The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 /*
   62  *      Virtual memory object module.
   63  */
   64 
   65 #include <sys/cdefs.h>
   66 __FBSDID("$FreeBSD: releng/11.1/sys/vm/vm_object.c 318716 2017-05-23 07:27:30Z markj $");
   67 
   68 #include "opt_vm.h"
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/lock.h>
   73 #include <sys/mman.h>
   74 #include <sys/mount.h>
   75 #include <sys/kernel.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/mutex.h>
   78 #include <sys/proc.h>           /* for curproc, pageproc */
   79 #include <sys/socket.h>
   80 #include <sys/resourcevar.h>
   81 #include <sys/rwlock.h>
   82 #include <sys/user.h>
   83 #include <sys/vnode.h>
   84 #include <sys/vmmeter.h>
   85 #include <sys/sx.h>
   86 
   87 #include <vm/vm.h>
   88 #include <vm/vm_param.h>
   89 #include <vm/pmap.h>
   90 #include <vm/vm_map.h>
   91 #include <vm/vm_object.h>
   92 #include <vm/vm_page.h>
   93 #include <vm/vm_pageout.h>
   94 #include <vm/vm_pager.h>
   95 #include <vm/swap_pager.h>
   96 #include <vm/vm_kern.h>
   97 #include <vm/vm_extern.h>
   98 #include <vm/vm_radix.h>
   99 #include <vm/vm_reserv.h>
  100 #include <vm/uma.h>
  101 
  102 static int old_msync;
  103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
  104     "Use old (insecure) msync behavior");
  105 
  106 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
  107                     int pagerflags, int flags, boolean_t *clearobjflags,
  108                     boolean_t *eio);
  109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
  110                     boolean_t *clearobjflags);
  111 static void     vm_object_qcollapse(vm_object_t object);
  112 static void     vm_object_vndeallocate(vm_object_t object);
  113 
  114 /*
  115  *      Virtual memory objects maintain the actual data
  116  *      associated with allocated virtual memory.  A given
  117  *      page of memory exists within exactly one object.
  118  *
  119  *      An object is only deallocated when all "references"
  120  *      are given up.  Only one "reference" to a given
  121  *      region of an object should be writeable.
  122  *
  123  *      Associated with each object is a list of all resident
  124  *      memory pages belonging to that object; this list is
  125  *      maintained by the "vm_page" module, and locked by the object's
  126  *      lock.
  127  *
  128  *      Each object also records a "pager" routine which is
  129  *      used to retrieve (and store) pages to the proper backing
  130  *      storage.  In addition, objects may be backed by other
  131  *      objects from which they were virtual-copied.
  132  *
  133  *      The only items within the object structure which are
  134  *      modified after time of creation are:
  135  *              reference count         locked by object's lock
  136  *              pager routine           locked by object's lock
  137  *
  138  */
  139 
  140 struct object_q vm_object_list;
  141 struct mtx vm_object_list_mtx;  /* lock for object list and count */
  142 
  143 struct vm_object kernel_object_store;
  144 struct vm_object kmem_object_store;
  145 
  146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
  147     "VM object stats");
  148 
  149 static long object_collapses;
  150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
  151     &object_collapses, 0, "VM object collapses");
  152 
  153 static long object_bypasses;
  154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
  155     &object_bypasses, 0, "VM object bypasses");
  156 
  157 static uma_zone_t obj_zone;
  158 
  159 static int vm_object_zinit(void *mem, int size, int flags);
  160 
  161 #ifdef INVARIANTS
  162 static void vm_object_zdtor(void *mem, int size, void *arg);
  163 
  164 static void
  165 vm_object_zdtor(void *mem, int size, void *arg)
  166 {
  167         vm_object_t object;
  168 
  169         object = (vm_object_t)mem;
  170         KASSERT(object->ref_count == 0,
  171             ("object %p ref_count = %d", object, object->ref_count));
  172         KASSERT(TAILQ_EMPTY(&object->memq),
  173             ("object %p has resident pages in its memq", object));
  174         KASSERT(vm_radix_is_empty(&object->rtree),
  175             ("object %p has resident pages in its trie", object));
  176 #if VM_NRESERVLEVEL > 0
  177         KASSERT(LIST_EMPTY(&object->rvq),
  178             ("object %p has reservations",
  179             object));
  180 #endif
  181         KASSERT(object->paging_in_progress == 0,
  182             ("object %p paging_in_progress = %d",
  183             object, object->paging_in_progress));
  184         KASSERT(object->resident_page_count == 0,
  185             ("object %p resident_page_count = %d",
  186             object, object->resident_page_count));
  187         KASSERT(object->shadow_count == 0,
  188             ("object %p shadow_count = %d",
  189             object, object->shadow_count));
  190         KASSERT(object->type == OBJT_DEAD,
  191             ("object %p has non-dead type %d",
  192             object, object->type));
  193 }
  194 #endif
  195 
  196 static int
  197 vm_object_zinit(void *mem, int size, int flags)
  198 {
  199         vm_object_t object;
  200 
  201         object = (vm_object_t)mem;
  202         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
  203 
  204         /* These are true for any object that has been freed */
  205         object->type = OBJT_DEAD;
  206         object->ref_count = 0;
  207         object->rtree.rt_root = 0;
  208         object->paging_in_progress = 0;
  209         object->resident_page_count = 0;
  210         object->shadow_count = 0;
  211 
  212         mtx_lock(&vm_object_list_mtx);
  213         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
  214         mtx_unlock(&vm_object_list_mtx);
  215         return (0);
  216 }
  217 
  218 static void
  219 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
  220 {
  221 
  222         TAILQ_INIT(&object->memq);
  223         LIST_INIT(&object->shadow_head);
  224 
  225         object->type = type;
  226         switch (type) {
  227         case OBJT_DEAD:
  228                 panic("_vm_object_allocate: can't create OBJT_DEAD");
  229         case OBJT_DEFAULT:
  230         case OBJT_SWAP:
  231                 object->flags = OBJ_ONEMAPPING;
  232                 break;
  233         case OBJT_DEVICE:
  234         case OBJT_SG:
  235                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
  236                 break;
  237         case OBJT_MGTDEVICE:
  238                 object->flags = OBJ_FICTITIOUS;
  239                 break;
  240         case OBJT_PHYS:
  241                 object->flags = OBJ_UNMANAGED;
  242                 break;
  243         case OBJT_VNODE:
  244                 object->flags = 0;
  245                 break;
  246         default:
  247                 panic("_vm_object_allocate: type %d is undefined", type);
  248         }
  249         object->size = size;
  250         object->generation = 1;
  251         object->ref_count = 1;
  252         object->memattr = VM_MEMATTR_DEFAULT;
  253         object->cred = NULL;
  254         object->charge = 0;
  255         object->handle = NULL;
  256         object->backing_object = NULL;
  257         object->backing_object_offset = (vm_ooffset_t) 0;
  258 #if VM_NRESERVLEVEL > 0
  259         LIST_INIT(&object->rvq);
  260 #endif
  261         umtx_shm_object_init(object);
  262 }
  263 
  264 /*
  265  *      vm_object_init:
  266  *
  267  *      Initialize the VM objects module.
  268  */
  269 void
  270 vm_object_init(void)
  271 {
  272         TAILQ_INIT(&vm_object_list);
  273         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
  274         
  275         rw_init(&kernel_object->lock, "kernel vm object");
  276         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
  277             VM_MIN_KERNEL_ADDRESS), kernel_object);
  278 #if VM_NRESERVLEVEL > 0
  279         kernel_object->flags |= OBJ_COLORED;
  280         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  281 #endif
  282 
  283         rw_init(&kmem_object->lock, "kmem vm object");
  284         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
  285             VM_MIN_KERNEL_ADDRESS), kmem_object);
  286 #if VM_NRESERVLEVEL > 0
  287         kmem_object->flags |= OBJ_COLORED;
  288         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  289 #endif
  290 
  291         /*
  292          * The lock portion of struct vm_object must be type stable due
  293          * to vm_pageout_fallback_object_lock locking a vm object
  294          * without holding any references to it.
  295          */
  296         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
  297 #ifdef INVARIANTS
  298             vm_object_zdtor,
  299 #else
  300             NULL,
  301 #endif
  302             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  303 
  304         vm_radix_init();
  305 }
  306 
  307 void
  308 vm_object_clear_flag(vm_object_t object, u_short bits)
  309 {
  310 
  311         VM_OBJECT_ASSERT_WLOCKED(object);
  312         object->flags &= ~bits;
  313 }
  314 
  315 /*
  316  *      Sets the default memory attribute for the specified object.  Pages
  317  *      that are allocated to this object are by default assigned this memory
  318  *      attribute.
  319  *
  320  *      Presently, this function must be called before any pages are allocated
  321  *      to the object.  In the future, this requirement may be relaxed for
  322  *      "default" and "swap" objects.
  323  */
  324 int
  325 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
  326 {
  327 
  328         VM_OBJECT_ASSERT_WLOCKED(object);
  329         switch (object->type) {
  330         case OBJT_DEFAULT:
  331         case OBJT_DEVICE:
  332         case OBJT_MGTDEVICE:
  333         case OBJT_PHYS:
  334         case OBJT_SG:
  335         case OBJT_SWAP:
  336         case OBJT_VNODE:
  337                 if (!TAILQ_EMPTY(&object->memq))
  338                         return (KERN_FAILURE);
  339                 break;
  340         case OBJT_DEAD:
  341                 return (KERN_INVALID_ARGUMENT);
  342         default:
  343                 panic("vm_object_set_memattr: object %p is of undefined type",
  344                     object);
  345         }
  346         object->memattr = memattr;
  347         return (KERN_SUCCESS);
  348 }
  349 
  350 void
  351 vm_object_pip_add(vm_object_t object, short i)
  352 {
  353 
  354         VM_OBJECT_ASSERT_WLOCKED(object);
  355         object->paging_in_progress += i;
  356 }
  357 
  358 void
  359 vm_object_pip_subtract(vm_object_t object, short i)
  360 {
  361 
  362         VM_OBJECT_ASSERT_WLOCKED(object);
  363         object->paging_in_progress -= i;
  364 }
  365 
  366 void
  367 vm_object_pip_wakeup(vm_object_t object)
  368 {
  369 
  370         VM_OBJECT_ASSERT_WLOCKED(object);
  371         object->paging_in_progress--;
  372         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  373                 vm_object_clear_flag(object, OBJ_PIPWNT);
  374                 wakeup(object);
  375         }
  376 }
  377 
  378 void
  379 vm_object_pip_wakeupn(vm_object_t object, short i)
  380 {
  381 
  382         VM_OBJECT_ASSERT_WLOCKED(object);
  383         if (i)
  384                 object->paging_in_progress -= i;
  385         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  386                 vm_object_clear_flag(object, OBJ_PIPWNT);
  387                 wakeup(object);
  388         }
  389 }
  390 
  391 void
  392 vm_object_pip_wait(vm_object_t object, char *waitid)
  393 {
  394 
  395         VM_OBJECT_ASSERT_WLOCKED(object);
  396         while (object->paging_in_progress) {
  397                 object->flags |= OBJ_PIPWNT;
  398                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
  399         }
  400 }
  401 
  402 /*
  403  *      vm_object_allocate:
  404  *
  405  *      Returns a new object with the given size.
