FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61 /*
62 * Virtual memory object module.
63 */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD: releng/5.3/sys/vm/vm_object.c 132987 2004-08-02 00:18:36Z green $");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/lock.h>
71 #include <sys/mman.h>
72 #include <sys/mount.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h> /* for curproc, pageproc */
77 #include <sys/socket.h>
78 #include <sys/vnode.h>
79 #include <sys/vmmeter.h>
80 #include <sys/sx.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/uma.h>
94
95 #define EASY_SCAN_FACTOR 8
96
97 #define MSYNC_FLUSH_HARDSEQ 0x01
98 #define MSYNC_FLUSH_SOFTSEQ 0x02
99
100 /*
101 * msync / VM object flushing optimizations
102 */
103 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
104 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
105 CTLFLAG_RW, &msync_flush_flags, 0, "");
106
107 static int old_msync;
108 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
109 "Use old (insecure) msync behavior");
110
111 static void vm_object_qcollapse(vm_object_t object);
112 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113
114 /*
115 * Virtual memory objects maintain the actual data
116 * associated with allocated virtual memory. A given
117 * page of memory exists within exactly one object.
118 *
119 * An object is only deallocated when all "references"
120 * are given up. Only one "reference" to a given
121 * region of an object should be writeable.
122 *
123 * Associated with each object is a list of all resident
124 * memory pages belonging to that object; this list is
125 * maintained by the "vm_page" module, and locked by the object's
126 * lock.
127 *
128 * Each object also records a "pager" routine which is
129 * used to retrieve (and store) pages to the proper backing
130 * storage. In addition, objects may be backed by other
131 * objects from which they were virtual-copied.
132 *
133 * The only items within the object structure which are
134 * modified after time of creation are:
135 * reference count locked by object's lock
136 * pager routine locked by object's lock
137 *
138 */
139
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx; /* lock for object list and count */
142
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145
146 static long object_collapses;
147 static long object_bypasses;
148 static int next_index;
149 static uma_zone_t obj_zone;
150 #define VM_OBJECTS_INIT 256
151
152 static int vm_object_zinit(void *mem, int size, int flags);
153
154 #ifdef INVARIANTS
155 static void vm_object_zdtor(void *mem, int size, void *arg);
156
157 static void
158 vm_object_zdtor(void *mem, int size, void *arg)
159 {
160 vm_object_t object;
161
162 object = (vm_object_t)mem;
163 KASSERT(TAILQ_EMPTY(&object->memq),
164 ("object %p has resident pages",
165 object));
166 KASSERT(object->paging_in_progress == 0,
167 ("object %p paging_in_progress = %d",
168 object, object->paging_in_progress));
169 KASSERT(object->resident_page_count == 0,
170 ("object %p resident_page_count = %d",
171 object, object->resident_page_count));
172 KASSERT(object->shadow_count == 0,
173 ("object %p shadow_count = %d",
174 object, object->shadow_count));
175 }
176 #endif
177
178 static int
179 vm_object_zinit(void *mem, int size, int flags)
180 {
181 vm_object_t object;
182
183 object = (vm_object_t)mem;
184 bzero(&object->mtx, sizeof(object->mtx));
185 VM_OBJECT_LOCK_INIT(object, "standard object");
186
187 /* These are true for any object that has been freed */
188 object->paging_in_progress = 0;
189 object->resident_page_count = 0;
190 object->shadow_count = 0;
191 return (0);
192 }
193
194 void
195 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
196 {
197 int incr;
198
199 TAILQ_INIT(&object->memq);
200 LIST_INIT(&object->shadow_head);
201
202 object->root = NULL;
203 object->type = type;
204 object->size = size;
205 object->generation = 1;
206 object->ref_count = 1;
207 object->flags = 0;
208 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
209 object->flags = OBJ_ONEMAPPING;
210 if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
211 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
212 else
213 incr = size;
214 do
215 object->pg_color = next_index;
216 while (!atomic_cmpset_int(&next_index, object->pg_color,
217 (object->pg_color + incr) & PQ_L2_MASK));
218 object->handle = NULL;
219 object->backing_object = NULL;
220 object->backing_object_offset = (vm_ooffset_t) 0;
221
222 mtx_lock(&vm_object_list_mtx);
223 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
224 mtx_unlock(&vm_object_list_mtx);
225 }
226
227 /*
228 * vm_object_init:
229 *
230 * Initialize the VM objects module.
231 */
232 void
233 vm_object_init(void)
234 {
235 TAILQ_INIT(&vm_object_list);
236 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
237
238 VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
239 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
240 kernel_object);
241
242 VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
243 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
244 kmem_object);
245
246 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
247 #ifdef INVARIANTS
248 vm_object_zdtor,
249 #else
250 NULL,
251 #endif
252 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
253 uma_prealloc(obj_zone, VM_OBJECTS_INIT);
254 }
255
256 void
257 vm_object_clear_flag(vm_object_t object, u_short bits)
258 {
259
260 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
261 object->flags &= ~bits;
262 }
263
264 void
265 vm_object_pip_add(vm_object_t object, short i)
266 {
267
268 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
269 object->paging_in_progress += i;
270 }
271
272 void
273 vm_object_pip_subtract(vm_object_t object, short i)
274 {
275
276 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
277 object->paging_in_progress -= i;
278 }
279
280 void
281 vm_object_pip_wakeup(vm_object_t object)
282 {
283
284 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
285 object->paging_in_progress--;
286 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
287 vm_object_clear_flag(object, OBJ_PIPWNT);
288 wakeup(object);
289 }
290 }
291
292 void
293 vm_object_pip_wakeupn(vm_object_t object, short i)
294 {
295
296 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
297 if (i)
298 object->paging_in_progress -= i;
299 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
300 vm_object_clear_flag(object, OBJ_PIPWNT);
301 wakeup(object);
302 }
303 }
304
305 void
306 vm_object_pip_wait(vm_object_t object, char *waitid)
307 {
308
309 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
310 while (object->paging_in_progress) {
311 object->flags |= OBJ_PIPWNT;
312 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
313 }
314 }
315
316 /*
317 * vm_object_allocate_wait
318 *
319 * Return a new object with the given size, and give the user the
320 * option of waiting for it to complete or failing if the needed
321 * memory isn't available.
322 */
323 vm_object_t
324 vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
325 {
326 vm_object_t result;
327
328 result = (vm_object_t) uma_zalloc(obj_zone, flags);
329
330 if (result != NULL)
331 _vm_object_allocate(type, size, result);
332
333 return (result);
334 }
335
336 /*
337 * vm_object_allocate:
338 *
339 * Returns a new object with the given size.
340 */
341 vm_object_t
342 vm_object_allocate(objtype_t type, vm_pindex_t size)
343 {
344 return(vm_object_allocate_wait(type, size, M_WAITOK));
345 }
346
347
348 /*
349 * vm_object_reference:
350 *
351 * Gets another reference to the given object. Note: OBJ_DEAD
352 * objects can be referenced during final cleaning.
353 */
354 void
355 vm_object_reference(vm_object_t object)
356 {
357 struct vnode *vp;
358 int flags;
359
360 if (object == NULL)
361 return;
362 VM_OBJECT_LOCK(object);
363 object->ref_count++;
364 if (object->type == OBJT_VNODE) {
365 vp = object->handle;
366 VI_LOCK(vp);
367 VM_OBJECT_UNLOCK(object);
368 for (flags = LK_INTERLOCK; vget(vp, flags, curthread);
369 flags = 0)
370 printf("vm_object_reference: delay in vget\n");
371 } else
372 VM_OBJECT_UNLOCK(object);
373 }
374
375 /*
376 * vm_object_reference_locked:
377 *
378 * Gets another reference to the given object.
379 *
380 * The object must be locked.
