FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: releng/5.0/sys/vm/vm_object.c 107304 2002-11-27 08:03:24Z alc $
65 */
66
67 /*
68 * Virtual memory object module.
69 */
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/lock.h>
74 #include <sys/mman.h>
75 #include <sys/mount.h>
76 #include <sys/kernel.h>
77 #include <sys/sysctl.h>
78 #include <sys/mutex.h>
79 #include <sys/proc.h> /* for curproc, pageproc */
80 #include <sys/socket.h>
81 #include <sys/stdint.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/uma.h>
98
99 #define EASY_SCAN_FACTOR 8
100
101 #define MSYNC_FLUSH_HARDSEQ 0x01
102 #define MSYNC_FLUSH_SOFTSEQ 0x02
103
104 /*
105 * msync / VM object flushing optimizations
106 */
107 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
108 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
109 CTLFLAG_RW, &msync_flush_flags, 0, "");
110
111 static void vm_object_qcollapse(vm_object_t object);
112 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113
114 /*
115 * Virtual memory objects maintain the actual data
116 * associated with allocated virtual memory. A given
117 * page of memory exists within exactly one object.
118 *
119 * An object is only deallocated when all "references"
120 * are given up. Only one "reference" to a given
121 * region of an object should be writeable.
122 *
123 * Associated with each object is a list of all resident
124 * memory pages belonging to that object; this list is
125 * maintained by the "vm_page" module, and locked by the object's
126 * lock.
127 *
128 * Each object also records a "pager" routine which is
129 * used to retrieve (and store) pages to the proper backing
130 * storage. In addition, objects may be backed by other
131 * objects from which they were virtual-copied.
132 *
133 * The only items within the object structure which are
134 * modified after time of creation are:
135 * reference count locked by object's lock
136 * pager routine locked by object's lock
137 *
138 */
139
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx; /* lock for object list and count */
142 vm_object_t kernel_object;
143 vm_object_t kmem_object;
144 static struct vm_object kernel_object_store;
145 static struct vm_object kmem_object_store;
146 extern int vm_pageout_page_count;
147
148 static long object_collapses;
149 static long object_bypasses;
150 static int next_index;
151 static uma_zone_t obj_zone;
152 #define VM_OBJECTS_INIT 256
153
154 static void vm_object_zinit(void *mem, int size);
155
156 #ifdef INVARIANTS
157 static void vm_object_zdtor(void *mem, int size, void *arg);
158
159 static void
160 vm_object_zdtor(void *mem, int size, void *arg)
161 {
162 vm_object_t object;
163
164 object = (vm_object_t)mem;
165 KASSERT(object->paging_in_progress == 0,
166 ("object %p paging_in_progress = %d",
167 object, object->paging_in_progress));
168 KASSERT(object->resident_page_count == 0,
169 ("object %p resident_page_count = %d",
170 object, object->resident_page_count));
171 KASSERT(object->shadow_count == 0,
172 ("object %p shadow_count = %d",
173 object, object->shadow_count));
174 }
175 #endif
176
177 static void
178 vm_object_zinit(void *mem, int size)
179 {
180 vm_object_t object;
181
182 object = (vm_object_t)mem;
183
184 /* These are true for any object that has been freed */
185 object->paging_in_progress = 0;
186 object->resident_page_count = 0;
187 object->shadow_count = 0;
188 }
189
190 void
191 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
192 {
193 static int object_hash_rand;
194 int exp, incr;
195
196 TAILQ_INIT(&object->memq);
197 TAILQ_INIT(&object->shadow_head);
198
199 object->root = NULL;
200 object->type = type;
201 object->size = size;
202 object->ref_count = 1;
203 object->flags = 0;
204 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
205 vm_object_set_flag(object, OBJ_ONEMAPPING);
206 if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
207 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
208 else
209 incr = size;
210 do
211 object->pg_color = next_index;
212 while (!atomic_cmpset_int(&next_index, object->pg_color,
213 (object->pg_color + incr) & PQ_L2_MASK));
214 object->handle = NULL;
215 object->backing_object = NULL;
216 object->backing_object_offset = (vm_ooffset_t) 0;
217 /*
218 * Try to generate a number that will spread objects out in the
219 * hash table. We 'wipe' new objects across the hash in 128 page
220 * increments plus 1 more to offset it a little more by the time
221 * it wraps around.
222 */
223 do {
224 exp = object_hash_rand;
225 object->hash_rand = exp - 129;
226 } while (!atomic_cmpset_int(&object_hash_rand, exp, object->hash_rand));
227
228 atomic_add_int(&object->generation, 1);
229
230 mtx_lock(&vm_object_list_mtx);
231 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
232 mtx_unlock(&vm_object_list_mtx);
233 }
234
235 /*
236 * vm_object_init:
237 *
238 * Initialize the VM objects module.
239 */
240 void
241 vm_object_init(void)
242 {
243 TAILQ_INIT(&vm_object_list);
244 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
245
246 kernel_object = &kernel_object_store;
247 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
248 kernel_object);
249
250 kmem_object = &kmem_object_store;
251 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
252 kmem_object);
253 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
254 #ifdef INVARIANTS
255 vm_object_zdtor,
256 #else
257 NULL,
258 #endif
259 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
260 uma_prealloc(obj_zone, VM_OBJECTS_INIT);
261 }
262
263 void
264 vm_object_init2(void)
265 {
266 }
267
268 void
269 vm_object_set_flag(vm_object_t object, u_short bits)
270 {
271 object->flags |= bits;
272 }
273
274 void
275 vm_object_clear_flag(vm_object_t object, u_short bits)
276 {
277 GIANT_REQUIRED;
278 object->flags &= ~bits;
279 }
280
281 void
282 vm_object_pip_add(vm_object_t object, short i)
283 {
284 GIANT_REQUIRED;
285 object->paging_in_progress += i;
286 }
287
288 void
289 vm_object_pip_subtract(vm_object_t object, short i)
290 {
291 GIANT_REQUIRED;
292 object->paging_in_progress -= i;
293 }
294
295 void
296 vm_object_pip_wakeup(vm_object_t object)
297 {
298 GIANT_REQUIRED;
299 object->paging_in_progress--;
300 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
301 vm_object_clear_flag(object, OBJ_PIPWNT);
302 wakeup(object);
303 }
304 }
305
306 void
307 vm_object_pip_wakeupn(vm_object_t object, short i)
308 {
309 GIANT_REQUIRED;
310 if (i)
311 object->paging_in_progress -= i;
312 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
313 vm_object_clear_flag(object, OBJ_PIPWNT);
314 wakeup(object);
315 }
316 }
317
318 void
319 vm_object_pip_sleep(vm_object_t object, char *waitid)
320 {
321 GIANT_REQUIRED;
322 if (object->paging_in_progress) {
323 int s = splvm();
324 if (object->paging_in_progress) {
325 vm_object_set_flag(object, OBJ_PIPWNT);
326 tsleep(object, PVM, waitid, 0);
327 }
328 splx(s);
329 }
330 }
331
332 void
333 vm_object_pip_wait(vm_object_t object, char *waitid)
334 {
335 GIANT_REQUIRED;
336 while (object->paging_in_progress)
337 vm_object_pip_sleep(object, waitid);
338 }
339
340 /*
341 * vm_object_allocate_wait
342 *
343 * Return a new object with the given size, and give the user the
344 * option of waiting for it to complete or failing if the needed
345 * memory isn't available.
346 */
347 vm_object_t
348 vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
349 {
350 vm_object_t result;
351
352 result = (vm_object_t) uma_zalloc(obj_zone, flags);
353
354 if (result != NULL)
355 _vm_object_allocate(type, size, result);
356
357 return (result);
358 }
359
360 /*
361 * vm_object_allocate:
362 *
363 * Returns a new object with the given size.
