FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61 /*
62 * Virtual memory object module.
63 */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD: releng/6.0/sys/vm/vm_object.c 151710 2005-10-26 20:22:00Z delphij $");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/lock.h>
71 #include <sys/mman.h>
72 #include <sys/mount.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h> /* for curproc, pageproc */
77 #include <sys/socket.h>
78 #include <sys/vnode.h>
79 #include <sys/vmmeter.h>
80 #include <sys/sx.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/uma.h>
94
95 #define EASY_SCAN_FACTOR 8
96
97 #define MSYNC_FLUSH_HARDSEQ 0x01
98 #define MSYNC_FLUSH_SOFTSEQ 0x02
99
100 /*
101 * msync / VM object flushing optimizations
102 */
103 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
104 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
105 CTLFLAG_RW, &msync_flush_flags, 0, "");
106
107 static int old_msync;
108 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
109 "Use old (insecure) msync behavior");
110
111 static void vm_object_qcollapse(vm_object_t object);
112 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113
114 /*
115 * Virtual memory objects maintain the actual data
116 * associated with allocated virtual memory. A given
117 * page of memory exists within exactly one object.
118 *
119 * An object is only deallocated when all "references"
120 * are given up. Only one "reference" to a given
121 * region of an object should be writeable.
122 *
123 * Associated with each object is a list of all resident
124 * memory pages belonging to that object; this list is
125 * maintained by the "vm_page" module, and locked by the object's
126 * lock.
127 *
128 * Each object also records a "pager" routine which is
129 * used to retrieve (and store) pages to the proper backing
130 * storage. In addition, objects may be backed by other
131 * objects from which they were virtual-copied.
132 *
133 * The only items within the object structure which are
134 * modified after time of creation are:
135 * reference count locked by object's lock
136 * pager routine locked by object's lock
137 *
138 */
139
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx; /* lock for object list and count */
142
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145
146 static long object_collapses;
147 static long object_bypasses;
148
149 /*
150 * next_index determines the page color that is assigned to the next
151 * allocated object. Accesses to next_index are not synchronized
152 * because the effects of two or more object allocations using
153 * next_index simultaneously are inconsequential. At any given time,
154 * numerous objects have the same page color.
155 */
156 static int next_index;
157
158 static uma_zone_t obj_zone;
159 #define VM_OBJECTS_INIT 256
160
161 static int vm_object_zinit(void *mem, int size, int flags);
162
163 #ifdef INVARIANTS
164 static void vm_object_zdtor(void *mem, int size, void *arg);
165
166 static void
167 vm_object_zdtor(void *mem, int size, void *arg)
168 {
169 vm_object_t object;
170
171 object = (vm_object_t)mem;
172 KASSERT(TAILQ_EMPTY(&object->memq),
173 ("object %p has resident pages",
174 object));
175 KASSERT(object->paging_in_progress == 0,
176 ("object %p paging_in_progress = %d",
177 object, object->paging_in_progress));
178 KASSERT(object->resident_page_count == 0,
179 ("object %p resident_page_count = %d",
180 object, object->resident_page_count));
181 KASSERT(object->shadow_count == 0,
182 ("object %p shadow_count = %d",
183 object, object->shadow_count));
184 }
185 #endif
186
187 static int
188 vm_object_zinit(void *mem, int size, int flags)
189 {
190 vm_object_t object;
191
192 object = (vm_object_t)mem;
193 bzero(&object->mtx, sizeof(object->mtx));
194 VM_OBJECT_LOCK_INIT(object, "standard object");
195
196 /* These are true for any object that has been freed */
197 object->paging_in_progress = 0;
198 object->resident_page_count = 0;
199 object->shadow_count = 0;
200 return (0);
201 }
202
203 void
204 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
205 {
206 int incr;
207
208 TAILQ_INIT(&object->memq);
209 LIST_INIT(&object->shadow_head);
210
211 object->root = NULL;
212 object->type = type;
213 object->size = size;
214 object->generation = 1;
215 object->ref_count = 1;
216 object->flags = 0;
217 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
218 object->flags = OBJ_ONEMAPPING;
219 if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
220 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
221 else
222 incr = size;
223 object->pg_color = next_index;
224 next_index = (object->pg_color + incr) & PQ_L2_MASK;
225 object->handle = NULL;
226 object->backing_object = NULL;
227 object->backing_object_offset = (vm_ooffset_t) 0;
228
229 mtx_lock(&vm_object_list_mtx);
230 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231 mtx_unlock(&vm_object_list_mtx);
232 }
233
234 /*
235 * vm_object_init:
236 *
237 * Initialize the VM objects module.
238 */
239 void
240 vm_object_init(void)
241 {
242 TAILQ_INIT(&vm_object_list);
243 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
244
245 VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
246 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
247 kernel_object);
248
249 VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
250 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
251 kmem_object);
252
253 /*
254 * The lock portion of struct vm_object must be type stable due
255 * to vm_pageout_fallback_object_lock locking a vm object
256 * without holding any references to it.
257 */
258 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
259 #ifdef INVARIANTS
260 vm_object_zdtor,
261 #else
262 NULL,
263 #endif
264 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
265 uma_prealloc(obj_zone, VM_OBJECTS_INIT);
266 }
267
268 void
269 vm_object_clear_flag(vm_object_t object, u_short bits)
270 {
271
272 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
273 object->flags &= ~bits;
274 }
275
276 void
277 vm_object_pip_add(vm_object_t object, short i)
278 {
279
280 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
281 object->paging_in_progress += i;
282 }
283
284 void
285 vm_object_pip_subtract(vm_object_t object, short i)
286 {
287
288 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
289 object->paging_in_progress -= i;
290 }
291
292 void
293 vm_object_pip_wakeup(vm_object_t object)
294 {
295
296 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
297 object->paging_in_progress--;
298 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
299 vm_object_clear_flag(object, OBJ_PIPWNT);
300 wakeup(object);
301 }
302 }
303
304 void
305 vm_object_pip_wakeupn(vm_object_t object, short i)
306 {
307
308 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
309 if (i)
310 object->paging_in_progress -= i;
311 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
312 vm_object_clear_flag(object, OBJ_PIPWNT);
313 wakeup(object);
314 }
315 }
316
317 void
318 vm_object_pip_wait(vm_object_t object, char *waitid)
319 {
320
321 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
322 while (object->paging_in_progress) {
323 object->flags |= OBJ_PIPWNT;
324 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
325 }
326 }
327
328 /*
329 * vm_object_allocate:
330 *
331 * Returns a new object with the given size.
332 */
333 vm_object_t
334 vm_object_allocate(objtype_t type, vm_pindex_t size)
335 {
336 vm_object_t object;
337
338 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
339 _vm_object_allocate(type, size, object);
340 return (object);
341 }
342
343
344 /*
345 * vm_object_reference:
346 *
347 * Gets another reference to the given object. Note: OBJ_DEAD
348 * objects can be referenced during final cleaning.
349 */
350 void
351 vm_object_reference(vm_object_t object)
352 {
353 struct vnode *vp;
354 int flags;
355
356 if (object == NULL)
357 return;
358 VM_OBJECT_LOCK(object);
359 object->ref_count++;
360 if (object->type == OBJT_VNODE) {
361 vp = object->handle;
362 VI_LOCK(vp);
363 VM_OBJECT_UNLOCK(object);
364 for (flags = LK_INTERLOCK; vget(vp, flags, curthread);
365 flags = 0)
366 printf("vm_object_reference: delay in vget\n");
367 } else
368 VM_OBJECT_UNLOCK(object);
369 }
370
371 /*
372 * vm_object_reference_locked:
373 *
374 * Gets another reference to the given object.
375 *
376 * The object must be locked.