381 */
382 void
383 vm_object_reference_locked(vm_object_t object)
384 {
385 struct vnode *vp;
386
387 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
388 KASSERT((object->flags & OBJ_DEAD) == 0,
389 ("vm_object_reference_locked: dead object referenced"));
390 object->ref_count++;
391 if (object->type == OBJT_VNODE) {
392 vp = object->handle;
393 vref(vp);
394 }
395 }
396
397 /*
398 * Handle deallocating an object of type OBJT_VNODE.
399 */
400 void
401 vm_object_vndeallocate(vm_object_t object)
402 {
403 struct vnode *vp = (struct vnode *) object->handle;
404
405 GIANT_REQUIRED;
406 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
407 KASSERT(object->type == OBJT_VNODE,
408 ("vm_object_vndeallocate: not a vnode object"));
409 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
410 #ifdef INVARIANTS
411 if (object->ref_count == 0) {
412 vprint("vm_object_vndeallocate", vp);
413 panic("vm_object_vndeallocate: bad object reference count");
414 }
415 #endif
416
417 object->ref_count--;
418 if (object->ref_count == 0) {
419 mp_fixme("Unlocked vflag access.");
420 vp->v_vflag &= ~VV_TEXT;
421 }
422 VM_OBJECT_UNLOCK(object);
423 /*
424 * vrele may need a vop lock
425 */
426 vrele(vp);
427 }
428
429 /*
430 * vm_object_deallocate:
431 *
432 * Release a reference to the specified object,
433 * gained either through a vm_object_allocate
434 * or a vm_object_reference call. When all references
435 * are gone, storage associated with this object
436 * may be relinquished.
437 *
438 * No object may be locked.
439 */
440 void
441 vm_object_deallocate(vm_object_t object)
442 {
443 vm_object_t temp;
444
445 while (object != NULL) {
446 /*
447 * In general, the object should be locked when working with
448 * its type. In this case, in order to maintain proper lock
449 * ordering, an exception is possible because a vnode-backed
450 * object never changes its type.
451 */
452 if (object->type == OBJT_VNODE)
453 mtx_lock(&Giant);
454 VM_OBJECT_LOCK(object);
455 if (object->type == OBJT_VNODE) {
456 vm_object_vndeallocate(object);
457 mtx_unlock(&Giant);
458 return;
459 }
460
461 KASSERT(object->ref_count != 0,
462 ("vm_object_deallocate: object deallocated too many times: %d", object->type));
463
464 /*
465 * If the reference count goes to 0 we start calling
466 * vm_object_terminate() on the object chain.
467 * A ref count of 1 may be a special case depending on the
468 * shadow count being 0 or 1.
469 */
470 object->ref_count--;
471 if (object->ref_count > 1) {
472 VM_OBJECT_UNLOCK(object);
473 return;
474 } else if (object->ref_count == 1) {
475 if (object->shadow_count == 0) {
476 vm_object_set_flag(object, OBJ_ONEMAPPING);
477 } else if ((object->shadow_count == 1) &&
478 (object->handle == NULL) &&
479 (object->type == OBJT_DEFAULT ||
480 object->type == OBJT_SWAP)) {
481 vm_object_t robject;
482
483 robject = LIST_FIRST(&object->shadow_head);
484 KASSERT(robject != NULL,
485 ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
486 object->ref_count,
487 object->shadow_count));
488 if (!VM_OBJECT_TRYLOCK(robject)) {
489 /*
490 * Avoid a potential deadlock.
491 */
492 object->ref_count++;
493 VM_OBJECT_UNLOCK(object);
494 /*
495 * More likely than not the thread
496 * holding robject's lock has lower
497 * priority than the current thread.
498 * Let the lower priority thread run.
499 */
500 tsleep(&proc0, PVM, "vmo_de", 1);
501 continue;
502 }
503 if ((robject->handle == NULL) &&
504 (robject->type == OBJT_DEFAULT ||
505 robject->type == OBJT_SWAP)) {
506
507 robject->ref_count++;
508 retry:
509 if (robject->paging_in_progress) {
510 VM_OBJECT_UNLOCK(object);
511 vm_object_pip_wait(robject,
512 "objde1");
513 VM_OBJECT_LOCK(object);
514 goto retry;
515 } else if (object->paging_in_progress) {
516 VM_OBJECT_UNLOCK(robject);
517 object->flags |= OBJ_PIPWNT;
518 msleep(object,
519 VM_OBJECT_MTX(object),
520 PDROP | PVM, "objde2", 0);
521 VM_OBJECT_LOCK(robject);
522 VM_OBJECT_LOCK(object);
523 goto retry;
524 }
525 VM_OBJECT_UNLOCK(object);
526 if (robject->ref_count == 1) {
527 robject->ref_count--;
528 object = robject;
529 goto doterm;
530 }
531 object = robject;
532 vm_object_collapse(object);
533 VM_OBJECT_UNLOCK(object);
534 continue;
535 }
536 VM_OBJECT_UNLOCK(robject);
537 }
538 VM_OBJECT_UNLOCK(object);
539 return;
540 }
541 doterm:
542 temp = object->backing_object;
543 if (temp != NULL) {
544 VM_OBJECT_LOCK(temp);
545 LIST_REMOVE(object, shadow_list);
546 temp->shadow_count--;
547 temp->generation++;
548 VM_OBJECT_UNLOCK(temp);
549 object->backing_object = NULL;
550 }
551 /*
552 * Don't double-terminate, we could be in a termination
553 * recursion due to the terminate having to sync data
554 * to disk.
555 */
556 if ((object->flags & OBJ_DEAD) == 0)
557 vm_object_terminate(object);
558 else
559 VM_OBJECT_UNLOCK(object);
560 object = temp;
561 }
562 }
563
564 /*
565 * vm_object_terminate actually destroys the specified object, freeing
566 * up all previously used resources.
567 *
568 * The object must be locked.
569 * This routine may block.
570 */
571 void
572 vm_object_terminate(vm_object_t object)
573 {
574 vm_page_t p;
575
576 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
577
578 /*
579 * Make sure no one uses us.
580 */
581 vm_object_set_flag(object, OBJ_DEAD);
582
583 /*
584 * wait for the pageout daemon to be done with the object
585 */
586 vm_object_pip_wait(object, "objtrm");
587
588 KASSERT(!object->paging_in_progress,
589 ("vm_object_terminate: pageout in progress"));
590
591 /*
592 * Clean and free the pages, as appropriate. All references to the
593 * object are gone, so we don't need to lock it.
594 */
595 if (object->type == OBJT_VNODE) {
596 struct vnode *vp = (struct vnode *)object->handle;
597
598 /*
599 * Clean pages and flush buffers.
600 */
601 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
602 VM_OBJECT_UNLOCK(object);
603
604 vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
605
606 VM_OBJECT_LOCK(object);
607 }
608
609 KASSERT(object->ref_count == 0,
610 ("vm_object_terminate: object with references, ref_count=%d",
611 object->ref_count));
612
613 /*
614 * Now free any remaining pages. For internal objects, this also
615 * removes them from paging queues. Don't free wired pages, just
616 * remove them from the object.
617 */
618 vm_page_lock_queues();
619 while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
620 KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
621 ("vm_object_terminate: freeing busy page %p "
622 "p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
623 if (p->wire_count == 0) {
624 vm_page_busy(p);
625 vm_page_free(p);
626 cnt.v_pfree++;
627 } else {
628 vm_page_busy(p);
629 vm_page_remove(p);
630 }
631 }
632 vm_page_unlock_queues();
633
634 /*
635 * Let the pager know object is dead.
636 */
637 vm_pager_deallocate(object);
638 VM_OBJECT_UNLOCK(object);
639
640 /*
641 * Remove the object from the global object list.
