The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
    3  *
    4  * Copyright (c) 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * The Mach Operating System project at Carnegie-Mellon University.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
   35  *
   36  *
   37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   38  * All rights reserved.
   39  *
   40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   41  *
   42  * Permission to use, copy, modify and distribute this software and
   43  * its documentation is hereby granted, provided that both the copyright
   44  * notice and this permission notice appear in all copies of the
   45  * software, derivative works or modified versions, and any portions
   46  * thereof, and that both notices appear in supporting documentation.
   47  *
   48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   51  *
   52  * Carnegie Mellon requests users of this software to return to
   53  *
   54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   55  *  School of Computer Science
   56  *  Carnegie Mellon University
   57  *  Pittsburgh PA 15213-3890
   58  *
   59  * any improvements or extensions that they make and grant Carnegie the
   60  * rights to redistribute these changes.
   61  */
   62 
   63 /*
   64  *      Virtual memory object module.
   65  */
   66 
   67 #include <sys/cdefs.h>
   68 __FBSDID("$FreeBSD$");
   69 
   70 #include "opt_vm.h"
   71 
   72 #include <sys/param.h>
   73 #include <sys/systm.h>
   74 #include <sys/cpuset.h>
   75 #include <sys/lock.h>
   76 #include <sys/mman.h>
   77 #include <sys/mount.h>
   78 #include <sys/kernel.h>
   79 #include <sys/pctrie.h>
   80 #include <sys/sysctl.h>
   81 #include <sys/mutex.h>
   82 #include <sys/proc.h>           /* for curproc, pageproc */
   83 #include <sys/socket.h>
   84 #include <sys/resourcevar.h>
   85 #include <sys/rwlock.h>
   86 #include <sys/user.h>
   87 #include <sys/vnode.h>
   88 #include <sys/vmmeter.h>
   89 #include <sys/sx.h>
   90 
   91 #include <vm/vm.h>
   92 #include <vm/vm_param.h>
   93 #include <vm/pmap.h>
   94 #include <vm/vm_map.h>
   95 #include <vm/vm_object.h>
   96 #include <vm/vm_page.h>
   97 #include <vm/vm_pageout.h>
   98 #include <vm/vm_pager.h>
   99 #include <vm/vm_phys.h>
  100 #include <vm/vm_pagequeue.h>
  101 #include <vm/swap_pager.h>
  102 #include <vm/vm_kern.h>
  103 #include <vm/vm_extern.h>
  104 #include <vm/vm_radix.h>
  105 #include <vm/vm_reserv.h>
  106 #include <vm/uma.h>
  107 
  108 static int old_msync;
  109 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
  110     "Use old (insecure) msync behavior");
  111 
  112 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
  113                     int pagerflags, int flags, boolean_t *clearobjflags,
  114                     boolean_t *eio);
  115 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
  116                     boolean_t *clearobjflags);
  117 static void     vm_object_qcollapse(vm_object_t object);
  118 static void     vm_object_vndeallocate(vm_object_t object);
  119 
  120 /*
  121  *      Virtual memory objects maintain the actual data
  122  *      associated with allocated virtual memory.  A given
  123  *      page of memory exists within exactly one object.
  124  *
  125  *      An object is only deallocated when all "references"
  126  *      are given up.  Only one "reference" to a given
  127  *      region of an object should be writeable.
  128  *
  129  *      Associated with each object is a list of all resident
  130  *      memory pages belonging to that object; this list is
  131  *      maintained by the "vm_page" module, and locked by the object's
  132  *      lock.
  133  *
  134  *      Each object also records a "pager" routine which is
  135  *      used to retrieve (and store) pages to the proper backing
  136  *      storage.  In addition, objects may be backed by other
  137  *      objects from which they were virtual-copied.
  138  *
  139  *      The only items within the object structure which are
  140  *      modified after time of creation are:
  141  *              reference count         locked by object's lock
  142  *              pager routine           locked by object's lock
  143  *
  144  */
  145 
  146 struct object_q vm_object_list;
  147 struct mtx vm_object_list_mtx;  /* lock for object list and count */
  148 
  149 struct vm_object kernel_object_store;
  150 
  151 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
  152     "VM object stats");
  153 
  154 static counter_u64_t object_collapses = EARLY_COUNTER;
  155 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
  156     &object_collapses,
  157     "VM object collapses");
  158 
  159 static counter_u64_t object_bypasses = EARLY_COUNTER;
  160 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
  161     &object_bypasses,
  162     "VM object bypasses");
  163 
  164 static void
  165 counter_startup(void)
  166 {
  167 
  168         object_collapses = counter_u64_alloc(M_WAITOK);
  169         object_bypasses = counter_u64_alloc(M_WAITOK);
  170 }
  171 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
  172 
  173 static uma_zone_t obj_zone;
  174 
  175 static int vm_object_zinit(void *mem, int size, int flags);
  176 
  177 #ifdef INVARIANTS
  178 static void vm_object_zdtor(void *mem, int size, void *arg);
  179 
  180 static void
  181 vm_object_zdtor(void *mem, int size, void *arg)
  182 {
  183         vm_object_t object;
  184 
  185         object = (vm_object_t)mem;
  186         KASSERT(object->ref_count == 0,
  187             ("object %p ref_count = %d", object, object->ref_count));
  188         KASSERT(TAILQ_EMPTY(&object->memq),
  189             ("object %p has resident pages in its memq", object));
  190         KASSERT(vm_radix_is_empty(&object->rtree),
  191             ("object %p has resident pages in its trie", object));
  192 #if VM_NRESERVLEVEL > 0
  193         KASSERT(LIST_EMPTY(&object->rvq),
  194             ("object %p has reservations",
  195             object));
  196 #endif
  197         KASSERT(object->paging_in_progress == 0,
  198             ("object %p paging_in_progress = %d",
  199             object, object->paging_in_progress));
  200         KASSERT(object->resident_page_count == 0,
  201             ("object %p resident_page_count = %d",
  202             object, object->resident_page_count));
  203         KASSERT(object->shadow_count == 0,
  204             ("object %p shadow_count = %d",
  205             object, object->shadow_count));
  206         KASSERT(object->type == OBJT_DEAD,
  207             ("object %p has non-dead type %d",
  208             object, object->type));
  209 }
  210 #endif
  211 
  212 static int
  213 vm_object_zinit(void *mem, int size, int flags)
  214 {
  215         vm_object_t object;
  216 
  217         object = (vm_object_t)mem;
  218         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
  219 
  220         /* These are true for any object that has been freed */
  221         object->type = OBJT_DEAD;
  222         object->ref_count = 0;
  223         vm_radix_init(&object->rtree);
  224         object->paging_in_progress = 0;
  225         object->resident_page_count = 0;
  226         object->shadow_count = 0;
  227         object->flags = OBJ_DEAD;
  228 
  229         mtx_lock(&vm_object_list_mtx);
  230         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
  231         mtx_unlock(&vm_object_list_mtx);
  232         return (0);
  233 }
  234 
  235 static void
  236 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
  237 {
  238 
  239         TAILQ_INIT(&object->memq);
  240         LIST_INIT(&object->shadow_head);
  241 
  242         object->type = type;
  243         if (type == OBJT_SWAP)
  244                 pctrie_init(&object->un_pager.swp.swp_blks);
  245 
  246         /*
  247          * Ensure that swap_pager_swapoff() iteration over object_list
  248          * sees up to date type and pctrie head if it observed
  249          * non-dead object.
  250          */
  251         atomic_thread_fence_rel();
  252 
  253         switch (type) {
  254         case OBJT_DEAD:
  255                 panic("_vm_object_allocate: can't create OBJT_DEAD");
  256         case OBJT_DEFAULT:
  257         case OBJT_SWAP:
  258                 object->flags = OBJ_ONEMAPPING;
  259                 break;
  260         case OBJT_DEVICE:
  261         case OBJT_SG:
  262                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
  263                 break;
  264         case OBJT_MGTDEVICE:
  265                 object->flags = OBJ_FICTITIOUS;
  266                 break;
  267         case OBJT_PHYS:
  268                 object->flags = OBJ_UNMANAGED;
  269                 break;
  270         case OBJT_VNODE:
  271                 object->flags = 0;
  272                 break;
  273         default:
  274                 panic("_vm_object_allocate: type %d is undefined", type);
  275         }
  276         object->size = size;
  277         object->domain.dr_policy = NULL;
  278         object->generation = 1;
  279         object->ref_count = 1;
  280         object->memattr = VM_MEMATTR_DEFAULT;
  281         object->cred = NULL;
  282         object->charge = 0;
  283         object->handle = NULL;
  284         object->backing_object = NULL;
  285         object->backing_object_offset = (vm_ooffset_t) 0;
  286 #if VM_NRESERVLEVEL > 0
  287         LIST_INIT(&object->rvq);
  288 #endif
  289         umtx_shm_object_init(object);
  290 }
  291 
  292 /*
  293  *      vm_object_init:
  294  *
  295  *      Initialize the VM objects module.
  296  */
  297 void
  298 vm_object_init(void)
  299 {
  300         TAILQ_INIT(&vm_object_list);
  301         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
  302         
  303         rw_init(&kernel_object->lock, "kernel vm object");
  304         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
  305             VM_MIN_KERNEL_ADDRESS), kernel_object);
  306 #if VM_NRESERVLEVEL > 0
  307         kernel_object->flags |= OBJ_COLORED;
  308         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  309 #endif
  310         kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
  311 
  312         /*
  313          * The lock portion of struct vm_object must be type stable due
  314          * to vm_pageout_fallback_object_lock locking a vm object
  315          * without holding any references to it.
  316          */
  317         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
  318 #ifdef INVARIANTS
  319             vm_object_zdtor,
  320 #else
  321             NULL,
  322 #endif
  323             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  324 
  325         vm_radix_zinit();
  326 }
  327 
  328 void
  329 vm_object_clear_flag(vm_object_t object, u_short bits)
  330 {
  331 
  332         VM_OBJECT_ASSERT_WLOCKED(object);
  333         object->flags &= ~bits;
  334 }
  335 
  336 /*
  337  *      Sets the default memory attribute for the specified object.  Pages
  338  *      that are allocated to this object are by default assigned this memory
  339  *      attribute.
  340  *
  341  *      Presently, this function must be called before any pages are allocated
  342  *      to the object.  In the future, this requirement may be relaxed for
  343  *      "default" and "swap" objects.
  344  */
  345 int
  346 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
  347 {
  348 
  349         VM_OBJECT_ASSERT_WLOCKED(object);
  350         switch (object->type) {
  351         case OBJT_DEFAULT:
  352         case OBJT_DEVICE:
  353         case OBJT_MGTDEVICE:
  354         case OBJT_PHYS:
  355         case OBJT_SG:
  356         case OBJT_SWAP:
  357         case OBJT_VNODE:
  358                 if (!TAILQ_EMPTY(&object->memq))
  359                         return (KERN_FAILURE);
  360                 break;
  361         case OBJT_DEAD:
  362                 return (KERN_INVALID_ARGUMENT);
  363         default:
  364                 panic("vm_object_set_memattr: object %p is of undefined type",
  365                     object);
  366         }
  367         object->memattr = memattr;
  368         return (KERN_SUCCESS);
  369 }
  370 
  371 void
  372 vm_object_pip_add(vm_object_t object, short i)
  373 {
  374 
  375         VM_OBJECT_ASSERT_WLOCKED(object);
  376         object->paging_in_progress += i;
  377 }
  378 
  379 void
  380 vm_object_pip_subtract(vm_object_t object, short i)
  381 {
  382 
  383         VM_OBJECT_ASSERT_WLOCKED(object);
  384         object->paging_in_progress -= i;
  385 }
  386 
  387 void
  388 vm_object_pip_wakeup(vm_object_t object)
  389 {
  390 
  391         VM_OBJECT_ASSERT_WLOCKED(object);
  392         object->paging_in_progress--;
  393         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  394                 vm_object_clear_flag(object, OBJ_PIPWNT);
  395                 wakeup(object);
  396         }
  397 }
  398 
  399 void
  400 vm_object_pip_wakeupn(vm_object_t object, short i)
  401 {
  402 
  403         VM_OBJECT_ASSERT_WLOCKED(object);
  404         if (i)
  405                 object->paging_in_progress -= i;
  406         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  407                 vm_object_clear_flag(object, OBJ_PIPWNT);
  408                 wakeup(object);
  409         }
  410 }
  411 
  412 void
  413 vm_object_pip_wait(vm_object_t object, char *waitid)
  414 {
  415 
  416         VM_OBJECT_ASSERT_WLOCKED(object);
  417         while (object->paging_in_progress) {
  418                 object->flags |= OBJ_PIPWNT;
  419                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
  420         }
  421 }
  422 
  423 /*
  424  *      vm_object_allocate:
  425  *
  426  *      Returns a new object with the given size.
