FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61 /*
62 * Virtual memory object module.
63 */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/lock.h>
71 #include <sys/mman.h>
72 #include <sys/mount.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h> /* for curproc, pageproc */
77 #include <sys/socket.h>
78 #include <sys/vnode.h>
79 #include <sys/vmmeter.h>
80 #include <sys/sx.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/uma.h>
94
95 #define EASY_SCAN_FACTOR 8
96
97 #define MSYNC_FLUSH_HARDSEQ 0x01
98 #define MSYNC_FLUSH_SOFTSEQ 0x02
99
100 /*
101 * msync / VM object flushing optimizations
102 */
103 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
104 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
105 CTLFLAG_RW, &msync_flush_flags, 0, "");
106
107 static int old_msync;
108 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
109 "Use old (insecure) msync behavior");
110
111 static void vm_object_qcollapse(vm_object_t object);
112 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113 static void vm_object_vndeallocate(vm_object_t object);
114
115 /*
116 * Virtual memory objects maintain the actual data
117 * associated with allocated virtual memory. A given
118 * page of memory exists within exactly one object.
119 *
120 * An object is only deallocated when all "references"
121 * are given up. Only one "reference" to a given
122 * region of an object should be writeable.
123 *
124 * Associated with each object is a list of all resident
125 * memory pages belonging to that object; this list is
126 * maintained by the "vm_page" module, and locked by the object's
127 * lock.
128 *
129 * Each object also records a "pager" routine which is
130 * used to retrieve (and store) pages to the proper backing
131 * storage. In addition, objects may be backed by other
132 * objects from which they were virtual-copied.
133 *
134 * The only items within the object structure which are
135 * modified after time of creation are:
136 * reference count locked by object's lock
137 * pager routine locked by object's lock
138 *
139 */
140
141 struct object_q vm_object_list;
142 struct mtx vm_object_list_mtx; /* lock for object list and count */
143
144 struct vm_object kernel_object_store;
145 struct vm_object kmem_object_store;
146
147 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
148
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151 &object_collapses, 0, "VM object collapses");
152
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155 &object_bypasses, 0, "VM object bypasses");
156
157 static uma_zone_t obj_zone;
158
159 static int vm_object_zinit(void *mem, int size, int flags);
160
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167 vm_object_t object;
168
169 object = (vm_object_t)mem;
170 KASSERT(TAILQ_EMPTY(&object->memq),
171 ("object %p has resident pages",
172 object));
173 KASSERT(object->cache == NULL,
174 ("object %p has cached pages",
175 object));
176 KASSERT(object->paging_in_progress == 0,
177 ("object %p paging_in_progress = %d",
178 object, object->paging_in_progress));
179 KASSERT(object->resident_page_count == 0,
180 ("object %p resident_page_count = %d",
181 object, object->resident_page_count));
182 KASSERT(object->shadow_count == 0,
183 ("object %p shadow_count = %d",
184 object, object->shadow_count));
185 }
186 #endif
187
188 static int
189 vm_object_zinit(void *mem, int size, int flags)
190 {
191 vm_object_t object;
192
193 object = (vm_object_t)mem;
194 bzero(&object->mtx, sizeof(object->mtx));
195 VM_OBJECT_LOCK_INIT(object, "standard object");
196
197 /* These are true for any object that has been freed */
198 object->paging_in_progress = 0;
199 object->resident_page_count = 0;
200 object->shadow_count = 0;
201 return (0);
202 }
203
204 void
205 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
206 {
207
208 TAILQ_INIT(&object->memq);
209 LIST_INIT(&object->shadow_head);
210
211 object->root = NULL;
212 object->type = type;
213 object->size = size;
214 object->generation = 1;
215 object->ref_count = 1;
216 object->flags = 0;
217 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
218 object->flags = OBJ_ONEMAPPING;
219 object->pg_color = 0;
220 object->handle = NULL;
221 object->backing_object = NULL;
222 object->backing_object_offset = (vm_ooffset_t) 0;
223 object->cache = NULL;
224
225 mtx_lock(&vm_object_list_mtx);
226 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
227 mtx_unlock(&vm_object_list_mtx);
228 }
229
230 /*
231 * vm_object_init:
232 *
233 * Initialize the VM objects module.
234 */
235 void
236 vm_object_init(void)
237 {
238 TAILQ_INIT(&vm_object_list);
239 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
240
241 VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
242 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
243 kernel_object);
244
245 VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
246 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
247 kmem_object);
248
249 /*
250 * The lock portion of struct vm_object must be type stable due
251 * to vm_pageout_fallback_object_lock locking a vm object
252 * without holding any references to it.
253 */
254 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
255 #ifdef INVARIANTS
256 vm_object_zdtor,
257 #else
258 NULL,
259 #endif
260 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
261 }
262
263 void
264 vm_object_clear_flag(vm_object_t object, u_short bits)
265 {
266
267 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
268 object->flags &= ~bits;
269 }
270
271 void
272 vm_object_pip_add(vm_object_t object, short i)
273 {
274
275 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
276 object->paging_in_progress += i;
277 }
278
279 void
280 vm_object_pip_subtract(vm_object_t object, short i)
281 {
282
283 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
284 object->paging_in_progress -= i;
285 }
286
287 void
288 vm_object_pip_wakeup(vm_object_t object)
289 {
290
291 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
292 object->paging_in_progress--;
293 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
294 vm_object_clear_flag(object, OBJ_PIPWNT);
295 wakeup(object);
296 }
297 }
298
299 void
300 vm_object_pip_wakeupn(vm_object_t object, short i)
301 {
302
303 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
304 if (i)
305 object->paging_in_progress -= i;
306 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
307 vm_object_clear_flag(object, OBJ_PIPWNT);
308 wakeup(object);
309 }
310 }
311
312 void
313 vm_object_pip_wait(vm_object_t object, char *waitid)
314 {
315
316 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
317 while (object->paging_in_progress) {
318 object->flags |= OBJ_PIPWNT;
319 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
320 }
321 }
322
323 /*
324 * vm_object_allocate:
325 *
326 * Returns a new object with the given size.
327 */
328 vm_object_t
329 vm_object_allocate(objtype_t type, vm_pindex_t size)
330 {
331 vm_object_t object;
332
333 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
334 _vm_object_allocate(type, size, object);
335 return (object);
336 }
337
338
339 /*
340 * vm_object_reference:
341 *
342 * Gets another reference to the given object. Note: OBJ_DEAD
343 * objects can be referenced during final cleaning.
344 */
345 void
346 vm_object_reference(vm_object_t object)
347 {
348 struct vnode *vp;
349
350 if (object == NULL)
351 return;
352 VM_OBJECT_LOCK(object);
353 object->ref_count++;
354 if (object->type == OBJT_VNODE) {
355 int vfslocked;
356
357 vp = object->handle;
358 VM_OBJECT_UNLOCK(object);
359 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
360 vget(vp, LK_RETRY, curthread);
361 VFS_UNLOCK_GIANT(vfslocked);
362 } else
363 VM_OBJECT_UNLOCK(object);
364 }
365
366 /*
367 * vm_object_reference_locked:
368 *
369 * Gets another reference to the given object.
370 *
371 * The object must be locked.
372 */
373 void
374 vm_object_reference_locked(vm_object_t object)
375 {
376 struct vnode *vp;
377
378 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
379 KASSERT((object->flags & OBJ_DEAD) == 0,
380 ("vm_object_reference_locked: dead object referenced"));
381 object->ref_count++;
382 if (object->type == OBJT_VNODE) {
383 vp = object->handle;
384 vref(vp);
385 }
386 }
387
388 /*
389 * Handle deallocating an object of type OBJT_VNODE.
