The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
    3  *
    4  * Copyright (c) 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * The Mach Operating System project at Carnegie-Mellon University.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
   35  *
   36  *
   37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   38  * All rights reserved.
   39  *
   40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   41  *
   42  * Permission to use, copy, modify and distribute this software and
   43  * its documentation is hereby granted, provided that both the copyright
   44  * notice and this permission notice appear in all copies of the
   45  * software, derivative works or modified versions, and any portions
   46  * thereof, and that both notices appear in supporting documentation.
   47  *
   48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   51  *
   52  * Carnegie Mellon requests users of this software to return to
   53  *
   54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   55  *  School of Computer Science
   56  *  Carnegie Mellon University
   57  *  Pittsburgh PA 15213-3890
   58  *
   59  * any improvements or extensions that they make and grant Carnegie the
   60  * rights to redistribute these changes.
   61  */
   62 
   63 /*
   64  *      Virtual memory object module.
   65  */
   66 
   67 #include <sys/cdefs.h>
   68 __FBSDID("$FreeBSD: releng/12.0/sys/vm/vm_object.c 340398 2018-11-13 17:43:16Z markj $");
   69 
   70 #include "opt_vm.h"
   71 
   72 #include <sys/param.h>
   73 #include <sys/systm.h>
   74 #include <sys/cpuset.h>
   75 #include <sys/lock.h>
   76 #include <sys/mman.h>
   77 #include <sys/mount.h>
   78 #include <sys/kernel.h>
   79 #include <sys/pctrie.h>
   80 #include <sys/sysctl.h>
   81 #include <sys/mutex.h>
   82 #include <sys/proc.h>           /* for curproc, pageproc */
   83 #include <sys/socket.h>
   84 #include <sys/resourcevar.h>
   85 #include <sys/rwlock.h>
   86 #include <sys/user.h>
   87 #include <sys/vnode.h>
   88 #include <sys/vmmeter.h>
   89 #include <sys/sx.h>
   90 
   91 #include <vm/vm.h>
   92 #include <vm/vm_param.h>
   93 #include <vm/pmap.h>
   94 #include <vm/vm_map.h>
   95 #include <vm/vm_object.h>
   96 #include <vm/vm_page.h>
   97 #include <vm/vm_pageout.h>
   98 #include <vm/vm_pager.h>
   99 #include <vm/vm_phys.h>
  100 #include <vm/vm_pagequeue.h>
  101 #include <vm/swap_pager.h>
  102 #include <vm/vm_kern.h>
  103 #include <vm/vm_extern.h>
  104 #include <vm/vm_radix.h>
  105 #include <vm/vm_reserv.h>
  106 #include <vm/uma.h>
  107 
  108 static int old_msync;
  109 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
  110     "Use old (insecure) msync behavior");
  111 
  112 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
  113                     int pagerflags, int flags, boolean_t *clearobjflags,
  114                     boolean_t *eio);
  115 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
  116                     boolean_t *clearobjflags);
  117 static void     vm_object_qcollapse(vm_object_t object);
  118 static void     vm_object_vndeallocate(vm_object_t object);
  119 
  120 /*
  121  *      Virtual memory objects maintain the actual data
  122  *      associated with allocated virtual memory.  A given
  123  *      page of memory exists within exactly one object.
  124  *
  125  *      An object is only deallocated when all "references"
  126  *      are given up.  Only one "reference" to a given
  127  *      region of an object should be writeable.
  128  *
  129  *      Associated with each object is a list of all resident
  130  *      memory pages belonging to that object; this list is
  131  *      maintained by the "vm_page" module, and locked by the object's
  132  *      lock.
  133  *
  134  *      Each object also records a "pager" routine which is
  135  *      used to retrieve (and store) pages to the proper backing
  136  *      storage.  In addition, objects may be backed by other
  137  *      objects from which they were virtual-copied.
  138  *
  139  *      The only items within the object structure which are
  140  *      modified after time of creation are:
  141  *              reference count         locked by object's lock
  142  *              pager routine           locked by object's lock
  143  *
  144  */
  145 
  146 struct object_q vm_object_list;
  147 struct mtx vm_object_list_mtx;  /* lock for object list and count */
  148 
  149 struct vm_object kernel_object_store;
  150 
  151 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
  152     "VM object stats");
  153 
  154 static counter_u64_t object_collapses = EARLY_COUNTER;
  155 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
  156     &object_collapses,
  157     "VM object collapses");
  158 
  159 static counter_u64_t object_bypasses = EARLY_COUNTER;
  160 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
  161     &object_bypasses,
  162     "VM object bypasses");
  163 
  164 static void
  165 counter_startup(void)
  166 {
  167 
  168         object_collapses = counter_u64_alloc(M_WAITOK);
  169         object_bypasses = counter_u64_alloc(M_WAITOK);
  170 }
  171 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
  172 
  173 static uma_zone_t obj_zone;
  174 
  175 static int vm_object_zinit(void *mem, int size, int flags);
  176 
  177 #ifdef INVARIANTS
  178 static void vm_object_zdtor(void *mem, int size, void *arg);
  179 
  180 static void
  181 vm_object_zdtor(void *mem, int size, void *arg)
  182 {
  183         vm_object_t object;
  184 
  185         object = (vm_object_t)mem;
  186         KASSERT(object->ref_count == 0,
  187             ("object %p ref_count = %d", object, object->ref_count));
  188         KASSERT(TAILQ_EMPTY(&object->memq),
  189             ("object %p has resident pages in its memq", object));
  190         KASSERT(vm_radix_is_empty(&object->rtree),
  191             ("object %p has resident pages in its trie", object));
  192 #if VM_NRESERVLEVEL > 0
  193         KASSERT(LIST_EMPTY(&object->rvq),
  194             ("object %p has reservations",
  195             object));
  196 #endif
  197         KASSERT(object->paging_in_progress == 0,
  198             ("object %p paging_in_progress = %d",
  199             object, object->paging_in_progress));
  200         KASSERT(object->resident_page_count == 0,
  201             ("object %p resident_page_count = %d",
  202             object, object->resident_page_count));
  203         KASSERT(object->shadow_count == 0,
  204             ("object %p shadow_count = %d",
  205             object, object->shadow_count));
  206         KASSERT(object->type == OBJT_DEAD,
  207             ("object %p has non-dead type %d",
  208             object, object->type));
  209 }
  210 #endif
  211 
  212 static int
  213 vm_object_zinit(void *mem, int size, int flags)
  214 {
  215         vm_object_t object;
  216 
  217         object = (vm_object_t)mem;
  218         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
  219 
  220         /* These are true for any object that has been freed */
  221         object->type = OBJT_DEAD;
  222         object->ref_count = 0;
  223         vm_radix_init(&object->rtree);
  224         object->paging_in_progress = 0;
  225         object->resident_page_count = 0;
  226         object->shadow_count = 0;
  227         object->flags = OBJ_DEAD;
  228 
  229         mtx_lock(&vm_object_list_mtx);
  230         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
  231         mtx_unlock(&vm_object_list_mtx);
  232         return (0);
  233 }
  234 
  235 static void
  236 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
  237 {
  238 
  239         TAILQ_INIT(&object->memq);
  240         LIST_INIT(&object->shadow_head);
  241 
  242         object->type = type;
  243         if (type == OBJT_SWAP)
  244                 pctrie_init(&object->un_pager.swp.swp_blks);
  245 
  246         /*
  247          * Ensure that swap_pager_swapoff() iteration over object_list
  248          * sees up to date type and pctrie head if it observed
  249          * non-dead object.
  250          */
  251         atomic_thread_fence_rel();
  252 
  253         switch (type) {
  254         case OBJT_DEAD:
  255                 panic("_vm_object_allocate: can't create OBJT_DEAD");
  256         case OBJT_DEFAULT:
  257         case OBJT_SWAP:
  258                 object->flags = OBJ_ONEMAPPING;
  259                 break;
  260         case OBJT_DEVICE:
  261         case OBJT_SG:
  262                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
  263                 break;
  264         case OBJT_MGTDEVICE:
  265                 object->flags = OBJ_FICTITIOUS;
  266                 break;
  267         case OBJT_PHYS:
  268                 object->flags = OBJ_UNMANAGED;
  269                 break;
  270         case OBJT_VNODE:
  271                 object->flags = 0;
  272                 break;
  273         default:
  274                 panic("_vm_object_allocate: type %d is undefined", type);
  275         }
  276         object->size = size;
  277         object->domain.dr_policy = NULL;
  278         object->generation = 1;
  279         object->ref_count = 1;
  280         object->memattr = VM_MEMATTR_DEFAULT;
  281         object->cred = NULL;
  282         object->charge = 0;
  283         object->handle = NULL;
  284         object->backing_object = NULL;
  285         object->backing_object_offset = (vm_ooffset_t) 0;
  286 #if VM_NRESERVLEVEL > 0
  287         LIST_INIT(&object->rvq);
  288 #endif
  289         umtx_shm_object_init(object);
  290 }
  291 
  292 /*
  293  *      vm_object_init:
  294  *
  295  *      Initialize the VM objects module.
  296  */
  297 void
  298 vm_object_init(void)
  299 {
  300         TAILQ_INIT(&vm_object_list);
  301         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
  302         
  303         rw_init(&kernel_object->lock, "kernel vm object");
  304         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
  305             VM_MIN_KERNEL_ADDRESS), kernel_object);
  306 #if VM_NRESERVLEVEL > 0
  307         kernel_object->flags |= OBJ_COLORED;
  308         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  309 #endif
  310 
  311         /*
  312          * The lock portion of struct vm_object must be type stable due
  313          * to vm_pageout_fallback_object_lock locking a vm object
  314          * without holding any references to it.
  315          */
  316         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
  317 #ifdef INVARIANTS
  318             vm_object_zdtor,
  319 #else
  320             NULL,
  321 #endif
  322             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  323 
  324         vm_radix_zinit();
  325 }
  326 
  327 void
  328 vm_object_clear_flag(vm_object_t object, u_short bits)
  329 {
  330 
  331         VM_OBJECT_ASSERT_WLOCKED(object);
  332         object->flags &= ~bits;
  333 }
  334 
  335 /*
  336  *      Sets the default memory attribute for the specified object.  Pages
  337  *      that are allocated to this object are by default assigned this memory
  338  *      attribute.
  339  *
  340  *      Presently, this function must be called before any pages are allocated
  341  *      to the object.  In the future, this requirement may be relaxed for
  342  *      "default" and "swap" objects.
  343  */
  344 int
  345 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
  346 {
  347 
  348         VM_OBJECT_ASSERT_WLOCKED(object);
  349         switch (object->type) {
  350         case OBJT_DEFAULT:
  351         case OBJT_DEVICE:
  352         case OBJT_MGTDEVICE:
  353         case OBJT_PHYS:
  354         case OBJT_SG:
  355         case OBJT_SWAP:
  356         case OBJT_VNODE:
  357                 if (!TAILQ_EMPTY(&object->memq))
  358                         return (KERN_FAILURE);
  359                 break;
  360         case OBJT_DEAD:
  361                 return (KERN_INVALID_ARGUMENT);
  362         default:
  363                 panic("vm_object_set_memattr: object %p is of undefined type",
  364                     object);
  365         }
  366         object->memattr = memattr;
  367         return (KERN_SUCCESS);
  368 }
  369 
  370 void
  371 vm_object_pip_add(vm_object_t object, short i)
  372 {
  373 
  374         VM_OBJECT_ASSERT_WLOCKED(object);
  375         object->paging_in_progress += i;
  376 }
  377 
  378 void
  379 vm_object_pip_subtract(vm_object_t object, short i)
  380 {
  381 
  382         VM_OBJECT_ASSERT_WLOCKED(object);
  383         object->paging_in_progress -= i;
  384 }
  385 
  386 void
  387 vm_object_pip_wakeup(vm_object_t object)
  388 {
  389 
  390         VM_OBJECT_ASSERT_WLOCKED(object);
  391         object->paging_in_progress--;
  392         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  393                 vm_object_clear_flag(object, OBJ_PIPWNT);
  394                 wakeup(object);
  395         }
  396 }
  397 
  398 void
  399 vm_object_pip_wakeupn(vm_object_t object, short i)
  400 {
  401 
  402         VM_OBJECT_ASSERT_WLOCKED(object);
  403         if (i)
  404                 object->paging_in_progress -= i;
  405         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  406                 vm_object_clear_flag(object, OBJ_PIPWNT);
  407                 wakeup(object);
  408         }
  409 }
  410 
  411 void
  412 vm_object_pip_wait(vm_object_t object, char *waitid)
  413 {
  414 
  415         VM_OBJECT_ASSERT_WLOCKED(object);
  416         while (object->paging_in_progress) {
  417                 object->flags |= OBJ_PIPWNT;
  418                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
  419         }
  420 }
  421 
  422 /*
  423  *      vm_object_allocate:
  424  *
  425  *      Returns a new object with the given size.