364 */
365 vm_object_t
366 vm_object_allocate(objtype_t type, vm_pindex_t size)
367 {
368 return(vm_object_allocate_wait(type, size, M_WAITOK));
369 }
370
371
372 /*
373 * vm_object_reference:
374 *
375 * Gets another reference to the given object.
376 */
377 void
378 vm_object_reference(vm_object_t object)
379 {
380 if (object == NULL)
381 return;
382
383 vm_object_lock(object);
384 #if 0
385 /* object can be re-referenced during final cleaning */
386 KASSERT(!(object->flags & OBJ_DEAD),
387 ("vm_object_reference: attempting to reference dead obj"));
388 #endif
389
390 object->ref_count++;
391 if (object->type == OBJT_VNODE) {
392 while (vget((struct vnode *) object->handle, LK_RETRY, curthread)) {
393 printf("vm_object_reference: delay in getting object\n");
394 }
395 }
396 vm_object_unlock(object);
397 }
398
399 /*
400 * handle deallocating a object of type OBJT_VNODE
401 */
402 void
403 vm_object_vndeallocate(vm_object_t object)
404 {
405 struct vnode *vp = (struct vnode *) object->handle;
406
407 GIANT_REQUIRED;
408 KASSERT(object->type == OBJT_VNODE,
409 ("vm_object_vndeallocate: not a vnode object"));
410 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
411 #ifdef INVARIANTS
412 if (object->ref_count == 0) {
413 vprint("vm_object_vndeallocate", vp);
414 panic("vm_object_vndeallocate: bad object reference count");
415 }
416 #endif
417
418 object->ref_count--;
419 if (object->ref_count == 0) {
420 mp_fixme("Unlocked vflag access.");
421 vp->v_vflag &= ~VV_TEXT;
422 #ifdef ENABLE_VFS_IOOPT
423 vm_object_clear_flag(object, OBJ_OPT);
424 #endif
425 }
426 /*
427 * vrele may need a vop lock
428 */
429 vrele(vp);
430 }
431
432 /*
433 * vm_object_deallocate:
434 *
435 * Release a reference to the specified object,
436 * gained either through a vm_object_allocate
437 * or a vm_object_reference call. When all references
438 * are gone, storage associated with this object
439 * may be relinquished.
440 *
441 * No object may be locked.
442 */
443 void
444 vm_object_deallocate(vm_object_t object)
445 {
446 vm_object_t temp;
447
448 mtx_lock(&Giant);
449 while (object != NULL) {
450
451 if (object->type == OBJT_VNODE) {
452 vm_object_vndeallocate(object);
453 mtx_unlock(&Giant);
454 return;
455 }
456
457 KASSERT(object->ref_count != 0,
458 ("vm_object_deallocate: object deallocated too many times: %d", object->type));
459
460 /*
461 * If the reference count goes to 0 we start calling
462 * vm_object_terminate() on the object chain.
463 * A ref count of 1 may be a special case depending on the
464 * shadow count being 0 or 1.
465 */
466 object->ref_count--;
467 if (object->ref_count > 1) {
468 mtx_unlock(&Giant);
469 return;
470 } else if (object->ref_count == 1) {
471 if (object->shadow_count == 0) {
472 vm_object_set_flag(object, OBJ_ONEMAPPING);
473 } else if ((object->shadow_count == 1) &&
474 (object->handle == NULL) &&
475 (object->type == OBJT_DEFAULT ||
476 object->type == OBJT_SWAP)) {
477 vm_object_t robject;
478
479 robject = TAILQ_FIRST(&object->shadow_head);
480 KASSERT(robject != NULL,
481 ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
482 object->ref_count,
483 object->shadow_count));
484 if ((robject->handle == NULL) &&
485 (robject->type == OBJT_DEFAULT ||
486 robject->type == OBJT_SWAP)) {
487
488 robject->ref_count++;
489
490 while (
491 robject->paging_in_progress ||
492 object->paging_in_progress
493 ) {
494 vm_object_pip_sleep(robject, "objde1");
495 vm_object_pip_sleep(object, "objde2");
496 }
497
498 if (robject->ref_count == 1) {
499 robject->ref_count--;
500 object = robject;
501 goto doterm;
502 }
503
504 object = robject;
505 vm_object_collapse(object);
506 continue;
507 }
508 }
509 mtx_unlock(&Giant);
510 return;
511 }
512 doterm:
513 temp = object->backing_object;
514 if (temp) {
515 TAILQ_REMOVE(&temp->shadow_head, object, shadow_list);
516 temp->shadow_count--;
517 #ifdef ENABLE_VFS_IOOPT
518 if (temp->ref_count == 0)
519 vm_object_clear_flag(temp, OBJ_OPT);
520 #endif
521 temp->generation++;
522 object->backing_object = NULL;
523 }
524 /*
525 * Don't double-terminate, we could be in a termination
526 * recursion due to the terminate having to sync data
527 * to disk.
528 */
529 if ((object->flags & OBJ_DEAD) == 0)
530 vm_object_terminate(object);
531 object = temp;
532 }
533 mtx_unlock(&Giant);
534 }
535
536 /*
537 * vm_object_terminate actually destroys the specified object, freeing
538 * up all previously used resources.
539 *
540 * The object must be locked.
541 * This routine may block.
542 */
543 void
544 vm_object_terminate(vm_object_t object)
545 {
546 vm_page_t p;
547 int s;
548
549 GIANT_REQUIRED;
550
551 /*
552 * Make sure no one uses us.
553 */
554 vm_object_set_flag(object, OBJ_DEAD);
555
556 /*
557 * wait for the pageout daemon to be done with the object
558 */
559 vm_object_pip_wait(object, "objtrm");
560
561 KASSERT(!object->paging_in_progress,
562 ("vm_object_terminate: pageout in progress"));
563
564 /*
565 * Clean and free the pages, as appropriate. All references to the
566 * object are gone, so we don't need to lock it.
567 */
568 if (object->type == OBJT_VNODE) {
569 struct vnode *vp;
570
571 #ifdef ENABLE_VFS_IOOPT
572 /*
573 * Freeze optimized copies.
574 */
575 vm_freeze_copyopts(object, 0, object->size);
576 #endif
577 /*
578 * Clean pages and flush buffers.
579 */
580 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
581
582 vp = (struct vnode *) object->handle;
583 vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
584 }
585
586 KASSERT(object->ref_count == 0,
587 ("vm_object_terminate: object with references, ref_count=%d",
588 object->ref_count));
589
590 /*
591 * Now free any remaining pages. For internal objects, this also
592 * removes them from paging queues. Don't free wired pages, just
593 * remove them from the object.
594 */
595 s = splvm();
596 vm_page_lock_queues();
597 while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
598 KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
599 ("vm_object_terminate: freeing busy page %p "
600 "p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
601 if (p->wire_count == 0) {
602 vm_page_busy(p);
603 vm_page_free(p);
604 cnt.v_pfree++;
605 } else {
606 vm_page_busy(p);
607 vm_page_remove(p);
608 }
609 }
610 vm_page_unlock_queues();
611 splx(s);
612
613 /*
614 * Let the pager know object is dead.
615 */
616 vm_pager_deallocate(object);
617
618 /*
619 * Remove the object from the global object list.
620 */
621 mtx_lock(&vm_object_list_mtx);
622 TAILQ_REMOVE(&vm_object_list, object, object_list);
623 mtx_unlock(&vm_object_list_mtx);
624
625 wakeup(object);
626
627 /*
628 * Free the space for the object.
629 */
630 uma_zfree(obj_zone, object);
631 }
632
633 /*
634 * vm_object_page_clean
635 *
636 * Clean all dirty pages in the specified range of object. Leaves page
637 * on whatever queue it is currently on. If NOSYNC is set then do not
638 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
639 * leaving the object dirty.