390 */
391 static void
392 vm_object_vndeallocate(vm_object_t object)
393 {
394 struct vnode *vp = (struct vnode *) object->handle;
395
396 VFS_ASSERT_GIANT(vp->v_mount);
397 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
398 KASSERT(object->type == OBJT_VNODE,
399 ("vm_object_vndeallocate: not a vnode object"));
400 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
401 #ifdef INVARIANTS
402 if (object->ref_count == 0) {
403 vprint("vm_object_vndeallocate", vp);
404 panic("vm_object_vndeallocate: bad object reference count");
405 }
406 #endif
407
408 object->ref_count--;
409 if (object->ref_count == 0) {
410 mp_fixme("Unlocked vflag access.");
411 vp->v_vflag &= ~VV_TEXT;
412 }
413 VM_OBJECT_UNLOCK(object);
414 /*
415 * vrele may need a vop lock
416 */
417 vrele(vp);
418 }
419
420 /*
421 * vm_object_deallocate:
422 *
423 * Release a reference to the specified object,
424 * gained either through a vm_object_allocate
425 * or a vm_object_reference call. When all references
426 * are gone, storage associated with this object
427 * may be relinquished.
428 *
429 * No object may be locked.
430 */
431 void
432 vm_object_deallocate(vm_object_t object)
433 {
434 vm_object_t temp;
435
436 while (object != NULL) {
437 int vfslocked;
438
439 vfslocked = 0;
440 restart:
441 VM_OBJECT_LOCK(object);
442 if (object->type == OBJT_VNODE) {
443 struct vnode *vp = (struct vnode *) object->handle;
444
445 /*
446 * Conditionally acquire Giant for a vnode-backed
447 * object. We have to be careful since the type of
448 * a vnode object can change while the object is
449 * unlocked.
450 */
451 if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
452 vfslocked = 1;
453 if (!mtx_trylock(&Giant)) {
454 VM_OBJECT_UNLOCK(object);
455 mtx_lock(&Giant);
456 goto restart;
457 }
458 }
459 vm_object_vndeallocate(object);
460 VFS_UNLOCK_GIANT(vfslocked);
461 return;
462 } else
463 /*
464 * This is to handle the case that the object
465 * changed type while we dropped its lock to
466 * obtain Giant.
467 */
468 VFS_UNLOCK_GIANT(vfslocked);
469
470 KASSERT(object->ref_count != 0,
471 ("vm_object_deallocate: object deallocated too many times: %d", object->type));
472
473 /*
474 * If the reference count goes to 0 we start calling
475 * vm_object_terminate() on the object chain.
476 * A ref count of 1 may be a special case depending on the
477 * shadow count being 0 or 1.
478 */
479 object->ref_count--;
480 if (object->ref_count > 1) {
481 VM_OBJECT_UNLOCK(object);
482 return;
483 } else if (object->ref_count == 1) {
484 if (object->shadow_count == 0) {
485 vm_object_set_flag(object, OBJ_ONEMAPPING);
486 } else if ((object->shadow_count == 1) &&
487 (object->handle == NULL) &&
488 (object->type == OBJT_DEFAULT ||
489 object->type == OBJT_SWAP)) {
490 vm_object_t robject;
491
492 robject = LIST_FIRST(&object->shadow_head);
493 KASSERT(robject != NULL,
494 ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
495 object->ref_count,
496 object->shadow_count));
497 if (!VM_OBJECT_TRYLOCK(robject)) {
498 /*
499 * Avoid a potential deadlock.
500 */
501 object->ref_count++;
502 VM_OBJECT_UNLOCK(object);
503 /*
504 * More likely than not the thread
505 * holding robject's lock has lower
506 * priority than the current thread.
507 * Let the lower priority thread run.
508 */
509 pause("vmo_de", 1);
510 continue;
511 }
512 /*
513 * Collapse object into its shadow unless its
514 * shadow is dead. In that case, object will
515 * be deallocated by the thread that is
516 * deallocating its shadow.
517 */
518 if ((robject->flags & OBJ_DEAD) == 0 &&
519 (robject->handle == NULL) &&
520 (robject->type == OBJT_DEFAULT ||
521 robject->type == OBJT_SWAP)) {
522
523 robject->ref_count++;
524 retry:
525 if (robject->paging_in_progress) {
526 VM_OBJECT_UNLOCK(object);
527 vm_object_pip_wait(robject,
528 "objde1");
529 temp = robject->backing_object;
530 if (object == temp) {
531 VM_OBJECT_LOCK(object);
532 goto retry;
533 }
534 } else if (object->paging_in_progress) {
535 VM_OBJECT_UNLOCK(robject);
536 object->flags |= OBJ_PIPWNT;
537 msleep(object,
538 VM_OBJECT_MTX(object),
539 PDROP | PVM, "objde2", 0);
540 VM_OBJECT_LOCK(robject);
541 temp = robject->backing_object;
542 if (object == temp) {
543 VM_OBJECT_LOCK(object);
544 goto retry;
545 }
546 } else
547 VM_OBJECT_UNLOCK(object);
548
549 if (robject->ref_count == 1) {
550 robject->ref_count--;
551 object = robject;
552 goto doterm;
553 }
554 object = robject;
555 vm_object_collapse(object);
556 VM_OBJECT_UNLOCK(object);
557 continue;
558 }
559 VM_OBJECT_UNLOCK(robject);
560 }
561 VM_OBJECT_UNLOCK(object);
562 return;
563 }
564 doterm:
565 temp = object->backing_object;
566 if (temp != NULL) {
567 VM_OBJECT_LOCK(temp);
568 LIST_REMOVE(object, shadow_list);
569 temp->shadow_count--;
570 temp->generation++;
571 VM_OBJECT_UNLOCK(temp);
572 object->backing_object = NULL;
573 }
574 /*
575 * Don't double-terminate, we could be in a termination
576 * recursion due to the terminate having to sync data
577 * to disk.
578 */
579 if ((object->flags & OBJ_DEAD) == 0)
580 vm_object_terminate(object);
581 else
582 VM_OBJECT_UNLOCK(object);
583 object = temp;
584 }
585 }
586
587 /*
588 * vm_object_terminate actually destroys the specified object, freeing
589 * up all previously used resources.
590 *
591 * The object must be locked.
592 * This routine may block.
593 */
594 void
595 vm_object_terminate(vm_object_t object)
596 {
597 vm_page_t p;
598
599 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
600
601 /*
602 * Make sure no one uses us.
603 */
604 vm_object_set_flag(object, OBJ_DEAD);
605
606 /*
607 * wait for the pageout daemon to be done with the object
608 */
609 vm_object_pip_wait(object, "objtrm");
610
611 KASSERT(!object->paging_in_progress,
612 ("vm_object_terminate: pageout in progress"));
613
614 /*
615 * Clean and free the pages, as appropriate. All references to the
616 * object are gone, so we don't need to lock it.
617 */
618 if (object->type == OBJT_VNODE) {
619 struct vnode *vp = (struct vnode *)object->handle;
620
621 /*
622 * Clean pages and flush buffers.
623 */
624 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
625 VM_OBJECT_UNLOCK(object);
626
627 vinvalbuf(vp, V_SAVE, NULL, 0, 0);
628
629 VM_OBJECT_LOCK(object);
630 }
631
632 KASSERT(object->ref_count == 0,
633 ("vm_object_terminate: object with references, ref_count=%d",
634 object->ref_count));
635
636 /*
637 * Now free any remaining pages. For internal objects, this also
638 * removes them from paging queues. Don't free wired pages, just
639 * remove them from the object.
640 */
641 vm_page_lock_queues();
642 while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
643 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
644 ("vm_object_terminate: freeing busy page %p "
645 "p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
646 if (p->wire_count == 0) {
647 vm_page_free(p);
648 cnt.v_pfree++;
649 } else {
650 vm_page_remove(p);
651 }
652 }
653 vm_page_unlock_queues();
654
655 if (__predict_false(object->cache != NULL))
656 vm_page_cache_free(object, 0, 0);
657
658 /*
659 * Let the pager know object is dead.
660 */
661 vm_pager_deallocate(object);
662 VM_OBJECT_UNLOCK(object);
663
664 /*
665 * Remove the object from the global object list.