  426  */
  427 vm_object_t
  428 vm_object_allocate(objtype_t type, vm_pindex_t size)
  429 {
  430         vm_object_t object;
  431 
  432         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
  433         _vm_object_allocate(type, size, object);
  434         return (object);
  435 }
  436 
  437 
  438 /*
  439  *      vm_object_reference:
  440  *
  441  *      Gets another reference to the given object.  Note: OBJ_DEAD
  442  *      objects can be referenced during final cleaning.
  443  */
  444 void
  445 vm_object_reference(vm_object_t object)
  446 {
  447         if (object == NULL)
  448                 return;
  449         VM_OBJECT_WLOCK(object);
  450         vm_object_reference_locked(object);
  451         VM_OBJECT_WUNLOCK(object);
  452 }
  453 
  454 /*
  455  *      vm_object_reference_locked:
  456  *
  457  *      Gets another reference to the given object.
  458  *
  459  *      The object must be locked.
  460  */
  461 void
  462 vm_object_reference_locked(vm_object_t object)
  463 {
  464         struct vnode *vp;
  465 
  466         VM_OBJECT_ASSERT_WLOCKED(object);
  467         object->ref_count++;
  468         if (object->type == OBJT_VNODE) {
  469                 vp = object->handle;
  470                 vref(vp);
  471         }
  472 }
  473 
  474 /*
  475  * Handle deallocating an object of type OBJT_VNODE.
  476  */
  477 static void
  478 vm_object_vndeallocate(vm_object_t object)
  479 {
  480         struct vnode *vp = (struct vnode *) object->handle;
  481 
  482         VM_OBJECT_ASSERT_WLOCKED(object);
  483         KASSERT(object->type == OBJT_VNODE,
  484             ("vm_object_vndeallocate: not a vnode object"));
  485         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
  486 #ifdef INVARIANTS
  487         if (object->ref_count == 0) {
  488                 vn_printf(vp, "vm_object_vndeallocate ");
  489                 panic("vm_object_vndeallocate: bad object reference count");
  490         }
  491 #endif
  492 
  493         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
  494                 umtx_shm_object_terminated(object);
  495 
  496         /*
  497          * The test for text of vp vnode does not need a bypass to
  498          * reach right VV_TEXT there, since it is obtained from
  499          * object->handle.
  500          */
  501         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
  502                 object->ref_count--;
  503                 VM_OBJECT_WUNLOCK(object);
  504                 /* vrele may need the vnode lock. */
  505                 vrele(vp);
  506         } else {
  507                 vhold(vp);
  508                 VM_OBJECT_WUNLOCK(object);
  509                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  510                 vdrop(vp);
  511                 VM_OBJECT_WLOCK(object);
  512                 object->ref_count--;
  513                 if (object->type == OBJT_DEAD) {
  514                         VM_OBJECT_WUNLOCK(object);
  515                         VOP_UNLOCK(vp, 0);
  516                 } else {
  517                         if (object->ref_count == 0)
  518                                 VOP_UNSET_TEXT(vp);
  519                         VM_OBJECT_WUNLOCK(object);
  520                         vput(vp);
  521                 }
  522         }
  523 }
  524 
  525 /*
  526  *      vm_object_deallocate:
  527  *
  528  *      Release a reference to the specified object,
  529  *      gained either through a vm_object_allocate
  530  *      or a vm_object_reference call.  When all references
  531  *      are gone, storage associated with this object
  532  *      may be relinquished.
  533  *
  534  *      No object may be locked.
  535  */
  536 void
  537 vm_object_deallocate(vm_object_t object)
  538 {
  539         vm_object_t temp;
  540         struct vnode *vp;
  541 
  542         while (object != NULL) {
  543                 VM_OBJECT_WLOCK(object);
  544                 if (object->type == OBJT_VNODE) {
  545                         vm_object_vndeallocate(object);
  546                         return;
  547                 }
  548 
  549                 KASSERT(object->ref_count != 0,
  550                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
  551 
  552                 /*
  553                  * If the reference count goes to 0 we start calling
  554                  * vm_object_terminate() on the object chain.
  555                  * A ref count of 1 may be a special case depending on the
  556                  * shadow count being 0 or 1.
  557                  */
  558                 object->ref_count--;
  559                 if (object->ref_count > 1) {
  560                         VM_OBJECT_WUNLOCK(object);
  561                         return;
  562                 } else if (object->ref_count == 1) {
  563                         if (object->type == OBJT_SWAP &&
  564                             (object->flags & OBJ_TMPFS) != 0) {
  565                                 vp = object->un_pager.swp.swp_tmpfs;
  566                                 vhold(vp);
  567                                 VM_OBJECT_WUNLOCK(object);
  568                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  569                                 VM_OBJECT_WLOCK(object);
  570                                 if (object->type == OBJT_DEAD ||
  571                                     object->ref_count != 1) {
  572                                         VM_OBJECT_WUNLOCK(object);
  573                                         VOP_UNLOCK(vp, 0);
  574                                         vdrop(vp);
  575                                         return;
  576                                 }
  577                                 if ((object->flags & OBJ_TMPFS) != 0)
  578                                         VOP_UNSET_TEXT(vp);
  579                                 VOP_UNLOCK(vp, 0);
  580                                 vdrop(vp);
  581                         }
  582                         if (object->shadow_count == 0 &&
  583                             object->handle == NULL &&
  584                             (object->type == OBJT_DEFAULT ||
  585                             (object->type == OBJT_SWAP &&
  586                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
  587                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
  588                         } else if ((object->shadow_count == 1) &&
  589                             (object->handle == NULL) &&
  590                             (object->type == OBJT_DEFAULT ||
  591                              object->type == OBJT_SWAP)) {
  592                                 vm_object_t robject;
  593 
  594                                 robject = LIST_FIRST(&object->shadow_head);
  595                                 KASSERT(robject != NULL,
  596                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
  597                                          object->ref_count,
  598                                          object->shadow_count));
  599                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
  600                                     ("shadowed tmpfs v_object %p", object));
  601                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
  602                                         /*
  603                                          * Avoid a potential deadlock.
  604                                          */
  605                                         object->ref_count++;
  606                                         VM_OBJECT_WUNLOCK(object);
  607                                         /*
  608                                          * More likely than not the thread
  609                                          * holding robject's lock has lower
  610                                          * priority than the current thread.
  611                                          * Let the lower priority thread run.
  612                                          */
  613                                         pause("vmo_de", 1);
  614                                         continue;
  615                                 }
  616                                 /*
  617                                  * Collapse object into its shadow unless its
  618                                  * shadow is dead.  In that case, object will
  619                                  * be deallocated by the thread that is
  620                                  * deallocating its shadow.
  621                                  */
  622                                 if ((robject->flags & OBJ_DEAD) == 0 &&
  623                                     (robject->handle == NULL) &&
  624                                     (robject->type == OBJT_DEFAULT ||
  625                                      robject->type == OBJT_SWAP)) {
  626 
  627                                         robject->ref_count++;
  628 retry:
  629                                         if (robject->paging_in_progress) {
  630                                                 VM_OBJECT_WUNLOCK(object);
  631                                                 vm_object_pip_wait(robject,
  632                                                     "objde1");
  633                                                 temp = robject->backing_object;
  634                                                 if (object == temp) {
  635                                                         VM_OBJECT_WLOCK(object);
  636                                                         goto retry;
  637                                                 }
  638                                         } else if (object->paging_in_progress) {
  639                                                 VM_OBJECT_WUNLOCK(robject);
  640                                                 object->flags |= OBJ_PIPWNT;
  641                                                 VM_OBJECT_SLEEP(object, object,
  642                                                     PDROP | PVM, "objde2", 0);
  643                                                 VM_OBJECT_WLOCK(robject);
  644                                                 temp = robject->backing_object;
  645                                                 if (object == temp) {
  646                                                         VM_OBJECT_WLOCK(object);
  647                                                         goto retry;
  648                                                 }
  649                                         } else
  650                                                 VM_OBJECT_WUNLOCK(object);
  651 
  652                                         if (robject->ref_count == 1) {
  653                                                 robject->ref_count--;
  654                                                 object = robject;
  655                                                 goto doterm;
  656                                         }
  657                                         object = robject;
  658                                         vm_object_collapse(object);
  659                                         VM_OBJECT_WUNLOCK(object);
  660                                         continue;
  661                                 }
  662                                 VM_OBJECT_WUNLOCK(robject);
  663                         }
  664                         VM_OBJECT_WUNLOCK(object);
  665                         return;
  666                 }
  667 doterm:
  668                 umtx_shm_object_terminated(object);
  669                 temp = object->backing_object;
  670                 if (temp != NULL) {
  671                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
  672                             ("shadowed tmpfs v_object 2 %p", object));
  673                         VM_OBJECT_WLOCK(temp);
  674                         LIST_REMOVE(object, shadow_list);
  675                         temp->shadow_count--;
  676                         VM_OBJECT_WUNLOCK(temp);
  677                         object->backing_object = NULL;
  678                 }
  679                 /*
  680                  * Don't double-terminate, we could be in a termination
  681                  * recursion due to the terminate having to sync data
  682                  * to disk.
  683                  */
  684                 if ((object->flags & OBJ_DEAD) == 0)
  685                         vm_object_terminate(object);
  686                 else
  687                         VM_OBJECT_WUNLOCK(object);
  688                 object = temp;
  689         }
  690 }
  691 
  692 /*
  693  *      vm_object_destroy removes the object from the global object list
  694  *      and frees the space for the object.
  695  */
  696 void
  697 vm_object_destroy(vm_object_t object)
  698 {
  699 
  700         /*
  701          * Release the allocation charge.
  702          */
  703         if (object->cred != NULL) {
  704                 swap_release_by_cred(object->charge, object->cred);
  705                 object->charge = 0;
  706                 crfree(object->cred);
  707                 object->cred = NULL;
  708         }
  709 
  710         /*
  711          * Free the space for the object.
  712          */
  713         uma_zfree(obj_zone, object);
  714 }
  715 
  716 /*
  717  *      vm_object_terminate_pages removes any remaining pageable pages
  718  *      from the object and resets the object to an empty state.
  719  */
  720 static void
  721 vm_object_terminate_pages(vm_object_t object)
  722 {
  723         vm_page_t p, p_next;
  724         struct mtx *mtx;
  725 
  726         VM_OBJECT_ASSERT_WLOCKED(object);
  727 
  728         mtx = NULL;
  729 
  730         /*
  731          * Free any remaining pageable pages.  This also removes them from the
  732          * paging queues.  However, don't free wired pages, just remove them
  733          * from the object.  Rather than incrementally removing each page from
  734          * the object, the page and object are reset to any empty state. 
