FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c
1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
35 *
36 *
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * Virtual memory object module.
65 */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/blockcount.h>
75 #include <sys/cpuset.h>
76 #include <sys/lock.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/pctrie.h>
81 #include <sys/sysctl.h>
82 #include <sys/mutex.h>
83 #include <sys/proc.h> /* for curproc, pageproc */
84 #include <sys/refcount.h>
85 #include <sys/socket.h>
86 #include <sys/resourcevar.h>
87 #include <sys/refcount.h>
88 #include <sys/rwlock.h>
89 #include <sys/user.h>
90 #include <sys/vnode.h>
91 #include <sys/vmmeter.h>
92 #include <sys/sx.h>
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_pager.h>
102 #include <vm/vm_phys.h>
103 #include <vm/vm_pagequeue.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_radix.h>
108 #include <vm/vm_reserv.h>
109 #include <vm/uma.h>
110
111 static int old_msync;
112 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
113 "Use old (insecure) msync behavior");
114
115 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
116 int pagerflags, int flags, boolean_t *allclean,
117 boolean_t *eio);
118 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
119 boolean_t *allclean);
120 static void vm_object_backing_remove(vm_object_t object);
121
122 /*
123 * Virtual memory objects maintain the actual data
124 * associated with allocated virtual memory. A given
125 * page of memory exists within exactly one object.
126 *
127 * An object is only deallocated when all "references"
128 * are given up. Only one "reference" to a given
129 * region of an object should be writeable.
130 *
131 * Associated with each object is a list of all resident
132 * memory pages belonging to that object; this list is
133 * maintained by the "vm_page" module, and locked by the object's
134 * lock.
135 *
136 * Each object also records a "pager" routine which is
137 * used to retrieve (and store) pages to the proper backing
138 * storage. In addition, objects may be backed by other
139 * objects from which they were virtual-copied.
140 *
141 * The only items within the object structure which are
142 * modified after time of creation are:
143 * reference count locked by object's lock
144 * pager routine locked by object's lock
145 *
146 */
147
148 struct object_q vm_object_list;
149 struct mtx vm_object_list_mtx; /* lock for object list and count */
150
151 struct vm_object kernel_object_store;
152
153 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
154 "VM object stats");
155
156 static COUNTER_U64_DEFINE_EARLY(object_collapses);
157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
158 &object_collapses,
159 "VM object collapses");
160
161 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
162 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
163 &object_bypasses,
164 "VM object bypasses");
165
166 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
167 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
168 &object_collapse_waits,
169 "Number of sleeps for collapse");
170
171 static uma_zone_t obj_zone;
172
173 static int vm_object_zinit(void *mem, int size, int flags);
174
175 #ifdef INVARIANTS
176 static void vm_object_zdtor(void *mem, int size, void *arg);
177
178 static void
179 vm_object_zdtor(void *mem, int size, void *arg)
180 {
181 vm_object_t object;
182
183 object = (vm_object_t)mem;
184 KASSERT(object->ref_count == 0,
185 ("object %p ref_count = %d", object, object->ref_count));
186 KASSERT(TAILQ_EMPTY(&object->memq),
187 ("object %p has resident pages in its memq", object));
188 KASSERT(vm_radix_is_empty(&object->rtree),
189 ("object %p has resident pages in its trie", object));
190 #if VM_NRESERVLEVEL > 0
191 KASSERT(LIST_EMPTY(&object->rvq),
192 ("object %p has reservations",
193 object));
194 #endif
195 KASSERT(!vm_object_busied(object),
196 ("object %p busy = %d", object, blockcount_read(&object->busy)));
197 KASSERT(object->resident_page_count == 0,
198 ("object %p resident_page_count = %d",
199 object, object->resident_page_count));
200 KASSERT(object->shadow_count == 0,
201 ("object %p shadow_count = %d",
202 object, object->shadow_count));
203 KASSERT(object->type == OBJT_DEAD,
204 ("object %p has non-dead type %d",
205 object, object->type));
206 }
207 #endif
208
209 static int
210 vm_object_zinit(void *mem, int size, int flags)
211 {
212 vm_object_t object;
213
214 object = (vm_object_t)mem;
215 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
216
217 /* These are true for any object that has been freed */
218 object->type = OBJT_DEAD;
219 vm_radix_init(&object->rtree);
220 refcount_init(&object->ref_count, 0);
221 blockcount_init(&object->paging_in_progress);
222 blockcount_init(&object->busy);
223 object->resident_page_count = 0;
224 object->shadow_count = 0;
225 object->flags = OBJ_DEAD;
226
227 mtx_lock(&vm_object_list_mtx);
228 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
229 mtx_unlock(&vm_object_list_mtx);
230 return (0);
231 }
232
233 static void
234 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
235 vm_object_t object, void *handle)
236 {
237
238 TAILQ_INIT(&object->memq);
239 LIST_INIT(&object->shadow_head);
240
241 object->type = type;
242 if (type == OBJT_SWAP)
243 pctrie_init(&object->un_pager.swp.swp_blks);
244
245 /*
246 * Ensure that swap_pager_swapoff() iteration over object_list
247 * sees up to date type and pctrie head if it observed
248 * non-dead object.
249 */
250 atomic_thread_fence_rel();
251
252 object->pg_color = 0;
253 object->flags = flags;
254 object->size = size;
255 object->domain.dr_policy = NULL;
256 object->generation = 1;
257 object->cleangeneration = 1;
258 refcount_init(&object->ref_count, 1);
259 object->memattr = VM_MEMATTR_DEFAULT;
260 object->cred = NULL;
261 object->charge = 0;
262 object->handle = handle;
263 object->backing_object = NULL;
264 object->backing_object_offset = (vm_ooffset_t) 0;
265 #if VM_NRESERVLEVEL > 0
266 LIST_INIT(&object->rvq);
267 #endif
268 umtx_shm_object_init(object);
269 }
270
271 /*
272 * vm_object_init:
273 *
274 * Initialize the VM objects module.
275 */
276 void
277 vm_object_init(void)
278 {
279 TAILQ_INIT(&vm_object_list);
280 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
281
282 rw_init(&kernel_object->lock, "kernel vm object");
283 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
284 VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
285 #if VM_NRESERVLEVEL > 0
286 kernel_object->flags |= OBJ_COLORED;
287 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
288 #endif
289 kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
290
291 /*
292 * The lock portion of struct vm_object must be type stable due
293 * to vm_pageout_fallback_object_lock locking a vm object
294 * without holding any references to it.
295 *
296 * paging_in_progress is valid always. Lockless references to
297 * the objects may acquire pip and then check OBJ_DEAD.
298 */
299 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
300 #ifdef INVARIANTS
301 vm_object_zdtor,
302 #else
303 NULL,
304 #endif
305 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
306
307 vm_radix_zinit();
308 }
309
310 void
311 vm_object_clear_flag(vm_object_t object, u_short bits)
312 {
313
314 VM_OBJECT_ASSERT_WLOCKED(object);
315 object->flags &= ~bits;
316 }
317
318 /*
319 * Sets the default memory attribute for the specified object. Pages
320 * that are allocated to this object are by default assigned this memory
321 * attribute.
322 *
323 * Presently, this function must be called before any pages are allocated
324 * to the object. In the future, this requirement may be relaxed for
325 * "default" and "swap" objects.
326 */
327 int
328 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
329 {
330
331 VM_OBJECT_ASSERT_WLOCKED(object);
332 switch (object->type) {
333 case OBJT_DEFAULT:
334 case OBJT_DEVICE:
335 case OBJT_MGTDEVICE:
336 case OBJT_PHYS:
337 case OBJT_SG:
338 case OBJT_SWAP:
339 case OBJT_VNODE:
340 if (!TAILQ_EMPTY(&object->memq))
341 return (KERN_FAILURE);
342 break;
343 case OBJT_DEAD:
344 return (KERN_INVALID_ARGUMENT);
345 default:
346 panic("vm_object_set_memattr: object %p is of undefined type",
347 object);
348 }
349 object->memattr = memattr;
350 return (KERN_SUCCESS);
351 }
352
353 void
354 vm_object_pip_add(vm_object_t object, short i)
355 {
356
357 if (i > 0)
358 blockcount_acquire(&object->paging_in_progress, i);
359 }
360
361 void
362 vm_object_pip_wakeup(vm_object_t object)
363 {
364
365 vm_object_pip_wakeupn(object, 1);
366 }
367
368 void
369 vm_object_pip_wakeupn(vm_object_t object, short i)
370 {
371
372 if (i > 0)
373 blockcount_release(&object->paging_in_progress, i);
374 }
375
376 /*
377 * Atomically drop the object lock and wait for pip to drain. This protects
378 * from sleep/wakeup races due to identity changes. The lock is not re-acquired
379 * on return.
380 */
381 static void
382 vm_object_pip_sleep(vm_object_t object, const char *waitid)
383 {
384
385 (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
386 waitid, PVM | PDROP);
387 }
388
389 void
390 vm_object_pip_wait(vm_object_t object, const char *waitid)
391 {
392
393 VM_OBJECT_ASSERT_WLOCKED(object);
394
395 blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
396 PVM);
397 }
398
399 void
400 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
401 {
402
403 VM_OBJECT_ASSERT_UNLOCKED(object);
404
405 blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
406 }
407
408 /*
409 * vm_object_allocate:
410 *
411 * Returns a new object with the given size.
412 */
413 vm_object_t
414 vm_object_allocate(objtype_t type, vm_pindex_t size)
415 {
416 vm_object_t object;
417 u_short flags;
418
419 switch (type) {
420 case OBJT_DEAD:
421 panic("vm_object_allocate: can't create OBJT_DEAD");
422 case OBJT_DEFAULT:
423 case OBJT_SWAP:
424 flags = OBJ_COLORED;
425 break;
426 case OBJT_DEVICE:
427 case OBJT_SG:
428 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
429 break;
430 case OBJT_MGTDEVICE:
431 flags = OBJ_FICTITIOUS;
432 break;
433 case OBJT_PHYS:
434 flags = OBJ_UNMANAGED;
435 break;
436 case OBJT_VNODE:
437 flags = 0;
438 break;
439 default:
440 panic("vm_object_allocate: type %d is undefined", type);
441 }
442 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
443 _vm_object_allocate(type, size, flags, object, NULL);
444
445 return (object);
446 }
447
448 /*
449 * vm_object_allocate_anon:
450 *
451 * Returns a new default object of the given size and marked as
452 * anonymous memory for special split/collapse handling. Color
453 * to be initialized by the caller.
454 */
455 vm_object_t
456 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
457 struct ucred *cred, vm_size_t charge)
458 {
459 vm_object_t handle, object;
460
461 if (backing_object == NULL)
462 handle = NULL;
463 else if ((backing_object->flags & OBJ_ANON) != 0)
464 handle = backing_object->handle;
465 else
466 handle = backing_object;
467 object = uma_zalloc(obj_zone, M_WAITOK);
468 _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
469 object, handle);
470 object->cred = cred;
471 object->charge = cred != NULL ? charge : 0;
472 return (object);
473 }
474
475 static void
476 vm_object_reference_vnode(vm_object_t object)
477 {
478 u_int old;
479
480 /*
481 * vnode objects need the lock for the first reference
482 * to serialize with vnode_object_deallocate().
