The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
    3  *
    4  * Copyright (c) 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * The Mach Operating System project at Carnegie-Mellon University.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
   35  *
   36  *
   37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   38  * All rights reserved.
   39  *
   40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   41  *
   42  * Permission to use, copy, modify and distribute this software and
   43  * its documentation is hereby granted, provided that both the copyright
   44  * notice and this permission notice appear in all copies of the
   45  * software, derivative works or modified versions, and any portions
   46  * thereof, and that both notices appear in supporting documentation.
   47  *
   48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   51  *
   52  * Carnegie Mellon requests users of this software to return to
   53  *
   54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   55  *  School of Computer Science
   56  *  Carnegie Mellon University
   57  *  Pittsburgh PA 15213-3890
   58  *
   59  * any improvements or extensions that they make and grant Carnegie the
   60  * rights to redistribute these changes.
   61  */
   62 
   63 /*
   64  *      Virtual memory object module.
   65  */
   66 
   67 #include <sys/cdefs.h>
   68 __FBSDID("$FreeBSD$");
   69 
   70 #include "opt_vm.h"
   71 
   72 #include <sys/param.h>
   73 #include <sys/systm.h>
   74 #include <sys/blockcount.h>
   75 #include <sys/cpuset.h>
   76 #include <sys/lock.h>
   77 #include <sys/mman.h>
   78 #include <sys/mount.h>
   79 #include <sys/kernel.h>
   80 #include <sys/pctrie.h>
   81 #include <sys/sysctl.h>
   82 #include <sys/mutex.h>
   83 #include <sys/proc.h>           /* for curproc, pageproc */
   84 #include <sys/refcount.h>
   85 #include <sys/socket.h>
   86 #include <sys/resourcevar.h>
   87 #include <sys/refcount.h>
   88 #include <sys/rwlock.h>
   89 #include <sys/user.h>
   90 #include <sys/vnode.h>
   91 #include <sys/vmmeter.h>
   92 #include <sys/sx.h>
   93 
   94 #include <vm/vm.h>
   95 #include <vm/vm_param.h>
   96 #include <vm/pmap.h>
   97 #include <vm/vm_map.h>
   98 #include <vm/vm_object.h>
   99 #include <vm/vm_page.h>
  100 #include <vm/vm_pageout.h>
  101 #include <vm/vm_pager.h>
  102 #include <vm/vm_phys.h>
  103 #include <vm/vm_pagequeue.h>
  104 #include <vm/swap_pager.h>
  105 #include <vm/vm_kern.h>
  106 #include <vm/vm_extern.h>
  107 #include <vm/vm_radix.h>
  108 #include <vm/vm_reserv.h>
  109 #include <vm/uma.h>
  110 
  111 static int old_msync;
  112 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
  113     "Use old (insecure) msync behavior");
  114 
  115 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
  116                     int pagerflags, int flags, boolean_t *allclean,
  117                     boolean_t *eio);
  118 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
  119                     boolean_t *allclean);
  120 static void     vm_object_backing_remove(vm_object_t object);
  121 
  122 /*
  123  *      Virtual memory objects maintain the actual data
  124  *      associated with allocated virtual memory.  A given
  125  *      page of memory exists within exactly one object.
  126  *
  127  *      An object is only deallocated when all "references"
  128  *      are given up.  Only one "reference" to a given
  129  *      region of an object should be writeable.
  130  *
  131  *      Associated with each object is a list of all resident
  132  *      memory pages belonging to that object; this list is
  133  *      maintained by the "vm_page" module, and locked by the object's
  134  *      lock.
  135  *
  136  *      Each object also records a "pager" routine which is
  137  *      used to retrieve (and store) pages to the proper backing
  138  *      storage.  In addition, objects may be backed by other
  139  *      objects from which they were virtual-copied.
  140  *
  141  *      The only items within the object structure which are
  142  *      modified after time of creation are:
  143  *              reference count         locked by object's lock
  144  *              pager routine           locked by object's lock
  145  *
  146  */
  147 
  148 struct object_q vm_object_list;
  149 struct mtx vm_object_list_mtx;  /* lock for object list and count */
  150 
  151 struct vm_object kernel_object_store;
  152 
  153 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  154     "VM object stats");
  155 
  156 static COUNTER_U64_DEFINE_EARLY(object_collapses);
  157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
  158     &object_collapses,
  159     "VM object collapses");
  160 
  161 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
  162 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
  163     &object_bypasses,
  164     "VM object bypasses");
  165 
  166 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
  167 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
  168     &object_collapse_waits,
  169     "Number of sleeps for collapse");
  170 
  171 static uma_zone_t obj_zone;
  172 
  173 static int vm_object_zinit(void *mem, int size, int flags);
  174 
  175 #ifdef INVARIANTS
  176 static void vm_object_zdtor(void *mem, int size, void *arg);
  177 
  178 static void
  179 vm_object_zdtor(void *mem, int size, void *arg)
  180 {
  181         vm_object_t object;
  182 
  183         object = (vm_object_t)mem;
  184         KASSERT(object->ref_count == 0,
  185             ("object %p ref_count = %d", object, object->ref_count));
  186         KASSERT(TAILQ_EMPTY(&object->memq),
  187             ("object %p has resident pages in its memq", object));
  188         KASSERT(vm_radix_is_empty(&object->rtree),
  189             ("object %p has resident pages in its trie", object));
  190 #if VM_NRESERVLEVEL > 0
  191         KASSERT(LIST_EMPTY(&object->rvq),
  192             ("object %p has reservations",
  193             object));
  194 #endif
  195         KASSERT(!vm_object_busied(object),
  196             ("object %p busy = %d", object, blockcount_read(&object->busy)));
  197         KASSERT(object->resident_page_count == 0,
  198             ("object %p resident_page_count = %d",
  199             object, object->resident_page_count));
  200         KASSERT(object->shadow_count == 0,
  201             ("object %p shadow_count = %d",
  202             object, object->shadow_count));
  203         KASSERT(object->type == OBJT_DEAD,
  204             ("object %p has non-dead type %d",
  205             object, object->type));
  206 }
  207 #endif
  208 
  209 static int
  210 vm_object_zinit(void *mem, int size, int flags)
  211 {
  212         vm_object_t object;
  213 
  214         object = (vm_object_t)mem;
  215         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
  216 
  217         /* These are true for any object that has been freed */
  218         object->type = OBJT_DEAD;
  219         vm_radix_init(&object->rtree);
  220         refcount_init(&object->ref_count, 0);
  221         blockcount_init(&object->paging_in_progress);
  222         blockcount_init(&object->busy);
  223         object->resident_page_count = 0;
  224         object->shadow_count = 0;
  225         object->flags = OBJ_DEAD;
  226 
  227         mtx_lock(&vm_object_list_mtx);
  228         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
  229         mtx_unlock(&vm_object_list_mtx);
  230         return (0);
  231 }
  232 
  233 static void
  234 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
  235     vm_object_t object, void *handle)
  236 {
  237 
  238         TAILQ_INIT(&object->memq);
  239         LIST_INIT(&object->shadow_head);
  240 
  241         object->type = type;
  242         if (type == OBJT_SWAP)
  243                 pctrie_init(&object->un_pager.swp.swp_blks);
  244 
  245         /*
  246          * Ensure that swap_pager_swapoff() iteration over object_list
  247          * sees up to date type and pctrie head if it observed
  248          * non-dead object.
  249          */
  250         atomic_thread_fence_rel();
  251 
  252         object->pg_color = 0;
  253         object->flags = flags;
  254         object->size = size;
  255         object->domain.dr_policy = NULL;
  256         object->generation = 1;
  257         object->cleangeneration = 1;
  258         refcount_init(&object->ref_count, 1);
  259         object->memattr = VM_MEMATTR_DEFAULT;
  260         object->cred = NULL;
  261         object->charge = 0;
  262         object->handle = handle;
  263         object->backing_object = NULL;
  264         object->backing_object_offset = (vm_ooffset_t) 0;
  265 #if VM_NRESERVLEVEL > 0
  266         LIST_INIT(&object->rvq);
  267 #endif
  268         umtx_shm_object_init(object);
  269 }
  270 
  271 /*
  272  *      vm_object_init:
  273  *
  274  *      Initialize the VM objects module.
  275  */
  276 void
  277 vm_object_init(void)
  278 {
  279         TAILQ_INIT(&vm_object_list);
  280         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
  281 
  282         rw_init(&kernel_object->lock, "kernel vm object");
  283         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
  284             VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
  285 #if VM_NRESERVLEVEL > 0
  286         kernel_object->flags |= OBJ_COLORED;
  287         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  288 #endif
  289         kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
  290 
  291         /*
  292          * The lock portion of struct vm_object must be type stable due
  293          * to vm_pageout_fallback_object_lock locking a vm object
  294          * without holding any references to it.
  295          *
  296          * paging_in_progress is valid always.  Lockless references to
  297          * the objects may acquire pip and then check OBJ_DEAD.
  298          */
  299         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
  300 #ifdef INVARIANTS
  301             vm_object_zdtor,
  302 #else
  303             NULL,
  304 #endif
  305             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  306 
  307         vm_radix_zinit();
  308 }
  309 
  310 void
  311 vm_object_clear_flag(vm_object_t object, u_short bits)
  312 {
  313 
  314         VM_OBJECT_ASSERT_WLOCKED(object);
  315         object->flags &= ~bits;
  316 }
  317 
  318 /*
  319  *      Sets the default memory attribute for the specified object.  Pages
  320  *      that are allocated to this object are by default assigned this memory
  321  *      attribute.
  322  *
  323  *      Presently, this function must be called before any pages are allocated
  324  *      to the object.  In the future, this requirement may be relaxed for
  325  *      "default" and "swap" objects.
  326  */
  327 int
  328 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
  329 {
  330 
  331         VM_OBJECT_ASSERT_WLOCKED(object);
  332         switch (object->type) {
  333         case OBJT_DEFAULT:
  334         case OBJT_DEVICE:
  335         case OBJT_MGTDEVICE:
  336         case OBJT_PHYS:
  337         case OBJT_SG:
  338         case OBJT_SWAP:
  339         case OBJT_VNODE:
  340                 if (!TAILQ_EMPTY(&object->memq))
  341                         return (KERN_FAILURE);
  342                 break;
  343         case OBJT_DEAD:
  344                 return (KERN_INVALID_ARGUMENT);
  345         default:
  346                 panic("vm_object_set_memattr: object %p is of undefined type",
  347                     object);
  348         }
  349         object->memattr = memattr;
  350         return (KERN_SUCCESS);
  351 }
  352 
  353 void
  354 vm_object_pip_add(vm_object_t object, short i)
  355 {
  356 
  357         if (i > 0)
  358                 blockcount_acquire(&object->paging_in_progress, i);
  359 }
  360 
  361 void
  362 vm_object_pip_wakeup(vm_object_t object)
  363 {
  364 
  365         vm_object_pip_wakeupn(object, 1);
  366 }
  367 
  368 void
  369 vm_object_pip_wakeupn(vm_object_t object, short i)
  370 {
  371 
  372         if (i > 0)
  373                 blockcount_release(&object->paging_in_progress, i);
  374 }
  375 
  376 /*
  377  * Atomically drop the object lock and wait for pip to drain.  This protects
  378  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
  379  * on return.
  380  */
  381 static void
  382 vm_object_pip_sleep(vm_object_t object, const char *waitid)
  383 {
  384 
  385         (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
  386             waitid, PVM | PDROP);
  387 }
  388 
  389 void
  390 vm_object_pip_wait(vm_object_t object, const char *waitid)
  391 {
  392 
  393         VM_OBJECT_ASSERT_WLOCKED(object);
  394 
  395         blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
  396             PVM);
  397 }
  398 
  399 void
  400 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
  401 {
  402 
  403         VM_OBJECT_ASSERT_UNLOCKED(object);
  404 
  405         blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
  406 }
  407 
  408 /*
  409  *      vm_object_allocate:
  410  *
  411  *      Returns a new object with the given size.
