the
2105 * pages not mapped to prev_entry may be in use anyway)
2106 */
2107 if (prev_object->backing_object != NULL) {
2108 VM_OBJECT_WUNLOCK(prev_object);
2109 return (FALSE);
2110 }
2111
2112 prev_size >>= PAGE_SHIFT;
2113 next_size >>= PAGE_SHIFT;
2114 next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2115
2116 if ((prev_object->ref_count > 1) &&
2117 (prev_object->size != next_pindex)) {
2118 VM_OBJECT_WUNLOCK(prev_object);
2119 return (FALSE);
2120 }
2121
2122 /*
2123 * Account for the charge.
2124 */
2125 if (prev_object->cred != NULL) {
2126
2127 /*
2128 * If prev_object was charged, then this mapping,
2129 * althought not charged now, may become writable
2130 * later. Non-NULL cred in the object would prevent
2131 * swap reservation during enabling of the write
2132 * access, so reserve swap now. Failed reservation
2133 * cause allocation of the separate object for the map
2134 * entry, and swap reservation for this entry is
2135 * managed in appropriate time.
2136 */
2137 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2138 prev_object->cred)) {
2139 VM_OBJECT_WUNLOCK(prev_object);
2140 return (FALSE);
2141 }
2142 prev_object->charge += ptoa(next_size);
2143 }
2144
2145 /*
2146 * Remove any pages that may still be in the object from a previous
2147 * deallocation.
2148 */
2149 if (next_pindex < prev_object->size) {
2150 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2151 next_size, 0);
2152 if (prev_object->type == OBJT_SWAP)
2153 swap_pager_freespace(prev_object,
2154 next_pindex, next_size);
2155 #if 0
2156 if (prev_object->cred != NULL) {
2157 KASSERT(prev_object->charge >=
2158 ptoa(prev_object->size - next_pindex),
2159 ("object %p overcharged 1 %jx %jx", prev_object,
2160 (uintmax_t)next_pindex, (uintmax_t)next_size));
2161 prev_object->charge -= ptoa(prev_object->size -
2162 next_pindex);
2163 }
2164 #endif
2165 }
2166
2167 /*
2168 * Extend the object if necessary.
2169 */
2170 if (next_pindex + next_size > prev_object->size)
2171 prev_object->size = next_pindex + next_size;
2172
2173 VM_OBJECT_WUNLOCK(prev_object);
2174 return (TRUE);
2175 }
2176
2177 void
2178 vm_object_set_writeable_dirty(vm_object_t object)
2179 {
2180
2181 VM_OBJECT_ASSERT_WLOCKED(object);
2182 if (object->type != OBJT_VNODE) {
2183 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2184 KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2185 vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2186 }
2187 return;
2188 }
2189 object->generation++;
2190 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2191 return;
2192 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2193 }
2194
2195 /*
2196 * vm_object_unwire:
2197 *
2198 * For each page offset within the specified range of the given object,
2199 * find the highest-level page in the shadow chain and unwire it. A page
2200 * must exist at every page offset, and the highest-level page must be
2201 * wired.
2202 */
2203 void
2204 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2205 uint8_t queue)
2206 {
2207 vm_object_t tobject;
2208 vm_page_t m, tm;
2209 vm_pindex_t end_pindex, pindex, tpindex;
2210 int depth, locked_depth;
2211
2212 KASSERT((offset & PAGE_MASK) == 0,
2213 ("vm_object_unwire: offset is not page aligned"));
2214 KASSERT((length & PAGE_MASK) == 0,
2215 ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2216 /* The wired count of a fictitious page never changes. */
2217 if ((object->flags & OBJ_FICTITIOUS) != 0)
2218 return;
2219 pindex = OFF_TO_IDX(offset);
2220 end_pindex = pindex + atop(length);
2221 locked_depth = 1;
2222 VM_OBJECT_RLOCK(object);
2223 m = vm_page_find_least(object, pindex);
2224 while (pindex < end_pindex) {
2225 if (m == NULL || pindex < m->pindex) {
2226 /*
2227 * The first object in the shadow chain doesn't
2228 * contain a page at the current index. Therefore,
2229 * the page must exist in a backing object.