483 */
484 if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
485 VM_OBJECT_RLOCK(object);
486 old = refcount_acquire(&object->ref_count);
487 if (object->type == OBJT_VNODE && old == 0)
488 vref(object->handle);
489 VM_OBJECT_RUNLOCK(object);
490 }
491 }
492
493 /*
494 * vm_object_reference:
495 *
496 * Acquires a reference to the given object.
497 */
498 void
499 vm_object_reference(vm_object_t object)
500 {
501
502 if (object == NULL)
503 return;
504
505 if (object->type == OBJT_VNODE)
506 vm_object_reference_vnode(object);
507 else
508 refcount_acquire(&object->ref_count);
509 KASSERT((object->flags & OBJ_DEAD) == 0,
510 ("vm_object_reference: Referenced dead object."));
511 }
512
513 /*
514 * vm_object_reference_locked:
515 *
516 * Gets another reference to the given object.
517 *
518 * The object must be locked.
519 */
520 void
521 vm_object_reference_locked(vm_object_t object)
522 {
523 u_int old;
524
525 VM_OBJECT_ASSERT_LOCKED(object);
526 old = refcount_acquire(&object->ref_count);
527 if (object->type == OBJT_VNODE && old == 0)
528 vref(object->handle);
529 KASSERT((object->flags & OBJ_DEAD) == 0,
530 ("vm_object_reference: Referenced dead object."));
531 }
532
533 /*
534 * Handle deallocating an object of type OBJT_VNODE.
535 */
536 static void
537 vm_object_deallocate_vnode(vm_object_t object)
538 {
539 struct vnode *vp = (struct vnode *) object->handle;
540 bool last;
541
542 KASSERT(object->type == OBJT_VNODE,
543 ("vm_object_deallocate_vnode: not a vnode object"));
544 KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
545
546 /* Object lock to protect handle lookup. */
547 last = refcount_release(&object->ref_count);
548 VM_OBJECT_RUNLOCK(object);
549
550 if (!last)
551 return;
552
553 if (!umtx_shm_vnobj_persistent)
554 umtx_shm_object_terminated(object);
555
556 /* vrele may need the vnode lock. */
557 vrele(vp);
558 }
559
560 /*
561 * We dropped a reference on an object and discovered that it had a
562 * single remaining shadow. This is a sibling of the reference we
563 * dropped. Attempt to collapse the sibling and backing object.
564 */
565 static vm_object_t
566 vm_object_deallocate_anon(vm_object_t backing_object)
567 {
568 vm_object_t object;
569
570 /* Fetch the final shadow. */
571 object = LIST_FIRST(&backing_object->shadow_head);
572 KASSERT(object != NULL && backing_object->shadow_count == 1,
573 ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
574 backing_object->ref_count, backing_object->shadow_count));
575 KASSERT((object->flags & (OBJ_TMPFS_NODE | OBJ_ANON)) == OBJ_ANON,
576 ("invalid shadow object %p", object));
577
578 if (!VM_OBJECT_TRYWLOCK(object)) {
579 /*
580 * Prevent object from disappearing since we do not have a
581 * reference.
582 */
583 vm_object_pip_add(object, 1);
584 VM_OBJECT_WUNLOCK(backing_object);
585 VM_OBJECT_WLOCK(object);
586 vm_object_pip_wakeup(object);
587 } else
588 VM_OBJECT_WUNLOCK(backing_object);
589
590 /*
591 * Check for a collapse/terminate race with the last reference holder.
592 */
593 if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
594 !refcount_acquire_if_not_zero(&object->ref_count)) {
595 VM_OBJECT_WUNLOCK(object);
596 return (NULL);
597 }
598 backing_object = object->backing_object;
599 if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
600 vm_object_collapse(object);
601 VM_OBJECT_WUNLOCK(object);
602
603 return (object);
604 }
605
606 /*
607 * vm_object_deallocate:
608 *
609 * Release a reference to the specified object,
610 * gained either through a vm_object_allocate
611 * or a vm_object_reference call. When all references
612 * are gone, storage associated with this object
613 * may be relinquished.
614 *
615 * No object may be locked.
616 */
617 void
618 vm_object_deallocate(vm_object_t object)
619 {
620 vm_object_t temp;
621 bool released;
622
623 while (object != NULL) {
624 /*
625 * If the reference count goes to 0 we start calling
626 * vm_object_terminate() on the object chain. A ref count
627 * of 1 may be a special case depending on the shadow count
628 * being 0 or 1. These cases require a write lock on the
629 * object.
630 */
631 if ((object->flags & OBJ_ANON) == 0)
632 released = refcount_release_if_gt(&object->ref_count, 1);
633 else
634 released = refcount_release_if_gt(&object->ref_count, 2);
635 if (released)
636 return;
637
638 if (object->type == OBJT_VNODE) {
639 VM_OBJECT_RLOCK(object);
640 if (object->type == OBJT_VNODE) {
641 vm_object_deallocate_vnode(object);
642 return;
643 }
644 VM_OBJECT_RUNLOCK(object);
645 }
646
647 VM_OBJECT_WLOCK(object);
648 KASSERT(object->ref_count > 0,
649 ("vm_object_deallocate: object deallocated too many times: %d",
650 object->type));
651
652 /*
653 * If this is not the final reference to an anonymous
654 * object we may need to collapse the shadow chain.
655 */
656 if (!refcount_release(&object->ref_count)) {
657 if (object->ref_count > 1 ||
658 object->shadow_count == 0) {
659 if ((object->flags & OBJ_ANON) != 0 &&
660 object->ref_count == 1)
661 vm_object_set_flag(object,
662 OBJ_ONEMAPPING);
663 VM_OBJECT_WUNLOCK(object);
664 return;
665 }
666
667 /* Handle collapsing last ref on anonymous objects. */
668 object = vm_object_deallocate_anon(object);
669 continue;
670 }
671
672 /*
673 * Handle the final reference to an object. We restart
674 * the loop with the backing object to avoid recursion.
675 */
676 umtx_shm_object_terminated(object);
677 temp = object->backing_object;
678 if (temp != NULL) {
679 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
680 ("shadowed tmpfs v_object 2 %p", object));
681 vm_object_backing_remove(object);
682 }
683
684 KASSERT((object->flags & OBJ_DEAD) == 0,
685 ("vm_object_deallocate: Terminating dead object."));
686 vm_object_set_flag(object, OBJ_DEAD);
687 vm_object_terminate(object);
688 object = temp;
689 }
690 }
691
692 /*
693 * vm_object_destroy removes the object from the global object list
694 * and frees the space for the object.
695 */
696 void
697 vm_object_destroy(vm_object_t object)
698 {
699
700 /*
701 * Release the allocation charge.
702 */
703 if (object->cred != NULL) {
704 swap_release_by_cred(object->charge, object->cred);
705 object->charge = 0;
706 crfree(object->cred);
707 object->cred = NULL;
708 }
709
710 /*
711 * Free the space for the object.
712 */
713 uma_zfree(obj_zone, object);
714 }
715
716 static void
717 vm_object_backing_remove_locked(vm_object_t object)
718 {
719 vm_object_t backing_object;
720
721 backing_object = object->backing_object;
722 VM_OBJECT_ASSERT_WLOCKED(object);
723 VM_OBJECT_ASSERT_WLOCKED(backing_object);
724
725 KASSERT((object->flags & OBJ_COLLAPSING) == 0,
726 ("vm_object_backing_remove: Removing collapsing object."));
727
728 if ((object->flags & OBJ_SHADOWLIST) != 0) {
729 LIST_REMOVE(object, shadow_list);
730 backing_object->shadow_count--;
731 object->flags &= ~OBJ_SHADOWLIST;
732 }
733 object->backing_object = NULL;
734 }
735
736 static void
737 vm_object_backing_remove(vm_object_t object)
738 {
739 vm_object_t backing_object;
740
741 VM_OBJECT_ASSERT_WLOCKED(object);
742
743 if ((object->flags & OBJ_SHADOWLIST) != 0) {
744 backing_object = object->backing_object;
745 VM_OBJECT_WLOCK(backing_object);
746 vm_object_backing_remove_locked(object);
747 VM_OBJECT_WUNLOCK(backing_object);
748 } else
749 object->backing_object = NULL;
750 }
751
752 static void
753 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
754 {
755
756 VM_OBJECT_ASSERT_WLOCKED(object);
757
758 if ((backing_object->flags & OBJ_ANON) != 0) {
759 VM_OBJECT_ASSERT_WLOCKED(backing_object);
760 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
761 shadow_list);
762 backing_object->shadow_count++;
763 object->flags |= OBJ_SHADOWLIST;
764 }
765 object->backing_object = backing_object;
766 }
767
768 static void
769 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
770 {
771
772 VM_OBJECT_ASSERT_WLOCKED(object);
773
774 if ((backing_object->flags & OBJ_ANON) != 0) {
775 VM_OBJECT_WLOCK(backing_object);
776 vm_object_backing_insert_locked(object, backing_object);
777 VM_OBJECT_WUNLOCK(backing_object);
778 } else
779 object->backing_object = backing_object;
780 }
781
782 /*
783 * Insert an object into a backing_object's shadow list with an additional
784 * reference to the backing_object added.
785 */
786 static void
787 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
788 {
789
790 VM_OBJECT_ASSERT_WLOCKED(object);
791
792 if ((backing_object->flags & OBJ_ANON) != 0) {
793 VM_OBJECT_WLOCK(backing_object);
794 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
795 ("shadowing dead anonymous object"));
796 vm_object_reference_locked(backing_object);
797 vm_object_backing_insert_locked(object, backing_object);
798 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
799 VM_OBJECT_WUNLOCK(backing_object);
800 } else {
801 vm_object_reference(backing_object);
802 object->backing_object = backing_object;
803 }
804 }
805
806 /*
807 * Transfer a backing reference from backing_object to object.
808 */
809 static void
810 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
811 {
812 vm_object_t new_backing_object;
813
814 /*
815 * Note that the reference to backing_object->backing_object
816 * moves from within backing_object to within object.
817 */
818 vm_object_backing_remove_locked(object);
819 new_backing_object = backing_object->backing_object;
820 if (new_backing_object == NULL)
821 return;
822 if ((new_backing_object->flags & OBJ_ANON) != 0) {
823 VM_OBJECT_WLOCK(new_backing_object);
824 vm_object_backing_remove_locked(backing_object);
825 vm_object_backing_insert_locked(object, new_backing_object);
826 VM_OBJECT_WUNLOCK(new_backing_object);
827 } else {
828 object->backing_object = new_backing_object;
829 backing_object->backing_object = NULL;
830 }
831 }
832
833 /*
834 * Wait for a concurrent collapse to settle.