377 */
378 void
379 vm_object_reference_locked(vm_object_t object)
380 {
381 struct vnode *vp;
382
383 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
384 KASSERT((object->flags & OBJ_DEAD) == 0,
385 ("vm_object_reference_locked: dead object referenced"));
386 object->ref_count++;
387 if (object->type == OBJT_VNODE) {
388 vp = object->handle;
389 vref(vp);
390 }
391 }
392
393 /*
394 * Handle deallocating an object of type OBJT_VNODE.
395 */
396 void
397 vm_object_vndeallocate(vm_object_t object)
398 {
399 struct vnode *vp = (struct vnode *) object->handle;
400
401 VFS_ASSERT_GIANT(vp->v_mount);
402 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
403 KASSERT(object->type == OBJT_VNODE,
404 ("vm_object_vndeallocate: not a vnode object"));
405 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
406 #ifdef INVARIANTS
407 if (object->ref_count == 0) {
408 vprint("vm_object_vndeallocate", vp);
409 panic("vm_object_vndeallocate: bad object reference count");
410 }
411 #endif
412
413 object->ref_count--;
414 if (object->ref_count == 0) {
415 mp_fixme("Unlocked vflag access.");
416 vp->v_vflag &= ~VV_TEXT;
417 }
418 VM_OBJECT_UNLOCK(object);
419 /*
420 * vrele may need a vop lock
421 */
422 vrele(vp);
423 }
424
425 /*
426 * vm_object_deallocate:
427 *
428 * Release a reference to the specified object,
429 * gained either through a vm_object_allocate
430 * or a vm_object_reference call. When all references
431 * are gone, storage associated with this object
432 * may be relinquished.
433 *
434 * No object may be locked.
435 */
436 void
437 vm_object_deallocate(vm_object_t object)
438 {
439 vm_object_t temp;
440
441 while (object != NULL) {
442 int vfslocked;
443 /*
444 * In general, the object should be locked when working with
445 * its type. In this case, in order to maintain proper lock
446 * ordering, an exception is possible because a vnode-backed
447 * object never changes its type.
448 */
449 vfslocked = 0;
450 if (object->type == OBJT_VNODE) {
451 struct vnode *vp = (struct vnode *) object->handle;
452 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
453 }
454 VM_OBJECT_LOCK(object);
455 if (object->type == OBJT_VNODE) {
456 vm_object_vndeallocate(object);
457 VFS_UNLOCK_GIANT(vfslocked);
458 return;
459 }
460
461 KASSERT(object->ref_count != 0,
462 ("vm_object_deallocate: object deallocated too many times: %d", object->type));
463
464 /*
465 * If the reference count goes to 0 we start calling
466 * vm_object_terminate() on the object chain.
467 * A ref count of 1 may be a special case depending on the
468 * shadow count being 0 or 1.
469 */
470 object->ref_count--;
471 if (object->ref_count > 1) {
472 VM_OBJECT_UNLOCK(object);
473 return;
474 } else if (object->ref_count == 1) {
475 if (object->shadow_count == 0) {
476 vm_object_set_flag(object, OBJ_ONEMAPPING);
477 } else if ((object->shadow_count == 1) &&
478 (object->handle == NULL) &&
479 (object->type == OBJT_DEFAULT ||
480 object->type == OBJT_SWAP)) {
481 vm_object_t robject;
482
483 robject = LIST_FIRST(&object->shadow_head);
484 KASSERT(robject != NULL,
485 ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
486 object->ref_count,
487 object->shadow_count));
488 if (!VM_OBJECT_TRYLOCK(robject)) {
489 /*
490 * Avoid a potential deadlock.
491 */
492 object->ref_count++;
493 VM_OBJECT_UNLOCK(object);
494 /*
495 * More likely than not the thread
496 * holding robject's lock has lower
497 * priority than the current thread.
498 * Let the lower priority thread run.
499 */
500 tsleep(&proc0, PVM, "vmo_de", 1);
501 continue;
502 }
503 /*
504 * Collapse object into its shadow unless its
505 * shadow is dead. In that case, object will
506 * be deallocated by the thread that is
507 * deallocating its shadow.
508 */
509 if ((robject->flags & OBJ_DEAD) == 0 &&
510 (robject->handle == NULL) &&
511 (robject->type == OBJT_DEFAULT ||
512 robject->type == OBJT_SWAP)) {
513
514 robject->ref_count++;
515 retry:
516 if (robject->paging_in_progress) {
517 VM_OBJECT_UNLOCK(object);
518 vm_object_pip_wait(robject,
519 "objde1");
520 VM_OBJECT_LOCK(object);
521 goto retry;
522 } else if (object->paging_in_progress) {
523 VM_OBJECT_UNLOCK(robject);
524 object->flags |= OBJ_PIPWNT;
525 msleep(object,
526 VM_OBJECT_MTX(object),
527 PDROP | PVM, "objde2", 0);
528 VM_OBJECT_LOCK(robject);
529 VM_OBJECT_LOCK(object);
530 goto retry;
531 }
532 VM_OBJECT_UNLOCK(object);
533 if (robject->ref_count == 1) {
534 robject->ref_count--;
535 object = robject;
536 goto doterm;
537 }
538 object = robject;
539 vm_object_collapse(object);
540 VM_OBJECT_UNLOCK(object);
541 continue;
542 }
543 VM_OBJECT_UNLOCK(robject);
544 }
545 VM_OBJECT_UNLOCK(object);
546 return;
547 }
548 doterm:
549 temp = object->backing_object;
550 if (temp != NULL) {
551 VM_OBJECT_LOCK(temp);
552 LIST_REMOVE(object, shadow_list);
553 temp->shadow_count--;
554 temp->generation++;
555 VM_OBJECT_UNLOCK(temp);
556 object->backing_object = NULL;
557 }
558 /*
559 * Don't double-terminate, we could be in a termination
560 * recursion due to the terminate having to sync data
561 * to disk.
562 */
563 if ((object->flags & OBJ_DEAD) == 0)
564 vm_object_terminate(object);
565 else
566 VM_OBJECT_UNLOCK(object);
567 object = temp;
568 }
569 }
570
571 /*
572 * vm_object_terminate actually destroys the specified object, freeing
573 * up all previously used resources.
574 *
575 * The object must be locked.
576 * This routine may block.
577 */
578 void
579 vm_object_terminate(vm_object_t object)
580 {
581 vm_page_t p;
582
583 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
584
585 /*
586 * Make sure no one uses us.
587 */
588 vm_object_set_flag(object, OBJ_DEAD);
589
590 /*
591 * wait for the pageout daemon to be done with the object
592 */
593 vm_object_pip_wait(object, "objtrm");
594
595 KASSERT(!object->paging_in_progress,
596 ("vm_object_terminate: pageout in progress"));
597
598 /*
599 * Clean and free the pages, as appropriate. All references to the
600 * object are gone, so we don't need to lock it.
601 */
602 if (object->type == OBJT_VNODE) {
603 struct vnode *vp = (struct vnode *)object->handle;
604
605 /*
606 * Clean pages and flush buffers.
607 */
608 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
609 VM_OBJECT_UNLOCK(object);
610
611 vinvalbuf(vp, V_SAVE, NULL, 0, 0);
612
613 VM_OBJECT_LOCK(object);
614 }
615
616 KASSERT(object->ref_count == 0,
617 ("vm_object_terminate: object with references, ref_count=%d",
618 object->ref_count));
619
620 /*
621 * Now free any remaining pages. For internal objects, this also
622 * removes them from paging queues. Don't free wired pages, just
623 * remove them from the object.
624 */
625 vm_page_lock_queues();
626 while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
627 KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
628 ("vm_object_terminate: freeing busy page %p "
629 "p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
630 if (p->wire_count == 0) {
631 vm_page_free(p);
632 cnt.v_pfree++;
633 } else {
634 vm_page_remove(p);
635 }
636 }
637 vm_page_unlock_queues();
638
639 /*
640 * Let the pager know object is dead.
641 */
642 vm_pager_deallocate(object);
643 VM_OBJECT_UNLOCK(object);
644
645 /*
646 * Remove the object from the global object list.