2230 */
2231 tobject = object;
2232 tpindex = pindex;
2233 depth = 0;
2234 do {
2235 tpindex +=
2236 OFF_TO_IDX(tobject->backing_object_offset);
2237 tobject = tobject->backing_object;
2238 KASSERT(tobject != NULL,
2239 ("vm_object_unwire: missing page"));
2240 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2241 goto next_page;
2242 depth++;
2243 if (depth == locked_depth) {
2244 locked_depth++;
2245 VM_OBJECT_RLOCK(tobject);
2246 }
2247 } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2248 NULL);
2249 } else {
2250 tm = m;
2251 m = TAILQ_NEXT(m, listq);
2252 }
2253 vm_page_lock(tm);
2254 vm_page_unwire(tm, queue);
2255 vm_page_unlock(tm);
2256 next_page:
2257 pindex++;
2258 }
2259 /* Release the accumulated object locks. */
2260 for (depth = 0; depth < locked_depth; depth++) {
2261 tobject = object->backing_object;
2262 VM_OBJECT_RUNLOCK(object);
2263 object = tobject;
2264 }
2265 }
2266
2267 struct vnode *
2268 vm_object_vnode(vm_object_t object)
2269 {
2270
2271 VM_OBJECT_ASSERT_LOCKED(object);
2272 if (object->type == OBJT_VNODE)
2273 return (object->handle);
2274 if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2275 return (object->un_pager.swp.swp_tmpfs);
2276 return (NULL);
2277 }
2278
2279 static int
2280 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2281 {
2282 struct kinfo_vmobject *kvo;
2283 char *fullpath, *freepath;
2284 struct vnode *vp;
2285 struct vattr va;
2286 vm_object_t obj;
2287 vm_page_t m;
2288 int count, error;
2289
2290 if (req->oldptr == NULL) {
2291 /*
2292 * If an old buffer has not been provided, generate an
2293 * estimate of the space needed for a subsequent call.
2294 */
2295 mtx_lock(&vm_object_list_mtx);
2296 count = 0;
2297 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2298 if (obj->type == OBJT_DEAD)
2299 continue;
2300 count++;
2301 }
2302 mtx_unlock(&vm_object_list_mtx);
2303 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2304 count * 11 / 10));
2305 }
2306
2307 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2308 error = 0;
2309
2310 /*
2311 * VM objects are type stable and are never removed from the
2312 * list once added. This allows us to safely read obj->object_list
2313 * after reacquiring the VM object lock.
2314 */
2315 mtx_lock(&vm_object_list_mtx);
2316 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2317 if (obj->type == OBJT_DEAD)
2318 continue;
2319 VM_OBJECT_RLOCK(obj);
2320 if (obj->type == OBJT_DEAD) {
2321 VM_OBJECT_RUNLOCK(obj);
2322 continue;
2323 }
2324 mtx_unlock(&vm_object_list_mtx);
2325 kvo->kvo_size = ptoa(obj->size);
2326 kvo->kvo_resident = obj->resident_page_count;
2327 kvo->kvo_ref_count = obj->ref_count;
2328 kvo->kvo_shadow_count = obj->shadow_count;
2329 kvo->kvo_memattr = obj->memattr;
2330 kvo->kvo_active = 0;
2331 kvo->kvo_inactive = 0;
2332 TAILQ_FOREACH(m, &obj->memq, listq) {
2333 /*
2334 * A page may belong to the object but be
2335 * dequeued and set to PQ_NONE while the
2336 * object lock is not held. This makes the
2337 * reads of m->queue below racy, and we do not
2338 * count pages set to PQ_NONE. However, this
2339 * sysctl is only meant to give an
2340 * approximation of the system anyway.