  427  */
  428 vm_object_t
  429 vm_object_allocate(objtype_t type, vm_pindex_t size)
  430 {
  431         vm_object_t object;
  432 
  433         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
  434         _vm_object_allocate(type, size, object);
  435         return (object);
  436 }
  437 
  438 
  439 /*
  440  *      vm_object_reference:
  441  *
  442  *      Gets another reference to the given object.  Note: OBJ_DEAD
  443  *      objects can be referenced during final cleaning.
  444  */
  445 void
  446 vm_object_reference(vm_object_t object)
  447 {
  448         if (object == NULL)
  449                 return;
  450         VM_OBJECT_WLOCK(object);
  451         vm_object_reference_locked(object);
  452         VM_OBJECT_WUNLOCK(object);
  453 }
  454 
  455 /*
  456  *      vm_object_reference_locked:
  457  *
  458  *      Gets another reference to the given object.
  459  *
  460  *      The object must be locked.
  461  */
  462 void
  463 vm_object_reference_locked(vm_object_t object)
  464 {
  465         struct vnode *vp;
  466 
  467         VM_OBJECT_ASSERT_WLOCKED(object);
  468         object->ref_count++;
  469         if (object->type == OBJT_VNODE) {
  470                 vp = object->handle;
  471                 vref(vp);
  472         }
  473 }
  474 
  475 /*
  476  * Handle deallocating an object of type OBJT_VNODE.
  477  */
  478 static void
  479 vm_object_vndeallocate(vm_object_t object)
  480 {
  481         struct vnode *vp = (struct vnode *) object->handle;
  482 
  483         VM_OBJECT_ASSERT_WLOCKED(object);
  484         KASSERT(object->type == OBJT_VNODE,
  485             ("vm_object_vndeallocate: not a vnode object"));
  486         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
  487 #ifdef INVARIANTS
  488         if (object->ref_count == 0) {
  489                 vn_printf(vp, "vm_object_vndeallocate ");
  490                 panic("vm_object_vndeallocate: bad object reference count");
  491         }
  492 #endif
  493 
  494         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
  495                 umtx_shm_object_terminated(object);
  496 
  497         object->ref_count--;
  498 
  499         /* vrele may need the vnode lock. */
  500         VM_OBJECT_WUNLOCK(object);
  501         vrele(vp);
  502 }
  503 
  504 /*
  505  *      vm_object_deallocate:
  506  *
  507  *      Release a reference to the specified object,
  508  *      gained either through a vm_object_allocate
  509  *      or a vm_object_reference call.  When all references
  510  *      are gone, storage associated with this object
  511  *      may be relinquished.
  512  *
  513  *      No object may be locked.
  514  */
  515 void
  516 vm_object_deallocate(vm_object_t object)
  517 {
  518         vm_object_t temp;
  519 
  520         while (object != NULL) {
  521                 VM_OBJECT_WLOCK(object);
  522                 if (object->type == OBJT_VNODE) {
  523                         vm_object_vndeallocate(object);
  524                         return;
  525                 }
  526 
  527                 KASSERT(object->ref_count != 0,
  528                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
  529 
  530                 /*
  531                  * If the reference count goes to 0 we start calling
  532                  * vm_object_terminate() on the object chain.
  533                  * A ref count of 1 may be a special case depending on the
  534                  * shadow count being 0 or 1.
  535                  */
  536                 object->ref_count--;
  537                 if (object->ref_count > 1) {
  538                         VM_OBJECT_WUNLOCK(object);
  539                         return;
  540                 } else if (object->ref_count == 1) {
  541                         if (object->shadow_count == 0 &&
  542                             object->handle == NULL &&
  543                             (object->type == OBJT_DEFAULT ||
  544                             (object->type == OBJT_SWAP &&
  545                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
  546                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
  547                         } else if ((object->shadow_count == 1) &&
  548                             (object->handle == NULL) &&
  549                             (object->type == OBJT_DEFAULT ||
  550                              object->type == OBJT_SWAP)) {
  551                                 vm_object_t robject;
  552 
  553                                 robject = LIST_FIRST(&object->shadow_head);
  554                                 KASSERT(robject != NULL,
  555                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
  556                                          object->ref_count,
  557                                          object->shadow_count));
  558                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
  559                                     ("shadowed tmpfs v_object %p", object));
  560                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
  561                                         /*
  562                                          * Avoid a potential deadlock.
  563                                          */
  564                                         object->ref_count++;
  565                                         VM_OBJECT_WUNLOCK(object);
  566                                         /*
  567                                          * More likely than not the thread
  568                                          * holding robject's lock has lower
  569                                          * priority than the current thread.
  570                                          * Let the lower priority thread run.
  571                                          */
  572                                         pause("vmo_de", 1);
  573                                         continue;
  574                                 }
  575                                 /*
  576                                  * Collapse object into its shadow unless its
  577                                  * shadow is dead.  In that case, object will
  578                                  * be deallocated by the thread that is
  579                                  * deallocating its shadow.
  580                                  */
  581                                 if ((robject->flags & OBJ_DEAD) == 0 &&
  582                                     (robject->handle == NULL) &&
  583                                     (robject->type == OBJT_DEFAULT ||
  584                                      robject->type == OBJT_SWAP)) {
  585 
  586                                         robject->ref_count++;
  587 retry:
  588                                         if (robject->paging_in_progress) {
  589                                                 VM_OBJECT_WUNLOCK(object);
  590                                                 vm_object_pip_wait(robject,
  591                                                     "objde1");
  592                                                 temp = robject->backing_object;
  593                                                 if (object == temp) {
  594                                                         VM_OBJECT_WLOCK(object);
  595                                                         goto retry;
  596                                                 }
  597                                         } else if (object->paging_in_progress) {
  598                                                 VM_OBJECT_WUNLOCK(robject);
  599                                                 object->flags |= OBJ_PIPWNT;
  600                                                 VM_OBJECT_SLEEP(object, object,
  601                                                     PDROP | PVM, "objde2", 0);
  602                                                 VM_OBJECT_WLOCK(robject);
  603                                                 temp = robject->backing_object;
  604                                                 if (object == temp) {
  605                                                         VM_OBJECT_WLOCK(object);
  606                                                         goto retry;
  607                                                 }
  608                                         } else
  609                                                 VM_OBJECT_WUNLOCK(object);
  610 
  611                                         if (robject->ref_count == 1) {
  612                                                 robject->ref_count--;
  613                                                 object = robject;
  614                                                 goto doterm;
  615                                         }
  616                                         object = robject;
  617                                         vm_object_collapse(object);
  618                                         VM_OBJECT_WUNLOCK(object);
  619                                         continue;
  620                                 }
  621                                 VM_OBJECT_WUNLOCK(robject);
  622                         }
  623                         VM_OBJECT_WUNLOCK(object);
  624                         return;
  625                 }
  626 doterm:
  627                 umtx_shm_object_terminated(object);
  628                 temp = object->backing_object;
  629                 if (temp != NULL) {
  630                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
  631                             ("shadowed tmpfs v_object 2 %p", object));
  632                         VM_OBJECT_WLOCK(temp);
  633                         LIST_REMOVE(object, shadow_list);
  634                         temp->shadow_count--;
  635                         VM_OBJECT_WUNLOCK(temp);
  636                         object->backing_object = NULL;
  637                 }
  638                 /*
  639                  * Don't double-terminate, we could be in a termination
  640                  * recursion due to the terminate having to sync data
  641                  * to disk.
  642                  */
  643                 if ((object->flags & OBJ_DEAD) == 0)
  644                         vm_object_terminate(object);
  645                 else
  646                         VM_OBJECT_WUNLOCK(object);
  647                 object = temp;
  648         }
  649 }
  650 
  651 /*
  652  *      vm_object_destroy removes the object from the global object list
  653  *      and frees the space for the object.
  654  */
  655 void
  656 vm_object_destroy(vm_object_t object)
  657 {
  658 
  659         /*
  660          * Release the allocation charge.
  661          */
  662         if (object->cred != NULL) {
  663                 swap_release_by_cred(object->charge, object->cred);
  664                 object->charge = 0;
  665                 crfree(object->cred);
  666                 object->cred = NULL;
  667         }
  668 
  669         /*
  670          * Free the space for the object.
  671          */
  672         uma_zfree(obj_zone, object);
  673 }
  674 
  675 /*
  676  *      vm_object_terminate_pages removes any remaining pageable pages
  677  *      from the object and resets the object to an empty state.
  678  */
  679 static void
  680 vm_object_terminate_pages(vm_object_t object)
  681 {
  682         vm_page_t p, p_next;
  683         struct mtx *mtx;
  684 
  685         VM_OBJECT_ASSERT_WLOCKED(object);
  686 
  687         mtx = NULL;
  688 
  689         /*
  690          * Free any remaining pageable pages.  This also removes them from the
  691          * paging queues.  However, don't free wired pages, just remove them
  692          * from the object.  Rather than incrementally removing each page from
  693          * the object, the page and object are reset to any empty state. 
  694          */
  695         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
  696                 vm_page_assert_unbusied(p);
  697                 if ((object->flags & OBJ_UNMANAGED) == 0)
  698                         /*
  699                          * vm_page_free_prep() only needs the page
  700                          * lock for managed pages.
  701                          */
  702                         vm_page_change_lock(p, &mtx);
  703                 p->object = NULL;
  704                 if (vm_page_wired(p))
  705                         continue;
  706                 VM_CNT_INC(v_pfree);
  707                 vm_page_free(p);
  708         }
  709         if (mtx != NULL)
  710                 mtx_unlock(mtx);
  711 
  712         /*
  713          * If the object contained any pages, then reset it to an empty state.
  714          * None of the object's fields, including "resident_page_count", were
  715          * modified by the preceding loop.
  716          */
  717         if (object->resident_page_count != 0) {
  718                 vm_radix_reclaim_allnodes(&object->rtree);
  719                 TAILQ_INIT(&object->memq);
  720                 object->resident_page_count = 0;
  721                 if (object->type == OBJT_VNODE)
  722                         vdrop(object->handle);
  723         }
  724 }
  725 
  726 /*
  727  *      vm_object_terminate actually destroys the specified object, freeing
  728  *      up all previously used resources.
  729  *
  730  *      The object must be locked.
  731  *      This routine may block.
  732  */
  733 void
  734 vm_object_terminate(vm_object_t object)
  735 {
  736 
  737         VM_OBJECT_ASSERT_WLOCKED(object);
  738 
  739         /*
  740          * Make sure no one uses us.
