The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 /*
   62  *      Virtual memory object module.
   63  */
   64 
   65 #include <sys/cdefs.h>
   66 __FBSDID("$FreeBSD$");
   67 
   68 #include "opt_vm.h"
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/lock.h>
   73 #include <sys/mman.h>
   74 #include <sys/mount.h>
   75 #include <sys/kernel.h>
   76 #include <sys/pctrie.h>
   77 #include <sys/sysctl.h>
   78 #include <sys/mutex.h>
   79 #include <sys/proc.h>           /* for curproc, pageproc */
   80 #include <sys/socket.h>
   81 #include <sys/resourcevar.h>
   82 #include <sys/rwlock.h>
   83 #include <sys/user.h>
   84 #include <sys/vnode.h>
   85 #include <sys/vmmeter.h>
   86 #include <sys/sx.h>
   87 
   88 #include <vm/vm.h>
   89 #include <vm/vm_param.h>
   90 #include <vm/pmap.h>
   91 #include <vm/vm_map.h>
   92 #include <vm/vm_object.h>
   93 #include <vm/vm_page.h>
   94 #include <vm/vm_pageout.h>
   95 #include <vm/vm_pager.h>
   96 #include <vm/swap_pager.h>
   97 #include <vm/vm_kern.h>
   98 #include <vm/vm_extern.h>
   99 #include <vm/vm_radix.h>
  100 #include <vm/vm_reserv.h>
  101 #include <vm/uma.h>
  102 
  103 static int old_msync;
  104 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
  105     "Use old (insecure) msync behavior");
  106 
  107 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
  108                     int pagerflags, int flags, boolean_t *clearobjflags,
  109                     boolean_t *eio);
  110 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
  111                     boolean_t *clearobjflags);
  112 static void     vm_object_qcollapse(vm_object_t object);
  113 static void     vm_object_vndeallocate(vm_object_t object);
  114 
  115 /*
  116  *      Virtual memory objects maintain the actual data
  117  *      associated with allocated virtual memory.  A given
  118  *      page of memory exists within exactly one object.
  119  *
  120  *      An object is only deallocated when all "references"
  121  *      are given up.  Only one "reference" to a given
  122  *      region of an object should be writeable.
  123  *
  124  *      Associated with each object is a list of all resident
  125  *      memory pages belonging to that object; this list is
  126  *      maintained by the "vm_page" module, and locked by the object's
  127  *      lock.
  128  *
  129  *      Each object also records a "pager" routine which is
  130  *      used to retrieve (and store) pages to the proper backing
  131  *      storage.  In addition, objects may be backed by other
  132  *      objects from which they were virtual-copied.
  133  *
  134  *      The only items within the object structure which are
  135  *      modified after time of creation are:
  136  *              reference count         locked by object's lock
  137  *              pager routine           locked by object's lock
  138  *
  139  */
  140 
  141 struct object_q vm_object_list;
  142 struct mtx vm_object_list_mtx;  /* lock for object list and count */
  143 
  144 struct vm_object kernel_object_store;
  145 struct vm_object kmem_object_store;
  146 
  147 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
  148     "VM object stats");
  149 
  150 static long object_collapses;
  151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
  152     &object_collapses, 0, "VM object collapses");
  153 
  154 static long object_bypasses;
  155 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
  156     &object_bypasses, 0, "VM object bypasses");
  157 
  158 static uma_zone_t obj_zone;
  159 
  160 static int vm_object_zinit(void *mem, int size, int flags);
  161 
  162 #ifdef INVARIANTS
  163 static void vm_object_zdtor(void *mem, int size, void *arg);
  164 
  165 static void
  166 vm_object_zdtor(void *mem, int size, void *arg)
  167 {
  168         vm_object_t object;
  169 
  170         object = (vm_object_t)mem;
  171         KASSERT(object->ref_count == 0,
  172             ("object %p ref_count = %d", object, object->ref_count));
  173         KASSERT(TAILQ_EMPTY(&object->memq),
  174             ("object %p has resident pages in its memq", object));
  175         KASSERT(vm_radix_is_empty(&object->rtree),
  176             ("object %p has resident pages in its trie", object));
  177 #if VM_NRESERVLEVEL > 0
  178         KASSERT(LIST_EMPTY(&object->rvq),
  179             ("object %p has reservations",
  180             object));
  181 #endif
  182         KASSERT(object->paging_in_progress == 0,
  183             ("object %p paging_in_progress = %d",
  184             object, object->paging_in_progress));
  185         KASSERT(object->resident_page_count == 0,
  186             ("object %p resident_page_count = %d",
  187             object, object->resident_page_count));
  188         KASSERT(object->shadow_count == 0,
  189             ("object %p shadow_count = %d",
  190             object, object->shadow_count));
  191         KASSERT(object->type == OBJT_DEAD,
  192             ("object %p has non-dead type %d",
  193             object, object->type));
  194 }
  195 #endif
  196 
  197 static int
  198 vm_object_zinit(void *mem, int size, int flags)
  199 {
  200         vm_object_t object;
  201 
  202         object = (vm_object_t)mem;
  203         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
  204 
  205         /* These are true for any object that has been freed */
  206         object->type = OBJT_DEAD;
  207         object->ref_count = 0;
  208         vm_radix_init(&object->rtree);
  209         object->paging_in_progress = 0;
  210         object->resident_page_count = 0;
  211         object->shadow_count = 0;
  212         object->flags = OBJ_DEAD;
  213 
  214         mtx_lock(&vm_object_list_mtx);
  215         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
  216         mtx_unlock(&vm_object_list_mtx);
  217         return (0);
  218 }
  219 
  220 static void
  221 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
  222 {
  223 
  224         TAILQ_INIT(&object->memq);
  225         LIST_INIT(&object->shadow_head);
  226 
  227         object->type = type;
  228         if (type == OBJT_SWAP)
  229                 pctrie_init(&object->un_pager.swp.swp_blks);
  230 
  231         /*
  232          * Ensure that swap_pager_swapoff() iteration over object_list
  233          * sees up to date type and pctrie head if it observed
  234          * non-dead object.
  235          */
  236         atomic_thread_fence_rel();
  237 
  238         switch (type) {
  239         case OBJT_DEAD:
  240                 panic("_vm_object_allocate: can't create OBJT_DEAD");
  241         case OBJT_DEFAULT:
  242         case OBJT_SWAP:
  243                 object->flags = OBJ_ONEMAPPING;
  244                 break;
  245         case OBJT_DEVICE:
  246         case OBJT_SG:
  247                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
  248                 break;
  249         case OBJT_MGTDEVICE:
  250                 object->flags = OBJ_FICTITIOUS;
  251                 break;
  252         case OBJT_PHYS:
  253                 object->flags = OBJ_UNMANAGED;
  254                 break;
  255         case OBJT_VNODE:
  256                 object->flags = 0;
  257                 break;
  258         default:
  259                 panic("_vm_object_allocate: type %d is undefined", type);
  260         }
  261         object->size = size;
  262         object->generation = 1;
  263         object->ref_count = 1;
  264         object->memattr = VM_MEMATTR_DEFAULT;
  265         object->cred = NULL;
  266         object->charge = 0;
  267         object->handle = NULL;
  268         object->backing_object = NULL;
  269         object->backing_object_offset = (vm_ooffset_t) 0;
  270 #if VM_NRESERVLEVEL > 0
  271         LIST_INIT(&object->rvq);
  272 #endif
  273         umtx_shm_object_init(object);
  274 }
  275 
  276 /*
  277  *      vm_object_init:
  278  *
  279  *      Initialize the VM objects module.
  280  */
  281 void
  282 vm_object_init(void)
  283 {
  284         TAILQ_INIT(&vm_object_list);
  285         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
  286         
  287         rw_init(&kernel_object->lock, "kernel vm object");
  288         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
  289             VM_MIN_KERNEL_ADDRESS), kernel_object);
  290 #if VM_NRESERVLEVEL > 0
  291         kernel_object->flags |= OBJ_COLORED;
  292         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  293 #endif
  294 
  295         rw_init(&kmem_object->lock, "kmem vm object");
  296         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
  297             VM_MIN_KERNEL_ADDRESS), kmem_object);
  298 #if VM_NRESERVLEVEL > 0
  299         kmem_object->flags |= OBJ_COLORED;
  300         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  301 #endif
  302 
  303         /*
  304          * The lock portion of struct vm_object must be type stable due
  305          * to vm_pageout_fallback_object_lock locking a vm object
  306          * without holding any references to it.
  307          */
  308         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
  309 #ifdef INVARIANTS
  310             vm_object_zdtor,
  311 #else
  312             NULL,
  313 #endif
  314             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  315 
  316         vm_radix_zinit();
  317 }
  318 
  319 void
  320 vm_object_clear_flag(vm_object_t object, u_short bits)
  321 {
  322 
  323         VM_OBJECT_ASSERT_WLOCKED(object);
  324         object->flags &= ~bits;
  325 }
  326 
  327 /*
  328  *      Sets the default memory attribute for the specified object.  Pages
  329  *      that are allocated to this object are by default assigned this memory
  330  *      attribute.
  331  *
  332  *      Presently, this function must be called before any pages are allocated
  333  *      to the object.  In the future, this requirement may be relaxed for
  334  *      "default" and "swap" objects.
  335  */
  336 int
  337 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
  338 {
  339 
  340         VM_OBJECT_ASSERT_WLOCKED(object);
  341         switch (object->type) {
  342         case OBJT_DEFAULT:
  343         case OBJT_DEVICE:
  344         case OBJT_MGTDEVICE:
  345         case OBJT_PHYS:
  346         case OBJT_SG:
  347         case OBJT_SWAP:
  348         case OBJT_VNODE:
  349                 if (!TAILQ_EMPTY(&object->memq))
  350                         return (KERN_FAILURE);
  351                 break;
  352         case OBJT_DEAD:
  353                 return (KERN_INVALID_ARGUMENT);
  354         default:
  355                 panic("vm_object_set_memattr: object %p is of undefined type",
  356                     object);
  357         }
  358         object->memattr = memattr;
  359         return (KERN_SUCCESS);
  360 }
  361 
  362 void
  363 vm_object_pip_add(vm_object_t object, short i)
  364 {
  365 
  366         VM_OBJECT_ASSERT_WLOCKED(object);
  367         object->paging_in_progress += i;
  368 }
  369 
  370 void
  371 vm_object_pip_subtract(vm_object_t object, short i)
  372 {
  373 
  374         VM_OBJECT_ASSERT_WLOCKED(object);
  375         object->paging_in_progress -= i;
  376 }
  377 
  378 void
  379 vm_object_pip_wakeup(vm_object_t object)
  380 {
  381 
  382         VM_OBJECT_ASSERT_WLOCKED(object);
  383         object->paging_in_progress--;
  384         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  385                 vm_object_clear_flag(object, OBJ_PIPWNT);
  386                 wakeup(object);
  387         }
  388 }
  389 
  390 void
  391 vm_object_pip_wakeupn(vm_object_t object, short i)
  392 {
  393 
  394         VM_OBJECT_ASSERT_WLOCKED(object);
  395         if (i)
  396                 object->paging_in_progress -= i;
  397         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  398                 vm_object_clear_flag(object, OBJ_PIPWNT);
  399                 wakeup(object);
  400         }
  401 }
  402 
  403 void
  404 vm_object_pip_wait(vm_object_t object, char *waitid)
  405 {
  406 
  407         VM_OBJECT_ASSERT_WLOCKED(object);
  408         while (object->paging_in_progress) {
  409                 object->flags |= OBJ_PIPWNT;
  410                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
  411         }
  412 }
  413 
  414 /*
  415  *      vm_object_allocate:
  416  *
  417  *      Returns a new object with the given size.