647 */
648 mtx_lock(&vm_object_list_mtx);
649 TAILQ_REMOVE(&vm_object_list, object, object_list);
650 mtx_unlock(&vm_object_list_mtx);
651
652 /*
653 * Free the space for the object.
654 */
655 uma_zfree(obj_zone, object);
656 }
657
658 /*
659 * vm_object_page_clean
660 *
661 * Clean all dirty pages in the specified range of object. Leaves page
662 * on whatever queue it is currently on. If NOSYNC is set then do not
663 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
664 * leaving the object dirty.
665 *
666 * When stuffing pages asynchronously, allow clustering. XXX we need a
667 * synchronous clustering mode implementation.
668 *
669 * Odd semantics: if start == end, we clean everything.
670 *
671 * The object must be locked.
672 */
673 void
674 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
675 {
676 vm_page_t p, np;
677 vm_pindex_t tstart, tend;
678 vm_pindex_t pi;
679 int clearobjflags;
680 int pagerflags;
681 int curgeneration;
682
683 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
684 if (object->type != OBJT_VNODE ||
685 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
686 return;
687
688 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
689 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
690
691 vm_object_set_flag(object, OBJ_CLEANING);
692
693 tstart = start;
694 if (end == 0) {
695 tend = object->size;
696 } else {
697 tend = end;
698 }
699
700 vm_page_lock_queues();
701 /*
702 * If the caller is smart and only msync()s a range he knows is
703 * dirty, we may be able to avoid an object scan. This results in
704 * a phenominal improvement in performance. We cannot do this
705 * as a matter of course because the object may be huge - e.g.
706 * the size might be in the gigabytes or terrabytes.
707 */
708 if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
709 vm_pindex_t tscan;
710 int scanlimit;
711 int scanreset;
712
713 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
714 if (scanreset < 16)
715 scanreset = 16;
716 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
717
718 scanlimit = scanreset;
719 tscan = tstart;
720 while (tscan < tend) {
721 curgeneration = object->generation;
722 p = vm_page_lookup(object, tscan);
723 if (p == NULL || p->valid == 0 ||
724 (p->queue - p->pc) == PQ_CACHE) {
725 if (--scanlimit == 0)
726 break;
727 ++tscan;
728 continue;
729 }
730 vm_page_test_dirty(p);
731 if ((p->dirty & p->valid) == 0) {
732 if (--scanlimit == 0)
733 break;
734 ++tscan;
735 continue;
736 }
737 /*
738 * If we have been asked to skip nosync pages and
739 * this is a nosync page, we can't continue.
740 */
741 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
742 if (--scanlimit == 0)
743 break;
744 ++tscan;
745 continue;
746 }
747 scanlimit = scanreset;
748
749 /*
750 * This returns 0 if it was unable to busy the first
751 * page (i.e. had to sleep).
752 */
753 tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
754 }
755
756 /*
757 * If everything was dirty and we flushed it successfully,
758 * and the requested range is not the entire object, we
759 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
760 * return immediately.
761 */
762 if (tscan >= tend && (tstart || tend < object->size)) {
763 vm_page_unlock_queues();
764 vm_object_clear_flag(object, OBJ_CLEANING);
765 return;
766 }
767 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
768 }
769
770 /*
771 * Generally set CLEANCHK interlock and make the page read-only so
772 * we can then clear the object flags.
773 *
774 * However, if this is a nosync mmap then the object is likely to
775 * stay dirty so do not mess with the page and do not clear the
776 * object flags.
777 */
778 clearobjflags = 1;
779 TAILQ_FOREACH(p, &object->memq, listq) {
780 vm_page_flag_set(p, PG_CLEANCHK);
781 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
782 clearobjflags = 0;
783 else
784 pmap_page_protect(p, VM_PROT_READ);
785 }
786
787 if (clearobjflags && (tstart == 0) && (tend == object->size)) {
788 struct vnode *vp;
789
790 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
791 if (object->type == OBJT_VNODE &&
792 (vp = (struct vnode *)object->handle) != NULL) {
793 VI_LOCK(vp);
794 if (vp->v_iflag & VI_OBJDIRTY)
795 vp->v_iflag &= ~VI_OBJDIRTY;
796 VI_UNLOCK(vp);
797 }
798 }
799
800 rescan:
801 curgeneration = object->generation;
802
803 for (p = TAILQ_FIRST(&object->memq); p; p = np) {
804 int n;
805
806 np = TAILQ_NEXT(p, listq);
807
808 again:
809 pi = p->pindex;
810 if (((p->flags & PG_CLEANCHK) == 0) ||
811 (pi < tstart) || (pi >= tend) ||
812 (p->valid == 0) ||
813 ((p->queue - p->pc) == PQ_CACHE)) {
814 vm_page_flag_clear(p, PG_CLEANCHK);
815 continue;
816 }
817
818 vm_page_test_dirty(p);
819 if ((p->dirty & p->valid) == 0) {
820 vm_page_flag_clear(p, PG_CLEANCHK);
821 continue;
822 }
823
824 /*
825 * If we have been asked to skip nosync pages and this is a
826 * nosync page, skip it. Note that the object flags were
827 * not cleared in this case so we do not have to set them.
828 */
829 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
830 vm_page_flag_clear(p, PG_CLEANCHK);
831 continue;
832 }
833
834 n = vm_object_page_collect_flush(object, p,
835 curgeneration, pagerflags);
836 if (n == 0)
837 goto rescan;
838
839 if (object->generation != curgeneration)
840 goto rescan;
841
842 /*
843 * Try to optimize the next page. If we can't we pick up
844 * our (random) scan where we left off.
845 */
846 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
847 if ((p = vm_page_lookup(object, pi + n)) != NULL)
848 goto again;
849 }
850 }
851 vm_page_unlock_queues();
852 #if 0
853 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
854 #endif
855
856 vm_object_clear_flag(object, OBJ_CLEANING);
857 return;
858 }
859
860 static int
861 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
862 {
863 int runlen;
864 int maxf;
865 int chkb;
866 int maxb;
867 int i;
868 vm_pindex_t pi;
869 vm_page_t maf[vm_pageout_page_count];
870 vm_page_t mab[vm_pageout_page_count];
871 vm_page_t ma[vm_pageout_page_count];
872
873 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
874 pi = p->pindex;
875 while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
876 vm_page_lock_queues();
877 if (object->generation != curgeneration) {
878 return(0);
879 }
880 }
881 maxf = 0;
882 for(i = 1; i < vm_pageout_page_count; i++) {
883 vm_page_t tp;
884
885 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
886 if ((tp->flags & PG_BUSY) ||
887 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
888 (tp->flags & PG_CLEANCHK) == 0) ||
889 (tp->busy != 0))
890 break;
891 if((tp->queue - tp->pc) == PQ_CACHE) {
892 vm_page_flag_clear(tp, PG_CLEANCHK);
893 break;
894 }
895 vm_page_test_dirty(tp);
896 if ((tp->dirty & tp->valid) == 0) {
897 vm_page_flag_clear(tp, PG_CLEANCHK);
898 break;
899 }
900 maf[ i - 1 ] = tp;
901 maxf++;
902 continue;
903 }
904 break;
905 }
906
907 maxb = 0;
908 chkb = vm_pageout_page_count - maxf;
909 if (chkb) {
910 for(i = 1; i < chkb;i++) {
911 vm_page_t tp;
912
913 if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
914 if ((tp->flags & PG_BUSY) ||
915 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
916 (tp->flags & PG_CLEANCHK) == 0) ||
917 (tp->busy != 0))
918 break;
919 if ((tp->queue - tp->pc) == PQ_CACHE) {
920 vm_page_flag_clear(tp, PG_CLEANCHK);
921 break;
922 }
923 vm_page_test_dirty(tp);
924 if ((tp->dirty & tp->valid) == 0) {
925 vm_page_flag_clear(tp, PG_CLEANCHK);
926 break;
927 }
928 mab[ i - 1 ] = tp;
929 maxb++;
930 continue;
931 }
932 break;
933 }
934 }
935
936 for(i = 0; i < maxb; i++) {
937 int index = (maxb - i) - 1;
938 ma[index] = mab[i];
939 vm_page_flag_clear(ma[index], PG_CLEANCHK);
940 }
941 vm_page_flag_clear(p, PG_CLEANCHK);
942 ma[maxb] = p;
943 for(i = 0; i < maxf; i++) {
944 int index = (maxb + i) + 1;
945 ma[index] = maf[i];
946 vm_page_flag_clear(ma[index], PG_CLEANCHK);
947 }
948 runlen = maxb + maxf + 1;
949
950 vm_pageout_flush(ma, runlen, pagerflags);
951 for (i = 0; i < runlen; i++) {
952 if (ma[i]->valid & ma[i]->dirty) {
953 pmap_page_protect(ma[i], VM_PROT_READ);
954 vm_page_flag_set(ma[i], PG_CLEANCHK);
955
956 /*
957 * maxf will end up being the actual number of pages
958 * we wrote out contiguously, non-inclusive of the
959 * first page. We do not count look-behind pages.