  735          */
  736         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
  737                 vm_page_assert_unbusied(p);
  738                 if ((object->flags & OBJ_UNMANAGED) == 0)
  739                         /*
  740                          * vm_page_free_prep() only needs the page
  741                          * lock for managed pages.
  742                          */
  743                         vm_page_change_lock(p, &mtx);
  744                 p->object = NULL;
  745                 if (p->wire_count != 0)
  746                         continue;
  747                 VM_CNT_INC(v_pfree);
  748                 vm_page_free(p);
  749         }
  750         if (mtx != NULL)
  751                 mtx_unlock(mtx);
  752 
  753         /*
  754          * If the object contained any pages, then reset it to an empty state.
  755          * None of the object's fields, including "resident_page_count", were
  756          * modified by the preceding loop.
  757          */
  758         if (object->resident_page_count != 0) {
  759                 vm_radix_reclaim_allnodes(&object->rtree);
  760                 TAILQ_INIT(&object->memq);
  761                 object->resident_page_count = 0;
  762                 if (object->type == OBJT_VNODE)
  763                         vdrop(object->handle);
  764         }
  765 }
  766 
  767 /*
  768  *      vm_object_terminate actually destroys the specified object, freeing
  769  *      up all previously used resources.
  770  *
  771  *      The object must be locked.
  772  *      This routine may block.
  773  */
  774 void
  775 vm_object_terminate(vm_object_t object)
  776 {
  777 
  778         VM_OBJECT_ASSERT_WLOCKED(object);
  779 
  780         /*
  781          * Make sure no one uses us.
  782          */
  783         vm_object_set_flag(object, OBJ_DEAD);
  784 
  785         /*
  786          * wait for the pageout daemon to be done with the object
  787          */
  788         vm_object_pip_wait(object, "objtrm");
  789 
  790         KASSERT(!object->paging_in_progress,
  791                 ("vm_object_terminate: pageout in progress"));
  792 
  793         /*
  794          * Clean and free the pages, as appropriate. All references to the
  795          * object are gone, so we don't need to lock it.
  796          */
  797         if (object->type == OBJT_VNODE) {
  798                 struct vnode *vp = (struct vnode *)object->handle;
  799 
  800                 /*
  801                  * Clean pages and flush buffers.
  802                  */
  803                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  804                 VM_OBJECT_WUNLOCK(object);
  805 
  806                 vinvalbuf(vp, V_SAVE, 0, 0);
  807 
  808                 BO_LOCK(&vp->v_bufobj);
  809                 vp->v_bufobj.bo_flag |= BO_DEAD;
  810                 BO_UNLOCK(&vp->v_bufobj);
  811 
  812                 VM_OBJECT_WLOCK(object);
  813         }
  814 
  815         KASSERT(object->ref_count == 0, 
  816                 ("vm_object_terminate: object with references, ref_count=%d",
  817                 object->ref_count));
  818 
  819         if ((object->flags & OBJ_PG_DTOR) == 0)
  820                 vm_object_terminate_pages(object);
  821 
  822 #if VM_NRESERVLEVEL > 0
  823         if (__predict_false(!LIST_EMPTY(&object->rvq)))
  824                 vm_reserv_break_all(object);
  825 #endif
  826 
  827         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
  828             object->type == OBJT_SWAP,
  829             ("%s: non-swap obj %p has cred", __func__, object));
  830 
  831         /*
  832          * Let the pager know object is dead.
  833          */
  834         vm_pager_deallocate(object);
  835         VM_OBJECT_WUNLOCK(object);
  836 
  837         vm_object_destroy(object);
  838 }
  839 
  840 /*
  841  * Make the page read-only so that we can clear the object flags.  However, if
  842  * this is a nosync mmap then the object is likely to stay dirty so do not
  843  * mess with the page and do not clear the object flags.  Returns TRUE if the
  844  * page should be flushed, and FALSE otherwise.
  845  */
  846 static boolean_t
  847 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
  848 {
  849 
  850         /*
  851          * If we have been asked to skip nosync pages and this is a
  852          * nosync page, skip it.  Note that the object flags were not
  853          * cleared in this case so we do not have to set them.
  854          */
  855         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
  856                 *clearobjflags = FALSE;
  857                 return (FALSE);
  858         } else {
  859                 pmap_remove_write(p);
  860                 return (p->dirty != 0);
  861         }
  862 }
  863 
  864 /*
  865  *      vm_object_page_clean
  866  *
  867  *      Clean all dirty pages in the specified range of object.  Leaves page 
  868  *      on whatever queue it is currently on.   If NOSYNC is set then do not
  869  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
  870  *      leaving the object dirty.
  871  *
  872  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
  873  *      synchronous clustering mode implementation.
  874  *
  875  *      Odd semantics: if start == end, we clean everything.
  876  *
  877  *      The object must be locked.
  878  *
  879  *      Returns FALSE if some page from the range was not written, as
  880  *      reported by the pager, and TRUE otherwise.
  881  */
  882 boolean_t
  883 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
  884     int flags)
  885 {
  886         vm_page_t np, p;
  887         vm_pindex_t pi, tend, tstart;
  888         int curgeneration, n, pagerflags;
  889         boolean_t clearobjflags, eio, res;
  890 
  891         VM_OBJECT_ASSERT_WLOCKED(object);
  892 
  893         /*
  894          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
  895          * objects.  The check below prevents the function from
  896          * operating on non-vnode objects.
  897          */
  898         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
  899             object->resident_page_count == 0)
  900                 return (TRUE);
  901 
  902         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
  903             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
  904         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
  905 
  906         tstart = OFF_TO_IDX(start);
  907         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
  908         clearobjflags = tstart == 0 && tend >= object->size;
  909         res = TRUE;
  910 
  911 rescan:
  912         curgeneration = object->generation;
  913 
  914         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
  915                 pi = p->pindex;
  916                 if (pi >= tend)
  917                         break;
  918                 np = TAILQ_NEXT(p, listq);
  919                 if (p->valid == 0)
  920                         continue;
  921                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
  922                         if (object->generation != curgeneration) {
  923                                 if ((flags & OBJPC_SYNC) != 0)
  924                                         goto rescan;
  925                                 else
  926                                         clearobjflags = FALSE;
  927                         }
  928                         np = vm_page_find_least(object, pi);
  929                         continue;
  930                 }
  931                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
  932                         continue;
  933 
  934                 n = vm_object_page_collect_flush(object, p, pagerflags,
  935                     flags, &clearobjflags, &eio);
  936                 if (eio) {
  937                         res = FALSE;
  938                         clearobjflags = FALSE;
  939                 }
  940                 if (object->generation != curgeneration) {
  941                         if ((flags & OBJPC_SYNC) != 0)
  942                                 goto rescan;
  943                         else
  944                                 clearobjflags = FALSE;
  945                 }
  946 
  947                 /*
  948                  * If the VOP_PUTPAGES() did a truncated write, so
  949                  * that even the first page of the run is not fully
  950                  * written, vm_pageout_flush() returns 0 as the run
  951                  * length.  Since the condition that caused truncated
  952                  * write may be permanent, e.g. exhausted free space,
  953                  * accepting n == 0 would cause an infinite loop.
  954                  *
  955                  * Forwarding the iterator leaves the unwritten page
  956                  * behind, but there is not much we can do there if
  957                  * filesystem refuses to write it.
  958                  */
  959                 if (n == 0) {
  960                         n = 1;
  961                         clearobjflags = FALSE;
  962                 }
  963                 np = vm_page_find_least(object, pi + n);
  964         }
  965 #if 0
  966         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
  967 #endif
  968 
  969         if (clearobjflags)
  970                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
  971         return (res);
  972 }
  973 
  974 static int
  975 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
  976     int flags, boolean_t *clearobjflags, boolean_t *eio)
  977 {
  978         vm_page_t ma[vm_pageout_page_count], p_first, tp;
  979         int count, i, mreq, runlen;
  980 
  981         vm_page_lock_assert(p, MA_NOTOWNED);
  982         VM_OBJECT_ASSERT_WLOCKED(object);
  983 
  984         count = 1;
  985         mreq = 0;
  986 
  987         for (tp = p; count < vm_pageout_page_count; count++) {
  988                 tp = vm_page_next(tp);
  989                 if (tp == NULL || vm_page_busied(tp))
  990                         break;
  991                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  992                         break;
  993         }
  994 
  995         for (p_first = p; count < vm_pageout_page_count; count++) {
  996                 tp = vm_page_prev(p_first);
  997                 if (tp == NULL || vm_page_busied(tp))
  998                         break;
  999                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
 1000                         break;
 1001                 p_first = tp;
 1002                 mreq++;
 1003         }
 1004 
 1005         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
 1006                 ma[i] = tp;
 1007 
 1008         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
 1009         return (runlen);
 1010 }
 1011 
 1012 /*
 1013  * Note that there is absolutely no sense in writing out
 1014  * anonymous objects, so we track down the vnode object
 1015  * to write out.
 1016  * We invalidate (remove) all pages from the address space
 1017  * for semantic correctness.
 1018  *
 1019  * If the backing object is a device object with unmanaged pages, then any
 1020  * mappings to the specified range of pages must be removed before this
 1021  * function is called.
 1022  *
 1023  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
 1024  * may start out with a NULL object.
 1025  */
 1026 boolean_t
 1027 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
 1028     boolean_t syncio, boolean_t invalidate)
 1029 {
 1030         vm_object_t backing_object;
 1031         struct vnode *vp;
 1032         struct mount *mp;
 1033         int error, flags, fsync_after;
 1034         boolean_t res;
 1035 
 1036         if (object == NULL)
 1037                 return (TRUE);
 1038         res = TRUE;
 1039         error = 0;
 1040         VM_OBJECT_WLOCK(object);
 1041         while ((backing_object = object->backing_object) != NULL) {
 1042                 VM_OBJECT_WLOCK(backing_object);
 1043                 offset += object->backing_object_offset;
 1044                 VM_OBJECT_WUNLOCK(object);
 1045                 object = backing_object;
 1046                 if (object->size < OFF_TO_IDX(offset + size))
 1047                         size = IDX_TO_OFF(object->size) - offset;
 1048         }
 1049         /*
 1050          * Flush pages if writing is allowed, invalidate them
 1051          * if invalidation requested.  Pages undergoing I/O
 1052          * will be ignored by vm_object_page_remove().
 1053          *
 1054          * We cannot lock the vnode and then wait for paging
 1055          * to complete without deadlocking against vm_fault.
 1056          * Instead we simply call vm_object_page_remove() and
 1057          * allow it to block internally on a page-by-page
 1058          * basis when it encounters pages undergoing async
 1059          * I/O.
 1060          */
 1061         if (object->type == OBJT_VNODE &&
 1062             (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
 1063             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
 1064                 VM_OBJECT_WUNLOCK(object);
 1065                 (void) vn_start_write(vp, &mp, V_WAIT);
 1066                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1067                 if (syncio && !invalidate && offset == 0 &&
 1068                     atop(size) == object->size) {
 1069                         /*
 1070                          * If syncing the whole mapping of the file,
 1071                          * it is faster to schedule all the writes in
 1072                          * async mode, also allowing the clustering,
 1073                          * and then wait for i/o to complete.
 1074                          */
 1075                         flags = 0;
 1076                         fsync_after = TRUE;
 1077                 } else {
 1078                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
 1079                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
 1080                         fsync_after = FALSE;
 1081                 }
 1082                 VM_OBJECT_WLOCK(object);
 1083                 res = vm_object_page_clean(object, offset, offset + size,
 1084                     flags);
 1085                 VM_OBJECT_WUNLOCK(object);
 1086                 if (fsync_after)
 1087                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
 1088                 VOP_UNLOCK(vp, 0);
 1089                 vn_finished_write(mp);
 1090                 if (error != 0)
 1091                         res = FALSE;
 1092                 VM_OBJECT_WLOCK(object);
 1093         }
 1094         if ((object->type == OBJT_VNODE ||
 1095              object->type == OBJT_DEVICE) && invalidate) {
 1096                 if (object->type == OBJT_DEVICE)
 1097                         /*
 1098                          * The option OBJPR_NOTMAPPED must be passed here
 1099                          * because vm_object_page_remove() cannot remove
 1100                          * unmanaged mappings.