  418  */
  419 vm_object_t
  420 vm_object_allocate(objtype_t type, vm_pindex_t size)
  421 {
  422         vm_object_t object;
  423 
  424         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
  425         _vm_object_allocate(type, size, object);
  426         return (object);
  427 }
  428 
  429 
  430 /*
  431  *      vm_object_reference:
  432  *
  433  *      Gets another reference to the given object.  Note: OBJ_DEAD
  434  *      objects can be referenced during final cleaning.
  435  */
  436 void
  437 vm_object_reference(vm_object_t object)
  438 {
  439         if (object == NULL)
  440                 return;
  441         VM_OBJECT_WLOCK(object);
  442         vm_object_reference_locked(object);
  443         VM_OBJECT_WUNLOCK(object);
  444 }
  445 
  446 /*
  447  *      vm_object_reference_locked:
  448  *
  449  *      Gets another reference to the given object.
  450  *
  451  *      The object must be locked.
  452  */
  453 void
  454 vm_object_reference_locked(vm_object_t object)
  455 {
  456         struct vnode *vp;
  457 
  458         VM_OBJECT_ASSERT_WLOCKED(object);
  459         object->ref_count++;
  460         if (object->type == OBJT_VNODE) {
  461                 vp = object->handle;
  462                 vref(vp);
  463         }
  464 }
  465 
  466 /*
  467  * Handle deallocating an object of type OBJT_VNODE.
  468  */
  469 static void
  470 vm_object_vndeallocate(vm_object_t object)
  471 {
  472         struct vnode *vp = (struct vnode *) object->handle;
  473 
  474         VM_OBJECT_ASSERT_WLOCKED(object);
  475         KASSERT(object->type == OBJT_VNODE,
  476             ("vm_object_vndeallocate: not a vnode object"));
  477         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
  478 #ifdef INVARIANTS
  479         if (object->ref_count == 0) {
  480                 vn_printf(vp, "vm_object_vndeallocate ");
  481                 panic("vm_object_vndeallocate: bad object reference count");
  482         }
  483 #endif
  484 
  485         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
  486                 umtx_shm_object_terminated(object);
  487 
  488         /*
  489          * The test for text of vp vnode does not need a bypass to
  490          * reach right VV_TEXT there, since it is obtained from
  491          * object->handle.
  492          */
  493         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
  494                 object->ref_count--;
  495                 VM_OBJECT_WUNLOCK(object);
  496                 /* vrele may need the vnode lock. */
  497                 vrele(vp);
  498         } else {
  499                 vhold(vp);
  500                 VM_OBJECT_WUNLOCK(object);
  501                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  502                 vdrop(vp);
  503                 VM_OBJECT_WLOCK(object);
  504                 object->ref_count--;
  505                 if (object->type == OBJT_DEAD) {
  506                         VM_OBJECT_WUNLOCK(object);
  507                         VOP_UNLOCK(vp, 0);
  508                 } else {
  509                         if (object->ref_count == 0)
  510                                 VOP_UNSET_TEXT(vp);
  511                         VM_OBJECT_WUNLOCK(object);
  512                         vput(vp);
  513                 }
  514         }
  515 }
  516 
  517 /*
  518  *      vm_object_deallocate:
  519  *
  520  *      Release a reference to the specified object,
  521  *      gained either through a vm_object_allocate
  522  *      or a vm_object_reference call.  When all references
  523  *      are gone, storage associated with this object
  524  *      may be relinquished.
  525  *
  526  *      No object may be locked.
  527  */
  528 void
  529 vm_object_deallocate(vm_object_t object)
  530 {
  531         vm_object_t temp;
  532         struct vnode *vp;
  533 
  534         while (object != NULL) {
  535                 VM_OBJECT_WLOCK(object);
  536                 if (object->type == OBJT_VNODE) {
  537                         vm_object_vndeallocate(object);
  538                         return;
  539                 }
  540 
  541                 KASSERT(object->ref_count != 0,
  542                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
  543 
  544                 /*
  545                  * If the reference count goes to 0 we start calling
  546                  * vm_object_terminate() on the object chain.
  547                  * A ref count of 1 may be a special case depending on the
  548                  * shadow count being 0 or 1.
  549                  */
  550                 object->ref_count--;
  551                 if (object->ref_count > 1) {
  552                         VM_OBJECT_WUNLOCK(object);
  553                         return;
  554                 } else if (object->ref_count == 1) {
  555                         if (object->type == OBJT_SWAP &&
  556                             (object->flags & OBJ_TMPFS) != 0) {
  557                                 vp = object->un_pager.swp.swp_tmpfs;
  558                                 vhold(vp);
  559                                 VM_OBJECT_WUNLOCK(object);
  560                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  561                                 VM_OBJECT_WLOCK(object);
  562                                 if (object->type == OBJT_DEAD ||
  563                                     object->ref_count != 1) {
  564                                         VM_OBJECT_WUNLOCK(object);
  565                                         VOP_UNLOCK(vp, 0);
  566                                         vdrop(vp);
  567                                         return;
  568                                 }
  569                                 if ((object->flags & OBJ_TMPFS) != 0)
  570                                         VOP_UNSET_TEXT(vp);
  571                                 VOP_UNLOCK(vp, 0);
  572                                 vdrop(vp);
  573                         }
  574                         if (object->shadow_count == 0 &&
  575                             object->handle == NULL &&
  576                             (object->type == OBJT_DEFAULT ||
  577                             (object->type == OBJT_SWAP &&
  578                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
  579                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
  580                         } else if ((object->shadow_count == 1) &&
  581                             (object->handle == NULL) &&
  582                             (object->type == OBJT_DEFAULT ||
  583                              object->type == OBJT_SWAP)) {
  584                                 vm_object_t robject;
  585 
  586                                 robject = LIST_FIRST(&object->shadow_head);
  587                                 KASSERT(robject != NULL,
  588                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
  589                                          object->ref_count,
  590                                          object->shadow_count));
  591                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
  592                                     ("shadowed tmpfs v_object %p", object));
  593                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
  594                                         /*
  595                                          * Avoid a potential deadlock.
  596                                          */
  597                                         object->ref_count++;
  598                                         VM_OBJECT_WUNLOCK(object);
  599                                         /*
  600                                          * More likely than not the thread
  601                                          * holding robject's lock has lower
  602                                          * priority than the current thread.
  603                                          * Let the lower priority thread run.
  604                                          */
  605                                         pause("vmo_de", 1);
  606                                         continue;
  607                                 }
  608                                 /*
  609                                  * Collapse object into its shadow unless its
  610                                  * shadow is dead.  In that case, object will
  611                                  * be deallocated by the thread that is
  612                                  * deallocating its shadow.
  613                                  */
  614                                 if ((robject->flags & OBJ_DEAD) == 0 &&
  615                                     (robject->handle == NULL) &&
  616                                     (robject->type == OBJT_DEFAULT ||
  617                                      robject->type == OBJT_SWAP)) {
  618 
  619                                         robject->ref_count++;
  620 retry:
  621                                         if (robject->paging_in_progress) {
  622                                                 VM_OBJECT_WUNLOCK(object);
  623                                                 vm_object_pip_wait(robject,
  624                                                     "objde1");
  625                                                 temp = robject->backing_object;
  626                                                 if (object == temp) {
  627                                                         VM_OBJECT_WLOCK(object);
  628                                                         goto retry;
  629                                                 }
  630                                         } else if (object->paging_in_progress) {
  631                                                 VM_OBJECT_WUNLOCK(robject);
  632                                                 object->flags |= OBJ_PIPWNT;
  633                                                 VM_OBJECT_SLEEP(object, object,
  634                                                     PDROP | PVM, "objde2", 0);
  635                                                 VM_OBJECT_WLOCK(robject);
  636                                                 temp = robject->backing_object;
  637                                                 if (object == temp) {
  638                                                         VM_OBJECT_WLOCK(object);
  639                                                         goto retry;
  640                                                 }
  641                                         } else
  642                                                 VM_OBJECT_WUNLOCK(object);
  643 
  644                                         if (robject->ref_count == 1) {
  645                                                 robject->ref_count--;
  646                                                 object = robject;
  647                                                 goto doterm;
  648                                         }
  649                                         object = robject;
  650                                         vm_object_collapse(object);
  651                                         VM_OBJECT_WUNLOCK(object);
  652                                         continue;
  653                                 }
  654                                 VM_OBJECT_WUNLOCK(robject);
  655                         }
  656                         VM_OBJECT_WUNLOCK(object);
  657                         return;
  658                 }
  659 doterm:
  660                 umtx_shm_object_terminated(object);
  661                 temp = object->backing_object;
  662                 if (temp != NULL) {
  663                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
  664                             ("shadowed tmpfs v_object 2 %p", object));
  665                         VM_OBJECT_WLOCK(temp);
  666                         LIST_REMOVE(object, shadow_list);
  667                         temp->shadow_count--;
  668                         VM_OBJECT_WUNLOCK(temp);
  669                         object->backing_object = NULL;
  670                 }
  671                 /*
  672                  * Don't double-terminate, we could be in a termination
  673                  * recursion due to the terminate having to sync data
  674                  * to disk.
  675                  */
  676                 if ((object->flags & OBJ_DEAD) == 0)
  677                         vm_object_terminate(object);
  678                 else
  679                         VM_OBJECT_WUNLOCK(object);
  680                 object = temp;
  681         }
  682 }
  683 
  684 /*
  685  *      vm_object_destroy removes the object from the global object list
  686  *      and frees the space for the object.
  687  */
  688 void
  689 vm_object_destroy(vm_object_t object)
  690 {
  691 
  692         /*
  693          * Release the allocation charge.
  694          */
  695         if (object->cred != NULL) {
  696                 swap_release_by_cred(object->charge, object->cred);
  697                 object->charge = 0;
  698                 crfree(object->cred);
  699                 object->cred = NULL;
  700         }
  701 
  702         /*
  703          * Free the space for the object.
  704          */
  705         uma_zfree(obj_zone, object);
  706 }
  707 
  708 /*
  709  *      vm_object_terminate_pages removes any remaining pageable pages
  710  *      from the object and resets the object to an empty state.
  711  */
  712 static void
  713 vm_object_terminate_pages(vm_object_t object)
  714 {
  715         vm_page_t p, p_next;
  716         struct mtx *mtx, *mtx1;
  717         struct vm_pagequeue *pq, *pq1;
  718 
  719         VM_OBJECT_ASSERT_WLOCKED(object);
  720 
  721         mtx = NULL;
  722         pq = NULL;
  723 
  724         /*
  725          * Free any remaining pageable pages.  This also removes them from the
  726          * paging queues.  However, don't free wired pages, just remove them
  727          * from the object.  Rather than incrementally removing each page from
  728          * the object, the page and object are reset to any empty state. 
  729          */
  730         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
  731                 vm_page_assert_unbusied(p);
  732                 if ((object->flags & OBJ_UNMANAGED) == 0) {
  733                         /*
  734                          * vm_page_free_prep() only needs the page
  735                          * lock for managed pages.
  736                          */
  737                         mtx1 = vm_page_lockptr(p);
  738                         if (mtx1 != mtx) {
  739                                 if (mtx != NULL)
  740                                         mtx_unlock(mtx);
  741                                 if (pq != NULL) {
  742                                         vm_pagequeue_unlock(pq);
  743                                         pq = NULL;
  744                                 }
  745                                 mtx = mtx1;
  746                                 mtx_lock(mtx);
  747                         }
  748                 }
  749                 p->object = NULL;
  750                 if (p->wire_count != 0)
  751                         goto unlist;
  752                 PCPU_INC(cnt.v_pfree);
  753                 p->flags &= ~PG_ZERO;
  754                 if (p->queue != PQ_NONE) {
  755                         KASSERT(p->queue < PQ_COUNT, ("vm_object_terminate: "
  756                             "page %p is not queued", p));
  757                         pq1 = vm_page_pagequeue(p);
  758                         if (pq != pq1) {
  759                                 if (pq != NULL)
  760                                         vm_pagequeue_unlock(pq);
  761                                 pq = pq1;
  762                                 vm_pagequeue_lock(pq);
  763                         }
  764                 }
  765                 if (vm_page_free_prep(p, true))
  766                         continue;
  767 unlist:
  768                 TAILQ_REMOVE(&object->memq, p, listq);
  769         }
  770         if (pq != NULL)
  771                 vm_pagequeue_unlock(pq);
  772         if (mtx != NULL)
  773                 mtx_unlock(mtx);
  774 
  775         vm_page_free_phys_pglist(&object->memq);
  776 
  777         /*
  778          * If the object contained any pages, then reset it to an empty state.