  741          */
  742         vm_object_set_flag(object, OBJ_DEAD);
  743 
  744         /*
  745          * wait for the pageout daemon to be done with the object
  746          */
  747         vm_object_pip_wait(object, "objtrm");
  748 
  749         KASSERT(!object->paging_in_progress,
  750                 ("vm_object_terminate: pageout in progress"));
  751 
  752         /*
  753          * Clean and free the pages, as appropriate. All references to the
  754          * object are gone, so we don't need to lock it.
  755          */
  756         if (object->type == OBJT_VNODE) {
  757                 struct vnode *vp = (struct vnode *)object->handle;
  758 
  759                 /*
  760                  * Clean pages and flush buffers.
  761                  */
  762                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  763                 VM_OBJECT_WUNLOCK(object);
  764 
  765                 vinvalbuf(vp, V_SAVE, 0, 0);
  766 
  767                 BO_LOCK(&vp->v_bufobj);
  768                 vp->v_bufobj.bo_flag |= BO_DEAD;
  769                 BO_UNLOCK(&vp->v_bufobj);
  770 
  771                 VM_OBJECT_WLOCK(object);
  772         }
  773 
  774         KASSERT(object->ref_count == 0, 
  775                 ("vm_object_terminate: object with references, ref_count=%d",
  776                 object->ref_count));
  777 
  778         if ((object->flags & OBJ_PG_DTOR) == 0)
  779                 vm_object_terminate_pages(object);
  780 
  781 #if VM_NRESERVLEVEL > 0
  782         if (__predict_false(!LIST_EMPTY(&object->rvq)))
  783                 vm_reserv_break_all(object);
  784 #endif
  785 
  786         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
  787             object->type == OBJT_SWAP,
  788             ("%s: non-swap obj %p has cred", __func__, object));
  789 
  790         /*
  791          * Let the pager know object is dead.
  792          */
  793         vm_pager_deallocate(object);
  794         VM_OBJECT_WUNLOCK(object);
  795 
  796         vm_object_destroy(object);
  797 }
  798 
  799 /*
  800  * Make the page read-only so that we can clear the object flags.  However, if
  801  * this is a nosync mmap then the object is likely to stay dirty so do not
  802  * mess with the page and do not clear the object flags.  Returns TRUE if the
  803  * page should be flushed, and FALSE otherwise.
  804  */
  805 static boolean_t
  806 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
  807 {
  808 
  809         /*
  810          * If we have been asked to skip nosync pages and this is a
  811          * nosync page, skip it.  Note that the object flags were not
  812          * cleared in this case so we do not have to set them.
  813          */
  814         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
  815                 *clearobjflags = FALSE;
  816                 return (FALSE);
  817         } else {
  818                 pmap_remove_write(p);
  819                 return (p->dirty != 0);
  820         }
  821 }
  822 
  823 /*
  824  *      vm_object_page_clean
  825  *
  826  *      Clean all dirty pages in the specified range of object.  Leaves page 
  827  *      on whatever queue it is currently on.   If NOSYNC is set then do not
  828  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
  829  *      leaving the object dirty.
  830  *
  831  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
  832  *      synchronous clustering mode implementation.
  833  *
  834  *      Odd semantics: if start == end, we clean everything.
  835  *
  836  *      The object must be locked.
  837  *
  838  *      Returns FALSE if some page from the range was not written, as
  839  *      reported by the pager, and TRUE otherwise.
  840  */
  841 boolean_t
  842 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
  843     int flags)
  844 {
  845         vm_page_t np, p;
  846         vm_pindex_t pi, tend, tstart;
  847         int curgeneration, n, pagerflags;
  848         boolean_t clearobjflags, eio, res;
  849 
  850         VM_OBJECT_ASSERT_WLOCKED(object);
  851 
  852         /*
  853          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
  854          * objects.  The check below prevents the function from
  855          * operating on non-vnode objects.
  856          */
  857         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
  858             object->resident_page_count == 0)
  859                 return (TRUE);
  860 
  861         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
  862             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
  863         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
  864 
  865         tstart = OFF_TO_IDX(start);
  866         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
  867         clearobjflags = tstart == 0 && tend >= object->size;
  868         res = TRUE;
  869 
  870 rescan:
  871         curgeneration = object->generation;
  872 
  873         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
  874                 pi = p->pindex;
  875                 if (pi >= tend)
  876                         break;
  877                 np = TAILQ_NEXT(p, listq);
  878                 if (p->valid == 0)
  879                         continue;
  880                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
  881                         if (object->generation != curgeneration) {
  882                                 if ((flags & OBJPC_SYNC) != 0)
  883                                         goto rescan;
  884                                 else
  885                                         clearobjflags = FALSE;
  886                         }
  887                         np = vm_page_find_least(object, pi);
  888                         continue;
  889                 }
  890                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
  891                         continue;
  892 
  893                 n = vm_object_page_collect_flush(object, p, pagerflags,
  894                     flags, &clearobjflags, &eio);
  895                 if (eio) {
  896                         res = FALSE;
  897                         clearobjflags = FALSE;
  898                 }
  899                 if (object->generation != curgeneration) {
  900                         if ((flags & OBJPC_SYNC) != 0)
  901                                 goto rescan;
  902                         else
  903                                 clearobjflags = FALSE;
  904                 }
  905 
  906                 /*
  907                  * If the VOP_PUTPAGES() did a truncated write, so
  908                  * that even the first page of the run is not fully
  909                  * written, vm_pageout_flush() returns 0 as the run
  910                  * length.  Since the condition that caused truncated
  911                  * write may be permanent, e.g. exhausted free space,
  912                  * accepting n == 0 would cause an infinite loop.
  913                  *
  914                  * Forwarding the iterator leaves the unwritten page
  915                  * behind, but there is not much we can do there if
  916                  * filesystem refuses to write it.
  917                  */
  918                 if (n == 0) {
  919                         n = 1;
  920                         clearobjflags = FALSE;
  921                 }
  922                 np = vm_page_find_least(object, pi + n);
  923         }
  924 #if 0
  925         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
  926 #endif
  927 
  928         if (clearobjflags)
  929                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
  930         return (res);
  931 }
  932 
  933 static int
  934 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
  935     int flags, boolean_t *clearobjflags, boolean_t *eio)
  936 {
  937         vm_page_t ma[vm_pageout_page_count], p_first, tp;
  938         int count, i, mreq, runlen;
  939 
  940         vm_page_lock_assert(p, MA_NOTOWNED);
  941         VM_OBJECT_ASSERT_WLOCKED(object);
  942 
  943         count = 1;
  944         mreq = 0;
  945 
  946         for (tp = p; count < vm_pageout_page_count; count++) {
  947                 tp = vm_page_next(tp);
  948                 if (tp == NULL || vm_page_busied(tp))
  949                         break;
  950                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  951                         break;
  952         }
  953 
  954         for (p_first = p; count < vm_pageout_page_count; count++) {
  955                 tp = vm_page_prev(p_first);
  956                 if (tp == NULL || vm_page_busied(tp))
  957                         break;
  958                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  959                         break;
  960                 p_first = tp;
  961                 mreq++;
  962         }
  963 
  964         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
  965                 ma[i] = tp;
  966 
  967         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
  968         return (runlen);
  969 }
  970 
  971 /*
  972  * Note that there is absolutely no sense in writing out
  973  * anonymous objects, so we track down the vnode object
  974  * to write out.
  975  * We invalidate (remove) all pages from the address space
  976  * for semantic correctness.
  977  *
  978  * If the backing object is a device object with unmanaged pages, then any
  979  * mappings to the specified range of pages must be removed before this
  980  * function is called.
  981  *
  982  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
  983  * may start out with a NULL object.
  984  */
  985 boolean_t
  986 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
  987     boolean_t syncio, boolean_t invalidate)
  988 {
  989         vm_object_t backing_object;
  990         struct vnode *vp;
  991         struct mount *mp;
  992         int error, flags, fsync_after;
  993         boolean_t res;
  994 
  995         if (object == NULL)
  996                 return (TRUE);
  997         res = TRUE;
  998         error = 0;
  999         VM_OBJECT_WLOCK(object);
 1000         while ((backing_object = object->backing_object) != NULL) {
 1001                 VM_OBJECT_WLOCK(backing_object);
 1002                 offset += object->backing_object_offset;
 1003                 VM_OBJECT_WUNLOCK(object);
 1004                 object = backing_object;
 1005                 if (object->size < OFF_TO_IDX(offset + size))
 1006                         size = IDX_TO_OFF(object->size) - offset;
 1007         }
 1008         /*
 1009          * Flush pages if writing is allowed, invalidate them
 1010          * if invalidation requested.  Pages undergoing I/O
 1011          * will be ignored by vm_object_page_remove().
 1012          *
 1013          * We cannot lock the vnode and then wait for paging
 1014          * to complete without deadlocking against vm_fault.
 1015          * Instead we simply call vm_object_page_remove() and
 1016          * allow it to block internally on a page-by-page
 1017          * basis when it encounters pages undergoing async
 1018          * I/O.
 1019          */
 1020         if (object->type == OBJT_VNODE &&
 1021             (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
 1022             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
 1023                 VM_OBJECT_WUNLOCK(object);
 1024                 (void) vn_start_write(vp, &mp, V_WAIT);
 1025                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1026                 if (syncio && !invalidate && offset == 0 &&
 1027                     atop(size) == object->size) {
 1028                         /*
 1029                          * If syncing the whole mapping of the file,
 1030                          * it is faster to schedule all the writes in
 1031                          * async mode, also allowing the clustering,
 1032                          * and then wait for i/o to complete.
 1033                          */
 1034                         flags = 0;
 1035                         fsync_after = TRUE;
 1036                 } else {
 1037                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
 1038                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
 1039                         fsync_after = FALSE;
 1040                 }
 1041                 VM_OBJECT_WLOCK(object);
 1042                 res = vm_object_page_clean(object, offset, offset + size,
 1043                     flags);
 1044                 VM_OBJECT_WUNLOCK(object);
 1045                 if (fsync_after)
 1046                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
 1047                 VOP_UNLOCK(vp, 0);
 1048                 vn_finished_write(mp);
 1049                 if (error != 0)
 1050                         res = FALSE;
 1051                 VM_OBJECT_WLOCK(object);
 1052         }
 1053         if ((object->type == OBJT_VNODE ||
 1054              object->type == OBJT_DEVICE) && invalidate) {
 1055                 if (object->type == OBJT_DEVICE)
 1056                         /*
 1057                          * The option OBJPR_NOTMAPPED must be passed here
 1058                          * because vm_object_page_remove() cannot remove
 1059                          * unmanaged mappings.
 1060                          */
 1061                         flags = OBJPR_NOTMAPPED;
 1062                 else if (old_msync)
 1063                         flags = 0;
 1064                 else
 1065                         flags = OBJPR_CLEANONLY;
 1066                 vm_object_page_remove(object, OFF_TO_IDX(offset),
 1067                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
 1068         }
 1069         VM_OBJECT_WUNLOCK(object);
 1070         return (res);
 1071 }
 1072 
 1073 /*
 1074  * Determine whether the given advice can be applied to the object.  Advice is
 1075  * not applied to unmanaged pages since they never belong to page queues, and
 1076  * since MADV_FREE is destructive, it can apply only to anonymous pages that
 1077  * have been mapped at most once.