666 */
667 mtx_lock(&vm_object_list_mtx);
668 TAILQ_REMOVE(&vm_object_list, object, object_list);
669 mtx_unlock(&vm_object_list_mtx);
670
671 /*
672 * Free the space for the object.
673 */
674 uma_zfree(obj_zone, object);
675 }
676
677 /*
678 * vm_object_page_clean
679 *
680 * Clean all dirty pages in the specified range of object. Leaves page
681 * on whatever queue it is currently on. If NOSYNC is set then do not
682 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
683 * leaving the object dirty.
684 *
685 * When stuffing pages asynchronously, allow clustering. XXX we need a
686 * synchronous clustering mode implementation.
687 *
688 * Odd semantics: if start == end, we clean everything.
689 *
690 * The object must be locked.
691 */
692 void
693 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
694 {
695 vm_page_t p, np;
696 vm_pindex_t tstart, tend;
697 vm_pindex_t pi;
698 int clearobjflags;
699 int pagerflags;
700 int curgeneration;
701
702 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
703 if (object->type != OBJT_VNODE ||
704 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
705 return;
706
707 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
708 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
709
710 vm_object_set_flag(object, OBJ_CLEANING);
711
712 tstart = start;
713 if (end == 0) {
714 tend = object->size;
715 } else {
716 tend = end;
717 }
718
719 vm_page_lock_queues();
720 /*
721 * If the caller is smart and only msync()s a range he knows is
722 * dirty, we may be able to avoid an object scan. This results in
723 * a phenominal improvement in performance. We cannot do this
724 * as a matter of course because the object may be huge - e.g.
725 * the size might be in the gigabytes or terrabytes.
726 */
727 if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
728 vm_pindex_t tscan;
729 int scanlimit;
730 int scanreset;
731
732 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
733 if (scanreset < 16)
734 scanreset = 16;
735 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
736
737 scanlimit = scanreset;
738 tscan = tstart;
739 while (tscan < tend) {
740 curgeneration = object->generation;
741 p = vm_page_lookup(object, tscan);
742 if (p == NULL || p->valid == 0) {
743 if (--scanlimit == 0)
744 break;
745 ++tscan;
746 continue;
747 }
748 vm_page_test_dirty(p);
749 if ((p->dirty & p->valid) == 0) {
750 if (--scanlimit == 0)
751 break;
752 ++tscan;
753 continue;
754 }
755 /*
756 * If we have been asked to skip nosync pages and
757 * this is a nosync page, we can't continue.
758 */
759 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
760 if (--scanlimit == 0)
761 break;
762 ++tscan;
763 continue;
764 }
765 scanlimit = scanreset;
766
767 /*
768 * This returns 0 if it was unable to busy the first
769 * page (i.e. had to sleep).
770 */
771 tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
772 }
773
774 /*
775 * If everything was dirty and we flushed it successfully,
776 * and the requested range is not the entire object, we
777 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
778 * return immediately.
779 */
780 if (tscan >= tend && (tstart || tend < object->size)) {
781 vm_page_unlock_queues();
782 vm_object_clear_flag(object, OBJ_CLEANING);
783 return;
784 }
785 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
786 }
787
788 /*
789 * Generally set CLEANCHK interlock and make the page read-only so
790 * we can then clear the object flags.
791 *
792 * However, if this is a nosync mmap then the object is likely to
793 * stay dirty so do not mess with the page and do not clear the
794 * object flags.
795 */
796 clearobjflags = 1;
797 TAILQ_FOREACH(p, &object->memq, listq) {
798 p->oflags |= VPO_CLEANCHK;
799 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC))
800 clearobjflags = 0;
801 else
802 pmap_remove_write(p);
803 }
804
805 if (clearobjflags && (tstart == 0) && (tend == object->size)) {
806 struct vnode *vp;
807
808 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
809 if (object->type == OBJT_VNODE &&
810 (vp = (struct vnode *)object->handle) != NULL) {
811 VI_LOCK(vp);
812 if (vp->v_iflag & VI_OBJDIRTY)
813 vp->v_iflag &= ~VI_OBJDIRTY;
814 VI_UNLOCK(vp);
815 }
816 }
817
818 rescan:
819 curgeneration = object->generation;
820
821 for (p = TAILQ_FIRST(&object->memq); p; p = np) {
822 int n;
823
824 np = TAILQ_NEXT(p, listq);
825
826 again:
827 pi = p->pindex;
828 if ((p->oflags & VPO_CLEANCHK) == 0 ||
829 (pi < tstart) || (pi >= tend) ||
830 p->valid == 0) {
831 p->oflags &= ~VPO_CLEANCHK;
832 continue;
833 }
834
835 vm_page_test_dirty(p);
836 if ((p->dirty & p->valid) == 0) {
837 p->oflags &= ~VPO_CLEANCHK;
838 continue;
839 }
840
841 /*
842 * If we have been asked to skip nosync pages and this is a
843 * nosync page, skip it. Note that the object flags were
844 * not cleared in this case so we do not have to set them.
845 */
846 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
847 p->oflags &= ~VPO_CLEANCHK;
848 continue;
849 }
850
851 n = vm_object_page_collect_flush(object, p,
852 curgeneration, pagerflags);
853 if (n == 0)
854 goto rescan;
855
856 if (object->generation != curgeneration)
857 goto rescan;
858
859 /*
860 * Try to optimize the next page. If we can't we pick up
861 * our (random) scan where we left off.
862 */
863 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
864 if ((p = vm_page_lookup(object, pi + n)) != NULL)
865 goto again;
866 }
867 }
868 vm_page_unlock_queues();
869 #if 0
870 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
871 #endif
872
873 vm_object_clear_flag(object, OBJ_CLEANING);
874 return;
875 }
876
877 static int
878 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
879 {
880 int runlen;
881 int maxf;
882 int chkb;
883 int maxb;
884 int i;
885 vm_pindex_t pi;
886 vm_page_t maf[vm_pageout_page_count];
887 vm_page_t mab[vm_pageout_page_count];
888 vm_page_t ma[vm_pageout_page_count];
889
890 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
891 pi = p->pindex;
892 while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
893 vm_page_lock_queues();
894 if (object->generation != curgeneration) {
895 return(0);
896 }
897 }
898 maxf = 0;
899 for(i = 1; i < vm_pageout_page_count; i++) {
900 vm_page_t tp;
901
902 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
903 if ((tp->oflags & VPO_BUSY) ||
904 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
905 (tp->oflags & VPO_CLEANCHK) == 0) ||
906 (tp->busy != 0))
907 break;
908 vm_page_test_dirty(tp);
909 if ((tp->dirty & tp->valid) == 0) {
910 tp->oflags &= ~VPO_CLEANCHK;
911 break;
912 }
913 maf[ i - 1 ] = tp;
914 maxf++;
915 continue;
916 }
917 break;
918 }
919
920 maxb = 0;
921 chkb = vm_pageout_page_count - maxf;
922 if (chkb) {
923 for(i = 1; i < chkb;i++) {
924 vm_page_t tp;
925
926 if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
927 if ((tp->oflags & VPO_BUSY) ||
928 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
929 (tp->oflags & VPO_CLEANCHK) == 0) ||
930 (tp->busy != 0))
931 break;
932 vm_page_test_dirty(tp);
933 if ((tp->dirty & tp->valid) == 0) {
934 tp->oflags &= ~VPO_CLEANCHK;
935 break;
936 }
937 mab[ i - 1 ] = tp;
938 maxb++;
939 continue;
940 }
941 break;
942 }
943 }
944
945 for(i = 0; i < maxb; i++) {
946 int index = (maxb - i) - 1;
947 ma[index] = mab[i];
948 ma[index]->oflags &= ~VPO_CLEANCHK;
949 }
950 p->oflags &= ~VPO_CLEANCHK;
951 ma[maxb] = p;
952 for(i = 0; i < maxf; i++) {
953 int index = (maxb + i) + 1;
954 ma[index] = maf[i];
955 ma[index]->oflags &= ~VPO_CLEANCHK;
956 }
957 runlen = maxb + maxf + 1;
958
959 vm_pageout_flush(ma, runlen, pagerflags);
960 for (i = 0; i < runlen; i++) {
961 if (ma[i]->valid & ma[i]->dirty) {
962 pmap_remove_write(ma[i]);
963 ma[i]->oflags |= VPO_CLEANCHK;
964
965 /*
966 * maxf will end up being the actual number of pages
967 * we wrote out contiguously, non-inclusive of the
968 * first page. We do not count look-behind pages.