  779          * None of the object's fields, including "resident_page_count", were
  780          * modified by the preceding loop.
  781          */
  782         if (object->resident_page_count != 0) {
  783                 vm_radix_reclaim_allnodes(&object->rtree);
  784                 TAILQ_INIT(&object->memq);
  785                 object->resident_page_count = 0;
  786                 if (object->type == OBJT_VNODE)
  787                         vdrop(object->handle);
  788         }
  789 }
  790 
  791 /*
  792  *      vm_object_terminate actually destroys the specified object, freeing
  793  *      up all previously used resources.
  794  *
  795  *      The object must be locked.
  796  *      This routine may block.
  797  */
  798 void
  799 vm_object_terminate(vm_object_t object)
  800 {
  801 
  802         VM_OBJECT_ASSERT_WLOCKED(object);
  803 
  804         /*
  805          * Make sure no one uses us.
  806          */
  807         vm_object_set_flag(object, OBJ_DEAD);
  808 
  809         /*
  810          * wait for the pageout daemon to be done with the object
  811          */
  812         vm_object_pip_wait(object, "objtrm");
  813 
  814         KASSERT(!object->paging_in_progress,
  815                 ("vm_object_terminate: pageout in progress"));
  816 
  817         /*
  818          * Clean and free the pages, as appropriate. All references to the
  819          * object are gone, so we don't need to lock it.
  820          */
  821         if (object->type == OBJT_VNODE) {
  822                 struct vnode *vp = (struct vnode *)object->handle;
  823 
  824                 /*
  825                  * Clean pages and flush buffers.
  826                  */
  827                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  828                 VM_OBJECT_WUNLOCK(object);
  829 
  830                 vinvalbuf(vp, V_SAVE, 0, 0);
  831 
  832                 BO_LOCK(&vp->v_bufobj);
  833                 vp->v_bufobj.bo_flag |= BO_DEAD;
  834                 BO_UNLOCK(&vp->v_bufobj);
  835 
  836                 VM_OBJECT_WLOCK(object);
  837         }
  838 
  839         KASSERT(object->ref_count == 0, 
  840                 ("vm_object_terminate: object with references, ref_count=%d",
  841                 object->ref_count));
  842 
  843         if ((object->flags & OBJ_PG_DTOR) == 0)
  844                 vm_object_terminate_pages(object);
  845 
  846 #if VM_NRESERVLEVEL > 0
  847         if (__predict_false(!LIST_EMPTY(&object->rvq)))
  848                 vm_reserv_break_all(object);
  849 #endif
  850 
  851         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
  852             object->type == OBJT_SWAP,
  853             ("%s: non-swap obj %p has cred", __func__, object));
  854 
  855         /*
  856          * Let the pager know object is dead.
  857          */
  858         vm_pager_deallocate(object);
  859         VM_OBJECT_WUNLOCK(object);
  860 
  861         vm_object_destroy(object);
  862 }
  863 
  864 /*
  865  * Make the page read-only so that we can clear the object flags.  However, if
  866  * this is a nosync mmap then the object is likely to stay dirty so do not
  867  * mess with the page and do not clear the object flags.  Returns TRUE if the
  868  * page should be flushed, and FALSE otherwise.
  869  */
  870 static boolean_t
  871 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
  872 {
  873 
  874         /*
  875          * If we have been asked to skip nosync pages and this is a
  876          * nosync page, skip it.  Note that the object flags were not
  877          * cleared in this case so we do not have to set them.
  878          */
  879         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
  880                 *clearobjflags = FALSE;
  881                 return (FALSE);
  882         } else {
  883                 pmap_remove_write(p);
  884                 return (p->dirty != 0);
  885         }
  886 }
  887 
  888 /*
  889  *      vm_object_page_clean
  890  *
  891  *      Clean all dirty pages in the specified range of object.  Leaves page 
  892  *      on whatever queue it is currently on.   If NOSYNC is set then do not
  893  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
  894  *      leaving the object dirty.
  895  *
  896  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
  897  *      synchronous clustering mode implementation.
  898  *
  899  *      Odd semantics: if start == end, we clean everything.
  900  *
  901  *      The object must be locked.
  902  *
  903  *      Returns FALSE if some page from the range was not written, as
  904  *      reported by the pager, and TRUE otherwise.
  905  */
  906 boolean_t
  907 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
  908     int flags)
  909 {
  910         vm_page_t np, p;
  911         vm_pindex_t pi, tend, tstart;
  912         int curgeneration, n, pagerflags;
  913         boolean_t clearobjflags, eio, res;
  914 
  915         VM_OBJECT_ASSERT_WLOCKED(object);
  916 
  917         /*
  918          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
  919          * objects.  The check below prevents the function from
  920          * operating on non-vnode objects.
  921          */
  922         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
  923             object->resident_page_count == 0)
  924                 return (TRUE);
  925 
  926         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
  927             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
  928         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
  929 
  930         tstart = OFF_TO_IDX(start);
  931         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
  932         clearobjflags = tstart == 0 && tend >= object->size;
  933         res = TRUE;
  934 
  935 rescan:
  936         curgeneration = object->generation;
  937 
  938         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
  939                 pi = p->pindex;
  940                 if (pi >= tend)
  941                         break;
  942                 np = TAILQ_NEXT(p, listq);
  943                 if (p->valid == 0)
  944                         continue;
  945                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
  946                         if (object->generation != curgeneration) {
  947                                 if ((flags & OBJPC_SYNC) != 0)
  948                                         goto rescan;
  949                                 else
  950                                         clearobjflags = FALSE;
  951                         }
  952                         np = vm_page_find_least(object, pi);
  953                         continue;
  954                 }
  955                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
  956                         continue;
  957 
  958                 n = vm_object_page_collect_flush(object, p, pagerflags,
  959                     flags, &clearobjflags, &eio);
  960                 if (eio) {
  961                         res = FALSE;
  962                         clearobjflags = FALSE;
  963                 }
  964                 if (object->generation != curgeneration) {
  965                         if ((flags & OBJPC_SYNC) != 0)
  966                                 goto rescan;
  967                         else
  968                                 clearobjflags = FALSE;
  969                 }
  970 
  971                 /*
  972                  * If the VOP_PUTPAGES() did a truncated write, so
  973                  * that even the first page of the run is not fully
  974                  * written, vm_pageout_flush() returns 0 as the run
  975                  * length.  Since the condition that caused truncated
  976                  * write may be permanent, e.g. exhausted free space,
  977                  * accepting n == 0 would cause an infinite loop.
  978                  *
  979                  * Forwarding the iterator leaves the unwritten page
  980                  * behind, but there is not much we can do there if
  981                  * filesystem refuses to write it.
  982                  */
  983                 if (n == 0) {
  984                         n = 1;
  985                         clearobjflags = FALSE;
  986                 }
  987                 np = vm_page_find_least(object, pi + n);
  988         }
  989 #if 0
  990         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
  991 #endif
  992 
  993         if (clearobjflags)
  994                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
  995         return (res);
  996 }
  997 
  998 static int
  999 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
 1000     int flags, boolean_t *clearobjflags, boolean_t *eio)
 1001 {
 1002         vm_page_t ma[vm_pageout_page_count], p_first, tp;
 1003         int count, i, mreq, runlen;
 1004 
 1005         vm_page_lock_assert(p, MA_NOTOWNED);
 1006         VM_OBJECT_ASSERT_WLOCKED(object);
 1007 
 1008         count = 1;
 1009         mreq = 0;
 1010 
 1011         for (tp = p; count < vm_pageout_page_count; count++) {
 1012                 tp = vm_page_next(tp);
 1013                 if (tp == NULL || vm_page_busied(tp))
 1014                         break;
 1015                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
 1016                         break;
 1017         }
 1018 
 1019         for (p_first = p; count < vm_pageout_page_count; count++) {
 1020                 tp = vm_page_prev(p_first);
 1021                 if (tp == NULL || vm_page_busied(tp))
 1022                         break;
 1023                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
 1024                         break;
 1025                 p_first = tp;
 1026                 mreq++;
 1027         }
 1028 
 1029         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
 1030                 ma[i] = tp;
 1031 
 1032         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
 1033         return (runlen);
 1034 }
 1035 
 1036 /*
 1037  * Note that there is absolutely no sense in writing out
 1038  * anonymous objects, so we track down the vnode object
 1039  * to write out.
 1040  * We invalidate (remove) all pages from the address space
 1041  * for semantic correctness.
 1042  *
 1043  * If the backing object is a device object with unmanaged pages, then any
 1044  * mappings to the specified range of pages must be removed before this
 1045  * function is called.
 1046  *
 1047  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
 1048  * may start out with a NULL object.
 1049  */
 1050 boolean_t
 1051 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
 1052     boolean_t syncio, boolean_t invalidate)
 1053 {
 1054         vm_object_t backing_object;
 1055         struct vnode *vp;
 1056         struct mount *mp;
 1057         int error, flags, fsync_after;
 1058         boolean_t res;
 1059 
 1060         if (object == NULL)
 1061                 return (TRUE);
 1062         res = TRUE;
 1063         error = 0;
 1064         VM_OBJECT_WLOCK(object);
 1065         while ((backing_object = object->backing_object) != NULL) {
 1066                 VM_OBJECT_WLOCK(backing_object);
 1067                 offset += object->backing_object_offset;
 1068                 VM_OBJECT_WUNLOCK(object);
 1069                 object = backing_object;
 1070                 if (object->size < OFF_TO_IDX(offset + size))
 1071                         size = IDX_TO_OFF(object->size) - offset;
 1072         }
 1073         /*
 1074          * Flush pages if writing is allowed, invalidate them
 1075          * if invalidation requested.  Pages undergoing I/O
 1076          * will be ignored by vm_object_page_remove().
 1077          *
 1078          * We cannot lock the vnode and then wait for paging
 1079          * to complete without deadlocking against vm_fault.
 1080          * Instead we simply call vm_object_page_remove() and
 1081          * allow it to block internally on a page-by-page
 1082          * basis when it encounters pages undergoing async
 1083          * I/O.
 1084          */
 1085         if (object->type == OBJT_VNODE &&
 1086             (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
 1087             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
 1088                 VM_OBJECT_WUNLOCK(object);
 1089                 (void) vn_start_write(vp, &mp, V_WAIT);
 1090                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1091                 if (syncio && !invalidate && offset == 0 &&
 1092                     atop(size) == object->size) {
 1093                         /*
 1094                          * If syncing the whole mapping of the file,
 1095                          * it is faster to schedule all the writes in
 1096                          * async mode, also allowing the clustering,
 1097                          * and then wait for i/o to complete.
 1098                          */
 1099                         flags = 0;
 1100                         fsync_after = TRUE;
 1101                 } else {
 1102                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
 1103                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
 1104                         fsync_after = FALSE;
 1105                 }
 1106                 VM_OBJECT_WLOCK(object);
 1107                 res = vm_object_page_clean(object, offset, offset + size,
 1108                     flags);
 1109                 VM_OBJECT_WUNLOCK(object);
 1110                 if (fsync_after)
 1111                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
 1112                 VOP_UNLOCK(vp, 0);
 1113                 vn_finished_write(mp);
 1114                 if (error != 0)
 1115                         res = FALSE;
 1116                 VM_OBJECT_WLOCK(object);
 1117         }
 1118         if ((object->type == OBJT_VNODE ||
 1119              object->type == OBJT_DEVICE) && invalidate) {
 1120                 if (object->type == OBJT_DEVICE)
 1121                         /*
 1122                          * The option OBJPR_NOTMAPPED must be passed here
 1123                          * because vm_object_page_remove() cannot remove
 1124                          * unmanaged mappings.
