The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 /*
   62  *      Virtual memory object module.
   63  */
   64 
   65 #include <sys/cdefs.h>
   66 __FBSDID("$FreeBSD: releng/11.0/sys/vm/vm_object.c 303290 2016-07-25 13:28:59Z kib $");
   67 
   68 #include "opt_vm.h"
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/lock.h>
   73 #include <sys/mman.h>
   74 #include <sys/mount.h>
   75 #include <sys/kernel.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/mutex.h>
   78 #include <sys/proc.h>           /* for curproc, pageproc */
   79 #include <sys/socket.h>
   80 #include <sys/resourcevar.h>
   81 #include <sys/rwlock.h>
   82 #include <sys/user.h>
   83 #include <sys/vnode.h>
   84 #include <sys/vmmeter.h>
   85 #include <sys/sx.h>
   86 
   87 #include <vm/vm.h>
   88 #include <vm/vm_param.h>
   89 #include <vm/pmap.h>
   90 #include <vm/vm_map.h>
   91 #include <vm/vm_object.h>
   92 #include <vm/vm_page.h>
   93 #include <vm/vm_pageout.h>
   94 #include <vm/vm_pager.h>
   95 #include <vm/swap_pager.h>
   96 #include <vm/vm_kern.h>
   97 #include <vm/vm_extern.h>
   98 #include <vm/vm_radix.h>
   99 #include <vm/vm_reserv.h>
  100 #include <vm/uma.h>
  101 
  102 static int old_msync;
  103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
  104     "Use old (insecure) msync behavior");
  105 
  106 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
  107                     int pagerflags, int flags, boolean_t *clearobjflags,
  108                     boolean_t *eio);
  109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
  110                     boolean_t *clearobjflags);
  111 static void     vm_object_qcollapse(vm_object_t object);
  112 static void     vm_object_vndeallocate(vm_object_t object);
  113 
  114 /*
  115  *      Virtual memory objects maintain the actual data
  116  *      associated with allocated virtual memory.  A given
  117  *      page of memory exists within exactly one object.
  118  *
  119  *      An object is only deallocated when all "references"
  120  *      are given up.  Only one "reference" to a given
  121  *      region of an object should be writeable.
  122  *
  123  *      Associated with each object is a list of all resident
  124  *      memory pages belonging to that object; this list is
  125  *      maintained by the "vm_page" module, and locked by the object's
  126  *      lock.
  127  *
  128  *      Each object also records a "pager" routine which is
  129  *      used to retrieve (and store) pages to the proper backing
  130  *      storage.  In addition, objects may be backed by other
  131  *      objects from which they were virtual-copied.
  132  *
  133  *      The only items within the object structure which are
  134  *      modified after time of creation are:
  135  *              reference count         locked by object's lock
  136  *              pager routine           locked by object's lock
  137  *
  138  */
  139 
  140 struct object_q vm_object_list;
  141 struct mtx vm_object_list_mtx;  /* lock for object list and count */
  142 
  143 struct vm_object kernel_object_store;
  144 struct vm_object kmem_object_store;
  145 
  146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
  147     "VM object stats");
  148 
  149 static long object_collapses;
  150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
  151     &object_collapses, 0, "VM object collapses");
  152 
  153 static long object_bypasses;
  154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
  155     &object_bypasses, 0, "VM object bypasses");
  156 
  157 static uma_zone_t obj_zone;
  158 
  159 static int vm_object_zinit(void *mem, int size, int flags);
  160 
  161 #ifdef INVARIANTS
  162 static void vm_object_zdtor(void *mem, int size, void *arg);
  163 
  164 static void
  165 vm_object_zdtor(void *mem, int size, void *arg)
  166 {
  167         vm_object_t object;
  168 
  169         object = (vm_object_t)mem;
  170         KASSERT(object->ref_count == 0,
  171             ("object %p ref_count = %d", object, object->ref_count));
  172         KASSERT(TAILQ_EMPTY(&object->memq),
  173             ("object %p has resident pages in its memq", object));
  174         KASSERT(vm_radix_is_empty(&object->rtree),
  175             ("object %p has resident pages in its trie", object));
  176 #if VM_NRESERVLEVEL > 0
  177         KASSERT(LIST_EMPTY(&object->rvq),
  178             ("object %p has reservations",
  179             object));
  180 #endif
  181         KASSERT(vm_object_cache_is_empty(object),
  182             ("object %p has cached pages",
  183             object));
  184         KASSERT(object->paging_in_progress == 0,
  185             ("object %p paging_in_progress = %d",
  186             object, object->paging_in_progress));
  187         KASSERT(object->resident_page_count == 0,
  188             ("object %p resident_page_count = %d",
  189             object, object->resident_page_count));
  190         KASSERT(object->shadow_count == 0,
  191             ("object %p shadow_count = %d",
  192             object, object->shadow_count));
  193         KASSERT(object->type == OBJT_DEAD,
  194             ("object %p has non-dead type %d",
  195             object, object->type));
  196 }
  197 #endif
  198 
  199 static int
  200 vm_object_zinit(void *mem, int size, int flags)
  201 {
  202         vm_object_t object;
  203 
  204         object = (vm_object_t)mem;
  205         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
  206 
  207         /* These are true for any object that has been freed */
  208         object->type = OBJT_DEAD;
  209         object->ref_count = 0;
  210         object->rtree.rt_root = 0;
  211         object->rtree.rt_flags = 0;
  212         object->paging_in_progress = 0;
  213         object->resident_page_count = 0;
  214         object->shadow_count = 0;
  215         object->cache.rt_root = 0;
  216         object->cache.rt_flags = 0;
  217 
  218         mtx_lock(&vm_object_list_mtx);
  219         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
  220         mtx_unlock(&vm_object_list_mtx);
  221         return (0);
  222 }
  223 
  224 static void
  225 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
  226 {
  227 
  228         TAILQ_INIT(&object->memq);
  229         LIST_INIT(&object->shadow_head);
  230 
  231         object->type = type;
  232         switch (type) {
  233         case OBJT_DEAD:
  234                 panic("_vm_object_allocate: can't create OBJT_DEAD");
  235         case OBJT_DEFAULT:
  236         case OBJT_SWAP:
  237                 object->flags = OBJ_ONEMAPPING;
  238                 break;
  239         case OBJT_DEVICE:
  240         case OBJT_SG:
  241                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
  242                 break;
  243         case OBJT_MGTDEVICE:
  244                 object->flags = OBJ_FICTITIOUS;
  245                 break;
  246         case OBJT_PHYS:
  247                 object->flags = OBJ_UNMANAGED;
  248                 break;
  249         case OBJT_VNODE:
  250                 object->flags = 0;
  251                 break;
  252         default:
  253                 panic("_vm_object_allocate: type %d is undefined", type);
  254         }
  255         object->size = size;
  256         object->generation = 1;
  257         object->ref_count = 1;
  258         object->memattr = VM_MEMATTR_DEFAULT;
  259         object->cred = NULL;
  260         object->charge = 0;
  261         object->handle = NULL;
  262         object->backing_object = NULL;
  263         object->backing_object_offset = (vm_ooffset_t) 0;
  264 #if VM_NRESERVLEVEL > 0
  265         LIST_INIT(&object->rvq);
  266 #endif
  267         umtx_shm_object_init(object);
  268 }
  269 
  270 /*
  271  *      vm_object_init:
  272  *
  273  *      Initialize the VM objects module.
  274  */
  275 void
  276 vm_object_init(void)
  277 {
  278         TAILQ_INIT(&vm_object_list);
  279         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
  280         
  281         rw_init(&kernel_object->lock, "kernel vm object");
  282         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  283             kernel_object);
  284 #if VM_NRESERVLEVEL > 0
  285         kernel_object->flags |= OBJ_COLORED;
  286         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  287 #endif
  288 
  289         rw_init(&kmem_object->lock, "kmem vm object");
  290         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  291             kmem_object);
  292 #if VM_NRESERVLEVEL > 0
  293         kmem_object->flags |= OBJ_COLORED;
  294         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  295 #endif
  296 
  297         /*
  298          * The lock portion of struct vm_object must be type stable due
  299          * to vm_pageout_fallback_object_lock locking a vm object
  300          * without holding any references to it.
  301          */
  302         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
  303 #ifdef INVARIANTS
  304             vm_object_zdtor,
  305 #else
  306             NULL,
  307 #endif
  308             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  309 
  310         vm_radix_init();
  311 }
  312 
  313 void
  314 vm_object_clear_flag(vm_object_t object, u_short bits)
  315 {
  316 
  317         VM_OBJECT_ASSERT_WLOCKED(object);
  318         object->flags &= ~bits;
  319 }
  320 
  321 /*
  322  *      Sets the default memory attribute for the specified object.  Pages
  323  *      that are allocated to this object are by default assigned this memory
  324  *      attribute.
  325  *
  326  *      Presently, this function must be called before any pages are allocated
  327  *      to the object.  In the future, this requirement may be relaxed for
  328  *      "default" and "swap" objects.
  329  */
  330 int
  331 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
  332 {
  333 
  334         VM_OBJECT_ASSERT_WLOCKED(object);
  335         switch (object->type) {
  336         case OBJT_DEFAULT:
  337         case OBJT_DEVICE:
  338         case OBJT_MGTDEVICE:
  339         case OBJT_PHYS:
  340         case OBJT_SG:
  341         case OBJT_SWAP:
  342         case OBJT_VNODE:
  343                 if (!TAILQ_EMPTY(&object->memq))
  344                         return (KERN_FAILURE);
  345                 break;
  346         case OBJT_DEAD:
  347                 return (KERN_INVALID_ARGUMENT);
  348         default:
  349                 panic("vm_object_set_memattr: object %p is of undefined type",
  350                     object);
  351         }
  352         object->memattr = memattr;
  353         return (KERN_SUCCESS);
  354 }
  355 
  356 void
  357 vm_object_pip_add(vm_object_t object, short i)
  358 {
  359 
  360         VM_OBJECT_ASSERT_WLOCKED(object);
  361         object->paging_in_progress += i;
  362 }
  363 
  364 void
  365 vm_object_pip_subtract(vm_object_t object, short i)
  366 {
  367 
  368         VM_OBJECT_ASSERT_WLOCKED(object);
  369         object->paging_in_progress -= i;
  370 }
  371 
  372 void
  373 vm_object_pip_wakeup(vm_object_t object)
  374 {
  375 
  376         VM_OBJECT_ASSERT_WLOCKED(object);
  377         object->paging_in_progress--;
  378         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  379                 vm_object_clear_flag(object, OBJ_PIPWNT);
  380                 wakeup(object);
  381         }
  382 }
  383 
  384 void
  385 vm_object_pip_wakeupn(vm_object_t object, short i)
  386 {
  387 
  388         VM_OBJECT_ASSERT_WLOCKED(object);
  389         if (i)
  390                 object->paging_in_progress -= i;
  391         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  392                 vm_object_clear_flag(object, OBJ_PIPWNT);
  393                 wakeup(object);
  394         }
  395 }
  396 
  397 void
  398 vm_object_pip_wait(vm_object_t object, char *waitid)
  399 {
  400 
  401         VM_OBJECT_ASSERT_WLOCKED(object);
  402         while (object->paging_in_progress) {
  403                 object->flags |= OBJ_PIPWNT;
  404                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
  405         }
  406 }
  407 
  408 /*
  409  *      vm_object_allocate:
  410  *
  411  *      Returns a new object with the given size.