969 */
970 if (i >= maxb + 1 && (maxf > i - maxb - 1))
971 maxf = i - maxb - 1;
972 }
973 }
974 return(maxf + 1);
975 }
976
977 /*
978 * Note that there is absolutely no sense in writing out
979 * anonymous objects, so we track down the vnode object
980 * to write out.
981 * We invalidate (remove) all pages from the address space
982 * for semantic correctness.
983 *
984 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
985 * may start out with a NULL object.
986 */
987 void
988 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
989 boolean_t syncio, boolean_t invalidate)
990 {
991 vm_object_t backing_object;
992 struct vnode *vp;
993 struct mount *mp;
994 int flags;
995
996 if (object == NULL)
997 return;
998 VM_OBJECT_LOCK(object);
999 while ((backing_object = object->backing_object) != NULL) {
1000 VM_OBJECT_LOCK(backing_object);
1001 offset += object->backing_object_offset;
1002 VM_OBJECT_UNLOCK(object);
1003 object = backing_object;
1004 if (object->size < OFF_TO_IDX(offset + size))
1005 size = IDX_TO_OFF(object->size) - offset;
1006 }
1007 /*
1008 * Flush pages if writing is allowed, invalidate them
1009 * if invalidation requested. Pages undergoing I/O
1010 * will be ignored by vm_object_page_remove().
1011 *
1012 * We cannot lock the vnode and then wait for paging
1013 * to complete without deadlocking against vm_fault.
1014 * Instead we simply call vm_object_page_remove() and
1015 * allow it to block internally on a page-by-page
1016 * basis when it encounters pages undergoing async
1017 * I/O.
1018 */
1019 if (object->type == OBJT_VNODE &&
1020 (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1021 int vfslocked;
1022 vp = object->handle;
1023 VM_OBJECT_UNLOCK(object);
1024 (void) vn_start_write(vp, &mp, V_WAIT);
1025 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1026 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
1027 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1028 flags |= invalidate ? OBJPC_INVAL : 0;
1029 VM_OBJECT_LOCK(object);
1030 vm_object_page_clean(object,
1031 OFF_TO_IDX(offset),
1032 OFF_TO_IDX(offset + size + PAGE_MASK),
1033 flags);
1034 VM_OBJECT_UNLOCK(object);
1035 VOP_UNLOCK(vp, 0, curthread);
1036 VFS_UNLOCK_GIANT(vfslocked);
1037 vn_finished_write(mp);
1038 VM_OBJECT_LOCK(object);
1039 }
1040 if ((object->type == OBJT_VNODE ||
1041 object->type == OBJT_DEVICE) && invalidate) {
1042 boolean_t purge;
1043 purge = old_msync || (object->type == OBJT_DEVICE);
1044 vm_object_page_remove(object,
1045 OFF_TO_IDX(offset),
1046 OFF_TO_IDX(offset + size + PAGE_MASK),
1047 purge ? FALSE : TRUE);
1048 }
1049 VM_OBJECT_UNLOCK(object);
1050 }
1051
1052 /*
1053 * vm_object_madvise:
1054 *
1055 * Implements the madvise function at the object/page level.
1056 *
1057 * MADV_WILLNEED (any object)
1058 *
1059 * Activate the specified pages if they are resident.
1060 *
1061 * MADV_DONTNEED (any object)
1062 *
1063 * Deactivate the specified pages if they are resident.
1064 *
1065 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects,
1066 * OBJ_ONEMAPPING only)
1067 *
1068 * Deactivate and clean the specified pages if they are
1069 * resident. This permits the process to reuse the pages
1070 * without faulting or the kernel to reclaim the pages
1071 * without I/O.
1072 */
1073 void
1074 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1075 {
1076 vm_pindex_t end, tpindex;
1077 vm_object_t backing_object, tobject;
1078 vm_page_t m;
1079
1080 if (object == NULL)
1081 return;
1082 VM_OBJECT_LOCK(object);
1083 end = pindex + count;
1084 /*
1085 * Locate and adjust resident pages
1086 */
1087 for (; pindex < end; pindex += 1) {
1088 relookup:
1089 tobject = object;
1090 tpindex = pindex;
1091 shadowlookup:
1092 /*
1093 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1094 * and those pages must be OBJ_ONEMAPPING.
1095 */
1096 if (advise == MADV_FREE) {
1097 if ((tobject->type != OBJT_DEFAULT &&
1098 tobject->type != OBJT_SWAP) ||
1099 (tobject->flags & OBJ_ONEMAPPING) == 0) {
1100 goto unlock_tobject;
1101 }
1102 }
1103 m = vm_page_lookup(tobject, tpindex);
1104 if (m == NULL && advise == MADV_WILLNEED) {
1105 /*
1106 * If the page is cached, reactivate it.
1107 */
1108 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1109 VM_ALLOC_NOBUSY);
1110 }
1111 if (m == NULL) {
1112 /*
1113 * There may be swap even if there is no backing page
1114 */
1115 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1116 swap_pager_freespace(tobject, tpindex, 1);
1117 /*
1118 * next object
1119 */
1120 backing_object = tobject->backing_object;
1121 if (backing_object == NULL)
1122 goto unlock_tobject;
1123 VM_OBJECT_LOCK(backing_object);
1124 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1125 if (tobject != object)
1126 VM_OBJECT_UNLOCK(tobject);
1127 tobject = backing_object;
1128 goto shadowlookup;
1129 }
1130 /*
1131 * If the page is busy or not in a normal active state,
1132 * we skip it. If the page is not managed there are no
1133 * page queues to mess with. Things can break if we mess
1134 * with pages in any of the below states.
1135 */
1136 vm_page_lock_queues();
1137 if (m->hold_count ||
1138 m->wire_count ||
1139 (m->flags & PG_UNMANAGED) ||
1140 m->valid != VM_PAGE_BITS_ALL) {
1141 vm_page_unlock_queues();
1142 goto unlock_tobject;
1143 }
1144 if ((m->oflags & VPO_BUSY) || m->busy) {
1145 vm_page_flag_set(m, PG_REFERENCED);
1146 vm_page_unlock_queues();
1147 if (object != tobject)
1148 VM_OBJECT_UNLOCK(object);
1149 m->oflags |= VPO_WANTED;
1150 msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 0);
1151 VM_OBJECT_LOCK(object);
1152 goto relookup;
1153 }
1154 if (advise == MADV_WILLNEED) {
1155 vm_page_activate(m);
1156 } else if (advise == MADV_DONTNEED) {
1157 vm_page_dontneed(m);
1158 } else if (advise == MADV_FREE) {
1159 /*
1160 * Mark the page clean. This will allow the page
1161 * to be freed up by the system. However, such pages
1162 * are often reused quickly by malloc()/free()
1163 * so we do not do anything that would cause
1164 * a page fault if we can help it.
1165 *
1166 * Specifically, we do not try to actually free
1167 * the page now nor do we try to put it in the
1168 * cache (which would cause a page fault on reuse).
1169 *
1170 * But we do make the page is freeable as we
1171 * can without actually taking the step of unmapping
1172 * it.