835 */
836 static void
837 vm_object_collapse_wait(vm_object_t object)
838 {
839
840 VM_OBJECT_ASSERT_WLOCKED(object);
841
842 while ((object->flags & OBJ_COLLAPSING) != 0) {
843 vm_object_pip_wait(object, "vmcolwait");
844 counter_u64_add(object_collapse_waits, 1);
845 }
846 }
847
848 /*
849 * Waits for a backing object to clear a pending collapse and returns
850 * it locked if it is an ANON object.
851 */
852 static vm_object_t
853 vm_object_backing_collapse_wait(vm_object_t object)
854 {
855 vm_object_t backing_object;
856
857 VM_OBJECT_ASSERT_WLOCKED(object);
858
859 for (;;) {
860 backing_object = object->backing_object;
861 if (backing_object == NULL ||
862 (backing_object->flags & OBJ_ANON) == 0)
863 return (NULL);
864 VM_OBJECT_WLOCK(backing_object);
865 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
866 break;
867 VM_OBJECT_WUNLOCK(object);
868 vm_object_pip_sleep(backing_object, "vmbckwait");
869 counter_u64_add(object_collapse_waits, 1);
870 VM_OBJECT_WLOCK(object);
871 }
872 return (backing_object);
873 }
874
875 /*
876 * vm_object_terminate_pages removes any remaining pageable pages
877 * from the object and resets the object to an empty state.
878 */
879 static void
880 vm_object_terminate_pages(vm_object_t object)
881 {
882 vm_page_t p, p_next;
883
884 VM_OBJECT_ASSERT_WLOCKED(object);
885
886 /*
887 * Free any remaining pageable pages. This also removes them from the
888 * paging queues. However, don't free wired pages, just remove them
889 * from the object. Rather than incrementally removing each page from
890 * the object, the page and object are reset to any empty state.
891 */
892 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
893 vm_page_assert_unbusied(p);
894 KASSERT(p->object == object &&
895 (p->ref_count & VPRC_OBJREF) != 0,
896 ("vm_object_terminate_pages: page %p is inconsistent", p));
897
898 p->object = NULL;
899 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
900 VM_CNT_INC(v_pfree);
901 vm_page_free(p);
902 }
903 }
904
905 /*
906 * If the object contained any pages, then reset it to an empty state.
907 * None of the object's fields, including "resident_page_count", were
908 * modified by the preceding loop.
909 */
910 if (object->resident_page_count != 0) {
911 vm_radix_reclaim_allnodes(&object->rtree);
912 TAILQ_INIT(&object->memq);
913 object->resident_page_count = 0;
914 if (object->type == OBJT_VNODE)
915 vdrop(object->handle);
916 }
917 }
918
919 /*
920 * vm_object_terminate actually destroys the specified object, freeing
921 * up all previously used resources.
922 *
923 * The object must be locked.
924 * This routine may block.
925 */
926 void
927 vm_object_terminate(vm_object_t object)
928 {
929
930 VM_OBJECT_ASSERT_WLOCKED(object);
931 KASSERT((object->flags & OBJ_DEAD) != 0,
932 ("terminating non-dead obj %p", object));
933 KASSERT((object->flags & OBJ_COLLAPSING) == 0,
934 ("terminating collapsing obj %p", object));
935 KASSERT(object->backing_object == NULL,
936 ("terminating shadow obj %p", object));
937
938 /*
939 * Wait for the pageout daemon and other current users to be
940 * done with the object. Note that new paging_in_progress
941 * users can come after this wait, but they must check
942 * OBJ_DEAD flag set (without unlocking the object), and avoid
943 * the object being terminated.
944 */
945 vm_object_pip_wait(object, "objtrm");
946
947 KASSERT(object->ref_count == 0,
948 ("vm_object_terminate: object with references, ref_count=%d",
949 object->ref_count));
950
951 if ((object->flags & OBJ_PG_DTOR) == 0)
952 vm_object_terminate_pages(object);
953
954 #if VM_NRESERVLEVEL > 0
955 if (__predict_false(!LIST_EMPTY(&object->rvq)))
956 vm_reserv_break_all(object);
957 #endif
958
959 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
960 object->type == OBJT_SWAP,
961 ("%s: non-swap obj %p has cred", __func__, object));
962
963 /*
964 * Let the pager know object is dead.
965 */
966 vm_pager_deallocate(object);
967 VM_OBJECT_WUNLOCK(object);
968
969 vm_object_destroy(object);
970 }
971
972 /*
973 * Make the page read-only so that we can clear the object flags. However, if
974 * this is a nosync mmap then the object is likely to stay dirty so do not
975 * mess with the page and do not clear the object flags. Returns TRUE if the
976 * page should be flushed, and FALSE otherwise.
977 */
978 static boolean_t
979 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
980 {
981
982 vm_page_assert_busied(p);
983
984 /*
985 * If we have been asked to skip nosync pages and this is a
986 * nosync page, skip it. Note that the object flags were not
987 * cleared in this case so we do not have to set them.
988 */
989 if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
990 *allclean = FALSE;
991 return (FALSE);
992 } else {
993 pmap_remove_write(p);
994 return (p->dirty != 0);
995 }
996 }
997
998 /*
999 * vm_object_page_clean
1000 *
1001 * Clean all dirty pages in the specified range of object. Leaves page
1002 * on whatever queue it is currently on. If NOSYNC is set then do not
1003 * write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1004 * leaving the object dirty.
1005 *
1006 * For swap objects backing tmpfs regular files, do not flush anything,
1007 * but remove write protection on the mapped pages to update mtime through
1008 * mmaped writes.
1009 *
1010 * When stuffing pages asynchronously, allow clustering. XXX we need a
1011 * synchronous clustering mode implementation.
1012 *
1013 * Odd semantics: if start == end, we clean everything.
1014 *
1015 * The object must be locked.
1016 *
1017 * Returns FALSE if some page from the range was not written, as
1018 * reported by the pager, and TRUE otherwise.
1019 */
1020 boolean_t
1021 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1022 int flags)
1023 {
1024 vm_page_t np, p;
1025 vm_pindex_t pi, tend, tstart;
1026 int curgeneration, n, pagerflags;
1027 boolean_t eio, res, allclean;
1028
1029 VM_OBJECT_ASSERT_WLOCKED(object);
1030
1031 if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1032 return (TRUE);
1033
1034 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1035 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1036 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1037
1038 tstart = OFF_TO_IDX(start);
1039 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1040 allclean = tstart == 0 && tend >= object->size;
1041 res = TRUE;
1042
1043 rescan:
1044 curgeneration = object->generation;
1045
1046 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1047 pi = p->pindex;
1048 if (pi >= tend)
1049 break;
1050 np = TAILQ_NEXT(p, listq);
1051 if (vm_page_none_valid(p))
1052 continue;
1053 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1054 if (object->generation != curgeneration &&
1055 (flags & OBJPC_SYNC) != 0)
1056 goto rescan;
1057 np = vm_page_find_least(object, pi);
1058 continue;
1059 }
1060 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1061 vm_page_xunbusy(p);
1062 continue;
1063 }
1064 if (object->type == OBJT_VNODE) {
1065 n = vm_object_page_collect_flush(object, p, pagerflags,
1066 flags, &allclean, &eio);
1067 if (eio) {
1068 res = FALSE;
1069 allclean = FALSE;
1070 }
1071 if (object->generation != curgeneration &&
1072 (flags & OBJPC_SYNC) != 0)
1073 goto rescan;
1074
1075 /*
1076 * If the VOP_PUTPAGES() did a truncated write, so
1077 * that even the first page of the run is not fully
1078 * written, vm_pageout_flush() returns 0 as the run
1079 * length. Since the condition that caused truncated
1080 * write may be permanent, e.g. exhausted free space,
1081 * accepting n == 0 would cause an infinite loop.
1082 *
1083 * Forwarding the iterator leaves the unwritten page
1084 * behind, but there is not much we can do there if
1085 * filesystem refuses to write it.
1086 */
1087 if (n == 0) {
1088 n = 1;
1089 allclean = FALSE;
1090 }
1091 } else {
1092 n = 1;
1093 vm_page_xunbusy(p);
1094 }
1095 np = vm_page_find_least(object, pi + n);
1096 }
1097 #if 0
1098 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1099 #endif
1100
1101 /*
1102 * Leave updating cleangeneration for tmpfs objects to tmpfs
1103 * scan. It needs to update mtime, which happens for other
1104 * filesystems during page writeouts.
1105 */
1106 if (allclean && object->type == OBJT_VNODE)
1107 object->cleangeneration = curgeneration;
1108 return (res);
1109 }
1110
1111 static int
1112 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1113 int flags, boolean_t *allclean, boolean_t *eio)
1114 {
1115 vm_page_t ma[vm_pageout_page_count], p_first, tp;
1116 int count, i, mreq, runlen;
1117
1118 vm_page_lock_assert(p, MA_NOTOWNED);
1119 vm_page_assert_xbusied(p);
1120 VM_OBJECT_ASSERT_WLOCKED(object);
1121
1122 count = 1;
1123 mreq = 0;
1124
1125 for (tp = p; count < vm_pageout_page_count; count++) {
1126 tp = vm_page_next(tp);
1127 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1128 break;
1129 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1130 vm_page_xunbusy(tp);
1131 break;
1132 }
1133 }
1134
1135 for (p_first = p; count < vm_pageout_page_count; count++) {
1136 tp = vm_page_prev(p_first);
1137 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1138 break;
1139 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1140 vm_page_xunbusy(tp);
1141 break;
1142 }
1143 p_first = tp;
1144 mreq++;
1145 }
1146
1147 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1148 ma[i] = tp;
1149
1150 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1151 return (runlen);
1152 }
1153
1154 /*
1155 * Note that there is absolutely no sense in writing out
1156 * anonymous objects, so we track down the vnode object
1157 * to write out.
1158 * We invalidate (remove) all pages from the address space
1159 * for semantic correctness.
1160 *
1161 * If the backing object is a device object with unmanaged pages, then any
1162 * mappings to the specified range of pages must be removed before this
1163 * function is called.
1164 *
1165 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1166 * may start out with a NULL object.
1167 */
1168 boolean_t
1169 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1170 boolean_t syncio, boolean_t invalidate)
1171 {
1172 vm_object_t backing_object;
1173 struct vnode *vp;
1174 struct mount *mp;
1175 int error, flags, fsync_after;
1176 boolean_t res;
1177
1178 if (object == NULL)
1179 return (TRUE);
1180 res = TRUE;
1181 error = 0;
1182 VM_OBJECT_WLOCK(object);
1183 while ((backing_object = object->backing_object) != NULL) {
1184 VM_OBJECT_WLOCK(backing_object);
1185 offset += object->backing_object_offset;
1186 VM_OBJECT_WUNLOCK(object);
1187 object = backing_object;
1188 if (object->size < OFF_TO_IDX(offset + size))
1189 size = IDX_TO_OFF(object->size) - offset;
1190 }
1191 /*
1192 * Flush pages if writing is allowed, invalidate them
1193 * if invalidation requested. Pages undergoing I/O
1194 * will be ignored by vm_object_page_remove().