  412  */
  413 vm_object_t
  414 vm_object_allocate(objtype_t type, vm_pindex_t size)
  415 {
  416         vm_object_t object;
  417         u_short flags;
  418 
  419         switch (type) {
  420         case OBJT_DEAD:
  421                 panic("vm_object_allocate: can't create OBJT_DEAD");
  422         case OBJT_DEFAULT:
  423         case OBJT_SWAP:
  424                 flags = OBJ_COLORED;
  425                 break;
  426         case OBJT_DEVICE:
  427         case OBJT_SG:
  428                 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
  429                 break;
  430         case OBJT_MGTDEVICE:
  431                 flags = OBJ_FICTITIOUS;
  432                 break;
  433         case OBJT_PHYS:
  434                 flags = OBJ_UNMANAGED;
  435                 break;
  436         case OBJT_VNODE:
  437                 flags = 0;
  438                 break;
  439         default:
  440                 panic("vm_object_allocate: type %d is undefined", type);
  441         }
  442         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
  443         _vm_object_allocate(type, size, flags, object, NULL);
  444 
  445         return (object);
  446 }
  447 
  448 /*
  449  *      vm_object_allocate_anon:
  450  *
  451  *      Returns a new default object of the given size and marked as
  452  *      anonymous memory for special split/collapse handling.  Color
  453  *      to be initialized by the caller.
  454  */
  455 vm_object_t
  456 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
  457     struct ucred *cred, vm_size_t charge)
  458 {
  459         vm_object_t handle, object;
  460 
  461         if (backing_object == NULL)
  462                 handle = NULL;
  463         else if ((backing_object->flags & OBJ_ANON) != 0)
  464                 handle = backing_object->handle;
  465         else
  466                 handle = backing_object;
  467         object = uma_zalloc(obj_zone, M_WAITOK);
  468         _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
  469             object, handle);
  470         object->cred = cred;
  471         object->charge = cred != NULL ? charge : 0;
  472         return (object);
  473 }
  474 
  475 static void
  476 vm_object_reference_vnode(vm_object_t object)
  477 {
  478         u_int old;
  479 
  480         /*
  481          * vnode objects need the lock for the first reference
  482          * to serialize with vnode_object_deallocate().
  483          */
  484         if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
  485                 VM_OBJECT_RLOCK(object);
  486                 old = refcount_acquire(&object->ref_count);
  487                 if (object->type == OBJT_VNODE && old == 0)
  488                         vref(object->handle);
  489                 VM_OBJECT_RUNLOCK(object);
  490         }
  491 }
  492 
  493 /*
  494  *      vm_object_reference:
  495  *
  496  *      Acquires a reference to the given object.
  497  */
  498 void
  499 vm_object_reference(vm_object_t object)
  500 {
  501 
  502         if (object == NULL)
  503                 return;
  504 
  505         if (object->type == OBJT_VNODE)
  506                 vm_object_reference_vnode(object);
  507         else
  508                 refcount_acquire(&object->ref_count);
  509         KASSERT((object->flags & OBJ_DEAD) == 0,
  510             ("vm_object_reference: Referenced dead object."));
  511 }
  512 
  513 /*
  514  *      vm_object_reference_locked:
  515  *
  516  *      Gets another reference to the given object.
  517  *
  518  *      The object must be locked.
  519  */
  520 void
  521 vm_object_reference_locked(vm_object_t object)
  522 {
  523         u_int old;
  524 
  525         VM_OBJECT_ASSERT_LOCKED(object);
  526         old = refcount_acquire(&object->ref_count);
  527         if (object->type == OBJT_VNODE && old == 0)
  528                 vref(object->handle);
  529         KASSERT((object->flags & OBJ_DEAD) == 0,
  530             ("vm_object_reference: Referenced dead object."));
  531 }
  532 
  533 /*
  534  * Handle deallocating an object of type OBJT_VNODE.
  535  */
  536 static void
  537 vm_object_deallocate_vnode(vm_object_t object)
  538 {
  539         struct vnode *vp = (struct vnode *) object->handle;
  540         bool last;
  541 
  542         KASSERT(object->type == OBJT_VNODE,
  543             ("vm_object_deallocate_vnode: not a vnode object"));
  544         KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
  545 
  546         /* Object lock to protect handle lookup. */
  547         last = refcount_release(&object->ref_count);
  548         VM_OBJECT_RUNLOCK(object);
  549 
  550         if (!last)
  551                 return;
  552 
  553         if (!umtx_shm_vnobj_persistent)
  554                 umtx_shm_object_terminated(object);
  555 
  556         /* vrele may need the vnode lock. */
  557         vrele(vp);
  558 }
  559 
  560 /*
  561  * We dropped a reference on an object and discovered that it had a
  562  * single remaining shadow.  This is a sibling of the reference we
  563  * dropped.  Attempt to collapse the sibling and backing object.
  564  */
  565 static vm_object_t
  566 vm_object_deallocate_anon(vm_object_t backing_object)
  567 {
  568         vm_object_t object;
  569 
  570         /* Fetch the final shadow.  */
  571         object = LIST_FIRST(&backing_object->shadow_head);
  572         KASSERT(object != NULL && backing_object->shadow_count == 1,
  573             ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
  574             backing_object->ref_count, backing_object->shadow_count));
  575         KASSERT((object->flags & (OBJ_TMPFS_NODE | OBJ_ANON)) == OBJ_ANON,
  576             ("invalid shadow object %p", object));
  577 
  578         if (!VM_OBJECT_TRYWLOCK(object)) {
  579                 /*
  580                  * Prevent object from disappearing since we do not have a
  581                  * reference.
  582                  */
  583                 vm_object_pip_add(object, 1);
  584                 VM_OBJECT_WUNLOCK(backing_object);
  585                 VM_OBJECT_WLOCK(object);
  586                 vm_object_pip_wakeup(object);
  587         } else
  588                 VM_OBJECT_WUNLOCK(backing_object);
  589 
  590         /*
  591          * Check for a collapse/terminate race with the last reference holder.
  592          */
  593         if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
  594             !refcount_acquire_if_not_zero(&object->ref_count)) {
  595                 VM_OBJECT_WUNLOCK(object);
  596                 return (NULL);
  597         }
  598         backing_object = object->backing_object;
  599         if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
  600                 vm_object_collapse(object);
  601         VM_OBJECT_WUNLOCK(object);
  602 
  603         return (object);
  604 }
  605 
  606 /*
  607  *      vm_object_deallocate:
  608  *
  609  *      Release a reference to the specified object,
  610  *      gained either through a vm_object_allocate
  611  *      or a vm_object_reference call.  When all references
  612  *      are gone, storage associated with this object
  613  *      may be relinquished.
  614  *
  615  *      No object may be locked.
  616  */
  617 void
  618 vm_object_deallocate(vm_object_t object)
  619 {
  620         vm_object_t temp;
  621         bool released;
  622 
  623         while (object != NULL) {
  624                 /*
  625                  * If the reference count goes to 0 we start calling
  626                  * vm_object_terminate() on the object chain.  A ref count
  627                  * of 1 may be a special case depending on the shadow count
  628                  * being 0 or 1.  These cases require a write lock on the
  629                  * object.
  630                  */
  631                 if ((object->flags & OBJ_ANON) == 0)
  632                         released = refcount_release_if_gt(&object->ref_count, 1);
  633                 else
  634                         released = refcount_release_if_gt(&object->ref_count, 2);
  635                 if (released)
  636                         return;
  637 
  638                 if (object->type == OBJT_VNODE) {
  639                         VM_OBJECT_RLOCK(object);
  640                         if (object->type == OBJT_VNODE) {
  641                                 vm_object_deallocate_vnode(object);
  642                                 return;
  643                         }
  644                         VM_OBJECT_RUNLOCK(object);
  645                 }
  646 
  647                 VM_OBJECT_WLOCK(object);
  648                 KASSERT(object->ref_count > 0,
  649                     ("vm_object_deallocate: object deallocated too many times: %d",
  650                     object->type));
  651 
  652                 /*
  653                  * If this is not the final reference to an anonymous
  654                  * object we may need to collapse the shadow chain.
  655                  */
  656                 if (!refcount_release(&object->ref_count)) {
  657                         if (object->ref_count > 1 ||
  658                             object->shadow_count == 0) {
  659                                 if ((object->flags & OBJ_ANON) != 0 &&
  660                                     object->ref_count == 1)
  661                                         vm_object_set_flag(object,
  662                                             OBJ_ONEMAPPING);
  663                                 VM_OBJECT_WUNLOCK(object);
  664                                 return;
  665                         }
  666 
  667                         /* Handle collapsing last ref on anonymous objects. */
  668                         object = vm_object_deallocate_anon(object);
  669                         continue;
  670                 }
  671 
  672                 /*
  673                  * Handle the final reference to an object.  We restart
  674                  * the loop with the backing object to avoid recursion.
  675                  */
  676                 umtx_shm_object_terminated(object);
  677                 temp = object->backing_object;
  678                 if (temp != NULL) {
  679                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
  680                             ("shadowed tmpfs v_object 2 %p", object));
  681                         vm_object_backing_remove(object);
  682                 }
  683 
  684                 KASSERT((object->flags & OBJ_DEAD) == 0,
  685                     ("vm_object_deallocate: Terminating dead object."));
  686                 vm_object_set_flag(object, OBJ_DEAD);
  687                 vm_object_terminate(object);
  688                 object = temp;
  689         }
  690 }
  691 
  692 /*
  693  *      vm_object_destroy removes the object from the global object list
  694  *      and frees the space for the object.
  695  */
  696 void
  697 vm_object_destroy(vm_object_t object)
  698 {
  699 
  700         /*
  701          * Release the allocation charge.
  702          */
  703         if (object->cred != NULL) {
  704                 swap_release_by_cred(object->charge, object->cred);
  705                 object->charge = 0;
  706                 crfree(object->cred);
  707                 object->cred = NULL;
  708         }
  709 
  710         /*
  711          * Free the space for the object.
  712          */
  713         uma_zfree(obj_zone, object);
  714 }
  715 
  716 static void
  717 vm_object_backing_remove_locked(vm_object_t object)
  718 {
  719         vm_object_t backing_object;
  720 
  721         backing_object = object->backing_object;
  722         VM_OBJECT_ASSERT_WLOCKED(object);
  723         VM_OBJECT_ASSERT_WLOCKED(backing_object);
  724 
  725         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
  726             ("vm_object_backing_remove: Removing collapsing object."));
  727 
  728         if ((object->flags & OBJ_SHADOWLIST) != 0) {
  729                 LIST_REMOVE(object, shadow_list);
  730                 backing_object->shadow_count--;
  731                 object->flags &= ~OBJ_SHADOWLIST;
  732         }
  733         object->backing_object = NULL;
  734 }
  735 
  736 static void
  737 vm_object_backing_remove(vm_object_t object)
  738 {
  739         vm_object_t backing_object;
  740 
  741         VM_OBJECT_ASSERT_WLOCKED(object);
  742 
  743         if ((object->flags & OBJ_SHADOWLIST) != 0) {
  744                 backing_object = object->backing_object;
  745                 VM_OBJECT_WLOCK(backing_object);
  746                 vm_object_backing_remove_locked(object);
  747                 VM_OBJECT_WUNLOCK(backing_object);
  748         } else
  749                 object->backing_object = NULL;
  750 }
  751 
  752 static void
  753 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
  754 {
  755 
  756         VM_OBJECT_ASSERT_WLOCKED(object);
  757 
  758         if ((backing_object->flags & OBJ_ANON) != 0) {
  759                 VM_OBJECT_ASSERT_WLOCKED(backing_object);
  760                 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
  761                     shadow_list);
  762                 backing_object->shadow_count++;
  763                 object->flags |= OBJ_SHADOWLIST;
  764         }
  765         object->backing_object = backing_object;
  766 }
  767 
  768 static void
  769 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
  770 {
  771 
  772         VM_OBJECT_ASSERT_WLOCKED(object);
  773 
  774         if ((backing_object->flags & OBJ_ANON) != 0) {
  775                 VM_OBJECT_WLOCK(backing_object);
  776                 vm_object_backing_insert_locked(object, backing_object);
  777                 VM_OBJECT_WUNLOCK(backing_object);
  778         } else
  779                 object->backing_object = backing_object;
  780 }
  781 
  782 /*
  783  * Insert an object into a backing_object's shadow list with an additional
  784  * reference to the backing_object added.
  785  */
  786 static void
  787 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
  788 {
  789 
  790         VM_OBJECT_ASSERT_WLOCKED(object);
  791 
  792         if ((backing_object->flags & OBJ_ANON) != 0) {
  793                 VM_OBJECT_WLOCK(backing_object);
  794                 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
  795                     ("shadowing dead anonymous object"));
  796                 vm_object_reference_locked(backing_object);
  797                 vm_object_backing_insert_locked(object, backing_object);
  798                 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
  799                 VM_OBJECT_WUNLOCK(backing_object);
  800         } else {
  801                 vm_object_reference(backing_object);
  802                 object->backing_object = backing_object;
  803         }
  804 }
  805 
  806 /*
  807  * Transfer a backing reference from backing_object to object.