2341 */
2342 if (m->queue == PQ_ACTIVE)
2343 kvo->kvo_active++;
2344 else if (m->queue == PQ_INACTIVE)
2345 kvo->kvo_inactive++;
2346 }
2347
2348 kvo->kvo_vn_fileid = 0;
2349 kvo->kvo_vn_fsid = 0;
2350 freepath = NULL;
2351 fullpath = "";
2352 vp = NULL;
2353 switch (obj->type) {
2354 case OBJT_DEFAULT:
2355 kvo->kvo_type = KVME_TYPE_DEFAULT;
2356 break;
2357 case OBJT_VNODE:
2358 kvo->kvo_type = KVME_TYPE_VNODE;
2359 vp = obj->handle;
2360 vref(vp);
2361 break;
2362 case OBJT_SWAP:
2363 kvo->kvo_type = KVME_TYPE_SWAP;
2364 break;
2365 case OBJT_DEVICE:
2366 kvo->kvo_type = KVME_TYPE_DEVICE;
2367 break;
2368 case OBJT_PHYS:
2369 kvo->kvo_type = KVME_TYPE_PHYS;
2370 break;
2371 case OBJT_DEAD:
2372 kvo->kvo_type = KVME_TYPE_DEAD;
2373 break;
2374 case OBJT_SG:
2375 kvo->kvo_type = KVME_TYPE_SG;
2376 break;
2377 case OBJT_MGTDEVICE:
2378 kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2379 break;
2380 default:
2381 kvo->kvo_type = KVME_TYPE_UNKNOWN;
2382 break;
2383 }
2384 VM_OBJECT_RUNLOCK(obj);
2385 if (vp != NULL) {
2386 vn_fullpath(curthread, vp, &fullpath, &freepath);
2387 vn_lock(vp, LK_SHARED | LK_RETRY);
2388 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2389 kvo->kvo_vn_fileid = va.va_fileid;
2390 kvo->kvo_vn_fsid = va.va_fsid;
2391 }
2392 vput(vp);
2393 }
2394
2395 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2396 if (freepath != NULL)
2397 free(freepath, M_TEMP);
2398
2399 /* Pack record size down */
2400 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2401 + strlen(kvo->kvo_path) + 1;
2402 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2403 sizeof(uint64_t));
2404 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2405 mtx_lock(&vm_object_list_mtx);
2406 if (error)
2407 break;
2408 }
2409 mtx_unlock(&vm_object_list_mtx);
2410 free(kvo, M_TEMP);
2411 return (error);
2412 }
2413 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2414 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2415 "List of VM objects");
2416
2417 #include "opt_ddb.h"
2418 #ifdef DDB
2419 #include <sys/kernel.h>
2420
2421 #include <sys/cons.h>
2422
2423 #include <ddb/ddb.h>
2424
2425 static int
2426 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2427 {
2428 vm_map_t tmpm;
2429 vm_map_entry_t tmpe;
2430 vm_object_t obj;
2431 int entcount;
2432
2433 if (map == 0)
2434 return 0;
2435
2436 if (entry == 0) {
2437 tmpe = map->header.next;
2438 entcount = map->nentries;
2439 while (entcount-- && (tmpe != &map->header)) {
2440 if (_vm_object_in_map(map, object, tmpe)) {
2441 return 1;
2442 }
2443 tmpe = tmpe->next;
2444 }
2445 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2446 tmpm = entry->object.sub_map;
2447 tmpe = tmpm->header.next;
2448 entcount = tmpm->nentries;
2449 while (entcount-- && tmpe != &tmpm->header) {
2450 if (_vm_object_in_map(tmpm, object, tmpe)) {
2451 return 1;
2452 }
2453 tmpe = tmpe->next;
2454 }
2455 } else if ((obj = entry->object.vm_object) != NULL) {
2456 for (; obj; obj = obj->backing_object)
2457 if (obj == object) {
2458 return 1;
2459 }
2460 }
2461 return 0;
2462 }
2463
2464 static int
2465 vm_object_in_map(vm_object_t object)
2466 {
2467 struct proc *p;
2468
2469 /* sx_slock(&allproc_lock); */
2470 FOREACH_PROC_IN_SYSTEM(p) {
2471 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2472 continue;
2473 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2474 /* sx_sunlock(&allproc_lock); */
2475 return 1;
2476 }
2477 }
2478 /* sx_sunlock(&allproc_lock); */
2479 if (_vm_object_in_map(kernel_map, object, 0))
2480 return 1;
2481 return 0;
2482 }
2483
2484 DB_SHOW_COMMAND(vmochk, vm_object_check)
2485 {
2486 vm_object_t object;
2487
2488 /*
2489 * make sure that internal objs are in a map somewhere
2490 * and none have zero ref counts.