  412  */
  413 vm_object_t
  414 vm_object_allocate(objtype_t type, vm_pindex_t size)
  415 {
  416         vm_object_t object;
  417 
  418         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
  419         _vm_object_allocate(type, size, object);
  420         return (object);
  421 }
  422 
  423 
  424 /*
  425  *      vm_object_reference:
  426  *
  427  *      Gets another reference to the given object.  Note: OBJ_DEAD
  428  *      objects can be referenced during final cleaning.
  429  */
  430 void
  431 vm_object_reference(vm_object_t object)
  432 {
  433         if (object == NULL)
  434                 return;
  435         VM_OBJECT_WLOCK(object);
  436         vm_object_reference_locked(object);
  437         VM_OBJECT_WUNLOCK(object);
  438 }
  439 
  440 /*
  441  *      vm_object_reference_locked:
  442  *
  443  *      Gets another reference to the given object.
  444  *
  445  *      The object must be locked.
  446  */
  447 void
  448 vm_object_reference_locked(vm_object_t object)
  449 {
  450         struct vnode *vp;
  451 
  452         VM_OBJECT_ASSERT_WLOCKED(object);
  453         object->ref_count++;
  454         if (object->type == OBJT_VNODE) {
  455                 vp = object->handle;
  456                 vref(vp);
  457         }
  458 }
  459 
  460 /*
  461  * Handle deallocating an object of type OBJT_VNODE.
  462  */
  463 static void
  464 vm_object_vndeallocate(vm_object_t object)
  465 {
  466         struct vnode *vp = (struct vnode *) object->handle;
  467 
  468         VM_OBJECT_ASSERT_WLOCKED(object);
  469         KASSERT(object->type == OBJT_VNODE,
  470             ("vm_object_vndeallocate: not a vnode object"));
  471         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
  472 #ifdef INVARIANTS
  473         if (object->ref_count == 0) {
  474                 vprint("vm_object_vndeallocate", vp);
  475                 panic("vm_object_vndeallocate: bad object reference count");
  476         }
  477 #endif
  478 
  479         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
  480                 umtx_shm_object_terminated(object);
  481 
  482         /*
  483          * The test for text of vp vnode does not need a bypass to
  484          * reach right VV_TEXT there, since it is obtained from
  485          * object->handle.
  486          */
  487         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
  488                 object->ref_count--;
  489                 VM_OBJECT_WUNLOCK(object);
  490                 /* vrele may need the vnode lock. */
  491                 vrele(vp);
  492         } else {
  493                 vhold(vp);
  494                 VM_OBJECT_WUNLOCK(object);
  495                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  496                 vdrop(vp);
  497                 VM_OBJECT_WLOCK(object);
  498                 object->ref_count--;
  499                 if (object->type == OBJT_DEAD) {
  500                         VM_OBJECT_WUNLOCK(object);
  501                         VOP_UNLOCK(vp, 0);
  502                 } else {
  503                         if (object->ref_count == 0)
  504                                 VOP_UNSET_TEXT(vp);
  505                         VM_OBJECT_WUNLOCK(object);
  506                         vput(vp);
  507                 }
  508         }
  509 }
  510 
  511 /*
  512  *      vm_object_deallocate:
  513  *
  514  *      Release a reference to the specified object,
  515  *      gained either through a vm_object_allocate
  516  *      or a vm_object_reference call.  When all references
  517  *      are gone, storage associated with this object
  518  *      may be relinquished.
  519  *
  520  *      No object may be locked.
  521  */
  522 void
  523 vm_object_deallocate(vm_object_t object)
  524 {
  525         vm_object_t temp;
  526         struct vnode *vp;
  527 
  528         while (object != NULL) {
  529                 VM_OBJECT_WLOCK(object);
  530                 if (object->type == OBJT_VNODE) {
  531                         vm_object_vndeallocate(object);
  532                         return;
  533                 }
  534 
  535                 KASSERT(object->ref_count != 0,
  536                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
  537 
  538                 /*
  539                  * If the reference count goes to 0 we start calling
  540                  * vm_object_terminate() on the object chain.
  541                  * A ref count of 1 may be a special case depending on the
  542                  * shadow count being 0 or 1.
  543                  */
  544                 object->ref_count--;
  545                 if (object->ref_count > 1) {
  546                         VM_OBJECT_WUNLOCK(object);
  547                         return;
  548                 } else if (object->ref_count == 1) {
  549                         if (object->type == OBJT_SWAP &&
  550                             (object->flags & OBJ_TMPFS) != 0) {
  551                                 vp = object->un_pager.swp.swp_tmpfs;
  552                                 vhold(vp);
  553                                 VM_OBJECT_WUNLOCK(object);
  554                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  555                                 VM_OBJECT_WLOCK(object);
  556                                 if (object->type == OBJT_DEAD ||
  557                                     object->ref_count != 1) {
  558                                         VM_OBJECT_WUNLOCK(object);
  559                                         VOP_UNLOCK(vp, 0);
  560                                         vdrop(vp);
  561                                         return;
  562                                 }
  563                                 if ((object->flags & OBJ_TMPFS) != 0)
  564                                         VOP_UNSET_TEXT(vp);
  565                                 VOP_UNLOCK(vp, 0);
  566                                 vdrop(vp);
  567                         }
  568                         if (object->shadow_count == 0 &&
  569                             object->handle == NULL &&
  570                             (object->type == OBJT_DEFAULT ||
  571                             (object->type == OBJT_SWAP &&
  572                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
  573                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
  574                         } else if ((object->shadow_count == 1) &&
  575                             (object->handle == NULL) &&
  576                             (object->type == OBJT_DEFAULT ||
  577                              object->type == OBJT_SWAP)) {
  578                                 vm_object_t robject;
  579 
  580                                 robject = LIST_FIRST(&object->shadow_head);
  581                                 KASSERT(robject != NULL,
  582                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
  583                                          object->ref_count,
  584                                          object->shadow_count));
  585                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
  586                                     ("shadowed tmpfs v_object %p", object));
  587                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
  588                                         /*
  589                                          * Avoid a potential deadlock.
  590                                          */
  591                                         object->ref_count++;
  592                                         VM_OBJECT_WUNLOCK(object);
  593                                         /*
  594                                          * More likely than not the thread
  595                                          * holding robject's lock has lower
  596                                          * priority than the current thread.
  597                                          * Let the lower priority thread run.
  598                                          */
  599                                         pause("vmo_de", 1);
  600                                         continue;
  601                                 }
  602                                 /*
  603                                  * Collapse object into its shadow unless its
  604                                  * shadow is dead.  In that case, object will
  605                                  * be deallocated by the thread that is
  606                                  * deallocating its shadow.
  607                                  */
  608                                 if ((robject->flags & OBJ_DEAD) == 0 &&
  609                                     (robject->handle == NULL) &&
  610                                     (robject->type == OBJT_DEFAULT ||
  611                                      robject->type == OBJT_SWAP)) {
  612 
  613                                         robject->ref_count++;
  614 retry:
  615                                         if (robject->paging_in_progress) {
  616                                                 VM_OBJECT_WUNLOCK(object);
  617                                                 vm_object_pip_wait(robject,
  618                                                     "objde1");
  619                                                 temp = robject->backing_object;
  620                                                 if (object == temp) {
  621                                                         VM_OBJECT_WLOCK(object);
  622                                                         goto retry;
  623                                                 }
  624                                         } else if (object->paging_in_progress) {
  625                                                 VM_OBJECT_WUNLOCK(robject);
  626                                                 object->flags |= OBJ_PIPWNT;
  627                                                 VM_OBJECT_SLEEP(object, object,
  628                                                     PDROP | PVM, "objde2", 0);
  629                                                 VM_OBJECT_WLOCK(robject);
  630                                                 temp = robject->backing_object;
  631                                                 if (object == temp) {
  632                                                         VM_OBJECT_WLOCK(object);
  633                                                         goto retry;
  634                                                 }
  635                                         } else
  636                                                 VM_OBJECT_WUNLOCK(object);
  637 
  638                                         if (robject->ref_count == 1) {
  639                                                 robject->ref_count--;
  640                                                 object = robject;
  641                                                 goto doterm;
  642                                         }
  643                                         object = robject;
  644                                         vm_object_collapse(object);
  645                                         VM_OBJECT_WUNLOCK(object);
  646                                         continue;
  647                                 }
  648                                 VM_OBJECT_WUNLOCK(robject);
  649                         }
  650                         VM_OBJECT_WUNLOCK(object);
  651                         return;
  652                 }
  653 doterm:
  654                 umtx_shm_object_terminated(object);
  655                 temp = object->backing_object;
  656                 if (temp != NULL) {
  657                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
  658                             ("shadowed tmpfs v_object 2 %p", object));
  659                         VM_OBJECT_WLOCK(temp);
  660                         LIST_REMOVE(object, shadow_list);
  661                         temp->shadow_count--;
  662                         VM_OBJECT_WUNLOCK(temp);
  663                         object->backing_object = NULL;
  664                 }
  665                 /*
  666                  * Don't double-terminate, we could be in a termination
  667                  * recursion due to the terminate having to sync data
  668                  * to disk.
  669                  */
  670                 if ((object->flags & OBJ_DEAD) == 0)
  671                         vm_object_terminate(object);
  672                 else
  673                         VM_OBJECT_WUNLOCK(object);
  674                 object = temp;
  675         }
  676 }
  677 
  678 /*
  679  *      vm_object_destroy removes the object from the global object list
  680  *      and frees the space for the object.
  681  */
  682 void
  683 vm_object_destroy(vm_object_t object)
  684 {
  685 
  686         /*
  687          * Release the allocation charge.
  688          */
  689         if (object->cred != NULL) {
  690                 swap_release_by_cred(object->charge, object->cred);
  691                 object->charge = 0;
  692                 crfree(object->cred);
  693                 object->cred = NULL;
  694         }
  695 
  696         /*
  697          * Free the space for the object.
  698          */
  699         uma_zfree(obj_zone, object);
  700 }
  701 
  702 /*
  703  *      vm_object_terminate actually destroys the specified object, freeing
  704  *      up all previously used resources.
  705  *
  706  *      The object must be locked.
  707  *      This routine may block.
  708  */
  709 void
  710 vm_object_terminate(vm_object_t object)
  711 {
  712         vm_page_t p, p_next;
  713 
  714         VM_OBJECT_ASSERT_WLOCKED(object);
  715 
  716         /*
  717          * Make sure no one uses us.
  718          */
  719         vm_object_set_flag(object, OBJ_DEAD);
  720 
  721         /*
  722          * wait for the pageout daemon to be done with the object
  723          */
  724         vm_object_pip_wait(object, "objtrm");
  725 
  726         KASSERT(!object->paging_in_progress,
  727                 ("vm_object_terminate: pageout in progress"));
  728 
  729         /*
  730          * Clean and free the pages, as appropriate. All references to the
  731          * object are gone, so we don't need to lock it.
  732          */
  733         if (object->type == OBJT_VNODE) {
  734                 struct vnode *vp = (struct vnode *)object->handle;
  735 
  736                 /*
  737                  * Clean pages and flush buffers.