960 */
961 if (i >= maxb + 1 && (maxf > i - maxb - 1))
962 maxf = i - maxb - 1;
963 }
964 }
965 return(maxf + 1);
966 }
967
968 /*
969 * Note that there is absolutely no sense in writing out
970 * anonymous objects, so we track down the vnode object
971 * to write out.
972 * We invalidate (remove) all pages from the address space
973 * for semantic correctness.
974 *
975 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
976 * may start out with a NULL object.
977 */
978 void
979 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
980 boolean_t syncio, boolean_t invalidate)
981 {
982 vm_object_t backing_object;
983 struct vnode *vp;
984 int flags;
985
986 if (object == NULL)
987 return;
988 VM_OBJECT_LOCK(object);
989 while ((backing_object = object->backing_object) != NULL) {
990 VM_OBJECT_LOCK(backing_object);
991 offset += object->backing_object_offset;
992 VM_OBJECT_UNLOCK(object);
993 object = backing_object;
994 if (object->size < OFF_TO_IDX(offset + size))
995 size = IDX_TO_OFF(object->size) - offset;
996 }
997 /*
998 * Flush pages if writing is allowed, invalidate them
999 * if invalidation requested. Pages undergoing I/O
1000 * will be ignored by vm_object_page_remove().
1001 *
1002 * We cannot lock the vnode and then wait for paging
1003 * to complete without deadlocking against vm_fault.
1004 * Instead we simply call vm_object_page_remove() and
1005 * allow it to block internally on a page-by-page
1006 * basis when it encounters pages undergoing async
1007 * I/O.
1008 */
1009 if (object->type == OBJT_VNODE &&
1010 (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1011 int vfslocked;
1012 vp = object->handle;
1013 VM_OBJECT_UNLOCK(object);
1014 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1015 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
1016 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1017 flags |= invalidate ? OBJPC_INVAL : 0;
1018 VM_OBJECT_LOCK(object);
1019 vm_object_page_clean(object,
1020 OFF_TO_IDX(offset),
1021 OFF_TO_IDX(offset + size + PAGE_MASK),
1022 flags);
1023 VM_OBJECT_UNLOCK(object);
1024 VOP_UNLOCK(vp, 0, curthread);
1025 VFS_UNLOCK_GIANT(vfslocked);
1026 VM_OBJECT_LOCK(object);
1027 }
1028 if ((object->type == OBJT_VNODE ||
1029 object->type == OBJT_DEVICE) && invalidate) {
1030 boolean_t purge;
1031 purge = old_msync || (object->type == OBJT_DEVICE);
1032 vm_object_page_remove(object,
1033 OFF_TO_IDX(offset),
1034 OFF_TO_IDX(offset + size + PAGE_MASK),
1035 purge ? FALSE : TRUE);
1036 }
1037 VM_OBJECT_UNLOCK(object);
1038 }
1039
1040 /*
1041 * vm_object_madvise:
1042 *
1043 * Implements the madvise function at the object/page level.
1044 *
1045 * MADV_WILLNEED (any object)
1046 *
1047 * Activate the specified pages if they are resident.
1048 *
1049 * MADV_DONTNEED (any object)
1050 *
1051 * Deactivate the specified pages if they are resident.
1052 *
1053 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects,
1054 * OBJ_ONEMAPPING only)
1055 *
1056 * Deactivate and clean the specified pages if they are
1057 * resident. This permits the process to reuse the pages
1058 * without faulting or the kernel to reclaim the pages
1059 * without I/O.
1060 */
1061 void
1062 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1063 {
1064 vm_pindex_t end, tpindex;
1065 vm_object_t backing_object, tobject;
1066 vm_page_t m;
1067
1068 if (object == NULL)
1069 return;
1070 VM_OBJECT_LOCK(object);
1071 end = pindex + count;
1072 /*
1073 * Locate and adjust resident pages
1074 */
1075 for (; pindex < end; pindex += 1) {
1076 relookup:
1077 tobject = object;
1078 tpindex = pindex;
1079 shadowlookup:
1080 /*
1081 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1082 * and those pages must be OBJ_ONEMAPPING.
1083 */
1084 if (advise == MADV_FREE) {
1085 if ((tobject->type != OBJT_DEFAULT &&
1086 tobject->type != OBJT_SWAP) ||
1087 (tobject->flags & OBJ_ONEMAPPING) == 0) {
1088 goto unlock_tobject;
1089 }
1090 }
1091 m = vm_page_lookup(tobject, tpindex);
1092 if (m == NULL) {
1093 /*
1094 * There may be swap even if there is no backing page
1095 */
1096 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1097 swap_pager_freespace(tobject, tpindex, 1);
1098 /*
1099 * next object
1100 */
1101 backing_object = tobject->backing_object;
1102 if (backing_object == NULL)
1103 goto unlock_tobject;
1104 VM_OBJECT_LOCK(backing_object);
1105 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1106 if (tobject != object)
1107 VM_OBJECT_UNLOCK(tobject);
1108 tobject = backing_object;
1109 goto shadowlookup;
1110 }
1111 /*
1112 * If the page is busy or not in a normal active state,
1113 * we skip it. If the page is not managed there are no
1114 * page queues to mess with. Things can break if we mess
1115 * with pages in any of the below states.
1116 */
1117 vm_page_lock_queues();
1118 if (m->hold_count ||
1119 m->wire_count ||
1120 (m->flags & PG_UNMANAGED) ||
1121 m->valid != VM_PAGE_BITS_ALL) {
1122 vm_page_unlock_queues();
1123 goto unlock_tobject;
1124 }
1125 if ((m->flags & PG_BUSY) || m->busy) {
1126 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1127 if (object != tobject)
1128 VM_OBJECT_UNLOCK(object);
1129 VM_OBJECT_UNLOCK(tobject);
1130 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "madvpo", 0);
1131 VM_OBJECT_LOCK(object);
1132 goto relookup;
1133 }
1134 if (advise == MADV_WILLNEED) {
1135 vm_page_activate(m);
1136 } else if (advise == MADV_DONTNEED) {
1137 vm_page_dontneed(m);
1138 } else if (advise == MADV_FREE) {
1139 /*
1140 * Mark the page clean. This will allow the page
1141 * to be freed up by the system. However, such pages
1142 * are often reused quickly by malloc()/free()
1143 * so we do not do anything that would cause
1144 * a page fault if we can help it.
1145 *
1146 * Specifically, we do not try to actually free
1147 * the page now nor do we try to put it in the
1148 * cache (which would cause a page fault on reuse).
1149 *
1150 * But we do make the page is freeable as we
1151 * can without actually taking the step of unmapping
1152 * it.