1173 */
1174 pmap_clear_modify(m);
1175 m->dirty = 0;
1176 m->act_count = 0;
1177 vm_page_dontneed(m);
1178 }
1179 vm_page_unlock_queues();
1180 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1181 swap_pager_freespace(tobject, tpindex, 1);
1182 unlock_tobject:
1183 if (tobject != object)
1184 VM_OBJECT_UNLOCK(tobject);
1185 }
1186 VM_OBJECT_UNLOCK(object);
1187 }
1188
1189 /*
1190 * vm_object_shadow:
1191 *
1192 * Create a new object which is backed by the
1193 * specified existing object range. The source
1194 * object reference is deallocated.
1195 *
1196 * The new object and offset into that object
1197 * are returned in the source parameters.
1198 */
1199 void
1200 vm_object_shadow(
1201 vm_object_t *object, /* IN/OUT */
1202 vm_ooffset_t *offset, /* IN/OUT */
1203 vm_size_t length)
1204 {
1205 vm_object_t source;
1206 vm_object_t result;
1207
1208 source = *object;
1209
1210 /*
1211 * Don't create the new object if the old object isn't shared.
1212 */
1213 if (source != NULL) {
1214 VM_OBJECT_LOCK(source);
1215 if (source->ref_count == 1 &&
1216 source->handle == NULL &&
1217 (source->type == OBJT_DEFAULT ||
1218 source->type == OBJT_SWAP)) {
1219 VM_OBJECT_UNLOCK(source);
1220 return;
1221 }
1222 VM_OBJECT_UNLOCK(source);
1223 }
1224
1225 /*
1226 * Allocate a new object with the given length.
1227 */
1228 result = vm_object_allocate(OBJT_DEFAULT, length);
1229
1230 /*
1231 * The new object shadows the source object, adding a reference to it.
1232 * Our caller changes his reference to point to the new object,
1233 * removing a reference to the source object. Net result: no change
1234 * of reference count.
1235 *
1236 * Try to optimize the result object's page color when shadowing
1237 * in order to maintain page coloring consistency in the combined
1238 * shadowed object.
1239 */
1240 result->backing_object = source;
1241 /*
1242 * Store the offset into the source object, and fix up the offset into
1243 * the new object.
1244 */
1245 result->backing_object_offset = *offset;
1246 if (source != NULL) {
1247 VM_OBJECT_LOCK(source);
1248 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1249 source->shadow_count++;
1250 source->generation++;
1251 result->flags |= source->flags & OBJ_NEEDGIANT;
1252 VM_OBJECT_UNLOCK(source);
1253 }
1254
1255
1256 /*
1257 * Return the new things
1258 */
1259 *offset = 0;
1260 *object = result;
1261 }
1262
1263 /*
1264 * vm_object_split:
1265 *
1266 * Split the pages in a map entry into a new object. This affords
1267 * easier removal of unused pages, and keeps object inheritance from
1268 * being a negative impact on memory usage.
1269 */
1270 void
1271 vm_object_split(vm_map_entry_t entry)
1272 {
1273 vm_page_t m, m_next;
1274 vm_object_t orig_object, new_object, source;
1275 vm_pindex_t idx, offidxstart;
1276 vm_size_t size;
1277
1278 orig_object = entry->object.vm_object;
1279 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1280 return;
1281 if (orig_object->ref_count <= 1)
1282 return;
1283 VM_OBJECT_UNLOCK(orig_object);
1284
1285 offidxstart = OFF_TO_IDX(entry->offset);
1286 size = atop(entry->end - entry->start);
1287
1288 /*
1289 * If swap_pager_copy() is later called, it will convert new_object
1290 * into a swap object.
1291 */
1292 new_object = vm_object_allocate(OBJT_DEFAULT, size);
1293
1294 /*
1295 * At this point, the new object is still private, so the order in
1296 * which the original and new objects are locked does not matter.
1297 */
1298 VM_OBJECT_LOCK(new_object);
1299 VM_OBJECT_LOCK(orig_object);
1300 source = orig_object->backing_object;
1301 if (source != NULL) {
1302 VM_OBJECT_LOCK(source);
1303 if ((source->flags & OBJ_DEAD) != 0) {
1304 VM_OBJECT_UNLOCK(source);
1305 VM_OBJECT_UNLOCK(orig_object);
1306 VM_OBJECT_UNLOCK(new_object);
1307 vm_object_deallocate(new_object);
1308 VM_OBJECT_LOCK(orig_object);
1309 return;
1310 }
1311 LIST_INSERT_HEAD(&source->shadow_head,
1312 new_object, shadow_list);
1313 source->shadow_count++;
1314 source->generation++;
1315 vm_object_reference_locked(source); /* for new_object */
1316 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1317 VM_OBJECT_UNLOCK(source);
1318 new_object->backing_object_offset =
1319 orig_object->backing_object_offset + entry->offset;
1320 new_object->backing_object = source;
1321 }
1322 new_object->flags |= orig_object->flags & OBJ_NEEDGIANT;
1323 retry:
1324 if ((m = TAILQ_FIRST(&orig_object->memq)) != NULL) {
1325 if (m->pindex < offidxstart) {
1326 m = vm_page_splay(offidxstart, orig_object->root);
1327 if ((orig_object->root = m)->pindex < offidxstart)
1328 m = TAILQ_NEXT(m, listq);
1329 }
1330 }
1331 vm_page_lock_queues();
1332 for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1333 m = m_next) {
1334 m_next = TAILQ_NEXT(m, listq);
1335
1336 /*
1337 * We must wait for pending I/O to complete before we can
1338 * rename the page.
1339 *
1340 * We do not have to VM_PROT_NONE the page as mappings should
1341 * not be changed by this operation.
1342 */
1343 if ((m->oflags & VPO_BUSY) || m->busy) {
1344 vm_page_flag_set(m, PG_REFERENCED);
1345 vm_page_unlock_queues();
1346 VM_OBJECT_UNLOCK(new_object);
1347 m->oflags |= VPO_WANTED;
1348 msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1349 VM_OBJECT_LOCK(new_object);
1350 goto retry;
1351 }
1352 vm_page_rename(m, new_object, idx);
1353 /* page automatically made dirty by rename and cache handled */
1354 vm_page_busy(m);
1355 }
1356 vm_page_unlock_queues();
1357 if (orig_object->type == OBJT_SWAP) {
1358 /*
1359 * swap_pager_copy() can sleep, in which case the orig_object's
1360 * and new_object's locks are released and reacquired.
1361 */
1362 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1363
1364 /*
1365 * Transfer any cached pages from orig_object to new_object.
1366 */
1367 if (__predict_false(orig_object->cache != NULL))
1368 vm_page_cache_transfer(orig_object, offidxstart,
1369 new_object);
1370 }
1371 VM_OBJECT_UNLOCK(orig_object);
1372 TAILQ_FOREACH(m, &new_object->memq, listq)
1373 vm_page_wakeup(m);
1374 VM_OBJECT_UNLOCK(new_object);
1375 entry->object.vm_object = new_object;
1376 entry->offset = 0LL;
1377 vm_object_deallocate(orig_object);
1378 VM_OBJECT_LOCK(new_object);
1379 }
1380
1381 #define OBSC_TEST_ALL_SHADOWED 0x0001
1382 #define OBSC_COLLAPSE_NOWAIT 0x0002
1383 #define OBSC_COLLAPSE_WAIT 0x0004
1384
1385 static int
1386 vm_object_backing_scan(vm_object_t object, int op)
1387 {
1388 int r = 1;
1389 vm_page_t p;
1390 vm_object_t backing_object;
1391 vm_pindex_t backing_offset_index;
1392
1393 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1394 VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1395
1396 backing_object = object->backing_object;
1397 backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1398
1399 /*
1400 * Initial conditions
1401 */
1402 if (op & OBSC_TEST_ALL_SHADOWED) {
1403 /*
1404 * We do not want to have to test for the existence of cache
1405 * or swap pages in the backing object. XXX but with the
1406 * new swapper this would be pretty easy to do.
