FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61 /*
62 * Virtual memory object module.
63 */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/lock.h>
71 #include <sys/mman.h>
72 #include <sys/mount.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h> /* for curproc, pageproc */
77 #include <sys/socket.h>
78 #include <sys/vnode.h>
79 #include <sys/vmmeter.h>
80 #include <sys/sx.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/uma.h>
94
95 #define EASY_SCAN_FACTOR 8
96
97 #define MSYNC_FLUSH_HARDSEQ 0x01
98 #define MSYNC_FLUSH_SOFTSEQ 0x02
99
100 /*
101 * msync / VM object flushing optimizations
102 */
103 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
104 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
105 CTLFLAG_RW, &msync_flush_flags, 0, "");
106
107 static int old_msync;
108 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
109 "Use old (insecure) msync behavior");
110
111 static void vm_object_qcollapse(vm_object_t object);
112 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113
114 /*
115 * Virtual memory objects maintain the actual data
116 * associated with allocated virtual memory. A given
117 * page of memory exists within exactly one object.
118 *
119 * An object is only deallocated when all "references"
120 * are given up. Only one "reference" to a given
121 * region of an object should be writeable.
122 *
123 * Associated with each object is a list of all resident
124 * memory pages belonging to that object; this list is
125 * maintained by the "vm_page" module, and locked by the object's
126 * lock.
127 *
128 * Each object also records a "pager" routine which is
129 * used to retrieve (and store) pages to the proper backing
130 * storage. In addition, objects may be backed by other
131 * objects from which they were virtual-copied.
132 *
133 * The only items within the object structure which are
134 * modified after time of creation are:
135 * reference count locked by object's lock
136 * pager routine locked by object's lock
137 *
138 */
139
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx; /* lock for object list and count */
142
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145
146 static long object_collapses;
147 static long object_bypasses;
148
149 /*
150 * next_index determines the page color that is assigned to the next
151 * allocated object. Accesses to next_index are not synchronized
152 * because the effects of two or more object allocations using
153 * next_index simultaneously are inconsequential. At any given time,
154 * numerous objects have the same page color.
155 */
156 static int next_index;
157
158 static uma_zone_t obj_zone;
159 #define VM_OBJECTS_INIT 256
160
161 static int vm_object_zinit(void *mem, int size, int flags);
162
163 #ifdef INVARIANTS
164 static void vm_object_zdtor(void *mem, int size, void *arg);
165
166 static void
167 vm_object_zdtor(void *mem, int size, void *arg)
168 {
169 vm_object_t object;
170
171 object = (vm_object_t)mem;
172 KASSERT(TAILQ_EMPTY(&object->memq),
173 ("object %p has resident pages",
174 object));
175 KASSERT(object->paging_in_progress == 0,
176 ("object %p paging_in_progress = %d",
177 object, object->paging_in_progress));
178 KASSERT(object->resident_page_count == 0,
179 ("object %p resident_page_count = %d",
180 object, object->resident_page_count));
181 KASSERT(object->shadow_count == 0,
182 ("object %p shadow_count = %d",
183 object, object->shadow_count));
184 }
185 #endif
186
187 static int
188 vm_object_zinit(void *mem, int size, int flags)
189 {
190 vm_object_t object;
191
192 object = (vm_object_t)mem;
193 bzero(&object->mtx, sizeof(object->mtx));
194 VM_OBJECT_LOCK_INIT(object, "standard object");
195
196 /* These are true for any object that has been freed */
197 object->paging_in_progress = 0;
198 object->resident_page_count = 0;
199 object->shadow_count = 0;
200 return (0);
201 }
202
203 void
204 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
205 {
206 int incr;
207
208 TAILQ_INIT(&object->memq);
209 LIST_INIT(&object->shadow_head);
210
211 object->root = NULL;
212 object->type = type;
213 object->size = size;
214 object->generation = 1;
215 object->ref_count = 1;
216 object->flags = 0;
217 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
218 object->flags = OBJ_ONEMAPPING;
219 if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
220 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
221 else
222 incr = size;
223 object->pg_color = next_index;
224 next_index = (object->pg_color + incr) & PQ_L2_MASK;
225 object->handle = NULL;
226 object->backing_object = NULL;
227 object->backing_object_offset = (vm_ooffset_t) 0;
228
229 mtx_lock(&vm_object_list_mtx);
230 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231 mtx_unlock(&vm_object_list_mtx);
232 }
233
234 /*
235 * vm_object_init:
236 *
237 * Initialize the VM objects module.
238 */
239 void
240 vm_object_init(void)
241 {
242 TAILQ_INIT(&vm_object_list);
243 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
244
245 VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
246 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
247 kernel_object);
248
249 VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
250 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
251 kmem_object);
252
253 /*
254 * The lock portion of struct vm_object must be type stable due
255 * to vm_pageout_fallback_object_lock locking a vm object
256 * without holding any references to it.
257 */
258 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
259 #ifdef INVARIANTS
260 vm_object_zdtor,
261 #else
262 NULL,
263 #endif
264 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
265 uma_prealloc(obj_zone, VM_OBJECTS_INIT);
266 }
267
268 void
269 vm_object_clear_flag(vm_object_t object, u_short bits)
270 {
271
272 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
273 object->flags &= ~bits;
274 }
275
276 void
277 vm_object_pip_add(vm_object_t object, short i)
278 {
279
280 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
281 object->paging_in_progress += i;
282 }
283
284 void
285 vm_object_pip_subtract(vm_object_t object, short i)
286 {
287
288 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
289 object->paging_in_progress -= i;
290 }
291
292 void
293 vm_object_pip_wakeup(vm_object_t object)
294 {
295
296 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
297 object->paging_in_progress--;
298 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
299 vm_object_clear_flag(object, OBJ_PIPWNT);
300 wakeup(object);
301 }
302 }
303
304 void
305 vm_object_pip_wakeupn(vm_object_t object, short i)
306 {
307
308 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
309 if (i)
310 object->paging_in_progress -= i;
311 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
312 vm_object_clear_flag(object, OBJ_PIPWNT);
313 wakeup(object);
314 }
315 }
316
317 void
318 vm_object_pip_wait(vm_object_t object, char *waitid)
319 {
320
321 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
322 while (object->paging_in_progress) {
323 object->flags |= OBJ_PIPWNT;
324 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
325 }
326 }
327
328 /*
329 * vm_object_allocate:
330 *
331 * Returns a new object with the given size.
332 */
333 vm_object_t
334 vm_object_allocate(objtype_t type, vm_pindex_t size)
335 {
336 vm_object_t object;
337
338 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
339 _vm_object_allocate(type, size, object);
340 return (object);
341 }
342
343
344 /*
345 * vm_object_reference:
346 *
347 * Gets another reference to the given object. Note: OBJ_DEAD
348 * objects can be referenced during final cleaning.
349 */
350 void
351 vm_object_reference(vm_object_t object)
352 {
353 struct vnode *vp;
354
355 if (object == NULL)
356 return;
357 VM_OBJECT_LOCK(object);
358 object->ref_count++;
359 if (object->type == OBJT_VNODE) {
360 int vfslocked;
361
362 vp = object->handle;
363 VM_OBJECT_UNLOCK(object);
364 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
365 vget(vp, LK_RETRY, curthread);
366 VFS_UNLOCK_GIANT(vfslocked);
367 } else
368 VM_OBJECT_UNLOCK(object);
369 }
370
371 /*
372 * vm_object_reference_locked:
373 *
374 * Gets another reference to the given object.
375 *
376 * The object must be locked.
377 */
378 void
379 vm_object_reference_locked(vm_object_t object)
380 {
381 struct vnode *vp;
382
383 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
384 KASSERT((object->flags & OBJ_DEAD) == 0,
385 ("vm_object_reference_locked: dead object referenced"));
386 object->ref_count++;
387 if (object->type == OBJT_VNODE) {
388 vp = object->handle;
389 vref(vp);
390 }
391 }
392
393 /*
394 * Handle deallocating an object of type OBJT_VNODE.
