The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 /*
   62  *      Virtual memory object module.
   63  */
   64 
   65 #include <sys/cdefs.h>
   66 __FBSDID("$FreeBSD: releng/5.3/sys/vm/vm_object.c 132987 2004-08-02 00:18:36Z green $");
   67 
   68 #include <sys/param.h>
   69 #include <sys/systm.h>
   70 #include <sys/lock.h>
   71 #include <sys/mman.h>
   72 #include <sys/mount.h>
   73 #include <sys/kernel.h>
   74 #include <sys/sysctl.h>
   75 #include <sys/mutex.h>
   76 #include <sys/proc.h>           /* for curproc, pageproc */
   77 #include <sys/socket.h>
   78 #include <sys/vnode.h>
   79 #include <sys/vmmeter.h>
   80 #include <sys/sx.h>
   81 
   82 #include <vm/vm.h>
   83 #include <vm/vm_param.h>
   84 #include <vm/pmap.h>
   85 #include <vm/vm_map.h>
   86 #include <vm/vm_object.h>
   87 #include <vm/vm_page.h>
   88 #include <vm/vm_pageout.h>
   89 #include <vm/vm_pager.h>
   90 #include <vm/swap_pager.h>
   91 #include <vm/vm_kern.h>
   92 #include <vm/vm_extern.h>
   93 #include <vm/uma.h>
   94 
   95 #define EASY_SCAN_FACTOR       8
   96 
   97 #define MSYNC_FLUSH_HARDSEQ     0x01
   98 #define MSYNC_FLUSH_SOFTSEQ     0x02
   99 
  100 /*
  101  * msync / VM object flushing optimizations
  102  */
  103 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
  104 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
  105         CTLFLAG_RW, &msync_flush_flags, 0, "");
  106 
  107 static int old_msync;
  108 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
  109     "Use old (insecure) msync behavior");
  110 
  111 static void     vm_object_qcollapse(vm_object_t object);
  112 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
  113 
  114 /*
  115  *      Virtual memory objects maintain the actual data
  116  *      associated with allocated virtual memory.  A given
  117  *      page of memory exists within exactly one object.
  118  *
  119  *      An object is only deallocated when all "references"
  120  *      are given up.  Only one "reference" to a given
  121  *      region of an object should be writeable.
  122  *
  123  *      Associated with each object is a list of all resident
  124  *      memory pages belonging to that object; this list is
  125  *      maintained by the "vm_page" module, and locked by the object's
  126  *      lock.
  127  *
  128  *      Each object also records a "pager" routine which is
  129  *      used to retrieve (and store) pages to the proper backing
  130  *      storage.  In addition, objects may be backed by other
  131  *      objects from which they were virtual-copied.
  132  *
  133  *      The only items within the object structure which are
  134  *      modified after time of creation are:
  135  *              reference count         locked by object's lock
  136  *              pager routine           locked by object's lock
  137  *
  138  */
  139 
  140 struct object_q vm_object_list;
  141 struct mtx vm_object_list_mtx;  /* lock for object list and count */
  142 
  143 struct vm_object kernel_object_store;
  144 struct vm_object kmem_object_store;
  145 
  146 static long object_collapses;
  147 static long object_bypasses;
  148 static int next_index;
  149 static uma_zone_t obj_zone;
  150 #define VM_OBJECTS_INIT 256
  151 
  152 static int vm_object_zinit(void *mem, int size, int flags);
  153 
  154 #ifdef INVARIANTS
  155 static void vm_object_zdtor(void *mem, int size, void *arg);
  156 
  157 static void
  158 vm_object_zdtor(void *mem, int size, void *arg)
  159 {
  160         vm_object_t object;
  161 
  162         object = (vm_object_t)mem;
  163         KASSERT(TAILQ_EMPTY(&object->memq),
  164             ("object %p has resident pages",
  165             object));
  166         KASSERT(object->paging_in_progress == 0,
  167             ("object %p paging_in_progress = %d",
  168             object, object->paging_in_progress));
  169         KASSERT(object->resident_page_count == 0,
  170             ("object %p resident_page_count = %d",
  171             object, object->resident_page_count));
  172         KASSERT(object->shadow_count == 0,
  173             ("object %p shadow_count = %d",
  174             object, object->shadow_count));
  175 }
  176 #endif
  177 
  178 static int
  179 vm_object_zinit(void *mem, int size, int flags)
  180 {
  181         vm_object_t object;
  182 
  183         object = (vm_object_t)mem;
  184         bzero(&object->mtx, sizeof(object->mtx));
  185         VM_OBJECT_LOCK_INIT(object, "standard object");
  186 
  187         /* These are true for any object that has been freed */
  188         object->paging_in_progress = 0;
  189         object->resident_page_count = 0;
  190         object->shadow_count = 0;
  191         return (0);
  192 }
  193 
  194 void
  195 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
  196 {
  197         int incr;
  198 
  199         TAILQ_INIT(&object->memq);
  200         LIST_INIT(&object->shadow_head);
  201 
  202         object->root = NULL;
  203         object->type = type;
  204         object->size = size;
  205         object->generation = 1;
  206         object->ref_count = 1;
  207         object->flags = 0;
  208         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
  209                 object->flags = OBJ_ONEMAPPING;
  210         if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
  211                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
  212         else
  213                 incr = size;
  214         do
  215                 object->pg_color = next_index;
  216         while (!atomic_cmpset_int(&next_index, object->pg_color,
  217                                   (object->pg_color + incr) & PQ_L2_MASK));
  218         object->handle = NULL;
  219         object->backing_object = NULL;
  220         object->backing_object_offset = (vm_ooffset_t) 0;
  221 
  222         mtx_lock(&vm_object_list_mtx);
  223         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
  224         mtx_unlock(&vm_object_list_mtx);
  225 }
  226 
  227 /*
  228  *      vm_object_init:
  229  *
  230  *      Initialize the VM objects module.
  231  */
  232 void
  233 vm_object_init(void)
  234 {
  235         TAILQ_INIT(&vm_object_list);
  236         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
  237         
  238         VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
  239         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  240             kernel_object);
  241 
  242         VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
  243         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  244             kmem_object);
  245 
  246         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
  247 #ifdef INVARIANTS
  248             vm_object_zdtor,
  249 #else
  250             NULL,
  251 #endif
  252             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
  253         uma_prealloc(obj_zone, VM_OBJECTS_INIT);
  254 }
  255 
  256 void
  257 vm_object_clear_flag(vm_object_t object, u_short bits)
  258 {
  259 
  260         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  261         object->flags &= ~bits;
  262 }
  263 
  264 void
  265 vm_object_pip_add(vm_object_t object, short i)
  266 {
  267 
  268         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  269         object->paging_in_progress += i;
  270 }
  271 
  272 void
  273 vm_object_pip_subtract(vm_object_t object, short i)
  274 {
  275 
  276         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  277         object->paging_in_progress -= i;
  278 }
  279 
  280 void
  281 vm_object_pip_wakeup(vm_object_t object)
  282 {
  283 
  284         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  285         object->paging_in_progress--;
  286         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  287                 vm_object_clear_flag(object, OBJ_PIPWNT);
  288                 wakeup(object);
  289         }
  290 }
  291 
  292 void
  293 vm_object_pip_wakeupn(vm_object_t object, short i)
  294 {
  295 
  296         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  297         if (i)
  298                 object->paging_in_progress -= i;
  299         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  300                 vm_object_clear_flag(object, OBJ_PIPWNT);
  301                 wakeup(object);
  302         }
  303 }
  304 
  305 void
  306 vm_object_pip_wait(vm_object_t object, char *waitid)
  307 {
  308 
  309         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  310         while (object->paging_in_progress) {
  311                 object->flags |= OBJ_PIPWNT;
  312                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
  313         }
  314 }
  315 
  316 /*
  317  *      vm_object_allocate_wait
  318  *
  319  *      Return a new object with the given size, and give the user the
  320  *      option of waiting for it to complete or failing if the needed
  321  *      memory isn't available.
  322  */
  323 vm_object_t
  324 vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
  325 {
  326         vm_object_t result;
  327 
  328         result = (vm_object_t) uma_zalloc(obj_zone, flags);
  329 
  330         if (result != NULL)
  331                 _vm_object_allocate(type, size, result);
  332 
  333         return (result);
  334 }
  335 
  336 /*
  337  *      vm_object_allocate:
  338  *
  339  *      Returns a new object with the given size.
  340  */
  341 vm_object_t
  342 vm_object_allocate(objtype_t type, vm_pindex_t size)
  343 {
  344         return(vm_object_allocate_wait(type, size, M_WAITOK));
  345 }
  346 
  347 
  348 /*
  349  *      vm_object_reference:
  350  *
  351  *      Gets another reference to the given object.  Note: OBJ_DEAD
  352  *      objects can be referenced during final cleaning.