 1101                          */
 1102                         flags = OBJPR_NOTMAPPED;
 1103                 else if (old_msync)
 1104                         flags = 0;
 1105                 else
 1106                         flags = OBJPR_CLEANONLY;
 1107                 vm_object_page_remove(object, OFF_TO_IDX(offset),
 1108                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
 1109         }
 1110         VM_OBJECT_WUNLOCK(object);
 1111         return (res);
 1112 }
 1113 
 1114 /*
 1115  * Determine whether the given advice can be applied to the object.  Advice is
 1116  * not applied to unmanaged pages since they never belong to page queues, and
 1117  * since MADV_FREE is destructive, it can apply only to anonymous pages that
 1118  * have been mapped at most once.
 1119  */
 1120 static bool
 1121 vm_object_advice_applies(vm_object_t object, int advice)
 1122 {
 1123 
 1124         if ((object->flags & OBJ_UNMANAGED) != 0)
 1125                 return (false);
 1126         if (advice != MADV_FREE)
 1127                 return (true);
 1128         return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
 1129             (object->flags & OBJ_ONEMAPPING) != 0);
 1130 }
 1131 
 1132 static void
 1133 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
 1134     vm_size_t size)
 1135 {
 1136 
 1137         if (advice == MADV_FREE && object->type == OBJT_SWAP)
 1138                 swap_pager_freespace(object, pindex, size);
 1139 }
 1140 
 1141 /*
 1142  *      vm_object_madvise:
 1143  *
 1144  *      Implements the madvise function at the object/page level.
 1145  *
 1146  *      MADV_WILLNEED   (any object)
 1147  *
 1148  *          Activate the specified pages if they are resident.
 1149  *
 1150  *      MADV_DONTNEED   (any object)
 1151  *
 1152  *          Deactivate the specified pages if they are resident.
 1153  *
 1154  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
 1155  *                       OBJ_ONEMAPPING only)
 1156  *
 1157  *          Deactivate and clean the specified pages if they are
 1158  *          resident.  This permits the process to reuse the pages
 1159  *          without faulting or the kernel to reclaim the pages
 1160  *          without I/O.
 1161  */
 1162 void
 1163 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
 1164     int advice)
 1165 {
 1166         vm_pindex_t tpindex;
 1167         vm_object_t backing_object, tobject;
 1168         vm_page_t m, tm;
 1169 
 1170         if (object == NULL)
 1171                 return;
 1172 
 1173 relookup:
 1174         VM_OBJECT_WLOCK(object);
 1175         if (!vm_object_advice_applies(object, advice)) {
 1176                 VM_OBJECT_WUNLOCK(object);
 1177                 return;
 1178         }
 1179         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
 1180                 tobject = object;
 1181 
 1182                 /*
 1183                  * If the next page isn't resident in the top-level object, we
 1184                  * need to search the shadow chain.  When applying MADV_FREE, we
 1185                  * take care to release any swap space used to store
 1186                  * non-resident pages.
 1187                  */
 1188                 if (m == NULL || pindex < m->pindex) {
 1189                         /*
 1190                          * Optimize a common case: if the top-level object has
 1191                          * no backing object, we can skip over the non-resident
 1192                          * range in constant time.
 1193                          */
 1194                         if (object->backing_object == NULL) {
 1195                                 tpindex = (m != NULL && m->pindex < end) ?
 1196                                     m->pindex : end;
 1197                                 vm_object_madvise_freespace(object, advice,
 1198                                     pindex, tpindex - pindex);
 1199                                 if ((pindex = tpindex) == end)
 1200                                         break;
 1201                                 goto next_page;
 1202                         }
 1203 
 1204                         tpindex = pindex;
 1205                         do {
 1206                                 vm_object_madvise_freespace(tobject, advice,
 1207                                     tpindex, 1);
 1208                                 /*
 1209                                  * Prepare to search the next object in the
 1210                                  * chain.
 1211                                  */
 1212                                 backing_object = tobject->backing_object;
 1213                                 if (backing_object == NULL)
 1214                                         goto next_pindex;
 1215                                 VM_OBJECT_WLOCK(backing_object);
 1216                                 tpindex +=
 1217                                     OFF_TO_IDX(tobject->backing_object_offset);
 1218                                 if (tobject != object)
 1219                                         VM_OBJECT_WUNLOCK(tobject);
 1220                                 tobject = backing_object;
 1221                                 if (!vm_object_advice_applies(tobject, advice))
 1222                                         goto next_pindex;
 1223                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
 1224                             NULL);
 1225                 } else {
 1226 next_page:
 1227                         tm = m;
 1228                         m = TAILQ_NEXT(m, listq);
 1229                 }
 1230 
 1231                 /*
 1232                  * If the page is not in a normal state, skip it.
 1233                  */
 1234                 if (tm->valid != VM_PAGE_BITS_ALL)
 1235                         goto next_pindex;
 1236                 vm_page_lock(tm);
 1237                 if (vm_page_held(tm)) {
 1238                         vm_page_unlock(tm);
 1239                         goto next_pindex;
 1240                 }
 1241                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
 1242                     ("vm_object_madvise: page %p is fictitious", tm));
 1243                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
 1244                     ("vm_object_madvise: page %p is not managed", tm));
 1245                 if (vm_page_busied(tm)) {
 1246                         if (object != tobject)
 1247                                 VM_OBJECT_WUNLOCK(tobject);
 1248                         VM_OBJECT_WUNLOCK(object);
 1249                         if (advice == MADV_WILLNEED) {
 1250                                 /*
 1251                                  * Reference the page before unlocking and
 1252                                  * sleeping so that the page daemon is less
 1253                                  * likely to reclaim it.
 1254                                  */
 1255                                 vm_page_aflag_set(tm, PGA_REFERENCED);
 1256                         }
 1257                         vm_page_busy_sleep(tm, "madvpo", false);
 1258                         goto relookup;
 1259                 }
 1260                 vm_page_advise(tm, advice);
 1261                 vm_page_unlock(tm);
 1262                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
 1263 next_pindex:
 1264                 if (tobject != object)
 1265                         VM_OBJECT_WUNLOCK(tobject);
 1266         }
 1267         VM_OBJECT_WUNLOCK(object);
 1268 }
 1269 
 1270 /*
 1271  *      vm_object_shadow:
 1272  *
 1273  *      Create a new object which is backed by the
 1274  *      specified existing object range.  The source
 1275  *      object reference is deallocated.
 1276  *
 1277  *      The new object and offset into that object
 1278  *      are returned in the source parameters.
 1279  */
 1280 void
 1281 vm_object_shadow(
 1282         vm_object_t *object,    /* IN/OUT */
 1283         vm_ooffset_t *offset,   /* IN/OUT */
 1284         vm_size_t length)
 1285 {
 1286         vm_object_t source;
 1287         vm_object_t result;
 1288 
 1289         source = *object;
 1290 
 1291         /*
 1292          * Don't create the new object if the old object isn't shared.
 1293          */
 1294         if (source != NULL) {
 1295                 VM_OBJECT_WLOCK(source);
 1296                 if (source->ref_count == 1 &&
 1297                     source->handle == NULL &&
 1298                     (source->type == OBJT_DEFAULT ||
 1299                      source->type == OBJT_SWAP)) {
 1300                         VM_OBJECT_WUNLOCK(source);
 1301                         return;
 1302                 }
 1303                 VM_OBJECT_WUNLOCK(source);
 1304         }
 1305 
 1306         /*
 1307          * Allocate a new object with the given length.
 1308          */
 1309         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
 1310 
 1311         /*
 1312          * The new object shadows the source object, adding a reference to it.
 1313          * Our caller changes his reference to point to the new object,
 1314          * removing a reference to the source object.  Net result: no change
 1315          * of reference count.
 1316          *
 1317          * Try to optimize the result object's page color when shadowing
 1318          * in order to maintain page coloring consistency in the combined 
 1319          * shadowed object.
 1320          */
 1321         result->backing_object = source;
 1322         /*
 1323          * Store the offset into the source object, and fix up the offset into
 1324          * the new object.
 1325          */
 1326         result->backing_object_offset = *offset;
 1327         if (source != NULL) {
 1328                 VM_OBJECT_WLOCK(source);
 1329                 result->domain = source->domain;
 1330                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
 1331                 source->shadow_count++;
 1332 #if VM_NRESERVLEVEL > 0
 1333                 result->flags |= source->flags & OBJ_COLORED;
 1334                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
 1335                     ((1 << (VM_NFREEORDER - 1)) - 1);
 1336 #endif
 1337                 VM_OBJECT_WUNLOCK(source);
 1338         }
 1339 
 1340 
 1341         /*
 1342          * Return the new things
 1343          */
 1344         *offset = 0;
 1345         *object = result;
 1346 }
 1347 
 1348 /*
 1349  *      vm_object_split:
 1350  *
 1351  * Split the pages in a map entry into a new object.  This affords
 1352  * easier removal of unused pages, and keeps object inheritance from
 1353  * being a negative impact on memory usage.
 1354  */
 1355 void
 1356 vm_object_split(vm_map_entry_t entry)
 1357 {
 1358         vm_page_t m, m_next;
 1359         vm_object_t orig_object, new_object, source;
 1360         vm_pindex_t idx, offidxstart;
 1361         vm_size_t size;
 1362 
 1363         orig_object = entry->object.vm_object;
 1364         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
 1365                 return;
 1366         if (orig_object->ref_count <= 1)
 1367                 return;
 1368         VM_OBJECT_WUNLOCK(orig_object);
 1369 
 1370         offidxstart = OFF_TO_IDX(entry->offset);
 1371         size = atop(entry->end - entry->start);
 1372 
 1373         /*
 1374          * If swap_pager_copy() is later called, it will convert new_object
 1375          * into a swap object.
 1376          */
 1377         new_object = vm_object_allocate(OBJT_DEFAULT, size);
 1378 
 1379         /*
 1380          * At this point, the new object is still private, so the order in
 1381          * which the original and new objects are locked does not matter.
 1382          */
 1383         VM_OBJECT_WLOCK(new_object);
 1384         VM_OBJECT_WLOCK(orig_object);
 1385         new_object->domain = orig_object->domain;
 1386         source = orig_object->backing_object;
 1387         if (source != NULL) {
 1388                 VM_OBJECT_WLOCK(source);
 1389                 if ((source->flags & OBJ_DEAD) != 0) {
 1390                         VM_OBJECT_WUNLOCK(source);
 1391                         VM_OBJECT_WUNLOCK(orig_object);
 1392                         VM_OBJECT_WUNLOCK(new_object);
 1393                         vm_object_deallocate(new_object);
 1394                         VM_OBJECT_WLOCK(orig_object);
 1395                         return;
 1396                 }
 1397                 LIST_INSERT_HEAD(&source->shadow_head,
 1398                                   new_object, shadow_list);
 1399                 source->shadow_count++;
 1400                 vm_object_reference_locked(source);     /* for new_object */
 1401                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1402                 VM_OBJECT_WUNLOCK(source);
 1403                 new_object->backing_object_offset = 
 1404                         orig_object->backing_object_offset + entry->offset;
 1405                 new_object->backing_object = source;
 1406         }
 1407         if (orig_object->cred != NULL) {
 1408                 new_object->cred = orig_object->cred;
 1409                 crhold(orig_object->cred);
 1410                 new_object->charge = ptoa(size);
 1411                 KASSERT(orig_object->charge >= ptoa(size),
 1412                     ("orig_object->charge < 0"));
 1413                 orig_object->charge -= ptoa(size);
 1414         }
 1415 retry:
 1416         m = vm_page_find_least(orig_object, offidxstart);
 1417         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
 1418             m = m_next) {
 1419                 m_next = TAILQ_NEXT(m, listq);
 1420 
 1421                 /*
 1422                  * We must wait for pending I/O to complete before we can
 1423                  * rename the page.