 1078  */
 1079 static bool
 1080 vm_object_advice_applies(vm_object_t object, int advice)
 1081 {
 1082 
 1083         if ((object->flags & OBJ_UNMANAGED) != 0)
 1084                 return (false);
 1085         if (advice != MADV_FREE)
 1086                 return (true);
 1087         return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
 1088             (object->flags & OBJ_ONEMAPPING) != 0);
 1089 }
 1090 
 1091 static void
 1092 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
 1093     vm_size_t size)
 1094 {
 1095 
 1096         if (advice == MADV_FREE && object->type == OBJT_SWAP)
 1097                 swap_pager_freespace(object, pindex, size);
 1098 }
 1099 
 1100 /*
 1101  *      vm_object_madvise:
 1102  *
 1103  *      Implements the madvise function at the object/page level.
 1104  *
 1105  *      MADV_WILLNEED   (any object)
 1106  *
 1107  *          Activate the specified pages if they are resident.
 1108  *
 1109  *      MADV_DONTNEED   (any object)
 1110  *
 1111  *          Deactivate the specified pages if they are resident.
 1112  *
 1113  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
 1114  *                       OBJ_ONEMAPPING only)
 1115  *
 1116  *          Deactivate and clean the specified pages if they are
 1117  *          resident.  This permits the process to reuse the pages
 1118  *          without faulting or the kernel to reclaim the pages
 1119  *          without I/O.
 1120  */
 1121 void
 1122 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
 1123     int advice)
 1124 {
 1125         vm_pindex_t tpindex;
 1126         vm_object_t backing_object, tobject;
 1127         vm_page_t m, tm;
 1128 
 1129         if (object == NULL)
 1130                 return;
 1131 
 1132 relookup:
 1133         VM_OBJECT_WLOCK(object);
 1134         if (!vm_object_advice_applies(object, advice)) {
 1135                 VM_OBJECT_WUNLOCK(object);
 1136                 return;
 1137         }
 1138         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
 1139                 tobject = object;
 1140 
 1141                 /*
 1142                  * If the next page isn't resident in the top-level object, we
 1143                  * need to search the shadow chain.  When applying MADV_FREE, we
 1144                  * take care to release any swap space used to store
 1145                  * non-resident pages.
 1146                  */
 1147                 if (m == NULL || pindex < m->pindex) {
 1148                         /*
 1149                          * Optimize a common case: if the top-level object has
 1150                          * no backing object, we can skip over the non-resident
 1151                          * range in constant time.
 1152                          */
 1153                         if (object->backing_object == NULL) {
 1154                                 tpindex = (m != NULL && m->pindex < end) ?
 1155                                     m->pindex : end;
 1156                                 vm_object_madvise_freespace(object, advice,
 1157                                     pindex, tpindex - pindex);
 1158                                 if ((pindex = tpindex) == end)
 1159                                         break;
 1160                                 goto next_page;
 1161                         }
 1162 
 1163                         tpindex = pindex;
 1164                         do {
 1165                                 vm_object_madvise_freespace(tobject, advice,
 1166                                     tpindex, 1);
 1167                                 /*
 1168                                  * Prepare to search the next object in the
 1169                                  * chain.
 1170                                  */
 1171                                 backing_object = tobject->backing_object;
 1172                                 if (backing_object == NULL)
 1173                                         goto next_pindex;
 1174                                 VM_OBJECT_WLOCK(backing_object);
 1175                                 tpindex +=
 1176                                     OFF_TO_IDX(tobject->backing_object_offset);
 1177                                 if (tobject != object)
 1178                                         VM_OBJECT_WUNLOCK(tobject);
 1179                                 tobject = backing_object;
 1180                                 if (!vm_object_advice_applies(tobject, advice))
 1181                                         goto next_pindex;
 1182                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
 1183                             NULL);
 1184                 } else {
 1185 next_page:
 1186                         tm = m;
 1187                         m = TAILQ_NEXT(m, listq);
 1188                 }
 1189 
 1190                 /*
 1191                  * If the page is not in a normal state, skip it.
 1192                  */
 1193                 if (tm->valid != VM_PAGE_BITS_ALL)
 1194                         goto next_pindex;
 1195                 vm_page_lock(tm);
 1196                 if (vm_page_held(tm)) {
 1197                         vm_page_unlock(tm);
 1198                         goto next_pindex;
 1199                 }
 1200                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
 1201                     ("vm_object_madvise: page %p is fictitious", tm));
 1202                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
 1203                     ("vm_object_madvise: page %p is not managed", tm));
 1204                 if (vm_page_busied(tm)) {
 1205                         if (object != tobject)
 1206                                 VM_OBJECT_WUNLOCK(tobject);
 1207                         VM_OBJECT_WUNLOCK(object);
 1208                         if (advice == MADV_WILLNEED) {
 1209                                 /*
 1210                                  * Reference the page before unlocking and
 1211                                  * sleeping so that the page daemon is less
 1212                                  * likely to reclaim it.
 1213                                  */
 1214                                 vm_page_aflag_set(tm, PGA_REFERENCED);
 1215                         }
 1216                         vm_page_busy_sleep(tm, "madvpo", false);
 1217                         goto relookup;
 1218                 }
 1219                 vm_page_advise(tm, advice);
 1220                 vm_page_unlock(tm);
 1221                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
 1222 next_pindex:
 1223                 if (tobject != object)
 1224                         VM_OBJECT_WUNLOCK(tobject);
 1225         }
 1226         VM_OBJECT_WUNLOCK(object);
 1227 }
 1228 
 1229 /*
 1230  *      vm_object_shadow:
 1231  *
 1232  *      Create a new object which is backed by the
 1233  *      specified existing object range.  The source
 1234  *      object reference is deallocated.
 1235  *
 1236  *      The new object and offset into that object
 1237  *      are returned in the source parameters.
 1238  */
 1239 void
 1240 vm_object_shadow(
 1241         vm_object_t *object,    /* IN/OUT */
 1242         vm_ooffset_t *offset,   /* IN/OUT */
 1243         vm_size_t length)
 1244 {
 1245         vm_object_t source;
 1246         vm_object_t result;
 1247 
 1248         source = *object;
 1249 
 1250         /*
 1251          * Don't create the new object if the old object isn't shared.
 1252          */
 1253         if (source != NULL) {
 1254                 VM_OBJECT_WLOCK(source);
 1255                 if (source->ref_count == 1 &&
 1256                     source->handle == NULL &&
 1257                     (source->type == OBJT_DEFAULT ||
 1258                      source->type == OBJT_SWAP)) {
 1259                         VM_OBJECT_WUNLOCK(source);
 1260                         return;
 1261                 }
 1262                 VM_OBJECT_WUNLOCK(source);
 1263         }
 1264 
 1265         /*
 1266          * Allocate a new object with the given length.
 1267          */
 1268         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
 1269 
 1270         /*
 1271          * The new object shadows the source object, adding a reference to it.
 1272          * Our caller changes his reference to point to the new object,
 1273          * removing a reference to the source object.  Net result: no change
 1274          * of reference count.
 1275          *
 1276          * Try to optimize the result object's page color when shadowing
 1277          * in order to maintain page coloring consistency in the combined 
 1278          * shadowed object.
 1279          */
 1280         result->backing_object = source;
 1281         /*
 1282          * Store the offset into the source object, and fix up the offset into
 1283          * the new object.
 1284          */
 1285         result->backing_object_offset = *offset;
 1286         if (source != NULL) {
 1287                 VM_OBJECT_WLOCK(source);
 1288                 result->domain = source->domain;
 1289                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
 1290                 source->shadow_count++;
 1291 #if VM_NRESERVLEVEL > 0
 1292                 result->flags |= source->flags & OBJ_COLORED;
 1293                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
 1294                     ((1 << (VM_NFREEORDER - 1)) - 1);
 1295 #endif
 1296                 VM_OBJECT_WUNLOCK(source);
 1297         }
 1298 
 1299 
 1300         /*
 1301          * Return the new things
 1302          */
 1303         *offset = 0;
 1304         *object = result;
 1305 }
 1306 
 1307 /*
 1308  *      vm_object_split:
 1309  *
 1310  * Split the pages in a map entry into a new object.  This affords
 1311  * easier removal of unused pages, and keeps object inheritance from
 1312  * being a negative impact on memory usage.
 1313  */
 1314 void
 1315 vm_object_split(vm_map_entry_t entry)
 1316 {
 1317         vm_page_t m, m_busy, m_next;
 1318         vm_object_t orig_object, new_object, source;
 1319         vm_pindex_t idx, offidxstart;
 1320         vm_size_t size;
 1321 
 1322         orig_object = entry->object.vm_object;
 1323         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
 1324                 return;
 1325         if (orig_object->ref_count <= 1)
 1326                 return;
 1327         VM_OBJECT_WUNLOCK(orig_object);
 1328 
 1329         offidxstart = OFF_TO_IDX(entry->offset);
 1330         size = atop(entry->end - entry->start);
 1331 
 1332         /*
 1333          * If swap_pager_copy() is later called, it will convert new_object
 1334          * into a swap object.
 1335          */
 1336         new_object = vm_object_allocate(OBJT_DEFAULT, size);
 1337 
 1338         /*
 1339          * At this point, the new object is still private, so the order in
 1340          * which the original and new objects are locked does not matter.
 1341          */
 1342         VM_OBJECT_WLOCK(new_object);
 1343         VM_OBJECT_WLOCK(orig_object);
 1344         new_object->domain = orig_object->domain;
 1345         source = orig_object->backing_object;
 1346         if (source != NULL) {
 1347                 VM_OBJECT_WLOCK(source);
 1348                 if ((source->flags & OBJ_DEAD) != 0) {
 1349                         VM_OBJECT_WUNLOCK(source);
 1350                         VM_OBJECT_WUNLOCK(orig_object);
 1351                         VM_OBJECT_WUNLOCK(new_object);
 1352                         vm_object_deallocate(new_object);
 1353                         VM_OBJECT_WLOCK(orig_object);
 1354                         return;
 1355                 }
 1356                 LIST_INSERT_HEAD(&source->shadow_head,
 1357                                   new_object, shadow_list);
 1358                 source->shadow_count++;
 1359                 vm_object_reference_locked(source);     /* for new_object */
 1360                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1361                 VM_OBJECT_WUNLOCK(source);
 1362                 new_object->backing_object_offset = 
 1363                         orig_object->backing_object_offset + entry->offset;
 1364                 new_object->backing_object = source;
 1365         }
 1366         if (orig_object->cred != NULL) {
 1367                 new_object->cred = orig_object->cred;
 1368                 crhold(orig_object->cred);
 1369                 new_object->charge = ptoa(size);
 1370                 KASSERT(orig_object->charge >= ptoa(size),
 1371                     ("orig_object->charge < 0"));
 1372                 orig_object->charge -= ptoa(size);
 1373         }
 1374         m_busy = NULL;
 1375 #ifdef INVARIANTS
 1376         idx = 0;
 1377 #endif
 1378 retry:
 1379         m = vm_page_find_least(orig_object, offidxstart);
 1380         KASSERT(m == NULL || idx <= m->pindex - offidxstart,
 1381             ("%s: object %p was repopulated", __func__, orig_object));
 1382         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
 1383             m = m_next) {
 1384                 m_next = TAILQ_NEXT(m, listq);
 1385 
 1386                 /*
 1387                  * We must wait for pending I/O to complete before we can
 1388                  * rename the page.
 1389                  *
 1390                  * We do not have to VM_PROT_NONE the page as mappings should
 1391                  * not be changed by this operation.