  738                  */
  739                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  740                 VM_OBJECT_WUNLOCK(object);
  741 
  742                 vinvalbuf(vp, V_SAVE, 0, 0);
  743 
  744                 BO_LOCK(&vp->v_bufobj);
  745                 vp->v_bufobj.bo_flag |= BO_DEAD;
  746                 BO_UNLOCK(&vp->v_bufobj);
  747 
  748                 VM_OBJECT_WLOCK(object);
  749         }
  750 
  751         KASSERT(object->ref_count == 0, 
  752                 ("vm_object_terminate: object with references, ref_count=%d",
  753                 object->ref_count));
  754 
  755         /*
  756          * Free any remaining pageable pages.  This also removes them from the
  757          * paging queues.  However, don't free wired pages, just remove them
  758          * from the object.  Rather than incrementally removing each page from
  759          * the object, the page and object are reset to any empty state. 
  760          */
  761         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
  762                 vm_page_assert_unbusied(p);
  763                 vm_page_lock(p);
  764                 /*
  765                  * Optimize the page's removal from the object by resetting
  766                  * its "object" field.  Specifically, if the page is not
  767                  * wired, then the effect of this assignment is that
  768                  * vm_page_free()'s call to vm_page_remove() will return
  769                  * immediately without modifying the page or the object.
  770                  */ 
  771                 p->object = NULL;
  772                 if (p->wire_count == 0) {
  773                         vm_page_free(p);
  774                         PCPU_INC(cnt.v_pfree);
  775                 }
  776                 vm_page_unlock(p);
  777         }
  778         /*
  779          * If the object contained any pages, then reset it to an empty state.
  780          * None of the object's fields, including "resident_page_count", were
  781          * modified by the preceding loop.
  782          */
  783         if (object->resident_page_count != 0) {
  784                 vm_radix_reclaim_allnodes(&object->rtree);
  785                 TAILQ_INIT(&object->memq);
  786                 object->resident_page_count = 0;
  787                 if (object->type == OBJT_VNODE)
  788                         vdrop(object->handle);
  789         }
  790 
  791 #if VM_NRESERVLEVEL > 0
  792         if (__predict_false(!LIST_EMPTY(&object->rvq)))
  793                 vm_reserv_break_all(object);
  794 #endif
  795         if (__predict_false(!vm_object_cache_is_empty(object)))
  796                 vm_page_cache_free(object, 0, 0);
  797 
  798         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
  799             object->type == OBJT_SWAP,
  800             ("%s: non-swap obj %p has cred", __func__, object));
  801 
  802         /*
  803          * Let the pager know object is dead.
  804          */
  805         vm_pager_deallocate(object);
  806         VM_OBJECT_WUNLOCK(object);
  807 
  808         vm_object_destroy(object);
  809 }
  810 
  811 /*
  812  * Make the page read-only so that we can clear the object flags.  However, if
  813  * this is a nosync mmap then the object is likely to stay dirty so do not
  814  * mess with the page and do not clear the object flags.  Returns TRUE if the
  815  * page should be flushed, and FALSE otherwise.
  816  */
  817 static boolean_t
  818 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
  819 {
  820 
  821         /*
  822          * If we have been asked to skip nosync pages and this is a
  823          * nosync page, skip it.  Note that the object flags were not
  824          * cleared in this case so we do not have to set them.
  825          */
  826         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
  827                 *clearobjflags = FALSE;
  828                 return (FALSE);
  829         } else {
  830                 pmap_remove_write(p);
  831                 return (p->dirty != 0);
  832         }
  833 }
  834 
  835 /*
  836  *      vm_object_page_clean
  837  *
  838  *      Clean all dirty pages in the specified range of object.  Leaves page 
  839  *      on whatever queue it is currently on.   If NOSYNC is set then do not
  840  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
  841  *      leaving the object dirty.
  842  *
  843  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
  844  *      synchronous clustering mode implementation.
  845  *
  846  *      Odd semantics: if start == end, we clean everything.
  847  *
  848  *      The object must be locked.
  849  *
  850  *      Returns FALSE if some page from the range was not written, as
  851  *      reported by the pager, and TRUE otherwise.
  852  */
  853 boolean_t
  854 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
  855     int flags)
  856 {
  857         vm_page_t np, p;
  858         vm_pindex_t pi, tend, tstart;
  859         int curgeneration, n, pagerflags;
  860         boolean_t clearobjflags, eio, res;
  861 
  862         VM_OBJECT_ASSERT_WLOCKED(object);
  863 
  864         /*
  865          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
  866          * objects.  The check below prevents the function from
  867          * operating on non-vnode objects.
  868          */
  869         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
  870             object->resident_page_count == 0)
  871                 return (TRUE);
  872 
  873         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
  874             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
  875         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
  876 
  877         tstart = OFF_TO_IDX(start);
  878         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
  879         clearobjflags = tstart == 0 && tend >= object->size;
  880         res = TRUE;
  881 
  882 rescan:
  883         curgeneration = object->generation;
  884 
  885         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
  886                 pi = p->pindex;
  887                 if (pi >= tend)
  888                         break;
  889                 np = TAILQ_NEXT(p, listq);
  890                 if (p->valid == 0)
  891                         continue;
  892                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
  893                         if (object->generation != curgeneration) {
  894                                 if ((flags & OBJPC_SYNC) != 0)
  895                                         goto rescan;
  896                                 else
  897                                         clearobjflags = FALSE;
  898                         }
  899                         np = vm_page_find_least(object, pi);
  900                         continue;
  901                 }
  902                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
  903                         continue;
  904 
  905                 n = vm_object_page_collect_flush(object, p, pagerflags,
  906                     flags, &clearobjflags, &eio);
  907                 if (eio) {
  908                         res = FALSE;
  909                         clearobjflags = FALSE;
  910                 }
  911                 if (object->generation != curgeneration) {
  912                         if ((flags & OBJPC_SYNC) != 0)
  913                                 goto rescan;
  914                         else
  915                                 clearobjflags = FALSE;
  916                 }
  917 
  918                 /*
  919                  * If the VOP_PUTPAGES() did a truncated write, so
  920                  * that even the first page of the run is not fully
  921                  * written, vm_pageout_flush() returns 0 as the run
  922                  * length.  Since the condition that caused truncated
  923                  * write may be permanent, e.g. exhausted free space,
  924                  * accepting n == 0 would cause an infinite loop.
  925                  *
  926                  * Forwarding the iterator leaves the unwritten page
  927                  * behind, but there is not much we can do there if
  928                  * filesystem refuses to write it.
  929                  */
  930                 if (n == 0) {
  931                         n = 1;
  932                         clearobjflags = FALSE;
  933                 }
  934                 np = vm_page_find_least(object, pi + n);
  935         }
  936 #if 0
  937         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
  938 #endif
  939 
  940         if (clearobjflags)
  941                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
  942         return (res);
  943 }
  944 
  945 static int
  946 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
  947     int flags, boolean_t *clearobjflags, boolean_t *eio)
  948 {
  949         vm_page_t ma[vm_pageout_page_count], p_first, tp;
  950         int count, i, mreq, runlen;
  951 
  952         vm_page_lock_assert(p, MA_NOTOWNED);
  953         VM_OBJECT_ASSERT_WLOCKED(object);
  954 
  955         count = 1;
  956         mreq = 0;
  957 
  958         for (tp = p; count < vm_pageout_page_count; count++) {
  959                 tp = vm_page_next(tp);
  960                 if (tp == NULL || vm_page_busied(tp))
  961                         break;
  962                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  963                         break;
  964         }
  965 
  966         for (p_first = p; count < vm_pageout_page_count; count++) {
  967                 tp = vm_page_prev(p_first);
  968                 if (tp == NULL || vm_page_busied(tp))
  969                         break;
  970                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  971                         break;
  972                 p_first = tp;
  973                 mreq++;
  974         }
  975 
  976         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
  977                 ma[i] = tp;
  978 
  979         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
  980         return (runlen);
  981 }
  982 
  983 /*
  984  * Note that there is absolutely no sense in writing out
  985  * anonymous objects, so we track down the vnode object
  986  * to write out.
  987  * We invalidate (remove) all pages from the address space
  988  * for semantic correctness.
  989  *
  990  * If the backing object is a device object with unmanaged pages, then any
  991  * mappings to the specified range of pages must be removed before this
  992  * function is called.
  993  *
  994  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
  995  * may start out with a NULL object.
  996  */
  997 boolean_t
  998 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
  999     boolean_t syncio, boolean_t invalidate)
 1000 {
 1001         vm_object_t backing_object;
 1002         struct vnode *vp;
 1003         struct mount *mp;
 1004         int error, flags, fsync_after;
 1005         boolean_t res;
 1006 
 1007         if (object == NULL)
 1008                 return (TRUE);
 1009         res = TRUE;
 1010         error = 0;
 1011         VM_OBJECT_WLOCK(object);
 1012         while ((backing_object = object->backing_object) != NULL) {
 1013                 VM_OBJECT_WLOCK(backing_object);
 1014                 offset += object->backing_object_offset;
 1015                 VM_OBJECT_WUNLOCK(object);
 1016                 object = backing_object;
 1017                 if (object->size < OFF_TO_IDX(offset + size))
 1018                         size = IDX_TO_OFF(object->size) - offset;
 1019         }
 1020         /*
 1021          * Flush pages if writing is allowed, invalidate them
 1022          * if invalidation requested.  Pages undergoing I/O
 1023          * will be ignored by vm_object_page_remove().
 1024          *
 1025          * We cannot lock the vnode and then wait for paging
 1026          * to complete without deadlocking against vm_fault.
 1027          * Instead we simply call vm_object_page_remove() and
 1028          * allow it to block internally on a page-by-page
 1029          * basis when it encounters pages undergoing async
 1030          * I/O.
 1031          */
 1032         if (object->type == OBJT_VNODE &&
 1033             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
 1034                 vp = object->handle;
 1035                 VM_OBJECT_WUNLOCK(object);
 1036                 (void) vn_start_write(vp, &mp, V_WAIT);
 1037                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1038                 if (syncio && !invalidate && offset == 0 &&
 1039                     OFF_TO_IDX(size) == object->size) {
 1040                         /*
 1041                          * If syncing the whole mapping of the file,
 1042                          * it is faster to schedule all the writes in
 1043                          * async mode, also allowing the clustering,
 1044                          * and then wait for i/o to complete.
 1045                          */
 1046                         flags = 0;
 1047                         fsync_after = TRUE;
 1048                 } else {
 1049                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
 1050                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
 1051                         fsync_after = FALSE;
 1052                 }
 1053                 VM_OBJECT_WLOCK(object);
 1054                 res = vm_object_page_clean(object, offset, offset + size,
 1055                     flags);
 1056                 VM_OBJECT_WUNLOCK(object);
 1057                 if (fsync_after)
 1058                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
 1059                 VOP_UNLOCK(vp, 0);
 1060                 vn_finished_write(mp);
 1061                 if (error != 0)
 1062                         res = FALSE;
 1063                 VM_OBJECT_WLOCK(object);
 1064         }
 1065         if ((object->type == OBJT_VNODE ||
 1066              object->type == OBJT_DEVICE) && invalidate) {
 1067                 if (object->type == OBJT_DEVICE)
 1068                         /*
 1069                          * The option OBJPR_NOTMAPPED must be passed here
 1070                          * because vm_object_page_remove() cannot remove
 1071                          * unmanaged mappings.
 1072                          */
 1073                         flags = OBJPR_NOTMAPPED;
 1074                 else if (old_msync)
 1075                         flags = 0;
 1076                 else
 1077                         flags = OBJPR_CLEANONLY;
 1078                 vm_object_page_remove(object, OFF_TO_IDX(offset),
 1079                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
 1080         }
 1081         VM_OBJECT_WUNLOCK(object);
 1082         return (res);
 1083 }
 1084 
 1085 /*
 1086  *      vm_object_madvise:
 1087  *
 1088  *      Implements the madvise function at the object/page level.