395 */
396 void
397 vm_object_vndeallocate(vm_object_t object)
398 {
399 struct vnode *vp = (struct vnode *) object->handle;
400
401 VFS_ASSERT_GIANT(vp->v_mount);
402 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
403 KASSERT(object->type == OBJT_VNODE,
404 ("vm_object_vndeallocate: not a vnode object"));
405 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
406 #ifdef INVARIANTS
407 if (object->ref_count == 0) {
408 vprint("vm_object_vndeallocate", vp);
409 panic("vm_object_vndeallocate: bad object reference count");
410 }
411 #endif
412
413 object->ref_count--;
414 if (object->ref_count == 0) {
415 mp_fixme("Unlocked vflag access.");
416 vp->v_vflag &= ~VV_TEXT;
417 }
418 VM_OBJECT_UNLOCK(object);
419 /*
420 * vrele may need a vop lock
421 */
422 vrele(vp);
423 }
424
425 /*
426 * vm_object_deallocate:
427 *
428 * Release a reference to the specified object,
429 * gained either through a vm_object_allocate
430 * or a vm_object_reference call. When all references
431 * are gone, storage associated with this object
432 * may be relinquished.
433 *
434 * No object may be locked.
435 */
436 void
437 vm_object_deallocate(vm_object_t object)
438 {
439 vm_object_t temp;
440
441 while (object != NULL) {
442 int vfslocked;
443
444 vfslocked = 0;
445 restart:
446 VM_OBJECT_LOCK(object);
447 if (object->type == OBJT_VNODE) {
448 struct vnode *vp = (struct vnode *) object->handle;
449
450 /*
451 * Conditionally acquire Giant for a vnode-backed
452 * object. We have to be careful since the type of
453 * a vnode object can change while the object is
454 * unlocked.
455 */
456 if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
457 vfslocked = 1;
458 if (!mtx_trylock(&Giant)) {
459 VM_OBJECT_UNLOCK(object);
460 mtx_lock(&Giant);
461 goto restart;
462 }
463 }
464 vm_object_vndeallocate(object);
465 VFS_UNLOCK_GIANT(vfslocked);
466 return;
467 } else
468 /*
469 * This is to handle the case that the object
470 * changed type while we dropped its lock to
471 * obtain Giant.
472 */
473 VFS_UNLOCK_GIANT(vfslocked);
474
475 KASSERT(object->ref_count != 0,
476 ("vm_object_deallocate: object deallocated too many times: %d", object->type));
477
478 /*
479 * If the reference count goes to 0 we start calling
480 * vm_object_terminate() on the object chain.
481 * A ref count of 1 may be a special case depending on the
482 * shadow count being 0 or 1.
483 */
484 object->ref_count--;
485 if (object->ref_count > 1) {
486 VM_OBJECT_UNLOCK(object);
487 return;
488 } else if (object->ref_count == 1) {
489 if (object->shadow_count == 0 &&
490 object->handle == NULL &&
491 (object->type == OBJT_DEFAULT ||
492 object->type == OBJT_SWAP)) {
493 vm_object_set_flag(object, OBJ_ONEMAPPING);
494 } else if ((object->shadow_count == 1) &&
495 (object->handle == NULL) &&
496 (object->type == OBJT_DEFAULT ||
497 object->type == OBJT_SWAP)) {
498 vm_object_t robject;
499
500 robject = LIST_FIRST(&object->shadow_head);
501 KASSERT(robject != NULL,
502 ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
503 object->ref_count,
504 object->shadow_count));
505 if (!VM_OBJECT_TRYLOCK(robject)) {
506 /*
507 * Avoid a potential deadlock.
508 */
509 object->ref_count++;
510 VM_OBJECT_UNLOCK(object);
511 /*
512 * More likely than not the thread
513 * holding robject's lock has lower
514 * priority than the current thread.
515 * Let the lower priority thread run.
516 */
517 tsleep(&proc0, PVM, "vmo_de", 1);
518 continue;
519 }
520 /*
521 * Collapse object into its shadow unless its
522 * shadow is dead. In that case, object will
523 * be deallocated by the thread that is
524 * deallocating its shadow.
525 */
526 if ((robject->flags & OBJ_DEAD) == 0 &&
527 (robject->handle == NULL) &&
528 (robject->type == OBJT_DEFAULT ||
529 robject->type == OBJT_SWAP)) {
530
531 robject->ref_count++;
532 retry:
533 if (robject->paging_in_progress) {
534 VM_OBJECT_UNLOCK(object);
535 vm_object_pip_wait(robject,
536 "objde1");
537 temp = robject->backing_object;
538 if (object == temp) {
539 VM_OBJECT_LOCK(object);
540 goto retry;
541 }
542 } else if (object->paging_in_progress) {
543 VM_OBJECT_UNLOCK(robject);
544 object->flags |= OBJ_PIPWNT;
545 msleep(object,
546 VM_OBJECT_MTX(object),
547 PDROP | PVM, "objde2", 0);
548 VM_OBJECT_LOCK(robject);
549 temp = robject->backing_object;
550 if (object == temp) {
551 VM_OBJECT_LOCK(object);
552 goto retry;
553 }
554 } else
555 VM_OBJECT_UNLOCK(object);
556
557 if (robject->ref_count == 1) {
558 robject->ref_count--;
559 object = robject;
560 goto doterm;
561 }
562 object = robject;
563 vm_object_collapse(object);
564 VM_OBJECT_UNLOCK(object);
565 continue;
566 }
567 VM_OBJECT_UNLOCK(robject);
568 }
569 VM_OBJECT_UNLOCK(object);
570 return;
571 }
572 doterm:
573 temp = object->backing_object;
574 if (temp != NULL) {
575 VM_OBJECT_LOCK(temp);
576 LIST_REMOVE(object, shadow_list);
577 temp->shadow_count--;
578 temp->generation++;
579 VM_OBJECT_UNLOCK(temp);
580 object->backing_object = NULL;
581 }
582 /*
583 * Don't double-terminate, we could be in a termination
584 * recursion due to the terminate having to sync data
585 * to disk.
586 */
587 if ((object->flags & OBJ_DEAD) == 0)
588 vm_object_terminate(object);
589 else
590 VM_OBJECT_UNLOCK(object);
591 object = temp;
592 }
593 }
594
595 /*
596 * vm_object_destroy removes the object from the global object list
597 * and frees the space for the object.
598 */
599 void
600 vm_object_destroy(vm_object_t object)
601 {
602
603 /*
604 * Remove the object from the global object list.
605 */
606 mtx_lock(&vm_object_list_mtx);
607 TAILQ_REMOVE(&vm_object_list, object, object_list);
608 mtx_unlock(&vm_object_list_mtx);
609
610 /*
611 * Free the space for the object.
612 */
613 uma_zfree(obj_zone, object);
614 }
615
616 /*
617 * vm_object_terminate actually destroys the specified object, freeing
618 * up all previously used resources.
619 *
620 * The object must be locked.
621 * This routine may block.
622 */
623 void
624 vm_object_terminate(vm_object_t object)
625 {
626 vm_page_t p;
627
628 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
629
630 /*
631 * Make sure no one uses us.
632 */
633 vm_object_set_flag(object, OBJ_DEAD);
634
635 /*
636 * wait for the pageout daemon to be done with the object
637 */
638 vm_object_pip_wait(object, "objtrm");
639
640 KASSERT(!object->paging_in_progress,
641 ("vm_object_terminate: pageout in progress"));
642
643 /*
644 * Clean and free the pages, as appropriate. All references to the
645 * object are gone, so we don't need to lock it.
646 */
647 if (object->type == OBJT_VNODE) {
648 struct vnode *vp = (struct vnode *)object->handle;
649
650 /*
651 * Clean pages and flush buffers.
652 */
653 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
654 VM_OBJECT_UNLOCK(object);
655
656 vinvalbuf(vp, V_SAVE, NULL, 0, 0);
657
658 VM_OBJECT_LOCK(object);
659 }
660
661 KASSERT(object->ref_count == 0,
662 ("vm_object_terminate: object with references, ref_count=%d",
663 object->ref_count));
664
665 /*
666 * Now free any remaining pages. For internal objects, this also
667 * removes them from paging queues. Don't free wired pages, just
668 * remove them from the object.