  406  */
  407 vm_object_t
  408 vm_object_allocate(objtype_t type, vm_pindex_t size)
  409 {
  410         vm_object_t object;
  411 
  412         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
  413         _vm_object_allocate(type, size, object);
  414         return (object);
  415 }
  416 
  417 
  418 /*
  419  *      vm_object_reference:
  420  *
  421  *      Gets another reference to the given object.  Note: OBJ_DEAD
  422  *      objects can be referenced during final cleaning.
  423  */
  424 void
  425 vm_object_reference(vm_object_t object)
  426 {
  427         if (object == NULL)
  428                 return;
  429         VM_OBJECT_WLOCK(object);
  430         vm_object_reference_locked(object);
  431         VM_OBJECT_WUNLOCK(object);
  432 }
  433 
  434 /*
  435  *      vm_object_reference_locked:
  436  *
  437  *      Gets another reference to the given object.
  438  *
  439  *      The object must be locked.
  440  */
  441 void
  442 vm_object_reference_locked(vm_object_t object)
  443 {
  444         struct vnode *vp;
  445 
  446         VM_OBJECT_ASSERT_WLOCKED(object);
  447         object->ref_count++;
  448         if (object->type == OBJT_VNODE) {
  449                 vp = object->handle;
  450                 vref(vp);
  451         }
  452 }
  453 
  454 /*
  455  * Handle deallocating an object of type OBJT_VNODE.
  456  */
  457 static void
  458 vm_object_vndeallocate(vm_object_t object)
  459 {
  460         struct vnode *vp = (struct vnode *) object->handle;
  461 
  462         VM_OBJECT_ASSERT_WLOCKED(object);
  463         KASSERT(object->type == OBJT_VNODE,
  464             ("vm_object_vndeallocate: not a vnode object"));
  465         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
  466 #ifdef INVARIANTS
  467         if (object->ref_count == 0) {
  468                 vn_printf(vp, "vm_object_vndeallocate ");
  469                 panic("vm_object_vndeallocate: bad object reference count");
  470         }
  471 #endif
  472 
  473         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
  474                 umtx_shm_object_terminated(object);
  475 
  476         /*
  477          * The test for text of vp vnode does not need a bypass to
  478          * reach right VV_TEXT there, since it is obtained from
  479          * object->handle.
  480          */
  481         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
  482                 object->ref_count--;
  483                 VM_OBJECT_WUNLOCK(object);
  484                 /* vrele may need the vnode lock. */
  485                 vrele(vp);
  486         } else {
  487                 vhold(vp);
  488                 VM_OBJECT_WUNLOCK(object);
  489                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  490                 vdrop(vp);
  491                 VM_OBJECT_WLOCK(object);
  492                 object->ref_count--;
  493                 if (object->type == OBJT_DEAD) {
  494                         VM_OBJECT_WUNLOCK(object);
  495                         VOP_UNLOCK(vp, 0);
  496                 } else {
  497                         if (object->ref_count == 0)
  498                                 VOP_UNSET_TEXT(vp);
  499                         VM_OBJECT_WUNLOCK(object);
  500                         vput(vp);
  501                 }
  502         }
  503 }
  504 
  505 /*
  506  *      vm_object_deallocate:
  507  *
  508  *      Release a reference to the specified object,
  509  *      gained either through a vm_object_allocate
  510  *      or a vm_object_reference call.  When all references
  511  *      are gone, storage associated with this object
  512  *      may be relinquished.
  513  *
  514  *      No object may be locked.
  515  */
  516 void
  517 vm_object_deallocate(vm_object_t object)
  518 {
  519         vm_object_t temp;
  520         struct vnode *vp;
  521 
  522         while (object != NULL) {
  523                 VM_OBJECT_WLOCK(object);
  524                 if (object->type == OBJT_VNODE) {
  525                         vm_object_vndeallocate(object);
  526                         return;
  527                 }
  528 
  529                 KASSERT(object->ref_count != 0,
  530                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
  531 
  532                 /*
  533                  * If the reference count goes to 0 we start calling
  534                  * vm_object_terminate() on the object chain.
  535                  * A ref count of 1 may be a special case depending on the
  536                  * shadow count being 0 or 1.
  537                  */
  538                 object->ref_count--;
  539                 if (object->ref_count > 1) {
  540                         VM_OBJECT_WUNLOCK(object);
  541                         return;
  542                 } else if (object->ref_count == 1) {
  543                         if (object->type == OBJT_SWAP &&
  544                             (object->flags & OBJ_TMPFS) != 0) {
  545                                 vp = object->un_pager.swp.swp_tmpfs;
  546                                 vhold(vp);
  547                                 VM_OBJECT_WUNLOCK(object);
  548                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  549                                 VM_OBJECT_WLOCK(object);
  550                                 if (object->type == OBJT_DEAD ||
  551                                     object->ref_count != 1) {
  552                                         VM_OBJECT_WUNLOCK(object);
  553                                         VOP_UNLOCK(vp, 0);
  554                                         vdrop(vp);
  555                                         return;
  556                                 }
  557                                 if ((object->flags & OBJ_TMPFS) != 0)
  558                                         VOP_UNSET_TEXT(vp);
  559                                 VOP_UNLOCK(vp, 0);
  560                                 vdrop(vp);
  561                         }
  562                         if (object->shadow_count == 0 &&
  563                             object->handle == NULL &&
  564                             (object->type == OBJT_DEFAULT ||
  565                             (object->type == OBJT_SWAP &&
  566                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
  567                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
  568                         } else if ((object->shadow_count == 1) &&
  569                             (object->handle == NULL) &&
  570                             (object->type == OBJT_DEFAULT ||
  571                              object->type == OBJT_SWAP)) {
  572                                 vm_object_t robject;
  573 
  574                                 robject = LIST_FIRST(&object->shadow_head);
  575                                 KASSERT(robject != NULL,
  576                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
  577                                          object->ref_count,
  578                                          object->shadow_count));
  579                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
  580                                     ("shadowed tmpfs v_object %p", object));
  581                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
  582                                         /*
  583                                          * Avoid a potential deadlock.
  584                                          */
  585                                         object->ref_count++;
  586                                         VM_OBJECT_WUNLOCK(object);
  587                                         /*
  588                                          * More likely than not the thread
  589                                          * holding robject's lock has lower
  590                                          * priority than the current thread.
  591                                          * Let the lower priority thread run.
  592                                          */
  593                                         pause("vmo_de", 1);
  594                                         continue;
  595                                 }
  596                                 /*
  597                                  * Collapse object into its shadow unless its
  598                                  * shadow is dead.  In that case, object will
  599                                  * be deallocated by the thread that is
  600                                  * deallocating its shadow.
  601                                  */
  602                                 if ((robject->flags & OBJ_DEAD) == 0 &&
  603                                     (robject->handle == NULL) &&
  604                                     (robject->type == OBJT_DEFAULT ||
  605                                      robject->type == OBJT_SWAP)) {
  606 
  607                                         robject->ref_count++;
  608 retry:
  609                                         if (robject->paging_in_progress) {
  610                                                 VM_OBJECT_WUNLOCK(object);
  611                                                 vm_object_pip_wait(robject,
  612                                                     "objde1");
  613                                                 temp = robject->backing_object;
  614                                                 if (object == temp) {
  615                                                         VM_OBJECT_WLOCK(object);
  616                                                         goto retry;
  617                                                 }
  618                                         } else if (object->paging_in_progress) {
  619                                                 VM_OBJECT_WUNLOCK(robject);
  620                                                 object->flags |= OBJ_PIPWNT;
  621                                                 VM_OBJECT_SLEEP(object, object,
  622                                                     PDROP | PVM, "objde2", 0);
  623                                                 VM_OBJECT_WLOCK(robject);
  624                                                 temp = robject->backing_object;
  625                                                 if (object == temp) {
  626                                                         VM_OBJECT_WLOCK(object);
  627                                                         goto retry;
  628                                                 }
  629                                         } else
  630                                                 VM_OBJECT_WUNLOCK(object);
  631 
  632                                         if (robject->ref_count == 1) {
  633                                                 robject->ref_count--;
  634                                                 object = robject;
  635                                                 goto doterm;
  636                                         }
  637                                         object = robject;
  638                                         vm_object_collapse(object);
  639                                         VM_OBJECT_WUNLOCK(object);
  640                                         continue;
  641                                 }
  642                                 VM_OBJECT_WUNLOCK(robject);
  643                         }
  644                         VM_OBJECT_WUNLOCK(object);
  645                         return;
  646                 }
  647 doterm:
  648                 umtx_shm_object_terminated(object);
  649                 temp = object->backing_object;
  650                 if (temp != NULL) {
  651                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
  652                             ("shadowed tmpfs v_object 2 %p", object));
  653                         VM_OBJECT_WLOCK(temp);
  654                         LIST_REMOVE(object, shadow_list);
  655                         temp->shadow_count--;
  656                         VM_OBJECT_WUNLOCK(temp);
  657                         object->backing_object = NULL;
  658                 }
  659                 /*
  660                  * Don't double-terminate, we could be in a termination
  661                  * recursion due to the terminate having to sync data
  662                  * to disk.
  663                  */
  664                 if ((object->flags & OBJ_DEAD) == 0)
  665                         vm_object_terminate(object);
  666                 else
  667                         VM_OBJECT_WUNLOCK(object);
  668                 object = temp;
  669         }
  670 }
  671 
  672 /*
  673  *      vm_object_destroy removes the object from the global object list
  674  *      and frees the space for the object.
  675  */
  676 void
  677 vm_object_destroy(vm_object_t object)
  678 {
  679 
  680         /*
  681          * Release the allocation charge.
  682          */
  683         if (object->cred != NULL) {
  684                 swap_release_by_cred(object->charge, object->cred);
  685                 object->charge = 0;
  686                 crfree(object->cred);
  687                 object->cred = NULL;
  688         }
  689 
  690         /*
  691          * Free the space for the object.
  692          */
  693         uma_zfree(obj_zone, object);
  694 }
  695 
  696 /*
  697  *      vm_object_terminate actually destroys the specified object, freeing
  698  *      up all previously used resources.
  699  *
  700  *      The object must be locked.
  701  *      This routine may block.
  702  */
  703 void
  704 vm_object_terminate(vm_object_t object)
  705 {
  706         vm_page_t p, p_next;
  707 
  708         VM_OBJECT_ASSERT_WLOCKED(object);
  709 
  710         /*
  711          * Make sure no one uses us.
  712          */
  713         vm_object_set_flag(object, OBJ_DEAD);
  714 
  715         /*
  716          * wait for the pageout daemon to be done with the object
  717          */
  718         vm_object_pip_wait(object, "objtrm");
  719 
  720         KASSERT(!object->paging_in_progress,
  721                 ("vm_object_terminate: pageout in progress"));
  722 
  723         /*
  724          * Clean and free the pages, as appropriate. All references to the
  725          * object are gone, so we don't need to lock it.
  726          */
  727         if (object->type == OBJT_VNODE) {
  728                 struct vnode *vp = (struct vnode *)object->handle;
  729 
  730                 /*
  731                  * Clean pages and flush buffers.