 1424                  *
 1425                  * We do not have to VM_PROT_NONE the page as mappings should
 1426                  * not be changed by this operation.
 1427                  */
 1428                 if (vm_page_busied(m)) {
 1429                         VM_OBJECT_WUNLOCK(new_object);
 1430                         vm_page_lock(m);
 1431                         VM_OBJECT_WUNLOCK(orig_object);
 1432                         vm_page_busy_sleep(m, "spltwt", false);
 1433                         VM_OBJECT_WLOCK(orig_object);
 1434                         VM_OBJECT_WLOCK(new_object);
 1435                         goto retry;
 1436                 }
 1437 
 1438                 /* vm_page_rename() will dirty the page. */
 1439                 if (vm_page_rename(m, new_object, idx)) {
 1440                         VM_OBJECT_WUNLOCK(new_object);
 1441                         VM_OBJECT_WUNLOCK(orig_object);
 1442                         vm_radix_wait();
 1443                         VM_OBJECT_WLOCK(orig_object);
 1444                         VM_OBJECT_WLOCK(new_object);
 1445                         goto retry;
 1446                 }
 1447 #if VM_NRESERVLEVEL > 0
 1448                 /*
 1449                  * If some of the reservation's allocated pages remain with
 1450                  * the original object, then transferring the reservation to
 1451                  * the new object is neither particularly beneficial nor
 1452                  * particularly harmful as compared to leaving the reservation
 1453                  * with the original object.  If, however, all of the
 1454                  * reservation's allocated pages are transferred to the new
 1455                  * object, then transferring the reservation is typically
 1456                  * beneficial.  Determining which of these two cases applies
 1457                  * would be more costly than unconditionally renaming the
 1458                  * reservation.
 1459                  */
 1460                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
 1461 #endif
 1462                 if (orig_object->type == OBJT_SWAP)
 1463                         vm_page_xbusy(m);
 1464         }
 1465         if (orig_object->type == OBJT_SWAP) {
 1466                 /*
 1467                  * swap_pager_copy() can sleep, in which case the orig_object's
 1468                  * and new_object's locks are released and reacquired. 
 1469                  */
 1470                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
 1471                 TAILQ_FOREACH(m, &new_object->memq, listq)
 1472                         vm_page_xunbusy(m);
 1473         }
 1474         VM_OBJECT_WUNLOCK(orig_object);
 1475         VM_OBJECT_WUNLOCK(new_object);
 1476         entry->object.vm_object = new_object;
 1477         entry->offset = 0LL;
 1478         vm_object_deallocate(orig_object);
 1479         VM_OBJECT_WLOCK(new_object);
 1480 }
 1481 
 1482 #define OBSC_COLLAPSE_NOWAIT    0x0002
 1483 #define OBSC_COLLAPSE_WAIT      0x0004
 1484 
 1485 static vm_page_t
 1486 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
 1487     int op)
 1488 {
 1489         vm_object_t backing_object;
 1490 
 1491         VM_OBJECT_ASSERT_WLOCKED(object);
 1492         backing_object = object->backing_object;
 1493         VM_OBJECT_ASSERT_WLOCKED(backing_object);
 1494 
 1495         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
 1496         KASSERT(p == NULL || p->object == object || p->object == backing_object,
 1497             ("invalid ownership %p %p %p", p, object, backing_object));
 1498         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
 1499                 return (next);
 1500         if (p != NULL)
 1501                 vm_page_lock(p);
 1502         VM_OBJECT_WUNLOCK(object);
 1503         VM_OBJECT_WUNLOCK(backing_object);
 1504         /* The page is only NULL when rename fails. */
 1505         if (p == NULL)
 1506                 vm_radix_wait();
 1507         else
 1508                 vm_page_busy_sleep(p, "vmocol", false);
 1509         VM_OBJECT_WLOCK(object);
 1510         VM_OBJECT_WLOCK(backing_object);
 1511         return (TAILQ_FIRST(&backing_object->memq));
 1512 }
 1513 
 1514 static bool
 1515 vm_object_scan_all_shadowed(vm_object_t object)
 1516 {
 1517         vm_object_t backing_object;
 1518         vm_page_t p, pp;
 1519         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
 1520 
 1521         VM_OBJECT_ASSERT_WLOCKED(object);
 1522         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
 1523 
 1524         backing_object = object->backing_object;
 1525 
 1526         if (backing_object->type != OBJT_DEFAULT &&
 1527             backing_object->type != OBJT_SWAP)
 1528                 return (false);
 1529 
 1530         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1531         p = vm_page_find_least(backing_object, pi);
 1532         ps = swap_pager_find_least(backing_object, pi);
 1533 
 1534         /*
 1535          * Only check pages inside the parent object's range and
 1536          * inside the parent object's mapping of the backing object.
 1537          */
 1538         for (;; pi++) {
 1539                 if (p != NULL && p->pindex < pi)
 1540                         p = TAILQ_NEXT(p, listq);
 1541                 if (ps < pi)
 1542                         ps = swap_pager_find_least(backing_object, pi);
 1543                 if (p == NULL && ps >= backing_object->size)
 1544                         break;
 1545                 else if (p == NULL)
 1546                         pi = ps;
 1547                 else
 1548                         pi = MIN(p->pindex, ps);
 1549 
 1550                 new_pindex = pi - backing_offset_index;
 1551                 if (new_pindex >= object->size)
 1552                         break;
 1553 
 1554                 /*
 1555                  * See if the parent has the page or if the parent's object
 1556                  * pager has the page.  If the parent has the page but the page
 1557                  * is not valid, the parent's object pager must have the page.
 1558                  *
 1559                  * If this fails, the parent does not completely shadow the
 1560                  * object and we might as well give up now.
 1561                  */
 1562                 pp = vm_page_lookup(object, new_pindex);
 1563                 if ((pp == NULL || pp->valid == 0) &&
 1564                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
 1565                         return (false);
 1566         }
 1567         return (true);
 1568 }
 1569 
 1570 static bool
 1571 vm_object_collapse_scan(vm_object_t object, int op)
 1572 {
 1573         vm_object_t backing_object;
 1574         vm_page_t next, p, pp;
 1575         vm_pindex_t backing_offset_index, new_pindex;
 1576 
 1577         VM_OBJECT_ASSERT_WLOCKED(object);
 1578         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
 1579 
 1580         backing_object = object->backing_object;
 1581         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1582 
 1583         /*
 1584          * Initial conditions
 1585          */
 1586         if ((op & OBSC_COLLAPSE_WAIT) != 0)
 1587                 vm_object_set_flag(backing_object, OBJ_DEAD);
 1588 
 1589         /*
 1590          * Our scan
 1591          */
 1592         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
 1593                 next = TAILQ_NEXT(p, listq);
 1594                 new_pindex = p->pindex - backing_offset_index;
 1595 
 1596                 /*
 1597                  * Check for busy page
 1598                  */
 1599                 if (vm_page_busied(p)) {
 1600                         next = vm_object_collapse_scan_wait(object, p, next, op);
 1601                         continue;
 1602                 }
 1603 
 1604                 KASSERT(p->object == backing_object,
 1605                     ("vm_object_collapse_scan: object mismatch"));
 1606 
 1607                 if (p->pindex < backing_offset_index ||
 1608                     new_pindex >= object->size) {
 1609                         if (backing_object->type == OBJT_SWAP)
 1610                                 swap_pager_freespace(backing_object, p->pindex,
 1611                                     1);
 1612 
 1613                         /*
 1614                          * Page is out of the parent object's range, we can
 1615                          * simply destroy it.
 1616                          */
 1617                         vm_page_lock(p);
 1618                         KASSERT(!pmap_page_is_mapped(p),
 1619                             ("freeing mapped page %p", p));
 1620                         if (p->wire_count == 0)
 1621                                 vm_page_free(p);
 1622                         else
 1623                                 vm_page_remove(p);
 1624                         vm_page_unlock(p);
 1625                         continue;
 1626                 }
 1627 
 1628                 pp = vm_page_lookup(object, new_pindex);
 1629                 if (pp != NULL && vm_page_busied(pp)) {
 1630                         /*
 1631                          * The page in the parent is busy and possibly not
 1632                          * (yet) valid.  Until its state is finalized by the
 1633                          * busy bit owner, we can't tell whether it shadows the
 1634                          * original page.  Therefore, we must either skip it
 1635                          * and the original (backing_object) page or wait for
 1636                          * its state to be finalized.
 1637                          *
 1638                          * This is due to a race with vm_fault() where we must
 1639                          * unbusy the original (backing_obj) page before we can
 1640                          * (re)lock the parent.  Hence we can get here.
 1641                          */
 1642                         next = vm_object_collapse_scan_wait(object, pp, next,
 1643                             op);
 1644                         continue;
 1645                 }
 1646 
 1647                 KASSERT(pp == NULL || pp->valid != 0,
 1648                     ("unbusy invalid page %p", pp));
 1649 
 1650                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
 1651                         NULL)) {
 1652                         /*
 1653                          * The page already exists in the parent OR swap exists
 1654                          * for this location in the parent.  Leave the parent's
 1655                          * page alone.  Destroy the original page from the
 1656                          * backing object.
 1657                          */
 1658                         if (backing_object->type == OBJT_SWAP)
 1659                                 swap_pager_freespace(backing_object, p->pindex,
 1660                                     1);
 1661                         vm_page_lock(p);
 1662                         KASSERT(!pmap_page_is_mapped(p),
 1663                             ("freeing mapped page %p", p));
 1664                         if (p->wire_count == 0)
 1665                                 vm_page_free(p);
 1666                         else
 1667                                 vm_page_remove(p);
 1668                         vm_page_unlock(p);
 1669                         continue;
 1670                 }
 1671 
 1672                 /*
 1673                  * Page does not exist in parent, rename the page from the
 1674                  * backing object to the main object.
 1675                  *
 1676                  * If the page was mapped to a process, it can remain mapped
 1677                  * through the rename.  vm_page_rename() will dirty the page.
 1678                  */
 1679                 if (vm_page_rename(p, object, new_pindex)) {
 1680                         next = vm_object_collapse_scan_wait(object, NULL, next,
 1681                             op);
 1682                         continue;
 1683                 }
 1684 
 1685                 /* Use the old pindex to free the right page. */
 1686                 if (backing_object->type == OBJT_SWAP)
 1687                         swap_pager_freespace(backing_object,
 1688                             new_pindex + backing_offset_index, 1);
 1689 
 1690 #if VM_NRESERVLEVEL > 0
 1691                 /*
 1692                  * Rename the reservation.
 1693                  */
 1694                 vm_reserv_rename(p, object, backing_object,
 1695                     backing_offset_index);
 1696 #endif
 1697         }
 1698         return (true);
 1699 }
 1700 
 1701 
 1702 /*
 1703  * this version of collapse allows the operation to occur earlier and
 1704  * when paging_in_progress is true for an object...  This is not a complete
 1705  * operation, but should plug 99.9% of the rest of the leaks.
 1706  */
 1707 static void
 1708 vm_object_qcollapse(vm_object_t object)
 1709 {
 1710         vm_object_t backing_object = object->backing_object;
 1711 
 1712         VM_OBJECT_ASSERT_WLOCKED(object);
 1713         VM_OBJECT_ASSERT_WLOCKED(backing_object);
 1714 
 1715         if (backing_object->ref_count != 1)
 1716                 return;
 1717 
 1718         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
 1719 }
 1720 
 1721 /*
 1722  *      vm_object_collapse:
 1723  *
 1724  *      Collapse an object with the object backing it.