 1125                          */
 1126                         flags = OBJPR_NOTMAPPED;
 1127                 else if (old_msync)
 1128                         flags = 0;
 1129                 else
 1130                         flags = OBJPR_CLEANONLY;
 1131                 vm_object_page_remove(object, OFF_TO_IDX(offset),
 1132                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
 1133         }
 1134         VM_OBJECT_WUNLOCK(object);
 1135         return (res);
 1136 }
 1137 
 1138 /*
 1139  * Determine whether the given advice can be applied to the object.  Advice is
 1140  * not applied to unmanaged pages since they never belong to page queues, and
 1141  * since MADV_FREE is destructive, it can apply only to anonymous pages that
 1142  * have been mapped at most once.
 1143  */
 1144 static bool
 1145 vm_object_advice_applies(vm_object_t object, int advice)
 1146 {
 1147 
 1148         if ((object->flags & OBJ_UNMANAGED) != 0)
 1149                 return (false);
 1150         if (advice != MADV_FREE)
 1151                 return (true);
 1152         return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
 1153             (object->flags & OBJ_ONEMAPPING) != 0);
 1154 }
 1155 
 1156 static void
 1157 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
 1158     vm_size_t size)
 1159 {
 1160 
 1161         if (advice == MADV_FREE && object->type == OBJT_SWAP)
 1162                 swap_pager_freespace(object, pindex, size);
 1163 }
 1164 
 1165 /*
 1166  *      vm_object_madvise:
 1167  *
 1168  *      Implements the madvise function at the object/page level.
 1169  *
 1170  *      MADV_WILLNEED   (any object)
 1171  *
 1172  *          Activate the specified pages if they are resident.
 1173  *
 1174  *      MADV_DONTNEED   (any object)
 1175  *
 1176  *          Deactivate the specified pages if they are resident.
 1177  *
 1178  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
 1179  *                       OBJ_ONEMAPPING only)
 1180  *
 1181  *          Deactivate and clean the specified pages if they are
 1182  *          resident.  This permits the process to reuse the pages
 1183  *          without faulting or the kernel to reclaim the pages
 1184  *          without I/O.
 1185  */
 1186 void
 1187 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
 1188     int advice)
 1189 {
 1190         vm_pindex_t tpindex;
 1191         vm_object_t backing_object, tobject;
 1192         vm_page_t m, tm;
 1193 
 1194         if (object == NULL)
 1195                 return;
 1196 
 1197 relookup:
 1198         VM_OBJECT_WLOCK(object);
 1199         if (!vm_object_advice_applies(object, advice)) {
 1200                 VM_OBJECT_WUNLOCK(object);
 1201                 return;
 1202         }
 1203         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
 1204                 tobject = object;
 1205 
 1206                 /*
 1207                  * If the next page isn't resident in the top-level object, we
 1208                  * need to search the shadow chain.  When applying MADV_FREE, we
 1209                  * take care to release any swap space used to store
 1210                  * non-resident pages.
 1211                  */
 1212                 if (m == NULL || pindex < m->pindex) {
 1213                         /*
 1214                          * Optimize a common case: if the top-level object has
 1215                          * no backing object, we can skip over the non-resident
 1216                          * range in constant time.
 1217                          */
 1218                         if (object->backing_object == NULL) {
 1219                                 tpindex = (m != NULL && m->pindex < end) ?
 1220                                     m->pindex : end;
 1221                                 vm_object_madvise_freespace(object, advice,
 1222                                     pindex, tpindex - pindex);
 1223                                 if ((pindex = tpindex) == end)
 1224                                         break;
 1225                                 goto next_page;
 1226                         }
 1227 
 1228                         tpindex = pindex;
 1229                         do {
 1230                                 vm_object_madvise_freespace(tobject, advice,
 1231                                     tpindex, 1);
 1232                                 /*
 1233                                  * Prepare to search the next object in the
 1234                                  * chain.
 1235                                  */
 1236                                 backing_object = tobject->backing_object;
 1237                                 if (backing_object == NULL)
 1238                                         goto next_pindex;
 1239                                 VM_OBJECT_WLOCK(backing_object);
 1240                                 tpindex +=
 1241                                     OFF_TO_IDX(tobject->backing_object_offset);
 1242                                 if (tobject != object)
 1243                                         VM_OBJECT_WUNLOCK(tobject);
 1244                                 tobject = backing_object;
 1245                                 if (!vm_object_advice_applies(tobject, advice))
 1246                                         goto next_pindex;
 1247                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
 1248                             NULL);
 1249                 } else {
 1250 next_page:
 1251                         tm = m;
 1252                         m = TAILQ_NEXT(m, listq);
 1253                 }
 1254 
 1255                 /*
 1256                  * If the page is not in a normal state, skip it.
 1257                  */
 1258                 if (tm->valid != VM_PAGE_BITS_ALL)
 1259                         goto next_pindex;
 1260                 vm_page_lock(tm);
 1261                 if (tm->hold_count != 0 || tm->wire_count != 0) {
 1262                         vm_page_unlock(tm);
 1263                         goto next_pindex;
 1264                 }
 1265                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
 1266                     ("vm_object_madvise: page %p is fictitious", tm));
 1267                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
 1268                     ("vm_object_madvise: page %p is not managed", tm));
 1269                 if (vm_page_busied(tm)) {
 1270                         if (object != tobject)
 1271                                 VM_OBJECT_WUNLOCK(tobject);
 1272                         VM_OBJECT_WUNLOCK(object);
 1273                         if (advice == MADV_WILLNEED) {
 1274                                 /*
 1275                                  * Reference the page before unlocking and
 1276                                  * sleeping so that the page daemon is less
 1277                                  * likely to reclaim it.
 1278                                  */
 1279                                 vm_page_aflag_set(tm, PGA_REFERENCED);
 1280                         }
 1281                         vm_page_busy_sleep(tm, "madvpo", false);
 1282                         goto relookup;
 1283                 }
 1284                 vm_page_advise(tm, advice);
 1285                 vm_page_unlock(tm);
 1286                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
 1287 next_pindex:
 1288                 if (tobject != object)
 1289                         VM_OBJECT_WUNLOCK(tobject);
 1290         }
 1291         VM_OBJECT_WUNLOCK(object);
 1292 }
 1293 
 1294 /*
 1295  *      vm_object_shadow:
 1296  *
 1297  *      Create a new object which is backed by the
 1298  *      specified existing object range.  The source
 1299  *      object reference is deallocated.
 1300  *
 1301  *      The new object and offset into that object
 1302  *      are returned in the source parameters.
 1303  */
 1304 void
 1305 vm_object_shadow(
 1306         vm_object_t *object,    /* IN/OUT */
 1307         vm_ooffset_t *offset,   /* IN/OUT */
 1308         vm_size_t length)
 1309 {
 1310         vm_object_t source;
 1311         vm_object_t result;
 1312 
 1313         source = *object;
 1314 
 1315         /*
 1316          * Don't create the new object if the old object isn't shared.
 1317          */
 1318         if (source != NULL) {
 1319                 VM_OBJECT_WLOCK(source);
 1320                 if (source->ref_count == 1 &&
 1321                     source->handle == NULL &&
 1322                     (source->type == OBJT_DEFAULT ||
 1323                      source->type == OBJT_SWAP)) {
 1324                         VM_OBJECT_WUNLOCK(source);
 1325                         return;
 1326                 }
 1327                 VM_OBJECT_WUNLOCK(source);
 1328         }
 1329 
 1330         /*
 1331          * Allocate a new object with the given length.
 1332          */
 1333         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
 1334 
 1335         /*
 1336          * The new object shadows the source object, adding a reference to it.
 1337          * Our caller changes his reference to point to the new object,
 1338          * removing a reference to the source object.  Net result: no change
 1339          * of reference count.
 1340          *
 1341          * Try to optimize the result object's page color when shadowing
 1342          * in order to maintain page coloring consistency in the combined 
 1343          * shadowed object.
 1344          */
 1345         result->backing_object = source;
 1346         /*
 1347          * Store the offset into the source object, and fix up the offset into
 1348          * the new object.
 1349          */
 1350         result->backing_object_offset = *offset;
 1351         if (source != NULL) {
 1352                 VM_OBJECT_WLOCK(source);
 1353                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
 1354                 source->shadow_count++;
 1355 #if VM_NRESERVLEVEL > 0
 1356                 result->flags |= source->flags & OBJ_COLORED;
 1357                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
 1358                     ((1 << (VM_NFREEORDER - 1)) - 1);
 1359 #endif
 1360                 VM_OBJECT_WUNLOCK(source);
 1361         }
 1362 
 1363 
 1364         /*
 1365          * Return the new things
 1366          */
 1367         *offset = 0;
 1368         *object = result;
 1369 }
 1370 
 1371 /*
 1372  *      vm_object_split:
 1373  *
 1374  * Split the pages in a map entry into a new object.  This affords
 1375  * easier removal of unused pages, and keeps object inheritance from
 1376  * being a negative impact on memory usage.
 1377  */
 1378 void
 1379 vm_object_split(vm_map_entry_t entry)
 1380 {
 1381         vm_page_t m, m_next;
 1382         vm_object_t orig_object, new_object, source;
 1383         vm_pindex_t idx, offidxstart;
 1384         vm_size_t size;
 1385 
 1386         orig_object = entry->object.vm_object;
 1387         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
 1388                 return;
 1389         if (orig_object->ref_count <= 1)
 1390                 return;
 1391         VM_OBJECT_WUNLOCK(orig_object);
 1392 
 1393         offidxstart = OFF_TO_IDX(entry->offset);
 1394         size = atop(entry->end - entry->start);
 1395 
 1396         /*
 1397          * If swap_pager_copy() is later called, it will convert new_object
 1398          * into a swap object.
 1399          */
 1400         new_object = vm_object_allocate(OBJT_DEFAULT, size);
 1401 
 1402         /*
 1403          * At this point, the new object is still private, so the order in
 1404          * which the original and new objects are locked does not matter.
 1405          */
 1406         VM_OBJECT_WLOCK(new_object);
 1407         VM_OBJECT_WLOCK(orig_object);
 1408         source = orig_object->backing_object;
 1409         if (source != NULL) {
 1410                 VM_OBJECT_WLOCK(source);
 1411                 if ((source->flags & OBJ_DEAD) != 0) {
 1412                         VM_OBJECT_WUNLOCK(source);
 1413                         VM_OBJECT_WUNLOCK(orig_object);
 1414                         VM_OBJECT_WUNLOCK(new_object);
 1415                         vm_object_deallocate(new_object);
 1416                         VM_OBJECT_WLOCK(orig_object);
 1417                         return;
 1418                 }
 1419                 LIST_INSERT_HEAD(&source->shadow_head,
 1420                                   new_object, shadow_list);
 1421                 source->shadow_count++;
 1422                 vm_object_reference_locked(source);     /* for new_object */
 1423                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1424                 VM_OBJECT_WUNLOCK(source);
 1425                 new_object->backing_object_offset = 
 1426                         orig_object->backing_object_offset + entry->offset;
 1427                 new_object->backing_object = source;
 1428         }
 1429         if (orig_object->cred != NULL) {
 1430                 new_object->cred = orig_object->cred;
 1431                 crhold(orig_object->cred);
 1432                 new_object->charge = ptoa(size);
 1433                 KASSERT(orig_object->charge >= ptoa(size),
 1434                     ("orig_object->charge < 0"));
 1435                 orig_object->charge -= ptoa(size);
 1436         }
 1437 retry:
 1438         m = vm_page_find_least(orig_object, offidxstart);
 1439         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
 1440             m = m_next) {
 1441                 m_next = TAILQ_NEXT(m, listq);
 1442 
 1443                 /*
 1444                  * We must wait for pending I/O to complete before we can
 1445                  * rename the page.