  808  */
  809 static void
  810 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
  811 {
  812         vm_object_t new_backing_object;
  813 
  814         /*
  815          * Note that the reference to backing_object->backing_object
  816          * moves from within backing_object to within object.
  817          */
  818         vm_object_backing_remove_locked(object);
  819         new_backing_object = backing_object->backing_object;
  820         if (new_backing_object == NULL)
  821                 return;
  822         if ((new_backing_object->flags & OBJ_ANON) != 0) {
  823                 VM_OBJECT_WLOCK(new_backing_object);
  824                 vm_object_backing_remove_locked(backing_object);
  825                 vm_object_backing_insert_locked(object, new_backing_object);
  826                 VM_OBJECT_WUNLOCK(new_backing_object);
  827         } else {
  828                 object->backing_object = new_backing_object;
  829                 backing_object->backing_object = NULL;
  830         }
  831 }
  832 
  833 /*
  834  * Wait for a concurrent collapse to settle.
  835  */
  836 static void
  837 vm_object_collapse_wait(vm_object_t object)
  838 {
  839 
  840         VM_OBJECT_ASSERT_WLOCKED(object);
  841 
  842         while ((object->flags & OBJ_COLLAPSING) != 0) {
  843                 vm_object_pip_wait(object, "vmcolwait");
  844                 counter_u64_add(object_collapse_waits, 1);
  845         }
  846 }
  847 
  848 /*
  849  * Waits for a backing object to clear a pending collapse and returns
  850  * it locked if it is an ANON object.
  851  */
  852 static vm_object_t
  853 vm_object_backing_collapse_wait(vm_object_t object)
  854 {
  855         vm_object_t backing_object;
  856 
  857         VM_OBJECT_ASSERT_WLOCKED(object);
  858 
  859         for (;;) {
  860                 backing_object = object->backing_object;
  861                 if (backing_object == NULL ||
  862                     (backing_object->flags & OBJ_ANON) == 0)
  863                         return (NULL);
  864                 VM_OBJECT_WLOCK(backing_object);
  865                 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
  866                         break;
  867                 VM_OBJECT_WUNLOCK(object);
  868                 vm_object_pip_sleep(backing_object, "vmbckwait");
  869                 counter_u64_add(object_collapse_waits, 1);
  870                 VM_OBJECT_WLOCK(object);
  871         }
  872         return (backing_object);
  873 }
  874 
  875 /*
  876  *      vm_object_terminate_pages removes any remaining pageable pages
  877  *      from the object and resets the object to an empty state.
  878  */
  879 static void
  880 vm_object_terminate_pages(vm_object_t object)
  881 {
  882         vm_page_t p, p_next;
  883 
  884         VM_OBJECT_ASSERT_WLOCKED(object);
  885 
  886         /*
  887          * Free any remaining pageable pages.  This also removes them from the
  888          * paging queues.  However, don't free wired pages, just remove them
  889          * from the object.  Rather than incrementally removing each page from
  890          * the object, the page and object are reset to any empty state. 
  891          */
  892         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
  893                 vm_page_assert_unbusied(p);
  894                 KASSERT(p->object == object &&
  895                     (p->ref_count & VPRC_OBJREF) != 0,
  896                     ("vm_object_terminate_pages: page %p is inconsistent", p));
  897 
  898                 p->object = NULL;
  899                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
  900                         VM_CNT_INC(v_pfree);
  901                         vm_page_free(p);
  902                 }
  903         }
  904 
  905         /*
  906          * If the object contained any pages, then reset it to an empty state.
  907          * None of the object's fields, including "resident_page_count", were
  908          * modified by the preceding loop.
  909          */
  910         if (object->resident_page_count != 0) {
  911                 vm_radix_reclaim_allnodes(&object->rtree);
  912                 TAILQ_INIT(&object->memq);
  913                 object->resident_page_count = 0;
  914                 if (object->type == OBJT_VNODE)
  915                         vdrop(object->handle);
  916         }
  917 }
  918 
  919 /*
  920  *      vm_object_terminate actually destroys the specified object, freeing
  921  *      up all previously used resources.
  922  *
  923  *      The object must be locked.
  924  *      This routine may block.
  925  */
  926 void
  927 vm_object_terminate(vm_object_t object)
  928 {
  929 
  930         VM_OBJECT_ASSERT_WLOCKED(object);
  931         KASSERT((object->flags & OBJ_DEAD) != 0,
  932             ("terminating non-dead obj %p", object));
  933         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
  934             ("terminating collapsing obj %p", object));
  935         KASSERT(object->backing_object == NULL,
  936             ("terminating shadow obj %p", object));
  937 
  938         /*
  939          * Wait for the pageout daemon and other current users to be
  940          * done with the object.  Note that new paging_in_progress
  941          * users can come after this wait, but they must check
  942          * OBJ_DEAD flag set (without unlocking the object), and avoid
  943          * the object being terminated.
  944          */
  945         vm_object_pip_wait(object, "objtrm");
  946 
  947         KASSERT(object->ref_count == 0,
  948             ("vm_object_terminate: object with references, ref_count=%d",
  949             object->ref_count));
  950 
  951         if ((object->flags & OBJ_PG_DTOR) == 0)
  952                 vm_object_terminate_pages(object);
  953 
  954 #if VM_NRESERVLEVEL > 0
  955         if (__predict_false(!LIST_EMPTY(&object->rvq)))
  956                 vm_reserv_break_all(object);
  957 #endif
  958 
  959         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
  960             object->type == OBJT_SWAP,
  961             ("%s: non-swap obj %p has cred", __func__, object));
  962 
  963         /*
  964          * Let the pager know object is dead.
  965          */
  966         vm_pager_deallocate(object);
  967         VM_OBJECT_WUNLOCK(object);
  968 
  969         vm_object_destroy(object);
  970 }
  971 
  972 /*
  973  * Make the page read-only so that we can clear the object flags.  However, if
  974  * this is a nosync mmap then the object is likely to stay dirty so do not
  975  * mess with the page and do not clear the object flags.  Returns TRUE if the
  976  * page should be flushed, and FALSE otherwise.
  977  */
  978 static boolean_t
  979 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
  980 {
  981 
  982         vm_page_assert_busied(p);
  983 
  984         /*
  985          * If we have been asked to skip nosync pages and this is a
  986          * nosync page, skip it.  Note that the object flags were not
  987          * cleared in this case so we do not have to set them.
  988          */
  989         if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
  990                 *allclean = FALSE;
  991                 return (FALSE);
  992         } else {
  993                 pmap_remove_write(p);
  994                 return (p->dirty != 0);
  995         }
  996 }
  997 
  998 /*
  999  *      vm_object_page_clean
 1000  *
 1001  *      Clean all dirty pages in the specified range of object.  Leaves page 
 1002  *      on whatever queue it is currently on.   If NOSYNC is set then do not
 1003  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
 1004  *      leaving the object dirty.
 1005  *
 1006  *      For swap objects backing tmpfs regular files, do not flush anything,
 1007  *      but remove write protection on the mapped pages to update mtime through
 1008  *      mmaped writes.
 1009  *
 1010  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
 1011  *      synchronous clustering mode implementation.
 1012  *
 1013  *      Odd semantics: if start == end, we clean everything.
 1014  *
 1015  *      The object must be locked.
 1016  *
 1017  *      Returns FALSE if some page from the range was not written, as
 1018  *      reported by the pager, and TRUE otherwise.
 1019  */
 1020 boolean_t
 1021 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
 1022     int flags)
 1023 {
 1024         vm_page_t np, p;
 1025         vm_pindex_t pi, tend, tstart;
 1026         int curgeneration, n, pagerflags;
 1027         boolean_t eio, res, allclean;
 1028 
 1029         VM_OBJECT_ASSERT_WLOCKED(object);
 1030 
 1031         if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
 1032                 return (TRUE);
 1033 
 1034         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
 1035             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
 1036         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
 1037 
 1038         tstart = OFF_TO_IDX(start);
 1039         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
 1040         allclean = tstart == 0 && tend >= object->size;
 1041         res = TRUE;
 1042 
 1043 rescan:
 1044         curgeneration = object->generation;
 1045 
 1046         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
 1047                 pi = p->pindex;
 1048                 if (pi >= tend)
 1049                         break;
 1050                 np = TAILQ_NEXT(p, listq);
 1051                 if (vm_page_none_valid(p))
 1052                         continue;
 1053                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
 1054                         if (object->generation != curgeneration &&
 1055                             (flags & OBJPC_SYNC) != 0)
 1056                                 goto rescan;
 1057                         np = vm_page_find_least(object, pi);
 1058                         continue;
 1059                 }
 1060                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
 1061                         vm_page_xunbusy(p);
 1062                         continue;
 1063                 }
 1064                 if (object->type == OBJT_VNODE) {
 1065                         n = vm_object_page_collect_flush(object, p, pagerflags,
 1066                             flags, &allclean, &eio);
 1067                         if (eio) {
 1068                                 res = FALSE;
 1069                                 allclean = FALSE;
 1070                         }
 1071                         if (object->generation != curgeneration &&
 1072                             (flags & OBJPC_SYNC) != 0)
 1073                                 goto rescan;
 1074 
 1075                         /*
 1076                          * If the VOP_PUTPAGES() did a truncated write, so
 1077                          * that even the first page of the run is not fully
 1078                          * written, vm_pageout_flush() returns 0 as the run
 1079                          * length.  Since the condition that caused truncated
 1080                          * write may be permanent, e.g. exhausted free space,
 1081                          * accepting n == 0 would cause an infinite loop.
 1082                          *
 1083                          * Forwarding the iterator leaves the unwritten page
 1084                          * behind, but there is not much we can do there if
 1085                          * filesystem refuses to write it.
 1086                          */
 1087                         if (n == 0) {
 1088                                 n = 1;
 1089                                 allclean = FALSE;
 1090                         }
 1091                 } else {
 1092                         n = 1;
 1093                         vm_page_xunbusy(p);
 1094                 }
 1095                 np = vm_page_find_least(object, pi + n);
 1096         }
 1097 #if 0
 1098         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
 1099 #endif
 1100 
 1101         /*
 1102          * Leave updating cleangeneration for tmpfs objects to tmpfs
 1103          * scan.  It needs to update mtime, which happens for other
 1104          * filesystems during page writeouts.
 1105          */
 1106         if (allclean && object->type == OBJT_VNODE)
 1107                 object->cleangeneration = curgeneration;
 1108         return (res);
 1109 }
 1110 
 1111 static int
 1112 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
 1113     int flags, boolean_t *allclean, boolean_t *eio)
 1114 {
 1115         vm_page_t ma[vm_pageout_page_count], p_first, tp;
 1116         int count, i, mreq, runlen;
 1117 
 1118         vm_page_lock_assert(p, MA_NOTOWNED);
 1119         vm_page_assert_xbusied(p);
 1120         VM_OBJECT_ASSERT_WLOCKED(object);
 1121 
 1122         count = 1;
 1123         mreq = 0;
 1124 
 1125         for (tp = p; count < vm_pageout_page_count; count++) {
 1126                 tp = vm_page_next(tp);
 1127                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
 1128                         break;
 1129                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
 1130                         vm_page_xunbusy(tp);
 1131                         break;
 1132                 }
 1133         }
 1134 
 1135         for (p_first = p; count < vm_pageout_page_count; count++) {
 1136                 tp = vm_page_prev(p_first);
 1137                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
 1138                         break;
 1139                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
 1140                         vm_page_xunbusy(tp);
 1141                         break;
 1142                 }
 1143                 p_first = tp;
 1144                 mreq++;
 1145         }
 1146 
 1147         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
 1148                 ma[i] = tp;
 1149 
 1150         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
 1151         return (runlen);
 1152 }
 1153 
 1154 /*
 1155  * Note that there is absolutely no sense in writing out
 1156  * anonymous objects, so we track down the vnode object
 1157  * to write out.
 1158  * We invalidate (remove) all pages from the address space
 1159  * for semantic correctness.
 1160  *
 1161  * If the backing object is a device object with unmanaged pages, then any
 1162  * mappings to the specified range of pages must be removed before this
 1163  * function is called.