  353  */
  354 void
  355 vm_object_reference(vm_object_t object)
  356 {
  357         struct vnode *vp;
  358         int flags;
  359 
  360         if (object == NULL)
  361                 return;
  362         VM_OBJECT_LOCK(object);
  363         object->ref_count++;
  364         if (object->type == OBJT_VNODE) {
  365                 vp = object->handle;
  366                 VI_LOCK(vp);
  367                 VM_OBJECT_UNLOCK(object);
  368                 for (flags = LK_INTERLOCK; vget(vp, flags, curthread);
  369                      flags = 0)
  370                         printf("vm_object_reference: delay in vget\n");
  371         } else
  372                 VM_OBJECT_UNLOCK(object);
  373 }
  374 
  375 /*
  376  *      vm_object_reference_locked:
  377  *
  378  *      Gets another reference to the given object.
  379  *
  380  *      The object must be locked.
  381  */
  382 void
  383 vm_object_reference_locked(vm_object_t object)
  384 {
  385         struct vnode *vp;
  386 
  387         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  388         KASSERT((object->flags & OBJ_DEAD) == 0,
  389             ("vm_object_reference_locked: dead object referenced"));
  390         object->ref_count++;
  391         if (object->type == OBJT_VNODE) {
  392                 vp = object->handle;
  393                 vref(vp);
  394         }
  395 }
  396 
  397 /*
  398  * Handle deallocating an object of type OBJT_VNODE.
  399  */
  400 void
  401 vm_object_vndeallocate(vm_object_t object)
  402 {
  403         struct vnode *vp = (struct vnode *) object->handle;
  404 
  405         GIANT_REQUIRED;
  406         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  407         KASSERT(object->type == OBJT_VNODE,
  408             ("vm_object_vndeallocate: not a vnode object"));
  409         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
  410 #ifdef INVARIANTS
  411         if (object->ref_count == 0) {
  412                 vprint("vm_object_vndeallocate", vp);
  413                 panic("vm_object_vndeallocate: bad object reference count");
  414         }
  415 #endif
  416 
  417         object->ref_count--;
  418         if (object->ref_count == 0) {
  419                 mp_fixme("Unlocked vflag access.");
  420                 vp->v_vflag &= ~VV_TEXT;
  421         }
  422         VM_OBJECT_UNLOCK(object);
  423         /*
  424          * vrele may need a vop lock
  425          */
  426         vrele(vp);
  427 }
  428 
  429 /*
  430  *      vm_object_deallocate:
  431  *
  432  *      Release a reference to the specified object,
  433  *      gained either through a vm_object_allocate
  434  *      or a vm_object_reference call.  When all references
  435  *      are gone, storage associated with this object
  436  *      may be relinquished.
  437  *
  438  *      No object may be locked.
  439  */
  440 void
  441 vm_object_deallocate(vm_object_t object)
  442 {
  443         vm_object_t temp;
  444 
  445         while (object != NULL) {
  446                 /*
  447                  * In general, the object should be locked when working with
  448                  * its type.  In this case, in order to maintain proper lock
  449                  * ordering, an exception is possible because a vnode-backed
  450                  * object never changes its type.
  451                  */
  452                 if (object->type == OBJT_VNODE)
  453                         mtx_lock(&Giant);
  454                 VM_OBJECT_LOCK(object);
  455                 if (object->type == OBJT_VNODE) {
  456                         vm_object_vndeallocate(object);
  457                         mtx_unlock(&Giant);
  458                         return;
  459                 }
  460 
  461                 KASSERT(object->ref_count != 0,
  462                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
  463 
  464                 /*
  465                  * If the reference count goes to 0 we start calling
  466                  * vm_object_terminate() on the object chain.
  467                  * A ref count of 1 may be a special case depending on the
  468                  * shadow count being 0 or 1.
  469                  */
  470                 object->ref_count--;
  471                 if (object->ref_count > 1) {
  472                         VM_OBJECT_UNLOCK(object);
  473                         return;
  474                 } else if (object->ref_count == 1) {
  475                         if (object->shadow_count == 0) {
  476                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
  477                         } else if ((object->shadow_count == 1) &&
  478                             (object->handle == NULL) &&
  479                             (object->type == OBJT_DEFAULT ||
  480                              object->type == OBJT_SWAP)) {
  481                                 vm_object_t robject;
  482 
  483                                 robject = LIST_FIRST(&object->shadow_head);
  484                                 KASSERT(robject != NULL,
  485                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
  486                                          object->ref_count,
  487                                          object->shadow_count));
  488                                 if (!VM_OBJECT_TRYLOCK(robject)) {
  489                                         /*
  490                                          * Avoid a potential deadlock.
  491                                          */
  492                                         object->ref_count++;
  493                                         VM_OBJECT_UNLOCK(object);
  494                                         /*
  495                                          * More likely than not the thread
  496                                          * holding robject's lock has lower
  497                                          * priority than the current thread.
  498                                          * Let the lower priority thread run.
  499                                          */
  500                                         tsleep(&proc0, PVM, "vmo_de", 1);
  501                                         continue;
  502                                 }
  503                                 if ((robject->handle == NULL) &&
  504                                     (robject->type == OBJT_DEFAULT ||
  505                                      robject->type == OBJT_SWAP)) {
  506 
  507                                         robject->ref_count++;
  508 retry:
  509                                         if (robject->paging_in_progress) {
  510                                                 VM_OBJECT_UNLOCK(object);
  511                                                 vm_object_pip_wait(robject,
  512                                                     "objde1");
  513                                                 VM_OBJECT_LOCK(object);
  514                                                 goto retry;
  515                                         } else if (object->paging_in_progress) {
  516                                                 VM_OBJECT_UNLOCK(robject);
  517                                                 object->flags |= OBJ_PIPWNT;
  518                                                 msleep(object,
  519                                                     VM_OBJECT_MTX(object),
  520                                                     PDROP | PVM, "objde2", 0);
  521                                                 VM_OBJECT_LOCK(robject);
  522                                                 VM_OBJECT_LOCK(object);
  523                                                 goto retry;
  524                                         }
  525                                         VM_OBJECT_UNLOCK(object);
  526                                         if (robject->ref_count == 1) {
  527                                                 robject->ref_count--;
  528                                                 object = robject;
  529                                                 goto doterm;
  530                                         }
  531                                         object = robject;
  532                                         vm_object_collapse(object);
  533                                         VM_OBJECT_UNLOCK(object);
  534                                         continue;
  535                                 }
  536                                 VM_OBJECT_UNLOCK(robject);
  537                         }
  538                         VM_OBJECT_UNLOCK(object);
  539                         return;
  540                 }
  541 doterm:
  542                 temp = object->backing_object;
  543                 if (temp != NULL) {
  544                         VM_OBJECT_LOCK(temp);
  545                         LIST_REMOVE(object, shadow_list);
  546                         temp->shadow_count--;
  547                         temp->generation++;
  548                         VM_OBJECT_UNLOCK(temp);
  549                         object->backing_object = NULL;
  550                 }
  551                 /*
  552                  * Don't double-terminate, we could be in a termination
  553                  * recursion due to the terminate having to sync data
  554                  * to disk.
  555                  */
  556                 if ((object->flags & OBJ_DEAD) == 0)
  557                         vm_object_terminate(object);
  558                 else
  559                         VM_OBJECT_UNLOCK(object);
  560                 object = temp;
  561         }
  562 }
  563 
  564 /*
  565  *      vm_object_terminate actually destroys the specified object, freeing
  566  *      up all previously used resources.
  567  *
  568  *      The object must be locked.
  569  *      This routine may block.
  570  */
  571 void
  572 vm_object_terminate(vm_object_t object)
  573 {
  574         vm_page_t p;
  575 
  576         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  577 
  578         /*
  579          * Make sure no one uses us.
  580          */
  581         vm_object_set_flag(object, OBJ_DEAD);
  582 
  583         /*
  584          * wait for the pageout daemon to be done with the object
  585          */
  586         vm_object_pip_wait(object, "objtrm");
  587 
  588         KASSERT(!object->paging_in_progress,
  589                 ("vm_object_terminate: pageout in progress"));
  590 
  591         /*
  592          * Clean and free the pages, as appropriate. All references to the
  593          * object are gone, so we don't need to lock it.
  594          */
  595         if (object->type == OBJT_VNODE) {
  596                 struct vnode *vp = (struct vnode *)object->handle;
  597 
  598                 /*
  599                  * Clean pages and flush buffers.
  600                  */
  601                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  602                 VM_OBJECT_UNLOCK(object);
  603 
  604                 vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
  605 
  606                 VM_OBJECT_LOCK(object);
  607         }
  608 
  609         KASSERT(object->ref_count == 0, 
  610                 ("vm_object_terminate: object with references, ref_count=%d",
  611                 object->ref_count));
  612 
  613         /*
  614          * Now free any remaining pages. For internal objects, this also
  615          * removes them from paging queues. Don't free wired pages, just
  616          * remove them from the object. 