1407 *
1408 * XXX what about anonymous MAP_SHARED memory that hasn't
1409 * been ZFOD faulted yet? If we do not test for this, the
1410 * shadow test may succeed! XXX
1411 */
1412 if (backing_object->type != OBJT_DEFAULT) {
1413 return (0);
1414 }
1415 }
1416 if (op & OBSC_COLLAPSE_WAIT) {
1417 vm_object_set_flag(backing_object, OBJ_DEAD);
1418 }
1419
1420 /*
1421 * Our scan
1422 */
1423 p = TAILQ_FIRST(&backing_object->memq);
1424 while (p) {
1425 vm_page_t next = TAILQ_NEXT(p, listq);
1426 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1427
1428 if (op & OBSC_TEST_ALL_SHADOWED) {
1429 vm_page_t pp;
1430
1431 /*
1432 * Ignore pages outside the parent object's range
1433 * and outside the parent object's mapping of the
1434 * backing object.
1435 *
1436 * note that we do not busy the backing object's
1437 * page.
1438 */
1439 if (
1440 p->pindex < backing_offset_index ||
1441 new_pindex >= object->size
1442 ) {
1443 p = next;
1444 continue;
1445 }
1446
1447 /*
1448 * See if the parent has the page or if the parent's
1449 * object pager has the page. If the parent has the
1450 * page but the page is not valid, the parent's
1451 * object pager must have the page.
1452 *
1453 * If this fails, the parent does not completely shadow
1454 * the object and we might as well give up now.
1455 */
1456
1457 pp = vm_page_lookup(object, new_pindex);
1458 if (
1459 (pp == NULL || pp->valid == 0) &&
1460 !vm_pager_has_page(object, new_pindex, NULL, NULL)
1461 ) {
1462 r = 0;
1463 break;
1464 }
1465 }
1466
1467 /*
1468 * Check for busy page
1469 */
1470 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1471 vm_page_t pp;
1472
1473 if (op & OBSC_COLLAPSE_NOWAIT) {
1474 if ((p->oflags & VPO_BUSY) ||
1475 !p->valid ||
1476 p->busy) {
1477 p = next;
1478 continue;
1479 }
1480 } else if (op & OBSC_COLLAPSE_WAIT) {
1481 if ((p->oflags & VPO_BUSY) || p->busy) {
1482 vm_page_lock_queues();
1483 vm_page_flag_set(p, PG_REFERENCED);
1484 vm_page_unlock_queues();
1485 VM_OBJECT_UNLOCK(object);
1486 p->oflags |= VPO_WANTED;
1487 msleep(p, VM_OBJECT_MTX(backing_object),
1488 PDROP | PVM, "vmocol", 0);
1489 VM_OBJECT_LOCK(object);
1490 VM_OBJECT_LOCK(backing_object);
1491 /*
1492 * If we slept, anything could have
1493 * happened. Since the object is
1494 * marked dead, the backing offset
1495 * should not have changed so we
1496 * just restart our scan.
1497 */
1498 p = TAILQ_FIRST(&backing_object->memq);
1499 continue;
1500 }
1501 }
1502
1503 KASSERT(
1504 p->object == backing_object,
1505 ("vm_object_backing_scan: object mismatch")
1506 );
1507
1508 /*
1509 * Destroy any associated swap
1510 */
1511 if (backing_object->type == OBJT_SWAP) {
1512 swap_pager_freespace(
1513 backing_object,
1514 p->pindex,
1515 1
1516 );
1517 }
1518
1519 if (
1520 p->pindex < backing_offset_index ||
1521 new_pindex >= object->size
1522 ) {
1523 /*
1524 * Page is out of the parent object's range, we
1525 * can simply destroy it.
1526 */
1527 vm_page_lock_queues();
1528 KASSERT(!pmap_page_is_mapped(p),
1529 ("freeing mapped page %p", p));
1530 if (p->wire_count == 0)
1531 vm_page_free(p);
1532 else
1533 vm_page_remove(p);
1534 vm_page_unlock_queues();
1535 p = next;
1536 continue;
1537 }
1538
1539 pp = vm_page_lookup(object, new_pindex);
1540 if (
1541 pp != NULL ||
1542 vm_pager_has_page(object, new_pindex, NULL, NULL)
1543 ) {
1544 /*
1545 * page already exists in parent OR swap exists
1546 * for this location in the parent. Destroy
1547 * the original page from the backing object.
1548 *
1549 * Leave the parent's page alone
1550 */
1551 vm_page_lock_queues();
1552 KASSERT(!pmap_page_is_mapped(p),
1553 ("freeing mapped page %p", p));
1554 if (p->wire_count == 0)
1555 vm_page_free(p);
1556 else
1557 vm_page_remove(p);
1558 vm_page_unlock_queues();
1559 p = next;
1560 continue;
1561 }
1562
1563 /*
1564 * Page does not exist in parent, rename the
1565 * page from the backing object to the main object.
1566 *
1567 * If the page was mapped to a process, it can remain
1568 * mapped through the rename.
1569 */
1570 vm_page_lock_queues();
1571 vm_page_rename(p, object, new_pindex);
1572 vm_page_unlock_queues();
1573 /* page automatically made dirty by rename */
1574 }
1575 p = next;
1576 }
1577 return (r);
1578 }
1579
1580
1581 /*
1582 * this version of collapse allows the operation to occur earlier and
1583 * when paging_in_progress is true for an object... This is not a complete
1584 * operation, but should plug 99.9% of the rest of the leaks.
1585 */
1586 static void
1587 vm_object_qcollapse(vm_object_t object)
1588 {
1589 vm_object_t backing_object = object->backing_object;
1590
1591 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1592 VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1593
1594 if (backing_object->ref_count != 1)
1595 return;
1596
1597 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1598 }
1599
1600 /*
1601 * vm_object_collapse:
1602 *
1603 * Collapse an object with the object backing it.
1604 * Pages in the backing object are moved into the
1605 * parent, and the backing object is deallocated.
1606 */
1607 void
1608 vm_object_collapse(vm_object_t object)
1609 {
1610 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1611
1612 while (TRUE) {
1613 vm_object_t backing_object;
1614
1615 /*
1616 * Verify that the conditions are right for collapse:
1617 *
1618 * The object exists and the backing object exists.
1619 */
1620 if ((backing_object = object->backing_object) == NULL)
1621 break;
1622
1623 /*
1624 * we check the backing object first, because it is most likely
1625 * not collapsable.
1626 */
1627 VM_OBJECT_LOCK(backing_object);
1628 if (backing_object->handle != NULL ||
1629 (backing_object->type != OBJT_DEFAULT &&
1630 backing_object->type != OBJT_SWAP) ||
1631 (backing_object->flags & OBJ_DEAD) ||
1632 object->handle != NULL ||
1633 (object->type != OBJT_DEFAULT &&
1634 object->type != OBJT_SWAP) ||
1635 (object->flags & OBJ_DEAD)) {
1636 VM_OBJECT_UNLOCK(backing_object);
1637 break;
1638 }
1639
1640 if (
1641 object->paging_in_progress != 0 ||
1642 backing_object->paging_in_progress != 0
1643 ) {
1644 vm_object_qcollapse(object);
1645 VM_OBJECT_UNLOCK(backing_object);
1646 break;
1647 }
1648 /*
1649 * We know that we can either collapse the backing object (if
1650 * the parent is the only reference to it) or (perhaps) have
1651 * the parent bypass the object if the parent happens to shadow
1652 * all the resident pages in the entire backing object.
1653 *
1654 * This is ignoring pager-backed pages such as swap pages.
1655 * vm_object_backing_scan fails the shadowing test in this
1656 * case.
1657 */
1658 if (backing_object->ref_count == 1) {
1659 /*
1660 * If there is exactly one reference to the backing
1661 * object, we can collapse it into the parent.
1662 */
1663 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1664
1665 /*
1666 * Move the pager from backing_object to object.
1667 */
1668 if (backing_object->type == OBJT_SWAP) {
1669 /*
1670 * swap_pager_copy() can sleep, in which case
1671 * the backing_object's and object's locks are
1672 * released and reacquired.