640 *
641 * Odd semantics: if start == end, we clean everything.
642 *
643 * The object must be locked.
644 */
645 void
646 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
647 {
648 vm_page_t p, np;
649 vm_pindex_t tstart, tend;
650 vm_pindex_t pi;
651 struct vnode *vp;
652 int clearobjflags;
653 int pagerflags;
654 int curgeneration;
655
656 GIANT_REQUIRED;
657
658 if (object->type != OBJT_VNODE ||
659 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
660 return;
661
662 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0;
663 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
664
665 vp = object->handle;
666
667 vm_object_set_flag(object, OBJ_CLEANING);
668
669 tstart = start;
670 if (end == 0) {
671 tend = object->size;
672 } else {
673 tend = end;
674 }
675
676 /*
677 * If the caller is smart and only msync()s a range he knows is
678 * dirty, we may be able to avoid an object scan. This results in
679 * a phenominal improvement in performance. We cannot do this
680 * as a matter of course because the object may be huge - e.g.
681 * the size might be in the gigabytes or terrabytes.
682 */
683 if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
684 vm_pindex_t tscan;
685 int scanlimit;
686 int scanreset;
687
688 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
689 if (scanreset < 16)
690 scanreset = 16;
691
692 scanlimit = scanreset;
693 tscan = tstart;
694 while (tscan < tend) {
695 curgeneration = object->generation;
696 p = vm_page_lookup(object, tscan);
697 if (p == NULL || p->valid == 0 ||
698 (p->queue - p->pc) == PQ_CACHE) {
699 if (--scanlimit == 0)
700 break;
701 ++tscan;
702 continue;
703 }
704 vm_page_test_dirty(p);
705 if ((p->dirty & p->valid) == 0) {
706 if (--scanlimit == 0)
707 break;
708 ++tscan;
709 continue;
710 }
711 /*
712 * If we have been asked to skip nosync pages and
713 * this is a nosync page, we can't continue.
714 */
715 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
716 if (--scanlimit == 0)
717 break;
718 ++tscan;
719 continue;
720 }
721 scanlimit = scanreset;
722
723 /*
724 * This returns 0 if it was unable to busy the first
725 * page (i.e. had to sleep).
726 */
727 tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
728 }
729
730 /*
731 * If everything was dirty and we flushed it successfully,
732 * and the requested range is not the entire object, we
733 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
734 * return immediately.
735 */
736 if (tscan >= tend && (tstart || tend < object->size)) {
737 vm_object_clear_flag(object, OBJ_CLEANING);
738 return;
739 }
740 }
741
742 /*
743 * Generally set CLEANCHK interlock and make the page read-only so
744 * we can then clear the object flags.
745 *
746 * However, if this is a nosync mmap then the object is likely to
747 * stay dirty so do not mess with the page and do not clear the
748 * object flags.
749 */
750 clearobjflags = 1;
751 vm_page_lock_queues();
752 TAILQ_FOREACH(p, &object->memq, listq) {
753 vm_page_flag_set(p, PG_CLEANCHK);
754 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
755 clearobjflags = 0;
756 else
757 pmap_page_protect(p, VM_PROT_READ);
758 }
759 vm_page_unlock_queues();
760
761 if (clearobjflags && (tstart == 0) && (tend == object->size)) {
762 struct vnode *vp;
763
764 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
765 if (object->type == OBJT_VNODE &&
766 (vp = (struct vnode *)object->handle) != NULL) {
767 VI_LOCK(vp);
768 if (vp->v_iflag & VI_OBJDIRTY)
769 vp->v_iflag &= ~VI_OBJDIRTY;
770 VI_UNLOCK(vp);
771 }
772 }
773
774 rescan:
775 curgeneration = object->generation;
776
777 for (p = TAILQ_FIRST(&object->memq); p; p = np) {
778 int n;
779
780 np = TAILQ_NEXT(p, listq);
781
782 again:
783 pi = p->pindex;
784 if (((p->flags & PG_CLEANCHK) == 0) ||
785 (pi < tstart) || (pi >= tend) ||
786 (p->valid == 0) ||
787 ((p->queue - p->pc) == PQ_CACHE)) {
788 vm_page_flag_clear(p, PG_CLEANCHK);
789 continue;
790 }
791
792 vm_page_test_dirty(p);
793 if ((p->dirty & p->valid) == 0) {
794 vm_page_flag_clear(p, PG_CLEANCHK);
795 continue;
796 }
797
798 /*
799 * If we have been asked to skip nosync pages and this is a
800 * nosync page, skip it. Note that the object flags were
801 * not cleared in this case so we do not have to set them.
802 */
803 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
804 vm_page_flag_clear(p, PG_CLEANCHK);
805 continue;
806 }
807
808 n = vm_object_page_collect_flush(object, p,
809 curgeneration, pagerflags);
810 if (n == 0)
811 goto rescan;
812
813 if (object->generation != curgeneration)
814 goto rescan;
815
816 /*
817 * Try to optimize the next page. If we can't we pick up
818 * our (random) scan where we left off.
819 */
820 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
821 if ((p = vm_page_lookup(object, pi + n)) != NULL)
822 goto again;
823 }
824 }
825
826 #if 0
827 VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
828 #endif
829
830 vm_object_clear_flag(object, OBJ_CLEANING);
831 return;
832 }
833
834 static int
835 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
836 {
837 int runlen;
838 int s;
839 int maxf;
840 int chkb;
841 int maxb;
842 int i;
843 vm_pindex_t pi;
844 vm_page_t maf[vm_pageout_page_count];
845 vm_page_t mab[vm_pageout_page_count];
846 vm_page_t ma[vm_pageout_page_count];
847
848 s = splvm();
849 pi = p->pindex;
850 while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
851 if (object->generation != curgeneration) {
852 splx(s);
853 return(0);
854 }
855 }
856 vm_page_lock_queues();
857 maxf = 0;
858 for(i = 1; i < vm_pageout_page_count; i++) {
859 vm_page_t tp;
860
861 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
862 if ((tp->flags & PG_BUSY) ||
863 (tp->flags & PG_CLEANCHK) == 0 ||
864 (tp->busy != 0))
865 break;
866 if((tp->queue - tp->pc) == PQ_CACHE) {
867 vm_page_flag_clear(tp, PG_CLEANCHK);
868 break;
869 }
870 vm_page_test_dirty(tp);
871 if ((tp->dirty & tp->valid) == 0) {
872 vm_page_flag_clear(tp, PG_CLEANCHK);
873 break;
874 }
875 maf[ i - 1 ] = tp;
876 maxf++;
877 continue;
878 }
879 break;
880 }
881
882 maxb = 0;
883 chkb = vm_pageout_page_count - maxf;
884 if (chkb) {
885 for(i = 1; i < chkb;i++) {
886 vm_page_t tp;
887
888 if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
889 if ((tp->flags & PG_BUSY) ||
890 (tp->flags & PG_CLEANCHK) == 0 ||
891 (tp->busy != 0))
892 break;
893 if ((tp->queue - tp->pc) == PQ_CACHE) {
894 vm_page_flag_clear(tp, PG_CLEANCHK);
895 break;
896 }
897 vm_page_test_dirty(tp);
898 if ((tp->dirty & tp->valid) == 0) {
899 vm_page_flag_clear(tp, PG_CLEANCHK);
900 break;
901 }
902 mab[ i - 1 ] = tp;
903 maxb++;
904 continue;
905 }
906 break;
907 }
908 }
909
910 for(i = 0; i < maxb; i++) {
911 int index = (maxb - i) - 1;
912 ma[index] = mab[i];
913 vm_page_flag_clear(ma[index], PG_CLEANCHK);
914 }
915 vm_page_flag_clear(p, PG_CLEANCHK);
916 ma[maxb] = p;
917 for(i = 0; i < maxf; i++) {
918 int index = (maxb + i) + 1;
919 ma[index] = maf[i];
920 vm_page_flag_clear(ma[index], PG_CLEANCHK);
921 }
922 runlen = maxb + maxf + 1;
923
924 splx(s);
925 vm_pageout_flush(ma, runlen, pagerflags);
926 for (i = 0; i < runlen; i++) {
927 if (ma[i]->valid & ma[i]->dirty) {
928 pmap_page_protect(ma[i], VM_PROT_READ);
929 vm_page_flag_set(ma[i], PG_CLEANCHK);
930
931 /*
932 * maxf will end up being the actual number of pages
933 * we wrote out contiguously, non-inclusive of the
934 * first page. We do not count look-behind pages.