 1164  *
 1165  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
 1166  * may start out with a NULL object.
 1167  */
 1168 boolean_t
 1169 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
 1170     boolean_t syncio, boolean_t invalidate)
 1171 {
 1172         vm_object_t backing_object;
 1173         struct vnode *vp;
 1174         struct mount *mp;
 1175         int error, flags, fsync_after;
 1176         boolean_t res;
 1177 
 1178         if (object == NULL)
 1179                 return (TRUE);
 1180         res = TRUE;
 1181         error = 0;
 1182         VM_OBJECT_WLOCK(object);
 1183         while ((backing_object = object->backing_object) != NULL) {
 1184                 VM_OBJECT_WLOCK(backing_object);
 1185                 offset += object->backing_object_offset;
 1186                 VM_OBJECT_WUNLOCK(object);
 1187                 object = backing_object;
 1188                 if (object->size < OFF_TO_IDX(offset + size))
 1189                         size = IDX_TO_OFF(object->size) - offset;
 1190         }
 1191         /*
 1192          * Flush pages if writing is allowed, invalidate them
 1193          * if invalidation requested.  Pages undergoing I/O
 1194          * will be ignored by vm_object_page_remove().
 1195          *
 1196          * We cannot lock the vnode and then wait for paging
 1197          * to complete without deadlocking against vm_fault.
 1198          * Instead we simply call vm_object_page_remove() and
 1199          * allow it to block internally on a page-by-page
 1200          * basis when it encounters pages undergoing async
 1201          * I/O.
 1202          */
 1203         if (object->type == OBJT_VNODE &&
 1204             vm_object_mightbedirty(object) != 0 &&
 1205             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
 1206                 VM_OBJECT_WUNLOCK(object);
 1207                 (void) vn_start_write(vp, &mp, V_WAIT);
 1208                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1209                 if (syncio && !invalidate && offset == 0 &&
 1210                     atop(size) == object->size) {
 1211                         /*
 1212                          * If syncing the whole mapping of the file,
 1213                          * it is faster to schedule all the writes in
 1214                          * async mode, also allowing the clustering,
 1215                          * and then wait for i/o to complete.
 1216                          */
 1217                         flags = 0;
 1218                         fsync_after = TRUE;
 1219                 } else {
 1220                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
 1221                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
 1222                         fsync_after = FALSE;
 1223                 }
 1224                 VM_OBJECT_WLOCK(object);
 1225                 res = vm_object_page_clean(object, offset, offset + size,
 1226                     flags);
 1227                 VM_OBJECT_WUNLOCK(object);
 1228                 if (fsync_after)
 1229                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
 1230                 VOP_UNLOCK(vp);
 1231                 vn_finished_write(mp);
 1232                 if (error != 0)
 1233                         res = FALSE;
 1234                 VM_OBJECT_WLOCK(object);
 1235         }
 1236         if ((object->type == OBJT_VNODE ||
 1237              object->type == OBJT_DEVICE) && invalidate) {
 1238                 if (object->type == OBJT_DEVICE)
 1239                         /*
 1240                          * The option OBJPR_NOTMAPPED must be passed here
 1241                          * because vm_object_page_remove() cannot remove
 1242                          * unmanaged mappings.
 1243                          */
 1244                         flags = OBJPR_NOTMAPPED;
 1245                 else if (old_msync)
 1246                         flags = 0;
 1247                 else
 1248                         flags = OBJPR_CLEANONLY;
 1249                 vm_object_page_remove(object, OFF_TO_IDX(offset),
 1250                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
 1251         }
 1252         VM_OBJECT_WUNLOCK(object);
 1253         return (res);
 1254 }
 1255 
 1256 /*
 1257  * Determine whether the given advice can be applied to the object.  Advice is
 1258  * not applied to unmanaged pages since they never belong to page queues, and
 1259  * since MADV_FREE is destructive, it can apply only to anonymous pages that
 1260  * have been mapped at most once.
 1261  */
 1262 static bool
 1263 vm_object_advice_applies(vm_object_t object, int advice)
 1264 {
 1265 
 1266         if ((object->flags & OBJ_UNMANAGED) != 0)
 1267                 return (false);
 1268         if (advice != MADV_FREE)
 1269                 return (true);
 1270         return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
 1271             (OBJ_ONEMAPPING | OBJ_ANON));
 1272 }
 1273 
 1274 static void
 1275 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
 1276     vm_size_t size)
 1277 {
 1278 
 1279         if (advice == MADV_FREE && object->type == OBJT_SWAP)
 1280                 swap_pager_freespace(object, pindex, size);
 1281 }
 1282 
 1283 /*
 1284  *      vm_object_madvise:
 1285  *
 1286  *      Implements the madvise function at the object/page level.
 1287  *
 1288  *      MADV_WILLNEED   (any object)
 1289  *
 1290  *          Activate the specified pages if they are resident.
 1291  *
 1292  *      MADV_DONTNEED   (any object)
 1293  *
 1294  *          Deactivate the specified pages if they are resident.
 1295  *
 1296  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
 1297  *                       OBJ_ONEMAPPING only)
 1298  *
 1299  *          Deactivate and clean the specified pages if they are
 1300  *          resident.  This permits the process to reuse the pages
 1301  *          without faulting or the kernel to reclaim the pages
 1302  *          without I/O.
 1303  */
 1304 void
 1305 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
 1306     int advice)
 1307 {
 1308         vm_pindex_t tpindex;
 1309         vm_object_t backing_object, tobject;
 1310         vm_page_t m, tm;
 1311 
 1312         if (object == NULL)
 1313                 return;
 1314 
 1315 relookup:
 1316         VM_OBJECT_WLOCK(object);
 1317         if (!vm_object_advice_applies(object, advice)) {
 1318                 VM_OBJECT_WUNLOCK(object);
 1319                 return;
 1320         }
 1321         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
 1322                 tobject = object;
 1323 
 1324                 /*
 1325                  * If the next page isn't resident in the top-level object, we
 1326                  * need to search the shadow chain.  When applying MADV_FREE, we
 1327                  * take care to release any swap space used to store
 1328                  * non-resident pages.
 1329                  */
 1330                 if (m == NULL || pindex < m->pindex) {
 1331                         /*
 1332                          * Optimize a common case: if the top-level object has
 1333                          * no backing object, we can skip over the non-resident
 1334                          * range in constant time.
 1335                          */
 1336                         if (object->backing_object == NULL) {
 1337                                 tpindex = (m != NULL && m->pindex < end) ?
 1338                                     m->pindex : end;
 1339                                 vm_object_madvise_freespace(object, advice,
 1340                                     pindex, tpindex - pindex);
 1341                                 if ((pindex = tpindex) == end)
 1342                                         break;
 1343                                 goto next_page;
 1344                         }
 1345 
 1346                         tpindex = pindex;
 1347                         do {
 1348                                 vm_object_madvise_freespace(tobject, advice,
 1349                                     tpindex, 1);
 1350                                 /*
 1351                                  * Prepare to search the next object in the
 1352                                  * chain.
 1353                                  */
 1354                                 backing_object = tobject->backing_object;
 1355                                 if (backing_object == NULL)
 1356                                         goto next_pindex;
 1357                                 VM_OBJECT_WLOCK(backing_object);
 1358                                 tpindex +=
 1359                                     OFF_TO_IDX(tobject->backing_object_offset);
 1360                                 if (tobject != object)
 1361                                         VM_OBJECT_WUNLOCK(tobject);
 1362                                 tobject = backing_object;
 1363                                 if (!vm_object_advice_applies(tobject, advice))
 1364                                         goto next_pindex;
 1365                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
 1366                             NULL);
 1367                 } else {
 1368 next_page:
 1369                         tm = m;
 1370                         m = TAILQ_NEXT(m, listq);
 1371                 }
 1372 
 1373                 /*
 1374                  * If the page is not in a normal state, skip it.  The page
 1375                  * can not be invalidated while the object lock is held.
 1376                  */
 1377                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
 1378                         goto next_pindex;
 1379                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
 1380                     ("vm_object_madvise: page %p is fictitious", tm));
 1381                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
 1382                     ("vm_object_madvise: page %p is not managed", tm));
 1383                 if (vm_page_tryxbusy(tm) == 0) {
 1384                         if (object != tobject)
 1385                                 VM_OBJECT_WUNLOCK(object);
 1386                         if (advice == MADV_WILLNEED) {
 1387                                 /*
 1388                                  * Reference the page before unlocking and
 1389                                  * sleeping so that the page daemon is less
 1390                                  * likely to reclaim it.
 1391                                  */
 1392                                 vm_page_aflag_set(tm, PGA_REFERENCED);
 1393                         }
 1394                         vm_page_busy_sleep(tm, "madvpo", false);
 1395                         goto relookup;
 1396                 }
 1397                 vm_page_advise(tm, advice);
 1398                 vm_page_xunbusy(tm);
 1399                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
 1400 next_pindex:
 1401                 if (tobject != object)
 1402                         VM_OBJECT_WUNLOCK(tobject);
 1403         }
 1404         VM_OBJECT_WUNLOCK(object);
 1405 }
 1406 
 1407 /*
 1408  *      vm_object_shadow:
 1409  *
 1410  *      Create a new object which is backed by the
 1411  *      specified existing object range.  The source
 1412  *      object reference is deallocated.
 1413  *
 1414  *      The new object and offset into that object
 1415  *      are returned in the source parameters.
 1416  */
 1417 void
 1418 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
 1419     struct ucred *cred, bool shared)
 1420 {
 1421         vm_object_t source;
 1422         vm_object_t result;
 1423 
 1424         source = *object;
 1425 
 1426         /*
 1427          * Don't create the new object if the old object isn't shared.
 1428          *
 1429          * If we hold the only reference we can guarantee that it won't
 1430          * increase while we have the map locked.  Otherwise the race is
 1431          * harmless and we will end up with an extra shadow object that
 1432          * will be collapsed later.
 1433          */
 1434         if (source != NULL && source->ref_count == 1 &&
 1435             (source->flags & OBJ_ANON) != 0)
 1436                 return;
 1437 
 1438         /*
 1439          * Allocate a new object with the given length.
 1440          */
 1441         result = vm_object_allocate_anon(atop(length), source, cred, length);
 1442 
 1443         /*
 1444          * Store the offset into the source object, and fix up the offset into
 1445          * the new object.
 1446          */
 1447         result->backing_object_offset = *offset;
 1448 
 1449         if (shared || source != NULL) {
 1450                 VM_OBJECT_WLOCK(result);
 1451 
 1452                 /*
 1453                  * The new object shadows the source object, adding a
 1454                  * reference to it.  Our caller changes his reference
 1455                  * to point to the new object, removing a reference to
 1456                  * the source object.  Net result: no change of
 1457                  * reference count, unless the caller needs to add one
 1458                  * more reference due to forking a shared map entry.
 1459                  */
 1460                 if (shared) {
 1461                         vm_object_reference_locked(result);
 1462                         vm_object_clear_flag(result, OBJ_ONEMAPPING);
 1463                 }
 1464 
 1465                 /*
 1466                  * Try to optimize the result object's page color when
 1467                  * shadowing in order to maintain page coloring
 1468                  * consistency in the combined shadowed object.
 1469                  */
 1470                 if (source != NULL) {
 1471                         vm_object_backing_insert(result, source);
 1472                         result->domain = source->domain;
 1473 #if VM_NRESERVLEVEL > 0
 1474                         result->flags |= source->flags & OBJ_COLORED;
 1475                         result->pg_color = (source->pg_color +
 1476                             OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
 1477                             1)) - 1);
 1478 #endif
 1479                 }
 1480                 VM_OBJECT_WUNLOCK(result);
 1481         }
 1482 
 1483         /*
 1484          * Return the new things
 1485          */
 1486         *offset = 0;
 1487         *object = result;
 1488 }
 1489 
 1490 /*
 1491  *      vm_object_split:
 1492  *
 1493  * Split the pages in a map entry into a new object.  This affords
 1494  * easier removal of unused pages, and keeps object inheritance from
 1495  * being a negative impact on memory usage.