1153 */
1154 pmap_clear_modify(m);
1155 m->dirty = 0;
1156 m->act_count = 0;
1157 vm_page_dontneed(m);
1158 }
1159 vm_page_unlock_queues();
1160 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1161 swap_pager_freespace(tobject, tpindex, 1);
1162 unlock_tobject:
1163 if (tobject != object)
1164 VM_OBJECT_UNLOCK(tobject);
1165 }
1166 VM_OBJECT_UNLOCK(object);
1167 }
1168
1169 /*
1170 * vm_object_shadow:
1171 *
1172 * Create a new object which is backed by the
1173 * specified existing object range. The source
1174 * object reference is deallocated.
1175 *
1176 * The new object and offset into that object
1177 * are returned in the source parameters.
1178 */
1179 void
1180 vm_object_shadow(
1181 vm_object_t *object, /* IN/OUT */
1182 vm_ooffset_t *offset, /* IN/OUT */
1183 vm_size_t length)
1184 {
1185 vm_object_t source;
1186 vm_object_t result;
1187
1188 source = *object;
1189
1190 /*
1191 * Don't create the new object if the old object isn't shared.
1192 */
1193 if (source != NULL) {
1194 VM_OBJECT_LOCK(source);
1195 if (source->ref_count == 1 &&
1196 source->handle == NULL &&
1197 (source->type == OBJT_DEFAULT ||
1198 source->type == OBJT_SWAP)) {
1199 VM_OBJECT_UNLOCK(source);
1200 return;
1201 }
1202 VM_OBJECT_UNLOCK(source);
1203 }
1204
1205 /*
1206 * Allocate a new object with the given length.
1207 */
1208 result = vm_object_allocate(OBJT_DEFAULT, length);
1209
1210 /*
1211 * The new object shadows the source object, adding a reference to it.
1212 * Our caller changes his reference to point to the new object,
1213 * removing a reference to the source object. Net result: no change
1214 * of reference count.
1215 *
1216 * Try to optimize the result object's page color when shadowing
1217 * in order to maintain page coloring consistency in the combined
1218 * shadowed object.
1219 */
1220 result->backing_object = source;
1221 /*
1222 * Store the offset into the source object, and fix up the offset into
1223 * the new object.
1224 */
1225 result->backing_object_offset = *offset;
1226 if (source != NULL) {
1227 VM_OBJECT_LOCK(source);
1228 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1229 source->shadow_count++;
1230 source->generation++;
1231 if (length < source->size)
1232 length = source->size;
1233 if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1234 source->generation > 1)
1235 length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1236 result->pg_color = (source->pg_color +
1237 length * source->generation) & PQ_L2_MASK;
1238 result->flags |= source->flags & OBJ_NEEDGIANT;
1239 VM_OBJECT_UNLOCK(source);
1240 next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1241 PQ_L2_MASK;
1242 }
1243
1244
1245 /*
1246 * Return the new things
1247 */
1248 *offset = 0;
1249 *object = result;
1250 }
1251
1252 /*
1253 * vm_object_split:
1254 *
1255 * Split the pages in a map entry into a new object. This affords
1256 * easier removal of unused pages, and keeps object inheritance from
1257 * being a negative impact on memory usage.
1258 */
1259 void
1260 vm_object_split(vm_map_entry_t entry)
1261 {
1262 vm_page_t m;
1263 vm_object_t orig_object, new_object, source;
1264 vm_pindex_t offidxstart, offidxend;
1265 vm_size_t idx, size;
1266
1267 orig_object = entry->object.vm_object;
1268 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1269 return;
1270 if (orig_object->ref_count <= 1)
1271 return;
1272 VM_OBJECT_UNLOCK(orig_object);
1273
1274 offidxstart = OFF_TO_IDX(entry->offset);
1275 offidxend = offidxstart + OFF_TO_IDX(entry->end - entry->start);
1276 size = offidxend - offidxstart;
1277
1278 /*
1279 * If swap_pager_copy() is later called, it will convert new_object
1280 * into a swap object.
1281 */
1282 new_object = vm_object_allocate(OBJT_DEFAULT, size);
1283
1284 VM_OBJECT_LOCK(new_object);
1285 VM_OBJECT_LOCK(orig_object);
1286 source = orig_object->backing_object;
1287 if (source != NULL) {
1288 VM_OBJECT_LOCK(source);
1289 LIST_INSERT_HEAD(&source->shadow_head,
1290 new_object, shadow_list);
1291 source->shadow_count++;
1292 source->generation++;
1293 vm_object_reference_locked(source); /* for new_object */
1294 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1295 VM_OBJECT_UNLOCK(source);
1296 new_object->backing_object_offset =
1297 orig_object->backing_object_offset + entry->offset;
1298 new_object->backing_object = source;
1299 }
1300 new_object->flags |= orig_object->flags & OBJ_NEEDGIANT;
1301 vm_page_lock_queues();
1302 for (idx = 0; idx < size; idx++) {
1303 retry:
1304 m = vm_page_lookup(orig_object, offidxstart + idx);
1305 if (m == NULL)
1306 continue;
1307
1308 /*
1309 * We must wait for pending I/O to complete before we can
1310 * rename the page.
1311 *
1312 * We do not have to VM_PROT_NONE the page as mappings should
1313 * not be changed by this operation.
1314 */
1315 if ((m->flags & PG_BUSY) || m->busy) {
1316 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1317 VM_OBJECT_UNLOCK(orig_object);
1318 VM_OBJECT_UNLOCK(new_object);
1319 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "spltwt", 0);
1320 VM_OBJECT_LOCK(new_object);
1321 VM_OBJECT_LOCK(orig_object);
1322 vm_page_lock_queues();
1323 goto retry;
1324 }
1325 vm_page_rename(m, new_object, idx);
1326 /* page automatically made dirty by rename and cache handled */
1327 vm_page_busy(m);
1328 }
1329 vm_page_unlock_queues();
1330 if (orig_object->type == OBJT_SWAP) {
1331 /*
1332 * swap_pager_copy() can sleep, in which case the orig_object's
1333 * and new_object's locks are released and reacquired.
1334 */
1335 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1336 }
1337 VM_OBJECT_UNLOCK(orig_object);
1338 vm_page_lock_queues();
1339 TAILQ_FOREACH(m, &new_object->memq, listq)
1340 vm_page_wakeup(m);
1341 vm_page_unlock_queues();
1342 VM_OBJECT_UNLOCK(new_object);
1343 entry->object.vm_object = new_object;
1344 entry->offset = 0LL;
1345 vm_object_deallocate(orig_object);
1346 VM_OBJECT_LOCK(new_object);
1347 }
1348
1349 #define OBSC_TEST_ALL_SHADOWED 0x0001
1350 #define OBSC_COLLAPSE_NOWAIT 0x0002
1351 #define OBSC_COLLAPSE_WAIT 0x0004
1352
1353 static int
1354 vm_object_backing_scan(vm_object_t object, int op)
1355 {
1356 int r = 1;
1357 vm_page_t p;
1358 vm_object_t backing_object;
1359 vm_pindex_t backing_offset_index;
1360
1361 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1362 VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1363
1364 backing_object = object->backing_object;
1365 backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1366
1367 /*
1368 * Initial conditions
1369 */
1370 if (op & OBSC_TEST_ALL_SHADOWED) {
1371 /*
1372 * We do not want to have to test for the existence of
1373 * swap pages in the backing object. XXX but with the
1374 * new swapper this would be pretty easy to do.