2491 */
2492 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2493 if (object->handle == NULL &&
2494 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2495 if (object->ref_count == 0) {
2496 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2497 (long)object->size);
2498 }
2499 if (!vm_object_in_map(object)) {
2500 db_printf(
2501 "vmochk: internal obj is not in a map: "
2502 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2503 object->ref_count, (u_long)object->size,
2504 (u_long)object->size,
2505 (void *)object->backing_object);
2506 }
2507 }
2508 }
2509 }
2510
2511 /*
2512 * vm_object_print: [ debug ]
2513 */
2514 DB_SHOW_COMMAND(object, vm_object_print_static)
2515 {
2516 /* XXX convert args. */
2517 vm_object_t object = (vm_object_t)addr;
2518 boolean_t full = have_addr;
2519
2520 vm_page_t p;
2521
2522 /* XXX count is an (unused) arg. Avoid shadowing it. */
2523 #define count was_count
2524
2525 int count;
2526
2527 if (object == NULL)
2528 return;
2529
2530 db_iprintf(
2531 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2532 object, (int)object->type, (uintmax_t)object->size,
2533 object->resident_page_count, object->ref_count, object->flags,
2534 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2535 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2536 object->shadow_count,
2537 object->backing_object ? object->backing_object->ref_count : 0,
2538 object->backing_object, (uintmax_t)object->backing_object_offset);
2539
2540 if (!full)
2541 return;
2542
2543 db_indent += 2;
2544 count = 0;
2545 TAILQ_FOREACH(p, &object->memq, listq) {
2546 if (count == 0)
2547 db_iprintf("memory:=");
2548 else if (count == 6) {
2549 db_printf("\n");
2550 db_iprintf(" ...");
2551 count = 0;
2552 } else
2553 db_printf(",");
2554 count++;
2555
2556 db_printf("(off=0x%jx,page=0x%jx)",
2557 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2558 }
2559 if (count != 0)
2560 db_printf("\n");
2561 db_indent -= 2;
2562 }
2563
2564 /* XXX. */
2565 #undef count
2566
2567 /* XXX need this non-static entry for calling from vm_map_print. */
2568 void
2569 vm_object_print(
2570 /* db_expr_t */ long addr,
2571 boolean_t have_addr,
2572 /* db_expr_t */ long count,
2573 char *modif)
2574 {
2575 vm_object_print_static(addr, have_addr, count, modif);
2576 }
2577
2578 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2579 {
2580 vm_object_t object;
2581 vm_pindex_t fidx;
2582 vm_paddr_t pa;
2583 vm_page_t m, prev_m;
2584 int rcount, nl, c;
2585
2586 nl = 0;
2587 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2588 db_printf("new object: %p\n", (void *)object);
2589 if (nl > 18) {
2590 c = cngetc();
2591 if (c != ' ')
2592 return;
2593 nl = 0;
2594 }
2595 nl++;
2596 rcount = 0;
2597 fidx = 0;
2598 pa = -1;
2599 TAILQ_FOREACH(m, &object->memq, listq) {
2600 if (m->pindex > 128)
2601 break;
2602 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2603 prev_m->pindex + 1 != m->pindex) {
2604 if (rcount) {
2605 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2606 (long)fidx, rcount, (long)pa);
2607 if (nl > 18) {
2608 c = cngetc();
2609 if (c != ' ')
2610 return;
2611 nl = 0;
2612 }
2613 nl++;
2614 rcount = 0;
2615 }
2616 }
2617 if (rcount &&
2618 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2619 ++rcount;
2620 continue;
2621 }
2622 if (rcount) {
2623 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2624 (long)fidx, rcount, (long)pa);
2625 if (nl > 18) {
2626 c = cngetc();
2627 if (c != ' ')
2628 return;
2629 nl = 0;
2630 }
2631 nl++;
2632 }
2633 fidx = m->pindex;
2634 pa = VM_PAGE_TO_PHYS(m);
2635 rcount = 1;
2636 }
2637 if (rcount) {
2638 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2639 (long)fidx, rcount, (long)pa);
2640 if (nl > 18) {
2641 c = cngetc();
2642 if (c != ' ')
2643 return;
2644 nl = 0;
2645 }
2646 nl++;
2647 }
2648 }
2649 }
2650 #endif /* DDB */
Cache object: 47a921d7c182f55d5c038dcf271253c9
|