1195 *
1196 * We cannot lock the vnode and then wait for paging
1197 * to complete without deadlocking against vm_fault.
1198 * Instead we simply call vm_object_page_remove() and
1199 * allow it to block internally on a page-by-page
1200 * basis when it encounters pages undergoing async
1201 * I/O.
1202 */
1203 if (object->type == OBJT_VNODE &&
1204 vm_object_mightbedirty(object) != 0 &&
1205 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1206 VM_OBJECT_WUNLOCK(object);
1207 (void) vn_start_write(vp, &mp, V_WAIT);
1208 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1209 if (syncio && !invalidate && offset == 0 &&
1210 atop(size) == object->size) {
1211 /*
1212 * If syncing the whole mapping of the file,
1213 * it is faster to schedule all the writes in
1214 * async mode, also allowing the clustering,
1215 * and then wait for i/o to complete.
1216 */
1217 flags = 0;
1218 fsync_after = TRUE;
1219 } else {
1220 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1221 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1222 fsync_after = FALSE;
1223 }
1224 VM_OBJECT_WLOCK(object);
1225 res = vm_object_page_clean(object, offset, offset + size,
1226 flags);
1227 VM_OBJECT_WUNLOCK(object);
1228 if (fsync_after)
1229 error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1230 VOP_UNLOCK(vp);
1231 vn_finished_write(mp);
1232 if (error != 0)
1233 res = FALSE;
1234 VM_OBJECT_WLOCK(object);
1235 }
1236 if ((object->type == OBJT_VNODE ||
1237 object->type == OBJT_DEVICE) && invalidate) {
1238 if (object->type == OBJT_DEVICE)
1239 /*
1240 * The option OBJPR_NOTMAPPED must be passed here
1241 * because vm_object_page_remove() cannot remove
1242 * unmanaged mappings.
1243 */
1244 flags = OBJPR_NOTMAPPED;
1245 else if (old_msync)
1246 flags = 0;
1247 else
1248 flags = OBJPR_CLEANONLY;
1249 vm_object_page_remove(object, OFF_TO_IDX(offset),
1250 OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1251 }
1252 VM_OBJECT_WUNLOCK(object);
1253 return (res);
1254 }
1255
1256 /*
1257 * Determine whether the given advice can be applied to the object. Advice is
1258 * not applied to unmanaged pages since they never belong to page queues, and
1259 * since MADV_FREE is destructive, it can apply only to anonymous pages that
1260 * have been mapped at most once.
1261 */
1262 static bool
1263 vm_object_advice_applies(vm_object_t object, int advice)
1264 {
1265
1266 if ((object->flags & OBJ_UNMANAGED) != 0)
1267 return (false);
1268 if (advice != MADV_FREE)
1269 return (true);
1270 return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1271 (OBJ_ONEMAPPING | OBJ_ANON));
1272 }
1273
1274 static void
1275 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1276 vm_size_t size)
1277 {
1278
1279 if (advice == MADV_FREE && object->type == OBJT_SWAP)
1280 swap_pager_freespace(object, pindex, size);
1281 }
1282
1283 /*
1284 * vm_object_madvise:
1285 *
1286 * Implements the madvise function at the object/page level.
1287 *
1288 * MADV_WILLNEED (any object)
1289 *
1290 * Activate the specified pages if they are resident.
1291 *
1292 * MADV_DONTNEED (any object)
1293 *
1294 * Deactivate the specified pages if they are resident.
1295 *
1296 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects,
1297 * OBJ_ONEMAPPING only)
1298 *
1299 * Deactivate and clean the specified pages if they are
1300 * resident. This permits the process to reuse the pages
1301 * without faulting or the kernel to reclaim the pages
1302 * without I/O.
1303 */
1304 void
1305 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1306 int advice)
1307 {
1308 vm_pindex_t tpindex;
1309 vm_object_t backing_object, tobject;
1310 vm_page_t m, tm;
1311
1312 if (object == NULL)
1313 return;
1314
1315 relookup:
1316 VM_OBJECT_WLOCK(object);
1317 if (!vm_object_advice_applies(object, advice)) {
1318 VM_OBJECT_WUNLOCK(object);
1319 return;
1320 }
1321 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1322 tobject = object;
1323
1324 /*
1325 * If the next page isn't resident in the top-level object, we
1326 * need to search the shadow chain. When applying MADV_FREE, we
1327 * take care to release any swap space used to store
1328 * non-resident pages.
1329 */
1330 if (m == NULL || pindex < m->pindex) {
1331 /*
1332 * Optimize a common case: if the top-level object has
1333 * no backing object, we can skip over the non-resident
1334 * range in constant time.
1335 */
1336 if (object->backing_object == NULL) {
1337 tpindex = (m != NULL && m->pindex < end) ?
1338 m->pindex : end;
1339 vm_object_madvise_freespace(object, advice,
1340 pindex, tpindex - pindex);
1341 if ((pindex = tpindex) == end)
1342 break;
1343 goto next_page;
1344 }
1345
1346 tpindex = pindex;
1347 do {
1348 vm_object_madvise_freespace(tobject, advice,
1349 tpindex, 1);
1350 /*
1351 * Prepare to search the next object in the
1352 * chain.
1353 */
1354 backing_object = tobject->backing_object;
1355 if (backing_object == NULL)
1356 goto next_pindex;
1357 VM_OBJECT_WLOCK(backing_object);
1358 tpindex +=
1359 OFF_TO_IDX(tobject->backing_object_offset);
1360 if (tobject != object)
1361 VM_OBJECT_WUNLOCK(tobject);
1362 tobject = backing_object;
1363 if (!vm_object_advice_applies(tobject, advice))
1364 goto next_pindex;
1365 } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1366 NULL);
1367 } else {
1368 next_page:
1369 tm = m;
1370 m = TAILQ_NEXT(m, listq);
1371 }
1372
1373 /*
1374 * If the page is not in a normal state, skip it. The page
1375 * can not be invalidated while the object lock is held.
1376 */
1377 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1378 goto next_pindex;
1379 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1380 ("vm_object_madvise: page %p is fictitious", tm));
1381 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1382 ("vm_object_madvise: page %p is not managed", tm));
1383 if (vm_page_tryxbusy(tm) == 0) {
1384 if (object != tobject)
1385 VM_OBJECT_WUNLOCK(object);
1386 if (advice == MADV_WILLNEED) {
1387 /*
1388 * Reference the page before unlocking and
1389 * sleeping so that the page daemon is less
1390 * likely to reclaim it.
1391 */
1392 vm_page_aflag_set(tm, PGA_REFERENCED);
1393 }
1394 vm_page_busy_sleep(tm, "madvpo", false);
1395 goto relookup;
1396 }
1397 vm_page_advise(tm, advice);
1398 vm_page_xunbusy(tm);
1399 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1400 next_pindex:
1401 if (tobject != object)
1402 VM_OBJECT_WUNLOCK(tobject);
1403 }
1404 VM_OBJECT_WUNLOCK(object);
1405 }
1406
1407 /*
1408 * vm_object_shadow:
1409 *
1410 * Create a new object which is backed by the
1411 * specified existing object range. The source
1412 * object reference is deallocated.
1413 *
1414 * The new object and offset into that object
1415 * are returned in the source parameters.
1416 */
1417 void
1418 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1419 struct ucred *cred, bool shared)
1420 {
1421 vm_object_t source;
1422 vm_object_t result;
1423
1424 source = *object;
1425
1426 /*
1427 * Don't create the new object if the old object isn't shared.
1428 *
1429 * If we hold the only reference we can guarantee that it won't
1430 * increase while we have the map locked. Otherwise the race is
1431 * harmless and we will end up with an extra shadow object that
1432 * will be collapsed later.
1433 */
1434 if (source != NULL && source->ref_count == 1 &&
1435 (source->flags & OBJ_ANON) != 0)
1436 return;
1437
1438 /*
1439 * Allocate a new object with the given length.
1440 */
1441 result = vm_object_allocate_anon(atop(length), source, cred, length);
1442
1443 /*
1444 * Store the offset into the source object, and fix up the offset into
1445 * the new object.
1446 */
1447 result->backing_object_offset = *offset;
1448
1449 if (shared || source != NULL) {
1450 VM_OBJECT_WLOCK(result);
1451
1452 /*
1453 * The new object shadows the source object, adding a
1454 * reference to it. Our caller changes his reference
1455 * to point to the new object, removing a reference to
1456 * the source object. Net result: no change of
1457 * reference count, unless the caller needs to add one
1458 * more reference due to forking a shared map entry.
1459 */
1460 if (shared) {
1461 vm_object_reference_locked(result);
1462 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1463 }
1464
1465 /*
1466 * Try to optimize the result object's page color when
1467 * shadowing in order to maintain page coloring
1468 * consistency in the combined shadowed object.
1469 */
1470 if (source != NULL) {
1471 vm_object_backing_insert(result, source);
1472 result->domain = source->domain;
1473 #if VM_NRESERVLEVEL > 0
1474 result->flags |= source->flags & OBJ_COLORED;
1475 result->pg_color = (source->pg_color +
1476 OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1477 1)) - 1);
1478 #endif
1479 }
1480 VM_OBJECT_WUNLOCK(result);
1481 }
1482
1483 /*
1484 * Return the new things
1485 */
1486 *offset = 0;
1487 *object = result;
1488 }
1489
1490 /*
1491 * vm_object_split:
1492 *
1493 * Split the pages in a map entry into a new object. This affords
1494 * easier removal of unused pages, and keeps object inheritance from
1495 * being a negative impact on memory usage.
1496 */
1497 void
1498 vm_object_split(vm_map_entry_t entry)
1499 {
1500 vm_page_t m, m_busy, m_next;
1501 vm_object_t orig_object, new_object, backing_object;
1502 vm_pindex_t idx, offidxstart;
1503 vm_size_t size;
1504
1505 orig_object = entry->object.vm_object;
1506 KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1507 ("vm_object_split: Splitting object with multiple mappings."));
1508 if ((orig_object->flags & OBJ_ANON) == 0)
1509 return;
1510 if (orig_object->ref_count <= 1)
1511 return;
1512 VM_OBJECT_WUNLOCK(orig_object);
1513
1514 offidxstart = OFF_TO_IDX(entry->offset);
1515 size = atop(entry->end - entry->start);
1516
1517 /*
1518 * If swap_pager_copy() is later called, it will convert new_object
1519 * into a swap object.