935 */
936 if (i >= maxb + 1 && (maxf > i - maxb - 1))
937 maxf = i - maxb - 1;
938 }
939 }
940 vm_page_unlock_queues();
941 return(maxf + 1);
942 }
943
944 #ifdef ENABLE_VFS_IOOPT
945 /*
946 * Same as vm_object_pmap_copy, except range checking really
947 * works, and is meant for small sections of an object.
948 *
949 * This code protects resident pages by making them read-only
950 * and is typically called on a fork or split when a page
951 * is converted to copy-on-write.
952 *
953 * NOTE: If the page is already at VM_PROT_NONE, calling
954 * pmap_page_protect will have no effect.
955 */
956 void
957 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
958 {
959 vm_pindex_t idx;
960 vm_page_t p;
961
962 GIANT_REQUIRED;
963
964 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
965 return;
966 vm_page_lock_queues();
967 for (idx = start; idx < end; idx++) {
968 p = vm_page_lookup(object, idx);
969 if (p == NULL)
970 continue;
971 pmap_page_protect(p, VM_PROT_READ);
972 }
973 vm_page_unlock_queues();
974 }
975 #endif
976
977 /*
978 * vm_object_madvise:
979 *
980 * Implements the madvise function at the object/page level.
981 *
982 * MADV_WILLNEED (any object)
983 *
984 * Activate the specified pages if they are resident.
985 *
986 * MADV_DONTNEED (any object)
987 *
988 * Deactivate the specified pages if they are resident.
989 *
990 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects,
991 * OBJ_ONEMAPPING only)
992 *
993 * Deactivate and clean the specified pages if they are
994 * resident. This permits the process to reuse the pages
995 * without faulting or the kernel to reclaim the pages
996 * without I/O.
997 */
998 void
999 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1000 {
1001 vm_pindex_t end, tpindex;
1002 vm_object_t tobject;
1003 vm_page_t m;
1004
1005 if (object == NULL)
1006 return;
1007
1008 vm_object_lock(object);
1009
1010 end = pindex + count;
1011
1012 /*
1013 * Locate and adjust resident pages
1014 */
1015 for (; pindex < end; pindex += 1) {
1016 relookup:
1017 tobject = object;
1018 tpindex = pindex;
1019 shadowlookup:
1020 /*
1021 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1022 * and those pages must be OBJ_ONEMAPPING.
1023 */
1024 if (advise == MADV_FREE) {
1025 if ((tobject->type != OBJT_DEFAULT &&
1026 tobject->type != OBJT_SWAP) ||
1027 (tobject->flags & OBJ_ONEMAPPING) == 0) {
1028 continue;
1029 }
1030 }
1031
1032 m = vm_page_lookup(tobject, tpindex);
1033
1034 if (m == NULL) {
1035 /*
1036 * There may be swap even if there is no backing page
1037 */
1038 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1039 swap_pager_freespace(tobject, tpindex, 1);
1040
1041 /*
1042 * next object
1043 */
1044 tobject = tobject->backing_object;
1045 if (tobject == NULL)
1046 continue;
1047 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1048 goto shadowlookup;
1049 }
1050
1051 /*
1052 * If the page is busy or not in a normal active state,
1053 * we skip it. If the page is not managed there are no
1054 * page queues to mess with. Things can break if we mess
1055 * with pages in any of the below states.
1056 */
1057 vm_page_lock_queues();
1058 if (m->hold_count ||
1059 m->wire_count ||
1060 (m->flags & PG_UNMANAGED) ||
1061 m->valid != VM_PAGE_BITS_ALL) {
1062 vm_page_unlock_queues();
1063 continue;
1064 }
1065 if (vm_page_sleep_if_busy(m, TRUE, "madvpo"))
1066 goto relookup;
1067 if (advise == MADV_WILLNEED) {
1068 vm_page_activate(m);
1069 } else if (advise == MADV_DONTNEED) {
1070 vm_page_dontneed(m);
1071 } else if (advise == MADV_FREE) {
1072 /*
1073 * Mark the page clean. This will allow the page
1074 * to be freed up by the system. However, such pages
1075 * are often reused quickly by malloc()/free()
1076 * so we do not do anything that would cause
1077 * a page fault if we can help it.
1078 *
1079 * Specifically, we do not try to actually free
1080 * the page now nor do we try to put it in the
1081 * cache (which would cause a page fault on reuse).
1082 *
1083 * But we do make the page is freeable as we
1084 * can without actually taking the step of unmapping
1085 * it.
1086 */
1087 pmap_clear_modify(m);
1088 m->dirty = 0;
1089 m->act_count = 0;
1090 vm_page_dontneed(m);
1091 }
1092 vm_page_unlock_queues();
1093 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1094 swap_pager_freespace(tobject, tpindex, 1);
1095 }
1096 vm_object_unlock(object);
1097 }
1098
1099 /*
1100 * vm_object_shadow:
1101 *
1102 * Create a new object which is backed by the
1103 * specified existing object range. The source
1104 * object reference is deallocated.
1105 *
1106 * The new object and offset into that object
1107 * are returned in the source parameters.
1108 */
1109 void
1110 vm_object_shadow(
1111 vm_object_t *object, /* IN/OUT */
1112 vm_ooffset_t *offset, /* IN/OUT */
1113 vm_size_t length)
1114 {
1115 vm_object_t source;
1116 vm_object_t result;
1117
1118 source = *object;
1119
1120 vm_object_lock(source);
1121 /*
1122 * Don't create the new object if the old object isn't shared.
1123 */
1124 if (source != NULL &&
1125 source->ref_count == 1 &&
1126 source->handle == NULL &&
1127 (source->type == OBJT_DEFAULT ||
1128 source->type == OBJT_SWAP)) {
1129 vm_object_unlock(source);
1130 return;
1131 }
1132
1133 /*
1134 * Allocate a new object with the given length
1135 */
1136 result = vm_object_allocate(OBJT_DEFAULT, length);
1137 KASSERT(result != NULL, ("vm_object_shadow: no object for shadowing"));
1138
1139 /*
1140 * The new object shadows the source object, adding a reference to it.
1141 * Our caller changes his reference to point to the new object,
1142 * removing a reference to the source object. Net result: no change
1143 * of reference count.
1144 *
1145 * Try to optimize the result object's page color when shadowing
1146 * in order to maintain page coloring consistency in the combined
1147 * shadowed object.
1148 */
1149 result->backing_object = source;
1150 if (source) {
1151 TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list);
1152 source->shadow_count++;
1153 source->generation++;
1154 if (length < source->size)
1155 length = source->size;
1156 if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1157 source->generation > 1)
1158 length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1159 result->pg_color = (source->pg_color +
1160 length * source->generation) & PQ_L2_MASK;
1161 next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1162 PQ_L2_MASK;
1163 }
1164
1165 /*
1166 * Store the offset into the source object, and fix up the offset into
1167 * the new object.
1168 */
1169 result->backing_object_offset = *offset;
1170
1171 /*
1172 * Return the new things
1173 */
1174 *offset = 0;
1175 *object = result;
1176
1177 vm_object_unlock(source);
1178 }
1179
1180 /*
1181 * vm_object_split:
1182 *
1183 * Split the pages in a map entry into a new object. This affords
1184 * easier removal of unused pages, and keeps object inheritance from
1185 * being a negative impact on memory usage.