  617          */
  618         vm_page_lock_queues();
  619         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
  620                 KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
  621                         ("vm_object_terminate: freeing busy page %p "
  622                         "p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
  623                 if (p->wire_count == 0) {
  624                         vm_page_busy(p);
  625                         vm_page_free(p);
  626                         cnt.v_pfree++;
  627                 } else {
  628                         vm_page_busy(p);
  629                         vm_page_remove(p);
  630                 }
  631         }
  632         vm_page_unlock_queues();
  633 
  634         /*
  635          * Let the pager know object is dead.
  636          */
  637         vm_pager_deallocate(object);
  638         VM_OBJECT_UNLOCK(object);
  639 
  640         /*
  641          * Remove the object from the global object list.
  642          */
  643         mtx_lock(&vm_object_list_mtx);
  644         TAILQ_REMOVE(&vm_object_list, object, object_list);
  645         mtx_unlock(&vm_object_list_mtx);
  646 
  647         wakeup(object);
  648 
  649         /*
  650          * Free the space for the object.
  651          */
  652         uma_zfree(obj_zone, object);
  653 }
  654 
  655 /*
  656  *      vm_object_page_clean
  657  *
  658  *      Clean all dirty pages in the specified range of object.  Leaves page 
  659  *      on whatever queue it is currently on.   If NOSYNC is set then do not
  660  *      write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
  661  *      leaving the object dirty.
  662  *
  663  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
  664  *      synchronous clustering mode implementation.
  665  *
  666  *      Odd semantics: if start == end, we clean everything.
  667  *
  668  *      The object must be locked.
  669  */
  670 void
  671 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
  672 {
  673         vm_page_t p, np;
  674         vm_pindex_t tstart, tend;
  675         vm_pindex_t pi;
  676         int clearobjflags;
  677         int pagerflags;
  678         int curgeneration;
  679 
  680         GIANT_REQUIRED;
  681         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  682         if (object->type != OBJT_VNODE ||
  683                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
  684                 return;
  685 
  686         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
  687         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
  688 
  689         vm_object_set_flag(object, OBJ_CLEANING);
  690 
  691         tstart = start;
  692         if (end == 0) {
  693                 tend = object->size;
  694         } else {
  695                 tend = end;
  696         }
  697 
  698         vm_page_lock_queues();
  699         /*
  700          * If the caller is smart and only msync()s a range he knows is
  701          * dirty, we may be able to avoid an object scan.  This results in
  702          * a phenominal improvement in performance.  We cannot do this
  703          * as a matter of course because the object may be huge - e.g.
  704          * the size might be in the gigabytes or terrabytes.
  705          */
  706         if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
  707                 vm_pindex_t tscan;
  708                 int scanlimit;
  709                 int scanreset;
  710 
  711                 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
  712                 if (scanreset < 16)
  713                         scanreset = 16;
  714                 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
  715 
  716                 scanlimit = scanreset;
  717                 tscan = tstart;
  718                 while (tscan < tend) {
  719                         curgeneration = object->generation;
  720                         p = vm_page_lookup(object, tscan);
  721                         if (p == NULL || p->valid == 0 ||
  722                             (p->queue - p->pc) == PQ_CACHE) {
  723                                 if (--scanlimit == 0)
  724                                         break;
  725                                 ++tscan;
  726                                 continue;
  727                         }
  728                         vm_page_test_dirty(p);
  729                         if ((p->dirty & p->valid) == 0) {
  730                                 if (--scanlimit == 0)
  731                                         break;
  732                                 ++tscan;
  733                                 continue;
  734                         }
  735                         /*
  736                          * If we have been asked to skip nosync pages and 
  737                          * this is a nosync page, we can't continue.
  738                          */
  739                         if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
  740                                 if (--scanlimit == 0)
  741                                         break;
  742                                 ++tscan;
  743                                 continue;
  744                         }
  745                         scanlimit = scanreset;
  746 
  747                         /*
  748                          * This returns 0 if it was unable to busy the first
  749                          * page (i.e. had to sleep).
  750                          */
  751                         tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
  752                 }
  753 
  754                 /*
  755                  * If everything was dirty and we flushed it successfully,
  756                  * and the requested range is not the entire object, we
  757                  * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
  758                  * return immediately.
  759                  */
  760                 if (tscan >= tend && (tstart || tend < object->size)) {
  761                         vm_page_unlock_queues();
  762                         vm_object_clear_flag(object, OBJ_CLEANING);
  763                         return;
  764                 }
  765                 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
  766         }
  767 
  768         /*
  769          * Generally set CLEANCHK interlock and make the page read-only so
  770          * we can then clear the object flags.
  771          *
  772          * However, if this is a nosync mmap then the object is likely to 
  773          * stay dirty so do not mess with the page and do not clear the
  774          * object flags.
  775          */
  776         clearobjflags = 1;
  777         TAILQ_FOREACH(p, &object->memq, listq) {
  778                 vm_page_flag_set(p, PG_CLEANCHK);
  779                 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
  780                         clearobjflags = 0;
  781                 else
  782                         pmap_page_protect(p, VM_PROT_READ);
  783         }
  784 
  785         if (clearobjflags && (tstart == 0) && (tend == object->size)) {
  786                 struct vnode *vp;
  787 
  788                 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
  789                 if (object->type == OBJT_VNODE &&
  790                     (vp = (struct vnode *)object->handle) != NULL) {
  791                         VI_LOCK(vp);
  792                         if (vp->v_iflag & VI_OBJDIRTY)
  793                                 vp->v_iflag &= ~VI_OBJDIRTY;
  794                         VI_UNLOCK(vp);
  795                 }
  796         }
  797 
  798 rescan:
  799         curgeneration = object->generation;
  800 
  801         for (p = TAILQ_FIRST(&object->memq); p; p = np) {
  802                 int n;
  803 
  804                 np = TAILQ_NEXT(p, listq);
  805 
  806 again:
  807                 pi = p->pindex;
  808                 if (((p->flags & PG_CLEANCHK) == 0) ||
  809                         (pi < tstart) || (pi >= tend) ||
  810                         (p->valid == 0) ||
  811                         ((p->queue - p->pc) == PQ_CACHE)) {
  812                         vm_page_flag_clear(p, PG_CLEANCHK);
  813                         continue;
  814                 }
  815 
  816                 vm_page_test_dirty(p);
  817                 if ((p->dirty & p->valid) == 0) {
  818                         vm_page_flag_clear(p, PG_CLEANCHK);
  819                         continue;
  820                 }
  821 
  822                 /*
  823                  * If we have been asked to skip nosync pages and this is a
  824                  * nosync page, skip it.  Note that the object flags were
  825                  * not cleared in this case so we do not have to set them.
  826                  */
  827                 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
  828                         vm_page_flag_clear(p, PG_CLEANCHK);
  829                         continue;
  830                 }
  831 
  832                 n = vm_object_page_collect_flush(object, p,
  833                         curgeneration, pagerflags);
  834                 if (n == 0)
  835                         goto rescan;
  836 
  837                 if (object->generation != curgeneration)
  838                         goto rescan;
  839 
  840                 /*
  841                  * Try to optimize the next page.  If we can't we pick up
  842                  * our (random) scan where we left off.