  732                  */
  733                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  734                 VM_OBJECT_WUNLOCK(object);
  735 
  736                 vinvalbuf(vp, V_SAVE, 0, 0);
  737 
  738                 BO_LOCK(&vp->v_bufobj);
  739                 vp->v_bufobj.bo_flag |= BO_DEAD;
  740                 BO_UNLOCK(&vp->v_bufobj);
  741 
  742                 VM_OBJECT_WLOCK(object);
  743         }
  744 
  745         KASSERT(object->ref_count == 0, 
  746                 ("vm_object_terminate: object with references, ref_count=%d",
  747                 object->ref_count));
  748 
  749         /*
  750          * Free any remaining pageable pages.  This also removes them from the
  751          * paging queues.  However, don't free wired pages, just remove them
  752          * from the object.  Rather than incrementally removing each page from
  753          * the object, the page and object are reset to any empty state. 
  754          */
  755         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
  756                 vm_page_assert_unbusied(p);
  757                 vm_page_lock(p);
  758                 /*
  759                  * Optimize the page's removal from the object by resetting
  760                  * its "object" field.  Specifically, if the page is not
  761                  * wired, then the effect of this assignment is that
  762                  * vm_page_free()'s call to vm_page_remove() will return
  763                  * immediately without modifying the page or the object.
  764                  */ 
  765                 p->object = NULL;
  766                 if (p->wire_count == 0) {
  767                         vm_page_free(p);
  768                         PCPU_INC(cnt.v_pfree);
  769                 }
  770                 vm_page_unlock(p);
  771         }
  772         /*
  773          * If the object contained any pages, then reset it to an empty state.
  774          * None of the object's fields, including "resident_page_count", were
  775          * modified by the preceding loop.
  776          */
  777         if (object->resident_page_count != 0) {
  778                 vm_radix_reclaim_allnodes(&object->rtree);
  779                 TAILQ_INIT(&object->memq);
  780                 object->resident_page_count = 0;
  781                 if (object->type == OBJT_VNODE)
  782                         vdrop(object->handle);
  783         }
  784 
  785 #if VM_NRESERVLEVEL > 0
  786         if (__predict_false(!LIST_EMPTY(&object->rvq)))
  787                 vm_reserv_break_all(object);
  788 #endif
  789 
  790         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
  791             object->type == OBJT_SWAP,
  792             ("%s: non-swap obj %p has cred", __func__, object));
  793 
  794         /*
  795          * Let the pager know object is dead.
  796          */
  797         vm_pager_deallocate(object);
  798         VM_OBJECT_WUNLOCK(object);
  799 
  800         vm_object_destroy(object);
  801 }
  802 
  803 /*
  804  * Make the page read-only so that we can clear the object flags.  However, if
  805  * this is a nosync mmap then the object is likely to stay dirty so do not
  806  * mess with the page and do not clear the object flags.  Returns TRUE if the
  807  * page should be flushed, and FALSE otherwise.
  808  */
  809 static boolean_t
  810 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
  811 {
  812 
  813         /*
  814          * If we have been asked to skip nosync pages and this is a
  815          * nosync page, skip it.  Note that the object flags were not
  816          * cleared in this case so we do not have to set them.
  817          */
  818         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
  819                 *clearobjflags = FALSE;
  820                 return (FALSE);
  821         } else {
  822                 pmap_remove_write(p);
  823                 return (p->dirty != 0);
  824         }
  825 }
  826 
  827 /*
  828  *      vm_object_page_clean
  829  *
  830  *      Clean all dirty pages in the specified range of object.  Leaves page 
  831  *      on whatever queue it is currently on.   If NOSYNC is set then do not
  832  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
  833  *      leaving the object dirty.
  834  *
  835  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
  836  *      synchronous clustering mode implementation.
  837  *
  838  *      Odd semantics: if start == end, we clean everything.
  839  *
  840  *      The object must be locked.
  841  *
  842  *      Returns FALSE if some page from the range was not written, as
  843  *      reported by the pager, and TRUE otherwise.
  844  */
  845 boolean_t
  846 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
  847     int flags)
  848 {
  849         vm_page_t np, p;
  850         vm_pindex_t pi, tend, tstart;
  851         int curgeneration, n, pagerflags;
  852         boolean_t clearobjflags, eio, res;
  853 
  854         VM_OBJECT_ASSERT_WLOCKED(object);
  855 
  856         /*
  857          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
  858          * objects.  The check below prevents the function from
  859          * operating on non-vnode objects.
  860          */
  861         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
  862             object->resident_page_count == 0)
  863                 return (TRUE);
  864 
  865         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
  866             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
  867         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
  868 
  869         tstart = OFF_TO_IDX(start);
  870         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
  871         clearobjflags = tstart == 0 && tend >= object->size;
  872         res = TRUE;
  873 
  874 rescan:
  875         curgeneration = object->generation;
  876 
  877         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
  878                 pi = p->pindex;
  879                 if (pi >= tend)
  880                         break;
  881                 np = TAILQ_NEXT(p, listq);
  882                 if (p->valid == 0)
  883                         continue;
  884                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
  885                         if (object->generation != curgeneration) {
  886                                 if ((flags & OBJPC_SYNC) != 0)
  887                                         goto rescan;
  888                                 else
  889                                         clearobjflags = FALSE;
  890                         }
  891                         np = vm_page_find_least(object, pi);
  892                         continue;
  893                 }
  894                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
  895                         continue;
  896 
  897                 n = vm_object_page_collect_flush(object, p, pagerflags,
  898                     flags, &clearobjflags, &eio);
  899                 if (eio) {
  900                         res = FALSE;
  901                         clearobjflags = FALSE;
  902                 }
  903                 if (object->generation != curgeneration) {
  904                         if ((flags & OBJPC_SYNC) != 0)
  905                                 goto rescan;
  906                         else
  907                                 clearobjflags = FALSE;
  908                 }
  909 
  910                 /*
  911                  * If the VOP_PUTPAGES() did a truncated write, so
  912                  * that even the first page of the run is not fully
  913                  * written, vm_pageout_flush() returns 0 as the run
  914                  * length.  Since the condition that caused truncated
  915                  * write may be permanent, e.g. exhausted free space,
  916                  * accepting n == 0 would cause an infinite loop.
  917                  *
  918                  * Forwarding the iterator leaves the unwritten page
  919                  * behind, but there is not much we can do there if
  920                  * filesystem refuses to write it.
  921                  */
  922                 if (n == 0) {
  923                         n = 1;
  924                         clearobjflags = FALSE;
  925                 }
  926                 np = vm_page_find_least(object, pi + n);
  927         }
  928 #if 0
  929         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
  930 #endif
  931 
  932         if (clearobjflags)
  933                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
  934         return (res);
  935 }
  936 
  937 static int
  938 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
  939     int flags, boolean_t *clearobjflags, boolean_t *eio)
  940 {
  941         vm_page_t ma[vm_pageout_page_count], p_first, tp;
  942         int count, i, mreq, runlen;
  943 
  944         vm_page_lock_assert(p, MA_NOTOWNED);
  945         VM_OBJECT_ASSERT_WLOCKED(object);
  946 
  947         count = 1;
  948         mreq = 0;
  949 
  950         for (tp = p; count < vm_pageout_page_count; count++) {
  951                 tp = vm_page_next(tp);
  952                 if (tp == NULL || vm_page_busied(tp))
  953                         break;
  954                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  955                         break;
  956         }
  957 
  958         for (p_first = p; count < vm_pageout_page_count; count++) {
  959                 tp = vm_page_prev(p_first);
  960                 if (tp == NULL || vm_page_busied(tp))
  961                         break;
  962                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  963                         break;
  964                 p_first = tp;
  965                 mreq++;
  966         }
  967 
  968         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
  969                 ma[i] = tp;
  970 
  971         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
  972         return (runlen);
  973 }
  974 
  975 /*
  976  * Note that there is absolutely no sense in writing out
  977  * anonymous objects, so we track down the vnode object
  978  * to write out.
  979  * We invalidate (remove) all pages from the address space
  980  * for semantic correctness.
  981  *
  982  * If the backing object is a device object with unmanaged pages, then any
  983  * mappings to the specified range of pages must be removed before this
  984  * function is called.
  985  *
  986  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
  987  * may start out with a NULL object.
  988  */
  989 boolean_t
  990 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
  991     boolean_t syncio, boolean_t invalidate)
  992 {
  993         vm_object_t backing_object;
  994         struct vnode *vp;
  995         struct mount *mp;
  996         int error, flags, fsync_after;
  997         boolean_t res;
  998 
  999         if (object == NULL)
 1000                 return (TRUE);
 1001         res = TRUE;
 1002         error = 0;
 1003         VM_OBJECT_WLOCK(object);
 1004         while ((backing_object = object->backing_object) != NULL) {
 1005                 VM_OBJECT_WLOCK(backing_object);
 1006                 offset += object->backing_object_offset;
 1007                 VM_OBJECT_WUNLOCK(object);
 1008                 object = backing_object;
 1009                 if (object->size < OFF_TO_IDX(offset + size))
 1010                         size = IDX_TO_OFF(object->size) - offset;
 1011         }
 1012         /*
 1013          * Flush pages if writing is allowed, invalidate them
 1014          * if invalidation requested.  Pages undergoing I/O
 1015          * will be ignored by vm_object_page_remove().
 1016          *
 1017          * We cannot lock the vnode and then wait for paging
 1018          * to complete without deadlocking against vm_fault.
 1019          * Instead we simply call vm_object_page_remove() and
 1020          * allow it to block internally on a page-by-page
 1021          * basis when it encounters pages undergoing async
 1022          * I/O.
 1023          */
 1024         if (object->type == OBJT_VNODE &&
 1025             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
 1026                 vp = object->handle;
 1027                 VM_OBJECT_WUNLOCK(object);
 1028                 (void) vn_start_write(vp, &mp, V_WAIT);
 1029                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1030                 if (syncio && !invalidate && offset == 0 &&
 1031                     atop(size) == object->size) {
 1032                         /*
 1033                          * If syncing the whole mapping of the file,
 1034                          * it is faster to schedule all the writes in
 1035                          * async mode, also allowing the clustering,
 1036                          * and then wait for i/o to complete.
 1037                          */
 1038                         flags = 0;
 1039                         fsync_after = TRUE;
 1040                 } else {
 1041                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
 1042                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
 1043                         fsync_after = FALSE;
 1044                 }
 1045                 VM_OBJECT_WLOCK(object);
 1046                 res = vm_object_page_clean(object, offset, offset + size,
 1047                     flags);
 1048                 VM_OBJECT_WUNLOCK(object);
 1049                 if (fsync_after)
 1050                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
 1051                 VOP_UNLOCK(vp, 0);
 1052                 vn_finished_write(mp);
 1053                 if (error != 0)
 1054                         res = FALSE;
 1055                 VM_OBJECT_WLOCK(object);
 1056         }
 1057         if ((object->type == OBJT_VNODE ||
 1058              object->type == OBJT_DEVICE) && invalidate) {
 1059                 if (object->type == OBJT_DEVICE)
 1060                         /*
 1061                          * The option OBJPR_NOTMAPPED must be passed here
 1062                          * because vm_object_page_remove() cannot remove
 1063                          * unmanaged mappings.