 1446                  *
 1447                  * We do not have to VM_PROT_NONE the page as mappings should
 1448                  * not be changed by this operation.
 1449                  */
 1450                 if (vm_page_busied(m)) {
 1451                         VM_OBJECT_WUNLOCK(new_object);
 1452                         vm_page_lock(m);
 1453                         VM_OBJECT_WUNLOCK(orig_object);
 1454                         vm_page_busy_sleep(m, "spltwt", false);
 1455                         VM_OBJECT_WLOCK(orig_object);
 1456                         VM_OBJECT_WLOCK(new_object);
 1457                         goto retry;
 1458                 }
 1459 
 1460                 /* vm_page_rename() will dirty the page. */
 1461                 if (vm_page_rename(m, new_object, idx)) {
 1462                         VM_OBJECT_WUNLOCK(new_object);
 1463                         VM_OBJECT_WUNLOCK(orig_object);
 1464                         vm_radix_wait();
 1465                         VM_OBJECT_WLOCK(orig_object);
 1466                         VM_OBJECT_WLOCK(new_object);
 1467                         goto retry;
 1468                 }
 1469 #if VM_NRESERVLEVEL > 0
 1470                 /*
 1471                  * If some of the reservation's allocated pages remain with
 1472                  * the original object, then transferring the reservation to
 1473                  * the new object is neither particularly beneficial nor
 1474                  * particularly harmful as compared to leaving the reservation
 1475                  * with the original object.  If, however, all of the
 1476                  * reservation's allocated pages are transferred to the new
 1477                  * object, then transferring the reservation is typically
 1478                  * beneficial.  Determining which of these two cases applies
 1479                  * would be more costly than unconditionally renaming the
 1480                  * reservation.
 1481                  */
 1482                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
 1483 #endif
 1484                 if (orig_object->type == OBJT_SWAP)
 1485                         vm_page_xbusy(m);
 1486         }
 1487         if (orig_object->type == OBJT_SWAP) {
 1488                 /*
 1489                  * swap_pager_copy() can sleep, in which case the orig_object's
 1490                  * and new_object's locks are released and reacquired. 
 1491                  */
 1492                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
 1493                 TAILQ_FOREACH(m, &new_object->memq, listq)
 1494                         vm_page_xunbusy(m);
 1495         }
 1496         VM_OBJECT_WUNLOCK(orig_object);
 1497         VM_OBJECT_WUNLOCK(new_object);
 1498         entry->object.vm_object = new_object;
 1499         entry->offset = 0LL;
 1500         vm_object_deallocate(orig_object);
 1501         VM_OBJECT_WLOCK(new_object);
 1502 }
 1503 
 1504 #define OBSC_COLLAPSE_NOWAIT    0x0002
 1505 #define OBSC_COLLAPSE_WAIT      0x0004
 1506 
 1507 static vm_page_t
 1508 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
 1509     int op)
 1510 {
 1511         vm_object_t backing_object;
 1512 
 1513         VM_OBJECT_ASSERT_WLOCKED(object);
 1514         backing_object = object->backing_object;
 1515         VM_OBJECT_ASSERT_WLOCKED(backing_object);
 1516 
 1517         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
 1518         KASSERT(p == NULL || p->object == object || p->object == backing_object,
 1519             ("invalid ownership %p %p %p", p, object, backing_object));
 1520         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
 1521                 return (next);
 1522         if (p != NULL)
 1523                 vm_page_lock(p);
 1524         VM_OBJECT_WUNLOCK(object);
 1525         VM_OBJECT_WUNLOCK(backing_object);
 1526         /* The page is only NULL when rename fails. */
 1527         if (p == NULL)
 1528                 vm_radix_wait();
 1529         else
 1530                 vm_page_busy_sleep(p, "vmocol", false);
 1531         VM_OBJECT_WLOCK(object);
 1532         VM_OBJECT_WLOCK(backing_object);
 1533         return (TAILQ_FIRST(&backing_object->memq));
 1534 }
 1535 
 1536 static bool
 1537 vm_object_scan_all_shadowed(vm_object_t object)
 1538 {
 1539         vm_object_t backing_object;
 1540         vm_page_t p, pp;
 1541         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
 1542 
 1543         VM_OBJECT_ASSERT_WLOCKED(object);
 1544         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
 1545 
 1546         backing_object = object->backing_object;
 1547 
 1548         /*
 1549          * Initial conditions:
 1550          *
 1551          * We do not want to have to test for the existence of swap
 1552          * pages in the backing object.  XXX but with the new swapper this
 1553          * would be pretty easy to do.
 1554          */
 1555         if (backing_object->type != OBJT_DEFAULT &&
 1556             backing_object->type != OBJT_SWAP)
 1557                 return (false);
 1558 
 1559         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1560         p = vm_page_find_least(backing_object, pi);
 1561         ps = swap_pager_find_least(backing_object, pi);
 1562 
 1563         /*
 1564          * Only check pages inside the parent object's range and
 1565          * inside the parent object's mapping of the backing object.
 1566          */
 1567         for (;; pi++) {
 1568                 if (p != NULL && p->pindex < pi)
 1569                         p = TAILQ_NEXT(p, listq);
 1570                 if (ps < pi)
 1571                         ps = swap_pager_find_least(backing_object, pi);
 1572                 if (p == NULL && ps >= backing_object->size)
 1573                         break;
 1574                 else if (p == NULL)
 1575                         pi = ps;
 1576                 else
 1577                         pi = MIN(p->pindex, ps);
 1578 
 1579                 new_pindex = pi - backing_offset_index;
 1580                 if (new_pindex >= object->size)
 1581                         break;
 1582 
 1583                 /*
 1584                  * See if the parent has the page or if the parent's object
 1585                  * pager has the page.  If the parent has the page but the page
 1586                  * is not valid, the parent's object pager must have the page.
 1587                  *
 1588                  * If this fails, the parent does not completely shadow the
 1589                  * object and we might as well give up now.
 1590                  */
 1591                 pp = vm_page_lookup(object, new_pindex);
 1592                 if ((pp == NULL || pp->valid == 0) &&
 1593                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
 1594                         return (false);
 1595         }
 1596         return (true);
 1597 }
 1598 
 1599 static bool
 1600 vm_object_collapse_scan(vm_object_t object, int op)
 1601 {
 1602         vm_object_t backing_object;
 1603         vm_page_t next, p, pp;
 1604         vm_pindex_t backing_offset_index, new_pindex;
 1605 
 1606         VM_OBJECT_ASSERT_WLOCKED(object);
 1607         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
 1608 
 1609         backing_object = object->backing_object;
 1610         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1611 
 1612         /*
 1613          * Initial conditions
 1614          */
 1615         if ((op & OBSC_COLLAPSE_WAIT) != 0)
 1616                 vm_object_set_flag(backing_object, OBJ_DEAD);
 1617 
 1618         /*
 1619          * Our scan
 1620          */
 1621         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
 1622                 next = TAILQ_NEXT(p, listq);
 1623                 new_pindex = p->pindex - backing_offset_index;
 1624 
 1625                 /*
 1626                  * Check for busy page
 1627                  */
 1628                 if (vm_page_busied(p)) {
 1629                         next = vm_object_collapse_scan_wait(object, p, next, op);
 1630                         continue;
 1631                 }
 1632 
 1633                 KASSERT(p->object == backing_object,
 1634                     ("vm_object_collapse_scan: object mismatch"));
 1635 
 1636                 if (p->pindex < backing_offset_index ||
 1637                     new_pindex >= object->size) {
 1638                         if (backing_object->type == OBJT_SWAP)
 1639                                 swap_pager_freespace(backing_object, p->pindex,
 1640                                     1);
 1641 
 1642                         /*
 1643                          * Page is out of the parent object's range, we can
 1644                          * simply destroy it.
 1645                          */
 1646                         vm_page_lock(p);
 1647                         KASSERT(!pmap_page_is_mapped(p),
 1648                             ("freeing mapped page %p", p));
 1649                         if (p->wire_count == 0)
 1650                                 vm_page_free(p);
 1651                         else
 1652                                 vm_page_remove(p);
 1653                         vm_page_unlock(p);
 1654                         continue;
 1655                 }
 1656 
 1657                 pp = vm_page_lookup(object, new_pindex);
 1658                 if (pp != NULL && vm_page_busied(pp)) {
 1659                         /*
 1660                          * The page in the parent is busy and possibly not
 1661                          * (yet) valid.  Until its state is finalized by the
 1662                          * busy bit owner, we can't tell whether it shadows the
 1663                          * original page.  Therefore, we must either skip it
 1664                          * and the original (backing_object) page or wait for
 1665                          * its state to be finalized.
 1666                          *
 1667                          * This is due to a race with vm_fault() where we must
 1668                          * unbusy the original (backing_obj) page before we can
 1669                          * (re)lock the parent.  Hence we can get here.
 1670                          */
 1671                         next = vm_object_collapse_scan_wait(object, pp, next,
 1672                             op);
 1673                         continue;
 1674                 }
 1675 
 1676                 KASSERT(pp == NULL || pp->valid != 0,
 1677                     ("unbusy invalid page %p", pp));
 1678 
 1679                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
 1680                         NULL)) {
 1681                         /*
 1682                          * The page already exists in the parent OR swap exists
 1683                          * for this location in the parent.  Leave the parent's
 1684                          * page alone.  Destroy the original page from the
 1685                          * backing object.
 1686                          */
 1687                         if (backing_object->type == OBJT_SWAP)
 1688                                 swap_pager_freespace(backing_object, p->pindex,
 1689                                     1);
 1690                         vm_page_lock(p);
 1691                         KASSERT(!pmap_page_is_mapped(p),
 1692                             ("freeing mapped page %p", p));
 1693                         if (p->wire_count == 0)
 1694                                 vm_page_free(p);
 1695                         else
 1696                                 vm_page_remove(p);
 1697                         vm_page_unlock(p);
 1698                         continue;
 1699                 }
 1700 
 1701                 /*
 1702                  * Page does not exist in parent, rename the page from the
 1703                  * backing object to the main object.
 1704                  *
 1705                  * If the page was mapped to a process, it can remain mapped
 1706                  * through the rename.  vm_page_rename() will dirty the page.
 1707                  */
 1708                 if (vm_page_rename(p, object, new_pindex)) {
 1709                         next = vm_object_collapse_scan_wait(object, NULL, next,
 1710                             op);
 1711                         continue;
 1712                 }
 1713 
 1714                 /* Use the old pindex to free the right page. */
 1715                 if (backing_object->type == OBJT_SWAP)
 1716                         swap_pager_freespace(backing_object,
 1717                             new_pindex + backing_offset_index, 1);
 1718 
 1719 #if VM_NRESERVLEVEL > 0
 1720                 /*
 1721                  * Rename the reservation.
 1722                  */
 1723                 vm_reserv_rename(p, object, backing_object,
 1724                     backing_offset_index);
 1725 #endif
 1726         }
 1727         return (true);
 1728 }
 1729 
 1730 
 1731 /*
 1732  * this version of collapse allows the operation to occur earlier and
 1733  * when paging_in_progress is true for an object...  This is not a complete
 1734  * operation, but should plug 99.9% of the rest of the leaks.
 1735  */
 1736 static void
 1737 vm_object_qcollapse(vm_object_t object)
 1738 {
 1739         vm_object_t backing_object = object->backing_object;
 1740 
 1741         VM_OBJECT_ASSERT_WLOCKED(object);
 1742         VM_OBJECT_ASSERT_WLOCKED(backing_object);
 1743 
 1744         if (backing_object->ref_count != 1)
 1745                 return;
 1746 
 1747         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
 1748 }
 1749 
 1750 /*
 1751  *      vm_object_collapse:
 1752  *
 1753  *      Collapse an object with the object backing it.