 1089  *
 1090  *      MADV_WILLNEED   (any object)
 1091  *
 1092  *          Activate the specified pages if they are resident.
 1093  *
 1094  *      MADV_DONTNEED   (any object)
 1095  *
 1096  *          Deactivate the specified pages if they are resident.
 1097  *
 1098  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
 1099  *                       OBJ_ONEMAPPING only)
 1100  *
 1101  *          Deactivate and clean the specified pages if they are
 1102  *          resident.  This permits the process to reuse the pages
 1103  *          without faulting or the kernel to reclaim the pages
 1104  *          without I/O.
 1105  */
 1106 void
 1107 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
 1108     int advise)
 1109 {
 1110         vm_pindex_t tpindex;
 1111         vm_object_t backing_object, tobject;
 1112         vm_page_t m;
 1113 
 1114         if (object == NULL)
 1115                 return;
 1116         VM_OBJECT_WLOCK(object);
 1117         /*
 1118          * Locate and adjust resident pages
 1119          */
 1120         for (; pindex < end; pindex += 1) {
 1121 relookup:
 1122                 tobject = object;
 1123                 tpindex = pindex;
 1124 shadowlookup:
 1125                 /*
 1126                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
 1127                  * and those pages must be OBJ_ONEMAPPING.
 1128                  */
 1129                 if (advise == MADV_FREE) {
 1130                         if ((tobject->type != OBJT_DEFAULT &&
 1131                              tobject->type != OBJT_SWAP) ||
 1132                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
 1133                                 goto unlock_tobject;
 1134                         }
 1135                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
 1136                         goto unlock_tobject;
 1137                 m = vm_page_lookup(tobject, tpindex);
 1138                 if (m == NULL && advise == MADV_WILLNEED) {
 1139                         /*
 1140                          * If the page is cached, reactivate it.
 1141                          */
 1142                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
 1143                             VM_ALLOC_NOBUSY);
 1144                 }
 1145                 if (m == NULL) {
 1146                         /*
 1147                          * There may be swap even if there is no backing page
 1148                          */
 1149                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1150                                 swap_pager_freespace(tobject, tpindex, 1);
 1151                         /*
 1152                          * next object
 1153                          */
 1154                         backing_object = tobject->backing_object;
 1155                         if (backing_object == NULL)
 1156                                 goto unlock_tobject;
 1157                         VM_OBJECT_WLOCK(backing_object);
 1158                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
 1159                         if (tobject != object)
 1160                                 VM_OBJECT_WUNLOCK(tobject);
 1161                         tobject = backing_object;
 1162                         goto shadowlookup;
 1163                 } else if (m->valid != VM_PAGE_BITS_ALL)
 1164                         goto unlock_tobject;
 1165                 /*
 1166                  * If the page is not in a normal state, skip it.
 1167                  */
 1168                 vm_page_lock(m);
 1169                 if (m->hold_count != 0 || m->wire_count != 0) {
 1170                         vm_page_unlock(m);
 1171                         goto unlock_tobject;
 1172                 }
 1173                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
 1174                     ("vm_object_madvise: page %p is fictitious", m));
 1175                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1176                     ("vm_object_madvise: page %p is not managed", m));
 1177                 if (vm_page_busied(m)) {
 1178                         if (advise == MADV_WILLNEED) {
 1179                                 /*
 1180                                  * Reference the page before unlocking and
 1181                                  * sleeping so that the page daemon is less
 1182                                  * likely to reclaim it. 
 1183                                  */
 1184                                 vm_page_aflag_set(m, PGA_REFERENCED);
 1185                         }
 1186                         if (object != tobject)
 1187                                 VM_OBJECT_WUNLOCK(object);
 1188                         VM_OBJECT_WUNLOCK(tobject);
 1189                         vm_page_busy_sleep(m, "madvpo");
 1190                         VM_OBJECT_WLOCK(object);
 1191                         goto relookup;
 1192                 }
 1193                 if (advise == MADV_WILLNEED) {
 1194                         vm_page_activate(m);
 1195                 } else {
 1196                         vm_page_advise(m, advise);
 1197                 }
 1198                 vm_page_unlock(m);
 1199                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1200                         swap_pager_freespace(tobject, tpindex, 1);
 1201 unlock_tobject:
 1202                 if (tobject != object)
 1203                         VM_OBJECT_WUNLOCK(tobject);
 1204         }       
 1205         VM_OBJECT_WUNLOCK(object);
 1206 }
 1207 
 1208 /*
 1209  *      vm_object_shadow:
 1210  *
 1211  *      Create a new object which is backed by the
 1212  *      specified existing object range.  The source
 1213  *      object reference is deallocated.
 1214  *
 1215  *      The new object and offset into that object
 1216  *      are returned in the source parameters.
 1217  */
 1218 void
 1219 vm_object_shadow(
 1220         vm_object_t *object,    /* IN/OUT */
 1221         vm_ooffset_t *offset,   /* IN/OUT */
 1222         vm_size_t length)
 1223 {
 1224         vm_object_t source;
 1225         vm_object_t result;
 1226 
 1227         source = *object;
 1228 
 1229         /*
 1230          * Don't create the new object if the old object isn't shared.
 1231          */
 1232         if (source != NULL) {
 1233                 VM_OBJECT_WLOCK(source);
 1234                 if (source->ref_count == 1 &&
 1235                     source->handle == NULL &&
 1236                     (source->type == OBJT_DEFAULT ||
 1237                      source->type == OBJT_SWAP)) {
 1238                         VM_OBJECT_WUNLOCK(source);
 1239                         return;
 1240                 }
 1241                 VM_OBJECT_WUNLOCK(source);
 1242         }
 1243 
 1244         /*
 1245          * Allocate a new object with the given length.
 1246          */
 1247         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
 1248 
 1249         /*
 1250          * The new object shadows the source object, adding a reference to it.
 1251          * Our caller changes his reference to point to the new object,
 1252          * removing a reference to the source object.  Net result: no change
 1253          * of reference count.
 1254          *
 1255          * Try to optimize the result object's page color when shadowing
 1256          * in order to maintain page coloring consistency in the combined 
 1257          * shadowed object.
 1258          */
 1259         result->backing_object = source;
 1260         /*
 1261          * Store the offset into the source object, and fix up the offset into
 1262          * the new object.
 1263          */
 1264         result->backing_object_offset = *offset;
 1265         if (source != NULL) {
 1266                 VM_OBJECT_WLOCK(source);
 1267                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
 1268                 source->shadow_count++;
 1269 #if VM_NRESERVLEVEL > 0
 1270                 result->flags |= source->flags & OBJ_COLORED;
 1271                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
 1272                     ((1 << (VM_NFREEORDER - 1)) - 1);
 1273 #endif
 1274                 VM_OBJECT_WUNLOCK(source);
 1275         }
 1276 
 1277 
 1278         /*
 1279          * Return the new things
 1280          */
 1281         *offset = 0;
 1282         *object = result;
 1283 }
 1284 
 1285 /*
 1286  *      vm_object_split:
 1287  *
 1288  * Split the pages in a map entry into a new object.  This affords
 1289  * easier removal of unused pages, and keeps object inheritance from
 1290  * being a negative impact on memory usage.
 1291  */
 1292 void
 1293 vm_object_split(vm_map_entry_t entry)
 1294 {
 1295         vm_page_t m, m_next;
 1296         vm_object_t orig_object, new_object, source;
 1297         vm_pindex_t idx, offidxstart;
 1298         vm_size_t size;
 1299 
 1300         orig_object = entry->object.vm_object;
 1301         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
 1302                 return;
 1303         if (orig_object->ref_count <= 1)
 1304                 return;
 1305         VM_OBJECT_WUNLOCK(orig_object);
 1306 
 1307         offidxstart = OFF_TO_IDX(entry->offset);
 1308         size = atop(entry->end - entry->start);
 1309 
 1310         /*
 1311          * If swap_pager_copy() is later called, it will convert new_object
 1312          * into a swap object.
 1313          */
 1314         new_object = vm_object_allocate(OBJT_DEFAULT, size);
 1315 
 1316         /*
 1317          * At this point, the new object is still private, so the order in
 1318          * which the original and new objects are locked does not matter.
 1319          */
 1320         VM_OBJECT_WLOCK(new_object);
 1321         VM_OBJECT_WLOCK(orig_object);
 1322         source = orig_object->backing_object;
 1323         if (source != NULL) {
 1324                 VM_OBJECT_WLOCK(source);
 1325                 if ((source->flags & OBJ_DEAD) != 0) {
 1326                         VM_OBJECT_WUNLOCK(source);
 1327                         VM_OBJECT_WUNLOCK(orig_object);
 1328                         VM_OBJECT_WUNLOCK(new_object);
 1329                         vm_object_deallocate(new_object);
 1330                         VM_OBJECT_WLOCK(orig_object);
 1331                         return;
 1332                 }
 1333                 LIST_INSERT_HEAD(&source->shadow_head,
 1334                                   new_object, shadow_list);
 1335                 source->shadow_count++;
 1336                 vm_object_reference_locked(source);     /* for new_object */
 1337                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1338                 VM_OBJECT_WUNLOCK(source);
 1339                 new_object->backing_object_offset = 
 1340                         orig_object->backing_object_offset + entry->offset;
 1341                 new_object->backing_object = source;
 1342         }
 1343         if (orig_object->cred != NULL) {
 1344                 new_object->cred = orig_object->cred;
 1345                 crhold(orig_object->cred);
 1346                 new_object->charge = ptoa(size);
 1347                 KASSERT(orig_object->charge >= ptoa(size),
 1348                     ("orig_object->charge < 0"));
 1349                 orig_object->charge -= ptoa(size);
 1350         }
 1351 retry:
 1352         m = vm_page_find_least(orig_object, offidxstart);
 1353         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
 1354             m = m_next) {
 1355                 m_next = TAILQ_NEXT(m, listq);
 1356 
 1357                 /*
 1358                  * We must wait for pending I/O to complete before we can
 1359                  * rename the page.
 1360                  *
 1361                  * We do not have to VM_PROT_NONE the page as mappings should
 1362                  * not be changed by this operation.
 1363                  */
 1364                 if (vm_page_busied(m)) {
 1365                         VM_OBJECT_WUNLOCK(new_object);
 1366                         vm_page_lock(m);
 1367                         VM_OBJECT_WUNLOCK(orig_object);
 1368                         vm_page_busy_sleep(m, "spltwt");
 1369                         VM_OBJECT_WLOCK(orig_object);
 1370                         VM_OBJECT_WLOCK(new_object);
 1371                         goto retry;
 1372                 }
 1373 
 1374                 /* vm_page_rename() will handle dirty and cache. */
 1375                 if (vm_page_rename(m, new_object, idx)) {
 1376                         VM_OBJECT_WUNLOCK(new_object);
 1377                         VM_OBJECT_WUNLOCK(orig_object);
 1378                         VM_WAIT;
 1379                         VM_OBJECT_WLOCK(orig_object);
 1380                         VM_OBJECT_WLOCK(new_object);
 1381                         goto retry;
 1382                 }
 1383 #if VM_NRESERVLEVEL > 0
 1384                 /*
 1385                  * If some of the reservation's allocated pages remain with
 1386                  * the original object, then transferring the reservation to
 1387                  * the new object is neither particularly beneficial nor
 1388                  * particularly harmful as compared to leaving the reservation
 1389                  * with the original object.  If, however, all of the
 1390                  * reservation's allocated pages are transferred to the new
 1391                  * object, then transferring the reservation is typically
 1392                  * beneficial.  Determining which of these two cases applies
 1393                  * would be more costly than unconditionally renaming the
 1394                  * reservation.