 1392                  */
 1393                 if (vm_page_busied(m)) {
 1394                         VM_OBJECT_WUNLOCK(new_object);
 1395                         vm_page_lock(m);
 1396                         VM_OBJECT_WUNLOCK(orig_object);
 1397                         vm_page_busy_sleep(m, "spltwt", false);
 1398                         VM_OBJECT_WLOCK(orig_object);
 1399                         VM_OBJECT_WLOCK(new_object);
 1400                         goto retry;
 1401                 }
 1402 
 1403                 /* vm_page_rename() will dirty the page. */
 1404                 if (vm_page_rename(m, new_object, idx)) {
 1405                         VM_OBJECT_WUNLOCK(new_object);
 1406                         VM_OBJECT_WUNLOCK(orig_object);
 1407                         vm_radix_wait();
 1408                         VM_OBJECT_WLOCK(orig_object);
 1409                         VM_OBJECT_WLOCK(new_object);
 1410                         goto retry;
 1411                 }
 1412 #if VM_NRESERVLEVEL > 0
 1413                 /*
 1414                  * If some of the reservation's allocated pages remain with
 1415                  * the original object, then transferring the reservation to
 1416                  * the new object is neither particularly beneficial nor
 1417                  * particularly harmful as compared to leaving the reservation
 1418                  * with the original object.  If, however, all of the
 1419                  * reservation's allocated pages are transferred to the new
 1420                  * object, then transferring the reservation is typically
 1421                  * beneficial.  Determining which of these two cases applies
 1422                  * would be more costly than unconditionally renaming the
 1423                  * reservation.
 1424                  */
 1425                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
 1426 #endif
 1427 
 1428                 /*
 1429                  * orig_object's type may change while sleeping, so keep track
 1430                  * of the beginning of the busied range.
 1431                  */
 1432                 if (orig_object->type == OBJT_SWAP) {
 1433                         vm_page_xbusy(m);
 1434                         if (m_busy == NULL)
 1435                                 m_busy = m;
 1436                 }
 1437         }
 1438         if (orig_object->type == OBJT_SWAP) {
 1439                 /*
 1440                  * swap_pager_copy() can sleep, in which case the orig_object's
 1441                  * and new_object's locks are released and reacquired. 
 1442                  */
 1443                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
 1444                 if (m_busy != NULL)
 1445                         TAILQ_FOREACH_FROM(m_busy, &new_object->memq, listq)
 1446                                 vm_page_xunbusy(m_busy);
 1447         }
 1448         VM_OBJECT_WUNLOCK(orig_object);
 1449         VM_OBJECT_WUNLOCK(new_object);
 1450         entry->object.vm_object = new_object;
 1451         entry->offset = 0LL;
 1452         vm_object_deallocate(orig_object);
 1453         VM_OBJECT_WLOCK(new_object);
 1454 }
 1455 
 1456 #define OBSC_COLLAPSE_NOWAIT    0x0002
 1457 #define OBSC_COLLAPSE_WAIT      0x0004
 1458 
 1459 static vm_page_t
 1460 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
 1461     int op)
 1462 {
 1463         vm_object_t backing_object;
 1464 
 1465         VM_OBJECT_ASSERT_WLOCKED(object);
 1466         backing_object = object->backing_object;
 1467         VM_OBJECT_ASSERT_WLOCKED(backing_object);
 1468 
 1469         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
 1470         KASSERT(p == NULL || p->object == object || p->object == backing_object,
 1471             ("invalid ownership %p %p %p", p, object, backing_object));
 1472         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
 1473                 return (next);
 1474         if (p != NULL)
 1475                 vm_page_lock(p);
 1476         VM_OBJECT_WUNLOCK(object);
 1477         VM_OBJECT_WUNLOCK(backing_object);
 1478         /* The page is only NULL when rename fails. */
 1479         if (p == NULL)
 1480                 vm_radix_wait();
 1481         else
 1482                 vm_page_busy_sleep(p, "vmocol", false);
 1483         VM_OBJECT_WLOCK(object);
 1484         VM_OBJECT_WLOCK(backing_object);
 1485         return (TAILQ_FIRST(&backing_object->memq));
 1486 }
 1487 
 1488 static bool
 1489 vm_object_scan_all_shadowed(vm_object_t object)
 1490 {
 1491         vm_object_t backing_object;
 1492         vm_page_t p, pp;
 1493         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
 1494 
 1495         VM_OBJECT_ASSERT_WLOCKED(object);
 1496         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
 1497 
 1498         backing_object = object->backing_object;
 1499 
 1500         if (backing_object->type != OBJT_DEFAULT &&
 1501             backing_object->type != OBJT_SWAP)
 1502                 return (false);
 1503 
 1504         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1505         p = vm_page_find_least(backing_object, pi);
 1506         ps = swap_pager_find_least(backing_object, pi);
 1507 
 1508         /*
 1509          * Only check pages inside the parent object's range and
 1510          * inside the parent object's mapping of the backing object.
 1511          */
 1512         for (;; pi++) {
 1513                 if (p != NULL && p->pindex < pi)
 1514                         p = TAILQ_NEXT(p, listq);
 1515                 if (ps < pi)
 1516                         ps = swap_pager_find_least(backing_object, pi);
 1517                 if (p == NULL && ps >= backing_object->size)
 1518                         break;
 1519                 else if (p == NULL)
 1520                         pi = ps;
 1521                 else
 1522                         pi = MIN(p->pindex, ps);
 1523 
 1524                 new_pindex = pi - backing_offset_index;
 1525                 if (new_pindex >= object->size)
 1526                         break;
 1527 
 1528                 /*
 1529                  * See if the parent has the page or if the parent's object
 1530                  * pager has the page.  If the parent has the page but the page
 1531                  * is not valid, the parent's object pager must have the page.
 1532                  *
 1533                  * If this fails, the parent does not completely shadow the
 1534                  * object and we might as well give up now.
 1535                  */
 1536                 pp = vm_page_lookup(object, new_pindex);
 1537                 if ((pp == NULL || pp->valid == 0) &&
 1538                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
 1539                         return (false);
 1540         }
 1541         return (true);
 1542 }
 1543 
 1544 static bool
 1545 vm_object_collapse_scan(vm_object_t object, int op)
 1546 {
 1547         vm_object_t backing_object;
 1548         vm_page_t next, p, pp;
 1549         vm_pindex_t backing_offset_index, new_pindex;
 1550 
 1551         VM_OBJECT_ASSERT_WLOCKED(object);
 1552         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
 1553 
 1554         backing_object = object->backing_object;
 1555         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1556 
 1557         /*
 1558          * Initial conditions
 1559          */
 1560         if ((op & OBSC_COLLAPSE_WAIT) != 0)
 1561                 vm_object_set_flag(backing_object, OBJ_DEAD);
 1562 
 1563         /*
 1564          * Our scan
 1565          */
 1566         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
 1567                 next = TAILQ_NEXT(p, listq);
 1568                 new_pindex = p->pindex - backing_offset_index;
 1569 
 1570                 /*
 1571                  * Check for busy page
 1572                  */
 1573                 if (vm_page_busied(p)) {
 1574                         next = vm_object_collapse_scan_wait(object, p, next, op);
 1575                         continue;
 1576                 }
 1577 
 1578                 KASSERT(p->object == backing_object,
 1579                     ("vm_object_collapse_scan: object mismatch"));
 1580 
 1581                 if (p->pindex < backing_offset_index ||
 1582                     new_pindex >= object->size) {
 1583                         if (backing_object->type == OBJT_SWAP)
 1584                                 swap_pager_freespace(backing_object, p->pindex,
 1585                                     1);
 1586 
 1587                         /*
 1588                          * Page is out of the parent object's range, we can
 1589                          * simply destroy it.
 1590                          */
 1591                         vm_page_lock(p);
 1592                         KASSERT(!pmap_page_is_mapped(p),
 1593                             ("freeing mapped page %p", p));
 1594                         if (vm_page_remove(p))
 1595                                 vm_page_free(p);
 1596                         vm_page_unlock(p);
 1597                         continue;
 1598                 }
 1599 
 1600                 pp = vm_page_lookup(object, new_pindex);
 1601                 if (pp != NULL && vm_page_busied(pp)) {
 1602                         /*
 1603                          * The page in the parent is busy and possibly not
 1604                          * (yet) valid.  Until its state is finalized by the
 1605                          * busy bit owner, we can't tell whether it shadows the
 1606                          * original page.  Therefore, we must either skip it
 1607                          * and the original (backing_object) page or wait for
 1608                          * its state to be finalized.
 1609                          *
 1610                          * This is due to a race with vm_fault() where we must
 1611                          * unbusy the original (backing_obj) page before we can
 1612                          * (re)lock the parent.  Hence we can get here.
 1613                          */
 1614                         next = vm_object_collapse_scan_wait(object, pp, next,
 1615                             op);
 1616                         continue;
 1617                 }
 1618 
 1619                 KASSERT(pp == NULL || pp->valid != 0,
 1620                     ("unbusy invalid page %p", pp));
 1621 
 1622                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
 1623                         NULL)) {
 1624                         /*
 1625                          * The page already exists in the parent OR swap exists
 1626                          * for this location in the parent.  Leave the parent's
 1627                          * page alone.  Destroy the original page from the
 1628                          * backing object.
 1629                          */
 1630                         if (backing_object->type == OBJT_SWAP)
 1631                                 swap_pager_freespace(backing_object, p->pindex,
 1632                                     1);
 1633                         vm_page_lock(p);
 1634                         KASSERT(!pmap_page_is_mapped(p),
 1635                             ("freeing mapped page %p", p));
 1636                         if (vm_page_remove(p))
 1637                                 vm_page_free(p);
 1638                         vm_page_unlock(p);
 1639                         continue;
 1640                 }
 1641 
 1642                 /*
 1643                  * Page does not exist in parent, rename the page from the
 1644                  * backing object to the main object.
 1645                  *
 1646                  * If the page was mapped to a process, it can remain mapped
 1647                  * through the rename.  vm_page_rename() will dirty the page.
 1648                  */
 1649                 if (vm_page_rename(p, object, new_pindex)) {
 1650                         next = vm_object_collapse_scan_wait(object, NULL, next,
 1651                             op);
 1652                         continue;
 1653                 }
 1654 
 1655                 /* Use the old pindex to free the right page. */
 1656                 if (backing_object->type == OBJT_SWAP)
 1657                         swap_pager_freespace(backing_object,
 1658                             new_pindex + backing_offset_index, 1);
 1659 
 1660 #if VM_NRESERVLEVEL > 0
 1661                 /*
 1662                  * Rename the reservation.
 1663                  */
 1664                 vm_reserv_rename(p, object, backing_object,
 1665                     backing_offset_index);
 1666 #endif
 1667         }
 1668         return (true);
 1669 }
 1670 
 1671 
 1672 /*
 1673  * this version of collapse allows the operation to occur earlier and
 1674  * when paging_in_progress is true for an object...  This is not a complete
 1675  * operation, but should plug 99.9% of the rest of the leaks.
 1676  */
 1677 static void
 1678 vm_object_qcollapse(vm_object_t object)
 1679 {
 1680         vm_object_t backing_object = object->backing_object;
 1681 
 1682         VM_OBJECT_ASSERT_WLOCKED(object);
 1683         VM_OBJECT_ASSERT_WLOCKED(backing_object);
 1684 
 1685         if (backing_object->ref_count != 1)
 1686                 return;
 1687 
 1688         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
 1689 }
 1690 
 1691 /*
 1692  *      vm_object_collapse:
 1693  *
 1694  *      Collapse an object with the object backing it.
 1695  *      Pages in the backing object are moved into the
 1696  *      parent, and the backing object is deallocated.
 1697  */
 1698 void
 1699 vm_object_collapse(vm_object_t object)
 1700 {
 1701         vm_object_t backing_object, new_backing_object;
 1702 
 1703         VM_OBJECT_ASSERT_WLOCKED(object);
 1704 
 1705         while (TRUE) {
 1706                 /*
 1707                  * Verify that the conditions are right for collapse:
 1708                  *
 1709                  * The object exists and the backing object exists.