 1725  *      Pages in the backing object are moved into the
 1726  *      parent, and the backing object is deallocated.
 1727  */
 1728 void
 1729 vm_object_collapse(vm_object_t object)
 1730 {
 1731         vm_object_t backing_object, new_backing_object;
 1732 
 1733         VM_OBJECT_ASSERT_WLOCKED(object);
 1734 
 1735         while (TRUE) {
 1736                 /*
 1737                  * Verify that the conditions are right for collapse:
 1738                  *
 1739                  * The object exists and the backing object exists.
 1740                  */
 1741                 if ((backing_object = object->backing_object) == NULL)
 1742                         break;
 1743 
 1744                 /*
 1745                  * we check the backing object first, because it is most likely
 1746                  * not collapsable.
 1747                  */
 1748                 VM_OBJECT_WLOCK(backing_object);
 1749                 if (backing_object->handle != NULL ||
 1750                     (backing_object->type != OBJT_DEFAULT &&
 1751                      backing_object->type != OBJT_SWAP) ||
 1752                     (backing_object->flags & OBJ_DEAD) ||
 1753                     object->handle != NULL ||
 1754                     (object->type != OBJT_DEFAULT &&
 1755                      object->type != OBJT_SWAP) ||
 1756                     (object->flags & OBJ_DEAD)) {
 1757                         VM_OBJECT_WUNLOCK(backing_object);
 1758                         break;
 1759                 }
 1760 
 1761                 if (object->paging_in_progress != 0 ||
 1762                     backing_object->paging_in_progress != 0) {
 1763                         vm_object_qcollapse(object);
 1764                         VM_OBJECT_WUNLOCK(backing_object);
 1765                         break;
 1766                 }
 1767 
 1768                 /*
 1769                  * We know that we can either collapse the backing object (if
 1770                  * the parent is the only reference to it) or (perhaps) have
 1771                  * the parent bypass the object if the parent happens to shadow
 1772                  * all the resident pages in the entire backing object.
 1773                  *
 1774                  * This is ignoring pager-backed pages such as swap pages.
 1775                  * vm_object_collapse_scan fails the shadowing test in this
 1776                  * case.
 1777                  */
 1778                 if (backing_object->ref_count == 1) {
 1779                         vm_object_pip_add(object, 1);
 1780                         vm_object_pip_add(backing_object, 1);
 1781 
 1782                         /*
 1783                          * If there is exactly one reference to the backing
 1784                          * object, we can collapse it into the parent.
 1785                          */
 1786                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
 1787 
 1788 #if VM_NRESERVLEVEL > 0
 1789                         /*
 1790                          * Break any reservations from backing_object.
 1791                          */
 1792                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
 1793                                 vm_reserv_break_all(backing_object);
 1794 #endif
 1795 
 1796                         /*
 1797                          * Move the pager from backing_object to object.
 1798                          */
 1799                         if (backing_object->type == OBJT_SWAP) {
 1800                                 /*
 1801                                  * swap_pager_copy() can sleep, in which case
 1802                                  * the backing_object's and object's locks are
 1803                                  * released and reacquired.
 1804                                  * Since swap_pager_copy() is being asked to
 1805                                  * destroy the source, it will change the
 1806                                  * backing_object's type to OBJT_DEFAULT.
 1807                                  */
 1808                                 swap_pager_copy(
 1809                                     backing_object,
 1810                                     object,
 1811                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
 1812                         }
 1813                         /*
 1814                          * Object now shadows whatever backing_object did.
 1815                          * Note that the reference to 
 1816                          * backing_object->backing_object moves from within 
 1817                          * backing_object to within object.
 1818                          */
 1819                         LIST_REMOVE(object, shadow_list);
 1820                         backing_object->shadow_count--;
 1821                         if (backing_object->backing_object) {
 1822                                 VM_OBJECT_WLOCK(backing_object->backing_object);
 1823                                 LIST_REMOVE(backing_object, shadow_list);
 1824                                 LIST_INSERT_HEAD(
 1825                                     &backing_object->backing_object->shadow_head,
 1826                                     object, shadow_list);
 1827                                 /*
 1828                                  * The shadow_count has not changed.
 1829                                  */
 1830                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
 1831                         }
 1832                         object->backing_object = backing_object->backing_object;
 1833                         object->backing_object_offset +=
 1834                             backing_object->backing_object_offset;
 1835 
 1836                         /*
 1837                          * Discard backing_object.
 1838                          *
 1839                          * Since the backing object has no pages, no pager left,
 1840                          * and no object references within it, all that is
 1841                          * necessary is to dispose of it.
 1842                          */
 1843                         KASSERT(backing_object->ref_count == 1, (
 1844 "backing_object %p was somehow re-referenced during collapse!",
 1845                             backing_object));
 1846                         vm_object_pip_wakeup(backing_object);
 1847                         backing_object->type = OBJT_DEAD;
 1848                         backing_object->ref_count = 0;
 1849                         VM_OBJECT_WUNLOCK(backing_object);
 1850                         vm_object_destroy(backing_object);
 1851 
 1852                         vm_object_pip_wakeup(object);
 1853                         counter_u64_add(object_collapses, 1);
 1854                 } else {
 1855                         /*
 1856                          * If we do not entirely shadow the backing object,
 1857                          * there is nothing we can do so we give up.
 1858                          */
 1859                         if (object->resident_page_count != object->size &&
 1860                             !vm_object_scan_all_shadowed(object)) {
 1861                                 VM_OBJECT_WUNLOCK(backing_object);
 1862                                 break;
 1863                         }
 1864 
 1865                         /*
 1866                          * Make the parent shadow the next object in the
 1867                          * chain.  Deallocating backing_object will not remove
 1868                          * it, since its reference count is at least 2.
 1869                          */
 1870                         LIST_REMOVE(object, shadow_list);
 1871                         backing_object->shadow_count--;
 1872 
 1873                         new_backing_object = backing_object->backing_object;
 1874                         if ((object->backing_object = new_backing_object) != NULL) {
 1875                                 VM_OBJECT_WLOCK(new_backing_object);
 1876                                 LIST_INSERT_HEAD(
 1877                                     &new_backing_object->shadow_head,
 1878                                     object,
 1879                                     shadow_list
 1880                                 );
 1881                                 new_backing_object->shadow_count++;
 1882                                 vm_object_reference_locked(new_backing_object);
 1883                                 VM_OBJECT_WUNLOCK(new_backing_object);
 1884                                 object->backing_object_offset +=
 1885                                         backing_object->backing_object_offset;
 1886                         }
 1887 
 1888                         /*
 1889                          * Drop the reference count on backing_object. Since
 1890                          * its ref_count was at least 2, it will not vanish.
 1891                          */
 1892                         backing_object->ref_count--;
 1893                         VM_OBJECT_WUNLOCK(backing_object);
 1894                         counter_u64_add(object_bypasses, 1);
 1895                 }
 1896 
 1897                 /*
 1898                  * Try again with this object's new backing object.
 1899                  */
 1900         }
 1901 }
 1902 
 1903 /*
 1904  *      vm_object_page_remove:
 1905  *
 1906  *      For the given object, either frees or invalidates each of the
 1907  *      specified pages.  In general, a page is freed.  However, if a page is
 1908  *      wired for any reason other than the existence of a managed, wired
 1909  *      mapping, then it may be invalidated but not removed from the object.
 1910  *      Pages are specified by the given range ["start", "end") and the option
 1911  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
 1912  *      extends from "start" to the end of the object.  If the option
 1913  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
 1914  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
 1915  *      specified, then the pages within the specified range must have no
 1916  *      mappings.  Otherwise, if this option is not specified, any mappings to
 1917  *      the specified pages are removed before the pages are freed or
 1918  *      invalidated.
 1919  *
 1920  *      In general, this operation should only be performed on objects that
 1921  *      contain managed pages.  There are, however, two exceptions.  First, it
 1922  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
 1923  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
 1924  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
 1925  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
 1926  *
 1927  *      The object must be locked.
 1928  */
 1929 void
 1930 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 1931     int options)
 1932 {
 1933         vm_page_t p, next;
 1934         struct mtx *mtx;
 1935 
 1936         VM_OBJECT_ASSERT_WLOCKED(object);
 1937         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
 1938             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
 1939             ("vm_object_page_remove: illegal options for object %p", object));
 1940         if (object->resident_page_count == 0)
 1941                 return;
 1942         vm_object_pip_add(object, 1);
 1943 again:
 1944         p = vm_page_find_least(object, start);
 1945         mtx = NULL;
 1946 
 1947         /*
 1948          * Here, the variable "p" is either (1) the page with the least pindex
 1949          * greater than or equal to the parameter "start" or (2) NULL. 
 1950          */
 1951         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 1952                 next = TAILQ_NEXT(p, listq);
 1953 
 1954                 /*
 1955                  * If the page is wired for any reason besides the existence
 1956                  * of managed, wired mappings, then it cannot be freed.  For
 1957                  * example, fictitious pages, which represent device memory,
 1958                  * are inherently wired and cannot be freed.  They can,
 1959                  * however, be invalidated if the option OBJPR_CLEANONLY is
 1960                  * not specified.
 1961                  */
 1962                 vm_page_change_lock(p, &mtx);
 1963                 if (vm_page_xbusied(p)) {
 1964                         VM_OBJECT_WUNLOCK(object);
 1965                         vm_page_busy_sleep(p, "vmopax", true);
 1966                         VM_OBJECT_WLOCK(object);
 1967                         goto again;
 1968                 }
 1969                 if (p->wire_count != 0) {
 1970                         if ((options & OBJPR_NOTMAPPED) == 0 &&
 1971                             object->ref_count != 0)
 1972                                 pmap_remove_all(p);
 1973                         if ((options & OBJPR_CLEANONLY) == 0) {
 1974                                 p->valid = 0;
 1975                                 vm_page_undirty(p);
 1976                         }
 1977                         continue;
 1978                 }
 1979                 if (vm_page_busied(p)) {
 1980                         VM_OBJECT_WUNLOCK(object);
 1981                         vm_page_busy_sleep(p, "vmopar", false);
 1982                         VM_OBJECT_WLOCK(object);
 1983                         goto again;
 1984                 }
 1985                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
 1986                     ("vm_object_page_remove: page %p is fictitious", p));
 1987                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
 1988                         if ((options & OBJPR_NOTMAPPED) == 0 &&
 1989                             object->ref_count != 0)
 1990                                 pmap_remove_write(p);
 1991                         if (p->dirty != 0)
 1992                                 continue;
 1993                 }
 1994                 if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
 1995                         pmap_remove_all(p);
 1996                 vm_page_free(p);
 1997         }
 1998         if (mtx != NULL)
 1999                 mtx_unlock(mtx);
 2000         vm_object_pip_wakeup(object);
 2001 }
 2002 
 2003 /*
 2004  *      vm_object_page_noreuse:
 2005  *
 2006  *      For the given object, attempt to move the specified pages to
 2007  *      the head of the inactive queue.  This bypasses regular LRU
 2008  *      operation and allows the pages to be reused quickly under memory
 2009  *      pressure.  If a page is wired for any reason, then it will not
 2010  *      be queued.  Pages are specified by the range ["start", "end").
 2011  *      As a special case, if "end" is zero, then the range extends from
 2012  *      "start" to the end of the object.
 2013  *
 2014  *      This operation should only be performed on objects that
 2015  *      contain non-fictitious, managed pages.
 2016  *
 2017  *      The object must be locked.