 1754  *      Pages in the backing object are moved into the
 1755  *      parent, and the backing object is deallocated.
 1756  */
 1757 void
 1758 vm_object_collapse(vm_object_t object)
 1759 {
 1760         vm_object_t backing_object, new_backing_object;
 1761 
 1762         VM_OBJECT_ASSERT_WLOCKED(object);
 1763 
 1764         while (TRUE) {
 1765                 /*
 1766                  * Verify that the conditions are right for collapse:
 1767                  *
 1768                  * The object exists and the backing object exists.
 1769                  */
 1770                 if ((backing_object = object->backing_object) == NULL)
 1771                         break;
 1772 
 1773                 /*
 1774                  * we check the backing object first, because it is most likely
 1775                  * not collapsable.
 1776                  */
 1777                 VM_OBJECT_WLOCK(backing_object);
 1778                 if (backing_object->handle != NULL ||
 1779                     (backing_object->type != OBJT_DEFAULT &&
 1780                     backing_object->type != OBJT_SWAP) ||
 1781                     (backing_object->flags & (OBJ_DEAD | OBJ_NOSPLIT)) != 0 ||
 1782                     object->handle != NULL ||
 1783                     (object->type != OBJT_DEFAULT &&
 1784                      object->type != OBJT_SWAP) ||
 1785                     (object->flags & OBJ_DEAD)) {
 1786                         VM_OBJECT_WUNLOCK(backing_object);
 1787                         break;
 1788                 }
 1789 
 1790                 if (object->paging_in_progress != 0 ||
 1791                     backing_object->paging_in_progress != 0) {
 1792                         vm_object_qcollapse(object);
 1793                         VM_OBJECT_WUNLOCK(backing_object);
 1794                         break;
 1795                 }
 1796 
 1797                 /*
 1798                  * We know that we can either collapse the backing object (if
 1799                  * the parent is the only reference to it) or (perhaps) have
 1800                  * the parent bypass the object if the parent happens to shadow
 1801                  * all the resident pages in the entire backing object.
 1802                  *
 1803                  * This is ignoring pager-backed pages such as swap pages.
 1804                  * vm_object_collapse_scan fails the shadowing test in this
 1805                  * case.
 1806                  */
 1807                 if (backing_object->ref_count == 1) {
 1808                         vm_object_pip_add(object, 1);
 1809                         vm_object_pip_add(backing_object, 1);
 1810 
 1811                         /*
 1812                          * If there is exactly one reference to the backing
 1813                          * object, we can collapse it into the parent.
 1814                          */
 1815                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
 1816 
 1817 #if VM_NRESERVLEVEL > 0
 1818                         /*
 1819                          * Break any reservations from backing_object.
 1820                          */
 1821                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
 1822                                 vm_reserv_break_all(backing_object);
 1823 #endif
 1824 
 1825                         /*
 1826                          * Move the pager from backing_object to object.
 1827                          */
 1828                         if (backing_object->type == OBJT_SWAP) {
 1829                                 /*
 1830                                  * swap_pager_copy() can sleep, in which case
 1831                                  * the backing_object's and object's locks are
 1832                                  * released and reacquired.
 1833                                  * Since swap_pager_copy() is being asked to
 1834                                  * destroy the source, it will change the
 1835                                  * backing_object's type to OBJT_DEFAULT.
 1836                                  */
 1837                                 swap_pager_copy(
 1838                                     backing_object,
 1839                                     object,
 1840                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
 1841                         }
 1842                         /*
 1843                          * Object now shadows whatever backing_object did.
 1844                          * Note that the reference to 
 1845                          * backing_object->backing_object moves from within 
 1846                          * backing_object to within object.
 1847                          */
 1848                         LIST_REMOVE(object, shadow_list);
 1849                         backing_object->shadow_count--;
 1850                         if (backing_object->backing_object) {
 1851                                 VM_OBJECT_WLOCK(backing_object->backing_object);
 1852                                 LIST_REMOVE(backing_object, shadow_list);
 1853                                 LIST_INSERT_HEAD(
 1854                                     &backing_object->backing_object->shadow_head,
 1855                                     object, shadow_list);
 1856                                 /*
 1857                                  * The shadow_count has not changed.
 1858                                  */
 1859                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
 1860                         }
 1861                         object->backing_object = backing_object->backing_object;
 1862                         object->backing_object_offset +=
 1863                             backing_object->backing_object_offset;
 1864 
 1865                         /*
 1866                          * Discard backing_object.
 1867                          *
 1868                          * Since the backing object has no pages, no pager left,
 1869                          * and no object references within it, all that is
 1870                          * necessary is to dispose of it.
 1871                          */
 1872                         KASSERT(backing_object->ref_count == 1, (
 1873 "backing_object %p was somehow re-referenced during collapse!",
 1874                             backing_object));
 1875                         vm_object_pip_wakeup(backing_object);
 1876                         backing_object->type = OBJT_DEAD;
 1877                         backing_object->ref_count = 0;
 1878                         VM_OBJECT_WUNLOCK(backing_object);
 1879                         vm_object_destroy(backing_object);
 1880 
 1881                         vm_object_pip_wakeup(object);
 1882                         object_collapses++;
 1883                 } else {
 1884                         /*
 1885                          * If we do not entirely shadow the backing object,
 1886                          * there is nothing we can do so we give up.
 1887                          */
 1888                         if (object->resident_page_count != object->size &&
 1889                             !vm_object_scan_all_shadowed(object)) {
 1890                                 VM_OBJECT_WUNLOCK(backing_object);
 1891                                 break;
 1892                         }
 1893 
 1894                         /*
 1895                          * Make the parent shadow the next object in the
 1896                          * chain.  Deallocating backing_object will not remove
 1897                          * it, since its reference count is at least 2.
 1898                          */
 1899                         LIST_REMOVE(object, shadow_list);
 1900                         backing_object->shadow_count--;
 1901 
 1902                         new_backing_object = backing_object->backing_object;
 1903                         if ((object->backing_object = new_backing_object) != NULL) {
 1904                                 VM_OBJECT_WLOCK(new_backing_object);
 1905                                 LIST_INSERT_HEAD(
 1906                                     &new_backing_object->shadow_head,
 1907                                     object,
 1908                                     shadow_list
 1909                                 );
 1910                                 new_backing_object->shadow_count++;
 1911                                 vm_object_reference_locked(new_backing_object);
 1912                                 VM_OBJECT_WUNLOCK(new_backing_object);
 1913                                 object->backing_object_offset +=
 1914                                         backing_object->backing_object_offset;
 1915                         }
 1916 
 1917                         /*
 1918                          * Drop the reference count on backing_object. Since
 1919                          * its ref_count was at least 2, it will not vanish.
 1920                          */
 1921                         backing_object->ref_count--;
 1922                         VM_OBJECT_WUNLOCK(backing_object);
 1923                         object_bypasses++;
 1924                 }
 1925 
 1926                 /*
 1927                  * Try again with this object's new backing object.
 1928                  */
 1929         }
 1930 }
 1931 
 1932 /*
 1933  *      vm_object_page_remove:
 1934  *
 1935  *      For the given object, either frees or invalidates each of the
 1936  *      specified pages.  In general, a page is freed.  However, if a page is
 1937  *      wired for any reason other than the existence of a managed, wired
 1938  *      mapping, then it may be invalidated but not removed from the object.
 1939  *      Pages are specified by the given range ["start", "end") and the option
 1940  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
 1941  *      extends from "start" to the end of the object.  If the option
 1942  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
 1943  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
 1944  *      specified, then the pages within the specified range must have no
 1945  *      mappings.  Otherwise, if this option is not specified, any mappings to
 1946  *      the specified pages are removed before the pages are freed or
 1947  *      invalidated.
 1948  *
 1949  *      In general, this operation should only be performed on objects that
 1950  *      contain managed pages.  There are, however, two exceptions.  First, it
 1951  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
 1952  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
 1953  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
 1954  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
 1955  *
 1956  *      The object must be locked.
 1957  */
 1958 void
 1959 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 1960     int options)
 1961 {
 1962         vm_page_t p, next;
 1963         struct mtx *mtx;
 1964         struct pglist pgl;
 1965 
 1966         VM_OBJECT_ASSERT_WLOCKED(object);
 1967         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
 1968             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
 1969             ("vm_object_page_remove: illegal options for object %p", object));
 1970         if (object->resident_page_count == 0)
 1971                 return;
 1972         vm_object_pip_add(object, 1);
 1973         TAILQ_INIT(&pgl);
 1974 again:
 1975         p = vm_page_find_least(object, start);
 1976         mtx = NULL;
 1977 
 1978         /*
 1979          * Here, the variable "p" is either (1) the page with the least pindex
 1980          * greater than or equal to the parameter "start" or (2) NULL. 
 1981          */
 1982         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 1983                 next = TAILQ_NEXT(p, listq);
 1984 
 1985                 /*
 1986                  * If the page is wired for any reason besides the existence
 1987                  * of managed, wired mappings, then it cannot be freed.  For
 1988                  * example, fictitious pages, which represent device memory,
 1989                  * are inherently wired and cannot be freed.  They can,
 1990                  * however, be invalidated if the option OBJPR_CLEANONLY is
 1991                  * not specified.
 1992                  */
 1993                 vm_page_change_lock(p, &mtx);
 1994                 if (vm_page_xbusied(p)) {
 1995                         VM_OBJECT_WUNLOCK(object);
 1996                         vm_page_busy_sleep(p, "vmopax", true);
 1997                         VM_OBJECT_WLOCK(object);
 1998                         goto again;
 1999                 }
 2000                 if (p->wire_count != 0) {
 2001                         if ((options & OBJPR_NOTMAPPED) == 0 &&
 2002                             object->ref_count != 0)
 2003                                 pmap_remove_all(p);
 2004                         if ((options & OBJPR_CLEANONLY) == 0) {
 2005                                 p->valid = 0;
 2006                                 vm_page_undirty(p);
 2007                         }
 2008                         continue;
 2009                 }
 2010                 if (vm_page_busied(p)) {
 2011                         VM_OBJECT_WUNLOCK(object);
 2012                         vm_page_busy_sleep(p, "vmopar", false);
 2013                         VM_OBJECT_WLOCK(object);
 2014                         goto again;
 2015                 }
 2016                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
 2017                     ("vm_object_page_remove: page %p is fictitious", p));
 2018                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
 2019                         if ((options & OBJPR_NOTMAPPED) == 0 &&
 2020                             object->ref_count != 0)
 2021                                 pmap_remove_write(p);
 2022                         if (p->dirty != 0)
 2023                                 continue;
 2024                 }
 2025                 if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
 2026                         pmap_remove_all(p);
 2027                 p->flags &= ~PG_ZERO;
 2028                 if (vm_page_free_prep(p, false))
 2029                         TAILQ_INSERT_TAIL(&pgl, p, listq);
 2030         }
 2031         if (mtx != NULL)
 2032                 mtx_unlock(mtx);
 2033         vm_page_free_phys_pglist(&pgl);
 2034         vm_object_pip_wakeup(object);
 2035 }
 2036 
 2037 /*
 2038  *      vm_object_page_noreuse:
 2039  *
 2040  *      For the given object, attempt to move the specified pages to
 2041  *      the head of the inactive queue.  This bypasses regular LRU
 2042  *      operation and allows the pages to be reused quickly under memory
 2043  *      pressure.  If a page is wired for any reason, then it will not
 2044  *      be queued.  Pages are specified by the range ["start", "end").
 2045  *      As a special case, if "end" is zero, then the range extends from
 2046  *      "start" to the end of the object.