 1710                  */
 1711                 if ((backing_object = object->backing_object) == NULL)
 1712                         break;
 1713 
 1714                 /*
 1715                  * we check the backing object first, because it is most likely
 1716                  * not collapsable.
 1717                  */
 1718                 VM_OBJECT_WLOCK(backing_object);
 1719                 if (backing_object->handle != NULL ||
 1720                     (backing_object->type != OBJT_DEFAULT &&
 1721                     backing_object->type != OBJT_SWAP) ||
 1722                     (backing_object->flags & (OBJ_DEAD | OBJ_NOSPLIT)) != 0 ||
 1723                     object->handle != NULL ||
 1724                     (object->type != OBJT_DEFAULT &&
 1725                      object->type != OBJT_SWAP) ||
 1726                     (object->flags & OBJ_DEAD)) {
 1727                         VM_OBJECT_WUNLOCK(backing_object);
 1728                         break;
 1729                 }
 1730 
 1731                 if (object->paging_in_progress != 0 ||
 1732                     backing_object->paging_in_progress != 0) {
 1733                         vm_object_qcollapse(object);
 1734                         VM_OBJECT_WUNLOCK(backing_object);
 1735                         break;
 1736                 }
 1737 
 1738                 /*
 1739                  * We know that we can either collapse the backing object (if
 1740                  * the parent is the only reference to it) or (perhaps) have
 1741                  * the parent bypass the object if the parent happens to shadow
 1742                  * all the resident pages in the entire backing object.
 1743                  *
 1744                  * This is ignoring pager-backed pages such as swap pages.
 1745                  * vm_object_collapse_scan fails the shadowing test in this
 1746                  * case.
 1747                  */
 1748                 if (backing_object->ref_count == 1) {
 1749                         vm_object_pip_add(object, 1);
 1750                         vm_object_pip_add(backing_object, 1);
 1751 
 1752                         /*
 1753                          * If there is exactly one reference to the backing
 1754                          * object, we can collapse it into the parent.
 1755                          */
 1756                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
 1757 
 1758 #if VM_NRESERVLEVEL > 0
 1759                         /*
 1760                          * Break any reservations from backing_object.
 1761                          */
 1762                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
 1763                                 vm_reserv_break_all(backing_object);
 1764 #endif
 1765 
 1766                         /*
 1767                          * Move the pager from backing_object to object.
 1768                          */
 1769                         if (backing_object->type == OBJT_SWAP) {
 1770                                 /*
 1771                                  * swap_pager_copy() can sleep, in which case
 1772                                  * the backing_object's and object's locks are
 1773                                  * released and reacquired.
 1774                                  * Since swap_pager_copy() is being asked to
 1775                                  * destroy the source, it will change the
 1776                                  * backing_object's type to OBJT_DEFAULT.
 1777                                  */
 1778                                 swap_pager_copy(
 1779                                     backing_object,
 1780                                     object,
 1781                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
 1782                         }
 1783                         /*
 1784                          * Object now shadows whatever backing_object did.
 1785                          * Note that the reference to 
 1786                          * backing_object->backing_object moves from within 
 1787                          * backing_object to within object.
 1788                          */
 1789                         LIST_REMOVE(object, shadow_list);
 1790                         backing_object->shadow_count--;
 1791                         if (backing_object->backing_object) {
 1792                                 VM_OBJECT_WLOCK(backing_object->backing_object);
 1793                                 LIST_REMOVE(backing_object, shadow_list);
 1794                                 LIST_INSERT_HEAD(
 1795                                     &backing_object->backing_object->shadow_head,
 1796                                     object, shadow_list);
 1797                                 /*
 1798                                  * The shadow_count has not changed.
 1799                                  */
 1800                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
 1801                         }
 1802                         object->backing_object = backing_object->backing_object;
 1803                         object->backing_object_offset +=
 1804                             backing_object->backing_object_offset;
 1805 
 1806                         /*
 1807                          * Discard backing_object.
 1808                          *
 1809                          * Since the backing object has no pages, no pager left,
 1810                          * and no object references within it, all that is
 1811                          * necessary is to dispose of it.
 1812                          */
 1813                         KASSERT(backing_object->ref_count == 1, (
 1814 "backing_object %p was somehow re-referenced during collapse!",
 1815                             backing_object));
 1816                         vm_object_pip_wakeup(backing_object);
 1817                         backing_object->type = OBJT_DEAD;
 1818                         backing_object->ref_count = 0;
 1819                         VM_OBJECT_WUNLOCK(backing_object);
 1820                         vm_object_destroy(backing_object);
 1821 
 1822                         vm_object_pip_wakeup(object);
 1823                         counter_u64_add(object_collapses, 1);
 1824                 } else {
 1825                         /*
 1826                          * If we do not entirely shadow the backing object,
 1827                          * there is nothing we can do so we give up.
 1828                          */
 1829                         if (object->resident_page_count != object->size &&
 1830                             !vm_object_scan_all_shadowed(object)) {
 1831                                 VM_OBJECT_WUNLOCK(backing_object);
 1832                                 break;
 1833                         }
 1834 
 1835                         /*
 1836                          * Make the parent shadow the next object in the
 1837                          * chain.  Deallocating backing_object will not remove
 1838                          * it, since its reference count is at least 2.
 1839                          */
 1840                         LIST_REMOVE(object, shadow_list);
 1841                         backing_object->shadow_count--;
 1842 
 1843                         new_backing_object = backing_object->backing_object;
 1844                         if ((object->backing_object = new_backing_object) != NULL) {
 1845                                 VM_OBJECT_WLOCK(new_backing_object);
 1846                                 LIST_INSERT_HEAD(
 1847                                     &new_backing_object->shadow_head,
 1848                                     object,
 1849                                     shadow_list
 1850                                 );
 1851                                 new_backing_object->shadow_count++;
 1852                                 vm_object_reference_locked(new_backing_object);
 1853                                 VM_OBJECT_WUNLOCK(new_backing_object);
 1854                                 object->backing_object_offset +=
 1855                                         backing_object->backing_object_offset;
 1856                         }
 1857 
 1858                         /*
 1859                          * Drop the reference count on backing_object. Since
 1860                          * its ref_count was at least 2, it will not vanish.
 1861                          */
 1862                         backing_object->ref_count--;
 1863                         VM_OBJECT_WUNLOCK(backing_object);
 1864                         counter_u64_add(object_bypasses, 1);
 1865                 }
 1866 
 1867                 /*
 1868                  * Try again with this object's new backing object.
 1869                  */
 1870         }
 1871 }
 1872 
 1873 /*
 1874  *      vm_object_page_remove:
 1875  *
 1876  *      For the given object, either frees or invalidates each of the
 1877  *      specified pages.  In general, a page is freed.  However, if a page is
 1878  *      wired for any reason other than the existence of a managed, wired
 1879  *      mapping, then it may be invalidated but not removed from the object.
 1880  *      Pages are specified by the given range ["start", "end") and the option
 1881  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
 1882  *      extends from "start" to the end of the object.  If the option
 1883  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
 1884  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
 1885  *      specified, then the pages within the specified range must have no
 1886  *      mappings.  Otherwise, if this option is not specified, any mappings to
 1887  *      the specified pages are removed before the pages are freed or
 1888  *      invalidated.
 1889  *
 1890  *      In general, this operation should only be performed on objects that
 1891  *      contain managed pages.  There are, however, two exceptions.  First, it
 1892  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
 1893  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
 1894  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
 1895  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
 1896  *
 1897  *      The object must be locked.
 1898  */
 1899 void
 1900 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 1901     int options)
 1902 {
 1903         vm_page_t p, next;
 1904         struct mtx *mtx;
 1905 
 1906         VM_OBJECT_ASSERT_WLOCKED(object);
 1907         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
 1908             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
 1909             ("vm_object_page_remove: illegal options for object %p", object));
 1910         if (object->resident_page_count == 0)
 1911                 return;
 1912         vm_object_pip_add(object, 1);
 1913 again:
 1914         p = vm_page_find_least(object, start);
 1915         mtx = NULL;
 1916 
 1917         /*
 1918          * Here, the variable "p" is either (1) the page with the least pindex
 1919          * greater than or equal to the parameter "start" or (2) NULL. 
 1920          */
 1921         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 1922                 next = TAILQ_NEXT(p, listq);
 1923 
 1924                 /*
 1925                  * If the page is wired for any reason besides the existence
 1926                  * of managed, wired mappings, then it cannot be freed.  For
 1927                  * example, fictitious pages, which represent device memory,
 1928                  * are inherently wired and cannot be freed.  They can,
 1929                  * however, be invalidated if the option OBJPR_CLEANONLY is
 1930                  * not specified.
 1931                  */
 1932                 vm_page_change_lock(p, &mtx);
 1933                 if (vm_page_xbusied(p)) {
 1934                         VM_OBJECT_WUNLOCK(object);
 1935                         vm_page_busy_sleep(p, "vmopax", true);
 1936                         VM_OBJECT_WLOCK(object);
 1937                         goto again;
 1938                 }
 1939                 if (vm_page_wired(p)) {
 1940                         if ((options & OBJPR_NOTMAPPED) == 0 &&
 1941                             object->ref_count != 0)
 1942                                 pmap_remove_all(p);
 1943                         if ((options & OBJPR_CLEANONLY) == 0) {
 1944                                 p->valid = 0;
 1945                                 vm_page_undirty(p);
 1946                         }
 1947                         continue;
 1948                 }
 1949                 if (vm_page_busied(p)) {
 1950                         VM_OBJECT_WUNLOCK(object);
 1951                         vm_page_busy_sleep(p, "vmopar", false);
 1952                         VM_OBJECT_WLOCK(object);
 1953                         goto again;
 1954                 }
 1955                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
 1956                     ("vm_object_page_remove: page %p is fictitious", p));
 1957                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
 1958                         if ((options & OBJPR_NOTMAPPED) == 0 &&
 1959                             object->ref_count != 0)
 1960                                 pmap_remove_write(p);
 1961                         if (p->dirty != 0)
 1962                                 continue;
 1963                 }
 1964                 if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
 1965                         pmap_remove_all(p);
 1966                 vm_page_free(p);
 1967         }
 1968         if (mtx != NULL)
 1969                 mtx_unlock(mtx);
 1970         vm_object_pip_wakeup(object);
 1971 }
 1972 
 1973 /*
 1974  *      vm_object_page_noreuse:
 1975  *
 1976  *      For the given object, attempt to move the specified pages to
 1977  *      the head of the inactive queue.  This bypasses regular LRU
 1978  *      operation and allows the pages to be reused quickly under memory
 1979  *      pressure.  If a page is wired for any reason, then it will not
 1980  *      be queued.  Pages are specified by the range ["start", "end").
 1981  *      As a special case, if "end" is zero, then the range extends from
 1982  *      "start" to the end of the object.
 1983  *
 1984  *      This operation should only be performed on objects that
 1985  *      contain non-fictitious, managed pages.
 1986  *
 1987  *      The object must be locked.
 1988  */
 1989 void
 1990 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1991 {
 1992         struct mtx *mtx;
 1993         vm_page_t p, next;
 1994 
 1995         VM_OBJECT_ASSERT_LOCKED(object);
 1996         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
 1997             ("vm_object_page_noreuse: illegal object %p", object));
 1998         if (object->resident_page_count == 0)
 1999                 return;
 2000         p = vm_page_find_least(object, start);
 2001 
 2002         /*
 2003          * Here, the variable "p" is either (1) the page with the least pindex
 2004          * greater than or equal to the parameter "start" or (2) NULL. 