642 */
643 mtx_lock(&vm_object_list_mtx);
644 TAILQ_REMOVE(&vm_object_list, object, object_list);
645 mtx_unlock(&vm_object_list_mtx);
646
647 wakeup(object);
648
649 /*
650 * Free the space for the object.
651 */
652 uma_zfree(obj_zone, object);
653 }
654
655 /*
656 * vm_object_page_clean
657 *
658 * Clean all dirty pages in the specified range of object. Leaves page
659 * on whatever queue it is currently on. If NOSYNC is set then do not
660 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
661 * leaving the object dirty.
662 *
663 * When stuffing pages asynchronously, allow clustering. XXX we need a
664 * synchronous clustering mode implementation.
665 *
666 * Odd semantics: if start == end, we clean everything.
667 *
668 * The object must be locked.
669 */
670 void
671 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
672 {
673 vm_page_t p, np;
674 vm_pindex_t tstart, tend;
675 vm_pindex_t pi;
676 int clearobjflags;
677 int pagerflags;
678 int curgeneration;
679
680 GIANT_REQUIRED;
681 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
682 if (object->type != OBJT_VNODE ||
683 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
684 return;
685
686 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
687 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
688
689 vm_object_set_flag(object, OBJ_CLEANING);
690
691 tstart = start;
692 if (end == 0) {
693 tend = object->size;
694 } else {
695 tend = end;
696 }
697
698 vm_page_lock_queues();
699 /*
700 * If the caller is smart and only msync()s a range he knows is
701 * dirty, we may be able to avoid an object scan. This results in
702 * a phenominal improvement in performance. We cannot do this
703 * as a matter of course because the object may be huge - e.g.
704 * the size might be in the gigabytes or terrabytes.
705 */
706 if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
707 vm_pindex_t tscan;
708 int scanlimit;
709 int scanreset;
710
711 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
712 if (scanreset < 16)
713 scanreset = 16;
714 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
715
716 scanlimit = scanreset;
717 tscan = tstart;
718 while (tscan < tend) {
719 curgeneration = object->generation;
720 p = vm_page_lookup(object, tscan);
721 if (p == NULL || p->valid == 0 ||
722 (p->queue - p->pc) == PQ_CACHE) {
723 if (--scanlimit == 0)
724 break;
725 ++tscan;
726 continue;
727 }
728 vm_page_test_dirty(p);
729 if ((p->dirty & p->valid) == 0) {
730 if (--scanlimit == 0)
731 break;
732 ++tscan;
733 continue;
734 }
735 /*
736 * If we have been asked to skip nosync pages and
737 * this is a nosync page, we can't continue.
738 */
739 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
740 if (--scanlimit == 0)
741 break;
742 ++tscan;
743 continue;
744 }
745 scanlimit = scanreset;
746
747 /*
748 * This returns 0 if it was unable to busy the first
749 * page (i.e. had to sleep).
750 */
751 tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
752 }
753
754 /*
755 * If everything was dirty and we flushed it successfully,
756 * and the requested range is not the entire object, we
757 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
758 * return immediately.
759 */
760 if (tscan >= tend && (tstart || tend < object->size)) {
761 vm_page_unlock_queues();
762 vm_object_clear_flag(object, OBJ_CLEANING);
763 return;
764 }
765 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
766 }
767
768 /*
769 * Generally set CLEANCHK interlock and make the page read-only so
770 * we can then clear the object flags.
771 *
772 * However, if this is a nosync mmap then the object is likely to
773 * stay dirty so do not mess with the page and do not clear the
774 * object flags.
775 */
776 clearobjflags = 1;
777 TAILQ_FOREACH(p, &object->memq, listq) {
778 vm_page_flag_set(p, PG_CLEANCHK);
779 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
780 clearobjflags = 0;
781 else
782 pmap_page_protect(p, VM_PROT_READ);
783 }
784
785 if (clearobjflags && (tstart == 0) && (tend == object->size)) {
786 struct vnode *vp;
787
788 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
789 if (object->type == OBJT_VNODE &&
790 (vp = (struct vnode *)object->handle) != NULL) {
791 VI_LOCK(vp);
792 if (vp->v_iflag & VI_OBJDIRTY)
793 vp->v_iflag &= ~VI_OBJDIRTY;
794 VI_UNLOCK(vp);
795 }
796 }
797
798 rescan:
799 curgeneration = object->generation;
800
801 for (p = TAILQ_FIRST(&object->memq); p; p = np) {
802 int n;
803
804 np = TAILQ_NEXT(p, listq);
805
806 again:
807 pi = p->pindex;
808 if (((p->flags & PG_CLEANCHK) == 0) ||
809 (pi < tstart) || (pi >= tend) ||
810 (p->valid == 0) ||
811 ((p->queue - p->pc) == PQ_CACHE)) {
812 vm_page_flag_clear(p, PG_CLEANCHK);
813 continue;
814 }
815
816 vm_page_test_dirty(p);
817 if ((p->dirty & p->valid) == 0) {
818 vm_page_flag_clear(p, PG_CLEANCHK);
819 continue;
820 }
821
822 /*
823 * If we have been asked to skip nosync pages and this is a
824 * nosync page, skip it. Note that the object flags were
825 * not cleared in this case so we do not have to set them.
826 */
827 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
828 vm_page_flag_clear(p, PG_CLEANCHK);
829 continue;
830 }
831
832 n = vm_object_page_collect_flush(object, p,
833 curgeneration, pagerflags);
834 if (n == 0)
835 goto rescan;
836
837 if (object->generation != curgeneration)
838 goto rescan;
839
840 /*
841 * Try to optimize the next page. If we can't we pick up
842 * our (random) scan where we left off.
843 */
844 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
845 if ((p = vm_page_lookup(object, pi + n)) != NULL)
846 goto again;
847 }
848 }
849 vm_page_unlock_queues();
850 #if 0
851 VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
852 #endif
853
854 vm_object_clear_flag(object, OBJ_CLEANING);
855 return;
856 }
857
858 static int
859 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
860 {
861 int runlen;
862 int maxf;
863 int chkb;
864 int maxb;
865 int i;
866 vm_pindex_t pi;
867 vm_page_t maf[vm_pageout_page_count];
868 vm_page_t mab[vm_pageout_page_count];
869 vm_page_t ma[vm_pageout_page_count];
870
871 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
872 pi = p->pindex;
873 while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
874 vm_page_lock_queues();
875 if (object->generation != curgeneration) {
876 return(0);
877 }
878 }
879 maxf = 0;
880 for(i = 1; i < vm_pageout_page_count; i++) {
881 vm_page_t tp;
882
883 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
884 if ((tp->flags & PG_BUSY) ||
885 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
886 (tp->flags & PG_CLEANCHK) == 0) ||
887 (tp->busy != 0))
888 break;
889 if((tp->queue - tp->pc) == PQ_CACHE) {
890 vm_page_flag_clear(tp, PG_CLEANCHK);
891 break;
892 }
893 vm_page_test_dirty(tp);
894 if ((tp->dirty & tp->valid) == 0) {
895 vm_page_flag_clear(tp, PG_CLEANCHK);
896 break;
897 }
898 maf[ i - 1 ] = tp;
899 maxf++;
900 continue;
901 }
902 break;
903 }
904
905 maxb = 0;
906 chkb = vm_pageout_page_count - maxf;
907 if (chkb) {
908 for(i = 1; i < chkb;i++) {
909 vm_page_t tp;
910
911 if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
912 if ((tp->flags & PG_BUSY) ||
913 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
914 (tp->flags & PG_CLEANCHK) == 0) ||
915 (tp->busy != 0))
916 break;
917 if ((tp->queue - tp->pc) == PQ_CACHE) {
918 vm_page_flag_clear(tp, PG_CLEANCHK);
919 break;
920 }
921 vm_page_test_dirty(tp);
922 if ((tp->dirty & tp->valid) == 0) {
923 vm_page_flag_clear(tp, PG_CLEANCHK);
924 break;
925 }
926 mab[ i - 1 ] = tp;
927 maxb++;
928 continue;
929 }
930 break;
931 }
932 }
933
934 for(i = 0; i < maxb; i++) {
935 int index = (maxb - i) - 1;
936 ma[index] = mab[i];
937 vm_page_flag_clear(ma[index], PG_CLEANCHK);
938 }
939 vm_page_flag_clear(p, PG_CLEANCHK);
940 ma[maxb] = p;
941 for(i = 0; i < maxf; i++) {
942 int index = (maxb + i) + 1;
943 ma[index] = maf[i];
944 vm_page_flag_clear(ma[index], PG_CLEANCHK);
945 }
946 runlen = maxb + maxf + 1;
947
948 vm_pageout_flush(ma, runlen, pagerflags);
949 for (i = 0; i < runlen; i++) {
950 if (ma[i]->valid & ma[i]->dirty) {
951 pmap_page_protect(ma[i], VM_PROT_READ);
952 vm_page_flag_set(ma[i], PG_CLEANCHK);
953
954 /*
955 * maxf will end up being the actual number of pages
956 * we wrote out contiguously, non-inclusive of the
957 * first page. We do not count look-behind pages.