1375 *
1376 * XXX what about anonymous MAP_SHARED memory that hasn't
1377 * been ZFOD faulted yet? If we do not test for this, the
1378 * shadow test may succeed! XXX
1379 */
1380 if (backing_object->type != OBJT_DEFAULT) {
1381 return (0);
1382 }
1383 }
1384 if (op & OBSC_COLLAPSE_WAIT) {
1385 vm_object_set_flag(backing_object, OBJ_DEAD);
1386 }
1387
1388 /*
1389 * Our scan
1390 */
1391 p = TAILQ_FIRST(&backing_object->memq);
1392 while (p) {
1393 vm_page_t next = TAILQ_NEXT(p, listq);
1394 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1395
1396 if (op & OBSC_TEST_ALL_SHADOWED) {
1397 vm_page_t pp;
1398
1399 /*
1400 * Ignore pages outside the parent object's range
1401 * and outside the parent object's mapping of the
1402 * backing object.
1403 *
1404 * note that we do not busy the backing object's
1405 * page.
1406 */
1407 if (
1408 p->pindex < backing_offset_index ||
1409 new_pindex >= object->size
1410 ) {
1411 p = next;
1412 continue;
1413 }
1414
1415 /*
1416 * See if the parent has the page or if the parent's
1417 * object pager has the page. If the parent has the
1418 * page but the page is not valid, the parent's
1419 * object pager must have the page.
1420 *
1421 * If this fails, the parent does not completely shadow
1422 * the object and we might as well give up now.
1423 */
1424
1425 pp = vm_page_lookup(object, new_pindex);
1426 if (
1427 (pp == NULL || pp->valid == 0) &&
1428 !vm_pager_has_page(object, new_pindex, NULL, NULL)
1429 ) {
1430 r = 0;
1431 break;
1432 }
1433 }
1434
1435 /*
1436 * Check for busy page
1437 */
1438 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1439 vm_page_t pp;
1440
1441 if (op & OBSC_COLLAPSE_NOWAIT) {
1442 if ((p->flags & PG_BUSY) ||
1443 !p->valid ||
1444 p->busy) {
1445 p = next;
1446 continue;
1447 }
1448 } else if (op & OBSC_COLLAPSE_WAIT) {
1449 if ((p->flags & PG_BUSY) || p->busy) {
1450 vm_page_lock_queues();
1451 vm_page_flag_set(p,
1452 PG_WANTED | PG_REFERENCED);
1453 VM_OBJECT_UNLOCK(backing_object);
1454 VM_OBJECT_UNLOCK(object);
1455 msleep(p, &vm_page_queue_mtx,
1456 PDROP | PVM, "vmocol", 0);
1457 VM_OBJECT_LOCK(object);
1458 VM_OBJECT_LOCK(backing_object);
1459 /*
1460 * If we slept, anything could have
1461 * happened. Since the object is
1462 * marked dead, the backing offset
1463 * should not have changed so we
1464 * just restart our scan.
1465 */
1466 p = TAILQ_FIRST(&backing_object->memq);
1467 continue;
1468 }
1469 }
1470
1471 KASSERT(
1472 p->object == backing_object,
1473 ("vm_object_backing_scan: object mismatch")
1474 );
1475
1476 /*
1477 * Destroy any associated swap
1478 */
1479 if (backing_object->type == OBJT_SWAP) {
1480 swap_pager_freespace(
1481 backing_object,
1482 p->pindex,
1483 1
1484 );
1485 }
1486
1487 if (
1488 p->pindex < backing_offset_index ||
1489 new_pindex >= object->size
1490 ) {
1491 /*
1492 * Page is out of the parent object's range, we
1493 * can simply destroy it.
1494 */
1495 vm_page_lock_queues();
1496 KASSERT(!pmap_page_is_mapped(p),
1497 ("freeing mapped page %p", p));
1498 if (p->wire_count == 0)
1499 vm_page_free(p);
1500 else
1501 vm_page_remove(p);
1502 vm_page_unlock_queues();
1503 p = next;
1504 continue;
1505 }
1506
1507 pp = vm_page_lookup(object, new_pindex);
1508 if (
1509 pp != NULL ||
1510 vm_pager_has_page(object, new_pindex, NULL, NULL)
1511 ) {
1512 /*
1513 * page already exists in parent OR swap exists
1514 * for this location in the parent. Destroy
1515 * the original page from the backing object.
1516 *
1517 * Leave the parent's page alone
1518 */
1519 vm_page_lock_queues();
1520 KASSERT(!pmap_page_is_mapped(p),
1521 ("freeing mapped page %p", p));
1522 if (p->wire_count == 0)
1523 vm_page_free(p);
1524 else
1525 vm_page_remove(p);
1526 vm_page_unlock_queues();
1527 p = next;
1528 continue;
1529 }
1530
1531 /*
1532 * Page does not exist in parent, rename the
1533 * page from the backing object to the main object.
1534 *
1535 * If the page was mapped to a process, it can remain
1536 * mapped through the rename.
1537 */
1538 vm_page_lock_queues();
1539 vm_page_rename(p, object, new_pindex);
1540 vm_page_unlock_queues();
1541 /* page automatically made dirty by rename */
1542 }
1543 p = next;
1544 }
1545 return (r);
1546 }
1547
1548
1549 /*
1550 * this version of collapse allows the operation to occur earlier and
1551 * when paging_in_progress is true for an object... This is not a complete
1552 * operation, but should plug 99.9% of the rest of the leaks.
1553 */
1554 static void
1555 vm_object_qcollapse(vm_object_t object)
1556 {
1557 vm_object_t backing_object = object->backing_object;
1558
1559 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1560 VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1561
1562 if (backing_object->ref_count != 1)
1563 return;
1564
1565 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1566 }
1567
1568 /*
1569 * vm_object_collapse:
1570 *
1571 * Collapse an object with the object backing it.
1572 * Pages in the backing object are moved into the
1573 * parent, and the backing object is deallocated.
1574 */
1575 void
1576 vm_object_collapse(vm_object_t object)
1577 {
1578 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1579
1580 while (TRUE) {
1581 vm_object_t backing_object;
1582
1583 /*
1584 * Verify that the conditions are right for collapse:
1585 *
1586 * The object exists and the backing object exists.
1587 */
1588 if ((backing_object = object->backing_object) == NULL)
1589 break;
1590
1591 /*
1592 * we check the backing object first, because it is most likely
1593 * not collapsable.
1594 */
1595 VM_OBJECT_LOCK(backing_object);
1596 if (backing_object->handle != NULL ||
1597 (backing_object->type != OBJT_DEFAULT &&
1598 backing_object->type != OBJT_SWAP) ||
1599 (backing_object->flags & OBJ_DEAD) ||
1600 object->handle != NULL ||
1601 (object->type != OBJT_DEFAULT &&
1602 object->type != OBJT_SWAP) ||
1603 (object->flags & OBJ_DEAD)) {
1604 VM_OBJECT_UNLOCK(backing_object);
1605 break;
1606 }
1607
1608 if (
1609 object->paging_in_progress != 0 ||
1610 backing_object->paging_in_progress != 0
1611 ) {
1612 vm_object_qcollapse(object);
1613 VM_OBJECT_UNLOCK(backing_object);
1614 break;
1615 }
1616 /*
1617 * We know that we can either collapse the backing object (if
1618 * the parent is the only reference to it) or (perhaps) have
1619 * the parent bypass the object if the parent happens to shadow
1620 * all the resident pages in the entire backing object.
1621 *
1622 * This is ignoring pager-backed pages such as swap pages.
1623 * vm_object_backing_scan fails the shadowing test in this
1624 * case.
1625 */
1626 if (backing_object->ref_count == 1) {
1627 /*
1628 * If there is exactly one reference to the backing
1629 * object, we can collapse it into the parent.
1630 */
1631 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1632
1633 /*
1634 * Move the pager from backing_object to object.
1635 */
1636 if (backing_object->type == OBJT_SWAP) {
1637 /*
1638 * swap_pager_copy() can sleep, in which case
1639 * the backing_object's and object's locks are
1640 * released and reacquired.
1641 */
1642 swap_pager_copy(
1643 backing_object,
1644 object,
1645 OFF_TO_IDX(object->backing_object_offset), TRUE);
1646 }
1647 /*
1648 * Object now shadows whatever backing_object did.