 2005          */
 2006         mtx = NULL;
 2007         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 2008                 next = TAILQ_NEXT(p, listq);
 2009                 vm_page_change_lock(p, &mtx);
 2010                 vm_page_deactivate_noreuse(p);
 2011         }
 2012         if (mtx != NULL)
 2013                 mtx_unlock(mtx);
 2014 }
 2015 
 2016 /*
 2017  *      Populate the specified range of the object with valid pages.  Returns
 2018  *      TRUE if the range is successfully populated and FALSE otherwise.
 2019  *
 2020  *      Note: This function should be optimized to pass a larger array of
 2021  *      pages to vm_pager_get_pages() before it is applied to a non-
 2022  *      OBJT_DEVICE object.
 2023  *
 2024  *      The object must be locked.
 2025  */
 2026 boolean_t
 2027 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 2028 {
 2029         vm_page_t m;
 2030         vm_pindex_t pindex;
 2031         int rv;
 2032 
 2033         VM_OBJECT_ASSERT_WLOCKED(object);
 2034         for (pindex = start; pindex < end; pindex++) {
 2035                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
 2036                 if (m->valid != VM_PAGE_BITS_ALL) {
 2037                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
 2038                         if (rv != VM_PAGER_OK) {
 2039                                 vm_page_lock(m);
 2040                                 vm_page_free(m);
 2041                                 vm_page_unlock(m);
 2042                                 break;
 2043                         }
 2044                 }
 2045                 /*
 2046                  * Keep "m" busy because a subsequent iteration may unlock
 2047                  * the object.
 2048                  */
 2049         }
 2050         if (pindex > start) {
 2051                 m = vm_page_lookup(object, start);
 2052                 while (m != NULL && m->pindex < pindex) {
 2053                         vm_page_xunbusy(m);
 2054                         m = TAILQ_NEXT(m, listq);
 2055                 }
 2056         }
 2057         return (pindex == end);
 2058 }
 2059 
 2060 /*
 2061  *      Routine:        vm_object_coalesce
 2062  *      Function:       Coalesces two objects backing up adjoining
 2063  *                      regions of memory into a single object.
 2064  *
 2065  *      returns TRUE if objects were combined.
 2066  *
 2067  *      NOTE:   Only works at the moment if the second object is NULL -
 2068  *              if it's not, which object do we lock first?
 2069  *
 2070  *      Parameters:
 2071  *              prev_object     First object to coalesce
 2072  *              prev_offset     Offset into prev_object
 2073  *              prev_size       Size of reference to prev_object
 2074  *              next_size       Size of reference to the second object
 2075  *              reserved        Indicator that extension region has
 2076  *                              swap accounted for
 2077  *
 2078  *      Conditions:
 2079  *      The object must *not* be locked.
 2080  */
 2081 boolean_t
 2082 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
 2083     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
 2084 {
 2085         vm_pindex_t next_pindex;
 2086 
 2087         if (prev_object == NULL)
 2088                 return (TRUE);
 2089         VM_OBJECT_WLOCK(prev_object);
 2090         if ((prev_object->type != OBJT_DEFAULT &&
 2091             prev_object->type != OBJT_SWAP) ||
 2092             (prev_object->flags & OBJ_NOSPLIT) != 0) {
 2093                 VM_OBJECT_WUNLOCK(prev_object);
 2094                 return (FALSE);
 2095         }
 2096 
 2097         /*
 2098          * Try to collapse the object first
 2099          */
 2100         vm_object_collapse(prev_object);
 2101 
 2102         /*
 2103          * Can't coalesce if: . more than one reference . paged out . shadows
 2104          * another object . has a copy elsewhere (any of which mean that the
 2105          * pages not mapped to prev_entry may be in use anyway)
 2106          */
 2107         if (prev_object->backing_object != NULL) {
 2108                 VM_OBJECT_WUNLOCK(prev_object);
 2109                 return (FALSE);
 2110         }
 2111 
 2112         prev_size >>= PAGE_SHIFT;
 2113         next_size >>= PAGE_SHIFT;
 2114         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
 2115 
 2116         if (prev_object->ref_count > 1 &&
 2117             prev_object->size != next_pindex &&
 2118             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
 2119                 VM_OBJECT_WUNLOCK(prev_object);
 2120                 return (FALSE);
 2121         }
 2122 
 2123         /*
 2124          * Account for the charge.
 2125          */
 2126         if (prev_object->cred != NULL) {
 2127 
 2128                 /*
 2129                  * If prev_object was charged, then this mapping,
 2130                  * although not charged now, may become writable
 2131                  * later. Non-NULL cred in the object would prevent
 2132                  * swap reservation during enabling of the write
 2133                  * access, so reserve swap now. Failed reservation
 2134                  * cause allocation of the separate object for the map
 2135                  * entry, and swap reservation for this entry is
 2136                  * managed in appropriate time.
 2137                  */
 2138                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
 2139                     prev_object->cred)) {
 2140                         VM_OBJECT_WUNLOCK(prev_object);
 2141                         return (FALSE);
 2142                 }
 2143                 prev_object->charge += ptoa(next_size);
 2144         }
 2145 
 2146         /*
 2147          * Remove any pages that may still be in the object from a previous
 2148          * deallocation.
 2149          */
 2150         if (next_pindex < prev_object->size) {
 2151                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
 2152                     next_size, 0);
 2153                 if (prev_object->type == OBJT_SWAP)
 2154                         swap_pager_freespace(prev_object,
 2155                                              next_pindex, next_size);
 2156 #if 0
 2157                 if (prev_object->cred != NULL) {
 2158                         KASSERT(prev_object->charge >=
 2159                             ptoa(prev_object->size - next_pindex),
 2160                             ("object %p overcharged 1 %jx %jx", prev_object,
 2161                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
 2162                         prev_object->charge -= ptoa(prev_object->size -
 2163                             next_pindex);
 2164                 }
 2165 #endif
 2166         }
 2167 
 2168         /*
 2169          * Extend the object if necessary.
 2170          */
 2171         if (next_pindex + next_size > prev_object->size)
 2172                 prev_object->size = next_pindex + next_size;
 2173 
 2174         VM_OBJECT_WUNLOCK(prev_object);
 2175         return (TRUE);
 2176 }
 2177 
 2178 void
 2179 vm_object_set_writeable_dirty(vm_object_t object)
 2180 {
 2181 
 2182         VM_OBJECT_ASSERT_WLOCKED(object);
 2183         if (object->type != OBJT_VNODE) {
 2184                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
 2185                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
 2186                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
 2187                 }
 2188                 return;
 2189         }
 2190         object->generation++;
 2191         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
 2192                 return;
 2193         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
 2194 }
 2195 
 2196 /*
 2197  *      vm_object_unwire:
 2198  *
 2199  *      For each page offset within the specified range of the given object,
 2200  *      find the highest-level page in the shadow chain and unwire it.  A page
 2201  *      must exist at every page offset, and the highest-level page must be
 2202  *      wired.
 2203  */
 2204 void
 2205 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
 2206     uint8_t queue)
 2207 {
 2208         vm_object_t tobject, t1object;
 2209         vm_page_t m, tm;
 2210         vm_pindex_t end_pindex, pindex, tpindex;
 2211         int depth, locked_depth;
 2212 
 2213         KASSERT((offset & PAGE_MASK) == 0,
 2214             ("vm_object_unwire: offset is not page aligned"));
 2215         KASSERT((length & PAGE_MASK) == 0,
 2216             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
 2217         /* The wired count of a fictitious page never changes. */
 2218         if ((object->flags & OBJ_FICTITIOUS) != 0)
 2219                 return;
 2220         pindex = OFF_TO_IDX(offset);
 2221         end_pindex = pindex + atop(length);
 2222 again:
 2223         locked_depth = 1;
 2224         VM_OBJECT_RLOCK(object);
 2225         m = vm_page_find_least(object, pindex);
 2226         while (pindex < end_pindex) {
 2227                 if (m == NULL || pindex < m->pindex) {
 2228                         /*
 2229                          * The first object in the shadow chain doesn't
 2230                          * contain a page at the current index.  Therefore,
 2231                          * the page must exist in a backing object.
 2232                          */
 2233                         tobject = object;
 2234                         tpindex = pindex;
 2235                         depth = 0;
 2236                         do {
 2237                                 tpindex +=
 2238                                     OFF_TO_IDX(tobject->backing_object_offset);
 2239                                 tobject = tobject->backing_object;
 2240                                 KASSERT(tobject != NULL,
 2241                                     ("vm_object_unwire: missing page"));
 2242                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
 2243                                         goto next_page;
 2244                                 depth++;
 2245                                 if (depth == locked_depth) {
 2246                                         locked_depth++;
 2247                                         VM_OBJECT_RLOCK(tobject);
 2248                                 }
 2249                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
 2250                             NULL);
 2251                 } else {
 2252                         tm = m;
 2253                         m = TAILQ_NEXT(m, listq);
 2254                 }
 2255                 vm_page_lock(tm);
 2256                 if (vm_page_xbusied(tm)) {
 2257                         for (tobject = object; locked_depth >= 1;
 2258                             locked_depth--) {
 2259                                 t1object = tobject->backing_object;
 2260                                 VM_OBJECT_RUNLOCK(tobject);
 2261                                 tobject = t1object;
 2262                         }
 2263                         vm_page_busy_sleep(tm, "unwbo", true);
 2264                         goto again;
 2265                 }
 2266                 vm_page_unwire(tm, queue);
 2267                 vm_page_unlock(tm);
 2268 next_page:
 2269                 pindex++;
 2270         }
 2271         /* Release the accumulated object locks. */
 2272         for (tobject = object; locked_depth >= 1; locked_depth--) {
 2273                 t1object = tobject->backing_object;
 2274                 VM_OBJECT_RUNLOCK(tobject);
 2275                 tobject = t1object;
 2276         }
 2277 }
 2278 
 2279 struct vnode *
 2280 vm_object_vnode(vm_object_t object)
 2281 {
 2282 
 2283         VM_OBJECT_ASSERT_LOCKED(object);
 2284         if (object->type == OBJT_VNODE)
 2285                 return (object->handle);
 2286         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
 2287                 return (object->un_pager.swp.swp_tmpfs);
 2288         return (NULL);
 2289 }
 2290 
 2291 static int
 2292 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
 2293 {
 2294         struct kinfo_vmobject *kvo;
 2295         char *fullpath, *freepath;
 2296         struct vnode *vp;
 2297         struct vattr va;
 2298         vm_object_t obj;
 2299         vm_page_t m;
 2300         int count, error;
 2301 
 2302         if (req->oldptr == NULL) {
 2303                 /*
 2304                  * If an old buffer has not been provided, generate an
 2305                  * estimate of the space needed for a subsequent call.
 2306                  */
 2307                 mtx_lock(&vm_object_list_mtx);
 2308                 count = 0;
 2309                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
 2310                         if (obj->type == OBJT_DEAD)
 2311                                 continue;
 2312                         count++;
 2313                 }
 2314                 mtx_unlock(&vm_object_list_mtx);
 2315                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
 2316                     count * 11 / 10));
 2317         }
 2318 
 2319         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK | M_ZERO);
 2320         error = 0;
 2321 
 2322         /*
 2323          * VM objects are type stable and are never removed from the
 2324          * list once added.  This allows us to safely read obj->object_list
 2325          * after reacquiring the VM object lock.