 2018  */
 2019 void
 2020 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 2021 {
 2022         struct mtx *mtx;
 2023         vm_page_t p, next;
 2024 
 2025         VM_OBJECT_ASSERT_LOCKED(object);
 2026         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
 2027             ("vm_object_page_noreuse: illegal object %p", object));
 2028         if (object->resident_page_count == 0)
 2029                 return;
 2030         p = vm_page_find_least(object, start);
 2031 
 2032         /*
 2033          * Here, the variable "p" is either (1) the page with the least pindex
 2034          * greater than or equal to the parameter "start" or (2) NULL. 
 2035          */
 2036         mtx = NULL;
 2037         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 2038                 next = TAILQ_NEXT(p, listq);
 2039                 vm_page_change_lock(p, &mtx);
 2040                 vm_page_deactivate_noreuse(p);
 2041         }
 2042         if (mtx != NULL)
 2043                 mtx_unlock(mtx);
 2044 }
 2045 
 2046 /*
 2047  *      Populate the specified range of the object with valid pages.  Returns
 2048  *      TRUE if the range is successfully populated and FALSE otherwise.
 2049  *
 2050  *      Note: This function should be optimized to pass a larger array of
 2051  *      pages to vm_pager_get_pages() before it is applied to a non-
 2052  *      OBJT_DEVICE object.
 2053  *
 2054  *      The object must be locked.
 2055  */
 2056 boolean_t
 2057 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 2058 {
 2059         vm_page_t m;
 2060         vm_pindex_t pindex;
 2061         int rv;
 2062 
 2063         VM_OBJECT_ASSERT_WLOCKED(object);
 2064         for (pindex = start; pindex < end; pindex++) {
 2065                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
 2066                 if (m->valid != VM_PAGE_BITS_ALL) {
 2067                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
 2068                         if (rv != VM_PAGER_OK) {
 2069                                 vm_page_lock(m);
 2070                                 vm_page_free(m);
 2071                                 vm_page_unlock(m);
 2072                                 break;
 2073                         }
 2074                 }
 2075                 /*
 2076                  * Keep "m" busy because a subsequent iteration may unlock
 2077                  * the object.
 2078                  */
 2079         }
 2080         if (pindex > start) {
 2081                 m = vm_page_lookup(object, start);
 2082                 while (m != NULL && m->pindex < pindex) {
 2083                         vm_page_xunbusy(m);
 2084                         m = TAILQ_NEXT(m, listq);
 2085                 }
 2086         }
 2087         return (pindex == end);
 2088 }
 2089 
 2090 /*
 2091  *      Routine:        vm_object_coalesce
 2092  *      Function:       Coalesces two objects backing up adjoining
 2093  *                      regions of memory into a single object.
 2094  *
 2095  *      returns TRUE if objects were combined.
 2096  *
 2097  *      NOTE:   Only works at the moment if the second object is NULL -
 2098  *              if it's not, which object do we lock first?
 2099  *
 2100  *      Parameters:
 2101  *              prev_object     First object to coalesce
 2102  *              prev_offset     Offset into prev_object
 2103  *              prev_size       Size of reference to prev_object
 2104  *              next_size       Size of reference to the second object
 2105  *              reserved        Indicator that extension region has
 2106  *                              swap accounted for
 2107  *
 2108  *      Conditions:
 2109  *      The object must *not* be locked.
 2110  */
 2111 boolean_t
 2112 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
 2113     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
 2114 {
 2115         vm_pindex_t next_pindex;
 2116 
 2117         if (prev_object == NULL)
 2118                 return (TRUE);
 2119         VM_OBJECT_WLOCK(prev_object);
 2120         if ((prev_object->type != OBJT_DEFAULT &&
 2121             prev_object->type != OBJT_SWAP) ||
 2122             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
 2123                 VM_OBJECT_WUNLOCK(prev_object);
 2124                 return (FALSE);
 2125         }
 2126 
 2127         /*
 2128          * Try to collapse the object first
 2129          */
 2130         vm_object_collapse(prev_object);
 2131 
 2132         /*
 2133          * Can't coalesce if: . more than one reference . paged out . shadows
 2134          * another object . has a copy elsewhere (any of which mean that the
 2135          * pages not mapped to prev_entry may be in use anyway)
 2136          */
 2137         if (prev_object->backing_object != NULL) {
 2138                 VM_OBJECT_WUNLOCK(prev_object);
 2139                 return (FALSE);
 2140         }
 2141 
 2142         prev_size >>= PAGE_SHIFT;
 2143         next_size >>= PAGE_SHIFT;
 2144         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
 2145 
 2146         if (prev_object->ref_count > 1 &&
 2147             prev_object->size != next_pindex &&
 2148             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
 2149                 VM_OBJECT_WUNLOCK(prev_object);
 2150                 return (FALSE);
 2151         }
 2152 
 2153         /*
 2154          * Account for the charge.
 2155          */
 2156         if (prev_object->cred != NULL) {
 2157 
 2158                 /*
 2159                  * If prev_object was charged, then this mapping,
 2160                  * although not charged now, may become writable
 2161                  * later. Non-NULL cred in the object would prevent
 2162                  * swap reservation during enabling of the write
 2163                  * access, so reserve swap now. Failed reservation
 2164                  * cause allocation of the separate object for the map
 2165                  * entry, and swap reservation for this entry is
 2166                  * managed in appropriate time.
 2167                  */
 2168                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
 2169                     prev_object->cred)) {
 2170                         VM_OBJECT_WUNLOCK(prev_object);
 2171                         return (FALSE);
 2172                 }
 2173                 prev_object->charge += ptoa(next_size);
 2174         }
 2175 
 2176         /*
 2177          * Remove any pages that may still be in the object from a previous
 2178          * deallocation.
 2179          */
 2180         if (next_pindex < prev_object->size) {
 2181                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
 2182                     next_size, 0);
 2183                 if (prev_object->type == OBJT_SWAP)
 2184                         swap_pager_freespace(prev_object,
 2185                                              next_pindex, next_size);
 2186 #if 0
 2187                 if (prev_object->cred != NULL) {
 2188                         KASSERT(prev_object->charge >=
 2189                             ptoa(prev_object->size - next_pindex),
 2190                             ("object %p overcharged 1 %jx %jx", prev_object,
 2191                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
 2192                         prev_object->charge -= ptoa(prev_object->size -
 2193                             next_pindex);
 2194                 }
 2195 #endif
 2196         }
 2197 
 2198         /*
 2199          * Extend the object if necessary.
 2200          */
 2201         if (next_pindex + next_size > prev_object->size)
 2202                 prev_object->size = next_pindex + next_size;
 2203 
 2204         VM_OBJECT_WUNLOCK(prev_object);
 2205         return (TRUE);
 2206 }
 2207 
 2208 void
 2209 vm_object_set_writeable_dirty(vm_object_t object)
 2210 {
 2211 
 2212         VM_OBJECT_ASSERT_WLOCKED(object);
 2213         if (object->type != OBJT_VNODE) {
 2214                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
 2215                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
 2216                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
 2217                 }
 2218                 return;
 2219         }
 2220         object->generation++;
 2221         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
 2222                 return;
 2223         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
 2224 }
 2225 
 2226 /*
 2227  *      vm_object_unwire:
 2228  *
 2229  *      For each page offset within the specified range of the given object,
 2230  *      find the highest-level page in the shadow chain and unwire it.  A page
 2231  *      must exist at every page offset, and the highest-level page must be
 2232  *      wired.
 2233  */
 2234 void
 2235 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
 2236     uint8_t queue)
 2237 {
 2238         vm_object_t tobject, t1object;
 2239         vm_page_t m, tm;
 2240         vm_pindex_t end_pindex, pindex, tpindex;
 2241         int depth, locked_depth;
 2242 
 2243         KASSERT((offset & PAGE_MASK) == 0,
 2244             ("vm_object_unwire: offset is not page aligned"));
 2245         KASSERT((length & PAGE_MASK) == 0,
 2246             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
 2247         /* The wired count of a fictitious page never changes. */
 2248         if ((object->flags & OBJ_FICTITIOUS) != 0)
 2249                 return;
 2250         pindex = OFF_TO_IDX(offset);
 2251         end_pindex = pindex + atop(length);
 2252 again:
 2253         locked_depth = 1;
 2254         VM_OBJECT_RLOCK(object);
 2255         m = vm_page_find_least(object, pindex);
 2256         while (pindex < end_pindex) {
 2257                 if (m == NULL || pindex < m->pindex) {
 2258                         /*
 2259                          * The first object in the shadow chain doesn't
 2260                          * contain a page at the current index.  Therefore,
 2261                          * the page must exist in a backing object.
 2262                          */
 2263                         tobject = object;
 2264                         tpindex = pindex;
 2265                         depth = 0;
 2266                         do {
 2267                                 tpindex +=
 2268                                     OFF_TO_IDX(tobject->backing_object_offset);
 2269                                 tobject = tobject->backing_object;
 2270                                 KASSERT(tobject != NULL,
 2271                                     ("vm_object_unwire: missing page"));
 2272                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
 2273                                         goto next_page;
 2274                                 depth++;
 2275                                 if (depth == locked_depth) {
 2276                                         locked_depth++;
 2277                                         VM_OBJECT_RLOCK(tobject);
 2278                                 }
 2279                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
 2280                             NULL);
 2281                 } else {
 2282                         tm = m;
 2283                         m = TAILQ_NEXT(m, listq);
 2284                 }
 2285                 vm_page_lock(tm);
 2286                 if (vm_page_xbusied(tm)) {
 2287                         for (tobject = object; locked_depth >= 1;
 2288                             locked_depth--) {
 2289                                 t1object = tobject->backing_object;
 2290                                 VM_OBJECT_RUNLOCK(tobject);
 2291                                 tobject = t1object;
 2292                         }
 2293                         vm_page_busy_sleep(tm, "unwbo", true);
 2294                         goto again;
 2295                 }
 2296                 vm_page_unwire(tm, queue);
 2297                 vm_page_unlock(tm);
 2298 next_page:
 2299                 pindex++;
 2300         }
 2301         /* Release the accumulated object locks. */
 2302         for (tobject = object; locked_depth >= 1; locked_depth--) {
 2303                 t1object = tobject->backing_object;
 2304                 VM_OBJECT_RUNLOCK(tobject);
 2305                 tobject = t1object;
 2306         }
 2307 }
 2308 
 2309 struct vnode *
 2310 vm_object_vnode(vm_object_t object)
 2311 {
 2312 
 2313         VM_OBJECT_ASSERT_LOCKED(object);
 2314         if (object->type == OBJT_VNODE)
 2315                 return (object->handle);
 2316         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
 2317                 return (object->un_pager.swp.swp_tmpfs);
 2318         return (NULL);
 2319 }
 2320 
 2321 static int
 2322 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
 2323 {
 2324         struct kinfo_vmobject *kvo;
 2325         char *fullpath, *freepath;
 2326         struct vnode *vp;
 2327         struct vattr va;
 2328         vm_object_t obj;
 2329         vm_page_t m;
 2330         int count, error;
 2331 
 2332         if (req->oldptr == NULL) {
 2333                 /*
 2334                  * If an old buffer has not been provided, generate an
 2335                  * estimate of the space needed for a subsequent call.
 2336                  */
 2337                 mtx_lock(&vm_object_list_mtx);
 2338                 count = 0;
 2339                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
 2340                         if (obj->type == OBJT_DEAD)
 2341                                 continue;
 2342                         count++;
 2343                 }
 2344                 mtx_unlock(&vm_object_list_mtx);
 2345                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
 2346                     count * 11 / 10));
 2347         }
 2348 
 2349         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
 2350         error = 0;
 2351 
 2352         /*
 2353          * VM objects are type stable and are never removed from the
 2354          * list once added.  This allows us to safely read obj->object_list
 2355          * after reacquiring the VM object lock.