669 */
670 vm_page_lock_queues();
671 while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
672 KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
673 ("vm_object_terminate: freeing busy page %p "
674 "p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
675 if (p->wire_count == 0) {
676 vm_page_free(p);
677 cnt.v_pfree++;
678 } else {
679 vm_page_remove(p);
680 }
681 }
682 vm_page_unlock_queues();
683
684 /*
685 * Let the pager know object is dead.
686 */
687 vm_pager_deallocate(object);
688 VM_OBJECT_UNLOCK(object);
689
690 vm_object_destroy(object);
691 }
692
693 /*
694 * vm_object_page_clean
695 *
696 * Clean all dirty pages in the specified range of object. Leaves page
697 * on whatever queue it is currently on. If NOSYNC is set then do not
698 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
699 * leaving the object dirty.
700 *
701 * When stuffing pages asynchronously, allow clustering. XXX we need a
702 * synchronous clustering mode implementation.
703 *
704 * Odd semantics: if start == end, we clean everything.
705 *
706 * The object must be locked.
707 */
708 void
709 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
710 {
711 vm_page_t p, np;
712 vm_pindex_t tstart, tend;
713 vm_pindex_t pi;
714 int clearobjflags;
715 int pagerflags;
716 int curgeneration;
717
718 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
719 if (object->type != OBJT_VNODE ||
720 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
721 return;
722
723 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
724 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
725
726 vm_object_set_flag(object, OBJ_CLEANING);
727
728 tstart = start;
729 if (end == 0) {
730 tend = object->size;
731 } else {
732 tend = end;
733 }
734
735 vm_page_lock_queues();
736 /*
737 * If the caller is smart and only msync()s a range he knows is
738 * dirty, we may be able to avoid an object scan. This results in
739 * a phenominal improvement in performance. We cannot do this
740 * as a matter of course because the object may be huge - e.g.
741 * the size might be in the gigabytes or terrabytes.
742 */
743 if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
744 vm_pindex_t tscan;
745 int scanlimit;
746 int scanreset;
747
748 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
749 if (scanreset < 16)
750 scanreset = 16;
751 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
752
753 scanlimit = scanreset;
754 tscan = tstart;
755 while (tscan < tend) {
756 curgeneration = object->generation;
757 p = vm_page_lookup(object, tscan);
758 if (p == NULL || p->valid == 0 ||
759 (p->queue - p->pc) == PQ_CACHE) {
760 if (--scanlimit == 0)
761 break;
762 ++tscan;
763 continue;
764 }
765 vm_page_test_dirty(p);
766 if ((p->dirty & p->valid) == 0) {
767 if (--scanlimit == 0)
768 break;
769 ++tscan;
770 continue;
771 }
772 /*
773 * If we have been asked to skip nosync pages and
774 * this is a nosync page, we can't continue.
775 */
776 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
777 if (--scanlimit == 0)
778 break;
779 ++tscan;
780 continue;
781 }
782 scanlimit = scanreset;
783
784 /*
785 * This returns 0 if it was unable to busy the first
786 * page (i.e. had to sleep).
787 */
788 tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
789 }
790
791 /*
792 * If everything was dirty and we flushed it successfully,
793 * and the requested range is not the entire object, we
794 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
795 * return immediately.
796 */
797 if (tscan >= tend && (tstart || tend < object->size)) {
798 vm_page_unlock_queues();
799 vm_object_clear_flag(object, OBJ_CLEANING);
800 return;
801 }
802 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
803 }
804
805 /*
806 * Generally set CLEANCHK interlock and make the page read-only so
807 * we can then clear the object flags.
808 *
809 * However, if this is a nosync mmap then the object is likely to
810 * stay dirty so do not mess with the page and do not clear the
811 * object flags.
812 */
813 clearobjflags = 1;
814 TAILQ_FOREACH(p, &object->memq, listq) {
815 vm_page_flag_set(p, PG_CLEANCHK);
816 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
817 clearobjflags = 0;
818 else
819 pmap_page_protect(p, VM_PROT_READ);
820 }
821
822 if (clearobjflags && (tstart == 0) && (tend == object->size)) {
823 struct vnode *vp;
824
825 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
826 if (object->type == OBJT_VNODE &&
827 (vp = (struct vnode *)object->handle) != NULL) {
828 VI_LOCK(vp);
829 if (vp->v_iflag & VI_OBJDIRTY)
830 vp->v_iflag &= ~VI_OBJDIRTY;
831 VI_UNLOCK(vp);
832 }
833 }
834
835 rescan:
836 curgeneration = object->generation;
837
838 for (p = TAILQ_FIRST(&object->memq); p; p = np) {
839 int n;
840
841 np = TAILQ_NEXT(p, listq);
842
843 again:
844 pi = p->pindex;
845 if (((p->flags & PG_CLEANCHK) == 0) ||
846 (pi < tstart) || (pi >= tend) ||
847 (p->valid == 0) ||
848 ((p->queue - p->pc) == PQ_CACHE)) {
849 vm_page_flag_clear(p, PG_CLEANCHK);
850 continue;
851 }
852
853 vm_page_test_dirty(p);
854 if ((p->dirty & p->valid) == 0) {
855 vm_page_flag_clear(p, PG_CLEANCHK);
856 continue;
857 }
858
859 /*
860 * If we have been asked to skip nosync pages and this is a
861 * nosync page, skip it. Note that the object flags were
862 * not cleared in this case so we do not have to set them.
863 */
864 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
865 vm_page_flag_clear(p, PG_CLEANCHK);
866 continue;
867 }
868
869 n = vm_object_page_collect_flush(object, p,
870 curgeneration, pagerflags);
871 if (n == 0)
872 goto rescan;
873
874 if (object->generation != curgeneration)
875 goto rescan;
876
877 /*
878 * Try to optimize the next page. If we can't we pick up
879 * our (random) scan where we left off.
880 */
881 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
882 if ((p = vm_page_lookup(object, pi + n)) != NULL)
883 goto again;
884 }
885 }
886 vm_page_unlock_queues();
887 #if 0
888 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
889 #endif
890
891 vm_object_clear_flag(object, OBJ_CLEANING);
892 return;
893 }
894
895 static int
896 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
897 {
898 int runlen;
899 int maxf;
900 int chkb;
901 int maxb;
902 int i;
903 vm_pindex_t pi;
904 vm_page_t maf[vm_pageout_page_count];
905 vm_page_t mab[vm_pageout_page_count];
906 vm_page_t ma[vm_pageout_page_count];
907
908 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
909 pi = p->pindex;
910 while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
911 vm_page_lock_queues();
912 if (object->generation != curgeneration) {
913 return(0);
914 }
915 }
916 maxf = 0;
917 for(i = 1; i < vm_pageout_page_count; i++) {
918 vm_page_t tp;
919
920 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
921 if ((tp->flags & PG_BUSY) ||
922 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
923 (tp->flags & PG_CLEANCHK) == 0) ||
924 (tp->busy != 0))
925 break;
926 if((tp->queue - tp->pc) == PQ_CACHE) {
927 vm_page_flag_clear(tp, PG_CLEANCHK);
928 break;
929 }
930 vm_page_test_dirty(tp);
931 if ((tp->dirty & tp->valid) == 0) {
932 vm_page_flag_clear(tp, PG_CLEANCHK);
933 break;
934 }
935 maf[ i - 1 ] = tp;
936 maxf++;
937 continue;
938 }
939 break;
940 }
941
942 maxb = 0;
943 chkb = vm_pageout_page_count - maxf;
944 if (chkb) {
945 for(i = 1; i < chkb;i++) {
946 vm_page_t tp;
947
948 if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
949 if ((tp->flags & PG_BUSY) ||
950 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
951 (tp->flags & PG_CLEANCHK) == 0) ||
952 (tp->busy != 0))
953 break;
954 if ((tp->queue - tp->pc) == PQ_CACHE) {
955 vm_page_flag_clear(tp, PG_CLEANCHK);
956 break;
957 }
958 vm_page_test_dirty(tp);
959 if ((tp->dirty & tp->valid) == 0) {
960 vm_page_flag_clear(tp, PG_CLEANCHK);
961 break;
962 }
963 mab[ i - 1 ] = tp;
964 maxb++;
965 continue;
966 }
967 break;
968 }
969 }
970
971 for(i = 0; i < maxb; i++) {
972 int index = (maxb - i) - 1;
973 ma[index] = mab[i];
974 vm_page_flag_clear(ma[index], PG_CLEANCHK);
975 }
976 vm_page_flag_clear(p, PG_CLEANCHK);
977 ma[maxb] = p;
978 for(i = 0; i < maxf; i++) {
979 int index = (maxb + i) + 1;
980 ma[index] = maf[i];
981 vm_page_flag_clear(ma[index], PG_CLEANCHK);
982 }
983 runlen = maxb + maxf + 1;
984
985 vm_pageout_flush(ma, runlen, pagerflags);
986 for (i = 0; i < runlen; i++) {
987 if (ma[i]->valid & ma[i]->dirty) {
988 pmap_page_protect(ma[i], VM_PROT_READ);
989 vm_page_flag_set(ma[i], PG_CLEANCHK);
990
991 /*
992 * maxf will end up being the actual number of pages
993 * we wrote out contiguously, non-inclusive of the
994 * first page. We do not count look-behind pages.