  843                  */
  844                 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
  845                         if ((p = vm_page_lookup(object, pi + n)) != NULL)
  846                                 goto again;
  847                 }
  848         }
  849         vm_page_unlock_queues();
  850 #if 0
  851         VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
  852 #endif
  853 
  854         vm_object_clear_flag(object, OBJ_CLEANING);
  855         return;
  856 }
  857 
  858 static int
  859 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
  860 {
  861         int runlen;
  862         int maxf;
  863         int chkb;
  864         int maxb;
  865         int i;
  866         vm_pindex_t pi;
  867         vm_page_t maf[vm_pageout_page_count];
  868         vm_page_t mab[vm_pageout_page_count];
  869         vm_page_t ma[vm_pageout_page_count];
  870 
  871         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  872         pi = p->pindex;
  873         while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
  874                 vm_page_lock_queues();
  875                 if (object->generation != curgeneration) {
  876                         return(0);
  877                 }
  878         }
  879         maxf = 0;
  880         for(i = 1; i < vm_pageout_page_count; i++) {
  881                 vm_page_t tp;
  882 
  883                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
  884                         if ((tp->flags & PG_BUSY) ||
  885                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
  886                                  (tp->flags & PG_CLEANCHK) == 0) ||
  887                                 (tp->busy != 0))
  888                                 break;
  889                         if((tp->queue - tp->pc) == PQ_CACHE) {
  890                                 vm_page_flag_clear(tp, PG_CLEANCHK);
  891                                 break;
  892                         }
  893                         vm_page_test_dirty(tp);
  894                         if ((tp->dirty & tp->valid) == 0) {
  895                                 vm_page_flag_clear(tp, PG_CLEANCHK);
  896                                 break;
  897                         }
  898                         maf[ i - 1 ] = tp;
  899                         maxf++;
  900                         continue;
  901                 }
  902                 break;
  903         }
  904 
  905         maxb = 0;
  906         chkb = vm_pageout_page_count -  maxf;
  907         if (chkb) {
  908                 for(i = 1; i < chkb;i++) {
  909                         vm_page_t tp;
  910 
  911                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
  912                                 if ((tp->flags & PG_BUSY) ||
  913                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
  914                                          (tp->flags & PG_CLEANCHK) == 0) ||
  915                                         (tp->busy != 0))
  916                                         break;
  917                                 if ((tp->queue - tp->pc) == PQ_CACHE) {
  918                                         vm_page_flag_clear(tp, PG_CLEANCHK);
  919                                         break;
  920                                 }
  921                                 vm_page_test_dirty(tp);
  922                                 if ((tp->dirty & tp->valid) == 0) {
  923                                         vm_page_flag_clear(tp, PG_CLEANCHK);
  924                                         break;
  925                                 }
  926                                 mab[ i - 1 ] = tp;
  927                                 maxb++;
  928                                 continue;
  929                         }
  930                         break;
  931                 }
  932         }
  933 
  934         for(i = 0; i < maxb; i++) {
  935                 int index = (maxb - i) - 1;
  936                 ma[index] = mab[i];
  937                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
  938         }
  939         vm_page_flag_clear(p, PG_CLEANCHK);
  940         ma[maxb] = p;
  941         for(i = 0; i < maxf; i++) {
  942                 int index = (maxb + i) + 1;
  943                 ma[index] = maf[i];
  944                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
  945         }
  946         runlen = maxb + maxf + 1;
  947 
  948         vm_pageout_flush(ma, runlen, pagerflags);
  949         for (i = 0; i < runlen; i++) {
  950                 if (ma[i]->valid & ma[i]->dirty) {
  951                         pmap_page_protect(ma[i], VM_PROT_READ);
  952                         vm_page_flag_set(ma[i], PG_CLEANCHK);
  953 
  954                         /*
  955                          * maxf will end up being the actual number of pages
  956                          * we wrote out contiguously, non-inclusive of the
  957                          * first page.  We do not count look-behind pages.
  958                          */
  959                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
  960                                 maxf = i - maxb - 1;
  961                 }
  962         }
  963         return(maxf + 1);
  964 }
  965 
  966 /*
  967  * Note that there is absolutely no sense in writing out
  968  * anonymous objects, so we track down the vnode object
  969  * to write out.
  970  * We invalidate (remove) all pages from the address space
  971  * for semantic correctness.
  972  *
  973  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
  974  * may start out with a NULL object.
  975  */
  976 void
  977 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
  978     boolean_t syncio, boolean_t invalidate)
  979 {
  980         vm_object_t backing_object;
  981         struct vnode *vp;
  982         int flags;
  983 
  984         if (object == NULL)
  985                 return;
  986         VM_OBJECT_LOCK(object);
  987         while ((backing_object = object->backing_object) != NULL) {
  988                 VM_OBJECT_LOCK(backing_object);
  989                 offset += object->backing_object_offset;
  990                 VM_OBJECT_UNLOCK(object);
  991                 object = backing_object;
  992                 if (object->size < OFF_TO_IDX(offset + size))
  993                         size = IDX_TO_OFF(object->size) - offset;
  994         }
  995         /*
  996          * Flush pages if writing is allowed, invalidate them
  997          * if invalidation requested.  Pages undergoing I/O
  998          * will be ignored by vm_object_page_remove().
  999          *
 1000          * We cannot lock the vnode and then wait for paging
 1001          * to complete without deadlocking against vm_fault.
 1002          * Instead we simply call vm_object_page_remove() and
 1003          * allow it to block internally on a page-by-page
 1004          * basis when it encounters pages undergoing async
 1005          * I/O.
 1006          */
 1007         if (object->type == OBJT_VNODE &&
 1008             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
 1009                 vp = object->handle;
 1010                 VM_OBJECT_UNLOCK(object);
 1011                 mtx_lock(&Giant);
 1012                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
 1013                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
 1014                 flags |= invalidate ? OBJPC_INVAL : 0;
 1015                 VM_OBJECT_LOCK(object);
 1016                 vm_object_page_clean(object,
 1017                     OFF_TO_IDX(offset),
 1018                     OFF_TO_IDX(offset + size + PAGE_MASK),
 1019                     flags);
 1020                 VM_OBJECT_UNLOCK(object);
 1021                 VOP_UNLOCK(vp, 0, curthread);
 1022                 mtx_unlock(&Giant);
 1023                 VM_OBJECT_LOCK(object);
 1024         }
 1025         if ((object->type == OBJT_VNODE ||
 1026              object->type == OBJT_DEVICE) && invalidate) {
 1027                 boolean_t purge;
 1028                 purge = old_msync || (object->type == OBJT_DEVICE);
 1029                 vm_object_page_remove(object,
 1030                     OFF_TO_IDX(offset),
 1031                     OFF_TO_IDX(offset + size + PAGE_MASK),
 1032                     purge ? FALSE : TRUE);
 1033         }
 1034         VM_OBJECT_UNLOCK(object);
 1035 }
 1036 
 1037 /*
 1038  *      vm_object_madvise:
 1039  *
 1040  *      Implements the madvise function at the object/page level.
 1041  *
 1042  *      MADV_WILLNEED   (any object)
 1043  *
 1044  *          Activate the specified pages if they are resident.
 1045  *
 1046  *      MADV_DONTNEED   (any object)
 1047  *
 1048  *          Deactivate the specified pages if they are resident.
 1049  *
 1050  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
 1051  *                       OBJ_ONEMAPPING only)
 1052  *
 1053  *          Deactivate and clean the specified pages if they are
 1054  *          resident.  This permits the process to reuse the pages
 1055  *          without faulting or the kernel to reclaim the pages
 1056  *          without I/O.
 1057  */
 1058 void
 1059 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
 1060 {
 1061         vm_pindex_t end, tpindex;
 1062         vm_object_t backing_object, tobject;
 1063         vm_page_t m;
 1064 
 1065         if (object == NULL)
 1066                 return;
 1067         end = pindex + count;
 1068         /*
 1069          * Locate and adjust resident pages
 1070          */
 1071         for (; pindex < end; pindex += 1) {
 1072 relookup:
 1073                 tobject = object;
 1074                 tpindex = pindex;
 1075                 VM_OBJECT_LOCK(tobject);
 1076 shadowlookup:
 1077                 /*
 1078                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
 1079                  * and those pages must be OBJ_ONEMAPPING.
 1080                  */
 1081                 if (advise == MADV_FREE) {
 1082                         if ((tobject->type != OBJT_DEFAULT &&
 1083                              tobject->type != OBJT_SWAP) ||
 1084                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
 1085                                 goto unlock_tobject;
 1086                         }
 1087                 }
 1088                 m = vm_page_lookup(tobject, tpindex);
 1089                 if (m == NULL) {
 1090                         /*
 1091                          * There may be swap even if there is no backing page
 1092                          */
 1093                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1094                                 swap_pager_freespace(tobject, tpindex, 1);
 1095                         /*
 1096                          * next object
 1097                          */
 1098                         backing_object = tobject->backing_object;
 1099                         if (backing_object == NULL)
 1100                                 goto unlock_tobject;
 1101                         VM_OBJECT_LOCK(backing_object);
 1102                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
 1103                         VM_OBJECT_UNLOCK(tobject);
 1104                         tobject = backing_object;
 1105                         goto shadowlookup;
 1106                 }
 1107                 /*
 1108                  * If the page is busy or not in a normal active state,
 1109                  * we skip it.  If the page is not managed there are no
 1110                  * page queues to mess with.  Things can break if we mess
 1111                  * with pages in any of the below states.
 1112                  */
 1113                 vm_page_lock_queues();
 1114                 if (m->hold_count ||
 1115                     m->wire_count ||
 1116                     (m->flags & PG_UNMANAGED) ||
 1117                     m->valid != VM_PAGE_BITS_ALL) {
 1118                         vm_page_unlock_queues();
 1119                         goto unlock_tobject;
 1120                 }
 1121                 if (vm_page_sleep_if_busy(m, TRUE, "madvpo")) {
 1122                         VM_OBJECT_UNLOCK(tobject);
 1123                         goto relookup;
 1124                 }
 1125                 if (advise == MADV_WILLNEED) {
 1126                         vm_page_activate(m);
 1127                 } else if (advise == MADV_DONTNEED) {
 1128                         vm_page_dontneed(m);
 1129                 } else if (advise == MADV_FREE) {
 1130                         /*
 1131                          * Mark the page clean.  This will allow the page
 1132                          * to be freed up by the system.  However, such pages
 1133                          * are often reused quickly by malloc()/free()
 1134                          * so we do not do anything that would cause
 1135                          * a page fault if we can help it.
 1136                          *
 1137                          * Specifically, we do not try to actually free
 1138                          * the page now nor do we try to put it in the
 1139                          * cache (which would cause a page fault on reuse).