 1496  */
 1497 void
 1498 vm_object_split(vm_map_entry_t entry)
 1499 {
 1500         vm_page_t m, m_busy, m_next;
 1501         vm_object_t orig_object, new_object, backing_object;
 1502         vm_pindex_t idx, offidxstart;
 1503         vm_size_t size;
 1504 
 1505         orig_object = entry->object.vm_object;
 1506         KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
 1507             ("vm_object_split:  Splitting object with multiple mappings."));
 1508         if ((orig_object->flags & OBJ_ANON) == 0)
 1509                 return;
 1510         if (orig_object->ref_count <= 1)
 1511                 return;
 1512         VM_OBJECT_WUNLOCK(orig_object);
 1513 
 1514         offidxstart = OFF_TO_IDX(entry->offset);
 1515         size = atop(entry->end - entry->start);
 1516 
 1517         /*
 1518          * If swap_pager_copy() is later called, it will convert new_object
 1519          * into a swap object.
 1520          */
 1521         new_object = vm_object_allocate_anon(size, orig_object,
 1522             orig_object->cred, ptoa(size));
 1523 
 1524         /*
 1525          * We must wait for the orig_object to complete any in-progress
 1526          * collapse so that the swap blocks are stable below.  The
 1527          * additional reference on backing_object by new object will
 1528          * prevent further collapse operations until split completes.
 1529          */
 1530         VM_OBJECT_WLOCK(orig_object);
 1531         vm_object_collapse_wait(orig_object);
 1532 
 1533         /*
 1534          * At this point, the new object is still private, so the order in
 1535          * which the original and new objects are locked does not matter.
 1536          */
 1537         VM_OBJECT_WLOCK(new_object);
 1538         new_object->domain = orig_object->domain;
 1539         backing_object = orig_object->backing_object;
 1540         if (backing_object != NULL) {
 1541                 vm_object_backing_insert_ref(new_object, backing_object);
 1542                 new_object->backing_object_offset = 
 1543                     orig_object->backing_object_offset + entry->offset;
 1544         }
 1545         if (orig_object->cred != NULL) {
 1546                 crhold(orig_object->cred);
 1547                 KASSERT(orig_object->charge >= ptoa(size),
 1548                     ("orig_object->charge < 0"));
 1549                 orig_object->charge -= ptoa(size);
 1550         }
 1551 
 1552         /*
 1553          * Mark the split operation so that swap_pager_getpages() knows
 1554          * that the object is in transition.
 1555          */
 1556         vm_object_set_flag(orig_object, OBJ_SPLIT);
 1557         m_busy = NULL;
 1558 #ifdef INVARIANTS
 1559         idx = 0;
 1560 #endif
 1561 retry:
 1562         m = vm_page_find_least(orig_object, offidxstart);
 1563         KASSERT(m == NULL || idx <= m->pindex - offidxstart,
 1564             ("%s: object %p was repopulated", __func__, orig_object));
 1565         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
 1566             m = m_next) {
 1567                 m_next = TAILQ_NEXT(m, listq);
 1568 
 1569                 /*
 1570                  * We must wait for pending I/O to complete before we can
 1571                  * rename the page.
 1572                  *
 1573                  * We do not have to VM_PROT_NONE the page as mappings should
 1574                  * not be changed by this operation.
 1575                  */
 1576                 if (vm_page_tryxbusy(m) == 0) {
 1577                         VM_OBJECT_WUNLOCK(new_object);
 1578                         vm_page_sleep_if_busy(m, "spltwt");
 1579                         VM_OBJECT_WLOCK(new_object);
 1580                         goto retry;
 1581                 }
 1582 
 1583                 /*
 1584                  * The page was left invalid.  Likely placed there by
 1585                  * an incomplete fault.  Just remove and ignore.
 1586                  */
 1587                 if (vm_page_none_valid(m)) {
 1588                         if (vm_page_remove(m))
 1589                                 vm_page_free(m);
 1590                         continue;
 1591                 }
 1592 
 1593                 /* vm_page_rename() will dirty the page. */
 1594                 if (vm_page_rename(m, new_object, idx)) {
 1595                         vm_page_xunbusy(m);
 1596                         VM_OBJECT_WUNLOCK(new_object);
 1597                         VM_OBJECT_WUNLOCK(orig_object);
 1598                         vm_radix_wait();
 1599                         VM_OBJECT_WLOCK(orig_object);
 1600                         VM_OBJECT_WLOCK(new_object);
 1601                         goto retry;
 1602                 }
 1603 
 1604 #if VM_NRESERVLEVEL > 0
 1605                 /*
 1606                  * If some of the reservation's allocated pages remain with
 1607                  * the original object, then transferring the reservation to
 1608                  * the new object is neither particularly beneficial nor
 1609                  * particularly harmful as compared to leaving the reservation
 1610                  * with the original object.  If, however, all of the
 1611                  * reservation's allocated pages are transferred to the new
 1612                  * object, then transferring the reservation is typically
 1613                  * beneficial.  Determining which of these two cases applies
 1614                  * would be more costly than unconditionally renaming the
 1615                  * reservation.
 1616                  */
 1617                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
 1618 #endif
 1619 
 1620                 /*
 1621                  * orig_object's type may change while sleeping, so keep track
 1622                  * of the beginning of the busied range.
 1623                  */
 1624                 if (orig_object->type != OBJT_SWAP)
 1625                         vm_page_xunbusy(m);
 1626                 else if (m_busy == NULL)
 1627                         m_busy = m;
 1628         }
 1629         if (orig_object->type == OBJT_SWAP) {
 1630                 /*
 1631                  * swap_pager_copy() can sleep, in which case the orig_object's
 1632                  * and new_object's locks are released and reacquired. 
 1633                  */
 1634                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
 1635                 if (m_busy != NULL)
 1636                         TAILQ_FOREACH_FROM(m_busy, &new_object->memq, listq)
 1637                                 vm_page_xunbusy(m_busy);
 1638         }
 1639         vm_object_clear_flag(orig_object, OBJ_SPLIT);
 1640         VM_OBJECT_WUNLOCK(orig_object);
 1641         VM_OBJECT_WUNLOCK(new_object);
 1642         entry->object.vm_object = new_object;
 1643         entry->offset = 0LL;
 1644         vm_object_deallocate(orig_object);
 1645         VM_OBJECT_WLOCK(new_object);
 1646 }
 1647 
 1648 static vm_page_t
 1649 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
 1650 {
 1651         vm_object_t backing_object;
 1652 
 1653         VM_OBJECT_ASSERT_WLOCKED(object);
 1654         backing_object = object->backing_object;
 1655         VM_OBJECT_ASSERT_WLOCKED(backing_object);
 1656 
 1657         KASSERT(p == NULL || p->object == object || p->object == backing_object,
 1658             ("invalid ownership %p %p %p", p, object, backing_object));
 1659         /* The page is only NULL when rename fails. */
 1660         if (p == NULL) {
 1661                 VM_OBJECT_WUNLOCK(object);
 1662                 VM_OBJECT_WUNLOCK(backing_object);
 1663                 vm_radix_wait();
 1664         } else {
 1665                 if (p->object == object)
 1666                         VM_OBJECT_WUNLOCK(backing_object);
 1667                 else
 1668                         VM_OBJECT_WUNLOCK(object);
 1669                 vm_page_busy_sleep(p, "vmocol", false);
 1670         }
 1671         VM_OBJECT_WLOCK(object);
 1672         VM_OBJECT_WLOCK(backing_object);
 1673         return (TAILQ_FIRST(&backing_object->memq));
 1674 }
 1675 
 1676 static bool
 1677 vm_object_scan_all_shadowed(vm_object_t object)
 1678 {
 1679         vm_object_t backing_object;
 1680         vm_page_t p, pp;
 1681         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
 1682 
 1683         VM_OBJECT_ASSERT_WLOCKED(object);
 1684         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
 1685 
 1686         backing_object = object->backing_object;
 1687 
 1688         if ((backing_object->flags & OBJ_ANON) == 0)
 1689                 return (false);
 1690 
 1691         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1692         p = vm_page_find_least(backing_object, pi);
 1693         ps = swap_pager_find_least(backing_object, pi);
 1694 
 1695         /*
 1696          * Only check pages inside the parent object's range and
 1697          * inside the parent object's mapping of the backing object.
 1698          */
 1699         for (;; pi++) {
 1700                 if (p != NULL && p->pindex < pi)
 1701                         p = TAILQ_NEXT(p, listq);
 1702                 if (ps < pi)
 1703                         ps = swap_pager_find_least(backing_object, pi);
 1704                 if (p == NULL && ps >= backing_object->size)
 1705                         break;
 1706                 else if (p == NULL)
 1707                         pi = ps;
 1708                 else
 1709                         pi = MIN(p->pindex, ps);
 1710 
 1711                 new_pindex = pi - backing_offset_index;
 1712                 if (new_pindex >= object->size)
 1713                         break;
 1714 
 1715                 if (p != NULL) {
 1716                         /*
 1717                          * If the backing object page is busy a
 1718                          * grandparent or older page may still be
 1719                          * undergoing CoW.  It is not safe to collapse
 1720                          * the backing object until it is quiesced.
 1721                          */
 1722                         if (vm_page_tryxbusy(p) == 0)
 1723                                 return (false);
 1724 
 1725                         /*
 1726                          * We raced with the fault handler that left
 1727                          * newly allocated invalid page on the object
 1728                          * queue and retried.
 1729                          */
 1730                         if (!vm_page_all_valid(p))
 1731                                 goto unbusy_ret;
 1732                 }
 1733 
 1734                 /*
 1735                  * See if the parent has the page or if the parent's object
 1736                  * pager has the page.  If the parent has the page but the page
 1737                  * is not valid, the parent's object pager must have the page.
 1738                  *
 1739                  * If this fails, the parent does not completely shadow the
 1740                  * object and we might as well give up now.
 1741                  */
 1742                 pp = vm_page_lookup(object, new_pindex);
 1743 
 1744                 /*
 1745                  * The valid check here is stable due to object lock
 1746                  * being required to clear valid and initiate paging.
 1747                  * Busy of p disallows fault handler to validate pp.
 1748                  */
 1749                 if ((pp == NULL || vm_page_none_valid(pp)) &&
 1750                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
 1751                         goto unbusy_ret;
 1752                 if (p != NULL)
 1753                         vm_page_xunbusy(p);
 1754         }
 1755         return (true);
 1756 
 1757 unbusy_ret:
 1758         if (p != NULL)
 1759                 vm_page_xunbusy(p);
 1760         return (false);
 1761 }
 1762 
 1763 static void
 1764 vm_object_collapse_scan(vm_object_t object)
 1765 {
 1766         vm_object_t backing_object;
 1767         vm_page_t next, p, pp;
 1768         vm_pindex_t backing_offset_index, new_pindex;
 1769 
 1770         VM_OBJECT_ASSERT_WLOCKED(object);
 1771         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
 1772 
 1773         backing_object = object->backing_object;
 1774         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1775 
 1776         /*
 1777          * Our scan
 1778          */
 1779         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
 1780                 next = TAILQ_NEXT(p, listq);
 1781                 new_pindex = p->pindex - backing_offset_index;
 1782 
 1783                 /*
 1784                  * Check for busy page
 1785                  */
 1786                 if (vm_page_tryxbusy(p) == 0) {
 1787                         next = vm_object_collapse_scan_wait(object, p);
 1788                         continue;
 1789                 }
 1790 
 1791                 KASSERT(object->backing_object == backing_object,
 1792                     ("vm_object_collapse_scan: backing object mismatch %p != %p",
 1793                     object->backing_object, backing_object));
 1794                 KASSERT(p->object == backing_object,
 1795                     ("vm_object_collapse_scan: object mismatch %p != %p",
 1796                     p->object, backing_object));
 1797 
 1798                 if (p->pindex < backing_offset_index ||
 1799                     new_pindex >= object->size) {
 1800                         if (backing_object->type == OBJT_SWAP)
 1801                                 swap_pager_freespace(backing_object, p->pindex,
 1802                                     1);
 1803 
 1804                         KASSERT(!pmap_page_is_mapped(p),
 1805                             ("freeing mapped page %p", p));
 1806                         if (vm_page_remove(p))
 1807                                 vm_page_free(p);
 1808                         continue;
 1809                 }
 1810 
 1811                 if (!vm_page_all_valid(p)) {
 1812                         KASSERT(!pmap_page_is_mapped(p),
 1813                             ("freeing mapped page %p", p));
 1814                         if (vm_page_remove(p))
 1815                                 vm_page_free(p);
 1816                         continue;
 1817                 }
 1818 
 1819                 pp = vm_page_lookup(object, new_pindex);
 1820                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
 1821                         vm_page_xunbusy(p);
 1822                         /*
 1823                          * The page in the parent is busy and possibly not
 1824                          * (yet) valid.  Until its state is finalized by the
 1825                          * busy bit owner, we can't tell whether it shadows the
 1826                          * original page.