995 */
996 if (i >= maxb + 1 && (maxf > i - maxb - 1))
997 maxf = i - maxb - 1;
998 }
999 }
1000 return(maxf + 1);
1001 }
1002
1003 /*
1004 * Note that there is absolutely no sense in writing out
1005 * anonymous objects, so we track down the vnode object
1006 * to write out.
1007 * We invalidate (remove) all pages from the address space
1008 * for semantic correctness.
1009 *
1010 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1011 * may start out with a NULL object.
1012 */
1013 void
1014 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1015 boolean_t syncio, boolean_t invalidate)
1016 {
1017 vm_object_t backing_object;
1018 struct vnode *vp;
1019 struct mount *mp;
1020 int flags;
1021
1022 if (object == NULL)
1023 return;
1024 VM_OBJECT_LOCK(object);
1025 while ((backing_object = object->backing_object) != NULL) {
1026 VM_OBJECT_LOCK(backing_object);
1027 offset += object->backing_object_offset;
1028 VM_OBJECT_UNLOCK(object);
1029 object = backing_object;
1030 if (object->size < OFF_TO_IDX(offset + size))
1031 size = IDX_TO_OFF(object->size) - offset;
1032 }
1033 /*
1034 * Flush pages if writing is allowed, invalidate them
1035 * if invalidation requested. Pages undergoing I/O
1036 * will be ignored by vm_object_page_remove().
1037 *
1038 * We cannot lock the vnode and then wait for paging
1039 * to complete without deadlocking against vm_fault.
1040 * Instead we simply call vm_object_page_remove() and
1041 * allow it to block internally on a page-by-page
1042 * basis when it encounters pages undergoing async
1043 * I/O.
1044 */
1045 if (object->type == OBJT_VNODE &&
1046 (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1047 int vfslocked;
1048 vp = object->handle;
1049 VM_OBJECT_UNLOCK(object);
1050 (void) vn_start_write(vp, &mp, V_WAIT);
1051 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1052 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
1053 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1054 flags |= invalidate ? OBJPC_INVAL : 0;
1055 VM_OBJECT_LOCK(object);
1056 vm_object_page_clean(object,
1057 OFF_TO_IDX(offset),
1058 OFF_TO_IDX(offset + size + PAGE_MASK),
1059 flags);
1060 VM_OBJECT_UNLOCK(object);
1061 VOP_UNLOCK(vp, 0, curthread);
1062 VFS_UNLOCK_GIANT(vfslocked);
1063 vn_finished_write(mp);
1064 VM_OBJECT_LOCK(object);
1065 }
1066 if ((object->type == OBJT_VNODE ||
1067 object->type == OBJT_DEVICE) && invalidate) {
1068 boolean_t purge;
1069 purge = old_msync || (object->type == OBJT_DEVICE);
1070 vm_object_page_remove(object,
1071 OFF_TO_IDX(offset),
1072 OFF_TO_IDX(offset + size + PAGE_MASK),
1073 purge ? FALSE : TRUE);
1074 }
1075 VM_OBJECT_UNLOCK(object);
1076 }
1077
1078 /*
1079 * vm_object_madvise:
1080 *
1081 * Implements the madvise function at the object/page level.
1082 *
1083 * MADV_WILLNEED (any object)
1084 *
1085 * Activate the specified pages if they are resident.
1086 *
1087 * MADV_DONTNEED (any object)
1088 *
1089 * Deactivate the specified pages if they are resident.
1090 *
1091 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects,
1092 * OBJ_ONEMAPPING only)
1093 *
1094 * Deactivate and clean the specified pages if they are
1095 * resident. This permits the process to reuse the pages
1096 * without faulting or the kernel to reclaim the pages
1097 * without I/O.
1098 */
1099 void
1100 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1101 {
1102 vm_pindex_t end, tpindex;
1103 vm_object_t backing_object, tobject;
1104 vm_page_t m;
1105
1106 if (object == NULL)
1107 return;
1108 VM_OBJECT_LOCK(object);
1109 end = pindex + count;
1110 /*
1111 * Locate and adjust resident pages
1112 */
1113 for (; pindex < end; pindex += 1) {
1114 relookup:
1115 tobject = object;
1116 tpindex = pindex;
1117 shadowlookup:
1118 /*
1119 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1120 * and those pages must be OBJ_ONEMAPPING.
1121 */
1122 if (advise == MADV_FREE) {
1123 if ((tobject->type != OBJT_DEFAULT &&
1124 tobject->type != OBJT_SWAP) ||
1125 (tobject->flags & OBJ_ONEMAPPING) == 0) {
1126 goto unlock_tobject;
1127 }
1128 }
1129 m = vm_page_lookup(tobject, tpindex);
1130 if (m == NULL) {
1131 /*
1132 * There may be swap even if there is no backing page
1133 */
1134 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1135 swap_pager_freespace(tobject, tpindex, 1);
1136 /*
1137 * next object
1138 */
1139 backing_object = tobject->backing_object;
1140 if (backing_object == NULL)
1141 goto unlock_tobject;
1142 VM_OBJECT_LOCK(backing_object);
1143 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1144 if (tobject != object)
1145 VM_OBJECT_UNLOCK(tobject);
1146 tobject = backing_object;
1147 goto shadowlookup;
1148 }
1149 /*
1150 * If the page is busy or not in a normal active state,
1151 * we skip it. If the page is not managed there are no
1152 * page queues to mess with. Things can break if we mess
1153 * with pages in any of the below states.
1154 */
1155 vm_page_lock_queues();
1156 if (m->hold_count ||
1157 m->wire_count ||
1158 (m->flags & PG_UNMANAGED) ||
1159 m->valid != VM_PAGE_BITS_ALL) {
1160 vm_page_unlock_queues();
1161 goto unlock_tobject;
1162 }
1163 if ((m->flags & PG_BUSY) || m->busy) {
1164 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1165 if (object != tobject)
1166 VM_OBJECT_UNLOCK(object);
1167 VM_OBJECT_UNLOCK(tobject);
1168 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "madvpo", 0);
1169 VM_OBJECT_LOCK(object);
1170 goto relookup;
1171 }
1172 if (advise == MADV_WILLNEED) {
1173 vm_page_activate(m);
1174 } else if (advise == MADV_DONTNEED) {
1175 vm_page_dontneed(m);
1176 } else if (advise == MADV_FREE) {
1177 /*
1178 * Mark the page clean. This will allow the page
1179 * to be freed up by the system. However, such pages
1180 * are often reused quickly by malloc()/free()
1181 * so we do not do anything that would cause
1182 * a page fault if we can help it.
1183 *
1184 * Specifically, we do not try to actually free
1185 * the page now nor do we try to put it in the
1186 * cache (which would cause a page fault on reuse).
1187 *
1188 * But we do make the page is freeable as we
1189 * can without actually taking the step of unmapping
1190 * it.