1673 */
1674 swap_pager_copy(
1675 backing_object,
1676 object,
1677 OFF_TO_IDX(object->backing_object_offset), TRUE);
1678
1679 /*
1680 * Free any cached pages from backing_object.
1681 */
1682 if (__predict_false(backing_object->cache != NULL))
1683 vm_page_cache_free(backing_object, 0, 0);
1684 }
1685 /*
1686 * Object now shadows whatever backing_object did.
1687 * Note that the reference to
1688 * backing_object->backing_object moves from within
1689 * backing_object to within object.
1690 */
1691 LIST_REMOVE(object, shadow_list);
1692 backing_object->shadow_count--;
1693 backing_object->generation++;
1694 if (backing_object->backing_object) {
1695 VM_OBJECT_LOCK(backing_object->backing_object);
1696 LIST_REMOVE(backing_object, shadow_list);
1697 LIST_INSERT_HEAD(
1698 &backing_object->backing_object->shadow_head,
1699 object, shadow_list);
1700 /*
1701 * The shadow_count has not changed.
1702 */
1703 backing_object->backing_object->generation++;
1704 VM_OBJECT_UNLOCK(backing_object->backing_object);
1705 }
1706 object->backing_object = backing_object->backing_object;
1707 object->backing_object_offset +=
1708 backing_object->backing_object_offset;
1709
1710 /*
1711 * Discard backing_object.
1712 *
1713 * Since the backing object has no pages, no pager left,
1714 * and no object references within it, all that is
1715 * necessary is to dispose of it.
1716 */
1717 KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1718 VM_OBJECT_UNLOCK(backing_object);
1719
1720 mtx_lock(&vm_object_list_mtx);
1721 TAILQ_REMOVE(
1722 &vm_object_list,
1723 backing_object,
1724 object_list
1725 );
1726 mtx_unlock(&vm_object_list_mtx);
1727
1728 uma_zfree(obj_zone, backing_object);
1729
1730 object_collapses++;
1731 } else {
1732 vm_object_t new_backing_object;
1733
1734 /*
1735 * If we do not entirely shadow the backing object,
1736 * there is nothing we can do so we give up.
1737 */
1738 if (object->resident_page_count != object->size &&
1739 vm_object_backing_scan(object,
1740 OBSC_TEST_ALL_SHADOWED) == 0) {
1741 VM_OBJECT_UNLOCK(backing_object);
1742 break;
1743 }
1744
1745 /*
1746 * Make the parent shadow the next object in the
1747 * chain. Deallocating backing_object will not remove
1748 * it, since its reference count is at least 2.
1749 */
1750 LIST_REMOVE(object, shadow_list);
1751 backing_object->shadow_count--;
1752 backing_object->generation++;
1753
1754 new_backing_object = backing_object->backing_object;
1755 if ((object->backing_object = new_backing_object) != NULL) {
1756 VM_OBJECT_LOCK(new_backing_object);
1757 LIST_INSERT_HEAD(
1758 &new_backing_object->shadow_head,
1759 object,
1760 shadow_list
1761 );
1762 new_backing_object->shadow_count++;
1763 new_backing_object->generation++;
1764 vm_object_reference_locked(new_backing_object);
1765 VM_OBJECT_UNLOCK(new_backing_object);
1766 object->backing_object_offset +=
1767 backing_object->backing_object_offset;
1768 }
1769
1770 /*
1771 * Drop the reference count on backing_object. Since
1772 * its ref_count was at least 2, it will not vanish.
1773 */
1774 backing_object->ref_count--;
1775 VM_OBJECT_UNLOCK(backing_object);
1776 object_bypasses++;
1777 }
1778
1779 /*
1780 * Try again with this object's new backing object.
1781 */
1782 }
1783 }
1784
1785 /*
1786 * vm_object_page_remove:
1787 *
1788 * Removes all physical pages in the given range from the
1789 * object's list of pages. If the range's end is zero, all
1790 * physical pages from the range's start to the end of the object
1791 * are deleted.
1792 *
1793 * The object must be locked.
1794 */
1795 void
1796 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1797 boolean_t clean_only)
1798 {
1799 vm_page_t p, next;
1800
1801 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1802 if (object->resident_page_count == 0)
1803 goto skipmemq;
1804
1805 /*
1806 * Since physically-backed objects do not use managed pages, we can't
1807 * remove pages from the object (we must instead remove the page
1808 * references, and then destroy the object).
1809 */
1810 KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1811 object == kmem_object,
1812 ("attempt to remove pages from a physical object"));
1813
1814 vm_object_pip_add(object, 1);
1815 again:
1816 vm_page_lock_queues();
1817 if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1818 if (p->pindex < start) {
1819 p = vm_page_splay(start, object->root);
1820 if ((object->root = p)->pindex < start)
1821 p = TAILQ_NEXT(p, listq);
1822 }
1823 }
1824 /*
1825 * Assert: the variable p is either (1) the page with the
1826 * least pindex greater than or equal to the parameter pindex
1827 * or (2) NULL.
1828 */
1829 for (;
1830 p != NULL && (p->pindex < end || end == 0);
1831 p = next) {
1832 next = TAILQ_NEXT(p, listq);
1833
1834 if (p->wire_count != 0) {
1835 pmap_remove_all(p);
1836 if (!clean_only)
1837 p->valid = 0;
1838 continue;
1839 }
1840 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1841 goto again;
1842 if (clean_only && p->valid) {
1843 pmap_remove_write(p);
1844 if (p->valid & p->dirty)
1845 continue;
1846 }
1847 pmap_remove_all(p);
1848 vm_page_free(p);
1849 }
1850 vm_page_unlock_queues();
1851 vm_object_pip_wakeup(object);
1852 skipmemq:
1853 if (__predict_false(object->cache != NULL))
1854 vm_page_cache_free(object, start, end);
1855 }
1856
1857 /*
1858 * Routine: vm_object_coalesce
1859 * Function: Coalesces two objects backing up adjoining
1860 * regions of memory into a single object.
1861 *
1862 * returns TRUE if objects were combined.
1863 *
1864 * NOTE: Only works at the moment if the second object is NULL -
1865 * if it's not, which object do we lock first?
1866 *
1867 * Parameters:
1868 * prev_object First object to coalesce
1869 * prev_offset Offset into prev_object
1870 * prev_size Size of reference to prev_object
1871 * next_size Size of reference to the second object
1872 *
1873 * Conditions:
1874 * The object must *not* be locked.
1875 */
1876 boolean_t
1877 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1878 vm_size_t prev_size, vm_size_t next_size)
1879 {
1880 vm_pindex_t next_pindex;
1881
1882 if (prev_object == NULL)
1883 return (TRUE);
1884 VM_OBJECT_LOCK(prev_object);
1885 if (prev_object->type != OBJT_DEFAULT &&
1886 prev_object->type != OBJT_SWAP) {
1887 VM_OBJECT_UNLOCK(prev_object);
1888 return (FALSE);
1889 }
1890
1891 /*
1892 * Try to collapse the object first
1893 */
1894 vm_object_collapse(prev_object);
1895
1896 /*
1897 * Can't coalesce if: . more than one reference . paged out . shadows
1898 * another object . has a copy elsewhere (any of which mean that the
1899 * pages not mapped to prev_entry may be in use anyway)
1900 */
1901 if (prev_object->backing_object != NULL) {
1902 VM_OBJECT_UNLOCK(prev_object);
1903 return (FALSE);
1904 }
1905
1906 prev_size >>= PAGE_SHIFT;
1907 next_size >>= PAGE_SHIFT;
1908 next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1909
1910 if ((prev_object->ref_count > 1) &&
1911 (prev_object->size != next_pindex)) {
1912 VM_OBJECT_UNLOCK(prev_object);
1913 return (FALSE);
1914 }
1915
1916 /*
1917 * Remove any pages that may still be in the object from a previous
1918 * deallocation.