 1827                          */
 1828                         next = vm_object_collapse_scan_wait(object, pp);
 1829                         continue;
 1830                 }
 1831 
 1832                 if (pp != NULL && vm_page_none_valid(pp)) {
 1833                         /*
 1834                          * The page was invalid in the parent.  Likely placed
 1835                          * there by an incomplete fault.  Just remove and
 1836                          * ignore.  p can replace it.
 1837                          */
 1838                         if (vm_page_remove(pp))
 1839                                 vm_page_free(pp);
 1840                         pp = NULL;
 1841                 }
 1842 
 1843                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
 1844                         NULL)) {
 1845                         /*
 1846                          * The page already exists in the parent OR swap exists
 1847                          * for this location in the parent.  Leave the parent's
 1848                          * page alone.  Destroy the original page from the
 1849                          * backing object.
 1850                          */
 1851                         if (backing_object->type == OBJT_SWAP)
 1852                                 swap_pager_freespace(backing_object, p->pindex,
 1853                                     1);
 1854                         KASSERT(!pmap_page_is_mapped(p),
 1855                             ("freeing mapped page %p", p));
 1856                         if (vm_page_remove(p))
 1857                                 vm_page_free(p);
 1858                         if (pp != NULL)
 1859                                 vm_page_xunbusy(pp);
 1860                         continue;
 1861                 }
 1862 
 1863                 /*
 1864                  * Page does not exist in parent, rename the page from the
 1865                  * backing object to the main object.
 1866                  *
 1867                  * If the page was mapped to a process, it can remain mapped
 1868                  * through the rename.  vm_page_rename() will dirty the page.
 1869                  */
 1870                 if (vm_page_rename(p, object, new_pindex)) {
 1871                         vm_page_xunbusy(p);
 1872                         next = vm_object_collapse_scan_wait(object, NULL);
 1873                         continue;
 1874                 }
 1875 
 1876                 /* Use the old pindex to free the right page. */
 1877                 if (backing_object->type == OBJT_SWAP)
 1878                         swap_pager_freespace(backing_object,
 1879                             new_pindex + backing_offset_index, 1);
 1880 
 1881 #if VM_NRESERVLEVEL > 0
 1882                 /*
 1883                  * Rename the reservation.
 1884                  */
 1885                 vm_reserv_rename(p, object, backing_object,
 1886                     backing_offset_index);
 1887 #endif
 1888                 vm_page_xunbusy(p);
 1889         }
 1890         return;
 1891 }
 1892 
 1893 /*
 1894  *      vm_object_collapse:
 1895  *
 1896  *      Collapse an object with the object backing it.
 1897  *      Pages in the backing object are moved into the
 1898  *      parent, and the backing object is deallocated.
 1899  */
 1900 void
 1901 vm_object_collapse(vm_object_t object)
 1902 {
 1903         vm_object_t backing_object, new_backing_object;
 1904 
 1905         VM_OBJECT_ASSERT_WLOCKED(object);
 1906 
 1907         while (TRUE) {
 1908                 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
 1909                     ("collapsing invalid object"));
 1910 
 1911                 /*
 1912                  * Wait for the backing_object to finish any pending
 1913                  * collapse so that the caller sees the shortest possible
 1914                  * shadow chain.
 1915                  */
 1916                 backing_object = vm_object_backing_collapse_wait(object);
 1917                 if (backing_object == NULL)
 1918                         return;
 1919 
 1920                 KASSERT(object->ref_count > 0 &&
 1921                     object->ref_count > object->shadow_count,
 1922                     ("collapse with invalid ref %d or shadow %d count.",
 1923                     object->ref_count, object->shadow_count));
 1924                 KASSERT((backing_object->flags &
 1925                     (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
 1926                     ("vm_object_collapse: Backing object already collapsing."));
 1927                 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
 1928                     ("vm_object_collapse: object is already collapsing."));
 1929 
 1930                 /*
 1931                  * We know that we can either collapse the backing object if
 1932                  * the parent is the only reference to it, or (perhaps) have
 1933                  * the parent bypass the object if the parent happens to shadow
 1934                  * all the resident pages in the entire backing object.
 1935                  */
 1936                 if (backing_object->ref_count == 1) {
 1937                         KASSERT(backing_object->shadow_count == 1,
 1938                             ("vm_object_collapse: shadow_count: %d",
 1939                             backing_object->shadow_count));
 1940                         vm_object_pip_add(object, 1);
 1941                         vm_object_set_flag(object, OBJ_COLLAPSING);
 1942                         vm_object_pip_add(backing_object, 1);
 1943                         vm_object_set_flag(backing_object, OBJ_DEAD);
 1944 
 1945                         /*
 1946                          * If there is exactly one reference to the backing
 1947                          * object, we can collapse it into the parent.
 1948                          */
 1949                         vm_object_collapse_scan(object);
 1950 
 1951 #if VM_NRESERVLEVEL > 0
 1952                         /*
 1953                          * Break any reservations from backing_object.
 1954                          */
 1955                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
 1956                                 vm_reserv_break_all(backing_object);
 1957 #endif
 1958 
 1959                         /*
 1960                          * Move the pager from backing_object to object.
 1961                          */
 1962                         if (backing_object->type == OBJT_SWAP) {
 1963                                 /*
 1964                                  * swap_pager_copy() can sleep, in which case
 1965                                  * the backing_object's and object's locks are
 1966                                  * released and reacquired.
 1967                                  * Since swap_pager_copy() is being asked to
 1968                                  * destroy backing_object, it will change the
 1969                                  * type to OBJT_DEFAULT.
 1970                                  */
 1971                                 swap_pager_copy(
 1972                                     backing_object,
 1973                                     object,
 1974                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
 1975                         }
 1976 
 1977                         /*
 1978                          * Object now shadows whatever backing_object did.
 1979                          */
 1980                         vm_object_clear_flag(object, OBJ_COLLAPSING);
 1981                         vm_object_backing_transfer(object, backing_object);
 1982                         object->backing_object_offset +=
 1983                             backing_object->backing_object_offset;
 1984                         VM_OBJECT_WUNLOCK(object);
 1985                         vm_object_pip_wakeup(object);
 1986 
 1987                         /*
 1988                          * Discard backing_object.
 1989                          *
 1990                          * Since the backing object has no pages, no pager left,
 1991                          * and no object references within it, all that is
 1992                          * necessary is to dispose of it.
 1993                          */
 1994                         KASSERT(backing_object->ref_count == 1, (
 1995 "backing_object %p was somehow re-referenced during collapse!",
 1996                             backing_object));
 1997                         vm_object_pip_wakeup(backing_object);
 1998                         (void)refcount_release(&backing_object->ref_count);
 1999                         vm_object_terminate(backing_object);
 2000                         counter_u64_add(object_collapses, 1);
 2001                         VM_OBJECT_WLOCK(object);
 2002                 } else {
 2003                         /*
 2004                          * If we do not entirely shadow the backing object,
 2005                          * there is nothing we can do so we give up.
 2006                          *
 2007                          * The object lock and backing_object lock must not
 2008                          * be dropped during this sequence.
 2009                          */
 2010                         if (!vm_object_scan_all_shadowed(object)) {
 2011                                 VM_OBJECT_WUNLOCK(backing_object);
 2012                                 break;
 2013                         }
 2014 
 2015                         /*
 2016                          * Make the parent shadow the next object in the
 2017                          * chain.  Deallocating backing_object will not remove
 2018                          * it, since its reference count is at least 2.
 2019                          */
 2020                         vm_object_backing_remove_locked(object);
 2021                         new_backing_object = backing_object->backing_object;
 2022                         if (new_backing_object != NULL) {
 2023                                 vm_object_backing_insert_ref(object,
 2024                                     new_backing_object);
 2025                                 object->backing_object_offset +=
 2026                                     backing_object->backing_object_offset;
 2027                         }
 2028 
 2029                         /*
 2030                          * Drop the reference count on backing_object. Since
 2031                          * its ref_count was at least 2, it will not vanish.
 2032                          */
 2033                         (void)refcount_release(&backing_object->ref_count);
 2034                         KASSERT(backing_object->ref_count >= 1, (
 2035 "backing_object %p was somehow dereferenced during collapse!",
 2036                             backing_object));
 2037                         VM_OBJECT_WUNLOCK(backing_object);
 2038                         counter_u64_add(object_bypasses, 1);
 2039                 }
 2040 
 2041                 /*
 2042                  * Try again with this object's new backing object.
 2043                  */
 2044         }
 2045 }
 2046 
 2047 /*
 2048  *      vm_object_page_remove:
 2049  *
 2050  *      For the given object, either frees or invalidates each of the
 2051  *      specified pages.  In general, a page is freed.  However, if a page is
 2052  *      wired for any reason other than the existence of a managed, wired
 2053  *      mapping, then it may be invalidated but not removed from the object.
 2054  *      Pages are specified by the given range ["start", "end") and the option
 2055  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
 2056  *      extends from "start" to the end of the object.  If the option
 2057  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
 2058  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
 2059  *      specified, then the pages within the specified range must have no
 2060  *      mappings.  Otherwise, if this option is not specified, any mappings to
 2061  *      the specified pages are removed before the pages are freed or
 2062  *      invalidated.
 2063  *
 2064  *      In general, this operation should only be performed on objects that
 2065  *      contain managed pages.  There are, however, two exceptions.  First, it
 2066  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
 2067  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
 2068  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
 2069  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
 2070  *
 2071  *      The object must be locked.
 2072  */
 2073 void
 2074 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 2075     int options)
 2076 {
 2077         vm_page_t p, next;
 2078 
 2079         VM_OBJECT_ASSERT_WLOCKED(object);
 2080         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
 2081             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
 2082             ("vm_object_page_remove: illegal options for object %p", object));
 2083         if (object->resident_page_count == 0)
 2084                 return;
 2085         vm_object_pip_add(object, 1);
 2086 again:
 2087         p = vm_page_find_least(object, start);
 2088 
 2089         /*
 2090          * Here, the variable "p" is either (1) the page with the least pindex
 2091          * greater than or equal to the parameter "start" or (2) NULL. 
 2092          */
 2093         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 2094                 next = TAILQ_NEXT(p, listq);
 2095 
 2096                 /*
 2097                  * If the page is wired for any reason besides the existence
 2098                  * of managed, wired mappings, then it cannot be freed.  For
 2099                  * example, fictitious pages, which represent device memory,
 2100                  * are inherently wired and cannot be freed.  They can,
 2101                  * however, be invalidated if the option OBJPR_CLEANONLY is
 2102                  * not specified.
 2103                  */
 2104                 if (vm_page_tryxbusy(p) == 0) {
 2105                         vm_page_sleep_if_busy(p, "vmopar");
 2106                         goto again;
 2107                 }
 2108                 if (vm_page_wired(p)) {
 2109 wired:
 2110                         if ((options & OBJPR_NOTMAPPED) == 0 &&
 2111                             object->ref_count != 0)
 2112                                 pmap_remove_all(p);
 2113                         if ((options & OBJPR_CLEANONLY) == 0) {
 2114                                 vm_page_invalid(p);
 2115                                 vm_page_undirty(p);
 2116                         }
 2117                         vm_page_xunbusy(p);
 2118                         continue;
 2119                 }
 2120                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
 2121                     ("vm_object_page_remove: page %p is fictitious", p));
 2122                 if ((options & OBJPR_CLEANONLY) != 0 &&
 2123                     !vm_page_none_valid(p)) {
 2124                         if ((options & OBJPR_NOTMAPPED) == 0 &&
 2125                             object->ref_count != 0 &&
 2126                             !vm_page_try_remove_write(p))
 2127                                 goto wired;
 2128                         if (p->dirty != 0) {
 2129                                 vm_page_xunbusy(p);
 2130                                 continue;
 2131                         }
 2132                 }
 2133                 if ((options & OBJPR_NOTMAPPED) == 0 &&
 2134                     object->ref_count != 0 && !vm_page_try_remove_all(p))
 2135                         goto wired;
 2136                 vm_page_free(p);
 2137         }
 2138         vm_object_pip_wakeup(object);
 2139 
 2140         if (object->type == OBJT_SWAP) {
 2141                 if (end == 0)
 2142                         end = object->size;
 2143                 swap_pager_freespace(object, start, end - start);
 2144         }
 2145 }
 2146 
 2147 /*
 2148  *      vm_object_page_noreuse:
 2149  *
 2150  *      For the given object, attempt to move the specified pages to
 2151  *      the head of the inactive queue.  This bypasses regular LRU
 2152  *      operation and allows the pages to be reused quickly under memory
 2153  *      pressure.  If a page is wired for any reason, then it will not
 2154  *      be queued.  Pages are specified by the range ["start", "end").