1191 */
1192 pmap_clear_modify(m);
1193 m->dirty = 0;
1194 m->act_count = 0;
1195 vm_page_dontneed(m);
1196 }
1197 vm_page_unlock_queues();
1198 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1199 swap_pager_freespace(tobject, tpindex, 1);
1200 unlock_tobject:
1201 if (tobject != object)
1202 VM_OBJECT_UNLOCK(tobject);
1203 }
1204 VM_OBJECT_UNLOCK(object);
1205 }
1206
1207 /*
1208 * vm_object_shadow:
1209 *
1210 * Create a new object which is backed by the
1211 * specified existing object range. The source
1212 * object reference is deallocated.
1213 *
1214 * The new object and offset into that object
1215 * are returned in the source parameters.
1216 */
1217 void
1218 vm_object_shadow(
1219 vm_object_t *object, /* IN/OUT */
1220 vm_ooffset_t *offset, /* IN/OUT */
1221 vm_size_t length)
1222 {
1223 vm_object_t source;
1224 vm_object_t result;
1225
1226 source = *object;
1227
1228 /*
1229 * Don't create the new object if the old object isn't shared.
1230 */
1231 if (source != NULL) {
1232 VM_OBJECT_LOCK(source);
1233 if (source->ref_count == 1 &&
1234 source->handle == NULL &&
1235 (source->type == OBJT_DEFAULT ||
1236 source->type == OBJT_SWAP)) {
1237 VM_OBJECT_UNLOCK(source);
1238 return;
1239 }
1240 VM_OBJECT_UNLOCK(source);
1241 }
1242
1243 /*
1244 * Allocate a new object with the given length.
1245 */
1246 result = vm_object_allocate(OBJT_DEFAULT, length);
1247
1248 /*
1249 * The new object shadows the source object, adding a reference to it.
1250 * Our caller changes his reference to point to the new object,
1251 * removing a reference to the source object. Net result: no change
1252 * of reference count.
1253 *
1254 * Try to optimize the result object's page color when shadowing
1255 * in order to maintain page coloring consistency in the combined
1256 * shadowed object.
1257 */
1258 result->backing_object = source;
1259 /*
1260 * Store the offset into the source object, and fix up the offset into
1261 * the new object.
1262 */
1263 result->backing_object_offset = *offset;
1264 if (source != NULL) {
1265 VM_OBJECT_LOCK(source);
1266 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1267 source->shadow_count++;
1268 source->generation++;
1269 if (length < source->size)
1270 length = source->size;
1271 if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1272 source->generation > 1)
1273 length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1274 result->pg_color = (source->pg_color +
1275 length * source->generation) & PQ_L2_MASK;
1276 result->flags |= source->flags & OBJ_NEEDGIANT;
1277 VM_OBJECT_UNLOCK(source);
1278 next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1279 PQ_L2_MASK;
1280 }
1281
1282
1283 /*
1284 * Return the new things
1285 */
1286 *offset = 0;
1287 *object = result;
1288 }
1289
1290 /*
1291 * vm_object_split:
1292 *
1293 * Split the pages in a map entry into a new object. This affords
1294 * easier removal of unused pages, and keeps object inheritance from
1295 * being a negative impact on memory usage.
1296 */
1297 void
1298 vm_object_split(vm_map_entry_t entry)
1299 {
1300 vm_page_t m;
1301 vm_object_t orig_object, new_object, source;
1302 vm_pindex_t offidxstart, offidxend;
1303 vm_size_t idx, size;
1304
1305 orig_object = entry->object.vm_object;
1306 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1307 return;
1308 if (orig_object->ref_count <= 1)
1309 return;
1310 VM_OBJECT_UNLOCK(orig_object);
1311
1312 offidxstart = OFF_TO_IDX(entry->offset);
1313 offidxend = offidxstart + OFF_TO_IDX(entry->end - entry->start);
1314 size = offidxend - offidxstart;
1315
1316 /*
1317 * If swap_pager_copy() is later called, it will convert new_object
1318 * into a swap object.
1319 */
1320 new_object = vm_object_allocate(OBJT_DEFAULT, size);
1321
1322 VM_OBJECT_LOCK(new_object);
1323 VM_OBJECT_LOCK(orig_object);
1324 source = orig_object->backing_object;
1325 if (source != NULL) {
1326 VM_OBJECT_LOCK(source);
1327 if ((source->flags & OBJ_DEAD) != 0) {
1328 VM_OBJECT_UNLOCK(source);
1329 VM_OBJECT_UNLOCK(orig_object);
1330 VM_OBJECT_UNLOCK(new_object);
1331 vm_object_deallocate(new_object);
1332 VM_OBJECT_LOCK(orig_object);
1333 return;
1334 }
1335 LIST_INSERT_HEAD(&source->shadow_head,
1336 new_object, shadow_list);
1337 source->shadow_count++;
1338 source->generation++;
1339 vm_object_reference_locked(source); /* for new_object */
1340 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1341 VM_OBJECT_UNLOCK(source);
1342 new_object->backing_object_offset =
1343 orig_object->backing_object_offset + entry->offset;
1344 new_object->backing_object = source;
1345 }
1346 new_object->flags |= orig_object->flags & OBJ_NEEDGIANT;
1347 vm_page_lock_queues();
1348 for (idx = 0; idx < size; idx++) {
1349 retry:
1350 m = vm_page_lookup(orig_object, offidxstart + idx);
1351 if (m == NULL)
1352 continue;
1353
1354 /*
1355 * We must wait for pending I/O to complete before we can
1356 * rename the page.
1357 *
1358 * We do not have to VM_PROT_NONE the page as mappings should
1359 * not be changed by this operation.
1360 */
1361 if ((m->flags & PG_BUSY) || m->busy) {
1362 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1363 VM_OBJECT_UNLOCK(orig_object);
1364 VM_OBJECT_UNLOCK(new_object);
1365 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "spltwt", 0);
1366 VM_OBJECT_LOCK(new_object);
1367 VM_OBJECT_LOCK(orig_object);
1368 vm_page_lock_queues();
1369 goto retry;
1370 }
1371 vm_page_rename(m, new_object, idx);
1372 /* page automatically made dirty by rename and cache handled */
1373 vm_page_busy(m);
1374 }
1375 vm_page_unlock_queues();
1376 if (orig_object->type == OBJT_SWAP) {
1377 /*
1378 * swap_pager_copy() can sleep, in which case the orig_object's
1379 * and new_object's locks are released and reacquired.
1380 */
1381 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1382 }
1383 VM_OBJECT_UNLOCK(orig_object);
1384 vm_page_lock_queues();
1385 TAILQ_FOREACH(m, &new_object->memq, listq)
1386 vm_page_wakeup(m);
1387 vm_page_unlock_queues();
1388 VM_OBJECT_UNLOCK(new_object);
1389 entry->object.vm_object = new_object;
1390 entry->offset = 0LL;
1391 vm_object_deallocate(orig_object);
1392 VM_OBJECT_LOCK(new_object);
1393 }
1394
1395 #define OBSC_TEST_ALL_SHADOWED 0x0001
1396 #define OBSC_COLLAPSE_NOWAIT 0x0002
1397 #define OBSC_COLLAPSE_WAIT 0x0004
1398
1399 static int
1400 vm_object_backing_scan(vm_object_t object, int op)
1401 {
1402 int r = 1;
1403 vm_page_t p;
1404 vm_object_t backing_object;
1405 vm_pindex_t backing_offset_index;
1406
1407 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1408 VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1409
1410 backing_object = object->backing_object;
1411 backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1412
1413 /*
1414 * Initial conditions
1415 */
1416 if (op & OBSC_TEST_ALL_SHADOWED) {
1417 /*
1418 * We do not want to have to test for the existence of
1419 * swap pages in the backing object. XXX but with the
1420 * new swapper this would be pretty easy to do.
1421 *
1422 * XXX what about anonymous MAP_SHARED memory that hasn't
1423 * been ZFOD faulted yet? If we do not test for this, the
1424 * shadow test may succeed! XXX
1425 */
1426 if (backing_object->type != OBJT_DEFAULT) {
1427 return (0);
1428 }
1429 }
1430 if (op & OBSC_COLLAPSE_WAIT) {
1431 vm_object_set_flag(backing_object, OBJ_DEAD);
1432 }
1433
1434 /*
1435 * Our scan
1436 */
1437 p = TAILQ_FIRST(&backing_object->memq);
1438 while (p) {
1439 vm_page_t next = TAILQ_NEXT(p, listq);
1440 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1441
1442 if (op & OBSC_TEST_ALL_SHADOWED) {
1443 vm_page_t pp;
1444
1445 /*
1446 * Ignore pages outside the parent object's range
1447 * and outside the parent object's mapping of the
1448 * backing object.