1520 */
1521 new_object = vm_object_allocate_anon(size, orig_object,
1522 orig_object->cred, ptoa(size));
1523
1524 /*
1525 * We must wait for the orig_object to complete any in-progress
1526 * collapse so that the swap blocks are stable below. The
1527 * additional reference on backing_object by new object will
1528 * prevent further collapse operations until split completes.
1529 */
1530 VM_OBJECT_WLOCK(orig_object);
1531 vm_object_collapse_wait(orig_object);
1532
1533 /*
1534 * At this point, the new object is still private, so the order in
1535 * which the original and new objects are locked does not matter.
1536 */
1537 VM_OBJECT_WLOCK(new_object);
1538 new_object->domain = orig_object->domain;
1539 backing_object = orig_object->backing_object;
1540 if (backing_object != NULL) {
1541 vm_object_backing_insert_ref(new_object, backing_object);
1542 new_object->backing_object_offset =
1543 orig_object->backing_object_offset + entry->offset;
1544 }
1545 if (orig_object->cred != NULL) {
1546 crhold(orig_object->cred);
1547 KASSERT(orig_object->charge >= ptoa(size),
1548 ("orig_object->charge < 0"));
1549 orig_object->charge -= ptoa(size);
1550 }
1551
1552 /*
1553 * Mark the split operation so that swap_pager_getpages() knows
1554 * that the object is in transition.
1555 */
1556 vm_object_set_flag(orig_object, OBJ_SPLIT);
1557 m_busy = NULL;
1558 #ifdef INVARIANTS
1559 idx = 0;
1560 #endif
1561 retry:
1562 m = vm_page_find_least(orig_object, offidxstart);
1563 KASSERT(m == NULL || idx <= m->pindex - offidxstart,
1564 ("%s: object %p was repopulated", __func__, orig_object));
1565 for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1566 m = m_next) {
1567 m_next = TAILQ_NEXT(m, listq);
1568
1569 /*
1570 * We must wait for pending I/O to complete before we can
1571 * rename the page.
1572 *
1573 * We do not have to VM_PROT_NONE the page as mappings should
1574 * not be changed by this operation.
1575 */
1576 if (vm_page_tryxbusy(m) == 0) {
1577 VM_OBJECT_WUNLOCK(new_object);
1578 vm_page_sleep_if_busy(m, "spltwt");
1579 VM_OBJECT_WLOCK(new_object);
1580 goto retry;
1581 }
1582
1583 /*
1584 * The page was left invalid. Likely placed there by
1585 * an incomplete fault. Just remove and ignore.
1586 */
1587 if (vm_page_none_valid(m)) {
1588 if (vm_page_remove(m))
1589 vm_page_free(m);
1590 continue;
1591 }
1592
1593 /* vm_page_rename() will dirty the page. */
1594 if (vm_page_rename(m, new_object, idx)) {
1595 vm_page_xunbusy(m);
1596 VM_OBJECT_WUNLOCK(new_object);
1597 VM_OBJECT_WUNLOCK(orig_object);
1598 vm_radix_wait();
1599 VM_OBJECT_WLOCK(orig_object);
1600 VM_OBJECT_WLOCK(new_object);
1601 goto retry;
1602 }
1603
1604 #if VM_NRESERVLEVEL > 0
1605 /*
1606 * If some of the reservation's allocated pages remain with
1607 * the original object, then transferring the reservation to
1608 * the new object is neither particularly beneficial nor
1609 * particularly harmful as compared to leaving the reservation
1610 * with the original object. If, however, all of the
1611 * reservation's allocated pages are transferred to the new
1612 * object, then transferring the reservation is typically
1613 * beneficial. Determining which of these two cases applies
1614 * would be more costly than unconditionally renaming the
1615 * reservation.
1616 */
1617 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1618 #endif
1619
1620 /*
1621 * orig_object's type may change while sleeping, so keep track
1622 * of the beginning of the busied range.
1623 */
1624 if (orig_object->type != OBJT_SWAP)
1625 vm_page_xunbusy(m);
1626 else if (m_busy == NULL)
1627 m_busy = m;
1628 }
1629 if (orig_object->type == OBJT_SWAP) {
1630 /*
1631 * swap_pager_copy() can sleep, in which case the orig_object's
1632 * and new_object's locks are released and reacquired.
1633 */
1634 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1635 if (m_busy != NULL)
1636 TAILQ_FOREACH_FROM(m_busy, &new_object->memq, listq)
1637 vm_page_xunbusy(m_busy);
1638 }
1639 vm_object_clear_flag(orig_object, OBJ_SPLIT);
1640 VM_OBJECT_WUNLOCK(orig_object);
1641 VM_OBJECT_WUNLOCK(new_object);
1642 entry->object.vm_object = new_object;
1643 entry->offset = 0LL;
1644 vm_object_deallocate(orig_object);
1645 VM_OBJECT_WLOCK(new_object);
1646 }
1647
1648 static vm_page_t
1649 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1650 {
1651 vm_object_t backing_object;
1652
1653 VM_OBJECT_ASSERT_WLOCKED(object);
1654 backing_object = object->backing_object;
1655 VM_OBJECT_ASSERT_WLOCKED(backing_object);
1656
1657 KASSERT(p == NULL || p->object == object || p->object == backing_object,
1658 ("invalid ownership %p %p %p", p, object, backing_object));
1659 /* The page is only NULL when rename fails. */
1660 if (p == NULL) {
1661 VM_OBJECT_WUNLOCK(object);
1662 VM_OBJECT_WUNLOCK(backing_object);
1663 vm_radix_wait();
1664 } else {
1665 if (p->object == object)
1666 VM_OBJECT_WUNLOCK(backing_object);
1667 else
1668 VM_OBJECT_WUNLOCK(object);
1669 vm_page_busy_sleep(p, "vmocol", false);
1670 }
1671 VM_OBJECT_WLOCK(object);
1672 VM_OBJECT_WLOCK(backing_object);
1673 return (TAILQ_FIRST(&backing_object->memq));
1674 }
1675
1676 static bool
1677 vm_object_scan_all_shadowed(vm_object_t object)
1678 {
1679 vm_object_t backing_object;
1680 vm_page_t p, pp;
1681 vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1682
1683 VM_OBJECT_ASSERT_WLOCKED(object);
1684 VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1685
1686 backing_object = object->backing_object;
1687
1688 if ((backing_object->flags & OBJ_ANON) == 0)
1689 return (false);
1690
1691 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1692 p = vm_page_find_least(backing_object, pi);
1693 ps = swap_pager_find_least(backing_object, pi);
1694
1695 /*
1696 * Only check pages inside the parent object's range and
1697 * inside the parent object's mapping of the backing object.
1698 */
1699 for (;; pi++) {
1700 if (p != NULL && p->pindex < pi)
1701 p = TAILQ_NEXT(p, listq);
1702 if (ps < pi)
1703 ps = swap_pager_find_least(backing_object, pi);
1704 if (p == NULL && ps >= backing_object->size)
1705 break;
1706 else if (p == NULL)
1707 pi = ps;
1708 else
1709 pi = MIN(p->pindex, ps);
1710
1711 new_pindex = pi - backing_offset_index;
1712 if (new_pindex >= object->size)
1713 break;
1714
1715 if (p != NULL) {
1716 /*
1717 * If the backing object page is busy a
1718 * grandparent or older page may still be
1719 * undergoing CoW. It is not safe to collapse
1720 * the backing object until it is quiesced.
1721 */
1722 if (vm_page_tryxbusy(p) == 0)
1723 return (false);
1724
1725 /*
1726 * We raced with the fault handler that left
1727 * newly allocated invalid page on the object
1728 * queue and retried.
1729 */
1730 if (!vm_page_all_valid(p))
1731 goto unbusy_ret;
1732 }
1733
1734 /*
1735 * See if the parent has the page or if the parent's object
1736 * pager has the page. If the parent has the page but the page
1737 * is not valid, the parent's object pager must have the page.
1738 *
1739 * If this fails, the parent does not completely shadow the
1740 * object and we might as well give up now.
1741 */
1742 pp = vm_page_lookup(object, new_pindex);
1743
1744 /*
1745 * The valid check here is stable due to object lock
1746 * being required to clear valid and initiate paging.
1747 * Busy of p disallows fault handler to validate pp.
1748 */
1749 if ((pp == NULL || vm_page_none_valid(pp)) &&
1750 !vm_pager_has_page(object, new_pindex, NULL, NULL))
1751 goto unbusy_ret;
1752 if (p != NULL)
1753 vm_page_xunbusy(p);
1754 }
1755 return (true);
1756
1757 unbusy_ret:
1758 if (p != NULL)
1759 vm_page_xunbusy(p);
1760 return (false);
1761 }
1762
1763 static void
1764 vm_object_collapse_scan(vm_object_t object)
1765 {
1766 vm_object_t backing_object;
1767 vm_page_t next, p, pp;
1768 vm_pindex_t backing_offset_index, new_pindex;
1769
1770 VM_OBJECT_ASSERT_WLOCKED(object);
1771 VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1772
1773 backing_object = object->backing_object;
1774 backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1775
1776 /*
1777 * Our scan
1778 */
1779 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1780 next = TAILQ_NEXT(p, listq);
1781 new_pindex = p->pindex - backing_offset_index;
1782
1783 /*
1784 * Check for busy page
1785 */
1786 if (vm_page_tryxbusy(p) == 0) {
1787 next = vm_object_collapse_scan_wait(object, p);
1788 continue;
1789 }
1790
1791 KASSERT(object->backing_object == backing_object,
1792 ("vm_object_collapse_scan: backing object mismatch %p != %p",
1793 object->backing_object, backing_object));
1794 KASSERT(p->object == backing_object,
1795 ("vm_object_collapse_scan: object mismatch %p != %p",
1796 p->object, backing_object));
1797
1798 if (p->pindex < backing_offset_index ||
1799 new_pindex >= object->size) {
1800 if (backing_object->type == OBJT_SWAP)
1801 swap_pager_freespace(backing_object, p->pindex,
1802 1);
1803
1804 KASSERT(!pmap_page_is_mapped(p),
1805 ("freeing mapped page %p", p));
1806 if (vm_page_remove(p))
1807 vm_page_free(p);
1808 continue;
1809 }
1810
1811 if (!vm_page_all_valid(p)) {
1812 KASSERT(!pmap_page_is_mapped(p),
1813 ("freeing mapped page %p", p));
1814 if (vm_page_remove(p))
1815 vm_page_free(p);
1816 continue;
1817 }
1818
1819 pp = vm_page_lookup(object, new_pindex);
1820 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1821 vm_page_xunbusy(p);
1822 /*
1823 * The page in the parent is busy and possibly not
1824 * (yet) valid. Until its state is finalized by the
1825 * busy bit owner, we can't tell whether it shadows the
1826 * original page.
1827 */
1828 next = vm_object_collapse_scan_wait(object, pp);
1829 continue;
1830 }
1831
1832 if (pp != NULL && vm_page_none_valid(pp)) {
1833 /*
1834 * The page was invalid in the parent. Likely placed
1835 * there by an incomplete fault. Just remove and
1836 * ignore. p can replace it.