 1395                  */
 1396                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
 1397 #endif
 1398                 if (orig_object->type == OBJT_SWAP)
 1399                         vm_page_xbusy(m);
 1400         }
 1401         if (orig_object->type == OBJT_SWAP) {
 1402                 /*
 1403                  * swap_pager_copy() can sleep, in which case the orig_object's
 1404                  * and new_object's locks are released and reacquired. 
 1405                  */
 1406                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
 1407                 TAILQ_FOREACH(m, &new_object->memq, listq)
 1408                         vm_page_xunbusy(m);
 1409 
 1410                 /*
 1411                  * Transfer any cached pages from orig_object to new_object.
 1412                  * If swap_pager_copy() found swapped out pages within the
 1413                  * specified range of orig_object, then it changed
 1414                  * new_object's type to OBJT_SWAP when it transferred those
 1415                  * pages to new_object.  Otherwise, new_object's type
 1416                  * should still be OBJT_DEFAULT and orig_object should not
 1417                  * contain any cached pages within the specified range.
 1418                  */
 1419                 if (__predict_false(!vm_object_cache_is_empty(orig_object)))
 1420                         vm_page_cache_transfer(orig_object, offidxstart,
 1421                             new_object);
 1422         }
 1423         VM_OBJECT_WUNLOCK(orig_object);
 1424         VM_OBJECT_WUNLOCK(new_object);
 1425         entry->object.vm_object = new_object;
 1426         entry->offset = 0LL;
 1427         vm_object_deallocate(orig_object);
 1428         VM_OBJECT_WLOCK(new_object);
 1429 }
 1430 
 1431 #define OBSC_COLLAPSE_NOWAIT    0x0002
 1432 #define OBSC_COLLAPSE_WAIT      0x0004
 1433 
 1434 static vm_page_t
 1435 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
 1436     int op)
 1437 {
 1438         vm_object_t backing_object;
 1439 
 1440         VM_OBJECT_ASSERT_WLOCKED(object);
 1441         backing_object = object->backing_object;
 1442         VM_OBJECT_ASSERT_WLOCKED(backing_object);
 1443 
 1444         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
 1445         KASSERT(p == NULL || p->object == object || p->object == backing_object,
 1446             ("invalid ownership %p %p %p", p, object, backing_object));
 1447         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
 1448                 return (next);
 1449         if (p != NULL)
 1450                 vm_page_lock(p);
 1451         VM_OBJECT_WUNLOCK(object);
 1452         VM_OBJECT_WUNLOCK(backing_object);
 1453         if (p == NULL)
 1454                 VM_WAIT;
 1455         else
 1456                 vm_page_busy_sleep(p, "vmocol");
 1457         VM_OBJECT_WLOCK(object);
 1458         VM_OBJECT_WLOCK(backing_object);
 1459         return (TAILQ_FIRST(&backing_object->memq));
 1460 }
 1461 
 1462 static bool
 1463 vm_object_scan_all_shadowed(vm_object_t object)
 1464 {
 1465         vm_object_t backing_object;
 1466         vm_page_t p, pp;
 1467         vm_pindex_t backing_offset_index, new_pindex;
 1468 
 1469         VM_OBJECT_ASSERT_WLOCKED(object);
 1470         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
 1471 
 1472         backing_object = object->backing_object;
 1473 
 1474         /*
 1475          * Initial conditions:
 1476          *
 1477          * We do not want to have to test for the existence of cache or swap
 1478          * pages in the backing object.  XXX but with the new swapper this
 1479          * would be pretty easy to do.
 1480          */
 1481         if (backing_object->type != OBJT_DEFAULT)
 1482                 return (false);
 1483 
 1484         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1485 
 1486         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL;
 1487             p = TAILQ_NEXT(p, listq)) {
 1488                 new_pindex = p->pindex - backing_offset_index;
 1489 
 1490                 /*
 1491                  * Ignore pages outside the parent object's range and outside
 1492                  * the parent object's mapping of the backing object.
 1493                  */
 1494                 if (p->pindex < backing_offset_index ||
 1495                     new_pindex >= object->size)
 1496                         continue;
 1497 
 1498                 /*
 1499                  * See if the parent has the page or if the parent's object
 1500                  * pager has the page.  If the parent has the page but the page
 1501                  * is not valid, the parent's object pager must have the page.
 1502                  *
 1503                  * If this fails, the parent does not completely shadow the
 1504                  * object and we might as well give up now.
 1505                  */
 1506                 pp = vm_page_lookup(object, new_pindex);
 1507                 if ((pp == NULL || pp->valid == 0) &&
 1508                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
 1509                         return (false);
 1510         }
 1511         return (true);
 1512 }
 1513 
 1514 static bool
 1515 vm_object_collapse_scan(vm_object_t object, int op)
 1516 {
 1517         vm_object_t backing_object;
 1518         vm_page_t next, p, pp;
 1519         vm_pindex_t backing_offset_index, new_pindex;
 1520 
 1521         VM_OBJECT_ASSERT_WLOCKED(object);
 1522         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
 1523 
 1524         backing_object = object->backing_object;
 1525         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1526 
 1527         /*
 1528          * Initial conditions
 1529          */
 1530         if ((op & OBSC_COLLAPSE_WAIT) != 0)
 1531                 vm_object_set_flag(backing_object, OBJ_DEAD);
 1532 
 1533         /*
 1534          * Our scan
 1535          */
 1536         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
 1537                 next = TAILQ_NEXT(p, listq);
 1538                 new_pindex = p->pindex - backing_offset_index;
 1539 
 1540                 /*
 1541                  * Check for busy page
 1542                  */
 1543                 if (vm_page_busied(p)) {
 1544                         next = vm_object_collapse_scan_wait(object, p, next, op);
 1545                         continue;
 1546                 }
 1547 
 1548                 KASSERT(p->object == backing_object,
 1549                     ("vm_object_collapse_scan: object mismatch"));
 1550 
 1551                 if (p->pindex < backing_offset_index ||
 1552                     new_pindex >= object->size) {
 1553                         if (backing_object->type == OBJT_SWAP)
 1554                                 swap_pager_freespace(backing_object, p->pindex,
 1555                                     1);
 1556 
 1557                         /*
 1558                          * Page is out of the parent object's range, we can
 1559                          * simply destroy it.
 1560                          */
 1561                         vm_page_lock(p);
 1562                         KASSERT(!pmap_page_is_mapped(p),
 1563                             ("freeing mapped page %p", p));
 1564                         if (p->wire_count == 0)
 1565                                 vm_page_free(p);
 1566                         else
 1567                                 vm_page_remove(p);
 1568                         vm_page_unlock(p);
 1569                         continue;
 1570                 }
 1571 
 1572                 pp = vm_page_lookup(object, new_pindex);
 1573                 if (pp != NULL && vm_page_busied(pp)) {
 1574                         /*
 1575                          * The page in the parent is busy and possibly not
 1576                          * (yet) valid.  Until its state is finalized by the
 1577                          * busy bit owner, we can't tell whether it shadows the
 1578                          * original page.  Therefore, we must either skip it
 1579                          * and the original (backing_object) page or wait for
 1580                          * its state to be finalized.
 1581                          *
 1582                          * This is due to a race with vm_fault() where we must
 1583                          * unbusy the original (backing_obj) page before we can
 1584                          * (re)lock the parent.  Hence we can get here.
 1585                          */
 1586                         next = vm_object_collapse_scan_wait(object, pp, next,
 1587                             op);
 1588                         continue;
 1589                 }
 1590 
 1591                 KASSERT(pp == NULL || pp->valid != 0,
 1592                     ("unbusy invalid page %p", pp));
 1593 
 1594                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
 1595                         NULL)) {
 1596                         /*
 1597                          * The page already exists in the parent OR swap exists
 1598                          * for this location in the parent.  Leave the parent's
 1599                          * page alone.  Destroy the original page from the
 1600                          * backing object.
 1601                          */
 1602                         if (backing_object->type == OBJT_SWAP)
 1603                                 swap_pager_freespace(backing_object, p->pindex,
 1604                                     1);
 1605                         vm_page_lock(p);
 1606                         KASSERT(!pmap_page_is_mapped(p),
 1607                             ("freeing mapped page %p", p));
 1608                         if (p->wire_count == 0)
 1609                                 vm_page_free(p);
 1610                         else
 1611                                 vm_page_remove(p);
 1612                         vm_page_unlock(p);
 1613                         continue;
 1614                 }
 1615 
 1616                 /*
 1617                  * Page does not exist in parent, rename the page from the
 1618                  * backing object to the main object.
 1619                  *
 1620                  * If the page was mapped to a process, it can remain mapped
 1621                  * through the rename.  vm_page_rename() will handle dirty and
 1622                  * cache.
 1623                  */
 1624                 if (vm_page_rename(p, object, new_pindex)) {
 1625                         next = vm_object_collapse_scan_wait(object, NULL, next,
 1626                             op);
 1627                         continue;
 1628                 }
 1629 
 1630                 /* Use the old pindex to free the right page. */
 1631                 if (backing_object->type == OBJT_SWAP)
 1632                         swap_pager_freespace(backing_object,
 1633                             new_pindex + backing_offset_index, 1);
 1634 
 1635 #if VM_NRESERVLEVEL > 0
 1636                 /*
 1637                  * Rename the reservation.
 1638                  */
 1639                 vm_reserv_rename(p, object, backing_object,
 1640                     backing_offset_index);
 1641 #endif
 1642         }
 1643         return (true);
 1644 }
 1645 
 1646 
 1647 /*
 1648  * this version of collapse allows the operation to occur earlier and
 1649  * when paging_in_progress is true for an object...  This is not a complete
 1650  * operation, but should plug 99.9% of the rest of the leaks.
 1651  */
 1652 static void
 1653 vm_object_qcollapse(vm_object_t object)
 1654 {
 1655         vm_object_t backing_object = object->backing_object;
 1656 
 1657         VM_OBJECT_ASSERT_WLOCKED(object);
 1658         VM_OBJECT_ASSERT_WLOCKED(backing_object);
 1659 
 1660         if (backing_object->ref_count != 1)
 1661                 return;
 1662 
 1663         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
 1664 }
 1665 
 1666 /*
 1667  *      vm_object_collapse:
 1668  *
 1669  *      Collapse an object with the object backing it.
 1670  *      Pages in the backing object are moved into the
 1671  *      parent, and the backing object is deallocated.
 1672  */
 1673 void
 1674 vm_object_collapse(vm_object_t object)
 1675 {
 1676         vm_object_t backing_object, new_backing_object;
 1677 
 1678         VM_OBJECT_ASSERT_WLOCKED(object);
 1679 
 1680         while (TRUE) {
 1681                 /*
 1682                  * Verify that the conditions are right for collapse:
 1683                  *
 1684                  * The object exists and the backing object exists.
 1685                  */
 1686                 if ((backing_object = object->backing_object) == NULL)
 1687                         break;
 1688 
 1689                 /*
 1690                  * we check the backing object first, because it is most likely
 1691                  * not collapsable.