958 */
959 if (i >= maxb + 1 && (maxf > i - maxb - 1))
960 maxf = i - maxb - 1;
961 }
962 }
963 return(maxf + 1);
964 }
965
966 /*
967 * Note that there is absolutely no sense in writing out
968 * anonymous objects, so we track down the vnode object
969 * to write out.
970 * We invalidate (remove) all pages from the address space
971 * for semantic correctness.
972 *
973 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
974 * may start out with a NULL object.
975 */
976 void
977 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
978 boolean_t syncio, boolean_t invalidate)
979 {
980 vm_object_t backing_object;
981 struct vnode *vp;
982 int flags;
983
984 if (object == NULL)
985 return;
986 VM_OBJECT_LOCK(object);
987 while ((backing_object = object->backing_object) != NULL) {
988 VM_OBJECT_LOCK(backing_object);
989 offset += object->backing_object_offset;
990 VM_OBJECT_UNLOCK(object);
991 object = backing_object;
992 if (object->size < OFF_TO_IDX(offset + size))
993 size = IDX_TO_OFF(object->size) - offset;
994 }
995 /*
996 * Flush pages if writing is allowed, invalidate them
997 * if invalidation requested. Pages undergoing I/O
998 * will be ignored by vm_object_page_remove().
999 *
1000 * We cannot lock the vnode and then wait for paging
1001 * to complete without deadlocking against vm_fault.
1002 * Instead we simply call vm_object_page_remove() and
1003 * allow it to block internally on a page-by-page
1004 * basis when it encounters pages undergoing async
1005 * I/O.
1006 */
1007 if (object->type == OBJT_VNODE &&
1008 (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1009 vp = object->handle;
1010 VM_OBJECT_UNLOCK(object);
1011 mtx_lock(&Giant);
1012 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
1013 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1014 flags |= invalidate ? OBJPC_INVAL : 0;
1015 VM_OBJECT_LOCK(object);
1016 vm_object_page_clean(object,
1017 OFF_TO_IDX(offset),
1018 OFF_TO_IDX(offset + size + PAGE_MASK),
1019 flags);
1020 VM_OBJECT_UNLOCK(object);
1021 VOP_UNLOCK(vp, 0, curthread);
1022 mtx_unlock(&Giant);
1023 VM_OBJECT_LOCK(object);
1024 }
1025 if ((object->type == OBJT_VNODE ||
1026 object->type == OBJT_DEVICE) && invalidate) {
1027 boolean_t purge;
1028 purge = old_msync || (object->type == OBJT_DEVICE);
1029 vm_object_page_remove(object,
1030 OFF_TO_IDX(offset),
1031 OFF_TO_IDX(offset + size + PAGE_MASK),
1032 purge ? FALSE : TRUE);
1033 }
1034 VM_OBJECT_UNLOCK(object);
1035 }
1036
1037 /*
1038 * vm_object_madvise:
1039 *
1040 * Implements the madvise function at the object/page level.
1041 *
1042 * MADV_WILLNEED (any object)
1043 *
1044 * Activate the specified pages if they are resident.
1045 *
1046 * MADV_DONTNEED (any object)
1047 *
1048 * Deactivate the specified pages if they are resident.
1049 *
1050 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects,
1051 * OBJ_ONEMAPPING only)
1052 *
1053 * Deactivate and clean the specified pages if they are
1054 * resident. This permits the process to reuse the pages
1055 * without faulting or the kernel to reclaim the pages
1056 * without I/O.
1057 */
1058 void
1059 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1060 {
1061 vm_pindex_t end, tpindex;
1062 vm_object_t backing_object, tobject;
1063 vm_page_t m;
1064
1065 if (object == NULL)
1066 return;
1067 end = pindex + count;
1068 /*
1069 * Locate and adjust resident pages
1070 */
1071 for (; pindex < end; pindex += 1) {
1072 relookup:
1073 tobject = object;
1074 tpindex = pindex;
1075 VM_OBJECT_LOCK(tobject);
1076 shadowlookup:
1077 /*
1078 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1079 * and those pages must be OBJ_ONEMAPPING.
1080 */
1081 if (advise == MADV_FREE) {
1082 if ((tobject->type != OBJT_DEFAULT &&
1083 tobject->type != OBJT_SWAP) ||
1084 (tobject->flags & OBJ_ONEMAPPING) == 0) {
1085 goto unlock_tobject;
1086 }
1087 }
1088 m = vm_page_lookup(tobject, tpindex);
1089 if (m == NULL) {
1090 /*
1091 * There may be swap even if there is no backing page
1092 */
1093 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1094 swap_pager_freespace(tobject, tpindex, 1);
1095 /*
1096 * next object
1097 */
1098 backing_object = tobject->backing_object;
1099 if (backing_object == NULL)
1100 goto unlock_tobject;
1101 VM_OBJECT_LOCK(backing_object);
1102 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1103 VM_OBJECT_UNLOCK(tobject);
1104 tobject = backing_object;
1105 goto shadowlookup;
1106 }
1107 /*
1108 * If the page is busy or not in a normal active state,
1109 * we skip it. If the page is not managed there are no
1110 * page queues to mess with. Things can break if we mess
1111 * with pages in any of the below states.
1112 */
1113 vm_page_lock_queues();
1114 if (m->hold_count ||
1115 m->wire_count ||
1116 (m->flags & PG_UNMANAGED) ||
1117 m->valid != VM_PAGE_BITS_ALL) {
1118 vm_page_unlock_queues();
1119 goto unlock_tobject;
1120 }
1121 if (vm_page_sleep_if_busy(m, TRUE, "madvpo")) {
1122 VM_OBJECT_UNLOCK(tobject);
1123 goto relookup;
1124 }
1125 if (advise == MADV_WILLNEED) {
1126 vm_page_activate(m);
1127 } else if (advise == MADV_DONTNEED) {
1128 vm_page_dontneed(m);
1129 } else if (advise == MADV_FREE) {
1130 /*
1131 * Mark the page clean. This will allow the page
1132 * to be freed up by the system. However, such pages
1133 * are often reused quickly by malloc()/free()
1134 * so we do not do anything that would cause
1135 * a page fault if we can help it.
1136 *
1137 * Specifically, we do not try to actually free
1138 * the page now nor do we try to put it in the
1139 * cache (which would cause a page fault on reuse).
1140 *
1141 * But we do make the page is freeable as we
1142 * can without actually taking the step of unmapping
1143 * it.