1186 */
1187 void
1188 vm_object_split(vm_map_entry_t entry)
1189 {
1190 vm_page_t m;
1191 vm_object_t orig_object, new_object, source;
1192 vm_offset_t s, e;
1193 vm_pindex_t offidxstart, offidxend;
1194 vm_size_t idx, size;
1195 vm_ooffset_t offset;
1196
1197 GIANT_REQUIRED;
1198
1199 orig_object = entry->object.vm_object;
1200 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1201 return;
1202 if (orig_object->ref_count <= 1)
1203 return;
1204
1205 offset = entry->offset;
1206 s = entry->start;
1207 e = entry->end;
1208
1209 offidxstart = OFF_TO_IDX(offset);
1210 offidxend = offidxstart + OFF_TO_IDX(e - s);
1211 size = offidxend - offidxstart;
1212
1213 new_object = vm_pager_allocate(orig_object->type,
1214 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1215 if (new_object == NULL)
1216 return;
1217
1218 source = orig_object->backing_object;
1219 if (source != NULL) {
1220 vm_object_reference(source); /* Referenced by new_object */
1221 TAILQ_INSERT_TAIL(&source->shadow_head,
1222 new_object, shadow_list);
1223 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1224 new_object->backing_object_offset =
1225 orig_object->backing_object_offset + offset;
1226 new_object->backing_object = source;
1227 source->shadow_count++;
1228 source->generation++;
1229 }
1230 for (idx = 0; idx < size; idx++) {
1231 retry:
1232 m = vm_page_lookup(orig_object, offidxstart + idx);
1233 if (m == NULL)
1234 continue;
1235
1236 /*
1237 * We must wait for pending I/O to complete before we can
1238 * rename the page.
1239 *
1240 * We do not have to VM_PROT_NONE the page as mappings should
1241 * not be changed by this operation.
1242 */
1243 vm_page_lock_queues();
1244 if (vm_page_sleep_if_busy(m, TRUE, "spltwt"))
1245 goto retry;
1246
1247 vm_page_busy(m);
1248 vm_page_unlock_queues();
1249 vm_page_rename(m, new_object, idx);
1250 /* page automatically made dirty by rename and cache handled */
1251 vm_page_busy(m);
1252 }
1253 if (orig_object->type == OBJT_SWAP) {
1254 vm_object_pip_add(orig_object, 1);
1255 /*
1256 * copy orig_object pages into new_object
1257 * and destroy unneeded pages in
1258 * shadow object.
1259 */
1260 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1261 vm_object_pip_wakeup(orig_object);
1262 }
1263 TAILQ_FOREACH(m, &new_object->memq, listq)
1264 vm_page_wakeup(m);
1265 entry->object.vm_object = new_object;
1266 entry->offset = 0LL;
1267 vm_object_deallocate(orig_object);
1268 }
1269
1270 #define OBSC_TEST_ALL_SHADOWED 0x0001
1271 #define OBSC_COLLAPSE_NOWAIT 0x0002
1272 #define OBSC_COLLAPSE_WAIT 0x0004
1273
1274 static __inline int
1275 vm_object_backing_scan(vm_object_t object, int op)
1276 {
1277 int s;
1278 int r = 1;
1279 vm_page_t p;
1280 vm_object_t backing_object;
1281 vm_pindex_t backing_offset_index;
1282
1283 s = splvm();
1284 GIANT_REQUIRED;
1285
1286 backing_object = object->backing_object;
1287 backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1288
1289 /*
1290 * Initial conditions
1291 */
1292 if (op & OBSC_TEST_ALL_SHADOWED) {
1293 /*
1294 * We do not want to have to test for the existence of
1295 * swap pages in the backing object. XXX but with the
1296 * new swapper this would be pretty easy to do.
1297 *
1298 * XXX what about anonymous MAP_SHARED memory that hasn't
1299 * been ZFOD faulted yet? If we do not test for this, the
1300 * shadow test may succeed! XXX
1301 */
1302 if (backing_object->type != OBJT_DEFAULT) {
1303 splx(s);
1304 return (0);
1305 }
1306 }
1307 if (op & OBSC_COLLAPSE_WAIT) {
1308 vm_object_set_flag(backing_object, OBJ_DEAD);
1309 }
1310
1311 /*
1312 * Our scan
1313 */
1314 p = TAILQ_FIRST(&backing_object->memq);
1315 while (p) {
1316 vm_page_t next = TAILQ_NEXT(p, listq);
1317 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1318
1319 if (op & OBSC_TEST_ALL_SHADOWED) {
1320 vm_page_t pp;
1321
1322 /*
1323 * Ignore pages outside the parent object's range
1324 * and outside the parent object's mapping of the
1325 * backing object.
1326 *
1327 * note that we do not busy the backing object's
1328 * page.
1329 */
1330 if (
1331 p->pindex < backing_offset_index ||
1332 new_pindex >= object->size
1333 ) {
1334 p = next;
1335 continue;
1336 }
1337
1338 /*
1339 * See if the parent has the page or if the parent's
1340 * object pager has the page. If the parent has the
1341 * page but the page is not valid, the parent's
1342 * object pager must have the page.
1343 *
1344 * If this fails, the parent does not completely shadow
1345 * the object and we might as well give up now.
1346 */
1347
1348 pp = vm_page_lookup(object, new_pindex);
1349 if (
1350 (pp == NULL || pp->valid == 0) &&
1351 !vm_pager_has_page(object, new_pindex, NULL, NULL)
1352 ) {
1353 r = 0;
1354 break;
1355 }
1356 }
1357
1358 /*
1359 * Check for busy page
1360 */
1361 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1362 vm_page_t pp;
1363
1364 vm_page_lock_queues();
1365 if (op & OBSC_COLLAPSE_NOWAIT) {
1366 if ((p->flags & PG_BUSY) ||
1367 !p->valid ||
1368 p->hold_count ||
1369 p->wire_count ||
1370 p->busy) {
1371 vm_page_unlock_queues();
1372 p = next;
1373 continue;
1374 }
1375 } else if (op & OBSC_COLLAPSE_WAIT) {
1376 if (vm_page_sleep_if_busy(p, TRUE, "vmocol")) {
1377 /*
1378 * If we slept, anything could have
1379 * happened. Since the object is
1380 * marked dead, the backing offset
1381 * should not have changed so we
1382 * just restart our scan.
1383 */
1384 p = TAILQ_FIRST(&backing_object->memq);
1385 continue;
1386 }
1387 }
1388
1389 /*
1390 * Busy the page
1391 */
1392 vm_page_busy(p);
1393 vm_page_unlock_queues();
1394
1395 KASSERT(
1396 p->object == backing_object,
1397 ("vm_object_qcollapse(): object mismatch")
1398 );
1399
1400 /*
1401 * Destroy any associated swap
1402 */
1403 if (backing_object->type == OBJT_SWAP) {
1404 swap_pager_freespace(
1405 backing_object,
1406 p->pindex,
1407 1
1408 );
1409 }
1410
1411 if (
1412 p->pindex < backing_offset_index ||
1413 new_pindex >= object->size
1414 ) {
1415 /*
1416 * Page is out of the parent object's range, we
1417 * can simply destroy it.
1418 */
1419 vm_page_lock_queues();
1420 pmap_remove_all(p);
1421 vm_page_free(p);
1422 vm_page_unlock_queues();
1423 p = next;
1424 continue;
1425 }
1426
1427 pp = vm_page_lookup(object, new_pindex);
1428 if (
1429 pp != NULL ||
1430 vm_pager_has_page(object, new_pindex, NULL, NULL)
1431 ) {
1432 /*
1433 * page already exists in parent OR swap exists
1434 * for this location in the parent. Destroy
1435 * the original page from the backing object.