1449 *
1450 * note that we do not busy the backing object's
1451 * page.
1452 */
1453 if (
1454 p->pindex < backing_offset_index ||
1455 new_pindex >= object->size
1456 ) {
1457 p = next;
1458 continue;
1459 }
1460
1461 /*
1462 * See if the parent has the page or if the parent's
1463 * object pager has the page. If the parent has the
1464 * page but the page is not valid, the parent's
1465 * object pager must have the page.
1466 *
1467 * If this fails, the parent does not completely shadow
1468 * the object and we might as well give up now.
1469 */
1470
1471 pp = vm_page_lookup(object, new_pindex);
1472 if (
1473 (pp == NULL || pp->valid == 0) &&
1474 !vm_pager_has_page(object, new_pindex, NULL, NULL)
1475 ) {
1476 r = 0;
1477 break;
1478 }
1479 }
1480
1481 /*
1482 * Check for busy page
1483 */
1484 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1485 vm_page_t pp;
1486
1487 if (op & OBSC_COLLAPSE_NOWAIT) {
1488 if ((p->flags & PG_BUSY) ||
1489 !p->valid ||
1490 p->busy) {
1491 p = next;
1492 continue;
1493 }
1494 } else if (op & OBSC_COLLAPSE_WAIT) {
1495 if ((p->flags & PG_BUSY) || p->busy) {
1496 vm_page_lock_queues();
1497 vm_page_flag_set(p,
1498 PG_WANTED | PG_REFERENCED);
1499 VM_OBJECT_UNLOCK(backing_object);
1500 VM_OBJECT_UNLOCK(object);
1501 msleep(p, &vm_page_queue_mtx,
1502 PDROP | PVM, "vmocol", 0);
1503 VM_OBJECT_LOCK(object);
1504 VM_OBJECT_LOCK(backing_object);
1505 /*
1506 * If we slept, anything could have
1507 * happened. Since the object is
1508 * marked dead, the backing offset
1509 * should not have changed so we
1510 * just restart our scan.
1511 */
1512 p = TAILQ_FIRST(&backing_object->memq);
1513 continue;
1514 }
1515 }
1516
1517 KASSERT(
1518 p->object == backing_object,
1519 ("vm_object_backing_scan: object mismatch")
1520 );
1521
1522 /*
1523 * Destroy any associated swap
1524 */
1525 if (backing_object->type == OBJT_SWAP) {
1526 swap_pager_freespace(
1527 backing_object,
1528 p->pindex,
1529 1
1530 );
1531 }
1532
1533 if (
1534 p->pindex < backing_offset_index ||
1535 new_pindex >= object->size
1536 ) {
1537 /*
1538 * Page is out of the parent object's range, we
1539 * can simply destroy it.
1540 */
1541 vm_page_lock_queues();
1542 KASSERT(!pmap_page_is_mapped(p),
1543 ("freeing mapped page %p", p));
1544 if (p->wire_count == 0)
1545 vm_page_free(p);
1546 else
1547 vm_page_remove(p);
1548 vm_page_unlock_queues();
1549 p = next;
1550 continue;
1551 }
1552
1553 pp = vm_page_lookup(object, new_pindex);
1554 if (
1555 pp != NULL ||
1556 vm_pager_has_page(object, new_pindex, NULL, NULL)
1557 ) {
1558 /*
1559 * page already exists in parent OR swap exists
1560 * for this location in the parent. Destroy
1561 * the original page from the backing object.
1562 *
1563 * Leave the parent's page alone
1564 */
1565 vm_page_lock_queues();
1566 KASSERT(!pmap_page_is_mapped(p),
1567 ("freeing mapped page %p", p));
1568 if (p->wire_count == 0)
1569 vm_page_free(p);
1570 else
1571 vm_page_remove(p);
1572 vm_page_unlock_queues();
1573 p = next;
1574 continue;
1575 }
1576
1577 /*
1578 * Page does not exist in parent, rename the
1579 * page from the backing object to the main object.
1580 *
1581 * If the page was mapped to a process, it can remain
1582 * mapped through the rename.
1583 */
1584 vm_page_lock_queues();
1585 vm_page_rename(p, object, new_pindex);
1586 vm_page_unlock_queues();
1587 /* page automatically made dirty by rename */
1588 }
1589 p = next;
1590 }
1591 return (r);
1592 }
1593
1594
1595 /*
1596 * this version of collapse allows the operation to occur earlier and
1597 * when paging_in_progress is true for an object... This is not a complete
1598 * operation, but should plug 99.9% of the rest of the leaks.
1599 */
1600 static void
1601 vm_object_qcollapse(vm_object_t object)
1602 {
1603 vm_object_t backing_object = object->backing_object;
1604
1605 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1606 VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1607
1608 if (backing_object->ref_count != 1)
1609 return;
1610
1611 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1612 }
1613
1614 /*
1615 * vm_object_collapse:
1616 *
1617 * Collapse an object with the object backing it.
1618 * Pages in the backing object are moved into the
1619 * parent, and the backing object is deallocated.
1620 */
1621 void
1622 vm_object_collapse(vm_object_t object)
1623 {
1624 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1625
1626 while (TRUE) {
1627 vm_object_t backing_object;
1628
1629 /*
1630 * Verify that the conditions are right for collapse:
1631 *
1632 * The object exists and the backing object exists.
1633 */
1634 if ((backing_object = object->backing_object) == NULL)
1635 break;
1636
1637 /*
1638 * we check the backing object first, because it is most likely
1639 * not collapsable.
1640 */
1641 VM_OBJECT_LOCK(backing_object);
1642 if (backing_object->handle != NULL ||
1643 (backing_object->type != OBJT_DEFAULT &&
1644 backing_object->type != OBJT_SWAP) ||
1645 (backing_object->flags & OBJ_DEAD) ||
1646 object->handle != NULL ||
1647 (object->type != OBJT_DEFAULT &&
1648 object->type != OBJT_SWAP) ||
1649 (object->flags & OBJ_DEAD)) {
1650 VM_OBJECT_UNLOCK(backing_object);
1651 break;
1652 }
1653
1654 if (
1655 object->paging_in_progress != 0 ||
1656 backing_object->paging_in_progress != 0
1657 ) {
1658 vm_object_qcollapse(object);
1659 VM_OBJECT_UNLOCK(backing_object);
1660 break;
1661 }
1662 /*
1663 * We know that we can either collapse the backing object (if
1664 * the parent is the only reference to it) or (perhaps) have
1665 * the parent bypass the object if the parent happens to shadow
1666 * all the resident pages in the entire backing object.
1667 *
1668 * This is ignoring pager-backed pages such as swap pages.
1669 * vm_object_backing_scan fails the shadowing test in this
1670 * case.
1671 */
1672 if (backing_object->ref_count == 1) {
1673 /*
1674 * If there is exactly one reference to the backing
1675 * object, we can collapse it into the parent.
1676 */
1677 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1678
1679 /*
1680 * Move the pager from backing_object to object.
1681 */
1682 if (backing_object->type == OBJT_SWAP) {
1683 /*
1684 * swap_pager_copy() can sleep, in which case
1685 * the backing_object's and object's locks are
1686 * released and reacquired.
1687 */
1688 swap_pager_copy(
1689 backing_object,
1690 object,
1691 OFF_TO_IDX(object->backing_object_offset), TRUE);
1692 }
1693 /*
1694 * Object now shadows whatever backing_object did.
1695 * Note that the reference to
1696 * backing_object->backing_object moves from within
1697 * backing_object to within object.