 2155  *      As a special case, if "end" is zero, then the range extends from
 2156  *      "start" to the end of the object.
 2157  *
 2158  *      This operation should only be performed on objects that
 2159  *      contain non-fictitious, managed pages.
 2160  *
 2161  *      The object must be locked.
 2162  */
 2163 void
 2164 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 2165 {
 2166         vm_page_t p, next;
 2167 
 2168         VM_OBJECT_ASSERT_LOCKED(object);
 2169         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
 2170             ("vm_object_page_noreuse: illegal object %p", object));
 2171         if (object->resident_page_count == 0)
 2172                 return;
 2173         p = vm_page_find_least(object, start);
 2174 
 2175         /*
 2176          * Here, the variable "p" is either (1) the page with the least pindex
 2177          * greater than or equal to the parameter "start" or (2) NULL. 
 2178          */
 2179         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 2180                 next = TAILQ_NEXT(p, listq);
 2181                 vm_page_deactivate_noreuse(p);
 2182         }
 2183 }
 2184 
 2185 /*
 2186  *      Populate the specified range of the object with valid pages.  Returns
 2187  *      TRUE if the range is successfully populated and FALSE otherwise.
 2188  *
 2189  *      Note: This function should be optimized to pass a larger array of
 2190  *      pages to vm_pager_get_pages() before it is applied to a non-
 2191  *      OBJT_DEVICE object.
 2192  *
 2193  *      The object must be locked.
 2194  */
 2195 boolean_t
 2196 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 2197 {
 2198         vm_page_t m;
 2199         vm_pindex_t pindex;
 2200         int rv;
 2201 
 2202         VM_OBJECT_ASSERT_WLOCKED(object);
 2203         for (pindex = start; pindex < end; pindex++) {
 2204                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
 2205                 if (rv != VM_PAGER_OK)
 2206                         break;
 2207 
 2208                 /*
 2209                  * Keep "m" busy because a subsequent iteration may unlock
 2210                  * the object.
 2211                  */
 2212         }
 2213         if (pindex > start) {
 2214                 m = vm_page_lookup(object, start);
 2215                 while (m != NULL && m->pindex < pindex) {
 2216                         vm_page_xunbusy(m);
 2217                         m = TAILQ_NEXT(m, listq);
 2218                 }
 2219         }
 2220         return (pindex == end);
 2221 }
 2222 
 2223 /*
 2224  *      Routine:        vm_object_coalesce
 2225  *      Function:       Coalesces two objects backing up adjoining
 2226  *                      regions of memory into a single object.
 2227  *
 2228  *      returns TRUE if objects were combined.
 2229  *
 2230  *      NOTE:   Only works at the moment if the second object is NULL -
 2231  *              if it's not, which object do we lock first?
 2232  *
 2233  *      Parameters:
 2234  *              prev_object     First object to coalesce
 2235  *              prev_offset     Offset into prev_object
 2236  *              prev_size       Size of reference to prev_object
 2237  *              next_size       Size of reference to the second object
 2238  *              reserved        Indicator that extension region has
 2239  *                              swap accounted for
 2240  *
 2241  *      Conditions:
 2242  *      The object must *not* be locked.
 2243  */
 2244 boolean_t
 2245 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
 2246     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
 2247 {
 2248         vm_pindex_t next_pindex;
 2249 
 2250         if (prev_object == NULL)
 2251                 return (TRUE);
 2252         if ((prev_object->flags & OBJ_ANON) == 0)
 2253                 return (FALSE);
 2254 
 2255         VM_OBJECT_WLOCK(prev_object);
 2256         /*
 2257          * Try to collapse the object first.
 2258          */
 2259         vm_object_collapse(prev_object);
 2260 
 2261         /*
 2262          * Can't coalesce if: . more than one reference . paged out . shadows
 2263          * another object . has a copy elsewhere (any of which mean that the
 2264          * pages not mapped to prev_entry may be in use anyway)
 2265          */
 2266         if (prev_object->backing_object != NULL) {
 2267                 VM_OBJECT_WUNLOCK(prev_object);
 2268                 return (FALSE);
 2269         }
 2270 
 2271         prev_size >>= PAGE_SHIFT;
 2272         next_size >>= PAGE_SHIFT;
 2273         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
 2274 
 2275         if (prev_object->ref_count > 1 &&
 2276             prev_object->size != next_pindex &&
 2277             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
 2278                 VM_OBJECT_WUNLOCK(prev_object);
 2279                 return (FALSE);
 2280         }
 2281 
 2282         /*
 2283          * Account for the charge.
 2284          */
 2285         if (prev_object->cred != NULL) {
 2286                 /*
 2287                  * If prev_object was charged, then this mapping,
 2288                  * although not charged now, may become writable
 2289                  * later. Non-NULL cred in the object would prevent
 2290                  * swap reservation during enabling of the write
 2291                  * access, so reserve swap now. Failed reservation
 2292                  * cause allocation of the separate object for the map
 2293                  * entry, and swap reservation for this entry is
 2294                  * managed in appropriate time.
 2295                  */
 2296                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
 2297                     prev_object->cred)) {
 2298                         VM_OBJECT_WUNLOCK(prev_object);
 2299                         return (FALSE);
 2300                 }
 2301                 prev_object->charge += ptoa(next_size);
 2302         }
 2303 
 2304         /*
 2305          * Remove any pages that may still be in the object from a previous
 2306          * deallocation.
 2307          */
 2308         if (next_pindex < prev_object->size) {
 2309                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
 2310                     next_size, 0);
 2311 #if 0
 2312                 if (prev_object->cred != NULL) {
 2313                         KASSERT(prev_object->charge >=
 2314                             ptoa(prev_object->size - next_pindex),
 2315                             ("object %p overcharged 1 %jx %jx", prev_object,
 2316                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
 2317                         prev_object->charge -= ptoa(prev_object->size -
 2318                             next_pindex);
 2319                 }
 2320 #endif
 2321         }
 2322 
 2323         /*
 2324          * Extend the object if necessary.
 2325          */
 2326         if (next_pindex + next_size > prev_object->size)
 2327                 prev_object->size = next_pindex + next_size;
 2328 
 2329         VM_OBJECT_WUNLOCK(prev_object);
 2330         return (TRUE);
 2331 }
 2332 
 2333 void
 2334 vm_object_set_writeable_dirty(vm_object_t object)
 2335 {
 2336 
 2337         /* Only set for vnodes & tmpfs */
 2338         if (object->type != OBJT_VNODE &&
 2339             (object->flags & OBJ_TMPFS_NODE) == 0)
 2340                 return;
 2341         atomic_add_int(&object->generation, 1);
 2342 }
 2343 
 2344 /*
 2345  *      vm_object_unwire:
 2346  *
 2347  *      For each page offset within the specified range of the given object,
 2348  *      find the highest-level page in the shadow chain and unwire it.  A page
 2349  *      must exist at every page offset, and the highest-level page must be
 2350  *      wired.
 2351  */
 2352 void
 2353 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
 2354     uint8_t queue)
 2355 {
 2356         vm_object_t tobject, t1object;
 2357         vm_page_t m, tm;
 2358         vm_pindex_t end_pindex, pindex, tpindex;
 2359         int depth, locked_depth;
 2360 
 2361         KASSERT((offset & PAGE_MASK) == 0,
 2362             ("vm_object_unwire: offset is not page aligned"));
 2363         KASSERT((length & PAGE_MASK) == 0,
 2364             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
 2365         /* The wired count of a fictitious page never changes. */
 2366         if ((object->flags & OBJ_FICTITIOUS) != 0)
 2367                 return;
 2368         pindex = OFF_TO_IDX(offset);
 2369         end_pindex = pindex + atop(length);
 2370 again:
 2371         locked_depth = 1;
 2372         VM_OBJECT_RLOCK(object);
 2373         m = vm_page_find_least(object, pindex);
 2374         while (pindex < end_pindex) {
 2375                 if (m == NULL || pindex < m->pindex) {
 2376                         /*
 2377                          * The first object in the shadow chain doesn't
 2378                          * contain a page at the current index.  Therefore,
 2379                          * the page must exist in a backing object.
 2380                          */
 2381                         tobject = object;
 2382                         tpindex = pindex;
 2383                         depth = 0;
 2384                         do {
 2385                                 tpindex +=
 2386                                     OFF_TO_IDX(tobject->backing_object_offset);
 2387                                 tobject = tobject->backing_object;
 2388                                 KASSERT(tobject != NULL,
 2389                                     ("vm_object_unwire: missing page"));
 2390                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
 2391                                         goto next_page;
 2392                                 depth++;
 2393                                 if (depth == locked_depth) {
 2394                                         locked_depth++;
 2395                                         VM_OBJECT_RLOCK(tobject);
 2396                                 }
 2397                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
 2398                             NULL);
 2399                 } else {
 2400                         tm = m;
 2401                         m = TAILQ_NEXT(m, listq);
 2402                 }
 2403                 if (vm_page_trysbusy(tm) == 0) {
 2404                         for (tobject = object; locked_depth >= 1;
 2405                             locked_depth--) {
 2406                                 t1object = tobject->backing_object;
 2407                                 if (tm->object != tobject)
 2408                                         VM_OBJECT_RUNLOCK(tobject);
 2409                                 tobject = t1object;
 2410                         }
 2411                         vm_page_busy_sleep(tm, "unwbo", true);
 2412                         goto again;
 2413                 }
 2414                 vm_page_unwire(tm, queue);
 2415                 vm_page_sunbusy(tm);
 2416 next_page:
 2417                 pindex++;
 2418         }
 2419         /* Release the accumulated object locks. */
 2420         for (tobject = object; locked_depth >= 1; locked_depth--) {
 2421                 t1object = tobject->backing_object;
 2422                 VM_OBJECT_RUNLOCK(tobject);
 2423                 tobject = t1object;
 2424         }
 2425 }
 2426 
 2427 /*
 2428  * Return the vnode for the given object, or NULL if none exists.
 2429  * For tmpfs objects, the function may return NULL if there is
 2430  * no vnode allocated at the time of the call.
 2431  */
 2432 struct vnode *
 2433 vm_object_vnode(vm_object_t object)
 2434 {
 2435         struct vnode *vp;
 2436 
 2437         VM_OBJECT_ASSERT_LOCKED(object);
 2438         if (object->type == OBJT_VNODE) {
 2439                 vp = object->handle;
 2440                 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
 2441         } else if (object->type == OBJT_SWAP &&
 2442             (object->flags & OBJ_TMPFS) != 0) {
 2443                 vp = object->un_pager.swp.swp_tmpfs;
 2444                 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
 2445         } else {
 2446                 vp = NULL;
 2447         }
 2448         return (vp);
 2449 }
 2450 
 2451 /*
 2452  * Busy the vm object.  This prevents new pages belonging to the object from
 2453  * becoming busy.  Existing pages persist as busy.  Callers are responsible
 2454  * for checking page state before proceeding.
 2455  */
 2456 void
 2457 vm_object_busy(vm_object_t obj)
 2458 {
 2459 
 2460         VM_OBJECT_ASSERT_LOCKED(obj);
 2461 
 2462         blockcount_acquire(&obj->busy, 1);
 2463         /* The fence is required to order loads of page busy. */
 2464         atomic_thread_fence_acq_rel();
 2465 }
 2466 
 2467 void
 2468 vm_object_unbusy(vm_object_t obj)
 2469 {
 2470 
 2471         blockcount_release(&obj->busy, 1);
 2472 }
 2473 
 2474 void
 2475 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
 2476 {
 2477 
 2478         VM_OBJECT_ASSERT_UNLOCKED(obj);
 2479 
 2480         (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
 2481 }
 2482 
 2483 /*
 2484  * Return the kvme type of the given object.