 1140                          *
 1141                          * But we do make the page is freeable as we
 1142                          * can without actually taking the step of unmapping
 1143                          * it.
 1144                          */
 1145                         pmap_clear_modify(m);
 1146                         m->dirty = 0;
 1147                         m->act_count = 0;
 1148                         vm_page_dontneed(m);
 1149                 }
 1150                 vm_page_unlock_queues();
 1151                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1152                         swap_pager_freespace(tobject, tpindex, 1);
 1153 unlock_tobject:
 1154                 VM_OBJECT_UNLOCK(tobject);
 1155         }       
 1156 }
 1157 
 1158 /*
 1159  *      vm_object_shadow:
 1160  *
 1161  *      Create a new object which is backed by the
 1162  *      specified existing object range.  The source
 1163  *      object reference is deallocated.
 1164  *
 1165  *      The new object and offset into that object
 1166  *      are returned in the source parameters.
 1167  */
 1168 void
 1169 vm_object_shadow(
 1170         vm_object_t *object,    /* IN/OUT */
 1171         vm_ooffset_t *offset,   /* IN/OUT */
 1172         vm_size_t length)
 1173 {
 1174         vm_object_t source;
 1175         vm_object_t result;
 1176 
 1177         source = *object;
 1178 
 1179         /*
 1180          * Don't create the new object if the old object isn't shared.
 1181          */
 1182         if (source != NULL) {
 1183                 VM_OBJECT_LOCK(source);
 1184                 if (source->ref_count == 1 &&
 1185                     source->handle == NULL &&
 1186                     (source->type == OBJT_DEFAULT ||
 1187                      source->type == OBJT_SWAP)) {
 1188                         VM_OBJECT_UNLOCK(source);
 1189                         return;
 1190                 }
 1191                 VM_OBJECT_UNLOCK(source);
 1192         }
 1193 
 1194         /*
 1195          * Allocate a new object with the given length.
 1196          */
 1197         result = vm_object_allocate(OBJT_DEFAULT, length);
 1198 
 1199         /*
 1200          * The new object shadows the source object, adding a reference to it.
 1201          * Our caller changes his reference to point to the new object,
 1202          * removing a reference to the source object.  Net result: no change
 1203          * of reference count.
 1204          *
 1205          * Try to optimize the result object's page color when shadowing
 1206          * in order to maintain page coloring consistency in the combined 
 1207          * shadowed object.
 1208          */
 1209         result->backing_object = source;
 1210         /*
 1211          * Store the offset into the source object, and fix up the offset into
 1212          * the new object.
 1213          */
 1214         result->backing_object_offset = *offset;
 1215         if (source != NULL) {
 1216                 VM_OBJECT_LOCK(source);
 1217                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
 1218                 source->shadow_count++;
 1219                 source->generation++;
 1220                 if (length < source->size)
 1221                         length = source->size;
 1222                 if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
 1223                     source->generation > 1)
 1224                         length = PQ_L2_SIZE / 3 + PQ_PRIME1;
 1225                 result->pg_color = (source->pg_color +
 1226                     length * source->generation) & PQ_L2_MASK;
 1227                 VM_OBJECT_UNLOCK(source);
 1228                 next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
 1229                     PQ_L2_MASK;
 1230         }
 1231 
 1232 
 1233         /*
 1234          * Return the new things
 1235          */
 1236         *offset = 0;
 1237         *object = result;
 1238 }
 1239 
 1240 /*
 1241  *      vm_object_split:
 1242  *
 1243  * Split the pages in a map entry into a new object.  This affords
 1244  * easier removal of unused pages, and keeps object inheritance from
 1245  * being a negative impact on memory usage.
 1246  */
 1247 void
 1248 vm_object_split(vm_map_entry_t entry)
 1249 {
 1250         vm_page_t m;
 1251         vm_object_t orig_object, new_object, source;
 1252         vm_pindex_t offidxstart, offidxend;
 1253         vm_size_t idx, size;
 1254 
 1255         orig_object = entry->object.vm_object;
 1256         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
 1257                 return;
 1258         if (orig_object->ref_count <= 1)
 1259                 return;
 1260         VM_OBJECT_UNLOCK(orig_object);
 1261 
 1262         offidxstart = OFF_TO_IDX(entry->offset);
 1263         offidxend = offidxstart + OFF_TO_IDX(entry->end - entry->start);
 1264         size = offidxend - offidxstart;
 1265 
 1266         /*
 1267          * If swap_pager_copy() is later called, it will convert new_object
 1268          * into a swap object.
 1269          */
 1270         new_object = vm_object_allocate(OBJT_DEFAULT, size);
 1271 
 1272         VM_OBJECT_LOCK(new_object);
 1273         VM_OBJECT_LOCK(orig_object);
 1274         source = orig_object->backing_object;
 1275         if (source != NULL) {
 1276                 VM_OBJECT_LOCK(source);
 1277                 LIST_INSERT_HEAD(&source->shadow_head,
 1278                                   new_object, shadow_list);
 1279                 source->shadow_count++;
 1280                 source->generation++;
 1281                 vm_object_reference_locked(source);     /* for new_object */
 1282                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1283                 VM_OBJECT_UNLOCK(source);
 1284                 new_object->backing_object_offset = 
 1285                         orig_object->backing_object_offset + entry->offset;
 1286                 new_object->backing_object = source;
 1287         }
 1288         for (idx = 0; idx < size; idx++) {
 1289         retry:
 1290                 m = vm_page_lookup(orig_object, offidxstart + idx);
 1291                 if (m == NULL)
 1292                         continue;
 1293 
 1294                 /*
 1295                  * We must wait for pending I/O to complete before we can
 1296                  * rename the page.
 1297                  *
 1298                  * We do not have to VM_PROT_NONE the page as mappings should
 1299                  * not be changed by this operation.
 1300                  */
 1301                 vm_page_lock_queues();
 1302                 if ((m->flags & PG_BUSY) || m->busy) {
 1303                         vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
 1304                         VM_OBJECT_UNLOCK(orig_object);
 1305                         VM_OBJECT_UNLOCK(new_object);
 1306                         msleep(m, &vm_page_queue_mtx, PDROP | PVM, "spltwt", 0);
 1307                         VM_OBJECT_LOCK(new_object);
 1308                         VM_OBJECT_LOCK(orig_object);
 1309                         goto retry;
 1310                 }
 1311                 vm_page_busy(m);
 1312                 vm_page_rename(m, new_object, idx);
 1313                 /* page automatically made dirty by rename and cache handled */
 1314                 vm_page_busy(m);
 1315                 vm_page_unlock_queues();
 1316         }
 1317         if (orig_object->type == OBJT_SWAP) {
 1318                 /*
 1319                  * swap_pager_copy() can sleep, in which case the orig_object's
 1320                  * and new_object's locks are released and reacquired. 
 1321                  */
 1322                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
 1323         }
 1324         VM_OBJECT_UNLOCK(orig_object);
 1325         vm_page_lock_queues();
 1326         TAILQ_FOREACH(m, &new_object->memq, listq)
 1327                 vm_page_wakeup(m);
 1328         vm_page_unlock_queues();
 1329         VM_OBJECT_UNLOCK(new_object);
 1330         entry->object.vm_object = new_object;
 1331         entry->offset = 0LL;
 1332         vm_object_deallocate(orig_object);
 1333         VM_OBJECT_LOCK(new_object);
 1334 }
 1335 
 1336 #define OBSC_TEST_ALL_SHADOWED  0x0001
 1337 #define OBSC_COLLAPSE_NOWAIT    0x0002
 1338 #define OBSC_COLLAPSE_WAIT      0x0004
 1339 
 1340 static int
 1341 vm_object_backing_scan(vm_object_t object, int op)
 1342 {
 1343         int r = 1;
 1344         vm_page_t p;
 1345         vm_object_t backing_object;
 1346         vm_pindex_t backing_offset_index;
 1347 
 1348         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1349         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
 1350 
 1351         backing_object = object->backing_object;
 1352         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1353 
 1354         /*
 1355          * Initial conditions
 1356          */
 1357         if (op & OBSC_TEST_ALL_SHADOWED) {
 1358                 /*
 1359                  * We do not want to have to test for the existence of
 1360                  * swap pages in the backing object.  XXX but with the
 1361                  * new swapper this would be pretty easy to do.
 1362                  *
 1363                  * XXX what about anonymous MAP_SHARED memory that hasn't
 1364                  * been ZFOD faulted yet?  If we do not test for this, the
 1365                  * shadow test may succeed! XXX
 1366                  */
 1367                 if (backing_object->type != OBJT_DEFAULT) {
 1368                         return (0);
 1369                 }
 1370         }
 1371         if (op & OBSC_COLLAPSE_WAIT) {
 1372                 vm_object_set_flag(backing_object, OBJ_DEAD);
 1373         }
 1374 
 1375         /*
 1376          * Our scan
 1377          */
 1378         p = TAILQ_FIRST(&backing_object->memq);
 1379         while (p) {
 1380                 vm_page_t next = TAILQ_NEXT(p, listq);
 1381                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
 1382 
 1383                 if (op & OBSC_TEST_ALL_SHADOWED) {
 1384                         vm_page_t pp;
 1385 
 1386                         /*
 1387                          * Ignore pages outside the parent object's range
 1388                          * and outside the parent object's mapping of the 
 1389                          * backing object.