1436 *
1437 * Leave the parent's page alone
1438 */
1439 vm_page_lock_queues();
1440 pmap_remove_all(p);
1441 vm_page_free(p);
1442 vm_page_unlock_queues();
1443 p = next;
1444 continue;
1445 }
1446
1447 /*
1448 * Page does not exist in parent, rename the
1449 * page from the backing object to the main object.
1450 *
1451 * If the page was mapped to a process, it can remain
1452 * mapped through the rename.
1453 */
1454 vm_page_rename(p, object, new_pindex);
1455 /* page automatically made dirty by rename */
1456 }
1457 p = next;
1458 }
1459 splx(s);
1460 return (r);
1461 }
1462
1463
1464 /*
1465 * this version of collapse allows the operation to occur earlier and
1466 * when paging_in_progress is true for an object... This is not a complete
1467 * operation, but should plug 99.9% of the rest of the leaks.
1468 */
1469 static void
1470 vm_object_qcollapse(vm_object_t object)
1471 {
1472 vm_object_t backing_object = object->backing_object;
1473
1474 GIANT_REQUIRED;
1475
1476 if (backing_object->ref_count != 1)
1477 return;
1478
1479 backing_object->ref_count += 2;
1480
1481 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1482
1483 backing_object->ref_count -= 2;
1484 }
1485
1486 /*
1487 * vm_object_collapse:
1488 *
1489 * Collapse an object with the object backing it.
1490 * Pages in the backing object are moved into the
1491 * parent, and the backing object is deallocated.
1492 */
1493 void
1494 vm_object_collapse(vm_object_t object)
1495 {
1496 GIANT_REQUIRED;
1497
1498 while (TRUE) {
1499 vm_object_t backing_object;
1500
1501 /*
1502 * Verify that the conditions are right for collapse:
1503 *
1504 * The object exists and the backing object exists.
1505 */
1506 if (object == NULL)
1507 break;
1508
1509 if ((backing_object = object->backing_object) == NULL)
1510 break;
1511
1512 /*
1513 * we check the backing object first, because it is most likely
1514 * not collapsable.
1515 */
1516 if (backing_object->handle != NULL ||
1517 (backing_object->type != OBJT_DEFAULT &&
1518 backing_object->type != OBJT_SWAP) ||
1519 (backing_object->flags & OBJ_DEAD) ||
1520 object->handle != NULL ||
1521 (object->type != OBJT_DEFAULT &&
1522 object->type != OBJT_SWAP) ||
1523 (object->flags & OBJ_DEAD)) {
1524 break;
1525 }
1526
1527 if (
1528 object->paging_in_progress != 0 ||
1529 backing_object->paging_in_progress != 0
1530 ) {
1531 vm_object_qcollapse(object);
1532 break;
1533 }
1534
1535 /*
1536 * We know that we can either collapse the backing object (if
1537 * the parent is the only reference to it) or (perhaps) have
1538 * the parent bypass the object if the parent happens to shadow
1539 * all the resident pages in the entire backing object.
1540 *
1541 * This is ignoring pager-backed pages such as swap pages.
1542 * vm_object_backing_scan fails the shadowing test in this
1543 * case.
1544 */
1545 if (backing_object->ref_count == 1) {
1546 /*
1547 * If there is exactly one reference to the backing
1548 * object, we can collapse it into the parent.
1549 */
1550 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1551
1552 /*
1553 * Move the pager from backing_object to object.
1554 */
1555 if (backing_object->type == OBJT_SWAP) {
1556 vm_object_pip_add(backing_object, 1);
1557
1558 /*
1559 * scrap the paging_offset junk and do a
1560 * discrete copy. This also removes major
1561 * assumptions about how the swap-pager
1562 * works from where it doesn't belong. The
1563 * new swapper is able to optimize the
1564 * destroy-source case.
1565 */
1566 vm_object_pip_add(object, 1);
1567 swap_pager_copy(
1568 backing_object,
1569 object,
1570 OFF_TO_IDX(object->backing_object_offset), TRUE);
1571 vm_object_pip_wakeup(object);
1572
1573 vm_object_pip_wakeup(backing_object);
1574 }
1575 /*
1576 * Object now shadows whatever backing_object did.
1577 * Note that the reference to
1578 * backing_object->backing_object moves from within
1579 * backing_object to within object.
1580 */
1581 TAILQ_REMOVE(
1582 &object->backing_object->shadow_head,
1583 object,
1584 shadow_list
1585 );
1586 object->backing_object->shadow_count--;
1587 object->backing_object->generation++;
1588 if (backing_object->backing_object) {
1589 TAILQ_REMOVE(
1590 &backing_object->backing_object->shadow_head,
1591 backing_object,
1592 shadow_list
1593 );
1594 backing_object->backing_object->shadow_count--;
1595 backing_object->backing_object->generation++;
1596 }
1597 object->backing_object = backing_object->backing_object;
1598 if (object->backing_object) {
1599 TAILQ_INSERT_TAIL(
1600 &object->backing_object->shadow_head,
1601 object,
1602 shadow_list
1603 );
1604 object->backing_object->shadow_count++;
1605 object->backing_object->generation++;
1606 }
1607
1608 object->backing_object_offset +=
1609 backing_object->backing_object_offset;
1610
1611 /*
1612 * Discard backing_object.
1613 *
1614 * Since the backing object has no pages, no pager left,
1615 * and no object references within it, all that is
1616 * necessary is to dispose of it.
1617 */
1618 KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1619 KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1620
1621 mtx_lock(&vm_object_list_mtx);
1622 TAILQ_REMOVE(
1623 &vm_object_list,
1624 backing_object,
1625 object_list
1626 );
1627 mtx_unlock(&vm_object_list_mtx);
1628
1629 uma_zfree(obj_zone, backing_object);
1630
1631 object_collapses++;
1632 } else {
1633 vm_object_t new_backing_object;
1634
1635 /*
1636 * If we do not entirely shadow the backing object,
1637 * there is nothing we can do so we give up.
1638 */
1639 if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1640 break;
1641 }
1642
1643 /*
1644 * Make the parent shadow the next object in the
1645 * chain. Deallocating backing_object will not remove
1646 * it, since its reference count is at least 2.
1647 */
1648 TAILQ_REMOVE(
1649 &backing_object->shadow_head,
1650 object,
1651 shadow_list
1652 );
1653 backing_object->shadow_count--;
1654 backing_object->generation++;
1655
1656 new_backing_object = backing_object->backing_object;
1657 if ((object->backing_object = new_backing_object) != NULL) {
1658 vm_object_reference(new_backing_object);
1659 TAILQ_INSERT_TAIL(
1660 &new_backing_object->shadow_head,
1661 object,
1662 shadow_list
1663 );
1664 new_backing_object->shadow_count++;
1665 new_backing_object->generation++;
1666 object->backing_object_offset +=
1667 backing_object->backing_object_offset;
1668 }
1669
1670 /*
1671 * Drop the reference count on backing_object. Since
1672 * its ref_count was at least 2, it will not vanish;
1673 * so we don't need to call vm_object_deallocate, but
1674 * we do anyway.
1675 */
1676 vm_object_deallocate(backing_object);
1677 object_bypasses++;
1678 }
1679
1680 /*
1681 * Try again with this object's new backing object.
1682 */
1683 }
1684 }
1685
1686 /*
1687 * vm_object_page_remove: [internal]
1688 *
1689 * Removes all physical pages in the specified
1690 * object range from the object's list of pages.
1691 *
1692 * The object must be locked.