1649 * Note that the reference to
1650 * backing_object->backing_object moves from within
1651 * backing_object to within object.
1652 */
1653 LIST_REMOVE(object, shadow_list);
1654 backing_object->shadow_count--;
1655 backing_object->generation++;
1656 if (backing_object->backing_object) {
1657 VM_OBJECT_LOCK(backing_object->backing_object);
1658 LIST_REMOVE(backing_object, shadow_list);
1659 LIST_INSERT_HEAD(
1660 &backing_object->backing_object->shadow_head,
1661 object, shadow_list);
1662 /*
1663 * The shadow_count has not changed.
1664 */
1665 backing_object->backing_object->generation++;
1666 VM_OBJECT_UNLOCK(backing_object->backing_object);
1667 }
1668 object->backing_object = backing_object->backing_object;
1669 object->backing_object_offset +=
1670 backing_object->backing_object_offset;
1671
1672 /*
1673 * Discard backing_object.
1674 *
1675 * Since the backing object has no pages, no pager left,
1676 * and no object references within it, all that is
1677 * necessary is to dispose of it.
1678 */
1679 KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1680 VM_OBJECT_UNLOCK(backing_object);
1681
1682 mtx_lock(&vm_object_list_mtx);
1683 TAILQ_REMOVE(
1684 &vm_object_list,
1685 backing_object,
1686 object_list
1687 );
1688 mtx_unlock(&vm_object_list_mtx);
1689
1690 uma_zfree(obj_zone, backing_object);
1691
1692 object_collapses++;
1693 } else {
1694 vm_object_t new_backing_object;
1695
1696 /*
1697 * If we do not entirely shadow the backing object,
1698 * there is nothing we can do so we give up.
1699 */
1700 if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1701 VM_OBJECT_UNLOCK(backing_object);
1702 break;
1703 }
1704
1705 /*
1706 * Make the parent shadow the next object in the
1707 * chain. Deallocating backing_object will not remove
1708 * it, since its reference count is at least 2.
1709 */
1710 LIST_REMOVE(object, shadow_list);
1711 backing_object->shadow_count--;
1712 backing_object->generation++;
1713
1714 new_backing_object = backing_object->backing_object;
1715 if ((object->backing_object = new_backing_object) != NULL) {
1716 VM_OBJECT_LOCK(new_backing_object);
1717 LIST_INSERT_HEAD(
1718 &new_backing_object->shadow_head,
1719 object,
1720 shadow_list
1721 );
1722 new_backing_object->shadow_count++;
1723 new_backing_object->generation++;
1724 vm_object_reference_locked(new_backing_object);
1725 VM_OBJECT_UNLOCK(new_backing_object);
1726 object->backing_object_offset +=
1727 backing_object->backing_object_offset;
1728 }
1729
1730 /*
1731 * Drop the reference count on backing_object. Since
1732 * its ref_count was at least 2, it will not vanish.
1733 */
1734 backing_object->ref_count--;
1735 VM_OBJECT_UNLOCK(backing_object);
1736 object_bypasses++;
1737 }
1738
1739 /*
1740 * Try again with this object's new backing object.
1741 */
1742 }
1743 }
1744
1745 /*
1746 * vm_object_page_remove:
1747 *
1748 * Removes all physical pages in the given range from the
1749 * object's list of pages. If the range's end is zero, all
1750 * physical pages from the range's start to the end of the object
1751 * are deleted.
1752 *
1753 * The object must be locked.
1754 */
1755 void
1756 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1757 boolean_t clean_only)
1758 {
1759 vm_page_t p, next;
1760
1761 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1762 if (object->resident_page_count == 0)
1763 return;
1764
1765 /*
1766 * Since physically-backed objects do not use managed pages, we can't
1767 * remove pages from the object (we must instead remove the page
1768 * references, and then destroy the object).
1769 */
1770 KASSERT(object->type != OBJT_PHYS,
1771 ("attempt to remove pages from a physical object"));
1772
1773 vm_object_pip_add(object, 1);
1774 again:
1775 vm_page_lock_queues();
1776 if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1777 if (p->pindex < start) {
1778 p = vm_page_splay(start, object->root);
1779 if ((object->root = p)->pindex < start)
1780 p = TAILQ_NEXT(p, listq);
1781 }
1782 }
1783 /*
1784 * Assert: the variable p is either (1) the page with the
1785 * least pindex greater than or equal to the parameter pindex
1786 * or (2) NULL.
1787 */
1788 for (;
1789 p != NULL && (p->pindex < end || end == 0);
1790 p = next) {
1791 next = TAILQ_NEXT(p, listq);
1792
1793 if (p->wire_count != 0) {
1794 pmap_remove_all(p);
1795 if (!clean_only)
1796 p->valid = 0;
1797 continue;
1798 }
1799 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1800 goto again;
1801 if (clean_only && p->valid) {
1802 pmap_page_protect(p, VM_PROT_READ | VM_PROT_EXECUTE);
1803 if (p->valid & p->dirty)
1804 continue;
1805 }
1806 pmap_remove_all(p);
1807 vm_page_free(p);
1808 }
1809 vm_page_unlock_queues();
1810 vm_object_pip_wakeup(object);
1811 }
1812
1813 /*
1814 * Routine: vm_object_coalesce
1815 * Function: Coalesces two objects backing up adjoining
1816 * regions of memory into a single object.
1817 *
1818 * returns TRUE if objects were combined.
1819 *
1820 * NOTE: Only works at the moment if the second object is NULL -
1821 * if it's not, which object do we lock first?
1822 *
1823 * Parameters:
1824 * prev_object First object to coalesce
1825 * prev_offset Offset into prev_object
1826 * prev_size Size of reference to prev_object
1827 * next_size Size of reference to the second object
1828 *
1829 * Conditions:
1830 * The object must *not* be locked.
1831 */
1832 boolean_t
1833 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1834 vm_size_t prev_size, vm_size_t next_size)
1835 {
1836 vm_pindex_t next_pindex;
1837
1838 if (prev_object == NULL)
1839 return (TRUE);
1840 VM_OBJECT_LOCK(prev_object);
1841 if (prev_object->type != OBJT_DEFAULT &&
1842 prev_object->type != OBJT_SWAP) {
1843 VM_OBJECT_UNLOCK(prev_object);
1844 return (FALSE);
1845 }
1846
1847 /*
1848 * Try to collapse the object first
1849 */
1850 vm_object_collapse(prev_object);
1851
1852 /*
1853 * Can't coalesce if: . more than one reference . paged out . shadows
1854 * another object . has a copy elsewhere (any of which mean that the
1855 * pages not mapped to prev_entry may be in use anyway)
1856 */
1857 if (prev_object->backing_object != NULL) {
1858 VM_OBJECT_UNLOCK(prev_object);
1859 return (FALSE);
1860 }
1861
1862 prev_size >>= PAGE_SHIFT;
1863 next_size >>= PAGE_SHIFT;
1864 next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1865
1866 if ((prev_object->ref_count > 1) &&
1867 (prev_object->size != next_pindex)) {
1868 VM_OBJECT_UNLOCK(prev_object);
1869 return (FALSE);
1870 }
1871
1872 /*
1873 * Remove any pages that may still be in the object from a previous
1874 * deallocation.
1875 */
1876 if (next_pindex < prev_object->size) {
1877 vm_object_page_remove(prev_object,
1878 next_pindex,
1879 next_pindex + next_size, FALSE);
1880 if (prev_object->type == OBJT_SWAP)
1881 swap_pager_freespace(prev_object,
1882 next_pindex, next_size);
1883 }
1884
1885 /*
1886 * Extend the object if necessary.