 1692                  */
 1693                 VM_OBJECT_WLOCK(backing_object);
 1694                 if (backing_object->handle != NULL ||
 1695                     (backing_object->type != OBJT_DEFAULT &&
 1696                      backing_object->type != OBJT_SWAP) ||
 1697                     (backing_object->flags & OBJ_DEAD) ||
 1698                     object->handle != NULL ||
 1699                     (object->type != OBJT_DEFAULT &&
 1700                      object->type != OBJT_SWAP) ||
 1701                     (object->flags & OBJ_DEAD)) {
 1702                         VM_OBJECT_WUNLOCK(backing_object);
 1703                         break;
 1704                 }
 1705 
 1706                 if (object->paging_in_progress != 0 ||
 1707                     backing_object->paging_in_progress != 0) {
 1708                         vm_object_qcollapse(object);
 1709                         VM_OBJECT_WUNLOCK(backing_object);
 1710                         break;
 1711                 }
 1712 
 1713                 /*
 1714                  * We know that we can either collapse the backing object (if
 1715                  * the parent is the only reference to it) or (perhaps) have
 1716                  * the parent bypass the object if the parent happens to shadow
 1717                  * all the resident pages in the entire backing object.
 1718                  *
 1719                  * This is ignoring pager-backed pages such as swap pages.
 1720                  * vm_object_collapse_scan fails the shadowing test in this
 1721                  * case.
 1722                  */
 1723                 if (backing_object->ref_count == 1) {
 1724                         vm_object_pip_add(object, 1);
 1725                         vm_object_pip_add(backing_object, 1);
 1726 
 1727                         /*
 1728                          * If there is exactly one reference to the backing
 1729                          * object, we can collapse it into the parent.
 1730                          */
 1731                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
 1732 
 1733 #if VM_NRESERVLEVEL > 0
 1734                         /*
 1735                          * Break any reservations from backing_object.
 1736                          */
 1737                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
 1738                                 vm_reserv_break_all(backing_object);
 1739 #endif
 1740 
 1741                         /*
 1742                          * Move the pager from backing_object to object.
 1743                          */
 1744                         if (backing_object->type == OBJT_SWAP) {
 1745                                 /*
 1746                                  * swap_pager_copy() can sleep, in which case
 1747                                  * the backing_object's and object's locks are
 1748                                  * released and reacquired.
 1749                                  * Since swap_pager_copy() is being asked to
 1750                                  * destroy the source, it will change the
 1751                                  * backing_object's type to OBJT_DEFAULT.
 1752                                  */
 1753                                 swap_pager_copy(
 1754                                     backing_object,
 1755                                     object,
 1756                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
 1757 
 1758                                 /*
 1759                                  * Free any cached pages from backing_object.
 1760                                  */
 1761                                 if (__predict_false(
 1762                                     !vm_object_cache_is_empty(backing_object)))
 1763                                         vm_page_cache_free(backing_object, 0, 0);
 1764                         }
 1765                         /*
 1766                          * Object now shadows whatever backing_object did.
 1767                          * Note that the reference to 
 1768                          * backing_object->backing_object moves from within 
 1769                          * backing_object to within object.
 1770                          */
 1771                         LIST_REMOVE(object, shadow_list);
 1772                         backing_object->shadow_count--;
 1773                         if (backing_object->backing_object) {
 1774                                 VM_OBJECT_WLOCK(backing_object->backing_object);
 1775                                 LIST_REMOVE(backing_object, shadow_list);
 1776                                 LIST_INSERT_HEAD(
 1777                                     &backing_object->backing_object->shadow_head,
 1778                                     object, shadow_list);
 1779                                 /*
 1780                                  * The shadow_count has not changed.
 1781                                  */
 1782                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
 1783                         }
 1784                         object->backing_object = backing_object->backing_object;
 1785                         object->backing_object_offset +=
 1786                             backing_object->backing_object_offset;
 1787 
 1788                         /*
 1789                          * Discard backing_object.
 1790                          *
 1791                          * Since the backing object has no pages, no pager left,
 1792                          * and no object references within it, all that is
 1793                          * necessary is to dispose of it.
 1794                          */
 1795                         KASSERT(backing_object->ref_count == 1, (
 1796 "backing_object %p was somehow re-referenced during collapse!",
 1797                             backing_object));
 1798                         vm_object_pip_wakeup(backing_object);
 1799                         backing_object->type = OBJT_DEAD;
 1800                         backing_object->ref_count = 0;
 1801                         VM_OBJECT_WUNLOCK(backing_object);
 1802                         vm_object_destroy(backing_object);
 1803 
 1804                         vm_object_pip_wakeup(object);
 1805                         object_collapses++;
 1806                 } else {
 1807                         /*
 1808                          * If we do not entirely shadow the backing object,
 1809                          * there is nothing we can do so we give up.
 1810                          */
 1811                         if (object->resident_page_count != object->size &&
 1812                             !vm_object_scan_all_shadowed(object)) {
 1813                                 VM_OBJECT_WUNLOCK(backing_object);
 1814                                 break;
 1815                         }
 1816 
 1817                         /*
 1818                          * Make the parent shadow the next object in the
 1819                          * chain.  Deallocating backing_object will not remove
 1820                          * it, since its reference count is at least 2.
 1821                          */
 1822                         LIST_REMOVE(object, shadow_list);
 1823                         backing_object->shadow_count--;
 1824 
 1825                         new_backing_object = backing_object->backing_object;
 1826                         if ((object->backing_object = new_backing_object) != NULL) {
 1827                                 VM_OBJECT_WLOCK(new_backing_object);
 1828                                 LIST_INSERT_HEAD(
 1829                                     &new_backing_object->shadow_head,
 1830                                     object,
 1831                                     shadow_list
 1832                                 );
 1833                                 new_backing_object->shadow_count++;
 1834                                 vm_object_reference_locked(new_backing_object);
 1835                                 VM_OBJECT_WUNLOCK(new_backing_object);
 1836                                 object->backing_object_offset +=
 1837                                         backing_object->backing_object_offset;
 1838                         }
 1839 
 1840                         /*
 1841                          * Drop the reference count on backing_object. Since
 1842                          * its ref_count was at least 2, it will not vanish.
 1843                          */
 1844                         backing_object->ref_count--;
 1845                         VM_OBJECT_WUNLOCK(backing_object);
 1846                         object_bypasses++;
 1847                 }
 1848 
 1849                 /*
 1850                  * Try again with this object's new backing object.
 1851                  */
 1852         }
 1853 }
 1854 
 1855 /*
 1856  *      vm_object_page_remove:
 1857  *
 1858  *      For the given object, either frees or invalidates each of the
 1859  *      specified pages.  In general, a page is freed.  However, if a page is
 1860  *      wired for any reason other than the existence of a managed, wired
 1861  *      mapping, then it may be invalidated but not removed from the object.
 1862  *      Pages are specified by the given range ["start", "end") and the option
 1863  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
 1864  *      extends from "start" to the end of the object.  If the option
 1865  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
 1866  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
 1867  *      specified, then the pages within the specified range must have no
 1868  *      mappings.  Otherwise, if this option is not specified, any mappings to
 1869  *      the specified pages are removed before the pages are freed or
 1870  *      invalidated.
 1871  *
 1872  *      In general, this operation should only be performed on objects that
 1873  *      contain managed pages.  There are, however, two exceptions.  First, it
 1874  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
 1875  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
 1876  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
 1877  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
 1878  *
 1879  *      The object must be locked.
 1880  */
 1881 void
 1882 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 1883     int options)
 1884 {
 1885         vm_page_t p, next;
 1886 
 1887         VM_OBJECT_ASSERT_WLOCKED(object);
 1888         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
 1889             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
 1890             ("vm_object_page_remove: illegal options for object %p", object));
 1891         if (object->resident_page_count == 0)
 1892                 goto skipmemq;
 1893         vm_object_pip_add(object, 1);
 1894 again:
 1895         p = vm_page_find_least(object, start);
 1896 
 1897         /*
 1898          * Here, the variable "p" is either (1) the page with the least pindex
 1899          * greater than or equal to the parameter "start" or (2) NULL. 
 1900          */
 1901         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 1902                 next = TAILQ_NEXT(p, listq);
 1903 
 1904                 /*
 1905                  * If the page is wired for any reason besides the existence
 1906                  * of managed, wired mappings, then it cannot be freed.  For
 1907                  * example, fictitious pages, which represent device memory,
 1908                  * are inherently wired and cannot be freed.  They can,
 1909                  * however, be invalidated if the option OBJPR_CLEANONLY is
 1910                  * not specified.
 1911                  */
 1912                 vm_page_lock(p);
 1913                 if (vm_page_xbusied(p)) {
 1914                         VM_OBJECT_WUNLOCK(object);
 1915                         vm_page_busy_sleep(p, "vmopax");
 1916                         VM_OBJECT_WLOCK(object);
 1917                         goto again;
 1918                 }
 1919                 if (p->wire_count != 0) {
 1920                         if ((options & OBJPR_NOTMAPPED) == 0)
 1921                                 pmap_remove_all(p);
 1922                         if ((options & OBJPR_CLEANONLY) == 0) {
 1923                                 p->valid = 0;
 1924                                 vm_page_undirty(p);
 1925                         }
 1926                         goto next;
 1927                 }
 1928                 if (vm_page_busied(p)) {
 1929                         VM_OBJECT_WUNLOCK(object);
 1930                         vm_page_busy_sleep(p, "vmopar");
 1931                         VM_OBJECT_WLOCK(object);
 1932                         goto again;
 1933                 }
 1934                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
 1935                     ("vm_object_page_remove: page %p is fictitious", p));
 1936                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
 1937                         if ((options & OBJPR_NOTMAPPED) == 0)
 1938                                 pmap_remove_write(p);
 1939                         if (p->dirty)
 1940                                 goto next;
 1941                 }
 1942                 if ((options & OBJPR_NOTMAPPED) == 0)
 1943                         pmap_remove_all(p);
 1944                 vm_page_free(p);
 1945 next:
 1946                 vm_page_unlock(p);
 1947         }
 1948         vm_object_pip_wakeup(object);
 1949 skipmemq:
 1950         if (__predict_false(!vm_object_cache_is_empty(object)))
 1951                 vm_page_cache_free(object, start, end);
 1952 }
 1953 
 1954 /*
 1955  *      vm_object_page_noreuse:
 1956  *
 1957  *      For the given object, attempt to move the specified pages to
 1958  *      the head of the inactive queue.  This bypasses regular LRU
 1959  *      operation and allows the pages to be reused quickly under memory
 1960  *      pressure.  If a page is wired for any reason, then it will not
 1961  *      be queued.  Pages are specified by the range ["start", "end").
 1962  *      As a special case, if "end" is zero, then the range extends from
 1963  *      "start" to the end of the object.
 1964  *
 1965  *      This operation should only be performed on objects that
 1966  *      contain non-fictitious, managed pages.
 1967  *
 1968  *      The object must be locked.
 1969  */
 1970 void
 1971 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1972 {
 1973         struct mtx *mtx, *new_mtx;
 1974         vm_page_t p, next;
 1975 
 1976         VM_OBJECT_ASSERT_WLOCKED(object);
 1977         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
 1978             ("vm_object_page_noreuse: illegal object %p", object));
 1979         if (object->resident_page_count == 0)
 1980                 return;
 1981         p = vm_page_find_least(object, start);
 1982 
 1983         /*
 1984          * Here, the variable "p" is either (1) the page with the least pindex
 1985          * greater than or equal to the parameter "start" or (2) NULL. 