1837 */
1838 if (vm_page_remove(pp))
1839 vm_page_free(pp);
1840 pp = NULL;
1841 }
1842
1843 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1844 NULL)) {
1845 /*
1846 * The page already exists in the parent OR swap exists
1847 * for this location in the parent. Leave the parent's
1848 * page alone. Destroy the original page from the
1849 * backing object.
1850 */
1851 if (backing_object->type == OBJT_SWAP)
1852 swap_pager_freespace(backing_object, p->pindex,
1853 1);
1854 KASSERT(!pmap_page_is_mapped(p),
1855 ("freeing mapped page %p", p));
1856 if (vm_page_remove(p))
1857 vm_page_free(p);
1858 if (pp != NULL)
1859 vm_page_xunbusy(pp);
1860 continue;
1861 }
1862
1863 /*
1864 * Page does not exist in parent, rename the page from the
1865 * backing object to the main object.
1866 *
1867 * If the page was mapped to a process, it can remain mapped
1868 * through the rename. vm_page_rename() will dirty the page.
1869 */
1870 if (vm_page_rename(p, object, new_pindex)) {
1871 vm_page_xunbusy(p);
1872 next = vm_object_collapse_scan_wait(object, NULL);
1873 continue;
1874 }
1875
1876 /* Use the old pindex to free the right page. */
1877 if (backing_object->type == OBJT_SWAP)
1878 swap_pager_freespace(backing_object,
1879 new_pindex + backing_offset_index, 1);
1880
1881 #if VM_NRESERVLEVEL > 0
1882 /*
1883 * Rename the reservation.
1884 */
1885 vm_reserv_rename(p, object, backing_object,
1886 backing_offset_index);
1887 #endif
1888 vm_page_xunbusy(p);
1889 }
1890 return;
1891 }
1892
1893 /*
1894 * vm_object_collapse:
1895 *
1896 * Collapse an object with the object backing it.
1897 * Pages in the backing object are moved into the
1898 * parent, and the backing object is deallocated.
1899 */
1900 void
1901 vm_object_collapse(vm_object_t object)
1902 {
1903 vm_object_t backing_object, new_backing_object;
1904
1905 VM_OBJECT_ASSERT_WLOCKED(object);
1906
1907 while (TRUE) {
1908 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1909 ("collapsing invalid object"));
1910
1911 /*
1912 * Wait for the backing_object to finish any pending
1913 * collapse so that the caller sees the shortest possible
1914 * shadow chain.
1915 */
1916 backing_object = vm_object_backing_collapse_wait(object);
1917 if (backing_object == NULL)
1918 return;
1919
1920 KASSERT(object->ref_count > 0 &&
1921 object->ref_count > object->shadow_count,
1922 ("collapse with invalid ref %d or shadow %d count.",
1923 object->ref_count, object->shadow_count));
1924 KASSERT((backing_object->flags &
1925 (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1926 ("vm_object_collapse: Backing object already collapsing."));
1927 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1928 ("vm_object_collapse: object is already collapsing."));
1929
1930 /*
1931 * We know that we can either collapse the backing object if
1932 * the parent is the only reference to it, or (perhaps) have
1933 * the parent bypass the object if the parent happens to shadow
1934 * all the resident pages in the entire backing object.
1935 */
1936 if (backing_object->ref_count == 1) {
1937 KASSERT(backing_object->shadow_count == 1,
1938 ("vm_object_collapse: shadow_count: %d",
1939 backing_object->shadow_count));
1940 vm_object_pip_add(object, 1);
1941 vm_object_set_flag(object, OBJ_COLLAPSING);
1942 vm_object_pip_add(backing_object, 1);
1943 vm_object_set_flag(backing_object, OBJ_DEAD);
1944
1945 /*
1946 * If there is exactly one reference to the backing
1947 * object, we can collapse it into the parent.
1948 */
1949 vm_object_collapse_scan(object);
1950
1951 #if VM_NRESERVLEVEL > 0
1952 /*
1953 * Break any reservations from backing_object.
1954 */
1955 if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1956 vm_reserv_break_all(backing_object);
1957 #endif
1958
1959 /*
1960 * Move the pager from backing_object to object.
1961 */
1962 if (backing_object->type == OBJT_SWAP) {
1963 /*
1964 * swap_pager_copy() can sleep, in which case
1965 * the backing_object's and object's locks are
1966 * released and reacquired.
1967 * Since swap_pager_copy() is being asked to
1968 * destroy backing_object, it will change the
1969 * type to OBJT_DEFAULT.
1970 */
1971 swap_pager_copy(
1972 backing_object,
1973 object,
1974 OFF_TO_IDX(object->backing_object_offset), TRUE);
1975 }
1976
1977 /*
1978 * Object now shadows whatever backing_object did.
1979 */
1980 vm_object_clear_flag(object, OBJ_COLLAPSING);
1981 vm_object_backing_transfer(object, backing_object);
1982 object->backing_object_offset +=
1983 backing_object->backing_object_offset;
1984 VM_OBJECT_WUNLOCK(object);
1985 vm_object_pip_wakeup(object);
1986
1987 /*
1988 * Discard backing_object.
1989 *
1990 * Since the backing object has no pages, no pager left,
1991 * and no object references within it, all that is
1992 * necessary is to dispose of it.
1993 */
1994 KASSERT(backing_object->ref_count == 1, (
1995 "backing_object %p was somehow re-referenced during collapse!",
1996 backing_object));
1997 vm_object_pip_wakeup(backing_object);
1998 (void)refcount_release(&backing_object->ref_count);
1999 vm_object_terminate(backing_object);
2000 counter_u64_add(object_collapses, 1);
2001 VM_OBJECT_WLOCK(object);
2002 } else {
2003 /*
2004 * If we do not entirely shadow the backing object,
2005 * there is nothing we can do so we give up.
2006 *
2007 * The object lock and backing_object lock must not
2008 * be dropped during this sequence.
2009 */
2010 if (!vm_object_scan_all_shadowed(object)) {
2011 VM_OBJECT_WUNLOCK(backing_object);
2012 break;
2013 }
2014
2015 /*
2016 * Make the parent shadow the next object in the
2017 * chain. Deallocating backing_object will not remove
2018 * it, since its reference count is at least 2.
2019 */
2020 vm_object_backing_remove_locked(object);
2021 new_backing_object = backing_object->backing_object;
2022 if (new_backing_object != NULL) {
2023 vm_object_backing_insert_ref(object,
2024 new_backing_object);
2025 object->backing_object_offset +=
2026 backing_object->backing_object_offset;
2027 }
2028
2029 /*
2030 * Drop the reference count on backing_object. Since
2031 * its ref_count was at least 2, it will not vanish.
2032 */
2033 (void)refcount_release(&backing_object->ref_count);
2034 KASSERT(backing_object->ref_count >= 1, (
2035 "backing_object %p was somehow dereferenced during collapse!",
2036 backing_object));
2037 VM_OBJECT_WUNLOCK(backing_object);
2038 counter_u64_add(object_bypasses, 1);
2039 }
2040
2041 /*
2042 * Try again with this object's new backing object.
2043 */
2044 }
2045 }
2046
2047 /*
2048 * vm_object_page_remove:
2049 *
2050 * For the given object, either frees or invalidates each of the
2051 * specified pages. In general, a page is freed. However, if a page is
2052 * wired for any reason other than the existence of a managed, wired
2053 * mapping, then it may be invalidated but not removed from the object.
2054 * Pages are specified by the given range ["start", "end") and the option
2055 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range
2056 * extends from "start" to the end of the object. If the option
2057 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2058 * specified range are affected. If the option OBJPR_NOTMAPPED is
2059 * specified, then the pages within the specified range must have no
2060 * mappings. Otherwise, if this option is not specified, any mappings to
2061 * the specified pages are removed before the pages are freed or
2062 * invalidated.
2063 *
2064 * In general, this operation should only be performed on objects that
2065 * contain managed pages. There are, however, two exceptions. First, it
2066 * is performed on the kernel and kmem objects by vm_map_entry_delete().
2067 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2068 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must
2069 * not be specified and the option OBJPR_NOTMAPPED must be specified.
2070 *
2071 * The object must be locked.
2072 */
2073 void
2074 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2075 int options)
2076 {
2077 vm_page_t p, next;
2078
2079 VM_OBJECT_ASSERT_WLOCKED(object);
2080 KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2081 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2082 ("vm_object_page_remove: illegal options for object %p", object));
2083 if (object->resident_page_count == 0)
2084 return;
2085 vm_object_pip_add(object, 1);
2086 again:
2087 p = vm_page_find_least(object, start);
2088
2089 /*
2090 * Here, the variable "p" is either (1) the page with the least pindex
2091 * greater than or equal to the parameter "start" or (2) NULL.
2092 */
2093 for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2094 next = TAILQ_NEXT(p, listq);
2095
2096 /*
2097 * If the page is wired for any reason besides the existence
2098 * of managed, wired mappings, then it cannot be freed. For
2099 * example, fictitious pages, which represent device memory,
2100 * are inherently wired and cannot be freed. They can,
2101 * however, be invalidated if the option OBJPR_CLEANONLY is
2102 * not specified.
2103 */
2104 if (vm_page_tryxbusy(p) == 0) {
2105 vm_page_sleep_if_busy(p, "vmopar");
2106 goto again;
2107 }
2108 if (vm_page_wired(p)) {
2109 wired:
2110 if ((options & OBJPR_NOTMAPPED) == 0 &&
2111 object->ref_count != 0)
2112 pmap_remove_all(p);
2113 if ((options & OBJPR_CLEANONLY) == 0) {
2114 vm_page_invalid(p);
2115 vm_page_undirty(p);
2116 }
2117 vm_page_xunbusy(p);
2118 continue;
2119 }
2120 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2121 ("vm_object_page_remove: page %p is fictitious", p));
2122 if ((options & OBJPR_CLEANONLY) != 0 &&
2123 !vm_page_none_valid(p)) {
2124 if ((options & OBJPR_NOTMAPPED) == 0 &&
2125 object->ref_count != 0 &&
2126 !vm_page_try_remove_write(p))
2127 goto wired;
2128 if (p->dirty != 0) {
2129 vm_page_xunbusy(p);
2130 continue;
2131 }
2132 }
2133 if ((options & OBJPR_NOTMAPPED) == 0 &&
2134 object->ref_count != 0 && !vm_page_try_remove_all(p))
2135 goto wired;
2136 vm_page_free(p);
2137 }
2138 vm_object_pip_wakeup(object);
2139
2140 if (object->type == OBJT_SWAP) {
2141 if (end == 0)
2142 end = object->size;
2143 swap_pager_freespace(object, start, end - start);
2144 }
2145 }
2146
2147 /*
2148 * vm_object_page_noreuse:
2149 *
2150 * For the given object, attempt to move the specified pages to
2151 * the head of the inactive queue. This bypasses regular LRU
2152 * operation and allows the pages to be reused quickly under memory
2153 * pressure. If a page is wired for any reason, then it will not
2154 * be queued. Pages are specified by the range ["start", "end").