 1064                          */
 1065                         flags = OBJPR_NOTMAPPED;
 1066                 else if (old_msync)
 1067                         flags = 0;
 1068                 else
 1069                         flags = OBJPR_CLEANONLY;
 1070                 vm_object_page_remove(object, OFF_TO_IDX(offset),
 1071                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
 1072         }
 1073         VM_OBJECT_WUNLOCK(object);
 1074         return (res);
 1075 }
 1076 
 1077 /*
 1078  *      vm_object_madvise:
 1079  *
 1080  *      Implements the madvise function at the object/page level.
 1081  *
 1082  *      MADV_WILLNEED   (any object)
 1083  *
 1084  *          Activate the specified pages if they are resident.
 1085  *
 1086  *      MADV_DONTNEED   (any object)
 1087  *
 1088  *          Deactivate the specified pages if they are resident.
 1089  *
 1090  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
 1091  *                       OBJ_ONEMAPPING only)
 1092  *
 1093  *          Deactivate and clean the specified pages if they are
 1094  *          resident.  This permits the process to reuse the pages
 1095  *          without faulting or the kernel to reclaim the pages
 1096  *          without I/O.
 1097  */
 1098 void
 1099 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
 1100     int advise)
 1101 {
 1102         vm_pindex_t tpindex;
 1103         vm_object_t backing_object, tobject;
 1104         vm_page_t m;
 1105 
 1106         if (object == NULL)
 1107                 return;
 1108         VM_OBJECT_WLOCK(object);
 1109         /*
 1110          * Locate and adjust resident pages
 1111          */
 1112         for (; pindex < end; pindex += 1) {
 1113 relookup:
 1114                 tobject = object;
 1115                 tpindex = pindex;
 1116 shadowlookup:
 1117                 /*
 1118                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
 1119                  * and those pages must be OBJ_ONEMAPPING.
 1120                  */
 1121                 if (advise == MADV_FREE) {
 1122                         if ((tobject->type != OBJT_DEFAULT &&
 1123                              tobject->type != OBJT_SWAP) ||
 1124                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
 1125                                 goto unlock_tobject;
 1126                         }
 1127                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
 1128                         goto unlock_tobject;
 1129                 m = vm_page_lookup(tobject, tpindex);
 1130                 if (m == NULL) {
 1131                         /*
 1132                          * There may be swap even if there is no backing page
 1133                          */
 1134                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1135                                 swap_pager_freespace(tobject, tpindex, 1);
 1136                         /*
 1137                          * next object
 1138                          */
 1139                         backing_object = tobject->backing_object;
 1140                         if (backing_object == NULL)
 1141                                 goto unlock_tobject;
 1142                         VM_OBJECT_WLOCK(backing_object);
 1143                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
 1144                         if (tobject != object)
 1145                                 VM_OBJECT_WUNLOCK(tobject);
 1146                         tobject = backing_object;
 1147                         goto shadowlookup;
 1148                 } else if (m->valid != VM_PAGE_BITS_ALL)
 1149                         goto unlock_tobject;
 1150                 /*
 1151                  * If the page is not in a normal state, skip it.
 1152                  */
 1153                 vm_page_lock(m);
 1154                 if (m->hold_count != 0 || m->wire_count != 0) {
 1155                         vm_page_unlock(m);
 1156                         goto unlock_tobject;
 1157                 }
 1158                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
 1159                     ("vm_object_madvise: page %p is fictitious", m));
 1160                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1161                     ("vm_object_madvise: page %p is not managed", m));
 1162                 if (vm_page_busied(m)) {
 1163                         if (advise == MADV_WILLNEED) {
 1164                                 /*
 1165                                  * Reference the page before unlocking and
 1166                                  * sleeping so that the page daemon is less
 1167                                  * likely to reclaim it. 
 1168                                  */
 1169                                 vm_page_aflag_set(m, PGA_REFERENCED);
 1170                         }
 1171                         if (object != tobject)
 1172                                 VM_OBJECT_WUNLOCK(object);
 1173                         VM_OBJECT_WUNLOCK(tobject);
 1174                         vm_page_busy_sleep(m, "madvpo", false);
 1175                         VM_OBJECT_WLOCK(object);
 1176                         goto relookup;
 1177                 }
 1178                 if (advise == MADV_WILLNEED) {
 1179                         vm_page_activate(m);
 1180                 } else {
 1181                         vm_page_advise(m, advise);
 1182                 }
 1183                 vm_page_unlock(m);
 1184                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1185                         swap_pager_freespace(tobject, tpindex, 1);
 1186 unlock_tobject:
 1187                 if (tobject != object)
 1188                         VM_OBJECT_WUNLOCK(tobject);
 1189         }       
 1190         VM_OBJECT_WUNLOCK(object);
 1191 }
 1192 
 1193 /*
 1194  *      vm_object_shadow:
 1195  *
 1196  *      Create a new object which is backed by the
 1197  *      specified existing object range.  The source
 1198  *      object reference is deallocated.
 1199  *
 1200  *      The new object and offset into that object
 1201  *      are returned in the source parameters.
 1202  */
 1203 void
 1204 vm_object_shadow(
 1205         vm_object_t *object,    /* IN/OUT */
 1206         vm_ooffset_t *offset,   /* IN/OUT */
 1207         vm_size_t length)
 1208 {
 1209         vm_object_t source;
 1210         vm_object_t result;
 1211 
 1212         source = *object;
 1213 
 1214         /*
 1215          * Don't create the new object if the old object isn't shared.
 1216          */
 1217         if (source != NULL) {
 1218                 VM_OBJECT_WLOCK(source);
 1219                 if (source->ref_count == 1 &&
 1220                     source->handle == NULL &&
 1221                     (source->type == OBJT_DEFAULT ||
 1222                      source->type == OBJT_SWAP)) {
 1223                         VM_OBJECT_WUNLOCK(source);
 1224                         return;
 1225                 }
 1226                 VM_OBJECT_WUNLOCK(source);
 1227         }
 1228 
 1229         /*
 1230          * Allocate a new object with the given length.
 1231          */
 1232         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
 1233 
 1234         /*
 1235          * The new object shadows the source object, adding a reference to it.
 1236          * Our caller changes his reference to point to the new object,
 1237          * removing a reference to the source object.  Net result: no change
 1238          * of reference count.
 1239          *
 1240          * Try to optimize the result object's page color when shadowing
 1241          * in order to maintain page coloring consistency in the combined 
 1242          * shadowed object.
 1243          */
 1244         result->backing_object = source;
 1245         /*
 1246          * Store the offset into the source object, and fix up the offset into
 1247          * the new object.
 1248          */
 1249         result->backing_object_offset = *offset;
 1250         if (source != NULL) {
 1251                 VM_OBJECT_WLOCK(source);
 1252                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
 1253                 source->shadow_count++;
 1254 #if VM_NRESERVLEVEL > 0
 1255                 result->flags |= source->flags & OBJ_COLORED;
 1256                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
 1257                     ((1 << (VM_NFREEORDER - 1)) - 1);
 1258 #endif
 1259                 VM_OBJECT_WUNLOCK(source);
 1260         }
 1261 
 1262 
 1263         /*
 1264          * Return the new things
 1265          */
 1266         *offset = 0;
 1267         *object = result;
 1268 }
 1269 
 1270 /*
 1271  *      vm_object_split:
 1272  *
 1273  * Split the pages in a map entry into a new object.  This affords
 1274  * easier removal of unused pages, and keeps object inheritance from
 1275  * being a negative impact on memory usage.
 1276  */
 1277 void
 1278 vm_object_split(vm_map_entry_t entry)
 1279 {
 1280         vm_page_t m, m_next;
 1281         vm_object_t orig_object, new_object, source;
 1282         vm_pindex_t idx, offidxstart;
 1283         vm_size_t size;
 1284 
 1285         orig_object = entry->object.vm_object;
 1286         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
 1287                 return;
 1288         if (orig_object->ref_count <= 1)
 1289                 return;
 1290         VM_OBJECT_WUNLOCK(orig_object);
 1291 
 1292         offidxstart = OFF_TO_IDX(entry->offset);
 1293         size = atop(entry->end - entry->start);
 1294 
 1295         /*
 1296          * If swap_pager_copy() is later called, it will convert new_object
 1297          * into a swap object.
 1298          */
 1299         new_object = vm_object_allocate(OBJT_DEFAULT, size);
 1300 
 1301         /*
 1302          * At this point, the new object is still private, so the order in
 1303          * which the original and new objects are locked does not matter.
 1304          */
 1305         VM_OBJECT_WLOCK(new_object);
 1306         VM_OBJECT_WLOCK(orig_object);
 1307         source = orig_object->backing_object;
 1308         if (source != NULL) {
 1309                 VM_OBJECT_WLOCK(source);
 1310                 if ((source->flags & OBJ_DEAD) != 0) {
 1311                         VM_OBJECT_WUNLOCK(source);
 1312                         VM_OBJECT_WUNLOCK(orig_object);
 1313                         VM_OBJECT_WUNLOCK(new_object);
 1314                         vm_object_deallocate(new_object);
 1315                         VM_OBJECT_WLOCK(orig_object);
 1316                         return;
 1317                 }
 1318                 LIST_INSERT_HEAD(&source->shadow_head,
 1319                                   new_object, shadow_list);
 1320                 source->shadow_count++;
 1321                 vm_object_reference_locked(source);     /* for new_object */
 1322                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1323                 VM_OBJECT_WUNLOCK(source);
 1324                 new_object->backing_object_offset = 
 1325                         orig_object->backing_object_offset + entry->offset;
 1326                 new_object->backing_object = source;
 1327         }
 1328         if (orig_object->cred != NULL) {
 1329                 new_object->cred = orig_object->cred;
 1330                 crhold(orig_object->cred);
 1331                 new_object->charge = ptoa(size);
 1332                 KASSERT(orig_object->charge >= ptoa(size),
 1333                     ("orig_object->charge < 0"));
 1334                 orig_object->charge -= ptoa(size);
 1335         }
 1336 retry:
 1337         m = vm_page_find_least(orig_object, offidxstart);
 1338         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
 1339             m = m_next) {
 1340                 m_next = TAILQ_NEXT(m, listq);
 1341 
 1342                 /*
 1343                  * We must wait for pending I/O to complete before we can
 1344                  * rename the page.
 1345                  *
 1346                  * We do not have to VM_PROT_NONE the page as mappings should
 1347                  * not be changed by this operation.
 1348                  */
 1349                 if (vm_page_busied(m)) {
 1350                         VM_OBJECT_WUNLOCK(new_object);
 1351                         vm_page_lock(m);
 1352                         VM_OBJECT_WUNLOCK(orig_object);
 1353                         vm_page_busy_sleep(m, "spltwt", false);
 1354                         VM_OBJECT_WLOCK(orig_object);
 1355                         VM_OBJECT_WLOCK(new_object);
 1356                         goto retry;
 1357                 }
 1358 
 1359                 /* vm_page_rename() will dirty the page. */
 1360                 if (vm_page_rename(m, new_object, idx)) {
 1361                         VM_OBJECT_WUNLOCK(new_object);
 1362                         VM_OBJECT_WUNLOCK(orig_object);
 1363                         VM_WAIT;
 1364                         VM_OBJECT_WLOCK(orig_object);
 1365                         VM_OBJECT_WLOCK(new_object);
 1366                         goto retry;
 1367                 }
 1368 #if VM_NRESERVLEVEL > 0
 1369                 /*
 1370                  * If some of the reservation's allocated pages remain with
 1371                  * the original object, then transferring the reservation to
 1372                  * the new object is neither particularly beneficial nor
 1373                  * particularly harmful as compared to leaving the reservation
 1374                  * with the original object.  If, however, all of the
 1375                  * reservation's allocated pages are transferred to the new
 1376                  * object, then transferring the reservation is typically
 1377                  * beneficial.  Determining which of these two cases applies
 1378                  * would be more costly than unconditionally renaming the
 1379                  * reservation.