 1986          */
 1987         mtx = NULL;
 1988         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 1989                 next = TAILQ_NEXT(p, listq);
 1990 
 1991                 /*
 1992                  * Avoid releasing and reacquiring the same page lock.
 1993                  */
 1994                 new_mtx = vm_page_lockptr(p);
 1995                 if (mtx != new_mtx) {
 1996                         if (mtx != NULL)
 1997                                 mtx_unlock(mtx);
 1998                         mtx = new_mtx;
 1999                         mtx_lock(mtx);
 2000                 }
 2001                 vm_page_deactivate_noreuse(p);
 2002         }
 2003         if (mtx != NULL)
 2004                 mtx_unlock(mtx);
 2005 }
 2006 
 2007 /*
 2008  *      Populate the specified range of the object with valid pages.  Returns
 2009  *      TRUE if the range is successfully populated and FALSE otherwise.
 2010  *
 2011  *      Note: This function should be optimized to pass a larger array of
 2012  *      pages to vm_pager_get_pages() before it is applied to a non-
 2013  *      OBJT_DEVICE object.
 2014  *
 2015  *      The object must be locked.
 2016  */
 2017 boolean_t
 2018 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 2019 {
 2020         vm_page_t m;
 2021         vm_pindex_t pindex;
 2022         int rv;
 2023 
 2024         VM_OBJECT_ASSERT_WLOCKED(object);
 2025         for (pindex = start; pindex < end; pindex++) {
 2026                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
 2027                 if (m->valid != VM_PAGE_BITS_ALL) {
 2028                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
 2029                         if (rv != VM_PAGER_OK) {
 2030                                 vm_page_lock(m);
 2031                                 vm_page_free(m);
 2032                                 vm_page_unlock(m);
 2033                                 break;
 2034                         }
 2035                 }
 2036                 /*
 2037                  * Keep "m" busy because a subsequent iteration may unlock
 2038                  * the object.
 2039                  */
 2040         }
 2041         if (pindex > start) {
 2042                 m = vm_page_lookup(object, start);
 2043                 while (m != NULL && m->pindex < pindex) {
 2044                         vm_page_xunbusy(m);
 2045                         m = TAILQ_NEXT(m, listq);
 2046                 }
 2047         }
 2048         return (pindex == end);
 2049 }
 2050 
 2051 /*
 2052  *      Routine:        vm_object_coalesce
 2053  *      Function:       Coalesces two objects backing up adjoining
 2054  *                      regions of memory into a single object.
 2055  *
 2056  *      returns TRUE if objects were combined.
 2057  *
 2058  *      NOTE:   Only works at the moment if the second object is NULL -
 2059  *              if it's not, which object do we lock first?
 2060  *
 2061  *      Parameters:
 2062  *              prev_object     First object to coalesce
 2063  *              prev_offset     Offset into prev_object
 2064  *              prev_size       Size of reference to prev_object
 2065  *              next_size       Size of reference to the second object
 2066  *              reserved        Indicator that extension region has
 2067  *                              swap accounted for
 2068  *
 2069  *      Conditions:
 2070  *      The object must *not* be locked.
 2071  */
 2072 boolean_t
 2073 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
 2074     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
 2075 {
 2076         vm_pindex_t next_pindex;
 2077 
 2078         if (prev_object == NULL)
 2079                 return (TRUE);
 2080         VM_OBJECT_WLOCK(prev_object);
 2081         if ((prev_object->type != OBJT_DEFAULT &&
 2082             prev_object->type != OBJT_SWAP) ||
 2083             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
 2084                 VM_OBJECT_WUNLOCK(prev_object);
 2085                 return (FALSE);
 2086         }
 2087 
 2088         /*
 2089          * Try to collapse the object first
 2090          */
 2091         vm_object_collapse(prev_object);
 2092 
 2093         /*
 2094          * Can't coalesce if: . more than one reference . paged out . shadows
 2095          * another object . has a copy elsewhere (any of which mean that the
 2096          * pages not mapped to prev_entry may be in use anyway)
 2097          */
 2098         if (prev_object->backing_object != NULL) {
 2099                 VM_OBJECT_WUNLOCK(prev_object);
 2100                 return (FALSE);
 2101         }
 2102 
 2103         prev_size >>= PAGE_SHIFT;
 2104         next_size >>= PAGE_SHIFT;
 2105         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
 2106 
 2107         if ((prev_object->ref_count > 1) &&
 2108             (prev_object->size != next_pindex)) {
 2109                 VM_OBJECT_WUNLOCK(prev_object);
 2110                 return (FALSE);
 2111         }
 2112 
 2113         /*
 2114          * Account for the charge.
 2115          */
 2116         if (prev_object->cred != NULL) {
 2117 
 2118                 /*
 2119                  * If prev_object was charged, then this mapping,
 2120                  * although not charged now, may become writable
 2121                  * later. Non-NULL cred in the object would prevent
 2122                  * swap reservation during enabling of the write
 2123                  * access, so reserve swap now. Failed reservation
 2124                  * cause allocation of the separate object for the map
 2125                  * entry, and swap reservation for this entry is
 2126                  * managed in appropriate time.
 2127                  */
 2128                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
 2129                     prev_object->cred)) {
 2130                         VM_OBJECT_WUNLOCK(prev_object);
 2131                         return (FALSE);
 2132                 }
 2133                 prev_object->charge += ptoa(next_size);
 2134         }
 2135 
 2136         /*
 2137          * Remove any pages that may still be in the object from a previous
 2138          * deallocation.
 2139          */
 2140         if (next_pindex < prev_object->size) {
 2141                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
 2142                     next_size, 0);
 2143                 if (prev_object->type == OBJT_SWAP)
 2144                         swap_pager_freespace(prev_object,
 2145                                              next_pindex, next_size);
 2146 #if 0
 2147                 if (prev_object->cred != NULL) {
 2148                         KASSERT(prev_object->charge >=
 2149                             ptoa(prev_object->size - next_pindex),
 2150                             ("object %p overcharged 1 %jx %jx", prev_object,
 2151                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
 2152                         prev_object->charge -= ptoa(prev_object->size -
 2153                             next_pindex);
 2154                 }
 2155 #endif
 2156         }
 2157 
 2158         /*
 2159          * Extend the object if necessary.
 2160          */
 2161         if (next_pindex + next_size > prev_object->size)
 2162                 prev_object->size = next_pindex + next_size;
 2163 
 2164         VM_OBJECT_WUNLOCK(prev_object);
 2165         return (TRUE);
 2166 }
 2167 
 2168 void
 2169 vm_object_set_writeable_dirty(vm_object_t object)
 2170 {
 2171 
 2172         VM_OBJECT_ASSERT_WLOCKED(object);
 2173         if (object->type != OBJT_VNODE) {
 2174                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
 2175                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
 2176                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
 2177                 }
 2178                 return;
 2179         }
 2180         object->generation++;
 2181         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
 2182                 return;
 2183         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
 2184 }
 2185 
 2186 /*
 2187  *      vm_object_unwire:
 2188  *
 2189  *      For each page offset within the specified range of the given object,
 2190  *      find the highest-level page in the shadow chain and unwire it.  A page
 2191  *      must exist at every page offset, and the highest-level page must be
 2192  *      wired.
 2193  */
 2194 void
 2195 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
 2196     uint8_t queue)
 2197 {
 2198         vm_object_t tobject;
 2199         vm_page_t m, tm;
 2200         vm_pindex_t end_pindex, pindex, tpindex;
 2201         int depth, locked_depth;
 2202 
 2203         KASSERT((offset & PAGE_MASK) == 0,
 2204             ("vm_object_unwire: offset is not page aligned"));
 2205         KASSERT((length & PAGE_MASK) == 0,
 2206             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
 2207         /* The wired count of a fictitious page never changes. */
 2208         if ((object->flags & OBJ_FICTITIOUS) != 0)
 2209                 return;
 2210         pindex = OFF_TO_IDX(offset);
 2211         end_pindex = pindex + atop(length);
 2212         locked_depth = 1;
 2213         VM_OBJECT_RLOCK(object);
 2214         m = vm_page_find_least(object, pindex);
 2215         while (pindex < end_pindex) {
 2216                 if (m == NULL || pindex < m->pindex) {
 2217                         /*
 2218                          * The first object in the shadow chain doesn't
 2219                          * contain a page at the current index.  Therefore,
 2220                          * the page must exist in a backing object.
 2221                          */
 2222                         tobject = object;
 2223                         tpindex = pindex;
 2224                         depth = 0;
 2225                         do {
 2226                                 tpindex +=
 2227                                     OFF_TO_IDX(tobject->backing_object_offset);
 2228                                 tobject = tobject->backing_object;
 2229                                 KASSERT(tobject != NULL,
 2230                                     ("vm_object_unwire: missing page"));
 2231                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
 2232                                         goto next_page;
 2233                                 depth++;
 2234                                 if (depth == locked_depth) {
 2235                                         locked_depth++;
 2236                                         VM_OBJECT_RLOCK(tobject);
 2237                                 }
 2238                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
 2239                             NULL);
 2240                 } else {
 2241                         tm = m;
 2242                         m = TAILQ_NEXT(m, listq);
 2243                 }
 2244                 vm_page_lock(tm);
 2245                 vm_page_unwire(tm, queue);
 2246                 vm_page_unlock(tm);
 2247 next_page:
 2248                 pindex++;
 2249         }
 2250         /* Release the accumulated object locks. */
 2251         for (depth = 0; depth < locked_depth; depth++) {
 2252                 tobject = object->backing_object;
 2253                 VM_OBJECT_RUNLOCK(object);
 2254                 object = tobject;
 2255         }
 2256 }
 2257 
 2258 struct vnode *
 2259 vm_object_vnode(vm_object_t object)
 2260 {
 2261 
 2262         VM_OBJECT_ASSERT_LOCKED(object);
 2263         if (object->type == OBJT_VNODE)
 2264                 return (object->handle);
 2265         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
 2266                 return (object->un_pager.swp.swp_tmpfs);
 2267         return (NULL);
 2268 }
 2269 
 2270 static int
 2271 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
 2272 {
 2273         struct kinfo_vmobject kvo;
 2274         char *fullpath, *freepath;
 2275         struct vnode *vp;
 2276         struct vattr va;
 2277         vm_object_t obj;
 2278         vm_page_t m;
 2279         int count, error;
 2280 
 2281         if (req->oldptr == NULL) {
 2282                 /*
 2283                  * If an old buffer has not been provided, generate an
 2284                  * estimate of the space needed for a subsequent call.
 2285                  */
 2286                 mtx_lock(&vm_object_list_mtx);
 2287                 count = 0;
 2288                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
 2289                         if (obj->type == OBJT_DEAD)
 2290                                 continue;
 2291                         count++;
 2292                 }
 2293                 mtx_unlock(&vm_object_list_mtx);
 2294                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
 2295                     count * 11 / 10));
 2296         }
 2297 
 2298         error = 0;
 2299 
 2300         /*
 2301          * VM objects are type stable and are never removed from the
 2302          * list once added.  This allows us to safely read obj->object_list
 2303          * after reacquiring the VM object lock.