1698 */
1699 LIST_REMOVE(object, shadow_list);
1700 backing_object->shadow_count--;
1701 backing_object->generation++;
1702 if (backing_object->backing_object) {
1703 VM_OBJECT_LOCK(backing_object->backing_object);
1704 LIST_REMOVE(backing_object, shadow_list);
1705 LIST_INSERT_HEAD(
1706 &backing_object->backing_object->shadow_head,
1707 object, shadow_list);
1708 /*
1709 * The shadow_count has not changed.
1710 */
1711 backing_object->backing_object->generation++;
1712 VM_OBJECT_UNLOCK(backing_object->backing_object);
1713 }
1714 object->backing_object = backing_object->backing_object;
1715 object->backing_object_offset +=
1716 backing_object->backing_object_offset;
1717
1718 /*
1719 * Discard backing_object.
1720 *
1721 * Since the backing object has no pages, no pager left,
1722 * and no object references within it, all that is
1723 * necessary is to dispose of it.
1724 */
1725 KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1726 VM_OBJECT_UNLOCK(backing_object);
1727
1728 mtx_lock(&vm_object_list_mtx);
1729 TAILQ_REMOVE(
1730 &vm_object_list,
1731 backing_object,
1732 object_list
1733 );
1734 mtx_unlock(&vm_object_list_mtx);
1735
1736 uma_zfree(obj_zone, backing_object);
1737
1738 object_collapses++;
1739 } else {
1740 vm_object_t new_backing_object;
1741
1742 /*
1743 * If we do not entirely shadow the backing object,
1744 * there is nothing we can do so we give up.
1745 */
1746 if (object->resident_page_count != object->size &&
1747 vm_object_backing_scan(object,
1748 OBSC_TEST_ALL_SHADOWED) == 0) {
1749 VM_OBJECT_UNLOCK(backing_object);
1750 break;
1751 }
1752
1753 /*
1754 * Make the parent shadow the next object in the
1755 * chain. Deallocating backing_object will not remove
1756 * it, since its reference count is at least 2.
1757 */
1758 LIST_REMOVE(object, shadow_list);
1759 backing_object->shadow_count--;
1760 backing_object->generation++;
1761
1762 new_backing_object = backing_object->backing_object;
1763 if ((object->backing_object = new_backing_object) != NULL) {
1764 VM_OBJECT_LOCK(new_backing_object);
1765 LIST_INSERT_HEAD(
1766 &new_backing_object->shadow_head,
1767 object,
1768 shadow_list
1769 );
1770 new_backing_object->shadow_count++;
1771 new_backing_object->generation++;
1772 vm_object_reference_locked(new_backing_object);
1773 VM_OBJECT_UNLOCK(new_backing_object);
1774 object->backing_object_offset +=
1775 backing_object->backing_object_offset;
1776 }
1777
1778 /*
1779 * Drop the reference count on backing_object. Since
1780 * its ref_count was at least 2, it will not vanish.
1781 */
1782 backing_object->ref_count--;
1783 VM_OBJECT_UNLOCK(backing_object);
1784 object_bypasses++;
1785 }
1786
1787 /*
1788 * Try again with this object's new backing object.
1789 */
1790 }
1791 }
1792
1793 /*
1794 * vm_object_page_remove:
1795 *
1796 * For the given object, either frees or invalidates each of the
1797 * specified pages. In general, a page is freed. However, if a
1798 * page is wired for any reason other than the existence of a
1799 * managed, wired mapping, then it may be invalidated but not
1800 * removed from the object. Pages are specified by the given
1801 * range ["start", "end") and Boolean "clean_only". As a
1802 * special case, if "end" is zero, then the range extends from
1803 * "start" to the end of the object. If "clean_only" is TRUE,
1804 * then only the non-dirty pages within the specified range are
1805 * affected.
1806 *
1807 * In general, this operation should only be performed on objects
1808 * that contain managed pages. There are two exceptions. First,
1809 * it may be performed on the kernel and kmem objects. Second,
1810 * it may be used by msync(..., MS_INVALIDATE) to invalidate
1811 * device-backed pages.
1812 *
1813 * The object must be locked.
1814 */
1815 void
1816 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1817 boolean_t clean_only)
1818 {
1819 vm_page_t p, next;
1820
1821 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1822 if (object->resident_page_count == 0)
1823 return;
1824
1825 /*
1826 * Since physically-backed objects do not use managed pages, we can't
1827 * remove pages from the object (we must instead remove the page
1828 * references, and then destroy the object).
1829 */
1830 KASSERT(object->type != OBJT_PHYS,
1831 ("attempt to remove pages from a physical object"));
1832
1833 vm_object_pip_add(object, 1);
1834 again:
1835 vm_page_lock_queues();
1836 if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1837 if (p->pindex < start) {
1838 p = vm_page_splay(start, object->root);
1839 if ((object->root = p)->pindex < start)
1840 p = TAILQ_NEXT(p, listq);
1841 }
1842 }
1843 /*
1844 * Assert: the variable p is either (1) the page with the
1845 * least pindex greater than or equal to the parameter pindex
1846 * or (2) NULL.
1847 */
1848 for (;
1849 p != NULL && (p->pindex < end || end == 0);
1850 p = next) {
1851 next = TAILQ_NEXT(p, listq);
1852
1853 if (p->wire_count != 0) {
1854 /* Fictitious pages do not have managed mappings. */
1855 if ((p->flags & PG_FICTITIOUS) == 0)
1856 pmap_remove_all(p);
1857 if (!clean_only)
1858 p->valid = 0;
1859 continue;
1860 }
1861 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1862 goto again;
1863 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1864 ("vm_object_page_remove: page %p is fictitious", p));
1865 if (clean_only && p->valid) {
1866 pmap_page_protect(p, VM_PROT_READ | VM_PROT_EXECUTE);
1867 if (p->valid & p->dirty)
1868 continue;
1869 }
1870 pmap_remove_all(p);
1871 vm_page_free(p);
1872 }
1873 vm_page_unlock_queues();
1874 vm_object_pip_wakeup(object);
1875 }
1876
1877 /*
1878 * Routine: vm_object_coalesce
1879 * Function: Coalesces two objects backing up adjoining
1880 * regions of memory into a single object.
1881 *
1882 * returns TRUE if objects were combined.
1883 *
1884 * NOTE: Only works at the moment if the second object is NULL -
1885 * if it's not, which object do we lock first?
1886 *
1887 * Parameters:
1888 * prev_object First object to coalesce
1889 * prev_offset Offset into prev_object
1890 * prev_size Size of reference to prev_object
1891 * next_size Size of reference to the second object
1892 *
1893 * Conditions:
1894 * The object must *not* be locked.
1895 */
1896 boolean_t
1897 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1898 vm_size_t prev_size, vm_size_t next_size)
1899 {
1900 vm_pindex_t next_pindex;
1901
1902 if (prev_object == NULL)
1903 return (TRUE);
1904 VM_OBJECT_LOCK(prev_object);
1905 if (prev_object->type != OBJT_DEFAULT &&
1906 prev_object->type != OBJT_SWAP) {
1907 VM_OBJECT_UNLOCK(prev_object);
1908 return (FALSE);
1909 }
1910
1911 /*
1912 * Try to collapse the object first
1913 */
1914 vm_object_collapse(prev_object);
1915
1916 /*
1917 * Can't coalesce if: . more than one reference . paged out . shadows
1918 * another object . has a copy elsewhere (any of which mean that the
1919 * pages not mapped to prev_entry may be in use anyway)
1920 */
1921 if (prev_object->backing_object != NULL) {
1922 VM_OBJECT_UNLOCK(prev_object);
1923 return (FALSE);
1924 }
1925
1926 prev_size >>= PAGE_SHIFT;
1927 next_size >>= PAGE_SHIFT;
1928 next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1929
1930 if ((prev_object->ref_count > 1) &&
1931 (prev_object->size != next_pindex)) {
1932 VM_OBJECT_UNLOCK(prev_object);
1933 return (FALSE);
1934 }
1935
1936 /*
1937 * Remove any pages that may still be in the object from a previous
1938 * deallocation.
1939 */
1940 if (next_pindex < prev_object->size) {
1941 vm_object_page_remove(prev_object,
1942 next_pindex,
1943 next_pindex + next_size, FALSE);
1944 if (prev_object->type == OBJT_SWAP)
1945 swap_pager_freespace(prev_object,
1946 next_pindex, next_size);
1947 }
1948
1949 /*
1950 * Extend the object if necessary.