 1390                          *
 1391                          * note that we do not busy the backing object's
 1392                          * page.
 1393                          */
 1394                         if (
 1395                             p->pindex < backing_offset_index ||
 1396                             new_pindex >= object->size
 1397                         ) {
 1398                                 p = next;
 1399                                 continue;
 1400                         }
 1401 
 1402                         /*
 1403                          * See if the parent has the page or if the parent's
 1404                          * object pager has the page.  If the parent has the
 1405                          * page but the page is not valid, the parent's
 1406                          * object pager must have the page.
 1407                          *
 1408                          * If this fails, the parent does not completely shadow
 1409                          * the object and we might as well give up now.
 1410                          */
 1411 
 1412                         pp = vm_page_lookup(object, new_pindex);
 1413                         if (
 1414                             (pp == NULL || pp->valid == 0) &&
 1415                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
 1416                         ) {
 1417                                 r = 0;
 1418                                 break;
 1419                         }
 1420                 }
 1421 
 1422                 /*
 1423                  * Check for busy page
 1424                  */
 1425                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
 1426                         vm_page_t pp;
 1427 
 1428                         vm_page_lock_queues();
 1429                         if (op & OBSC_COLLAPSE_NOWAIT) {
 1430                                 if ((p->flags & PG_BUSY) ||
 1431                                     !p->valid || 
 1432                                     p->hold_count || 
 1433                                     p->wire_count ||
 1434                                     p->busy) {
 1435                                         vm_page_unlock_queues();
 1436                                         p = next;
 1437                                         continue;
 1438                                 }
 1439                         } else if (op & OBSC_COLLAPSE_WAIT) {
 1440                                 if ((p->flags & PG_BUSY) || p->busy) {
 1441                                         vm_page_flag_set(p,
 1442                                             PG_WANTED | PG_REFERENCED);
 1443                                         VM_OBJECT_UNLOCK(backing_object);
 1444                                         VM_OBJECT_UNLOCK(object);
 1445                                         msleep(p, &vm_page_queue_mtx,
 1446                                             PDROP | PVM, "vmocol", 0);
 1447                                         VM_OBJECT_LOCK(object);
 1448                                         VM_OBJECT_LOCK(backing_object);
 1449                                         /*
 1450                                          * If we slept, anything could have
 1451                                          * happened.  Since the object is
 1452                                          * marked dead, the backing offset
 1453                                          * should not have changed so we
 1454                                          * just restart our scan.
 1455                                          */
 1456                                         p = TAILQ_FIRST(&backing_object->memq);
 1457                                         continue;
 1458                                 }
 1459                         }
 1460 
 1461                         /* 
 1462                          * Busy the page
 1463                          */
 1464                         vm_page_busy(p);
 1465                         vm_page_unlock_queues();
 1466 
 1467                         KASSERT(
 1468                             p->object == backing_object,
 1469                             ("vm_object_qcollapse(): object mismatch")
 1470                         );
 1471 
 1472                         /*
 1473                          * Destroy any associated swap
 1474                          */
 1475                         if (backing_object->type == OBJT_SWAP) {
 1476                                 swap_pager_freespace(
 1477                                     backing_object, 
 1478                                     p->pindex,
 1479                                     1
 1480                                 );
 1481                         }
 1482 
 1483                         if (
 1484                             p->pindex < backing_offset_index ||
 1485                             new_pindex >= object->size
 1486                         ) {
 1487                                 /*
 1488                                  * Page is out of the parent object's range, we 
 1489                                  * can simply destroy it. 
 1490                                  */
 1491                                 vm_page_lock_queues();
 1492                                 pmap_remove_all(p);
 1493                                 vm_page_free(p);
 1494                                 vm_page_unlock_queues();
 1495                                 p = next;
 1496                                 continue;
 1497                         }
 1498 
 1499                         pp = vm_page_lookup(object, new_pindex);
 1500                         if (
 1501                             pp != NULL ||
 1502                             vm_pager_has_page(object, new_pindex, NULL, NULL)
 1503                         ) {
 1504                                 /*
 1505                                  * page already exists in parent OR swap exists
 1506                                  * for this location in the parent.  Destroy 
 1507                                  * the original page from the backing object.
 1508                                  *
 1509                                  * Leave the parent's page alone
 1510                                  */
 1511                                 vm_page_lock_queues();
 1512                                 pmap_remove_all(p);
 1513                                 vm_page_free(p);
 1514                                 vm_page_unlock_queues();
 1515                                 p = next;
 1516                                 continue;
 1517                         }
 1518 
 1519                         /*
 1520                          * Page does not exist in parent, rename the
 1521                          * page from the backing object to the main object. 
 1522                          *
 1523                          * If the page was mapped to a process, it can remain 
 1524                          * mapped through the rename.
 1525                          */
 1526                         vm_page_lock_queues();
 1527                         vm_page_rename(p, object, new_pindex);
 1528                         vm_page_unlock_queues();
 1529                         /* page automatically made dirty by rename */
 1530                 }
 1531                 p = next;
 1532         }
 1533         return (r);
 1534 }
 1535 
 1536 
 1537 /*
 1538  * this version of collapse allows the operation to occur earlier and
 1539  * when paging_in_progress is true for an object...  This is not a complete
 1540  * operation, but should plug 99.9% of the rest of the leaks.
 1541  */
 1542 static void
 1543 vm_object_qcollapse(vm_object_t object)
 1544 {
 1545         vm_object_t backing_object = object->backing_object;
 1546 
 1547         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1548         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
 1549 
 1550         if (backing_object->ref_count != 1)
 1551                 return;
 1552 
 1553         backing_object->ref_count += 2;
 1554 
 1555         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
 1556 
 1557         backing_object->ref_count -= 2;
 1558 }
 1559 
 1560 /*
 1561  *      vm_object_collapse:
 1562  *
 1563  *      Collapse an object with the object backing it.
 1564  *      Pages in the backing object are moved into the
 1565  *      parent, and the backing object is deallocated.
 1566  */
 1567 void
 1568 vm_object_collapse(vm_object_t object)
 1569 {
 1570         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1571         
 1572         while (TRUE) {
 1573                 vm_object_t backing_object;
 1574 
 1575                 /*
 1576                  * Verify that the conditions are right for collapse:
 1577                  *
 1578                  * The object exists and the backing object exists.
 1579                  */
 1580                 if ((backing_object = object->backing_object) == NULL)
 1581                         break;
 1582 
 1583                 /*
 1584                  * we check the backing object first, because it is most likely
 1585                  * not collapsable.
 1586                  */
 1587                 VM_OBJECT_LOCK(backing_object);
 1588                 if (backing_object->handle != NULL ||
 1589                     (backing_object->type != OBJT_DEFAULT &&
 1590                      backing_object->type != OBJT_SWAP) ||
 1591                     (backing_object->flags & OBJ_DEAD) ||
 1592                     object->handle != NULL ||
 1593                     (object->type != OBJT_DEFAULT &&
 1594                      object->type != OBJT_SWAP) ||
 1595                     (object->flags & OBJ_DEAD)) {
 1596                         VM_OBJECT_UNLOCK(backing_object);
 1597                         break;
 1598                 }
 1599 
 1600                 if (
 1601                     object->paging_in_progress != 0 ||
 1602                     backing_object->paging_in_progress != 0
 1603                 ) {
 1604                         vm_object_qcollapse(object);
 1605                         VM_OBJECT_UNLOCK(backing_object);
 1606                         break;
 1607                 }
 1608                 /*
 1609                  * We know that we can either collapse the backing object (if
 1610                  * the parent is the only reference to it) or (perhaps) have
 1611                  * the parent bypass the object if the parent happens to shadow
 1612                  * all the resident pages in the entire backing object.
 1613                  *
 1614                  * This is ignoring pager-backed pages such as swap pages.
 1615                  * vm_object_backing_scan fails the shadowing test in this
 1616                  * case.
 1617                  */
 1618                 if (backing_object->ref_count == 1) {
 1619                         /*
 1620                          * If there is exactly one reference to the backing
 1621                          * object, we can collapse it into the parent.  
 1622                          */
 1623                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
 1624 
 1625                         /*
 1626                          * Move the pager from backing_object to object.
 1627                          */
 1628                         if (backing_object->type == OBJT_SWAP) {
 1629                                 /*
 1630                                  * swap_pager_copy() can sleep, in which case
 1631                                  * the backing_object's and object's locks are
 1632                                  * released and reacquired.