 2047  *
 2048  *      This operation should only be performed on objects that
 2049  *      contain non-fictitious, managed pages.
 2050  *
 2051  *      The object must be locked.
 2052  */
 2053 void
 2054 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 2055 {
 2056         struct mtx *mtx;
 2057         vm_page_t p, next;
 2058 
 2059         VM_OBJECT_ASSERT_LOCKED(object);
 2060         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
 2061             ("vm_object_page_noreuse: illegal object %p", object));
 2062         if (object->resident_page_count == 0)
 2063                 return;
 2064         p = vm_page_find_least(object, start);
 2065 
 2066         /*
 2067          * Here, the variable "p" is either (1) the page with the least pindex
 2068          * greater than or equal to the parameter "start" or (2) NULL. 
 2069          */
 2070         mtx = NULL;
 2071         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 2072                 next = TAILQ_NEXT(p, listq);
 2073                 vm_page_change_lock(p, &mtx);
 2074                 vm_page_deactivate_noreuse(p);
 2075         }
 2076         if (mtx != NULL)
 2077                 mtx_unlock(mtx);
 2078 }
 2079 
 2080 /*
 2081  *      Populate the specified range of the object with valid pages.  Returns
 2082  *      TRUE if the range is successfully populated and FALSE otherwise.
 2083  *
 2084  *      Note: This function should be optimized to pass a larger array of
 2085  *      pages to vm_pager_get_pages() before it is applied to a non-
 2086  *      OBJT_DEVICE object.
 2087  *
 2088  *      The object must be locked.
 2089  */
 2090 boolean_t
 2091 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 2092 {
 2093         vm_page_t m;
 2094         vm_pindex_t pindex;
 2095         int rv;
 2096 
 2097         VM_OBJECT_ASSERT_WLOCKED(object);
 2098         for (pindex = start; pindex < end; pindex++) {
 2099                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
 2100                 if (m->valid != VM_PAGE_BITS_ALL) {
 2101                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
 2102                         if (rv != VM_PAGER_OK) {
 2103                                 vm_page_lock(m);
 2104                                 vm_page_free(m);
 2105                                 vm_page_unlock(m);
 2106                                 break;
 2107                         }
 2108                 }
 2109                 /*
 2110                  * Keep "m" busy because a subsequent iteration may unlock
 2111                  * the object.
 2112                  */
 2113         }
 2114         if (pindex > start) {
 2115                 m = vm_page_lookup(object, start);
 2116                 while (m != NULL && m->pindex < pindex) {
 2117                         vm_page_xunbusy(m);
 2118                         m = TAILQ_NEXT(m, listq);
 2119                 }
 2120         }
 2121         return (pindex == end);
 2122 }
 2123 
 2124 /*
 2125  *      Routine:        vm_object_coalesce
 2126  *      Function:       Coalesces two objects backing up adjoining
 2127  *                      regions of memory into a single object.
 2128  *
 2129  *      returns TRUE if objects were combined.
 2130  *
 2131  *      NOTE:   Only works at the moment if the second object is NULL -
 2132  *              if it's not, which object do we lock first?
 2133  *
 2134  *      Parameters:
 2135  *              prev_object     First object to coalesce
 2136  *              prev_offset     Offset into prev_object
 2137  *              prev_size       Size of reference to prev_object
 2138  *              next_size       Size of reference to the second object
 2139  *              reserved        Indicator that extension region has
 2140  *                              swap accounted for
 2141  *
 2142  *      Conditions:
 2143  *      The object must *not* be locked.
 2144  */
 2145 boolean_t
 2146 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
 2147     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
 2148 {
 2149         vm_pindex_t next_pindex;
 2150 
 2151         if (prev_object == NULL)
 2152                 return (TRUE);
 2153         VM_OBJECT_WLOCK(prev_object);
 2154         if ((prev_object->type != OBJT_DEFAULT &&
 2155             prev_object->type != OBJT_SWAP) ||
 2156             (prev_object->flags & OBJ_NOSPLIT) != 0) {
 2157                 VM_OBJECT_WUNLOCK(prev_object);
 2158                 return (FALSE);
 2159         }
 2160 
 2161         /*
 2162          * Try to collapse the object first
 2163          */
 2164         vm_object_collapse(prev_object);
 2165 
 2166         /*
 2167          * Can't coalesce if: . more than one reference . paged out . shadows
 2168          * another object . has a copy elsewhere (any of which mean that the
 2169          * pages not mapped to prev_entry may be in use anyway)
 2170          */
 2171         if (prev_object->backing_object != NULL) {
 2172                 VM_OBJECT_WUNLOCK(prev_object);
 2173                 return (FALSE);
 2174         }
 2175 
 2176         prev_size >>= PAGE_SHIFT;
 2177         next_size >>= PAGE_SHIFT;
 2178         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
 2179 
 2180         if ((prev_object->ref_count > 1) &&
 2181             (prev_object->size != next_pindex)) {
 2182                 VM_OBJECT_WUNLOCK(prev_object);
 2183                 return (FALSE);
 2184         }
 2185 
 2186         /*
 2187          * Account for the charge.
 2188          */
 2189         if (prev_object->cred != NULL) {
 2190 
 2191                 /*
 2192                  * If prev_object was charged, then this mapping,
 2193                  * although not charged now, may become writable
 2194                  * later. Non-NULL cred in the object would prevent
 2195                  * swap reservation during enabling of the write
 2196                  * access, so reserve swap now. Failed reservation
 2197                  * cause allocation of the separate object for the map
 2198                  * entry, and swap reservation for this entry is
 2199                  * managed in appropriate time.
 2200                  */
 2201                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
 2202                     prev_object->cred)) {
 2203                         VM_OBJECT_WUNLOCK(prev_object);
 2204                         return (FALSE);
 2205                 }
 2206                 prev_object->charge += ptoa(next_size);
 2207         }
 2208 
 2209         /*
 2210          * Remove any pages that may still be in the object from a previous
 2211          * deallocation.
 2212          */
 2213         if (next_pindex < prev_object->size) {
 2214                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
 2215                     next_size, 0);
 2216                 if (prev_object->type == OBJT_SWAP)
 2217                         swap_pager_freespace(prev_object,
 2218                                              next_pindex, next_size);
 2219 #if 0
 2220                 if (prev_object->cred != NULL) {
 2221                         KASSERT(prev_object->charge >=
 2222                             ptoa(prev_object->size - next_pindex),
 2223                             ("object %p overcharged 1 %jx %jx", prev_object,
 2224                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
 2225                         prev_object->charge -= ptoa(prev_object->size -
 2226                             next_pindex);
 2227                 }
 2228 #endif
 2229         }
 2230 
 2231         /*
 2232          * Extend the object if necessary.
 2233          */
 2234         if (next_pindex + next_size > prev_object->size)
 2235                 prev_object->size = next_pindex + next_size;
 2236 
 2237         VM_OBJECT_WUNLOCK(prev_object);
 2238         return (TRUE);
 2239 }
 2240 
 2241 void
 2242 vm_object_set_writeable_dirty(vm_object_t object)
 2243 {
 2244 
 2245         VM_OBJECT_ASSERT_WLOCKED(object);
 2246         if (object->type != OBJT_VNODE) {
 2247                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
 2248                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
 2249                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
 2250                 }
 2251                 return;
 2252         }
 2253         object->generation++;
 2254         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
 2255                 return;
 2256         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
 2257 }
 2258 
 2259 /*
 2260  *      vm_object_unwire:
 2261  *
 2262  *      For each page offset within the specified range of the given object,
 2263  *      find the highest-level page in the shadow chain and unwire it.  A page
 2264  *      must exist at every page offset, and the highest-level page must be
 2265  *      wired.
 2266  */
 2267 void
 2268 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
 2269     uint8_t queue)
 2270 {
 2271         vm_object_t tobject, t1object;
 2272         vm_page_t m, tm;
 2273         vm_pindex_t end_pindex, pindex, tpindex;
 2274         int depth, locked_depth;
 2275 
 2276         KASSERT((offset & PAGE_MASK) == 0,
 2277             ("vm_object_unwire: offset is not page aligned"));
 2278         KASSERT((length & PAGE_MASK) == 0,
 2279             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
 2280         /* The wired count of a fictitious page never changes. */
 2281         if ((object->flags & OBJ_FICTITIOUS) != 0)
 2282                 return;
 2283         pindex = OFF_TO_IDX(offset);
 2284         end_pindex = pindex + atop(length);
 2285 again:
 2286         locked_depth = 1;
 2287         VM_OBJECT_RLOCK(object);
 2288         m = vm_page_find_least(object, pindex);
 2289         while (pindex < end_pindex) {
 2290                 if (m == NULL || pindex < m->pindex) {
 2291                         /*
 2292                          * The first object in the shadow chain doesn't
 2293                          * contain a page at the current index.  Therefore,
 2294                          * the page must exist in a backing object.
 2295                          */
 2296                         tobject = object;
 2297                         tpindex = pindex;
 2298                         depth = 0;
 2299                         do {
 2300                                 tpindex +=
 2301                                     OFF_TO_IDX(tobject->backing_object_offset);
 2302                                 tobject = tobject->backing_object;
 2303                                 KASSERT(tobject != NULL,
 2304                                     ("vm_object_unwire: missing page"));
 2305                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
 2306                                         goto next_page;
 2307                                 depth++;
 2308                                 if (depth == locked_depth) {
 2309                                         locked_depth++;
 2310                                         VM_OBJECT_RLOCK(tobject);
 2311                                 }
 2312                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
 2313                             NULL);
 2314                 } else {
 2315                         tm = m;
 2316                         m = TAILQ_NEXT(m, listq);
 2317                 }
 2318                 vm_page_lock(tm);
 2319                 if (vm_page_xbusied(tm)) {
 2320                         for (tobject = object; locked_depth >= 1;
 2321                             locked_depth--) {
 2322                                 t1object = tobject->backing_object;
 2323                                 VM_OBJECT_RUNLOCK(tobject);
 2324                                 tobject = t1object;
 2325                         }
 2326                         vm_page_busy_sleep(tm, "unwbo", true);
 2327                         goto again;
 2328                 }
 2329                 vm_page_unwire(tm, queue);
 2330                 vm_page_unlock(tm);
 2331 next_page:
 2332                 pindex++;
 2333         }
 2334         /* Release the accumulated object locks. */
 2335         for (tobject = object; locked_depth >= 1; locked_depth--) {
 2336                 t1object = tobject->backing_object;
 2337                 VM_OBJECT_RUNLOCK(tobject);
 2338                 tobject = t1object;
 2339         }
 2340 }
 2341 
 2342 struct vnode *
 2343 vm_object_vnode(vm_object_t object)
 2344 {
 2345 
 2346         VM_OBJECT_ASSERT_LOCKED(object);
 2347         if (object->type == OBJT_VNODE)
 2348                 return (object->handle);
 2349         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
 2350                 return (object->un_pager.swp.swp_tmpfs);
 2351         return (NULL);
 2352 }
 2353 
 2354 static int
 2355 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
 2356 {
 2357         struct kinfo_vmobject *kvo;
 2358         char *fullpath, *freepath;
 2359         struct vnode *vp;
 2360         struct vattr va;
 2361         vm_object_t obj;
 2362         vm_page_t m;
 2363         int count, error;
 2364 
 2365         if (req->oldptr == NULL) {
 2366                 /*
 2367                  * If an old buffer has not been provided, generate an
 2368                  * estimate of the space needed for a subsequent call.
 2369                  */
 2370                 mtx_lock(&vm_object_list_mtx);
 2371                 count = 0;
 2372                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
 2373                         if (obj->type == OBJT_DEAD)
 2374                                 continue;
 2375                         count++;
 2376                 }
 2377                 mtx_unlock(&vm_object_list_mtx);
 2378                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
 2379                     count * 11 / 10));
 2380         }
 2381 
 2382         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
 2383         error = 0;
 2384 
 2385         /*
 2386          * VM objects are type stable and are never removed from the
 2387          * list once added.  This allows us to safely read obj->object_list
 2388          * after reacquiring the VM object lock.