1144 */
1145 pmap_clear_modify(m);
1146 m->dirty = 0;
1147 m->act_count = 0;
1148 vm_page_dontneed(m);
1149 }
1150 vm_page_unlock_queues();
1151 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1152 swap_pager_freespace(tobject, tpindex, 1);
1153 unlock_tobject:
1154 VM_OBJECT_UNLOCK(tobject);
1155 }
1156 }
1157
1158 /*
1159 * vm_object_shadow:
1160 *
1161 * Create a new object which is backed by the
1162 * specified existing object range. The source
1163 * object reference is deallocated.
1164 *
1165 * The new object and offset into that object
1166 * are returned in the source parameters.
1167 */
1168 void
1169 vm_object_shadow(
1170 vm_object_t *object, /* IN/OUT */
1171 vm_ooffset_t *offset, /* IN/OUT */
1172 vm_size_t length)
1173 {
1174 vm_object_t source;
1175 vm_object_t result;
1176
1177 source = *object;
1178
1179 /*
1180 * Don't create the new object if the old object isn't shared.
1181 */
1182 if (source != NULL) {
1183 VM_OBJECT_LOCK(source);
1184 if (source->ref_count == 1 &&
1185 source->handle == NULL &&
1186 (source->type == OBJT_DEFAULT ||
1187 source->type == OBJT_SWAP)) {
1188 VM_OBJECT_UNLOCK(source);
1189 return;
1190 }
1191 VM_OBJECT_UNLOCK(source);
1192 }
1193
1194 /*
1195 * Allocate a new object with the given length.
1196 */
1197 result = vm_object_allocate(OBJT_DEFAULT, length);
1198
1199 /*
1200 * The new object shadows the source object, adding a reference to it.
1201 * Our caller changes his reference to point to the new object,
1202 * removing a reference to the source object. Net result: no change
1203 * of reference count.
1204 *
1205 * Try to optimize the result object's page color when shadowing
1206 * in order to maintain page coloring consistency in the combined
1207 * shadowed object.
1208 */
1209 result->backing_object = source;
1210 /*
1211 * Store the offset into the source object, and fix up the offset into
1212 * the new object.
1213 */
1214 result->backing_object_offset = *offset;
1215 if (source != NULL) {
1216 VM_OBJECT_LOCK(source);
1217 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1218 source->shadow_count++;
1219 source->generation++;
1220 if (length < source->size)
1221 length = source->size;
1222 if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1223 source->generation > 1)
1224 length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1225 result->pg_color = (source->pg_color +
1226 length * source->generation) & PQ_L2_MASK;
1227 VM_OBJECT_UNLOCK(source);
1228 next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1229 PQ_L2_MASK;
1230 }
1231
1232
1233 /*
1234 * Return the new things
1235 */
1236 *offset = 0;
1237 *object = result;
1238 }
1239
1240 /*
1241 * vm_object_split:
1242 *
1243 * Split the pages in a map entry into a new object. This affords
1244 * easier removal of unused pages, and keeps object inheritance from
1245 * being a negative impact on memory usage.
1246 */
1247 void
1248 vm_object_split(vm_map_entry_t entry)
1249 {
1250 vm_page_t m;
1251 vm_object_t orig_object, new_object, source;
1252 vm_pindex_t offidxstart, offidxend;
1253 vm_size_t idx, size;
1254
1255 orig_object = entry->object.vm_object;
1256 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1257 return;
1258 if (orig_object->ref_count <= 1)
1259 return;
1260 VM_OBJECT_UNLOCK(orig_object);
1261
1262 offidxstart = OFF_TO_IDX(entry->offset);
1263 offidxend = offidxstart + OFF_TO_IDX(entry->end - entry->start);
1264 size = offidxend - offidxstart;
1265
1266 /*
1267 * If swap_pager_copy() is later called, it will convert new_object
1268 * into a swap object.
1269 */
1270 new_object = vm_object_allocate(OBJT_DEFAULT, size);
1271
1272 VM_OBJECT_LOCK(new_object);
1273 VM_OBJECT_LOCK(orig_object);
1274 source = orig_object->backing_object;
1275 if (source != NULL) {
1276 VM_OBJECT_LOCK(source);
1277 LIST_INSERT_HEAD(&source->shadow_head,
1278 new_object, shadow_list);
1279 source->shadow_count++;
1280 source->generation++;
1281 vm_object_reference_locked(source); /* for new_object */
1282 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1283 VM_OBJECT_UNLOCK(source);
1284 new_object->backing_object_offset =
1285 orig_object->backing_object_offset + entry->offset;
1286 new_object->backing_object = source;
1287 }
1288 for (idx = 0; idx < size; idx++) {
1289 retry:
1290 m = vm_page_lookup(orig_object, offidxstart + idx);
1291 if (m == NULL)
1292 continue;
1293
1294 /*
1295 * We must wait for pending I/O to complete before we can
1296 * rename the page.
1297 *
1298 * We do not have to VM_PROT_NONE the page as mappings should
1299 * not be changed by this operation.
1300 */
1301 vm_page_lock_queues();
1302 if ((m->flags & PG_BUSY) || m->busy) {
1303 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1304 VM_OBJECT_UNLOCK(orig_object);
1305 VM_OBJECT_UNLOCK(new_object);
1306 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "spltwt", 0);
1307 VM_OBJECT_LOCK(new_object);
1308 VM_OBJECT_LOCK(orig_object);
1309 goto retry;
1310 }
1311 vm_page_busy(m);
1312 vm_page_rename(m, new_object, idx);
1313 /* page automatically made dirty by rename and cache handled */
1314 vm_page_busy(m);
1315 vm_page_unlock_queues();
1316 }
1317 if (orig_object->type == OBJT_SWAP) {
1318 /*
1319 * swap_pager_copy() can sleep, in which case the orig_object's
1320 * and new_object's locks are released and reacquired.
1321 */
1322 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1323 }
1324 VM_OBJECT_UNLOCK(orig_object);
1325 vm_page_lock_queues();
1326 TAILQ_FOREACH(m, &new_object->memq, listq)
1327 vm_page_wakeup(m);
1328 vm_page_unlock_queues();
1329 VM_OBJECT_UNLOCK(new_object);
1330 entry->object.vm_object = new_object;
1331 entry->offset = 0LL;
1332 vm_object_deallocate(orig_object);
1333 VM_OBJECT_LOCK(new_object);
1334 }
1335
1336 #define OBSC_TEST_ALL_SHADOWED 0x0001
1337 #define OBSC_COLLAPSE_NOWAIT 0x0002
1338 #define OBSC_COLLAPSE_WAIT 0x0004
1339
1340 static int
1341 vm_object_backing_scan(vm_object_t object, int op)
1342 {
1343 int r = 1;
1344 vm_page_t p;
1345 vm_object_t backing_object;
1346 vm_pindex_t backing_offset_index;
1347
1348 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1349 VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1350
1351 backing_object = object->backing_object;
1352 backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1353
1354 /*
1355 * Initial conditions
1356 */
1357 if (op & OBSC_TEST_ALL_SHADOWED) {
1358 /*
1359 * We do not want to have to test for the existence of
1360 * swap pages in the backing object. XXX but with the
1361 * new swapper this would be pretty easy to do.
1362 *
1363 * XXX what about anonymous MAP_SHARED memory that hasn't
1364 * been ZFOD faulted yet? If we do not test for this, the
1365 * shadow test may succeed! XXX
1366 */
1367 if (backing_object->type != OBJT_DEFAULT) {
1368 return (0);
1369 }
1370 }
1371 if (op & OBSC_COLLAPSE_WAIT) {
1372 vm_object_set_flag(backing_object, OBJ_DEAD);
1373 }
1374
1375 /*
1376 * Our scan
1377 */
1378 p = TAILQ_FIRST(&backing_object->memq);
1379 while (p) {
1380 vm_page_t next = TAILQ_NEXT(p, listq);
1381 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1382
1383 if (op & OBSC_TEST_ALL_SHADOWED) {
1384 vm_page_t pp;
1385
1386 /*
1387 * Ignore pages outside the parent object's range
1388 * and outside the parent object's mapping of the
1389 * backing object.