 1380                  */
 1381                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
 1382 #endif
 1383                 if (orig_object->type == OBJT_SWAP)
 1384                         vm_page_xbusy(m);
 1385         }
 1386         if (orig_object->type == OBJT_SWAP) {
 1387                 /*
 1388                  * swap_pager_copy() can sleep, in which case the orig_object's
 1389                  * and new_object's locks are released and reacquired. 
 1390                  */
 1391                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
 1392                 TAILQ_FOREACH(m, &new_object->memq, listq)
 1393                         vm_page_xunbusy(m);
 1394         }
 1395         VM_OBJECT_WUNLOCK(orig_object);
 1396         VM_OBJECT_WUNLOCK(new_object);
 1397         entry->object.vm_object = new_object;
 1398         entry->offset = 0LL;
 1399         vm_object_deallocate(orig_object);
 1400         VM_OBJECT_WLOCK(new_object);
 1401 }
 1402 
 1403 #define OBSC_COLLAPSE_NOWAIT    0x0002
 1404 #define OBSC_COLLAPSE_WAIT      0x0004
 1405 
 1406 static vm_page_t
 1407 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
 1408     int op)
 1409 {
 1410         vm_object_t backing_object;
 1411 
 1412         VM_OBJECT_ASSERT_WLOCKED(object);
 1413         backing_object = object->backing_object;
 1414         VM_OBJECT_ASSERT_WLOCKED(backing_object);
 1415 
 1416         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
 1417         KASSERT(p == NULL || p->object == object || p->object == backing_object,
 1418             ("invalid ownership %p %p %p", p, object, backing_object));
 1419         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
 1420                 return (next);
 1421         if (p != NULL)
 1422                 vm_page_lock(p);
 1423         VM_OBJECT_WUNLOCK(object);
 1424         VM_OBJECT_WUNLOCK(backing_object);
 1425         if (p == NULL)
 1426                 VM_WAIT;
 1427         else
 1428                 vm_page_busy_sleep(p, "vmocol", false);
 1429         VM_OBJECT_WLOCK(object);
 1430         VM_OBJECT_WLOCK(backing_object);
 1431         return (TAILQ_FIRST(&backing_object->memq));
 1432 }
 1433 
 1434 static bool
 1435 vm_object_scan_all_shadowed(vm_object_t object)
 1436 {
 1437         vm_object_t backing_object;
 1438         vm_page_t p, pp;
 1439         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
 1440 
 1441         VM_OBJECT_ASSERT_WLOCKED(object);
 1442         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
 1443 
 1444         backing_object = object->backing_object;
 1445 
 1446         /*
 1447          * Initial conditions:
 1448          *
 1449          * We do not want to have to test for the existence of swap
 1450          * pages in the backing object.  XXX but with the new swapper this
 1451          * would be pretty easy to do.
 1452          */
 1453         if (backing_object->type != OBJT_DEFAULT &&
 1454             backing_object->type != OBJT_SWAP)
 1455                 return (false);
 1456 
 1457         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1458         p = vm_page_find_least(backing_object, pi);
 1459         ps = swap_pager_find_least(backing_object, pi);
 1460 
 1461         /*
 1462          * Only check pages inside the parent object's range and
 1463          * inside the parent object's mapping of the backing object.
 1464          */
 1465         for (;; pi++) {
 1466                 if (p != NULL && p->pindex < pi)
 1467                         p = TAILQ_NEXT(p, listq);
 1468                 if (ps < pi)
 1469                         ps = swap_pager_find_least(backing_object, pi);
 1470                 if (p == NULL && ps >= backing_object->size)
 1471                         break;
 1472                 else if (p == NULL)
 1473                         pi = ps;
 1474                 else
 1475                         pi = MIN(p->pindex, ps);
 1476 
 1477                 new_pindex = pi - backing_offset_index;
 1478                 if (new_pindex >= object->size)
 1479                         break;
 1480 
 1481                 /*
 1482                  * See if the parent has the page or if the parent's object
 1483                  * pager has the page.  If the parent has the page but the page
 1484                  * is not valid, the parent's object pager must have the page.
 1485                  *
 1486                  * If this fails, the parent does not completely shadow the
 1487                  * object and we might as well give up now.
 1488                  */
 1489                 pp = vm_page_lookup(object, new_pindex);
 1490                 if ((pp == NULL || pp->valid == 0) &&
 1491                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
 1492                         return (false);
 1493         }
 1494         return (true);
 1495 }
 1496 
 1497 static bool
 1498 vm_object_collapse_scan(vm_object_t object, int op)
 1499 {
 1500         vm_object_t backing_object;
 1501         vm_page_t next, p, pp;
 1502         vm_pindex_t backing_offset_index, new_pindex;
 1503 
 1504         VM_OBJECT_ASSERT_WLOCKED(object);
 1505         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
 1506 
 1507         backing_object = object->backing_object;
 1508         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1509 
 1510         /*
 1511          * Initial conditions
 1512          */
 1513         if ((op & OBSC_COLLAPSE_WAIT) != 0)
 1514                 vm_object_set_flag(backing_object, OBJ_DEAD);
 1515 
 1516         /*
 1517          * Our scan
 1518          */
 1519         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
 1520                 next = TAILQ_NEXT(p, listq);
 1521                 new_pindex = p->pindex - backing_offset_index;
 1522 
 1523                 /*
 1524                  * Check for busy page
 1525                  */
 1526                 if (vm_page_busied(p)) {
 1527                         next = vm_object_collapse_scan_wait(object, p, next, op);
 1528                         continue;
 1529                 }
 1530 
 1531                 KASSERT(p->object == backing_object,
 1532                     ("vm_object_collapse_scan: object mismatch"));
 1533 
 1534                 if (p->pindex < backing_offset_index ||
 1535                     new_pindex >= object->size) {
 1536                         if (backing_object->type == OBJT_SWAP)
 1537                                 swap_pager_freespace(backing_object, p->pindex,
 1538                                     1);
 1539 
 1540                         /*
 1541                          * Page is out of the parent object's range, we can
 1542                          * simply destroy it.
 1543                          */
 1544                         vm_page_lock(p);
 1545                         KASSERT(!pmap_page_is_mapped(p),
 1546                             ("freeing mapped page %p", p));
 1547                         if (p->wire_count == 0)
 1548                                 vm_page_free(p);
 1549                         else
 1550                                 vm_page_remove(p);
 1551                         vm_page_unlock(p);
 1552                         continue;
 1553                 }
 1554 
 1555                 pp = vm_page_lookup(object, new_pindex);
 1556                 if (pp != NULL && vm_page_busied(pp)) {
 1557                         /*
 1558                          * The page in the parent is busy and possibly not
 1559                          * (yet) valid.  Until its state is finalized by the
 1560                          * busy bit owner, we can't tell whether it shadows the
 1561                          * original page.  Therefore, we must either skip it
 1562                          * and the original (backing_object) page or wait for
 1563                          * its state to be finalized.
 1564                          *
 1565                          * This is due to a race with vm_fault() where we must
 1566                          * unbusy the original (backing_obj) page before we can
 1567                          * (re)lock the parent.  Hence we can get here.
 1568                          */
 1569                         next = vm_object_collapse_scan_wait(object, pp, next,
 1570                             op);
 1571                         continue;
 1572                 }
 1573 
 1574                 KASSERT(pp == NULL || pp->valid != 0,
 1575                     ("unbusy invalid page %p", pp));
 1576 
 1577                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
 1578                         NULL)) {
 1579                         /*
 1580                          * The page already exists in the parent OR swap exists
 1581                          * for this location in the parent.  Leave the parent's
 1582                          * page alone.  Destroy the original page from the
 1583                          * backing object.
 1584                          */
 1585                         if (backing_object->type == OBJT_SWAP)
 1586                                 swap_pager_freespace(backing_object, p->pindex,
 1587                                     1);
 1588                         vm_page_lock(p);
 1589                         KASSERT(!pmap_page_is_mapped(p),
 1590                             ("freeing mapped page %p", p));
 1591                         if (p->wire_count == 0)
 1592                                 vm_page_free(p);
 1593                         else
 1594                                 vm_page_remove(p);
 1595                         vm_page_unlock(p);
 1596                         continue;
 1597                 }
 1598 
 1599                 /*
 1600                  * Page does not exist in parent, rename the page from the
 1601                  * backing object to the main object.
 1602                  *
 1603                  * If the page was mapped to a process, it can remain mapped
 1604                  * through the rename.  vm_page_rename() will dirty the page.
 1605                  */
 1606                 if (vm_page_rename(p, object, new_pindex)) {
 1607                         next = vm_object_collapse_scan_wait(object, NULL, next,
 1608                             op);
 1609                         continue;
 1610                 }
 1611 
 1612                 /* Use the old pindex to free the right page. */
 1613                 if (backing_object->type == OBJT_SWAP)
 1614                         swap_pager_freespace(backing_object,
 1615                             new_pindex + backing_offset_index, 1);
 1616 
 1617 #if VM_NRESERVLEVEL > 0
 1618                 /*
 1619                  * Rename the reservation.
 1620                  */
 1621                 vm_reserv_rename(p, object, backing_object,
 1622                     backing_offset_index);
 1623 #endif
 1624         }
 1625         return (true);
 1626 }
 1627 
 1628 
 1629 /*
 1630  * this version of collapse allows the operation to occur earlier and
 1631  * when paging_in_progress is true for an object...  This is not a complete
 1632  * operation, but should plug 99.9% of the rest of the leaks.
 1633  */
 1634 static void
 1635 vm_object_qcollapse(vm_object_t object)
 1636 {
 1637         vm_object_t backing_object = object->backing_object;
 1638 
 1639         VM_OBJECT_ASSERT_WLOCKED(object);
 1640         VM_OBJECT_ASSERT_WLOCKED(backing_object);
 1641 
 1642         if (backing_object->ref_count != 1)
 1643                 return;
 1644 
 1645         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
 1646 }
 1647 
 1648 /*
 1649  *      vm_object_collapse:
 1650  *
 1651  *      Collapse an object with the object backing it.
 1652  *      Pages in the backing object are moved into the
 1653  *      parent, and the backing object is deallocated.
 1654  */
 1655 void
 1656 vm_object_collapse(vm_object_t object)
 1657 {
 1658         vm_object_t backing_object, new_backing_object;
 1659 
 1660         VM_OBJECT_ASSERT_WLOCKED(object);
 1661 
 1662         while (TRUE) {
 1663                 /*
 1664                  * Verify that the conditions are right for collapse:
 1665                  *
 1666                  * The object exists and the backing object exists.
 1667                  */
 1668                 if ((backing_object = object->backing_object) == NULL)
 1669                         break;
 1670 
 1671                 /*
 1672                  * we check the backing object first, because it is most likely
 1673                  * not collapsable.