2155 * As a special case, if "end" is zero, then the range extends from
2156 * "start" to the end of the object.
2157 *
2158 * This operation should only be performed on objects that
2159 * contain non-fictitious, managed pages.
2160 *
2161 * The object must be locked.
2162 */
2163 void
2164 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2165 {
2166 vm_page_t p, next;
2167
2168 VM_OBJECT_ASSERT_LOCKED(object);
2169 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2170 ("vm_object_page_noreuse: illegal object %p", object));
2171 if (object->resident_page_count == 0)
2172 return;
2173 p = vm_page_find_least(object, start);
2174
2175 /*
2176 * Here, the variable "p" is either (1) the page with the least pindex
2177 * greater than or equal to the parameter "start" or (2) NULL.
2178 */
2179 for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2180 next = TAILQ_NEXT(p, listq);
2181 vm_page_deactivate_noreuse(p);
2182 }
2183 }
2184
2185 /*
2186 * Populate the specified range of the object with valid pages. Returns
2187 * TRUE if the range is successfully populated and FALSE otherwise.
2188 *
2189 * Note: This function should be optimized to pass a larger array of
2190 * pages to vm_pager_get_pages() before it is applied to a non-
2191 * OBJT_DEVICE object.
2192 *
2193 * The object must be locked.
2194 */
2195 boolean_t
2196 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2197 {
2198 vm_page_t m;
2199 vm_pindex_t pindex;
2200 int rv;
2201
2202 VM_OBJECT_ASSERT_WLOCKED(object);
2203 for (pindex = start; pindex < end; pindex++) {
2204 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2205 if (rv != VM_PAGER_OK)
2206 break;
2207
2208 /*
2209 * Keep "m" busy because a subsequent iteration may unlock
2210 * the object.
2211 */
2212 }
2213 if (pindex > start) {
2214 m = vm_page_lookup(object, start);
2215 while (m != NULL && m->pindex < pindex) {
2216 vm_page_xunbusy(m);
2217 m = TAILQ_NEXT(m, listq);
2218 }
2219 }
2220 return (pindex == end);
2221 }
2222
2223 /*
2224 * Routine: vm_object_coalesce
2225 * Function: Coalesces two objects backing up adjoining
2226 * regions of memory into a single object.
2227 *
2228 * returns TRUE if objects were combined.
2229 *
2230 * NOTE: Only works at the moment if the second object is NULL -
2231 * if it's not, which object do we lock first?
2232 *
2233 * Parameters:
2234 * prev_object First object to coalesce
2235 * prev_offset Offset into prev_object
2236 * prev_size Size of reference to prev_object
2237 * next_size Size of reference to the second object
2238 * reserved Indicator that extension region has
2239 * swap accounted for
2240 *
2241 * Conditions:
2242 * The object must *not* be locked.
2243 */
2244 boolean_t
2245 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2246 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2247 {
2248 vm_pindex_t next_pindex;
2249
2250 if (prev_object == NULL)
2251 return (TRUE);
2252 if ((prev_object->flags & OBJ_ANON) == 0)
2253 return (FALSE);
2254
2255 VM_OBJECT_WLOCK(prev_object);
2256 /*
2257 * Try to collapse the object first.
2258 */
2259 vm_object_collapse(prev_object);
2260
2261 /*
2262 * Can't coalesce if: . more than one reference . paged out . shadows
2263 * another object . has a copy elsewhere (any of which mean that the
2264 * pages not mapped to prev_entry may be in use anyway)
2265 */
2266 if (prev_object->backing_object != NULL) {
2267 VM_OBJECT_WUNLOCK(prev_object);
2268 return (FALSE);
2269 }
2270
2271 prev_size >>= PAGE_SHIFT;
2272 next_size >>= PAGE_SHIFT;
2273 next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2274
2275 if (prev_object->ref_count > 1 &&
2276 prev_object->size != next_pindex &&
2277 (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2278 VM_OBJECT_WUNLOCK(prev_object);
2279 return (FALSE);
2280 }
2281
2282 /*
2283 * Account for the charge.
2284 */
2285 if (prev_object->cred != NULL) {
2286 /*
2287 * If prev_object was charged, then this mapping,
2288 * although not charged now, may become writable
2289 * later. Non-NULL cred in the object would prevent
2290 * swap reservation during enabling of the write
2291 * access, so reserve swap now. Failed reservation
2292 * cause allocation of the separate object for the map
2293 * entry, and swap reservation for this entry is
2294 * managed in appropriate time.
2295 */
2296 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2297 prev_object->cred)) {
2298 VM_OBJECT_WUNLOCK(prev_object);
2299 return (FALSE);
2300 }
2301 prev_object->charge += ptoa(next_size);
2302 }
2303
2304 /*
2305 * Remove any pages that may still be in the object from a previous
2306 * deallocation.
2307 */
2308 if (next_pindex < prev_object->size) {
2309 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2310 next_size, 0);
2311 #if 0
2312 if (prev_object->cred != NULL) {
2313 KASSERT(prev_object->charge >=
2314 ptoa(prev_object->size - next_pindex),
2315 ("object %p overcharged 1 %jx %jx", prev_object,
2316 (uintmax_t)next_pindex, (uintmax_t)next_size));
2317 prev_object->charge -= ptoa(prev_object->size -
2318 next_pindex);
2319 }
2320 #endif
2321 }
2322
2323 /*
2324 * Extend the object if necessary.
2325 */
2326 if (next_pindex + next_size > prev_object->size)
2327 prev_object->size = next_pindex + next_size;
2328
2329 VM_OBJECT_WUNLOCK(prev_object);
2330 return (TRUE);
2331 }
2332
2333 void
2334 vm_object_set_writeable_dirty(vm_object_t object)
2335 {
2336
2337 /* Only set for vnodes & tmpfs */
2338 if (object->type != OBJT_VNODE &&
2339 (object->flags & OBJ_TMPFS_NODE) == 0)
2340 return;
2341 atomic_add_int(&object->generation, 1);
2342 }
2343
2344 /*
2345 * vm_object_unwire:
2346 *
2347 * For each page offset within the specified range of the given object,
2348 * find the highest-level page in the shadow chain and unwire it. A page
2349 * must exist at every page offset, and the highest-level page must be
2350 * wired.
2351 */
2352 void
2353 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2354 uint8_t queue)
2355 {
2356 vm_object_t tobject, t1object;
2357 vm_page_t m, tm;
2358 vm_pindex_t end_pindex, pindex, tpindex;
2359 int depth, locked_depth;
2360
2361 KASSERT((offset & PAGE_MASK) == 0,
2362 ("vm_object_unwire: offset is not page aligned"));
2363 KASSERT((length & PAGE_MASK) == 0,
2364 ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2365 /* The wired count of a fictitious page never changes. */
2366 if ((object->flags & OBJ_FICTITIOUS) != 0)
2367 return;
2368 pindex = OFF_TO_IDX(offset);
2369 end_pindex = pindex + atop(length);
2370 again:
2371 locked_depth = 1;
2372 VM_OBJECT_RLOCK(object);
2373 m = vm_page_find_least(object, pindex);
2374 while (pindex < end_pindex) {
2375 if (m == NULL || pindex < m->pindex) {
2376 /*
2377 * The first object in the shadow chain doesn't
2378 * contain a page at the current index. Therefore,
2379 * the page must exist in a backing object.
2380 */
2381 tobject = object;
2382 tpindex = pindex;
2383 depth = 0;
2384 do {
2385 tpindex +=
2386 OFF_TO_IDX(tobject->backing_object_offset);
2387 tobject = tobject->backing_object;
2388 KASSERT(tobject != NULL,
2389 ("vm_object_unwire: missing page"));
2390 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2391 goto next_page;
2392 depth++;
2393 if (depth == locked_depth) {
2394 locked_depth++;
2395 VM_OBJECT_RLOCK(tobject);
2396 }
2397 } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2398 NULL);
2399 } else {
2400 tm = m;
2401 m = TAILQ_NEXT(m, listq);
2402 }
2403 if (vm_page_trysbusy(tm) == 0) {
2404 for (tobject = object; locked_depth >= 1;
2405 locked_depth--) {
2406 t1object = tobject->backing_object;
2407 if (tm->object != tobject)
2408 VM_OBJECT_RUNLOCK(tobject);
2409 tobject = t1object;
2410 }
2411 vm_page_busy_sleep(tm, "unwbo", true);
2412 goto again;
2413 }
2414 vm_page_unwire(tm, queue);
2415 vm_page_sunbusy(tm);
2416 next_page:
2417 pindex++;
2418 }
2419 /* Release the accumulated object locks. */
2420 for (tobject = object; locked_depth >= 1; locked_depth--) {
2421 t1object = tobject->backing_object;
2422 VM_OBJECT_RUNLOCK(tobject);
2423 tobject = t1object;
2424 }
2425 }
2426
2427 /*
2428 * Return the vnode for the given object, or NULL if none exists.
2429 * For tmpfs objects, the function may return NULL if there is
2430 * no vnode allocated at the time of the call.
2431 */
2432 struct vnode *
2433 vm_object_vnode(vm_object_t object)
2434 {
2435 struct vnode *vp;
2436
2437 VM_OBJECT_ASSERT_LOCKED(object);
2438 if (object->type == OBJT_VNODE) {
2439 vp = object->handle;
2440 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2441 } else if (object->type == OBJT_SWAP &&
2442 (object->flags & OBJ_TMPFS) != 0) {
2443 vp = object->un_pager.swp.swp_tmpfs;
2444 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2445 } else {
2446 vp = NULL;
2447 }
2448 return (vp);
2449 }
2450
2451 /*
2452 * Busy the vm object. This prevents new pages belonging to the object from
2453 * becoming busy. Existing pages persist as busy. Callers are responsible
2454 * for checking page state before proceeding.
2455 */
2456 void
2457 vm_object_busy(vm_object_t obj)
2458 {
2459
2460 VM_OBJECT_ASSERT_LOCKED(obj);
2461
2462 blockcount_acquire(&obj->busy, 1);
2463 /* The fence is required to order loads of page busy. */
2464 atomic_thread_fence_acq_rel();
2465 }
2466
2467 void
2468 vm_object_unbusy(vm_object_t obj)
2469 {
2470
2471 blockcount_release(&obj->busy, 1);
2472 }
2473
2474 void
2475 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2476 {
2477
2478 VM_OBJECT_ASSERT_UNLOCKED(obj);
2479
2480 (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2481 }
2482
2483 /*
2484 * Return the kvme type of the given object.