 2326          */
 2327         mtx_lock(&vm_object_list_mtx);
 2328         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
 2329                 if (obj->type == OBJT_DEAD)
 2330                         continue;
 2331                 VM_OBJECT_RLOCK(obj);
 2332                 if (obj->type == OBJT_DEAD) {
 2333                         VM_OBJECT_RUNLOCK(obj);
 2334                         continue;
 2335                 }
 2336                 mtx_unlock(&vm_object_list_mtx);
 2337                 kvo->kvo_size = ptoa(obj->size);
 2338                 kvo->kvo_resident = obj->resident_page_count;
 2339                 kvo->kvo_ref_count = obj->ref_count;
 2340                 kvo->kvo_shadow_count = obj->shadow_count;
 2341                 kvo->kvo_memattr = obj->memattr;
 2342                 kvo->kvo_active = 0;
 2343                 kvo->kvo_inactive = 0;
 2344                 TAILQ_FOREACH(m, &obj->memq, listq) {
 2345                         /*
 2346                          * A page may belong to the object but be
 2347                          * dequeued and set to PQ_NONE while the
 2348                          * object lock is not held.  This makes the
 2349                          * reads of m->queue below racy, and we do not
 2350                          * count pages set to PQ_NONE.  However, this
 2351                          * sysctl is only meant to give an
 2352                          * approximation of the system anyway.
 2353                          */
 2354                         if (m->queue == PQ_ACTIVE)
 2355                                 kvo->kvo_active++;
 2356                         else if (m->queue == PQ_INACTIVE)
 2357                                 kvo->kvo_inactive++;
 2358                 }
 2359 
 2360                 kvo->kvo_vn_fileid = 0;
 2361                 kvo->kvo_vn_fsid = 0;
 2362                 kvo->kvo_vn_fsid_freebsd11 = 0;
 2363                 freepath = NULL;
 2364                 fullpath = "";
 2365                 vp = NULL;
 2366                 switch (obj->type) {
 2367                 case OBJT_DEFAULT:
 2368                         kvo->kvo_type = KVME_TYPE_DEFAULT;
 2369                         break;
 2370                 case OBJT_VNODE:
 2371                         kvo->kvo_type = KVME_TYPE_VNODE;
 2372                         vp = obj->handle;
 2373                         vref(vp);
 2374                         break;
 2375                 case OBJT_SWAP:
 2376                         kvo->kvo_type = KVME_TYPE_SWAP;
 2377                         break;
 2378                 case OBJT_DEVICE:
 2379                         kvo->kvo_type = KVME_TYPE_DEVICE;
 2380                         break;
 2381                 case OBJT_PHYS:
 2382                         kvo->kvo_type = KVME_TYPE_PHYS;
 2383                         break;
 2384                 case OBJT_DEAD:
 2385                         kvo->kvo_type = KVME_TYPE_DEAD;
 2386                         break;
 2387                 case OBJT_SG:
 2388                         kvo->kvo_type = KVME_TYPE_SG;
 2389                         break;
 2390                 case OBJT_MGTDEVICE:
 2391                         kvo->kvo_type = KVME_TYPE_MGTDEVICE;
 2392                         break;
 2393                 default:
 2394                         kvo->kvo_type = KVME_TYPE_UNKNOWN;
 2395                         break;
 2396                 }
 2397                 VM_OBJECT_RUNLOCK(obj);
 2398                 if (vp != NULL) {
 2399                         vn_fullpath(curthread, vp, &fullpath, &freepath);
 2400                         vn_lock(vp, LK_SHARED | LK_RETRY);
 2401                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
 2402                                 kvo->kvo_vn_fileid = va.va_fileid;
 2403                                 kvo->kvo_vn_fsid = va.va_fsid;
 2404                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
 2405                                                                 /* truncate */
 2406                         }
 2407                         vput(vp);
 2408                 }
 2409 
 2410                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
 2411                 if (freepath != NULL)
 2412                         free(freepath, M_TEMP);
 2413 
 2414                 /* Pack record size down */
 2415                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
 2416                     + strlen(kvo->kvo_path) + 1;
 2417                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
 2418                     sizeof(uint64_t));
 2419                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
 2420                 mtx_lock(&vm_object_list_mtx);
 2421                 if (error)
 2422                         break;
 2423         }
 2424         mtx_unlock(&vm_object_list_mtx);
 2425         free(kvo, M_TEMP);
 2426         return (error);
 2427 }
 2428 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
 2429     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
 2430     "List of VM objects");
 2431 
 2432 #include "opt_ddb.h"
 2433 #ifdef DDB
 2434 #include <sys/kernel.h>
 2435 
 2436 #include <sys/cons.h>
 2437 
 2438 #include <ddb/ddb.h>
 2439 
 2440 static int
 2441 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
 2442 {
 2443         vm_map_t tmpm;
 2444         vm_map_entry_t tmpe;
 2445         vm_object_t obj;
 2446         int entcount;
 2447 
 2448         if (map == 0)
 2449                 return 0;
 2450 
 2451         if (entry == 0) {
 2452                 tmpe = map->header.next;
 2453                 entcount = map->nentries;
 2454                 while (entcount-- && (tmpe != &map->header)) {
 2455                         if (_vm_object_in_map(map, object, tmpe)) {
 2456                                 return 1;
 2457                         }
 2458                         tmpe = tmpe->next;
 2459                 }
 2460         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2461                 tmpm = entry->object.sub_map;
 2462                 tmpe = tmpm->header.next;
 2463                 entcount = tmpm->nentries;
 2464                 while (entcount-- && tmpe != &tmpm->header) {
 2465                         if (_vm_object_in_map(tmpm, object, tmpe)) {
 2466                                 return 1;
 2467                         }
 2468                         tmpe = tmpe->next;
 2469                 }
 2470         } else if ((obj = entry->object.vm_object) != NULL) {
 2471                 for (; obj; obj = obj->backing_object)
 2472                         if (obj == object) {
 2473                                 return 1;
 2474                         }
 2475         }
 2476         return 0;
 2477 }
 2478 
 2479 static int
 2480 vm_object_in_map(vm_object_t object)
 2481 {
 2482         struct proc *p;
 2483 
 2484         /* sx_slock(&allproc_lock); */
 2485         FOREACH_PROC_IN_SYSTEM(p) {
 2486                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
 2487                         continue;
 2488                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
 2489                         /* sx_sunlock(&allproc_lock); */
 2490                         return 1;
 2491                 }
 2492         }
 2493         /* sx_sunlock(&allproc_lock); */
 2494         if (_vm_object_in_map(kernel_map, object, 0))
 2495                 return 1;
 2496         return 0;
 2497 }
 2498 
 2499 DB_SHOW_COMMAND(vmochk, vm_object_check)
 2500 {
 2501         vm_object_t object;
 2502 
 2503         /*
 2504          * make sure that internal objs are in a map somewhere
 2505          * and none have zero ref counts.
 2506          */
 2507         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2508                 if (object->handle == NULL &&
 2509                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
 2510                         if (object->ref_count == 0) {
 2511                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
 2512                                         (long)object->size);
 2513                         }
 2514                         if (!vm_object_in_map(object)) {
 2515                                 db_printf(
 2516                         "vmochk: internal obj is not in a map: "
 2517                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
 2518                                     object->ref_count, (u_long)object->size, 
 2519                                     (u_long)object->size,
 2520                                     (void *)object->backing_object);
 2521                         }
 2522                 }
 2523         }
 2524 }
 2525 
 2526 /*
 2527  *      vm_object_print:        [ debug ]
 2528  */
 2529 DB_SHOW_COMMAND(object, vm_object_print_static)
 2530 {
 2531         /* XXX convert args. */
 2532         vm_object_t object = (vm_object_t)addr;
 2533         boolean_t full = have_addr;
 2534 
 2535         vm_page_t p;
 2536 
 2537         /* XXX count is an (unused) arg.  Avoid shadowing it. */
 2538 #define count   was_count
 2539 
 2540         int count;
 2541 
 2542         if (object == NULL)
 2543                 return;
 2544 
 2545         db_iprintf(
 2546             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
 2547             object, (int)object->type, (uintmax_t)object->size,
 2548             object->resident_page_count, object->ref_count, object->flags,
 2549             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
 2550         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
 2551             object->shadow_count, 
 2552             object->backing_object ? object->backing_object->ref_count : 0,
 2553             object->backing_object, (uintmax_t)object->backing_object_offset);
 2554 
 2555         if (!full)
 2556                 return;
 2557 
 2558         db_indent += 2;
 2559         count = 0;
 2560         TAILQ_FOREACH(p, &object->memq, listq) {
 2561                 if (count == 0)
 2562                         db_iprintf("memory:=");
 2563                 else if (count == 6) {
 2564                         db_printf("\n");
 2565                         db_iprintf(" ...");
 2566                         count = 0;
 2567                 } else
 2568                         db_printf(",");
 2569                 count++;
 2570 
 2571                 db_printf("(off=0x%jx,page=0x%jx)",
 2572                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
 2573         }
 2574         if (count != 0)
 2575                 db_printf("\n");
 2576         db_indent -= 2;
 2577 }
 2578 
 2579 /* XXX. */
 2580 #undef count
 2581 
 2582 /* XXX need this non-static entry for calling from vm_map_print. */
 2583 void
 2584 vm_object_print(
 2585         /* db_expr_t */ long addr,
 2586         boolean_t have_addr,
 2587         /* db_expr_t */ long count,
 2588         char *modif)
 2589 {
 2590         vm_object_print_static(addr, have_addr, count, modif);
 2591 }
 2592 
 2593 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
 2594 {
 2595         vm_object_t object;
 2596         vm_pindex_t fidx;
 2597         vm_paddr_t pa;
 2598         vm_page_t m, prev_m;
 2599         int rcount, nl, c;
 2600 
 2601         nl = 0;
 2602         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2603                 db_printf("new object: %p\n", (void *)object);
 2604                 if (nl > 18) {
 2605                         c = cngetc();
 2606                         if (c != ' ')
 2607                                 return;
 2608                         nl = 0;
 2609                 }
 2610                 nl++;
 2611                 rcount = 0;
 2612                 fidx = 0;
 2613                 pa = -1;
 2614                 TAILQ_FOREACH(m, &object->memq, listq) {
 2615                         if (m->pindex > 128)
 2616                                 break;
 2617                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
 2618                             prev_m->pindex + 1 != m->pindex) {
 2619                                 if (rcount) {
 2620                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2621                                                 (long)fidx, rcount, (long)pa);
 2622                                         if (nl > 18) {
 2623                                                 c = cngetc();
 2624                                                 if (c != ' ')
 2625                                                         return;
 2626                                                 nl = 0;
 2627                                         }
 2628                                         nl++;
 2629                                         rcount = 0;
 2630                                 }
 2631                         }                               
 2632                         if (rcount &&
 2633                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
 2634                                 ++rcount;
 2635                                 continue;
 2636                         }
 2637                         if (rcount) {
 2638                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2639                                         (long)fidx, rcount, (long)pa);
 2640                                 if (nl > 18) {
 2641                                         c = cngetc();
 2642                                         if (c != ' ')
 2643                                                 return;
 2644                                         nl = 0;
 2645                                 }
 2646                                 nl++;
 2647                         }
 2648                         fidx = m->pindex;
 2649                         pa = VM_PAGE_TO_PHYS(m);
 2650                         rcount = 1;
 2651                 }
 2652                 if (rcount) {
 2653                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2654                                 (long)fidx, rcount, (long)pa);
 2655                         if (nl > 18) {
 2656                                 c = cngetc();
 2657                                 if (c != ' ')
 2658                                         return;
 2659                                 nl = 0;
 2660                         }
 2661                         nl++;
 2662                 }
 2663         }
 2664 }
 2665 #endif /* DDB */

Cache object: af7fe769bd26ab36cc9849bddb27e35c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.