1919 */
1920 if (next_pindex < prev_object->size) {
1921 vm_object_page_remove(prev_object,
1922 next_pindex,
1923 next_pindex + next_size, FALSE);
1924 if (prev_object->type == OBJT_SWAP)
1925 swap_pager_freespace(prev_object,
1926 next_pindex, next_size);
1927 }
1928
1929 /*
1930 * Extend the object if necessary.
1931 */
1932 if (next_pindex + next_size > prev_object->size)
1933 prev_object->size = next_pindex + next_size;
1934
1935 VM_OBJECT_UNLOCK(prev_object);
1936 return (TRUE);
1937 }
1938
1939 void
1940 vm_object_set_writeable_dirty(vm_object_t object)
1941 {
1942 struct vnode *vp;
1943
1944 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1945 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
1946 return;
1947 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
1948 if (object->type == OBJT_VNODE &&
1949 (vp = (struct vnode *)object->handle) != NULL) {
1950 VI_LOCK(vp);
1951 vp->v_iflag |= VI_OBJDIRTY;
1952 VI_UNLOCK(vp);
1953 }
1954 }
1955
1956 #include "opt_ddb.h"
1957 #ifdef DDB
1958 #include <sys/kernel.h>
1959
1960 #include <sys/cons.h>
1961
1962 #include <ddb/ddb.h>
1963
1964 static int
1965 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1966 {
1967 vm_map_t tmpm;
1968 vm_map_entry_t tmpe;
1969 vm_object_t obj;
1970 int entcount;
1971
1972 if (map == 0)
1973 return 0;
1974
1975 if (entry == 0) {
1976 tmpe = map->header.next;
1977 entcount = map->nentries;
1978 while (entcount-- && (tmpe != &map->header)) {
1979 if (_vm_object_in_map(map, object, tmpe)) {
1980 return 1;
1981 }
1982 tmpe = tmpe->next;
1983 }
1984 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1985 tmpm = entry->object.sub_map;
1986 tmpe = tmpm->header.next;
1987 entcount = tmpm->nentries;
1988 while (entcount-- && tmpe != &tmpm->header) {
1989 if (_vm_object_in_map(tmpm, object, tmpe)) {
1990 return 1;
1991 }
1992 tmpe = tmpe->next;
1993 }
1994 } else if ((obj = entry->object.vm_object) != NULL) {
1995 for (; obj; obj = obj->backing_object)
1996 if (obj == object) {
1997 return 1;
1998 }
1999 }
2000 return 0;
2001 }
2002
2003 static int
2004 vm_object_in_map(vm_object_t object)
2005 {
2006 struct proc *p;
2007
2008 /* sx_slock(&allproc_lock); */
2009 FOREACH_PROC_IN_SYSTEM(p) {
2010 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2011 continue;
2012 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2013 /* sx_sunlock(&allproc_lock); */
2014 return 1;
2015 }
2016 }
2017 /* sx_sunlock(&allproc_lock); */
2018 if (_vm_object_in_map(kernel_map, object, 0))
2019 return 1;
2020 if (_vm_object_in_map(kmem_map, object, 0))
2021 return 1;
2022 if (_vm_object_in_map(pager_map, object, 0))
2023 return 1;
2024 if (_vm_object_in_map(buffer_map, object, 0))
2025 return 1;
2026 return 0;
2027 }
2028
2029 DB_SHOW_COMMAND(vmochk, vm_object_check)
2030 {
2031 vm_object_t object;
2032
2033 /*
2034 * make sure that internal objs are in a map somewhere
2035 * and none have zero ref counts.
2036 */
2037 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2038 if (object->handle == NULL &&
2039 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2040 if (object->ref_count == 0) {
2041 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2042 (long)object->size);
2043 }
2044 if (!vm_object_in_map(object)) {
2045 db_printf(
2046 "vmochk: internal obj is not in a map: "
2047 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2048 object->ref_count, (u_long)object->size,
2049 (u_long)object->size,
2050 (void *)object->backing_object);
2051 }
2052 }
2053 }
2054 }
2055
2056 /*
2057 * vm_object_print: [ debug ]
2058 */
2059 DB_SHOW_COMMAND(object, vm_object_print_static)
2060 {
2061 /* XXX convert args. */
2062 vm_object_t object = (vm_object_t)addr;
2063 boolean_t full = have_addr;
2064
2065 vm_page_t p;
2066
2067 /* XXX count is an (unused) arg. Avoid shadowing it. */
2068 #define count was_count
2069
2070 int count;
2071
2072 if (object == NULL)
2073 return;
2074
2075 db_iprintf(
2076 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2077 object, (int)object->type, (uintmax_t)object->size,
2078 object->resident_page_count, object->ref_count, object->flags);
2079 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2080 object->shadow_count,
2081 object->backing_object ? object->backing_object->ref_count : 0,
2082 object->backing_object, (uintmax_t)object->backing_object_offset);
2083
2084 if (!full)
2085 return;
2086
2087 db_indent += 2;
2088 count = 0;
2089 TAILQ_FOREACH(p, &object->memq, listq) {
2090 if (count == 0)
2091 db_iprintf("memory:=");
2092 else if (count == 6) {
2093 db_printf("\n");
2094 db_iprintf(" ...");
2095 count = 0;
2096 } else
2097 db_printf(",");
2098 count++;
2099
2100 db_printf("(off=0x%jx,page=0x%jx)",
2101 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2102 }
2103 if (count != 0)
2104 db_printf("\n");
2105 db_indent -= 2;
2106 }
2107
2108 /* XXX. */
2109 #undef count
2110
2111 /* XXX need this non-static entry for calling from vm_map_print. */
2112 void
2113 vm_object_print(
2114 /* db_expr_t */ long addr,
2115 boolean_t have_addr,
2116 /* db_expr_t */ long count,
2117 char *modif)
2118 {
2119 vm_object_print_static(addr, have_addr, count, modif);
2120 }
2121
2122 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2123 {
2124 vm_object_t object;
2125 int nl = 0;
2126 int c;
2127
2128 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2129 vm_pindex_t idx, fidx;
2130 vm_pindex_t osize;
2131 vm_paddr_t pa = -1;
2132 int rcount;
2133 vm_page_t m;
2134
2135 db_printf("new object: %p\n", (void *)object);
2136 if (nl > 18) {
2137 c = cngetc();
2138 if (c != ' ')
2139 return;
2140 nl = 0;
2141 }
2142 nl++;
2143 rcount = 0;
2144 fidx = 0;
2145 osize = object->size;
2146 if (osize > 128)
2147 osize = 128;
2148 for (idx = 0; idx < osize; idx++) {
2149 m = vm_page_lookup(object, idx);
2150 if (m == NULL) {
2151 if (rcount) {
2152 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2153 (long)fidx, rcount, (long)pa);
2154 if (nl > 18) {
2155 c = cngetc();
2156 if (c != ' ')
2157 return;
2158 nl = 0;
2159 }
2160 nl++;
2161 rcount = 0;
2162 }
2163 continue;
2164 }
2165
2166
2167 if (rcount &&
2168 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2169 ++rcount;
2170 continue;
2171 }
2172 if (rcount) {
2173 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2174 (long)fidx, rcount, (long)pa);
2175 if (nl > 18) {
2176 c = cngetc();
2177 if (c != ' ')
2178 return;
2179 nl = 0;
2180 }
2181 nl++;
2182 }
2183 fidx = idx;
2184 pa = VM_PAGE_TO_PHYS(m);
2185 rcount = 1;
2186 }
2187 if (rcount) {
2188 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2189 (long)fidx, rcount, (long)pa);
2190 if (nl > 18) {
2191 c = cngetc();
2192 if (c != ' ')
2193 return;
2194 nl = 0;
2195 }
2196 nl++;
2197 }
2198 }
2199 }
2200 #endif /* DDB */
Cache object: 985b6e7839af8f2e9d822fcf895cc8f4
|