 1674                  */
 1675                 VM_OBJECT_WLOCK(backing_object);
 1676                 if (backing_object->handle != NULL ||
 1677                     (backing_object->type != OBJT_DEFAULT &&
 1678                      backing_object->type != OBJT_SWAP) ||
 1679                     (backing_object->flags & OBJ_DEAD) ||
 1680                     object->handle != NULL ||
 1681                     (object->type != OBJT_DEFAULT &&
 1682                      object->type != OBJT_SWAP) ||
 1683                     (object->flags & OBJ_DEAD)) {
 1684                         VM_OBJECT_WUNLOCK(backing_object);
 1685                         break;
 1686                 }
 1687 
 1688                 if (object->paging_in_progress != 0 ||
 1689                     backing_object->paging_in_progress != 0) {
 1690                         vm_object_qcollapse(object);
 1691                         VM_OBJECT_WUNLOCK(backing_object);
 1692                         break;
 1693                 }
 1694 
 1695                 /*
 1696                  * We know that we can either collapse the backing object (if
 1697                  * the parent is the only reference to it) or (perhaps) have
 1698                  * the parent bypass the object if the parent happens to shadow
 1699                  * all the resident pages in the entire backing object.
 1700                  *
 1701                  * This is ignoring pager-backed pages such as swap pages.
 1702                  * vm_object_collapse_scan fails the shadowing test in this
 1703                  * case.
 1704                  */
 1705                 if (backing_object->ref_count == 1) {
 1706                         vm_object_pip_add(object, 1);
 1707                         vm_object_pip_add(backing_object, 1);
 1708 
 1709                         /*
 1710                          * If there is exactly one reference to the backing
 1711                          * object, we can collapse it into the parent.
 1712                          */
 1713                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
 1714 
 1715 #if VM_NRESERVLEVEL > 0
 1716                         /*
 1717                          * Break any reservations from backing_object.
 1718                          */
 1719                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
 1720                                 vm_reserv_break_all(backing_object);
 1721 #endif
 1722 
 1723                         /*
 1724                          * Move the pager from backing_object to object.
 1725                          */
 1726                         if (backing_object->type == OBJT_SWAP) {
 1727                                 /*
 1728                                  * swap_pager_copy() can sleep, in which case
 1729                                  * the backing_object's and object's locks are
 1730                                  * released and reacquired.
 1731                                  * Since swap_pager_copy() is being asked to
 1732                                  * destroy the source, it will change the
 1733                                  * backing_object's type to OBJT_DEFAULT.
 1734                                  */
 1735                                 swap_pager_copy(
 1736                                     backing_object,
 1737                                     object,
 1738                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
 1739                         }
 1740                         /*
 1741                          * Object now shadows whatever backing_object did.
 1742                          * Note that the reference to 
 1743                          * backing_object->backing_object moves from within 
 1744                          * backing_object to within object.
 1745                          */
 1746                         LIST_REMOVE(object, shadow_list);
 1747                         backing_object->shadow_count--;
 1748                         if (backing_object->backing_object) {
 1749                                 VM_OBJECT_WLOCK(backing_object->backing_object);
 1750                                 LIST_REMOVE(backing_object, shadow_list);
 1751                                 LIST_INSERT_HEAD(
 1752                                     &backing_object->backing_object->shadow_head,
 1753                                     object, shadow_list);
 1754                                 /*
 1755                                  * The shadow_count has not changed.
 1756                                  */
 1757                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
 1758                         }
 1759                         object->backing_object = backing_object->backing_object;
 1760                         object->backing_object_offset +=
 1761                             backing_object->backing_object_offset;
 1762 
 1763                         /*
 1764                          * Discard backing_object.
 1765                          *
 1766                          * Since the backing object has no pages, no pager left,
 1767                          * and no object references within it, all that is
 1768                          * necessary is to dispose of it.
 1769                          */
 1770                         KASSERT(backing_object->ref_count == 1, (
 1771 "backing_object %p was somehow re-referenced during collapse!",
 1772                             backing_object));
 1773                         vm_object_pip_wakeup(backing_object);
 1774                         backing_object->type = OBJT_DEAD;
 1775                         backing_object->ref_count = 0;
 1776                         VM_OBJECT_WUNLOCK(backing_object);
 1777                         vm_object_destroy(backing_object);
 1778 
 1779                         vm_object_pip_wakeup(object);
 1780                         object_collapses++;
 1781                 } else {
 1782                         /*
 1783                          * If we do not entirely shadow the backing object,
 1784                          * there is nothing we can do so we give up.
 1785                          */
 1786                         if (object->resident_page_count != object->size &&
 1787                             !vm_object_scan_all_shadowed(object)) {
 1788                                 VM_OBJECT_WUNLOCK(backing_object);
 1789                                 break;
 1790                         }
 1791 
 1792                         /*
 1793                          * Make the parent shadow the next object in the
 1794                          * chain.  Deallocating backing_object will not remove
 1795                          * it, since its reference count is at least 2.
 1796                          */
 1797                         LIST_REMOVE(object, shadow_list);
 1798                         backing_object->shadow_count--;
 1799 
 1800                         new_backing_object = backing_object->backing_object;
 1801                         if ((object->backing_object = new_backing_object) != NULL) {
 1802                                 VM_OBJECT_WLOCK(new_backing_object);
 1803                                 LIST_INSERT_HEAD(
 1804                                     &new_backing_object->shadow_head,
 1805                                     object,
 1806                                     shadow_list
 1807                                 );
 1808                                 new_backing_object->shadow_count++;
 1809                                 vm_object_reference_locked(new_backing_object);
 1810                                 VM_OBJECT_WUNLOCK(new_backing_object);
 1811                                 object->backing_object_offset +=
 1812                                         backing_object->backing_object_offset;
 1813                         }
 1814 
 1815                         /*
 1816                          * Drop the reference count on backing_object. Since
 1817                          * its ref_count was at least 2, it will not vanish.
 1818                          */
 1819                         backing_object->ref_count--;
 1820                         VM_OBJECT_WUNLOCK(backing_object);
 1821                         object_bypasses++;
 1822                 }
 1823 
 1824                 /*
 1825                  * Try again with this object's new backing object.
 1826                  */
 1827         }
 1828 }
 1829 
 1830 /*
 1831  *      vm_object_page_remove:
 1832  *
 1833  *      For the given object, either frees or invalidates each of the
 1834  *      specified pages.  In general, a page is freed.  However, if a page is
 1835  *      wired for any reason other than the existence of a managed, wired
 1836  *      mapping, then it may be invalidated but not removed from the object.
 1837  *      Pages are specified by the given range ["start", "end") and the option
 1838  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
 1839  *      extends from "start" to the end of the object.  If the option
 1840  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
 1841  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
 1842  *      specified, then the pages within the specified range must have no
 1843  *      mappings.  Otherwise, if this option is not specified, any mappings to
 1844  *      the specified pages are removed before the pages are freed or
 1845  *      invalidated.
 1846  *
 1847  *      In general, this operation should only be performed on objects that
 1848  *      contain managed pages.  There are, however, two exceptions.  First, it
 1849  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
 1850  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
 1851  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
 1852  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
 1853  *
 1854  *      The object must be locked.
 1855  */
 1856 void
 1857 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 1858     int options)
 1859 {
 1860         vm_page_t p, next;
 1861 
 1862         VM_OBJECT_ASSERT_WLOCKED(object);
 1863         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
 1864             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
 1865             ("vm_object_page_remove: illegal options for object %p", object));
 1866         if (object->resident_page_count == 0)
 1867                 return;
 1868         vm_object_pip_add(object, 1);
 1869 again:
 1870         p = vm_page_find_least(object, start);
 1871 
 1872         /*
 1873          * Here, the variable "p" is either (1) the page with the least pindex
 1874          * greater than or equal to the parameter "start" or (2) NULL. 
 1875          */
 1876         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 1877                 next = TAILQ_NEXT(p, listq);
 1878 
 1879                 /*
 1880                  * If the page is wired for any reason besides the existence
 1881                  * of managed, wired mappings, then it cannot be freed.  For
 1882                  * example, fictitious pages, which represent device memory,
 1883                  * are inherently wired and cannot be freed.  They can,
 1884                  * however, be invalidated if the option OBJPR_CLEANONLY is
 1885                  * not specified.
 1886                  */
 1887                 vm_page_lock(p);
 1888                 if (vm_page_xbusied(p)) {
 1889                         VM_OBJECT_WUNLOCK(object);
 1890                         vm_page_busy_sleep(p, "vmopax", true);
 1891                         VM_OBJECT_WLOCK(object);
 1892                         goto again;
 1893                 }
 1894                 if (p->wire_count != 0) {
 1895                         if ((options & OBJPR_NOTMAPPED) == 0)
 1896                                 pmap_remove_all(p);
 1897                         if ((options & OBJPR_CLEANONLY) == 0) {
 1898                                 p->valid = 0;
 1899                                 vm_page_undirty(p);
 1900                         }
 1901                         goto next;
 1902                 }
 1903                 if (vm_page_busied(p)) {
 1904                         VM_OBJECT_WUNLOCK(object);
 1905                         vm_page_busy_sleep(p, "vmopar", false);
 1906                         VM_OBJECT_WLOCK(object);
 1907                         goto again;
 1908                 }
 1909                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
 1910                     ("vm_object_page_remove: page %p is fictitious", p));
 1911                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
 1912                         if ((options & OBJPR_NOTMAPPED) == 0)
 1913                                 pmap_remove_write(p);
 1914                         if (p->dirty)
 1915                                 goto next;
 1916                 }
 1917                 if ((options & OBJPR_NOTMAPPED) == 0)
 1918                         pmap_remove_all(p);
 1919                 vm_page_free(p);
 1920 next:
 1921                 vm_page_unlock(p);
 1922         }
 1923         vm_object_pip_wakeup(object);
 1924 }
 1925 
 1926 /*
 1927  *      vm_object_page_noreuse:
 1928  *
 1929  *      For the given object, attempt to move the specified pages to
 1930  *      the head of the inactive queue.  This bypasses regular LRU
 1931  *      operation and allows the pages to be reused quickly under memory
 1932  *      pressure.  If a page is wired for any reason, then it will not
 1933  *      be queued.  Pages are specified by the range ["start", "end").
 1934  *      As a special case, if "end" is zero, then the range extends from
 1935  *      "start" to the end of the object.
 1936  *
 1937  *      This operation should only be performed on objects that
 1938  *      contain non-fictitious, managed pages.
 1939  *
 1940  *      The object must be locked.
 1941  */
 1942 void
 1943 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1944 {
 1945         struct mtx *mtx, *new_mtx;
 1946         vm_page_t p, next;
 1947 
 1948         VM_OBJECT_ASSERT_LOCKED(object);
 1949         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
 1950             ("vm_object_page_noreuse: illegal object %p", object));
 1951         if (object->resident_page_count == 0)
 1952                 return;
 1953         p = vm_page_find_least(object, start);
 1954 
 1955         /*
 1956          * Here, the variable "p" is either (1) the page with the least pindex
 1957          * greater than or equal to the parameter "start" or (2) NULL. 
 1958          */
 1959         mtx = NULL;
 1960         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 1961                 next = TAILQ_NEXT(p, listq);
 1962 
 1963                 /*
 1964                  * Avoid releasing and reacquiring the same page lock.