 2356          */
 2357         mtx_lock(&vm_object_list_mtx);
 2358         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
 2359                 if (obj->type == OBJT_DEAD)
 2360                         continue;
 2361                 VM_OBJECT_RLOCK(obj);
 2362                 if (obj->type == OBJT_DEAD) {
 2363                         VM_OBJECT_RUNLOCK(obj);
 2364                         continue;
 2365                 }
 2366                 mtx_unlock(&vm_object_list_mtx);
 2367                 kvo->kvo_size = ptoa(obj->size);
 2368                 kvo->kvo_resident = obj->resident_page_count;
 2369                 kvo->kvo_ref_count = obj->ref_count;
 2370                 kvo->kvo_shadow_count = obj->shadow_count;
 2371                 kvo->kvo_memattr = obj->memattr;
 2372                 kvo->kvo_active = 0;
 2373                 kvo->kvo_inactive = 0;
 2374                 TAILQ_FOREACH(m, &obj->memq, listq) {
 2375                         /*
 2376                          * A page may belong to the object but be
 2377                          * dequeued and set to PQ_NONE while the
 2378                          * object lock is not held.  This makes the
 2379                          * reads of m->queue below racy, and we do not
 2380                          * count pages set to PQ_NONE.  However, this
 2381                          * sysctl is only meant to give an
 2382                          * approximation of the system anyway.
 2383                          */
 2384                         if (m->queue == PQ_ACTIVE)
 2385                                 kvo->kvo_active++;
 2386                         else if (m->queue == PQ_INACTIVE)
 2387                                 kvo->kvo_inactive++;
 2388                 }
 2389 
 2390                 kvo->kvo_vn_fileid = 0;
 2391                 kvo->kvo_vn_fsid = 0;
 2392                 kvo->kvo_vn_fsid_freebsd11 = 0;
 2393                 freepath = NULL;
 2394                 fullpath = "";
 2395                 vp = NULL;
 2396                 switch (obj->type) {
 2397                 case OBJT_DEFAULT:
 2398                         kvo->kvo_type = KVME_TYPE_DEFAULT;
 2399                         break;
 2400                 case OBJT_VNODE:
 2401                         kvo->kvo_type = KVME_TYPE_VNODE;
 2402                         vp = obj->handle;
 2403                         vref(vp);
 2404                         break;
 2405                 case OBJT_SWAP:
 2406                         kvo->kvo_type = KVME_TYPE_SWAP;
 2407                         break;
 2408                 case OBJT_DEVICE:
 2409                         kvo->kvo_type = KVME_TYPE_DEVICE;
 2410                         break;
 2411                 case OBJT_PHYS:
 2412                         kvo->kvo_type = KVME_TYPE_PHYS;
 2413                         break;
 2414                 case OBJT_DEAD:
 2415                         kvo->kvo_type = KVME_TYPE_DEAD;
 2416                         break;
 2417                 case OBJT_SG:
 2418                         kvo->kvo_type = KVME_TYPE_SG;
 2419                         break;
 2420                 case OBJT_MGTDEVICE:
 2421                         kvo->kvo_type = KVME_TYPE_MGTDEVICE;
 2422                         break;
 2423                 default:
 2424                         kvo->kvo_type = KVME_TYPE_UNKNOWN;
 2425                         break;
 2426                 }
 2427                 VM_OBJECT_RUNLOCK(obj);
 2428                 if (vp != NULL) {
 2429                         vn_fullpath(curthread, vp, &fullpath, &freepath);
 2430                         vn_lock(vp, LK_SHARED | LK_RETRY);
 2431                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
 2432                                 kvo->kvo_vn_fileid = va.va_fileid;
 2433                                 kvo->kvo_vn_fsid = va.va_fsid;
 2434                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
 2435                                                                 /* truncate */
 2436                         }
 2437                         vput(vp);
 2438                 }
 2439 
 2440                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
 2441                 if (freepath != NULL)
 2442                         free(freepath, M_TEMP);
 2443 
 2444                 /* Pack record size down */
 2445                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
 2446                     + strlen(kvo->kvo_path) + 1;
 2447                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
 2448                     sizeof(uint64_t));
 2449                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
 2450                 mtx_lock(&vm_object_list_mtx);
 2451                 if (error)
 2452                         break;
 2453         }
 2454         mtx_unlock(&vm_object_list_mtx);
 2455         free(kvo, M_TEMP);
 2456         return (error);
 2457 }
 2458 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
 2459     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
 2460     "List of VM objects");
 2461 
 2462 #include "opt_ddb.h"
 2463 #ifdef DDB
 2464 #include <sys/kernel.h>
 2465 
 2466 #include <sys/cons.h>
 2467 
 2468 #include <ddb/ddb.h>
 2469 
 2470 static int
 2471 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
 2472 {
 2473         vm_map_t tmpm;
 2474         vm_map_entry_t tmpe;
 2475         vm_object_t obj;
 2476         int entcount;
 2477 
 2478         if (map == 0)
 2479                 return 0;
 2480 
 2481         if (entry == 0) {
 2482                 tmpe = map->header.next;
 2483                 entcount = map->nentries;
 2484                 while (entcount-- && (tmpe != &map->header)) {
 2485                         if (_vm_object_in_map(map, object, tmpe)) {
 2486                                 return 1;
 2487                         }
 2488                         tmpe = tmpe->next;
 2489                 }
 2490         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2491                 tmpm = entry->object.sub_map;
 2492                 tmpe = tmpm->header.next;
 2493                 entcount = tmpm->nentries;
 2494                 while (entcount-- && tmpe != &tmpm->header) {
 2495                         if (_vm_object_in_map(tmpm, object, tmpe)) {
 2496                                 return 1;
 2497                         }
 2498                         tmpe = tmpe->next;
 2499                 }
 2500         } else if ((obj = entry->object.vm_object) != NULL) {
 2501                 for (; obj; obj = obj->backing_object)
 2502                         if (obj == object) {
 2503                                 return 1;
 2504                         }
 2505         }
 2506         return 0;
 2507 }
 2508 
 2509 static int
 2510 vm_object_in_map(vm_object_t object)
 2511 {
 2512         struct proc *p;
 2513 
 2514         /* sx_slock(&allproc_lock); */
 2515         FOREACH_PROC_IN_SYSTEM(p) {
 2516                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
 2517                         continue;
 2518                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
 2519                         /* sx_sunlock(&allproc_lock); */
 2520                         return 1;
 2521                 }
 2522         }
 2523         /* sx_sunlock(&allproc_lock); */
 2524         if (_vm_object_in_map(kernel_map, object, 0))
 2525                 return 1;
 2526         return 0;
 2527 }
 2528 
 2529 DB_SHOW_COMMAND(vmochk, vm_object_check)
 2530 {
 2531         vm_object_t object;
 2532 
 2533         /*
 2534          * make sure that internal objs are in a map somewhere
 2535          * and none have zero ref counts.
 2536          */
 2537         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2538                 if (object->handle == NULL &&
 2539                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
 2540                         if (object->ref_count == 0) {
 2541                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
 2542                                         (long)object->size);
 2543                         }
 2544                         if (!vm_object_in_map(object)) {
 2545                                 db_printf(
 2546                         "vmochk: internal obj is not in a map: "
 2547                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
 2548                                     object->ref_count, (u_long)object->size, 
 2549                                     (u_long)object->size,
 2550                                     (void *)object->backing_object);
 2551                         }
 2552                 }
 2553         }
 2554 }
 2555 
 2556 /*
 2557  *      vm_object_print:        [ debug ]
 2558  */
 2559 DB_SHOW_COMMAND(object, vm_object_print_static)
 2560 {
 2561         /* XXX convert args. */
 2562         vm_object_t object = (vm_object_t)addr;
 2563         boolean_t full = have_addr;
 2564 
 2565         vm_page_t p;
 2566 
 2567         /* XXX count is an (unused) arg.  Avoid shadowing it. */
 2568 #define count   was_count
 2569 
 2570         int count;
 2571 
 2572         if (object == NULL)
 2573                 return;
 2574 
 2575         db_iprintf(
 2576             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
 2577             object, (int)object->type, (uintmax_t)object->size,
 2578             object->resident_page_count, object->ref_count, object->flags,
 2579             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
 2580         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
 2581             object->shadow_count, 
 2582             object->backing_object ? object->backing_object->ref_count : 0,
 2583             object->backing_object, (uintmax_t)object->backing_object_offset);
 2584 
 2585         if (!full)
 2586                 return;
 2587 
 2588         db_indent += 2;
 2589         count = 0;
 2590         TAILQ_FOREACH(p, &object->memq, listq) {
 2591                 if (count == 0)
 2592                         db_iprintf("memory:=");
 2593                 else if (count == 6) {
 2594                         db_printf("\n");
 2595                         db_iprintf(" ...");
 2596                         count = 0;
 2597                 } else
 2598                         db_printf(",");
 2599                 count++;
 2600 
 2601                 db_printf("(off=0x%jx,page=0x%jx)",
 2602                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
 2603         }
 2604         if (count != 0)
 2605                 db_printf("\n");
 2606         db_indent -= 2;
 2607 }
 2608 
 2609 /* XXX. */
 2610 #undef count
 2611 
 2612 /* XXX need this non-static entry for calling from vm_map_print. */
 2613 void
 2614 vm_object_print(
 2615         /* db_expr_t */ long addr,
 2616         boolean_t have_addr,
 2617         /* db_expr_t */ long count,
 2618         char *modif)
 2619 {
 2620         vm_object_print_static(addr, have_addr, count, modif);
 2621 }
 2622 
 2623 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
 2624 {
 2625         vm_object_t object;
 2626         vm_pindex_t fidx;
 2627         vm_paddr_t pa;
 2628         vm_page_t m, prev_m;
 2629         int rcount, nl, c;
 2630 
 2631         nl = 0;
 2632         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2633                 db_printf("new object: %p\n", (void *)object);
 2634                 if (nl > 18) {
 2635                         c = cngetc();
 2636                         if (c != ' ')
 2637                                 return;
 2638                         nl = 0;
 2639                 }
 2640                 nl++;
 2641                 rcount = 0;
 2642                 fidx = 0;
 2643                 pa = -1;
 2644                 TAILQ_FOREACH(m, &object->memq, listq) {
 2645                         if (m->pindex > 128)
 2646                                 break;
 2647                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
 2648                             prev_m->pindex + 1 != m->pindex) {
 2649                                 if (rcount) {
 2650                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2651                                                 (long)fidx, rcount, (long)pa);
 2652                                         if (nl > 18) {
 2653                                                 c = cngetc();
 2654                                                 if (c != ' ')
 2655                                                         return;
 2656                                                 nl = 0;
 2657                                         }
 2658                                         nl++;
 2659                                         rcount = 0;
 2660                                 }
 2661                         }                               
 2662                         if (rcount &&
 2663                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
 2664                                 ++rcount;
 2665                                 continue;
 2666                         }
 2667                         if (rcount) {
 2668                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2669                                         (long)fidx, rcount, (long)pa);
 2670                                 if (nl > 18) {
 2671                                         c = cngetc();
 2672                                         if (c != ' ')
 2673                                                 return;
 2674                                         nl = 0;
 2675                                 }
 2676                                 nl++;
 2677                         }
 2678                         fidx = m->pindex;
 2679                         pa = VM_PAGE_TO_PHYS(m);
 2680                         rcount = 1;
 2681                 }
 2682                 if (rcount) {
 2683                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2684                                 (long)fidx, rcount, (long)pa);
 2685                         if (nl > 18) {
 2686                                 c = cngetc();
 2687                                 if (c != ' ')
 2688                                         return;
 2689                                 nl = 0;
 2690                         }
 2691                         nl++;
 2692                 }
 2693         }
 2694 }
 2695 #endif /* DDB */

Cache object: 0d05ced6db17b37fbcf36ea4c23d847e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.