 2389          */
 2390         mtx_lock(&vm_object_list_mtx);
 2391         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
 2392                 if (obj->type == OBJT_DEAD)
 2393                         continue;
 2394                 VM_OBJECT_RLOCK(obj);
 2395                 if (obj->type == OBJT_DEAD) {
 2396                         VM_OBJECT_RUNLOCK(obj);
 2397                         continue;
 2398                 }
 2399                 mtx_unlock(&vm_object_list_mtx);
 2400                 kvo->kvo_size = ptoa(obj->size);
 2401                 kvo->kvo_resident = obj->resident_page_count;
 2402                 kvo->kvo_ref_count = obj->ref_count;
 2403                 kvo->kvo_shadow_count = obj->shadow_count;
 2404                 kvo->kvo_memattr = obj->memattr;
 2405                 kvo->kvo_active = 0;
 2406                 kvo->kvo_inactive = 0;
 2407                 TAILQ_FOREACH(m, &obj->memq, listq) {
 2408                         /*
 2409                          * A page may belong to the object but be
 2410                          * dequeued and set to PQ_NONE while the
 2411                          * object lock is not held.  This makes the
 2412                          * reads of m->queue below racy, and we do not
 2413                          * count pages set to PQ_NONE.  However, this
 2414                          * sysctl is only meant to give an
 2415                          * approximation of the system anyway.
 2416                          */
 2417                         if (vm_page_active(m))
 2418                                 kvo->kvo_active++;
 2419                         else if (vm_page_inactive(m))
 2420                                 kvo->kvo_inactive++;
 2421                 }
 2422 
 2423                 kvo->kvo_vn_fileid = 0;
 2424                 kvo->kvo_vn_fsid = 0;
 2425                 freepath = NULL;
 2426                 fullpath = "";
 2427                 vp = NULL;
 2428                 switch (obj->type) {
 2429                 case OBJT_DEFAULT:
 2430                         kvo->kvo_type = KVME_TYPE_DEFAULT;
 2431                         break;
 2432                 case OBJT_VNODE:
 2433                         kvo->kvo_type = KVME_TYPE_VNODE;
 2434                         vp = obj->handle;
 2435                         vref(vp);
 2436                         break;
 2437                 case OBJT_SWAP:
 2438                         kvo->kvo_type = KVME_TYPE_SWAP;
 2439                         break;
 2440                 case OBJT_DEVICE:
 2441                         kvo->kvo_type = KVME_TYPE_DEVICE;
 2442                         break;
 2443                 case OBJT_PHYS:
 2444                         kvo->kvo_type = KVME_TYPE_PHYS;
 2445                         break;
 2446                 case OBJT_DEAD:
 2447                         kvo->kvo_type = KVME_TYPE_DEAD;
 2448                         break;
 2449                 case OBJT_SG:
 2450                         kvo->kvo_type = KVME_TYPE_SG;
 2451                         break;
 2452                 case OBJT_MGTDEVICE:
 2453                         kvo->kvo_type = KVME_TYPE_MGTDEVICE;
 2454                         break;
 2455                 default:
 2456                         kvo->kvo_type = KVME_TYPE_UNKNOWN;
 2457                         break;
 2458                 }
 2459                 VM_OBJECT_RUNLOCK(obj);
 2460                 if (vp != NULL) {
 2461                         vn_fullpath(curthread, vp, &fullpath, &freepath);
 2462                         vn_lock(vp, LK_SHARED | LK_RETRY);
 2463                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
 2464                                 kvo->kvo_vn_fileid = va.va_fileid;
 2465                                 kvo->kvo_vn_fsid = va.va_fsid;
 2466                         }
 2467                         vput(vp);
 2468                 }
 2469 
 2470                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
 2471                 if (freepath != NULL)
 2472                         free(freepath, M_TEMP);
 2473 
 2474                 /* Pack record size down */
 2475                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
 2476                     + strlen(kvo->kvo_path) + 1;
 2477                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
 2478                     sizeof(uint64_t));
 2479                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
 2480                 mtx_lock(&vm_object_list_mtx);
 2481                 if (error)
 2482                         break;
 2483         }
 2484         mtx_unlock(&vm_object_list_mtx);
 2485         free(kvo, M_TEMP);
 2486         return (error);
 2487 }
 2488 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
 2489     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
 2490     "List of VM objects");
 2491 
 2492 #include "opt_ddb.h"
 2493 #ifdef DDB
 2494 #include <sys/kernel.h>
 2495 
 2496 #include <sys/cons.h>
 2497 
 2498 #include <ddb/ddb.h>
 2499 
 2500 static int
 2501 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
 2502 {
 2503         vm_map_t tmpm;
 2504         vm_map_entry_t tmpe;
 2505         vm_object_t obj;
 2506         int entcount;
 2507 
 2508         if (map == 0)
 2509                 return 0;
 2510 
 2511         if (entry == 0) {
 2512                 tmpe = map->header.next;
 2513                 entcount = map->nentries;
 2514                 while (entcount-- && (tmpe != &map->header)) {
 2515                         if (_vm_object_in_map(map, object, tmpe)) {
 2516                                 return 1;
 2517                         }
 2518                         tmpe = tmpe->next;
 2519                 }
 2520         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2521                 tmpm = entry->object.sub_map;
 2522                 tmpe = tmpm->header.next;
 2523                 entcount = tmpm->nentries;
 2524                 while (entcount-- && tmpe != &tmpm->header) {
 2525                         if (_vm_object_in_map(tmpm, object, tmpe)) {
 2526                                 return 1;
 2527                         }
 2528                         tmpe = tmpe->next;
 2529                 }
 2530         } else if ((obj = entry->object.vm_object) != NULL) {
 2531                 for (; obj; obj = obj->backing_object)
 2532                         if (obj == object) {
 2533                                 return 1;
 2534                         }
 2535         }
 2536         return 0;
 2537 }
 2538 
 2539 static int
 2540 vm_object_in_map(vm_object_t object)
 2541 {
 2542         struct proc *p;
 2543 
 2544         /* sx_slock(&allproc_lock); */
 2545         FOREACH_PROC_IN_SYSTEM(p) {
 2546                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
 2547                         continue;
 2548                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
 2549                         /* sx_sunlock(&allproc_lock); */
 2550                         return 1;
 2551                 }
 2552         }
 2553         /* sx_sunlock(&allproc_lock); */
 2554         if (_vm_object_in_map(kernel_map, object, 0))
 2555                 return 1;
 2556         return 0;
 2557 }
 2558 
 2559 DB_SHOW_COMMAND(vmochk, vm_object_check)
 2560 {
 2561         vm_object_t object;
 2562 
 2563         /*
 2564          * make sure that internal objs are in a map somewhere
 2565          * and none have zero ref counts.
 2566          */
 2567         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2568                 if (object->handle == NULL &&
 2569                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
 2570                         if (object->ref_count == 0) {
 2571                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
 2572                                         (long)object->size);
 2573                         }
 2574                         if (!vm_object_in_map(object)) {
 2575                                 db_printf(
 2576                         "vmochk: internal obj is not in a map: "
 2577                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
 2578                                     object->ref_count, (u_long)object->size, 
 2579                                     (u_long)object->size,
 2580                                     (void *)object->backing_object);
 2581                         }
 2582                 }
 2583         }
 2584 }
 2585 
 2586 /*
 2587  *      vm_object_print:        [ debug ]
 2588  */
 2589 DB_SHOW_COMMAND(object, vm_object_print_static)
 2590 {
 2591         /* XXX convert args. */
 2592         vm_object_t object = (vm_object_t)addr;
 2593         boolean_t full = have_addr;
 2594 
 2595         vm_page_t p;
 2596 
 2597         /* XXX count is an (unused) arg.  Avoid shadowing it. */
 2598 #define count   was_count
 2599 
 2600         int count;
 2601 
 2602         if (object == NULL)
 2603                 return;
 2604 
 2605         db_iprintf(
 2606             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
 2607             object, (int)object->type, (uintmax_t)object->size,
 2608             object->resident_page_count, object->ref_count, object->flags,
 2609             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
 2610         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
 2611             object->shadow_count, 
 2612             object->backing_object ? object->backing_object->ref_count : 0,
 2613             object->backing_object, (uintmax_t)object->backing_object_offset);
 2614 
 2615         if (!full)
 2616                 return;
 2617 
 2618         db_indent += 2;
 2619         count = 0;
 2620         TAILQ_FOREACH(p, &object->memq, listq) {
 2621                 if (count == 0)
 2622                         db_iprintf("memory:=");
 2623                 else if (count == 6) {
 2624                         db_printf("\n");
 2625                         db_iprintf(" ...");
 2626                         count = 0;
 2627                 } else
 2628                         db_printf(",");
 2629                 count++;
 2630 
 2631                 db_printf("(off=0x%jx,page=0x%jx)",
 2632                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
 2633         }
 2634         if (count != 0)
 2635                 db_printf("\n");
 2636         db_indent -= 2;
 2637 }
 2638 
 2639 /* XXX. */
 2640 #undef count
 2641 
 2642 /* XXX need this non-static entry for calling from vm_map_print. */
 2643 void
 2644 vm_object_print(
 2645         /* db_expr_t */ long addr,
 2646         boolean_t have_addr,
 2647         /* db_expr_t */ long count,
 2648         char *modif)
 2649 {
 2650         vm_object_print_static(addr, have_addr, count, modif);
 2651 }
 2652 
 2653 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
 2654 {
 2655         vm_object_t object;
 2656         vm_pindex_t fidx;
 2657         vm_paddr_t pa;
 2658         vm_page_t m, prev_m;
 2659         int rcount, nl, c;
 2660 
 2661         nl = 0;
 2662         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2663                 db_printf("new object: %p\n", (void *)object);
 2664                 if (nl > 18) {
 2665                         c = cngetc();
 2666                         if (c != ' ')
 2667                                 return;
 2668                         nl = 0;
 2669                 }
 2670                 nl++;
 2671                 rcount = 0;
 2672                 fidx = 0;
 2673                 pa = -1;
 2674                 TAILQ_FOREACH(m, &object->memq, listq) {
 2675                         if (m->pindex > 128)
 2676                                 break;
 2677                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
 2678                             prev_m->pindex + 1 != m->pindex) {
 2679                                 if (rcount) {
 2680                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2681                                                 (long)fidx, rcount, (long)pa);
 2682                                         if (nl > 18) {
 2683                                                 c = cngetc();
 2684                                                 if (c != ' ')
 2685                                                         return;
 2686                                                 nl = 0;
 2687                                         }
 2688                                         nl++;
 2689                                         rcount = 0;
 2690                                 }
 2691                         }                               
 2692                         if (rcount &&
 2693                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
 2694                                 ++rcount;
 2695                                 continue;
 2696                         }
 2697                         if (rcount) {
 2698                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2699                                         (long)fidx, rcount, (long)pa);
 2700                                 if (nl > 18) {
 2701                                         c = cngetc();
 2702                                         if (c != ' ')
 2703                                                 return;
 2704                                         nl = 0;
 2705                                 }
 2706                                 nl++;
 2707                         }
 2708                         fidx = m->pindex;
 2709                         pa = VM_PAGE_TO_PHYS(m);
 2710                         rcount = 1;
 2711                 }
 2712                 if (rcount) {
 2713                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2714                                 (long)fidx, rcount, (long)pa);
 2715                         if (nl > 18) {
 2716                                 c = cngetc();
 2717                                 if (c != ' ')
 2718                                         return;
 2719                                 nl = 0;
 2720                         }
 2721                         nl++;
 2722                 }
 2723         }
 2724 }
 2725 #endif /* DDB */

Cache object: 3422dc6c5fa8a93b460a6fea63b032d4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.