 1633                                  */
 1634                                 swap_pager_copy(
 1635                                     backing_object,
 1636                                     object,
 1637                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
 1638                         }
 1639                         /*
 1640                          * Object now shadows whatever backing_object did.
 1641                          * Note that the reference to 
 1642                          * backing_object->backing_object moves from within 
 1643                          * backing_object to within object.
 1644                          */
 1645                         LIST_REMOVE(object, shadow_list);
 1646                         backing_object->shadow_count--;
 1647                         backing_object->generation++;
 1648                         if (backing_object->backing_object) {
 1649                                 VM_OBJECT_LOCK(backing_object->backing_object);
 1650                                 LIST_REMOVE(backing_object, shadow_list);
 1651                                 LIST_INSERT_HEAD(
 1652                                     &backing_object->backing_object->shadow_head,
 1653                                     object, shadow_list);
 1654                                 /*
 1655                                  * The shadow_count has not changed.
 1656                                  */
 1657                                 backing_object->backing_object->generation++;
 1658                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
 1659                         }
 1660                         object->backing_object = backing_object->backing_object;
 1661                         object->backing_object_offset +=
 1662                             backing_object->backing_object_offset;
 1663 
 1664                         /*
 1665                          * Discard backing_object.
 1666                          *
 1667                          * Since the backing object has no pages, no pager left,
 1668                          * and no object references within it, all that is
 1669                          * necessary is to dispose of it.
 1670                          */
 1671                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
 1672                         VM_OBJECT_UNLOCK(backing_object);
 1673 
 1674                         mtx_lock(&vm_object_list_mtx);
 1675                         TAILQ_REMOVE(
 1676                             &vm_object_list, 
 1677                             backing_object,
 1678                             object_list
 1679                         );
 1680                         mtx_unlock(&vm_object_list_mtx);
 1681 
 1682                         uma_zfree(obj_zone, backing_object);
 1683 
 1684                         object_collapses++;
 1685                 } else {
 1686                         vm_object_t new_backing_object;
 1687 
 1688                         /*
 1689                          * If we do not entirely shadow the backing object,
 1690                          * there is nothing we can do so we give up.
 1691                          */
 1692                         if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
 1693                                 VM_OBJECT_UNLOCK(backing_object);
 1694                                 break;
 1695                         }
 1696 
 1697                         /*
 1698                          * Make the parent shadow the next object in the
 1699                          * chain.  Deallocating backing_object will not remove
 1700                          * it, since its reference count is at least 2.
 1701                          */
 1702                         LIST_REMOVE(object, shadow_list);
 1703                         backing_object->shadow_count--;
 1704                         backing_object->generation++;
 1705 
 1706                         new_backing_object = backing_object->backing_object;
 1707                         if ((object->backing_object = new_backing_object) != NULL) {
 1708                                 VM_OBJECT_LOCK(new_backing_object);
 1709                                 LIST_INSERT_HEAD(
 1710                                     &new_backing_object->shadow_head,
 1711                                     object,
 1712                                     shadow_list
 1713                                 );
 1714                                 new_backing_object->shadow_count++;
 1715                                 new_backing_object->generation++;
 1716                                 vm_object_reference_locked(new_backing_object);
 1717                                 VM_OBJECT_UNLOCK(new_backing_object);
 1718                                 object->backing_object_offset +=
 1719                                         backing_object->backing_object_offset;
 1720                         }
 1721 
 1722                         /*
 1723                          * Drop the reference count on backing_object. Since
 1724                          * its ref_count was at least 2, it will not vanish.
 1725                          */
 1726                         backing_object->ref_count--;
 1727                         VM_OBJECT_UNLOCK(backing_object);
 1728                         object_bypasses++;
 1729                 }
 1730 
 1731                 /*
 1732                  * Try again with this object's new backing object.
 1733                  */
 1734         }
 1735 }
 1736 
 1737 /*
 1738  *      vm_object_page_remove:
 1739  *
 1740  *      Removes all physical pages in the given range from the
 1741  *      object's list of pages.  If the range's end is zero, all
 1742  *      physical pages from the range's start to the end of the object
 1743  *      are deleted.
 1744  *
 1745  *      The object must be locked.
 1746  */
 1747 void
 1748 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 1749     boolean_t clean_only)
 1750 {
 1751         vm_page_t p, next;
 1752 
 1753         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1754         if (object->resident_page_count == 0)
 1755                 return;
 1756 
 1757         /*
 1758          * Since physically-backed objects do not use managed pages, we can't
 1759          * remove pages from the object (we must instead remove the page
 1760          * references, and then destroy the object).
 1761          */
 1762         KASSERT(object->type != OBJT_PHYS,
 1763             ("attempt to remove pages from a physical object"));
 1764 
 1765         vm_object_pip_add(object, 1);
 1766 again:
 1767         vm_page_lock_queues();
 1768         if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
 1769                 if (p->pindex < start) {
 1770                         p = vm_page_splay(start, object->root);
 1771                         if ((object->root = p)->pindex < start)
 1772                                 p = TAILQ_NEXT(p, listq);
 1773                 }
 1774         }
 1775         /*
 1776          * Assert: the variable p is either (1) the page with the
 1777          * least pindex greater than or equal to the parameter pindex
 1778          * or (2) NULL.
 1779          */
 1780         for (;
 1781              p != NULL && (p->pindex < end || end == 0);
 1782              p = next) {
 1783                 next = TAILQ_NEXT(p, listq);
 1784 
 1785                 if (p->wire_count != 0) {
 1786                         pmap_remove_all(p);
 1787                         if (!clean_only)
 1788                                 p->valid = 0;
 1789                         continue;
 1790                 }
 1791                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
 1792                         goto again;
 1793                 if (clean_only && p->valid) {
 1794                         pmap_page_protect(p, VM_PROT_READ | VM_PROT_EXECUTE);
 1795                         if (p->valid & p->dirty)
 1796                                 continue;
 1797                 }
 1798                 vm_page_busy(p);
 1799                 pmap_remove_all(p);
 1800                 vm_page_free(p);
 1801         }
 1802         vm_page_unlock_queues();
 1803         vm_object_pip_wakeup(object);
 1804 }
 1805 
 1806 /*
 1807  *      Routine:        vm_object_coalesce
 1808  *      Function:       Coalesces two objects backing up adjoining
 1809  *                      regions of memory into a single object.
 1810  *
 1811  *      returns TRUE if objects were combined.
 1812  *
 1813  *      NOTE:   Only works at the moment if the second object is NULL -
 1814  *              if it's not, which object do we lock first?
 1815  *
 1816  *      Parameters:
 1817  *              prev_object     First object to coalesce
 1818  *              prev_offset     Offset into prev_object
 1819  *              prev_size       Size of reference to prev_object
 1820  *              next_size       Size of reference to the second object
 1821  *
 1822  *      Conditions:
 1823  *      The object must *not* be locked.
 1824  */
 1825 boolean_t
 1826 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
 1827         vm_size_t prev_size, vm_size_t next_size)
 1828 {
 1829         vm_pindex_t next_pindex;
 1830 
 1831         if (prev_object == NULL)
 1832                 return (TRUE);
 1833         VM_OBJECT_LOCK(prev_object);
 1834         if (prev_object->type != OBJT_DEFAULT &&
 1835             prev_object->type != OBJT_SWAP) {
 1836                 VM_OBJECT_UNLOCK(prev_object);
 1837                 return (FALSE);
 1838         }
 1839 
 1840         /*
 1841          * Try to collapse the object first
 1842          */
 1843         vm_object_collapse(prev_object);
 1844 
 1845         /*
 1846          * Can't coalesce if: . more than one reference . paged out . shadows
 1847          * another object . has a copy elsewhere (any of which mean that the
 1848          * pages not mapped to prev_entry may be in use anyway)
 1849          */
 1850         if (prev_object->backing_object != NULL) {
 1851                 VM_OBJECT_UNLOCK(prev_object);
 1852                 return (FALSE);
 1853         }
 1854 
 1855         prev_size >>= PAGE_SHIFT;
 1856         next_size >>= PAGE_SHIFT;
 1857         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
 1858 
 1859         if ((prev_object->ref_count > 1) &&
 1860             (prev_object->size != next_pindex)) {
 1861                 VM_OBJECT_UNLOCK(prev_object);
 1862                 return (FALSE);
 1863         }
 1864 
 1865         /*
 1866          * Remove any pages that may still be in the object from a previous
 1867          * deallocation.
 1868          */
 1869         if (next_pindex < prev_object->size) {
 1870                 vm_object_page_remove(prev_object,
 1871                                       next_pindex,
 1872                                       next_pindex + next_size, FALSE);
 1873                 if (prev_object->type == OBJT_SWAP)
 1874                         swap_pager_freespace(prev_object,
 1875                                              next_pindex, next_size);
 1876         }
 1877 
 1878         /*
 1879          * Extend the object if necessary.