1693 */
1694 void
1695 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, boolean_t clean_only)
1696 {
1697 vm_page_t p, next;
1698 vm_pindex_t size;
1699 int all;
1700
1701 if (object == NULL)
1702 return;
1703
1704 mtx_lock(&Giant);
1705 if (object->resident_page_count == 0) {
1706 mtx_unlock(&Giant);
1707 return;
1708 }
1709 all = ((end == 0) && (start == 0));
1710
1711 /*
1712 * Since physically-backed objects do not use managed pages, we can't
1713 * remove pages from the object (we must instead remove the page
1714 * references, and then destroy the object).
1715 */
1716 KASSERT(object->type != OBJT_PHYS, ("attempt to remove pages from a physical object"));
1717
1718 vm_object_pip_add(object, 1);
1719 again:
1720 vm_page_lock_queues();
1721 size = end - start;
1722 if (all || size > object->resident_page_count / 4) {
1723 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1724 next = TAILQ_NEXT(p, listq);
1725 if (all || ((start <= p->pindex) && (p->pindex < end))) {
1726 if (p->wire_count != 0) {
1727 pmap_remove_all(p);
1728 if (!clean_only)
1729 p->valid = 0;
1730 continue;
1731 }
1732
1733 /*
1734 * The busy flags are only cleared at
1735 * interrupt -- minimize the spl transitions
1736 */
1737 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1738 goto again;
1739
1740 if (clean_only && p->valid) {
1741 vm_page_test_dirty(p);
1742 if (p->valid & p->dirty)
1743 continue;
1744 }
1745 vm_page_busy(p);
1746 pmap_remove_all(p);
1747 vm_page_free(p);
1748 }
1749 }
1750 } else {
1751 while (size > 0) {
1752 if ((p = vm_page_lookup(object, start)) != NULL) {
1753 if (p->wire_count != 0) {
1754 pmap_remove_all(p);
1755 if (!clean_only)
1756 p->valid = 0;
1757 start += 1;
1758 size -= 1;
1759 continue;
1760 }
1761
1762 /*
1763 * The busy flags are only cleared at
1764 * interrupt -- minimize the spl transitions
1765 */
1766 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1767 goto again;
1768
1769 if (clean_only && p->valid) {
1770 vm_page_test_dirty(p);
1771 if (p->valid & p->dirty) {
1772 start += 1;
1773 size -= 1;
1774 continue;
1775 }
1776 }
1777 vm_page_busy(p);
1778 pmap_remove_all(p);
1779 vm_page_free(p);
1780 }
1781 start += 1;
1782 size -= 1;
1783 }
1784 }
1785 vm_page_unlock_queues();
1786 vm_object_pip_wakeup(object);
1787 mtx_unlock(&Giant);
1788 }
1789
1790 /*
1791 * Routine: vm_object_coalesce
1792 * Function: Coalesces two objects backing up adjoining
1793 * regions of memory into a single object.
1794 *
1795 * returns TRUE if objects were combined.
1796 *
1797 * NOTE: Only works at the moment if the second object is NULL -
1798 * if it's not, which object do we lock first?
1799 *
1800 * Parameters:
1801 * prev_object First object to coalesce
1802 * prev_offset Offset into prev_object
1803 * next_object Second object into coalesce
1804 * next_offset Offset into next_object
1805 *
1806 * prev_size Size of reference to prev_object
1807 * next_size Size of reference to next_object
1808 *
1809 * Conditions:
1810 * The object must *not* be locked.
1811 */
1812 boolean_t
1813 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1814 vm_size_t prev_size, vm_size_t next_size)
1815 {
1816 vm_pindex_t next_pindex;
1817
1818 if (prev_object == NULL)
1819 return (TRUE);
1820 vm_object_lock(prev_object);
1821 if (prev_object->type != OBJT_DEFAULT &&
1822 prev_object->type != OBJT_SWAP) {
1823 vm_object_unlock(prev_object);
1824 return (FALSE);
1825 }
1826
1827 /*
1828 * Try to collapse the object first
1829 */
1830 vm_object_collapse(prev_object);
1831
1832 /*
1833 * Can't coalesce if: . more than one reference . paged out . shadows
1834 * another object . has a copy elsewhere (any of which mean that the
1835 * pages not mapped to prev_entry may be in use anyway)
1836 */
1837 if (prev_object->backing_object != NULL) {
1838 vm_object_unlock(prev_object);
1839 return (FALSE);
1840 }
1841
1842 prev_size >>= PAGE_SHIFT;
1843 next_size >>= PAGE_SHIFT;
1844 next_pindex = prev_pindex + prev_size;
1845
1846 if ((prev_object->ref_count > 1) &&
1847 (prev_object->size != next_pindex)) {
1848 vm_object_unlock(prev_object);
1849 return (FALSE);
1850 }
1851
1852 /*
1853 * Remove any pages that may still be in the object from a previous
1854 * deallocation.
1855 */
1856 if (next_pindex < prev_object->size) {
1857 vm_object_page_remove(prev_object,
1858 next_pindex,
1859 next_pindex + next_size, FALSE);
1860 if (prev_object->type == OBJT_SWAP)
1861 swap_pager_freespace(prev_object,
1862 next_pindex, next_size);
1863 }
1864
1865 /*
1866 * Extend the object if necessary.
1867 */
1868 if (next_pindex + next_size > prev_object->size)
1869 prev_object->size = next_pindex + next_size;
1870
1871 vm_object_unlock(prev_object);
1872 return (TRUE);
1873 }
1874
1875 void
1876 vm_object_set_writeable_dirty(vm_object_t object)
1877 {
1878 struct vnode *vp;
1879
1880 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1881 if (object->type == OBJT_VNODE &&
1882 (vp = (struct vnode *)object->handle) != NULL) {
1883 VI_LOCK(vp);
1884 if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1885 vp->v_iflag |= VI_OBJDIRTY;
1886 VI_UNLOCK(vp);
1887 }
1888 }
1889
1890 #ifdef ENABLE_VFS_IOOPT
1891 /*
1892 * Experimental support for zero-copy I/O
1893 *
1894 * Performs the copy_on_write operations necessary to allow the virtual copies
1895 * into user space to work. This has to be called for write(2) system calls
1896 * from other processes, file unlinking, and file size shrinkage.