 2304          */
 2305         mtx_lock(&vm_object_list_mtx);
 2306         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
 2307                 if (obj->type == OBJT_DEAD)
 2308                         continue;
 2309                 VM_OBJECT_RLOCK(obj);
 2310                 if (obj->type == OBJT_DEAD) {
 2311                         VM_OBJECT_RUNLOCK(obj);
 2312                         continue;
 2313                 }
 2314                 mtx_unlock(&vm_object_list_mtx);
 2315                 kvo.kvo_size = ptoa(obj->size);
 2316                 kvo.kvo_resident = obj->resident_page_count;
 2317                 kvo.kvo_ref_count = obj->ref_count;
 2318                 kvo.kvo_shadow_count = obj->shadow_count;
 2319                 kvo.kvo_memattr = obj->memattr;
 2320                 kvo.kvo_active = 0;
 2321                 kvo.kvo_inactive = 0;
 2322                 TAILQ_FOREACH(m, &obj->memq, listq) {
 2323                         /*
 2324                          * A page may belong to the object but be
 2325                          * dequeued and set to PQ_NONE while the
 2326                          * object lock is not held.  This makes the
 2327                          * reads of m->queue below racy, and we do not
 2328                          * count pages set to PQ_NONE.  However, this
 2329                          * sysctl is only meant to give an
 2330                          * approximation of the system anyway.
 2331                          */
 2332                         if (m->queue == PQ_ACTIVE)
 2333                                 kvo.kvo_active++;
 2334                         else if (m->queue == PQ_INACTIVE)
 2335                                 kvo.kvo_inactive++;
 2336                 }
 2337 
 2338                 kvo.kvo_vn_fileid = 0;
 2339                 kvo.kvo_vn_fsid = 0;
 2340                 freepath = NULL;
 2341                 fullpath = "";
 2342                 vp = NULL;
 2343                 switch (obj->type) {
 2344                 case OBJT_DEFAULT:
 2345                         kvo.kvo_type = KVME_TYPE_DEFAULT;
 2346                         break;
 2347                 case OBJT_VNODE:
 2348                         kvo.kvo_type = KVME_TYPE_VNODE;
 2349                         vp = obj->handle;
 2350                         vref(vp);
 2351                         break;
 2352                 case OBJT_SWAP:
 2353                         kvo.kvo_type = KVME_TYPE_SWAP;
 2354                         break;
 2355                 case OBJT_DEVICE:
 2356                         kvo.kvo_type = KVME_TYPE_DEVICE;
 2357                         break;
 2358                 case OBJT_PHYS:
 2359                         kvo.kvo_type = KVME_TYPE_PHYS;
 2360                         break;
 2361                 case OBJT_DEAD:
 2362                         kvo.kvo_type = KVME_TYPE_DEAD;
 2363                         break;
 2364                 case OBJT_SG:
 2365                         kvo.kvo_type = KVME_TYPE_SG;
 2366                         break;
 2367                 case OBJT_MGTDEVICE:
 2368                         kvo.kvo_type = KVME_TYPE_MGTDEVICE;
 2369                         break;
 2370                 default:
 2371                         kvo.kvo_type = KVME_TYPE_UNKNOWN;
 2372                         break;
 2373                 }
 2374                 VM_OBJECT_RUNLOCK(obj);
 2375                 if (vp != NULL) {
 2376                         vn_fullpath(curthread, vp, &fullpath, &freepath);
 2377                         vn_lock(vp, LK_SHARED | LK_RETRY);
 2378                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
 2379                                 kvo.kvo_vn_fileid = va.va_fileid;
 2380                                 kvo.kvo_vn_fsid = va.va_fsid;
 2381                         }
 2382                         vput(vp);
 2383                 }
 2384 
 2385                 strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path));
 2386                 if (freepath != NULL)
 2387                         free(freepath, M_TEMP);
 2388 
 2389                 /* Pack record size down */
 2390                 kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) +
 2391                     strlen(kvo.kvo_path) + 1;
 2392                 kvo.kvo_structsize = roundup(kvo.kvo_structsize,
 2393                     sizeof(uint64_t));
 2394                 error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize);
 2395                 mtx_lock(&vm_object_list_mtx);
 2396                 if (error)
 2397                         break;
 2398         }
 2399         mtx_unlock(&vm_object_list_mtx);
 2400         return (error);
 2401 }
 2402 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
 2403     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
 2404     "List of VM objects");
 2405 
 2406 #include "opt_ddb.h"
 2407 #ifdef DDB
 2408 #include <sys/kernel.h>
 2409 
 2410 #include <sys/cons.h>
 2411 
 2412 #include <ddb/ddb.h>
 2413 
 2414 static int
 2415 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
 2416 {
 2417         vm_map_t tmpm;
 2418         vm_map_entry_t tmpe;
 2419         vm_object_t obj;
 2420         int entcount;
 2421 
 2422         if (map == 0)
 2423                 return 0;
 2424 
 2425         if (entry == 0) {
 2426                 tmpe = map->header.next;
 2427                 entcount = map->nentries;
 2428                 while (entcount-- && (tmpe != &map->header)) {
 2429                         if (_vm_object_in_map(map, object, tmpe)) {
 2430                                 return 1;
 2431                         }
 2432                         tmpe = tmpe->next;
 2433                 }
 2434         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2435                 tmpm = entry->object.sub_map;
 2436                 tmpe = tmpm->header.next;
 2437                 entcount = tmpm->nentries;
 2438                 while (entcount-- && tmpe != &tmpm->header) {
 2439                         if (_vm_object_in_map(tmpm, object, tmpe)) {
 2440                                 return 1;
 2441                         }
 2442                         tmpe = tmpe->next;
 2443                 }
 2444         } else if ((obj = entry->object.vm_object) != NULL) {
 2445                 for (; obj; obj = obj->backing_object)
 2446                         if (obj == object) {
 2447                                 return 1;
 2448                         }
 2449         }
 2450         return 0;
 2451 }
 2452 
 2453 static int
 2454 vm_object_in_map(vm_object_t object)
 2455 {
 2456         struct proc *p;
 2457 
 2458         /* sx_slock(&allproc_lock); */
 2459         FOREACH_PROC_IN_SYSTEM(p) {
 2460                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
 2461                         continue;
 2462                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
 2463                         /* sx_sunlock(&allproc_lock); */
 2464                         return 1;
 2465                 }
 2466         }
 2467         /* sx_sunlock(&allproc_lock); */
 2468         if (_vm_object_in_map(kernel_map, object, 0))
 2469                 return 1;
 2470         return 0;
 2471 }
 2472 
 2473 DB_SHOW_COMMAND(vmochk, vm_object_check)
 2474 {
 2475         vm_object_t object;
 2476 
 2477         /*
 2478          * make sure that internal objs are in a map somewhere
 2479          * and none have zero ref counts.
 2480          */
 2481         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2482                 if (object->handle == NULL &&
 2483                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
 2484                         if (object->ref_count == 0) {
 2485                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
 2486                                         (long)object->size);
 2487                         }
 2488                         if (!vm_object_in_map(object)) {
 2489                                 db_printf(
 2490                         "vmochk: internal obj is not in a map: "
 2491                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
 2492                                     object->ref_count, (u_long)object->size, 
 2493                                     (u_long)object->size,
 2494                                     (void *)object->backing_object);
 2495                         }
 2496                 }
 2497         }
 2498 }
 2499 
 2500 /*
 2501  *      vm_object_print:        [ debug ]
 2502  */
 2503 DB_SHOW_COMMAND(object, vm_object_print_static)
 2504 {
 2505         /* XXX convert args. */
 2506         vm_object_t object = (vm_object_t)addr;
 2507         boolean_t full = have_addr;
 2508 
 2509         vm_page_t p;
 2510 
 2511         /* XXX count is an (unused) arg.  Avoid shadowing it. */
 2512 #define count   was_count
 2513 
 2514         int count;
 2515 
 2516         if (object == NULL)
 2517                 return;
 2518 
 2519         db_iprintf(
 2520             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
 2521             object, (int)object->type, (uintmax_t)object->size,
 2522             object->resident_page_count, object->ref_count, object->flags,
 2523             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
 2524         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
 2525             object->shadow_count, 
 2526             object->backing_object ? object->backing_object->ref_count : 0,
 2527             object->backing_object, (uintmax_t)object->backing_object_offset);
 2528 
 2529         if (!full)
 2530                 return;
 2531 
 2532         db_indent += 2;
 2533         count = 0;
 2534         TAILQ_FOREACH(p, &object->memq, listq) {
 2535                 if (count == 0)
 2536                         db_iprintf("memory:=");
 2537                 else if (count == 6) {
 2538                         db_printf("\n");
 2539                         db_iprintf(" ...");
 2540                         count = 0;
 2541                 } else
 2542                         db_printf(",");
 2543                 count++;
 2544 
 2545                 db_printf("(off=0x%jx,page=0x%jx)",
 2546                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
 2547         }
 2548         if (count != 0)
 2549                 db_printf("\n");
 2550         db_indent -= 2;
 2551 }
 2552 
 2553 /* XXX. */
 2554 #undef count
 2555 
 2556 /* XXX need this non-static entry for calling from vm_map_print. */
 2557 void
 2558 vm_object_print(
 2559         /* db_expr_t */ long addr,
 2560         boolean_t have_addr,
 2561         /* db_expr_t */ long count,
 2562         char *modif)
 2563 {
 2564         vm_object_print_static(addr, have_addr, count, modif);
 2565 }
 2566 
 2567 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
 2568 {
 2569         vm_object_t object;
 2570         vm_pindex_t fidx;
 2571         vm_paddr_t pa;
 2572         vm_page_t m, prev_m;
 2573         int rcount, nl, c;
 2574 
 2575         nl = 0;
 2576         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2577                 db_printf("new object: %p\n", (void *)object);
 2578                 if (nl > 18) {
 2579                         c = cngetc();
 2580                         if (c != ' ')
 2581                                 return;
 2582                         nl = 0;
 2583                 }
 2584                 nl++;
 2585                 rcount = 0;
 2586                 fidx = 0;
 2587                 pa = -1;
 2588                 TAILQ_FOREACH(m, &object->memq, listq) {
 2589                         if (m->pindex > 128)
 2590                                 break;
 2591                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
 2592                             prev_m->pindex + 1 != m->pindex) {
 2593                                 if (rcount) {
 2594                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2595                                                 (long)fidx, rcount, (long)pa);
 2596                                         if (nl > 18) {
 2597                                                 c = cngetc();
 2598                                                 if (c != ' ')
 2599                                                         return;
 2600                                                 nl = 0;
 2601                                         }
 2602                                         nl++;
 2603                                         rcount = 0;
 2604                                 }
 2605                         }                               
 2606                         if (rcount &&
 2607                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
 2608                                 ++rcount;
 2609                                 continue;
 2610                         }
 2611                         if (rcount) {
 2612                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2613                                         (long)fidx, rcount, (long)pa);
 2614                                 if (nl > 18) {
 2615                                         c = cngetc();
 2616                                         if (c != ' ')
 2617                                                 return;
 2618                                         nl = 0;
 2619                                 }
 2620                                 nl++;
 2621                         }
 2622                         fidx = m->pindex;
 2623                         pa = VM_PAGE_TO_PHYS(m);
 2624                         rcount = 1;
 2625                 }
 2626                 if (rcount) {
 2627                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2628                                 (long)fidx, rcount, (long)pa);
 2629                         if (nl > 18) {
 2630                                 c = cngetc();
 2631                                 if (c != ' ')
 2632                                         return;
 2633                                 nl = 0;
 2634                         }
 2635                         nl++;
 2636                 }
 2637         }
 2638 }
 2639 #endif /* DDB */

Cache object: eaafbf94233f04cb9052e3d1e49a1005


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.