2485 * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2486 */
2487 int
2488 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2489 {
2490
2491 VM_OBJECT_ASSERT_LOCKED(object);
2492 if (vpp != NULL)
2493 *vpp = vm_object_vnode(object);
2494 switch (object->type) {
2495 case OBJT_DEFAULT:
2496 return (KVME_TYPE_DEFAULT);
2497 case OBJT_VNODE:
2498 return (KVME_TYPE_VNODE);
2499 case OBJT_SWAP:
2500 if ((object->flags & OBJ_TMPFS_NODE) != 0)
2501 return (KVME_TYPE_VNODE);
2502 return (KVME_TYPE_SWAP);
2503 case OBJT_DEVICE:
2504 return (KVME_TYPE_DEVICE);
2505 case OBJT_PHYS:
2506 return (KVME_TYPE_PHYS);
2507 case OBJT_DEAD:
2508 return (KVME_TYPE_DEAD);
2509 case OBJT_SG:
2510 return (KVME_TYPE_SG);
2511 case OBJT_MGTDEVICE:
2512 return (KVME_TYPE_MGTDEVICE);
2513 default:
2514 return (KVME_TYPE_UNKNOWN);
2515 }
2516 }
2517
2518 static int
2519 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2520 {
2521 struct kinfo_vmobject *kvo;
2522 char *fullpath, *freepath;
2523 struct vnode *vp;
2524 struct vattr va;
2525 vm_object_t obj;
2526 vm_page_t m;
2527 int count, error;
2528
2529 if (req->oldptr == NULL) {
2530 /*
2531 * If an old buffer has not been provided, generate an
2532 * estimate of the space needed for a subsequent call.
2533 */
2534 mtx_lock(&vm_object_list_mtx);
2535 count = 0;
2536 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2537 if (obj->type == OBJT_DEAD)
2538 continue;
2539 count++;
2540 }
2541 mtx_unlock(&vm_object_list_mtx);
2542 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2543 count * 11 / 10));
2544 }
2545
2546 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2547 error = 0;
2548
2549 /*
2550 * VM objects are type stable and are never removed from the
2551 * list once added. This allows us to safely read obj->object_list
2552 * after reacquiring the VM object lock.
2553 */
2554 mtx_lock(&vm_object_list_mtx);
2555 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2556 if (obj->type == OBJT_DEAD)
2557 continue;
2558 VM_OBJECT_RLOCK(obj);
2559 if (obj->type == OBJT_DEAD) {
2560 VM_OBJECT_RUNLOCK(obj);
2561 continue;
2562 }
2563 mtx_unlock(&vm_object_list_mtx);
2564 kvo->kvo_size = ptoa(obj->size);
2565 kvo->kvo_resident = obj->resident_page_count;
2566 kvo->kvo_ref_count = obj->ref_count;
2567 kvo->kvo_shadow_count = obj->shadow_count;
2568 kvo->kvo_memattr = obj->memattr;
2569 kvo->kvo_active = 0;
2570 kvo->kvo_inactive = 0;
2571 TAILQ_FOREACH(m, &obj->memq, listq) {
2572 /*
2573 * A page may belong to the object but be
2574 * dequeued and set to PQ_NONE while the
2575 * object lock is not held. This makes the
2576 * reads of m->queue below racy, and we do not
2577 * count pages set to PQ_NONE. However, this
2578 * sysctl is only meant to give an
2579 * approximation of the system anyway.
2580 */
2581 if (m->a.queue == PQ_ACTIVE)
2582 kvo->kvo_active++;
2583 else if (m->a.queue == PQ_INACTIVE)
2584 kvo->kvo_inactive++;
2585 }
2586
2587 kvo->kvo_vn_fileid = 0;
2588 kvo->kvo_vn_fsid = 0;
2589 kvo->kvo_vn_fsid_freebsd11 = 0;
2590 freepath = NULL;
2591 fullpath = "";
2592 kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2593 if (vp != NULL)
2594 vref(vp);
2595 VM_OBJECT_RUNLOCK(obj);
2596 if (vp != NULL) {
2597 vn_fullpath(vp, &fullpath, &freepath);
2598 vn_lock(vp, LK_SHARED | LK_RETRY);
2599 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2600 kvo->kvo_vn_fileid = va.va_fileid;
2601 kvo->kvo_vn_fsid = va.va_fsid;
2602 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2603 /* truncate */
2604 }
2605 vput(vp);
2606 }
2607
2608 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2609 if (freepath != NULL)
2610 free(freepath, M_TEMP);
2611
2612 /* Pack record size down */
2613 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2614 + strlen(kvo->kvo_path) + 1;
2615 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2616 sizeof(uint64_t));
2617 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2618 mtx_lock(&vm_object_list_mtx);
2619 if (error)
2620 break;
2621 }
2622 mtx_unlock(&vm_object_list_mtx);
2623 free(kvo, M_TEMP);
2624 return (error);
2625 }
2626 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2627 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2628 "List of VM objects");
2629
2630 #include "opt_ddb.h"
2631 #ifdef DDB
2632 #include <sys/kernel.h>
2633
2634 #include <sys/cons.h>
2635
2636 #include <ddb/ddb.h>
2637
2638 static int
2639 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2640 {
2641 vm_map_t tmpm;
2642 vm_map_entry_t tmpe;
2643 vm_object_t obj;
2644
2645 if (map == 0)
2646 return 0;
2647
2648 if (entry == 0) {
2649 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2650 if (_vm_object_in_map(map, object, tmpe)) {
2651 return 1;
2652 }
2653 }
2654 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2655 tmpm = entry->object.sub_map;
2656 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2657 if (_vm_object_in_map(tmpm, object, tmpe)) {
2658 return 1;
2659 }
2660 }
2661 } else if ((obj = entry->object.vm_object) != NULL) {
2662 for (; obj; obj = obj->backing_object)
2663 if (obj == object) {
2664 return 1;
2665 }
2666 }
2667 return 0;
2668 }
2669
2670 static int
2671 vm_object_in_map(vm_object_t object)
2672 {
2673 struct proc *p;
2674
2675 /* sx_slock(&allproc_lock); */
2676 FOREACH_PROC_IN_SYSTEM(p) {
2677 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2678 continue;
2679 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2680 /* sx_sunlock(&allproc_lock); */
2681 return 1;
2682 }
2683 }
2684 /* sx_sunlock(&allproc_lock); */
2685 if (_vm_object_in_map(kernel_map, object, 0))
2686 return 1;
2687 return 0;
2688 }
2689
2690 DB_SHOW_COMMAND(vmochk, vm_object_check)
2691 {
2692 vm_object_t object;
2693
2694 /*
2695 * make sure that internal objs are in a map somewhere
2696 * and none have zero ref counts.
2697 */
2698 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2699 if ((object->flags & OBJ_ANON) != 0) {
2700 if (object->ref_count == 0) {
2701 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2702 (long)object->size);
2703 }
2704 if (!vm_object_in_map(object)) {
2705 db_printf(
2706 "vmochk: internal obj is not in a map: "
2707 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2708 object->ref_count, (u_long)object->size,
2709 (u_long)object->size,
2710 (void *)object->backing_object);
2711 }
2712 }
2713 if (db_pager_quit)
2714 return;
2715 }
2716 }
2717
2718 /*
2719 * vm_object_print: [ debug ]
2720 */
2721 DB_SHOW_COMMAND(object, vm_object_print_static)
2722 {
2723 /* XXX convert args. */
2724 vm_object_t object = (vm_object_t)addr;
2725 boolean_t full = have_addr;
2726
2727 vm_page_t p;
2728
2729 /* XXX count is an (unused) arg. Avoid shadowing it. */
2730 #define count was_count
2731
2732 int count;
2733
2734 if (object == NULL)
2735 return;
2736
2737 db_iprintf(
2738 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2739 object, (int)object->type, (uintmax_t)object->size,
2740 object->resident_page_count, object->ref_count, object->flags,
2741 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2742 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2743 object->shadow_count,
2744 object->backing_object ? object->backing_object->ref_count : 0,
2745 object->backing_object, (uintmax_t)object->backing_object_offset);
2746
2747 if (!full)
2748 return;
2749
2750 db_indent += 2;
2751 count = 0;
2752 TAILQ_FOREACH(p, &object->memq, listq) {
2753 if (count == 0)
2754 db_iprintf("memory:=");
2755 else if (count == 6) {
2756 db_printf("\n");
2757 db_iprintf(" ...");
2758 count = 0;
2759 } else
2760 db_printf(",");
2761 count++;
2762
2763 db_printf("(off=0x%jx,page=0x%jx)",
2764 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2765
2766 if (db_pager_quit)
2767 break;
2768 }
2769 if (count != 0)
2770 db_printf("\n");
2771 db_indent -= 2;
2772 }
2773
2774 /* XXX. */
2775 #undef count
2776
2777 /* XXX need this non-static entry for calling from vm_map_print. */
2778 void
2779 vm_object_print(
2780 /* db_expr_t */ long addr,
2781 boolean_t have_addr,
2782 /* db_expr_t */ long count,
2783 char *modif)
2784 {
2785 vm_object_print_static(addr, have_addr, count, modif);
2786 }
2787
2788 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2789 {
2790 vm_object_t object;
2791 vm_pindex_t fidx;
2792 vm_paddr_t pa;
2793 vm_page_t m, prev_m;
2794 int rcount, nl, c;
2795
2796 nl = 0;
2797 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2798 db_printf("new object: %p\n", (void *)object);
2799 if (nl > 18) {
2800 c = cngetc();
2801 if (c != ' ')
2802 return;
2803 nl = 0;
2804 }
2805 nl++;
2806 rcount = 0;
2807 fidx = 0;
2808 pa = -1;
2809 TAILQ_FOREACH(m, &object->memq, listq) {
2810 if (m->pindex > 128)
2811 break;
2812 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2813 prev_m->pindex + 1 != m->pindex) {
2814 if (rcount) {
2815 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2816 (long)fidx, rcount, (long)pa);
2817 if (nl > 18) {
2818 c = cngetc();
2819 if (c != ' ')
2820 return;
2821 nl = 0;
2822 }
2823 nl++;
2824 rcount = 0;
2825 }
2826 }
2827 if (rcount &&
2828 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2829 ++rcount;
2830 continue;
2831 }
2832 if (rcount) {
2833 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2834 (long)fidx, rcount, (long)pa);
2835 if (nl > 18) {
2836 c = cngetc();
2837 if (c != ' ')
2838 return;
2839 nl = 0;
2840 }
2841 nl++;
2842 }
2843 fidx = m->pindex;
2844 pa = VM_PAGE_TO_PHYS(m);
2845 rcount = 1;
2846 }
2847 if (rcount) {
2848 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2849 (long)fidx, rcount, (long)pa);
2850 if (nl > 18) {
2851 c = cngetc();
2852 if (c != ' ')
2853 return;
2854 nl = 0;
2855 }
2856 nl++;
2857 }
2858 }
2859 }
2860 #endif /* DDB */
Cache object: ae5fd4fde750f8d58dffb71802b3fb91
|