 1880          */
 1881         if (next_pindex + next_size > prev_object->size)
 1882                 prev_object->size = next_pindex + next_size;
 1883 
 1884         VM_OBJECT_UNLOCK(prev_object);
 1885         return (TRUE);
 1886 }
 1887 
 1888 void
 1889 vm_object_set_writeable_dirty(vm_object_t object)
 1890 {
 1891         struct vnode *vp;
 1892 
 1893         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1894         vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
 1895         if (object->type == OBJT_VNODE &&
 1896             (vp = (struct vnode *)object->handle) != NULL) {
 1897                 VI_LOCK(vp);
 1898                 if ((vp->v_iflag & VI_OBJDIRTY) == 0)
 1899                         vp->v_iflag |= VI_OBJDIRTY;
 1900                 VI_UNLOCK(vp);
 1901         }
 1902 }
 1903 
 1904 #include "opt_ddb.h"
 1905 #ifdef DDB
 1906 #include <sys/kernel.h>
 1907 
 1908 #include <sys/cons.h>
 1909 
 1910 #include <ddb/ddb.h>
 1911 
 1912 static int
 1913 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
 1914 {
 1915         vm_map_t tmpm;
 1916         vm_map_entry_t tmpe;
 1917         vm_object_t obj;
 1918         int entcount;
 1919 
 1920         if (map == 0)
 1921                 return 0;
 1922 
 1923         if (entry == 0) {
 1924                 tmpe = map->header.next;
 1925                 entcount = map->nentries;
 1926                 while (entcount-- && (tmpe != &map->header)) {
 1927                         if (_vm_object_in_map(map, object, tmpe)) {
 1928                                 return 1;
 1929                         }
 1930                         tmpe = tmpe->next;
 1931                 }
 1932         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 1933                 tmpm = entry->object.sub_map;
 1934                 tmpe = tmpm->header.next;
 1935                 entcount = tmpm->nentries;
 1936                 while (entcount-- && tmpe != &tmpm->header) {
 1937                         if (_vm_object_in_map(tmpm, object, tmpe)) {
 1938                                 return 1;
 1939                         }
 1940                         tmpe = tmpe->next;
 1941                 }
 1942         } else if ((obj = entry->object.vm_object) != NULL) {
 1943                 for (; obj; obj = obj->backing_object)
 1944                         if (obj == object) {
 1945                                 return 1;
 1946                         }
 1947         }
 1948         return 0;
 1949 }
 1950 
 1951 static int
 1952 vm_object_in_map(vm_object_t object)
 1953 {
 1954         struct proc *p;
 1955 
 1956         /* sx_slock(&allproc_lock); */
 1957         LIST_FOREACH(p, &allproc, p_list) {
 1958                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
 1959                         continue;
 1960                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
 1961                         /* sx_sunlock(&allproc_lock); */
 1962                         return 1;
 1963                 }
 1964         }
 1965         /* sx_sunlock(&allproc_lock); */
 1966         if (_vm_object_in_map(kernel_map, object, 0))
 1967                 return 1;
 1968         if (_vm_object_in_map(kmem_map, object, 0))
 1969                 return 1;
 1970         if (_vm_object_in_map(pager_map, object, 0))
 1971                 return 1;
 1972         if (_vm_object_in_map(buffer_map, object, 0))
 1973                 return 1;
 1974         return 0;
 1975 }
 1976 
 1977 DB_SHOW_COMMAND(vmochk, vm_object_check)
 1978 {
 1979         vm_object_t object;
 1980 
 1981         /*
 1982          * make sure that internal objs are in a map somewhere
 1983          * and none have zero ref counts.
 1984          */
 1985         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 1986                 if (object->handle == NULL &&
 1987                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
 1988                         if (object->ref_count == 0) {
 1989                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
 1990                                         (long)object->size);
 1991                         }
 1992                         if (!vm_object_in_map(object)) {
 1993                                 db_printf(
 1994                         "vmochk: internal obj is not in a map: "
 1995                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
 1996                                     object->ref_count, (u_long)object->size, 
 1997                                     (u_long)object->size,
 1998                                     (void *)object->backing_object);
 1999                         }
 2000                 }
 2001         }
 2002 }
 2003 
 2004 /*
 2005  *      vm_object_print:        [ debug ]
 2006  */
 2007 DB_SHOW_COMMAND(object, vm_object_print_static)
 2008 {
 2009         /* XXX convert args. */
 2010         vm_object_t object = (vm_object_t)addr;
 2011         boolean_t full = have_addr;
 2012 
 2013         vm_page_t p;
 2014 
 2015         /* XXX count is an (unused) arg.  Avoid shadowing it. */
 2016 #define count   was_count
 2017 
 2018         int count;
 2019 
 2020         if (object == NULL)
 2021                 return;
 2022 
 2023         db_iprintf(
 2024             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
 2025             object, (int)object->type, (uintmax_t)object->size,
 2026             object->resident_page_count, object->ref_count, object->flags);
 2027         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
 2028             object->shadow_count, 
 2029             object->backing_object ? object->backing_object->ref_count : 0,
 2030             object->backing_object, (uintmax_t)object->backing_object_offset);
 2031 
 2032         if (!full)
 2033                 return;
 2034 
 2035         db_indent += 2;
 2036         count = 0;
 2037         TAILQ_FOREACH(p, &object->memq, listq) {
 2038                 if (count == 0)
 2039                         db_iprintf("memory:=");
 2040                 else if (count == 6) {
 2041                         db_printf("\n");
 2042                         db_iprintf(" ...");
 2043                         count = 0;
 2044                 } else
 2045                         db_printf(",");
 2046                 count++;
 2047 
 2048                 db_printf("(off=0x%jx,page=0x%jx)",
 2049                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
 2050         }
 2051         if (count != 0)
 2052                 db_printf("\n");
 2053         db_indent -= 2;
 2054 }
 2055 
 2056 /* XXX. */
 2057 #undef count
 2058 
 2059 /* XXX need this non-static entry for calling from vm_map_print. */
 2060 void
 2061 vm_object_print(
 2062         /* db_expr_t */ long addr,
 2063         boolean_t have_addr,
 2064         /* db_expr_t */ long count,
 2065         char *modif)
 2066 {
 2067         vm_object_print_static(addr, have_addr, count, modif);
 2068 }
 2069 
 2070 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
 2071 {
 2072         vm_object_t object;
 2073         int nl = 0;
 2074         int c;
 2075 
 2076         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2077                 vm_pindex_t idx, fidx;
 2078                 vm_pindex_t osize;
 2079                 vm_paddr_t pa = -1, padiff;
 2080                 int rcount;
 2081                 vm_page_t m;
 2082 
 2083                 db_printf("new object: %p\n", (void *)object);
 2084                 if (nl > 18) {
 2085                         c = cngetc();
 2086                         if (c != ' ')
 2087                                 return;
 2088                         nl = 0;
 2089                 }
 2090                 nl++;
 2091                 rcount = 0;
 2092                 fidx = 0;
 2093                 osize = object->size;
 2094                 if (osize > 128)
 2095                         osize = 128;
 2096                 for (idx = 0; idx < osize; idx++) {
 2097                         m = vm_page_lookup(object, idx);
 2098                         if (m == NULL) {
 2099                                 if (rcount) {
 2100                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2101                                                 (long)fidx, rcount, (long)pa);
 2102                                         if (nl > 18) {
 2103                                                 c = cngetc();
 2104                                                 if (c != ' ')
 2105                                                         return;
 2106                                                 nl = 0;
 2107                                         }
 2108                                         nl++;
 2109                                         rcount = 0;
 2110                                 }
 2111                                 continue;
 2112                         }
 2113 
 2114                                 
 2115                         if (rcount &&
 2116                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
 2117                                 ++rcount;
 2118                                 continue;
 2119                         }
 2120                         if (rcount) {
 2121                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
 2122                                 padiff >>= PAGE_SHIFT;
 2123                                 padiff &= PQ_L2_MASK;
 2124                                 if (padiff == 0) {
 2125                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
 2126                                         ++rcount;
 2127                                         continue;
 2128                                 }
 2129                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
 2130                                         (long)fidx, rcount, (long)pa);
 2131                                 db_printf("pd(%ld)\n", (long)padiff);
 2132                                 if (nl > 18) {
 2133                                         c = cngetc();
 2134                                         if (c != ' ')
 2135                                                 return;
 2136                                         nl = 0;
 2137                                 }
 2138                                 nl++;
 2139                         }
 2140                         fidx = idx;
 2141                         pa = VM_PAGE_TO_PHYS(m);
 2142                         rcount = 1;
 2143                 }
 2144                 if (rcount) {
 2145                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2146                                 (long)fidx, rcount, (long)pa);
 2147                         if (nl > 18) {
 2148                                 c = cngetc();
 2149                                 if (c != ' ')
 2150                                         return;
 2151                                 nl = 0;
 2152                         }
 2153                         nl++;
 2154                 }
 2155         }
 2156 }
 2157 #endif /* DDB */

Cache object: f9d1ba8b16ca9d108411f85c38a2e7a0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.