1390 *
1391 * note that we do not busy the backing object's
1392 * page.
1393 */
1394 if (
1395 p->pindex < backing_offset_index ||
1396 new_pindex >= object->size
1397 ) {
1398 p = next;
1399 continue;
1400 }
1401
1402 /*
1403 * See if the parent has the page or if the parent's
1404 * object pager has the page. If the parent has the
1405 * page but the page is not valid, the parent's
1406 * object pager must have the page.
1407 *
1408 * If this fails, the parent does not completely shadow
1409 * the object and we might as well give up now.
1410 */
1411
1412 pp = vm_page_lookup(object, new_pindex);
1413 if (
1414 (pp == NULL || pp->valid == 0) &&
1415 !vm_pager_has_page(object, new_pindex, NULL, NULL)
1416 ) {
1417 r = 0;
1418 break;
1419 }
1420 }
1421
1422 /*
1423 * Check for busy page
1424 */
1425 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1426 vm_page_t pp;
1427
1428 vm_page_lock_queues();
1429 if (op & OBSC_COLLAPSE_NOWAIT) {
1430 if ((p->flags & PG_BUSY) ||
1431 !p->valid ||
1432 p->hold_count ||
1433 p->wire_count ||
1434 p->busy) {
1435 vm_page_unlock_queues();
1436 p = next;
1437 continue;
1438 }
1439 } else if (op & OBSC_COLLAPSE_WAIT) {
1440 if ((p->flags & PG_BUSY) || p->busy) {
1441 vm_page_flag_set(p,
1442 PG_WANTED | PG_REFERENCED);
1443 VM_OBJECT_UNLOCK(backing_object);
1444 VM_OBJECT_UNLOCK(object);
1445 msleep(p, &vm_page_queue_mtx,
1446 PDROP | PVM, "vmocol", 0);
1447 VM_OBJECT_LOCK(object);
1448 VM_OBJECT_LOCK(backing_object);
1449 /*
1450 * If we slept, anything could have
1451 * happened. Since the object is
1452 * marked dead, the backing offset
1453 * should not have changed so we
1454 * just restart our scan.
1455 */
1456 p = TAILQ_FIRST(&backing_object->memq);
1457 continue;
1458 }
1459 }
1460
1461 /*
1462 * Busy the page
1463 */
1464 vm_page_busy(p);
1465 vm_page_unlock_queues();
1466
1467 KASSERT(
1468 p->object == backing_object,
1469 ("vm_object_qcollapse(): object mismatch")
1470 );
1471
1472 /*
1473 * Destroy any associated swap
1474 */
1475 if (backing_object->type == OBJT_SWAP) {
1476 swap_pager_freespace(
1477 backing_object,
1478 p->pindex,
1479 1
1480 );
1481 }
1482
1483 if (
1484 p->pindex < backing_offset_index ||
1485 new_pindex >= object->size
1486 ) {
1487 /*
1488 * Page is out of the parent object's range, we
1489 * can simply destroy it.
1490 */
1491 vm_page_lock_queues();
1492 pmap_remove_all(p);
1493 vm_page_free(p);
1494 vm_page_unlock_queues();
1495 p = next;
1496 continue;
1497 }
1498
1499 pp = vm_page_lookup(object, new_pindex);
1500 if (
1501 pp != NULL ||
1502 vm_pager_has_page(object, new_pindex, NULL, NULL)
1503 ) {
1504 /*
1505 * page already exists in parent OR swap exists
1506 * for this location in the parent. Destroy
1507 * the original page from the backing object.
1508 *
1509 * Leave the parent's page alone
1510 */
1511 vm_page_lock_queues();
1512 pmap_remove_all(p);
1513 vm_page_free(p);
1514 vm_page_unlock_queues();
1515 p = next;
1516 continue;
1517 }
1518
1519 /*
1520 * Page does not exist in parent, rename the
1521 * page from the backing object to the main object.
1522 *
1523 * If the page was mapped to a process, it can remain
1524 * mapped through the rename.
1525 */
1526 vm_page_lock_queues();
1527 vm_page_rename(p, object, new_pindex);
1528 vm_page_unlock_queues();
1529 /* page automatically made dirty by rename */
1530 }
1531 p = next;
1532 }
1533 return (r);
1534 }
1535
1536
1537 /*
1538 * this version of collapse allows the operation to occur earlier and
1539 * when paging_in_progress is true for an object... This is not a complete
1540 * operation, but should plug 99.9% of the rest of the leaks.
1541 */
1542 static void
1543 vm_object_qcollapse(vm_object_t object)
1544 {
1545 vm_object_t backing_object = object->backing_object;
1546
1547 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1548 VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1549
1550 if (backing_object->ref_count != 1)
1551 return;
1552
1553 backing_object->ref_count += 2;
1554
1555 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1556
1557 backing_object->ref_count -= 2;
1558 }
1559
1560 /*
1561 * vm_object_collapse:
1562 *
1563 * Collapse an object with the object backing it.
1564 * Pages in the backing object are moved into the
1565 * parent, and the backing object is deallocated.
1566 */
1567 void
1568 vm_object_collapse(vm_object_t object)
1569 {
1570 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1571
1572 while (TRUE) {
1573 vm_object_t backing_object;
1574
1575 /*
1576 * Verify that the conditions are right for collapse:
1577 *
1578 * The object exists and the backing object exists.
1579 */
1580 if ((backing_object = object->backing_object) == NULL)
1581 break;
1582
1583 /*
1584 * we check the backing object first, because it is most likely
1585 * not collapsable.
1586 */
1587 VM_OBJECT_LOCK(backing_object);
1588 if (backing_object->handle != NULL ||
1589 (backing_object->type != OBJT_DEFAULT &&
1590 backing_object->type != OBJT_SWAP) ||
1591 (backing_object->flags & OBJ_DEAD) ||
1592 object->handle != NULL ||
1593 (object->type != OBJT_DEFAULT &&
1594 object->type != OBJT_SWAP) ||
1595 (object->flags & OBJ_DEAD)) {
1596 VM_OBJECT_UNLOCK(backing_object);
1597 break;
1598 }
1599
1600 if (
1601 object->paging_in_progress != 0 ||
1602 backing_object->paging_in_progress != 0
1603 ) {
1604 vm_object_qcollapse(object);
1605 VM_OBJECT_UNLOCK(backing_object);
1606 break;
1607 }
1608 /*
1609 * We know that we can either collapse the backing object (if
1610 * the parent is the only reference to it) or (perhaps) have
1611 * the parent bypass the object if the parent happens to shadow
1612 * all the resident pages in the entire backing object.
1613 *
1614 * This is ignoring pager-backed pages such as swap pages.
1615 * vm_object_backing_scan fails the shadowing test in this
1616 * case.
1617 */
1618 if (backing_object->ref_count == 1) {
1619 /*
1620 * If there is exactly one reference to the backing
1621 * object, we can collapse it into the parent.
1622 */
1623 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1624
1625 /*
1626 * Move the pager from backing_object to object.
1627 */
1628 if (backing_object->type == OBJT_SWAP) {
1629 /*
1630 * swap_pager_copy() can sleep, in which case
1631 * the backing_object's and object's locks are
1632 * released and reacquired.
1633 */
1634 swap_pager_copy(
1635 backing_object,
1636 object,
1637 OFF_TO_IDX(object->backing_object_offset), TRUE);
1638 }
1639 /*
1640 * Object now shadows whatever backing_object did.