 1965                  */
 1966                 new_mtx = vm_page_lockptr(p);
 1967                 if (mtx != new_mtx) {
 1968                         if (mtx != NULL)
 1969                                 mtx_unlock(mtx);
 1970                         mtx = new_mtx;
 1971                         mtx_lock(mtx);
 1972                 }
 1973                 vm_page_deactivate_noreuse(p);
 1974         }
 1975         if (mtx != NULL)
 1976                 mtx_unlock(mtx);
 1977 }
 1978 
 1979 /*
 1980  *      Populate the specified range of the object with valid pages.  Returns
 1981  *      TRUE if the range is successfully populated and FALSE otherwise.
 1982  *
 1983  *      Note: This function should be optimized to pass a larger array of
 1984  *      pages to vm_pager_get_pages() before it is applied to a non-
 1985  *      OBJT_DEVICE object.
 1986  *
 1987  *      The object must be locked.
 1988  */
 1989 boolean_t
 1990 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1991 {
 1992         vm_page_t m;
 1993         vm_pindex_t pindex;
 1994         int rv;
 1995 
 1996         VM_OBJECT_ASSERT_WLOCKED(object);
 1997         for (pindex = start; pindex < end; pindex++) {
 1998                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
 1999                 if (m->valid != VM_PAGE_BITS_ALL) {
 2000                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
 2001                         if (rv != VM_PAGER_OK) {
 2002                                 vm_page_lock(m);
 2003                                 vm_page_free(m);
 2004                                 vm_page_unlock(m);
 2005                                 break;
 2006                         }
 2007                 }
 2008                 /*
 2009                  * Keep "m" busy because a subsequent iteration may unlock
 2010                  * the object.
 2011                  */
 2012         }
 2013         if (pindex > start) {
 2014                 m = vm_page_lookup(object, start);
 2015                 while (m != NULL && m->pindex < pindex) {
 2016                         vm_page_xunbusy(m);
 2017                         m = TAILQ_NEXT(m, listq);
 2018                 }
 2019         }
 2020         return (pindex == end);
 2021 }
 2022 
 2023 /*
 2024  *      Routine:        vm_object_coalesce
 2025  *      Function:       Coalesces two objects backing up adjoining
 2026  *                      regions of memory into a single object.
 2027  *
 2028  *      returns TRUE if objects were combined.
 2029  *
 2030  *      NOTE:   Only works at the moment if the second object is NULL -
 2031  *              if it's not, which object do we lock first?
 2032  *
 2033  *      Parameters:
 2034  *              prev_object     First object to coalesce
 2035  *              prev_offset     Offset into prev_object
 2036  *              prev_size       Size of reference to prev_object
 2037  *              next_size       Size of reference to the second object
 2038  *              reserved        Indicator that extension region has
 2039  *                              swap accounted for
 2040  *
 2041  *      Conditions:
 2042  *      The object must *not* be locked.
 2043  */
 2044 boolean_t
 2045 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
 2046     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
 2047 {
 2048         vm_pindex_t next_pindex;
 2049 
 2050         if (prev_object == NULL)
 2051                 return (TRUE);
 2052         VM_OBJECT_WLOCK(prev_object);
 2053         if ((prev_object->type != OBJT_DEFAULT &&
 2054             prev_object->type != OBJT_SWAP) ||
 2055             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
 2056                 VM_OBJECT_WUNLOCK(prev_object);
 2057                 return (FALSE);
 2058         }
 2059 
 2060         /*
 2061          * Try to collapse the object first
 2062          */
 2063         vm_object_collapse(prev_object);
 2064 
 2065         /*
 2066          * Can't coalesce if: . more than one reference . paged out . shadows
 2067          * another object . has a copy elsewhere (any of which mean that the
 2068          * pages not mapped to prev_entry may be in use anyway)
 2069          */
 2070         if (prev_object->backing_object != NULL) {
 2071                 VM_OBJECT_WUNLOCK(prev_object);
 2072                 return (FALSE);
 2073         }
 2074 
 2075         prev_size >>= PAGE_SHIFT;
 2076         next_size >>= PAGE_SHIFT;
 2077         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
 2078 
 2079         if ((prev_object->ref_count > 1) &&
 2080             (prev_object->size != next_pindex)) {
 2081                 VM_OBJECT_WUNLOCK(prev_object);
 2082                 return (FALSE);
 2083         }
 2084 
 2085         /*
 2086          * Account for the charge.
 2087          */
 2088         if (prev_object->cred != NULL) {
 2089 
 2090                 /*
 2091                  * If prev_object was charged, then this mapping,
 2092                  * although not charged now, may become writable
 2093                  * later. Non-NULL cred in the object would prevent
 2094                  * swap reservation during enabling of the write
 2095                  * access, so reserve swap now. Failed reservation
 2096                  * cause allocation of the separate object for the map
 2097                  * entry, and swap reservation for this entry is
 2098                  * managed in appropriate time.
 2099                  */
 2100                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
 2101                     prev_object->cred)) {
 2102                         VM_OBJECT_WUNLOCK(prev_object);
 2103                         return (FALSE);
 2104                 }
 2105                 prev_object->charge += ptoa(next_size);
 2106         }
 2107 
 2108         /*
 2109          * Remove any pages that may still be in the object from a previous
 2110          * deallocation.
 2111          */
 2112         if (next_pindex < prev_object->size) {
 2113                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
 2114                     next_size, 0);
 2115                 if (prev_object->type == OBJT_SWAP)
 2116                         swap_pager_freespace(prev_object,
 2117                                              next_pindex, next_size);
 2118 #if 0
 2119                 if (prev_object->cred != NULL) {
 2120                         KASSERT(prev_object->charge >=
 2121                             ptoa(prev_object->size - next_pindex),
 2122                             ("object %p overcharged 1 %jx %jx", prev_object,
 2123                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
 2124                         prev_object->charge -= ptoa(prev_object->size -
 2125                             next_pindex);
 2126                 }
 2127 #endif
 2128         }
 2129 
 2130         /*
 2131          * Extend the object if necessary.
 2132          */
 2133         if (next_pindex + next_size > prev_object->size)
 2134                 prev_object->size = next_pindex + next_size;
 2135 
 2136         VM_OBJECT_WUNLOCK(prev_object);
 2137         return (TRUE);
 2138 }
 2139 
 2140 void
 2141 vm_object_set_writeable_dirty(vm_object_t object)
 2142 {
 2143 
 2144         VM_OBJECT_ASSERT_WLOCKED(object);
 2145         if (object->type != OBJT_VNODE) {
 2146                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
 2147                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
 2148                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
 2149                 }
 2150                 return;
 2151         }
 2152         object->generation++;
 2153         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
 2154                 return;
 2155         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
 2156 }
 2157 
 2158 /*
 2159  *      vm_object_unwire:
 2160  *
 2161  *      For each page offset within the specified range of the given object,
 2162  *      find the highest-level page in the shadow chain and unwire it.  A page
 2163  *      must exist at every page offset, and the highest-level page must be
 2164  *      wired.
 2165  */
 2166 void
 2167 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
 2168     uint8_t queue)
 2169 {
 2170         vm_object_t tobject;
 2171         vm_page_t m, tm;
 2172         vm_pindex_t end_pindex, pindex, tpindex;
 2173         int depth, locked_depth;
 2174 
 2175         KASSERT((offset & PAGE_MASK) == 0,
 2176             ("vm_object_unwire: offset is not page aligned"));
 2177         KASSERT((length & PAGE_MASK) == 0,
 2178             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
 2179         /* The wired count of a fictitious page never changes. */
 2180         if ((object->flags & OBJ_FICTITIOUS) != 0)
 2181                 return;
 2182         pindex = OFF_TO_IDX(offset);
 2183         end_pindex = pindex + atop(length);
 2184         locked_depth = 1;
 2185         VM_OBJECT_RLOCK(object);
 2186         m = vm_page_find_least(object, pindex);
 2187         while (pindex < end_pindex) {
 2188                 if (m == NULL || pindex < m->pindex) {
 2189                         /*
 2190                          * The first object in the shadow chain doesn't
 2191                          * contain a page at the current index.  Therefore,
 2192                          * the page must exist in a backing object.
 2193                          */
 2194                         tobject = object;
 2195                         tpindex = pindex;
 2196                         depth = 0;
 2197                         do {
 2198                                 tpindex +=
 2199                                     OFF_TO_IDX(tobject->backing_object_offset);
 2200                                 tobject = tobject->backing_object;
 2201                                 KASSERT(tobject != NULL,
 2202                                     ("vm_object_unwire: missing page"));
 2203                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
 2204                                         goto next_page;
 2205                                 depth++;
 2206                                 if (depth == locked_depth) {
 2207                                         locked_depth++;
 2208                                         VM_OBJECT_RLOCK(tobject);
 2209                                 }
 2210                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
 2211                             NULL);
 2212                 } else {
 2213                         tm = m;
 2214                         m = TAILQ_NEXT(m, listq);
 2215                 }
 2216                 vm_page_lock(tm);
 2217                 vm_page_unwire(tm, queue);
 2218                 vm_page_unlock(tm);
 2219 next_page:
 2220                 pindex++;
 2221         }
 2222         /* Release the accumulated object locks. */
 2223         for (depth = 0; depth < locked_depth; depth++) {
 2224                 tobject = object->backing_object;
 2225                 VM_OBJECT_RUNLOCK(object);
 2226                 object = tobject;
 2227         }
 2228 }
 2229 
 2230 struct vnode *
 2231 vm_object_vnode(vm_object_t object)
 2232 {
 2233 
 2234         VM_OBJECT_ASSERT_LOCKED(object);
 2235         if (object->type == OBJT_VNODE)
 2236                 return (object->handle);
 2237         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
 2238                 return (object->un_pager.swp.swp_tmpfs);
 2239         return (NULL);
 2240 }
 2241 
 2242 static int
 2243 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
 2244 {
 2245         struct kinfo_vmobject kvo;
 2246         char *fullpath, *freepath;
 2247         struct vnode *vp;
 2248         struct vattr va;
 2249         vm_object_t obj;
 2250         vm_page_t m;
 2251         int count, error;
 2252 
 2253         if (req->oldptr == NULL) {
 2254                 /*
 2255                  * If an old buffer has not been provided, generate an
 2256                  * estimate of the space needed for a subsequent call.
 2257                  */
 2258                 mtx_lock(&vm_object_list_mtx);
 2259                 count = 0;
 2260                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
 2261                         if (obj->type == OBJT_DEAD)
 2262                                 continue;
 2263                         count++;
 2264                 }
 2265                 mtx_unlock(&vm_object_list_mtx);
 2266                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
 2267                     count * 11 / 10));
 2268         }
 2269 
 2270         error = 0;
 2271 
 2272         /*
 2273          * VM objects are type stable and are never removed from the
 2274          * list once added.  This allows us to safely read obj->object_list
 2275          * after reacquiring the VM object lock.