 2485  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
 2486  */
 2487 int
 2488 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
 2489 {
 2490 
 2491         VM_OBJECT_ASSERT_LOCKED(object);
 2492         if (vpp != NULL)
 2493                 *vpp = vm_object_vnode(object);
 2494         switch (object->type) {
 2495         case OBJT_DEFAULT:
 2496                 return (KVME_TYPE_DEFAULT);
 2497         case OBJT_VNODE:
 2498                 return (KVME_TYPE_VNODE);
 2499         case OBJT_SWAP:
 2500                 if ((object->flags & OBJ_TMPFS_NODE) != 0)
 2501                         return (KVME_TYPE_VNODE);
 2502                 return (KVME_TYPE_SWAP);
 2503         case OBJT_DEVICE:
 2504                 return (KVME_TYPE_DEVICE);
 2505         case OBJT_PHYS:
 2506                 return (KVME_TYPE_PHYS);
 2507         case OBJT_DEAD:
 2508                 return (KVME_TYPE_DEAD);
 2509         case OBJT_SG:
 2510                 return (KVME_TYPE_SG);
 2511         case OBJT_MGTDEVICE:
 2512                 return (KVME_TYPE_MGTDEVICE);
 2513         default:
 2514                 return (KVME_TYPE_UNKNOWN);
 2515         }
 2516 }
 2517 
 2518 static int
 2519 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
 2520 {
 2521         struct kinfo_vmobject *kvo;
 2522         char *fullpath, *freepath;
 2523         struct vnode *vp;
 2524         struct vattr va;
 2525         vm_object_t obj;
 2526         vm_page_t m;
 2527         int count, error;
 2528 
 2529         if (req->oldptr == NULL) {
 2530                 /*
 2531                  * If an old buffer has not been provided, generate an
 2532                  * estimate of the space needed for a subsequent call.
 2533                  */
 2534                 mtx_lock(&vm_object_list_mtx);
 2535                 count = 0;
 2536                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
 2537                         if (obj->type == OBJT_DEAD)
 2538                                 continue;
 2539                         count++;
 2540                 }
 2541                 mtx_unlock(&vm_object_list_mtx);
 2542                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
 2543                     count * 11 / 10));
 2544         }
 2545 
 2546         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
 2547         error = 0;
 2548 
 2549         /*
 2550          * VM objects are type stable and are never removed from the
 2551          * list once added.  This allows us to safely read obj->object_list
 2552          * after reacquiring the VM object lock.
 2553          */
 2554         mtx_lock(&vm_object_list_mtx);
 2555         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
 2556                 if (obj->type == OBJT_DEAD)
 2557                         continue;
 2558                 VM_OBJECT_RLOCK(obj);
 2559                 if (obj->type == OBJT_DEAD) {
 2560                         VM_OBJECT_RUNLOCK(obj);
 2561                         continue;
 2562                 }
 2563                 mtx_unlock(&vm_object_list_mtx);
 2564                 kvo->kvo_size = ptoa(obj->size);
 2565                 kvo->kvo_resident = obj->resident_page_count;
 2566                 kvo->kvo_ref_count = obj->ref_count;
 2567                 kvo->kvo_shadow_count = obj->shadow_count;
 2568                 kvo->kvo_memattr = obj->memattr;
 2569                 kvo->kvo_active = 0;
 2570                 kvo->kvo_inactive = 0;
 2571                 TAILQ_FOREACH(m, &obj->memq, listq) {
 2572                         /*
 2573                          * A page may belong to the object but be
 2574                          * dequeued and set to PQ_NONE while the
 2575                          * object lock is not held.  This makes the
 2576                          * reads of m->queue below racy, and we do not
 2577                          * count pages set to PQ_NONE.  However, this
 2578                          * sysctl is only meant to give an
 2579                          * approximation of the system anyway.
 2580                          */
 2581                         if (m->a.queue == PQ_ACTIVE)
 2582                                 kvo->kvo_active++;
 2583                         else if (m->a.queue == PQ_INACTIVE)
 2584                                 kvo->kvo_inactive++;
 2585                 }
 2586 
 2587                 kvo->kvo_vn_fileid = 0;
 2588                 kvo->kvo_vn_fsid = 0;
 2589                 kvo->kvo_vn_fsid_freebsd11 = 0;
 2590                 freepath = NULL;
 2591                 fullpath = "";
 2592                 kvo->kvo_type = vm_object_kvme_type(obj, &vp);
 2593                 if (vp != NULL)
 2594                         vref(vp);
 2595                 VM_OBJECT_RUNLOCK(obj);
 2596                 if (vp != NULL) {
 2597                         vn_fullpath(vp, &fullpath, &freepath);
 2598                         vn_lock(vp, LK_SHARED | LK_RETRY);
 2599                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
 2600                                 kvo->kvo_vn_fileid = va.va_fileid;
 2601                                 kvo->kvo_vn_fsid = va.va_fsid;
 2602                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
 2603                                                                 /* truncate */
 2604                         }
 2605                         vput(vp);
 2606                 }
 2607 
 2608                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
 2609                 if (freepath != NULL)
 2610                         free(freepath, M_TEMP);
 2611 
 2612                 /* Pack record size down */
 2613                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
 2614                     + strlen(kvo->kvo_path) + 1;
 2615                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
 2616                     sizeof(uint64_t));
 2617                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
 2618                 mtx_lock(&vm_object_list_mtx);
 2619                 if (error)
 2620                         break;
 2621         }
 2622         mtx_unlock(&vm_object_list_mtx);
 2623         free(kvo, M_TEMP);
 2624         return (error);
 2625 }
 2626 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
 2627     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
 2628     "List of VM objects");
 2629 
 2630 #include "opt_ddb.h"
 2631 #ifdef DDB
 2632 #include <sys/kernel.h>
 2633 
 2634 #include <sys/cons.h>
 2635 
 2636 #include <ddb/ddb.h>
 2637 
 2638 static int
 2639 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
 2640 {
 2641         vm_map_t tmpm;
 2642         vm_map_entry_t tmpe;
 2643         vm_object_t obj;
 2644 
 2645         if (map == 0)
 2646                 return 0;
 2647 
 2648         if (entry == 0) {
 2649                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
 2650                         if (_vm_object_in_map(map, object, tmpe)) {
 2651                                 return 1;
 2652                         }
 2653                 }
 2654         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2655                 tmpm = entry->object.sub_map;
 2656                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
 2657                         if (_vm_object_in_map(tmpm, object, tmpe)) {
 2658                                 return 1;
 2659                         }
 2660                 }
 2661         } else if ((obj = entry->object.vm_object) != NULL) {
 2662                 for (; obj; obj = obj->backing_object)
 2663                         if (obj == object) {
 2664                                 return 1;
 2665                         }
 2666         }
 2667         return 0;
 2668 }
 2669 
 2670 static int
 2671 vm_object_in_map(vm_object_t object)
 2672 {
 2673         struct proc *p;
 2674 
 2675         /* sx_slock(&allproc_lock); */
 2676         FOREACH_PROC_IN_SYSTEM(p) {
 2677                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
 2678                         continue;
 2679                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
 2680                         /* sx_sunlock(&allproc_lock); */
 2681                         return 1;
 2682                 }
 2683         }
 2684         /* sx_sunlock(&allproc_lock); */
 2685         if (_vm_object_in_map(kernel_map, object, 0))
 2686                 return 1;
 2687         return 0;
 2688 }
 2689 
 2690 DB_SHOW_COMMAND(vmochk, vm_object_check)
 2691 {
 2692         vm_object_t object;
 2693 
 2694         /*
 2695          * make sure that internal objs are in a map somewhere
 2696          * and none have zero ref counts.
 2697          */
 2698         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2699                 if ((object->flags & OBJ_ANON) != 0) {
 2700                         if (object->ref_count == 0) {
 2701                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
 2702                                         (long)object->size);
 2703                         }
 2704                         if (!vm_object_in_map(object)) {
 2705                                 db_printf(
 2706                         "vmochk: internal obj is not in a map: "
 2707                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
 2708                                     object->ref_count, (u_long)object->size, 
 2709                                     (u_long)object->size,
 2710                                     (void *)object->backing_object);
 2711                         }
 2712                 }
 2713                 if (db_pager_quit)
 2714                         return;
 2715         }
 2716 }
 2717 
 2718 /*
 2719  *      vm_object_print:        [ debug ]
 2720  */
 2721 DB_SHOW_COMMAND(object, vm_object_print_static)
 2722 {
 2723         /* XXX convert args. */
 2724         vm_object_t object = (vm_object_t)addr;
 2725         boolean_t full = have_addr;
 2726 
 2727         vm_page_t p;
 2728 
 2729         /* XXX count is an (unused) arg.  Avoid shadowing it. */
 2730 #define count   was_count
 2731 
 2732         int count;
 2733 
 2734         if (object == NULL)
 2735                 return;
 2736 
 2737         db_iprintf(
 2738             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
 2739             object, (int)object->type, (uintmax_t)object->size,
 2740             object->resident_page_count, object->ref_count, object->flags,
 2741             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
 2742         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
 2743             object->shadow_count, 
 2744             object->backing_object ? object->backing_object->ref_count : 0,
 2745             object->backing_object, (uintmax_t)object->backing_object_offset);
 2746 
 2747         if (!full)
 2748                 return;
 2749 
 2750         db_indent += 2;
 2751         count = 0;
 2752         TAILQ_FOREACH(p, &object->memq, listq) {
 2753                 if (count == 0)
 2754                         db_iprintf("memory:=");
 2755                 else if (count == 6) {
 2756                         db_printf("\n");
 2757                         db_iprintf(" ...");
 2758                         count = 0;
 2759                 } else
 2760                         db_printf(",");
 2761                 count++;
 2762 
 2763                 db_printf("(off=0x%jx,page=0x%jx)",
 2764                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
 2765 
 2766                 if (db_pager_quit)
 2767                         break;
 2768         }
 2769         if (count != 0)
 2770                 db_printf("\n");
 2771         db_indent -= 2;
 2772 }
 2773 
 2774 /* XXX. */
 2775 #undef count
 2776 
 2777 /* XXX need this non-static entry for calling from vm_map_print. */
 2778 void
 2779 vm_object_print(
 2780         /* db_expr_t */ long addr,
 2781         boolean_t have_addr,
 2782         /* db_expr_t */ long count,
 2783         char *modif)
 2784 {
 2785         vm_object_print_static(addr, have_addr, count, modif);
 2786 }
 2787 
 2788 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
 2789 {
 2790         vm_object_t object;
 2791         vm_pindex_t fidx;
 2792         vm_paddr_t pa;
 2793         vm_page_t m, prev_m;
 2794         int rcount, nl, c;
 2795 
 2796         nl = 0;
 2797         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2798                 db_printf("new object: %p\n", (void *)object);
 2799                 if (nl > 18) {
 2800                         c = cngetc();
 2801                         if (c != ' ')
 2802                                 return;
 2803                         nl = 0;
 2804                 }
 2805                 nl++;
 2806                 rcount = 0;
 2807                 fidx = 0;
 2808                 pa = -1;
 2809                 TAILQ_FOREACH(m, &object->memq, listq) {
 2810                         if (m->pindex > 128)
 2811                                 break;
 2812                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
 2813                             prev_m->pindex + 1 != m->pindex) {
 2814                                 if (rcount) {
 2815                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2816                                                 (long)fidx, rcount, (long)pa);
 2817                                         if (nl > 18) {
 2818                                                 c = cngetc();
 2819                                                 if (c != ' ')
 2820                                                         return;
 2821                                                 nl = 0;
 2822                                         }
 2823                                         nl++;
 2824                                         rcount = 0;
 2825                                 }
 2826                         }                               
 2827                         if (rcount &&
 2828                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
 2829                                 ++rcount;
 2830                                 continue;
 2831                         }
 2832                         if (rcount) {
 2833                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2834                                         (long)fidx, rcount, (long)pa);
 2835                                 if (nl > 18) {
 2836                                         c = cngetc();
 2837                                         if (c != ' ')
 2838                                                 return;
 2839                                         nl = 0;
 2840                                 }
 2841                                 nl++;
 2842                         }
 2843                         fidx = m->pindex;
 2844                         pa = VM_PAGE_TO_PHYS(m);
 2845                         rcount = 1;
 2846                 }
 2847                 if (rcount) {
 2848                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2849                                 (long)fidx, rcount, (long)pa);
 2850                         if (nl > 18) {
 2851                                 c = cngetc();
 2852                                 if (c != ' ')
 2853                                         return;
 2854                                 nl = 0;
 2855                         }
 2856                         nl++;
 2857                 }
 2858         }
 2859 }
 2860 #endif /* DDB */

Cache object: ae5fd4fde750f8d58dffb71802b3fb91


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.