1641 * Note that the reference to
1642 * backing_object->backing_object moves from within
1643 * backing_object to within object.
1644 */
1645 LIST_REMOVE(object, shadow_list);
1646 backing_object->shadow_count--;
1647 backing_object->generation++;
1648 if (backing_object->backing_object) {
1649 VM_OBJECT_LOCK(backing_object->backing_object);
1650 LIST_REMOVE(backing_object, shadow_list);
1651 LIST_INSERT_HEAD(
1652 &backing_object->backing_object->shadow_head,
1653 object, shadow_list);
1654 /*
1655 * The shadow_count has not changed.
1656 */
1657 backing_object->backing_object->generation++;
1658 VM_OBJECT_UNLOCK(backing_object->backing_object);
1659 }
1660 object->backing_object = backing_object->backing_object;
1661 object->backing_object_offset +=
1662 backing_object->backing_object_offset;
1663
1664 /*
1665 * Discard backing_object.
1666 *
1667 * Since the backing object has no pages, no pager left,
1668 * and no object references within it, all that is
1669 * necessary is to dispose of it.
1670 */
1671 KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1672 VM_OBJECT_UNLOCK(backing_object);
1673
1674 mtx_lock(&vm_object_list_mtx);
1675 TAILQ_REMOVE(
1676 &vm_object_list,
1677 backing_object,
1678 object_list
1679 );
1680 mtx_unlock(&vm_object_list_mtx);
1681
1682 uma_zfree(obj_zone, backing_object);
1683
1684 object_collapses++;
1685 } else {
1686 vm_object_t new_backing_object;
1687
1688 /*
1689 * If we do not entirely shadow the backing object,
1690 * there is nothing we can do so we give up.
1691 */
1692 if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1693 VM_OBJECT_UNLOCK(backing_object);
1694 break;
1695 }
1696
1697 /*
1698 * Make the parent shadow the next object in the
1699 * chain. Deallocating backing_object will not remove
1700 * it, since its reference count is at least 2.
1701 */
1702 LIST_REMOVE(object, shadow_list);
1703 backing_object->shadow_count--;
1704 backing_object->generation++;
1705
1706 new_backing_object = backing_object->backing_object;
1707 if ((object->backing_object = new_backing_object) != NULL) {
1708 VM_OBJECT_LOCK(new_backing_object);
1709 LIST_INSERT_HEAD(
1710 &new_backing_object->shadow_head,
1711 object,
1712 shadow_list
1713 );
1714 new_backing_object->shadow_count++;
1715 new_backing_object->generation++;
1716 vm_object_reference_locked(new_backing_object);
1717 VM_OBJECT_UNLOCK(new_backing_object);
1718 object->backing_object_offset +=
1719 backing_object->backing_object_offset;
1720 }
1721
1722 /*
1723 * Drop the reference count on backing_object. Since
1724 * its ref_count was at least 2, it will not vanish.
1725 */
1726 backing_object->ref_count--;
1727 VM_OBJECT_UNLOCK(backing_object);
1728 object_bypasses++;
1729 }
1730
1731 /*
1732 * Try again with this object's new backing object.
1733 */
1734 }
1735 }
1736
1737 /*
1738 * vm_object_page_remove:
1739 *
1740 * Removes all physical pages in the given range from the
1741 * object's list of pages. If the range's end is zero, all
1742 * physical pages from the range's start to the end of the object
1743 * are deleted.
1744 *
1745 * The object must be locked.
1746 */
1747 void
1748 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1749 boolean_t clean_only)
1750 {
1751 vm_page_t p, next;
1752
1753 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1754 if (object->resident_page_count == 0)
1755 return;
1756
1757 /*
1758 * Since physically-backed objects do not use managed pages, we can't
1759 * remove pages from the object (we must instead remove the page
1760 * references, and then destroy the object).
1761 */
1762 KASSERT(object->type != OBJT_PHYS,
1763 ("attempt to remove pages from a physical object"));
1764
1765 vm_object_pip_add(object, 1);
1766 again:
1767 vm_page_lock_queues();
1768 if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1769 if (p->pindex < start) {
1770 p = vm_page_splay(start, object->root);
1771 if ((object->root = p)->pindex < start)
1772 p = TAILQ_NEXT(p, listq);
1773 }
1774 }
1775 /*
1776 * Assert: the variable p is either (1) the page with the
1777 * least pindex greater than or equal to the parameter pindex
1778 * or (2) NULL.
1779 */
1780 for (;
1781 p != NULL && (p->pindex < end || end == 0);
1782 p = next) {
1783 next = TAILQ_NEXT(p, listq);
1784
1785 if (p->wire_count != 0) {
1786 pmap_remove_all(p);
1787 if (!clean_only)
1788 p->valid = 0;
1789 continue;
1790 }
1791 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1792 goto again;
1793 if (clean_only && p->valid) {
1794 pmap_page_protect(p, VM_PROT_READ | VM_PROT_EXECUTE);
1795 if (p->valid & p->dirty)
1796 continue;
1797 }
1798 vm_page_busy(p);
1799 pmap_remove_all(p);
1800 vm_page_free(p);
1801 }
1802 vm_page_unlock_queues();
1803 vm_object_pip_wakeup(object);
1804 }
1805
1806 /*
1807 * Routine: vm_object_coalesce
1808 * Function: Coalesces two objects backing up adjoining
1809 * regions of memory into a single object.
1810 *
1811 * returns TRUE if objects were combined.
1812 *
1813 * NOTE: Only works at the moment if the second object is NULL -
1814 * if it's not, which object do we lock first?
1815 *
1816 * Parameters:
1817 * prev_object First object to coalesce
1818 * prev_offset Offset into prev_object
1819 * prev_size Size of reference to prev_object
1820 * next_size Size of reference to the second object
1821 *
1822 * Conditions:
1823 * The object must *not* be locked.
1824 */
1825 boolean_t
1826 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1827 vm_size_t prev_size, vm_size_t next_size)
1828 {
1829 vm_pindex_t next_pindex;
1830
1831 if (prev_object == NULL)
1832 return (TRUE);
1833 VM_OBJECT_LOCK(prev_object);
1834 if (prev_object->type != OBJT_DEFAULT &&
1835 prev_object->type != OBJT_SWAP) {
1836 VM_OBJECT_UNLOCK(prev_object);
1837 return (FALSE);
1838 }
1839
1840 /*
1841 * Try to collapse the object first
1842 */
1843 vm_object_collapse(prev_object);
1844
1845 /*
1846 * Can't coalesce if: . more than one reference . paged out . shadows
1847 * another object . has a copy elsewhere (any of which mean that the
1848 * pages not mapped to prev_entry may be in use anyway)
1849 */
1850 if (prev_object->backing_object != NULL) {
1851 VM_OBJECT_UNLOCK(prev_object);
1852 return (FALSE);
1853 }
1854
1855 prev_size >>= PAGE_SHIFT;
1856 next_size >>= PAGE_SHIFT;
1857 next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1858
1859 if ((prev_object->ref_count > 1) &&
1860 (prev_object->size != next_pindex)) {
1861 VM_OBJECT_UNLOCK(prev_object);
1862 return (FALSE);
1863 }
1864
1865 /*
1866 * Remove any pages that may still be in the object from a previous
1867 * deallocation.
1868 */
1869 if (next_pindex < prev_object->size) {
1870 vm_object_page_remove(prev_object,
1871 next_pindex,
1872 next_pindex + next_size, FALSE);
1873 if (prev_object->type == OBJT_SWAP)
1874 swap_pager_freespace(prev_object,
1875 next_pindex, next_size);
1876 }
1877
1878 /*
1879 * Extend the object if necessary.