 2276          */
 2277         mtx_lock(&vm_object_list_mtx);
 2278         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
 2279                 if (obj->type == OBJT_DEAD)
 2280                         continue;
 2281                 VM_OBJECT_RLOCK(obj);
 2282                 if (obj->type == OBJT_DEAD) {
 2283                         VM_OBJECT_RUNLOCK(obj);
 2284                         continue;
 2285                 }
 2286                 mtx_unlock(&vm_object_list_mtx);
 2287                 kvo.kvo_size = ptoa(obj->size);
 2288                 kvo.kvo_resident = obj->resident_page_count;
 2289                 kvo.kvo_ref_count = obj->ref_count;
 2290                 kvo.kvo_shadow_count = obj->shadow_count;
 2291                 kvo.kvo_memattr = obj->memattr;
 2292                 kvo.kvo_active = 0;
 2293                 kvo.kvo_inactive = 0;
 2294                 TAILQ_FOREACH(m, &obj->memq, listq) {
 2295                         /*
 2296                          * A page may belong to the object but be
 2297                          * dequeued and set to PQ_NONE while the
 2298                          * object lock is not held.  This makes the
 2299                          * reads of m->queue below racy, and we do not
 2300                          * count pages set to PQ_NONE.  However, this
 2301                          * sysctl is only meant to give an
 2302                          * approximation of the system anyway.
 2303                          */
 2304                         if (vm_page_active(m))
 2305                                 kvo.kvo_active++;
 2306                         else if (vm_page_inactive(m))
 2307                                 kvo.kvo_inactive++;
 2308                 }
 2309 
 2310                 kvo.kvo_vn_fileid = 0;
 2311                 kvo.kvo_vn_fsid = 0;
 2312                 freepath = NULL;
 2313                 fullpath = "";
 2314                 vp = NULL;
 2315                 switch (obj->type) {
 2316                 case OBJT_DEFAULT:
 2317                         kvo.kvo_type = KVME_TYPE_DEFAULT;
 2318                         break;
 2319                 case OBJT_VNODE:
 2320                         kvo.kvo_type = KVME_TYPE_VNODE;
 2321                         vp = obj->handle;
 2322                         vref(vp);
 2323                         break;
 2324                 case OBJT_SWAP:
 2325                         kvo.kvo_type = KVME_TYPE_SWAP;
 2326                         break;
 2327                 case OBJT_DEVICE:
 2328                         kvo.kvo_type = KVME_TYPE_DEVICE;
 2329                         break;
 2330                 case OBJT_PHYS:
 2331                         kvo.kvo_type = KVME_TYPE_PHYS;
 2332                         break;
 2333                 case OBJT_DEAD:
 2334                         kvo.kvo_type = KVME_TYPE_DEAD;
 2335                         break;
 2336                 case OBJT_SG:
 2337                         kvo.kvo_type = KVME_TYPE_SG;
 2338                         break;
 2339                 case OBJT_MGTDEVICE:
 2340                         kvo.kvo_type = KVME_TYPE_MGTDEVICE;
 2341                         break;
 2342                 default:
 2343                         kvo.kvo_type = KVME_TYPE_UNKNOWN;
 2344                         break;
 2345                 }
 2346                 VM_OBJECT_RUNLOCK(obj);
 2347                 if (vp != NULL) {
 2348                         vn_fullpath(curthread, vp, &fullpath, &freepath);
 2349                         vn_lock(vp, LK_SHARED | LK_RETRY);
 2350                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
 2351                                 kvo.kvo_vn_fileid = va.va_fileid;
 2352                                 kvo.kvo_vn_fsid = va.va_fsid;
 2353                         }
 2354                         vput(vp);
 2355                 }
 2356 
 2357                 strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path));
 2358                 if (freepath != NULL)
 2359                         free(freepath, M_TEMP);
 2360 
 2361                 /* Pack record size down */
 2362                 kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) +
 2363                     strlen(kvo.kvo_path) + 1;
 2364                 kvo.kvo_structsize = roundup(kvo.kvo_structsize,
 2365                     sizeof(uint64_t));
 2366                 error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize);
 2367                 mtx_lock(&vm_object_list_mtx);
 2368                 if (error)
 2369                         break;
 2370         }
 2371         mtx_unlock(&vm_object_list_mtx);
 2372         return (error);
 2373 }
 2374 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
 2375     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
 2376     "List of VM objects");
 2377 
 2378 #include "opt_ddb.h"
 2379 #ifdef DDB
 2380 #include <sys/kernel.h>
 2381 
 2382 #include <sys/cons.h>
 2383 
 2384 #include <ddb/ddb.h>
 2385 
 2386 static int
 2387 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
 2388 {
 2389         vm_map_t tmpm;
 2390         vm_map_entry_t tmpe;
 2391         vm_object_t obj;
 2392         int entcount;
 2393 
 2394         if (map == 0)
 2395                 return 0;
 2396 
 2397         if (entry == 0) {
 2398                 tmpe = map->header.next;
 2399                 entcount = map->nentries;
 2400                 while (entcount-- && (tmpe != &map->header)) {
 2401                         if (_vm_object_in_map(map, object, tmpe)) {
 2402                                 return 1;
 2403                         }
 2404                         tmpe = tmpe->next;
 2405                 }
 2406         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2407                 tmpm = entry->object.sub_map;
 2408                 tmpe = tmpm->header.next;
 2409                 entcount = tmpm->nentries;
 2410                 while (entcount-- && tmpe != &tmpm->header) {
 2411                         if (_vm_object_in_map(tmpm, object, tmpe)) {
 2412                                 return 1;
 2413                         }
 2414                         tmpe = tmpe->next;
 2415                 }
 2416         } else if ((obj = entry->object.vm_object) != NULL) {
 2417                 for (; obj; obj = obj->backing_object)
 2418                         if (obj == object) {
 2419                                 return 1;
 2420                         }
 2421         }
 2422         return 0;
 2423 }
 2424 
 2425 static int
 2426 vm_object_in_map(vm_object_t object)
 2427 {
 2428         struct proc *p;
 2429 
 2430         /* sx_slock(&allproc_lock); */
 2431         FOREACH_PROC_IN_SYSTEM(p) {
 2432                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
 2433                         continue;
 2434                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
 2435                         /* sx_sunlock(&allproc_lock); */
 2436                         return 1;
 2437                 }
 2438         }
 2439         /* sx_sunlock(&allproc_lock); */
 2440         if (_vm_object_in_map(kernel_map, object, 0))
 2441                 return 1;
 2442         return 0;
 2443 }
 2444 
 2445 DB_SHOW_COMMAND(vmochk, vm_object_check)
 2446 {
 2447         vm_object_t object;
 2448 
 2449         /*
 2450          * make sure that internal objs are in a map somewhere
 2451          * and none have zero ref counts.
 2452          */
 2453         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2454                 if (object->handle == NULL &&
 2455                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
 2456                         if (object->ref_count == 0) {
 2457                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
 2458                                         (long)object->size);
 2459                         }
 2460                         if (!vm_object_in_map(object)) {
 2461                                 db_printf(
 2462                         "vmochk: internal obj is not in a map: "
 2463                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
 2464                                     object->ref_count, (u_long)object->size, 
 2465                                     (u_long)object->size,
 2466                                     (void *)object->backing_object);
 2467                         }
 2468                 }
 2469         }
 2470 }
 2471 
 2472 /*
 2473  *      vm_object_print:        [ debug ]
 2474  */
 2475 DB_SHOW_COMMAND(object, vm_object_print_static)
 2476 {
 2477         /* XXX convert args. */
 2478         vm_object_t object = (vm_object_t)addr;
 2479         boolean_t full = have_addr;
 2480 
 2481         vm_page_t p;
 2482 
 2483         /* XXX count is an (unused) arg.  Avoid shadowing it. */
 2484 #define count   was_count
 2485 
 2486         int count;
 2487 
 2488         if (object == NULL)
 2489                 return;
 2490 
 2491         db_iprintf(
 2492             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
 2493             object, (int)object->type, (uintmax_t)object->size,
 2494             object->resident_page_count, object->ref_count, object->flags,
 2495             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
 2496         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
 2497             object->shadow_count, 
 2498             object->backing_object ? object->backing_object->ref_count : 0,
 2499             object->backing_object, (uintmax_t)object->backing_object_offset);
 2500 
 2501         if (!full)
 2502                 return;
 2503 
 2504         db_indent += 2;
 2505         count = 0;
 2506         TAILQ_FOREACH(p, &object->memq, listq) {
 2507                 if (count == 0)
 2508                         db_iprintf("memory:=");
 2509                 else if (count == 6) {
 2510                         db_printf("\n");
 2511                         db_iprintf(" ...");
 2512                         count = 0;
 2513                 } else
 2514                         db_printf(",");
 2515                 count++;
 2516 
 2517                 db_printf("(off=0x%jx,page=0x%jx)",
 2518                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
 2519         }
 2520         if (count != 0)
 2521                 db_printf("\n");
 2522         db_indent -= 2;
 2523 }
 2524 
 2525 /* XXX. */
 2526 #undef count
 2527 
 2528 /* XXX need this non-static entry for calling from vm_map_print. */
 2529 void
 2530 vm_object_print(
 2531         /* db_expr_t */ long addr,
 2532         boolean_t have_addr,
 2533         /* db_expr_t */ long count,
 2534         char *modif)
 2535 {
 2536         vm_object_print_static(addr, have_addr, count, modif);
 2537 }
 2538 
 2539 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
 2540 {
 2541         vm_object_t object;
 2542         vm_pindex_t fidx;
 2543         vm_paddr_t pa;
 2544         vm_page_t m, prev_m;
 2545         int rcount, nl, c;
 2546 
 2547         nl = 0;
 2548         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2549                 db_printf("new object: %p\n", (void *)object);
 2550                 if (nl > 18) {
 2551                         c = cngetc();
 2552                         if (c != ' ')
 2553                                 return;
 2554                         nl = 0;
 2555                 }
 2556                 nl++;
 2557                 rcount = 0;
 2558                 fidx = 0;
 2559                 pa = -1;
 2560                 TAILQ_FOREACH(m, &object->memq, listq) {
 2561                         if (m->pindex > 128)
 2562                                 break;
 2563                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
 2564                             prev_m->pindex + 1 != m->pindex) {
 2565                                 if (rcount) {
 2566                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2567                                                 (long)fidx, rcount, (long)pa);
 2568                                         if (nl > 18) {
 2569                                                 c = cngetc();
 2570                                                 if (c != ' ')
 2571                                                         return;
 2572                                                 nl = 0;
 2573                                         }
 2574                                         nl++;
 2575                                         rcount = 0;
 2576                                 }
 2577                         }                               
 2578                         if (rcount &&
 2579                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
 2580                                 ++rcount;
 2581                                 continue;
 2582                         }
 2583                         if (rcount) {
 2584                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2585                                         (long)fidx, rcount, (long)pa);
 2586                                 if (nl > 18) {
 2587                                         c = cngetc();
 2588                                         if (c != ' ')
 2589                                                 return;
 2590                                         nl = 0;
 2591                                 }
 2592                                 nl++;
 2593                         }
 2594                         fidx = m->pindex;
 2595                         pa = VM_PAGE_TO_PHYS(m);
 2596                         rcount = 1;
 2597                 }
 2598                 if (rcount) {
 2599                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2600                                 (long)fidx, rcount, (long)pa);
 2601                         if (nl > 18) {
 2602                                 c = cngetc();
 2603                                 if (c != ' ')
 2604                                         return;
 2605                                 nl = 0;
 2606                         }
 2607                         nl++;
 2608                 }
 2609         }
 2610 }
 2611 #endif /* DDB */

Cache object: cc5606ba3df00e2daf23096bc22600bc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.