1951 */
1952 if (next_pindex + next_size > prev_object->size)
1953 prev_object->size = next_pindex + next_size;
1954
1955 VM_OBJECT_UNLOCK(prev_object);
1956 return (TRUE);
1957 }
1958
1959 void
1960 vm_object_set_writeable_dirty(vm_object_t object)
1961 {
1962 struct vnode *vp;
1963
1964 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1965 if ((object->flags & (OBJ_MIGHTBEDIRTY|OBJ_WRITEABLE)) ==
1966 (OBJ_MIGHTBEDIRTY|OBJ_WRITEABLE))
1967 return;
1968 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1969 if (object->type == OBJT_VNODE &&
1970 (vp = (struct vnode *)object->handle) != NULL) {
1971 VI_LOCK(vp);
1972 vp->v_iflag |= VI_OBJDIRTY;
1973 VI_UNLOCK(vp);
1974 }
1975 }
1976
1977 #include "opt_ddb.h"
1978 #ifdef DDB
1979 #include <sys/kernel.h>
1980
1981 #include <sys/cons.h>
1982
1983 #include <ddb/ddb.h>
1984
1985 static int
1986 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1987 {
1988 vm_map_t tmpm;
1989 vm_map_entry_t tmpe;
1990 vm_object_t obj;
1991 int entcount;
1992
1993 if (map == 0)
1994 return 0;
1995
1996 if (entry == 0) {
1997 tmpe = map->header.next;
1998 entcount = map->nentries;
1999 while (entcount-- && (tmpe != &map->header)) {
2000 if (_vm_object_in_map(map, object, tmpe)) {
2001 return 1;
2002 }
2003 tmpe = tmpe->next;
2004 }
2005 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2006 tmpm = entry->object.sub_map;
2007 tmpe = tmpm->header.next;
2008 entcount = tmpm->nentries;
2009 while (entcount-- && tmpe != &tmpm->header) {
2010 if (_vm_object_in_map(tmpm, object, tmpe)) {
2011 return 1;
2012 }
2013 tmpe = tmpe->next;
2014 }
2015 } else if ((obj = entry->object.vm_object) != NULL) {
2016 for (; obj; obj = obj->backing_object)
2017 if (obj == object) {
2018 return 1;
2019 }
2020 }
2021 return 0;
2022 }
2023
2024 static int
2025 vm_object_in_map(vm_object_t object)
2026 {
2027 struct proc *p;
2028
2029 /* sx_slock(&allproc_lock); */
2030 LIST_FOREACH(p, &allproc, p_list) {
2031 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2032 continue;
2033 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2034 /* sx_sunlock(&allproc_lock); */
2035 return 1;
2036 }
2037 }
2038 /* sx_sunlock(&allproc_lock); */
2039 if (_vm_object_in_map(kernel_map, object, 0))
2040 return 1;
2041 if (_vm_object_in_map(kmem_map, object, 0))
2042 return 1;
2043 if (_vm_object_in_map(pager_map, object, 0))
2044 return 1;
2045 if (_vm_object_in_map(buffer_map, object, 0))
2046 return 1;
2047 return 0;
2048 }
2049
2050 DB_SHOW_COMMAND(vmochk, vm_object_check)
2051 {
2052 vm_object_t object;
2053
2054 /*
2055 * make sure that internal objs are in a map somewhere
2056 * and none have zero ref counts.
2057 */
2058 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2059 if (object->handle == NULL &&
2060 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2061 if (object->ref_count == 0) {
2062 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2063 (long)object->size);
2064 }
2065 if (!vm_object_in_map(object)) {
2066 db_printf(
2067 "vmochk: internal obj is not in a map: "
2068 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2069 object->ref_count, (u_long)object->size,
2070 (u_long)object->size,
2071 (void *)object->backing_object);
2072 }
2073 }
2074 }
2075 }
2076
2077 /*
2078 * vm_object_print: [ debug ]
2079 */
2080 DB_SHOW_COMMAND(object, vm_object_print_static)
2081 {
2082 /* XXX convert args. */
2083 vm_object_t object = (vm_object_t)addr;
2084 boolean_t full = have_addr;
2085
2086 vm_page_t p;
2087
2088 /* XXX count is an (unused) arg. Avoid shadowing it. */
2089 #define count was_count
2090
2091 int count;
2092
2093 if (object == NULL)
2094 return;
2095
2096 db_iprintf(
2097 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2098 object, (int)object->type, (uintmax_t)object->size,
2099 object->resident_page_count, object->ref_count, object->flags);
2100 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2101 object->shadow_count,
2102 object->backing_object ? object->backing_object->ref_count : 0,
2103 object->backing_object, (uintmax_t)object->backing_object_offset);
2104
2105 if (!full)
2106 return;
2107
2108 db_indent += 2;
2109 count = 0;
2110 TAILQ_FOREACH(p, &object->memq, listq) {
2111 if (count == 0)
2112 db_iprintf("memory:=");
2113 else if (count == 6) {
2114 db_printf("\n");
2115 db_iprintf(" ...");
2116 count = 0;
2117 } else
2118 db_printf(",");
2119 count++;
2120
2121 db_printf("(off=0x%jx,page=0x%jx)",
2122 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2123 }
2124 if (count != 0)
2125 db_printf("\n");
2126 db_indent -= 2;
2127 }
2128
2129 /* XXX. */
2130 #undef count
2131
2132 /* XXX need this non-static entry for calling from vm_map_print. */
2133 void
2134 vm_object_print(
2135 /* db_expr_t */ long addr,
2136 boolean_t have_addr,
2137 /* db_expr_t */ long count,
2138 char *modif)
2139 {
2140 vm_object_print_static(addr, have_addr, count, modif);
2141 }
2142
2143 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2144 {
2145 vm_object_t object;
2146 int nl = 0;
2147 int c;
2148
2149 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2150 vm_pindex_t idx, fidx;
2151 vm_pindex_t osize;
2152 vm_paddr_t pa = -1, padiff;
2153 int rcount;
2154 vm_page_t m;
2155
2156 db_printf("new object: %p\n", (void *)object);
2157 if (nl > 18) {
2158 c = cngetc();
2159 if (c != ' ')
2160 return;
2161 nl = 0;
2162 }
2163 nl++;
2164 rcount = 0;
2165 fidx = 0;
2166 osize = object->size;
2167 if (osize > 128)
2168 osize = 128;
2169 for (idx = 0; idx < osize; idx++) {
2170 m = vm_page_lookup(object, idx);
2171 if (m == NULL) {
2172 if (rcount) {
2173 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2174 (long)fidx, rcount, (long)pa);
2175 if (nl > 18) {
2176 c = cngetc();
2177 if (c != ' ')
2178 return;
2179 nl = 0;
2180 }
2181 nl++;
2182 rcount = 0;
2183 }
2184 continue;
2185 }
2186
2187
2188 if (rcount &&
2189 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2190 ++rcount;
2191 continue;
2192 }
2193 if (rcount) {
2194 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2195 padiff >>= PAGE_SHIFT;
2196 padiff &= PQ_L2_MASK;
2197 if (padiff == 0) {
2198 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2199 ++rcount;
2200 continue;
2201 }
2202 db_printf(" index(%ld)run(%d)pa(0x%lx)",
2203 (long)fidx, rcount, (long)pa);
2204 db_printf("pd(%ld)\n", (long)padiff);
2205 if (nl > 18) {
2206 c = cngetc();
2207 if (c != ' ')
2208 return;
2209 nl = 0;
2210 }
2211 nl++;
2212 }
2213 fidx = idx;
2214 pa = VM_PAGE_TO_PHYS(m);
2215 rcount = 1;
2216 }
2217 if (rcount) {
2218 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2219 (long)fidx, rcount, (long)pa);
2220 if (nl > 18) {
2221 c = cngetc();
2222 if (c != ' ')
2223 return;
2224 nl = 0;
2225 }
2226 nl++;
2227 }
2228 }
2229 }
2230 #endif /* DDB */
Cache object: b1d9b2a6f8b10faf9477bcd4170909d5
|