1880 */
1881 if (next_pindex + next_size > prev_object->size)
1882 prev_object->size = next_pindex + next_size;
1883
1884 VM_OBJECT_UNLOCK(prev_object);
1885 return (TRUE);
1886 }
1887
1888 void
1889 vm_object_set_writeable_dirty(vm_object_t object)
1890 {
1891 struct vnode *vp;
1892
1893 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1894 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1895 if (object->type == OBJT_VNODE &&
1896 (vp = (struct vnode *)object->handle) != NULL) {
1897 VI_LOCK(vp);
1898 if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1899 vp->v_iflag |= VI_OBJDIRTY;
1900 VI_UNLOCK(vp);
1901 }
1902 }
1903
1904 #include "opt_ddb.h"
1905 #ifdef DDB
1906 #include <sys/kernel.h>
1907
1908 #include <sys/cons.h>
1909
1910 #include <ddb/ddb.h>
1911
1912 static int
1913 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1914 {
1915 vm_map_t tmpm;
1916 vm_map_entry_t tmpe;
1917 vm_object_t obj;
1918 int entcount;
1919
1920 if (map == 0)
1921 return 0;
1922
1923 if (entry == 0) {
1924 tmpe = map->header.next;
1925 entcount = map->nentries;
1926 while (entcount-- && (tmpe != &map->header)) {
1927 if (_vm_object_in_map(map, object, tmpe)) {
1928 return 1;
1929 }
1930 tmpe = tmpe->next;
1931 }
1932 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1933 tmpm = entry->object.sub_map;
1934 tmpe = tmpm->header.next;
1935 entcount = tmpm->nentries;
1936 while (entcount-- && tmpe != &tmpm->header) {
1937 if (_vm_object_in_map(tmpm, object, tmpe)) {
1938 return 1;
1939 }
1940 tmpe = tmpe->next;
1941 }
1942 } else if ((obj = entry->object.vm_object) != NULL) {
1943 for (; obj; obj = obj->backing_object)
1944 if (obj == object) {
1945 return 1;
1946 }
1947 }
1948 return 0;
1949 }
1950
1951 static int
1952 vm_object_in_map(vm_object_t object)
1953 {
1954 struct proc *p;
1955
1956 /* sx_slock(&allproc_lock); */
1957 LIST_FOREACH(p, &allproc, p_list) {
1958 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1959 continue;
1960 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1961 /* sx_sunlock(&allproc_lock); */
1962 return 1;
1963 }
1964 }
1965 /* sx_sunlock(&allproc_lock); */
1966 if (_vm_object_in_map(kernel_map, object, 0))
1967 return 1;
1968 if (_vm_object_in_map(kmem_map, object, 0))
1969 return 1;
1970 if (_vm_object_in_map(pager_map, object, 0))
1971 return 1;
1972 if (_vm_object_in_map(buffer_map, object, 0))
1973 return 1;
1974 return 0;
1975 }
1976
1977 DB_SHOW_COMMAND(vmochk, vm_object_check)
1978 {
1979 vm_object_t object;
1980
1981 /*
1982 * make sure that internal objs are in a map somewhere
1983 * and none have zero ref counts.
1984 */
1985 TAILQ_FOREACH(object, &vm_object_list, object_list) {
1986 if (object->handle == NULL &&
1987 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1988 if (object->ref_count == 0) {
1989 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1990 (long)object->size);
1991 }
1992 if (!vm_object_in_map(object)) {
1993 db_printf(
1994 "vmochk: internal obj is not in a map: "
1995 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1996 object->ref_count, (u_long)object->size,
1997 (u_long)object->size,
1998 (void *)object->backing_object);
1999 }
2000 }
2001 }
2002 }
2003
2004 /*
2005 * vm_object_print: [ debug ]
2006 */
2007 DB_SHOW_COMMAND(object, vm_object_print_static)
2008 {
2009 /* XXX convert args. */
2010 vm_object_t object = (vm_object_t)addr;
2011 boolean_t full = have_addr;
2012
2013 vm_page_t p;
2014
2015 /* XXX count is an (unused) arg. Avoid shadowing it. */
2016 #define count was_count
2017
2018 int count;
2019
2020 if (object == NULL)
2021 return;
2022
2023 db_iprintf(
2024 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2025 object, (int)object->type, (uintmax_t)object->size,
2026 object->resident_page_count, object->ref_count, object->flags);
2027 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2028 object->shadow_count,
2029 object->backing_object ? object->backing_object->ref_count : 0,
2030 object->backing_object, (uintmax_t)object->backing_object_offset);
2031
2032 if (!full)
2033 return;
2034
2035 db_indent += 2;
2036 count = 0;
2037 TAILQ_FOREACH(p, &object->memq, listq) {
2038 if (count == 0)
2039 db_iprintf("memory:=");
2040 else if (count == 6) {
2041 db_printf("\n");
2042 db_iprintf(" ...");
2043 count = 0;
2044 } else
2045 db_printf(",");
2046 count++;
2047
2048 db_printf("(off=0x%jx,page=0x%jx)",
2049 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2050 }
2051 if (count != 0)
2052 db_printf("\n");
2053 db_indent -= 2;
2054 }
2055
2056 /* XXX. */
2057 #undef count
2058
2059 /* XXX need this non-static entry for calling from vm_map_print. */
2060 void
2061 vm_object_print(
2062 /* db_expr_t */ long addr,
2063 boolean_t have_addr,
2064 /* db_expr_t */ long count,
2065 char *modif)
2066 {
2067 vm_object_print_static(addr, have_addr, count, modif);
2068 }
2069
2070 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2071 {
2072 vm_object_t object;
2073 int nl = 0;
2074 int c;
2075
2076 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2077 vm_pindex_t idx, fidx;
2078 vm_pindex_t osize;
2079 vm_paddr_t pa = -1, padiff;
2080 int rcount;
2081 vm_page_t m;
2082
2083 db_printf("new object: %p\n", (void *)object);
2084 if (nl > 18) {
2085 c = cngetc();
2086 if (c != ' ')
2087 return;
2088 nl = 0;
2089 }
2090 nl++;
2091 rcount = 0;
2092 fidx = 0;
2093 osize = object->size;
2094 if (osize > 128)
2095 osize = 128;
2096 for (idx = 0; idx < osize; idx++) {
2097 m = vm_page_lookup(object, idx);
2098 if (m == NULL) {
2099 if (rcount) {
2100 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2101 (long)fidx, rcount, (long)pa);
2102 if (nl > 18) {
2103 c = cngetc();
2104 if (c != ' ')
2105 return;
2106 nl = 0;
2107 }
2108 nl++;
2109 rcount = 0;
2110 }
2111 continue;
2112 }
2113
2114
2115 if (rcount &&
2116 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2117 ++rcount;
2118 continue;
2119 }
2120 if (rcount) {
2121 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2122 padiff >>= PAGE_SHIFT;
2123 padiff &= PQ_L2_MASK;
2124 if (padiff == 0) {
2125 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2126 ++rcount;
2127 continue;
2128 }
2129 db_printf(" index(%ld)run(%d)pa(0x%lx)",
2130 (long)fidx, rcount, (long)pa);
2131 db_printf("pd(%ld)\n", (long)padiff);
2132 if (nl > 18) {
2133 c = cngetc();
2134 if (c != ' ')
2135 return;
2136 nl = 0;
2137 }
2138 nl++;
2139 }
2140 fidx = idx;
2141 pa = VM_PAGE_TO_PHYS(m);
2142 rcount = 1;
2143 }
2144 if (rcount) {
2145 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2146 (long)fidx, rcount, (long)pa);
2147 if (nl > 18) {
2148 c = cngetc();
2149 if (c != ' ')
2150 return;
2151 nl = 0;
2152 }
2153 nl++;
2154 }
2155 }
2156 }
2157 #endif /* DDB */
Cache object: f9d1ba8b16ca9d108411f85c38a2e7a0
|