1897 */
1898 void
1899 vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
1900 {
1901 int rv;
1902 vm_object_t robject;
1903 vm_pindex_t idx;
1904
1905 GIANT_REQUIRED;
1906 if ((object == NULL) ||
1907 ((object->flags & OBJ_OPT) == 0))
1908 return;
1909
1910 if (object->shadow_count > object->ref_count)
1911 panic("vm_freeze_copyopts: sc > rc");
1912
1913 while ((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) {
1914 vm_pindex_t bo_pindex;
1915 vm_page_t m_in, m_out;
1916
1917 bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
1918
1919 vm_object_reference(robject);
1920
1921 vm_object_pip_wait(robject, "objfrz");
1922
1923 if (robject->ref_count == 1) {
1924 vm_object_deallocate(robject);
1925 continue;
1926 }
1927
1928 vm_object_pip_add(robject, 1);
1929
1930 for (idx = 0; idx < robject->size; idx++) {
1931
1932 m_out = vm_page_grab(robject, idx,
1933 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1934
1935 if (m_out->valid == 0) {
1936 m_in = vm_page_grab(object, bo_pindex + idx,
1937 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1938 vm_page_lock_queues();
1939 if (m_in->valid == 0) {
1940 vm_page_unlock_queues();
1941 rv = vm_pager_get_pages(object, &m_in, 1, 0);
1942 if (rv != VM_PAGER_OK) {
1943 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
1944 continue;
1945 }
1946 vm_page_lock_queues();
1947 vm_page_deactivate(m_in);
1948 }
1949
1950 pmap_remove_all(m_in);
1951 vm_page_unlock_queues();
1952 pmap_copy_page(m_in, m_out);
1953 m_out->valid = m_in->valid;
1954 vm_page_dirty(m_out);
1955 vm_page_lock_queues();
1956 vm_page_activate(m_out);
1957 vm_page_unlock_queues();
1958 vm_page_wakeup(m_in);
1959 }
1960 vm_page_wakeup(m_out);
1961 }
1962
1963 object->shadow_count--;
1964 object->ref_count--;
1965 TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
1966 robject->backing_object = NULL;
1967 robject->backing_object_offset = 0;
1968
1969 vm_object_pip_wakeup(robject);
1970 vm_object_deallocate(robject);
1971 }
1972
1973 vm_object_clear_flag(object, OBJ_OPT);
1974 }
1975 #endif
1976
1977 #include "opt_ddb.h"
1978 #ifdef DDB
1979 #include <sys/kernel.h>
1980
1981 #include <sys/cons.h>
1982
1983 #include <ddb/ddb.h>
1984
1985 static int
1986 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1987 {
1988 vm_map_t tmpm;
1989 vm_map_entry_t tmpe;
1990 vm_object_t obj;
1991 int entcount;
1992
1993 if (map == 0)
1994 return 0;
1995
1996 if (entry == 0) {
1997 tmpe = map->header.next;
1998 entcount = map->nentries;
1999 while (entcount-- && (tmpe != &map->header)) {
2000 if (_vm_object_in_map(map, object, tmpe)) {
2001 return 1;
2002 }
2003 tmpe = tmpe->next;
2004 }
2005 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2006 tmpm = entry->object.sub_map;
2007 tmpe = tmpm->header.next;
2008 entcount = tmpm->nentries;
2009 while (entcount-- && tmpe != &tmpm->header) {
2010 if (_vm_object_in_map(tmpm, object, tmpe)) {
2011 return 1;
2012 }
2013 tmpe = tmpe->next;
2014 }
2015 } else if ((obj = entry->object.vm_object) != NULL) {
2016 for (; obj; obj = obj->backing_object)
2017 if (obj == object) {
2018 return 1;
2019 }
2020 }
2021 return 0;
2022 }
2023
2024 static int
2025 vm_object_in_map(vm_object_t object)
2026 {
2027 struct proc *p;
2028
2029 /* sx_slock(&allproc_lock); */
2030 LIST_FOREACH(p, &allproc, p_list) {
2031 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2032 continue;
2033 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2034 /* sx_sunlock(&allproc_lock); */
2035 return 1;
2036 }
2037 }
2038 /* sx_sunlock(&allproc_lock); */
2039 if (_vm_object_in_map(kernel_map, object, 0))
2040 return 1;
2041 if (_vm_object_in_map(kmem_map, object, 0))
2042 return 1;
2043 if (_vm_object_in_map(pager_map, object, 0))
2044 return 1;
2045 if (_vm_object_in_map(buffer_map, object, 0))
2046 return 1;
2047 return 0;
2048 }
2049
2050 DB_SHOW_COMMAND(vmochk, vm_object_check)
2051 {
2052 vm_object_t object;
2053
2054 /*
2055 * make sure that internal objs are in a map somewhere
2056 * and none have zero ref counts.
2057 */
2058 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2059 if (object->handle == NULL &&
2060 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2061 if (object->ref_count == 0) {
2062 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2063 (long)object->size);
2064 }
2065 if (!vm_object_in_map(object)) {
2066 db_printf(
2067 "vmochk: internal obj is not in a map: "
2068 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2069 object->ref_count, (u_long)object->size,
2070 (u_long)object->size,
2071 (void *)object->backing_object);
2072 }
2073 }
2074 }
2075 }
2076
2077 /*
2078 * vm_object_print: [ debug ]
2079 */
2080 DB_SHOW_COMMAND(object, vm_object_print_static)
2081 {
2082 /* XXX convert args. */
2083 vm_object_t object = (vm_object_t)addr;
2084 boolean_t full = have_addr;
2085
2086 vm_page_t p;
2087
2088 /* XXX count is an (unused) arg. Avoid shadowing it. */
2089 #define count was_count
2090
2091 int count;
2092
2093 if (object == NULL)
2094 return;
2095
2096 db_iprintf(
2097 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2098 object, (int)object->type, (uintmax_t)object->size,
2099 object->resident_page_count, object->ref_count, object->flags);
2100 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2101 object->shadow_count,
2102 object->backing_object ? object->backing_object->ref_count : 0,
2103 object->backing_object, (uintmax_t)object->backing_object_offset);
2104
2105 if (!full)
2106 return;
2107
2108 db_indent += 2;
2109 count = 0;
2110 TAILQ_FOREACH(p, &object->memq, listq) {
2111 if (count == 0)
2112 db_iprintf("memory:=");
2113 else if (count == 6) {
2114 db_printf("\n");
2115 db_iprintf(" ...");
2116 count = 0;
2117 } else
2118 db_printf(",");
2119 count++;
2120
2121 db_printf("(off=0x%jx,page=0x%jx)",
2122 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2123 }
2124 if (count != 0)
2125 db_printf("\n");
2126 db_indent -= 2;
2127 }
2128
2129 /* XXX. */
2130 #undef count
2131
2132 /* XXX need this non-static entry for calling from vm_map_print. */
2133 void
2134 vm_object_print(
2135 /* db_expr_t */ long addr,
2136 boolean_t have_addr,
2137 /* db_expr_t */ long count,
2138 char *modif)
2139 {
2140 vm_object_print_static(addr, have_addr, count, modif);
2141 }
2142
2143 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2144 {
2145 vm_object_t object;
2146 int nl = 0;
2147 int c;
2148
2149 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2150 vm_pindex_t idx, fidx;
2151 vm_pindex_t osize;
2152 vm_offset_t pa = -1, padiff;
2153 int rcount;
2154 vm_page_t m;
2155
2156 db_printf("new object: %p\n", (void *)object);
2157 if (nl > 18) {
2158 c = cngetc();
2159 if (c != ' ')
2160 return;
2161 nl = 0;
2162 }
2163 nl++;
2164 rcount = 0;
2165 fidx = 0;
2166 osize = object->size;
2167 if (osize > 128)
2168 osize = 128;
2169 for (idx = 0; idx < osize; idx++) {
2170 m = vm_page_lookup(object, idx);
2171 if (m == NULL) {
2172 if (rcount) {
2173 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2174 (long)fidx, rcount, (long)pa);
2175 if (nl > 18) {
2176 c = cngetc();
2177 if (c != ' ')
2178 return;
2179 nl = 0;
2180 }
2181 nl++;
2182 rcount = 0;
2183 }
2184 continue;
2185 }
2186
2187
2188 if (rcount &&
2189 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2190 ++rcount;
2191 continue;
2192 }
2193 if (rcount) {
2194 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2195 padiff >>= PAGE_SHIFT;
2196 padiff &= PQ_L2_MASK;
2197 if (padiff == 0) {
2198 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2199 ++rcount;
2200 continue;
2201 }
2202 db_printf(" index(%ld)run(%d)pa(0x%lx)",
2203 (long)fidx, rcount, (long)pa);
2204 db_printf("pd(%ld)\n", (long)padiff);
2205 if (nl > 18) {
2206 c = cngetc();
2207 if (c != ' ')
2208 return;
2209 nl = 0;
2210 }
2211 nl++;
2212 }
2213 fidx = idx;
2214 pa = VM_PAGE_TO_PHYS(m);
2215 rcount = 1;
2216 }
2217 if (rcount) {
2218 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2219 (long)fidx, rcount, (long)pa);
2220 if (nl > 18) {
2221 c = cngetc();
2222 if (c != ' ')
2223 return;
2224 nl = 0;
2225 }
2226 nl++;
2227 }
2228 }
2229 }
2230 #endif /* DDB */
Cache object: 90d9ec11192df3a10b6a61cdb2c2b73e
|