1887 */
1888 if (next_pindex + next_size > prev_object->size)
1889 prev_object->size = next_pindex + next_size;
1890
1891 VM_OBJECT_UNLOCK(prev_object);
1892 return (TRUE);
1893 }
1894
1895 void
1896 vm_object_set_writeable_dirty(vm_object_t object)
1897 {
1898 struct vnode *vp;
1899
1900 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1901 if ((object->flags & (OBJ_MIGHTBEDIRTY|OBJ_WRITEABLE)) ==
1902 (OBJ_MIGHTBEDIRTY|OBJ_WRITEABLE))
1903 return;
1904 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1905 if (object->type == OBJT_VNODE &&
1906 (vp = (struct vnode *)object->handle) != NULL) {
1907 VI_LOCK(vp);
1908 vp->v_iflag |= VI_OBJDIRTY;
1909 VI_UNLOCK(vp);
1910 }
1911 }
1912
1913 #include "opt_ddb.h"
1914 #ifdef DDB
1915 #include <sys/kernel.h>
1916
1917 #include <sys/cons.h>
1918
1919 #include <ddb/ddb.h>
1920
1921 static int
1922 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1923 {
1924 vm_map_t tmpm;
1925 vm_map_entry_t tmpe;
1926 vm_object_t obj;
1927 int entcount;
1928
1929 if (map == 0)
1930 return 0;
1931
1932 if (entry == 0) {
1933 tmpe = map->header.next;
1934 entcount = map->nentries;
1935 while (entcount-- && (tmpe != &map->header)) {
1936 if (_vm_object_in_map(map, object, tmpe)) {
1937 return 1;
1938 }
1939 tmpe = tmpe->next;
1940 }
1941 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1942 tmpm = entry->object.sub_map;
1943 tmpe = tmpm->header.next;
1944 entcount = tmpm->nentries;
1945 while (entcount-- && tmpe != &tmpm->header) {
1946 if (_vm_object_in_map(tmpm, object, tmpe)) {
1947 return 1;
1948 }
1949 tmpe = tmpe->next;
1950 }
1951 } else if ((obj = entry->object.vm_object) != NULL) {
1952 for (; obj; obj = obj->backing_object)
1953 if (obj == object) {
1954 return 1;
1955 }
1956 }
1957 return 0;
1958 }
1959
1960 static int
1961 vm_object_in_map(vm_object_t object)
1962 {
1963 struct proc *p;
1964
1965 /* sx_slock(&allproc_lock); */
1966 LIST_FOREACH(p, &allproc, p_list) {
1967 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1968 continue;
1969 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1970 /* sx_sunlock(&allproc_lock); */
1971 return 1;
1972 }
1973 }
1974 /* sx_sunlock(&allproc_lock); */
1975 if (_vm_object_in_map(kernel_map, object, 0))
1976 return 1;
1977 if (_vm_object_in_map(kmem_map, object, 0))
1978 return 1;
1979 if (_vm_object_in_map(pager_map, object, 0))
1980 return 1;
1981 if (_vm_object_in_map(buffer_map, object, 0))
1982 return 1;
1983 return 0;
1984 }
1985
1986 DB_SHOW_COMMAND(vmochk, vm_object_check)
1987 {
1988 vm_object_t object;
1989
1990 /*
1991 * make sure that internal objs are in a map somewhere
1992 * and none have zero ref counts.
1993 */
1994 TAILQ_FOREACH(object, &vm_object_list, object_list) {
1995 if (object->handle == NULL &&
1996 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1997 if (object->ref_count == 0) {
1998 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1999 (long)object->size);
2000 }
2001 if (!vm_object_in_map(object)) {
2002 db_printf(
2003 "vmochk: internal obj is not in a map: "
2004 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2005 object->ref_count, (u_long)object->size,
2006 (u_long)object->size,
2007 (void *)object->backing_object);
2008 }
2009 }
2010 }
2011 }
2012
2013 /*
2014 * vm_object_print: [ debug ]
2015 */
2016 DB_SHOW_COMMAND(object, vm_object_print_static)
2017 {
2018 /* XXX convert args. */
2019 vm_object_t object = (vm_object_t)addr;
2020 boolean_t full = have_addr;
2021
2022 vm_page_t p;
2023
2024 /* XXX count is an (unused) arg. Avoid shadowing it. */
2025 #define count was_count
2026
2027 int count;
2028
2029 if (object == NULL)
2030 return;
2031
2032 db_iprintf(
2033 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2034 object, (int)object->type, (uintmax_t)object->size,
2035 object->resident_page_count, object->ref_count, object->flags);
2036 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2037 object->shadow_count,
2038 object->backing_object ? object->backing_object->ref_count : 0,
2039 object->backing_object, (uintmax_t)object->backing_object_offset);
2040
2041 if (!full)
2042 return;
2043
2044 db_indent += 2;
2045 count = 0;
2046 TAILQ_FOREACH(p, &object->memq, listq) {
2047 if (count == 0)
2048 db_iprintf("memory:=");
2049 else if (count == 6) {
2050 db_printf("\n");
2051 db_iprintf(" ...");
2052 count = 0;
2053 } else
2054 db_printf(",");
2055 count++;
2056
2057 db_printf("(off=0x%jx,page=0x%jx)",
2058 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2059 }
2060 if (count != 0)
2061 db_printf("\n");
2062 db_indent -= 2;
2063 }
2064
2065 /* XXX. */
2066 #undef count
2067
2068 /* XXX need this non-static entry for calling from vm_map_print. */
2069 void
2070 vm_object_print(
2071 /* db_expr_t */ long addr,
2072 boolean_t have_addr,
2073 /* db_expr_t */ long count,
2074 char *modif)
2075 {
2076 vm_object_print_static(addr, have_addr, count, modif);
2077 }
2078
2079 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2080 {
2081 vm_object_t object;
2082 int nl = 0;
2083 int c;
2084
2085 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2086 vm_pindex_t idx, fidx;
2087 vm_pindex_t osize;
2088 vm_paddr_t pa = -1, padiff;
2089 int rcount;
2090 vm_page_t m;
2091
2092 db_printf("new object: %p\n", (void *)object);
2093 if (nl > 18) {
2094 c = cngetc();
2095 if (c != ' ')
2096 return;
2097 nl = 0;
2098 }
2099 nl++;
2100 rcount = 0;
2101 fidx = 0;
2102 osize = object->size;
2103 if (osize > 128)
2104 osize = 128;
2105 for (idx = 0; idx < osize; idx++) {
2106 m = vm_page_lookup(object, idx);
2107 if (m == NULL) {
2108 if (rcount) {
2109 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2110 (long)fidx, rcount, (long)pa);
2111 if (nl > 18) {
2112 c = cngetc();
2113 if (c != ' ')
2114 return;
2115 nl = 0;
2116 }
2117 nl++;
2118 rcount = 0;
2119 }
2120 continue;
2121 }
2122
2123
2124 if (rcount &&
2125 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2126 ++rcount;
2127 continue;
2128 }
2129 if (rcount) {
2130 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2131 padiff >>= PAGE_SHIFT;
2132 padiff &= PQ_L2_MASK;
2133 if (padiff == 0) {
2134 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2135 ++rcount;
2136 continue;
2137 }
2138 db_printf(" index(%ld)run(%d)pa(0x%lx)",
2139 (long)fidx, rcount, (long)pa);
2140 db_printf("pd(%ld)\n", (long)padiff);
2141 if (nl > 18) {
2142 c = cngetc();
2143 if (c != ' ')
2144 return;
2145 nl = 0;
2146 }
2147 nl++;
2148 }
2149 fidx = idx;
2150 pa = VM_PAGE_TO_PHYS(m);
2151 rcount = 1;
2152 }
2153 if (rcount) {
2154 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2155 (long)fidx, rcount, (long)pa);
2156 if (nl > 18) {
2157 c = cngetc();
2158 if (c != ' ')
2159 return;
2160 nl = 0;
2161 }
2162 nl++;
2163 }
2164 }
2165 }
2166 #endif /* DDB */
Cache object: 5cc00eab7f2901bad4827fa6c5abde81
|