The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 /*
   62  *      Virtual memory object module.
   63  */
   64 
   65 #include <sys/cdefs.h>
   66 __FBSDID("$FreeBSD$");
   67 
   68 #include "opt_vm.h"
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/lock.h>
   73 #include <sys/mman.h>
   74 #include <sys/mount.h>
   75 #include <sys/kernel.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/mutex.h>
   78 #include <sys/proc.h>           /* for curproc, pageproc */
   79 #include <sys/socket.h>
   80 #include <sys/vnode.h>
   81 #include <sys/vmmeter.h>
   82 #include <sys/sx.h>
   83 
   84 #include <vm/vm.h>
   85 #include <vm/vm_param.h>
   86 #include <vm/pmap.h>
   87 #include <vm/vm_map.h>
   88 #include <vm/vm_object.h>
   89 #include <vm/vm_page.h>
   90 #include <vm/vm_pageout.h>
   91 #include <vm/vm_pager.h>
   92 #include <vm/swap_pager.h>
   93 #include <vm/vm_kern.h>
   94 #include <vm/vm_extern.h>
   95 #include <vm/vm_reserv.h>
   96 #include <vm/uma.h>
   97 
   98 #define EASY_SCAN_FACTOR       8
   99 
  100 #define MSYNC_FLUSH_HARDSEQ     0x01
  101 #define MSYNC_FLUSH_SOFTSEQ     0x02
  102 
  103 /*
  104  * msync / VM object flushing optimizations
  105  */
  106 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
  107 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
  108         CTLFLAG_RW, &msync_flush_flags, 0, "");
  109 
  110 static int old_msync;
  111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
  112     "Use old (insecure) msync behavior");
  113 
  114 static void     vm_object_qcollapse(vm_object_t object);
  115 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
  116 static void     vm_object_vndeallocate(vm_object_t object);
  117 
  118 /*
  119  *      Virtual memory objects maintain the actual data
  120  *      associated with allocated virtual memory.  A given
  121  *      page of memory exists within exactly one object.
  122  *
  123  *      An object is only deallocated when all "references"
  124  *      are given up.  Only one "reference" to a given
  125  *      region of an object should be writeable.
  126  *
  127  *      Associated with each object is a list of all resident
  128  *      memory pages belonging to that object; this list is
  129  *      maintained by the "vm_page" module, and locked by the object's
  130  *      lock.
  131  *
  132  *      Each object also records a "pager" routine which is
  133  *      used to retrieve (and store) pages to the proper backing
  134  *      storage.  In addition, objects may be backed by other
  135  *      objects from which they were virtual-copied.
  136  *
  137  *      The only items within the object structure which are
  138  *      modified after time of creation are:
  139  *              reference count         locked by object's lock
  140  *              pager routine           locked by object's lock
  141  *
  142  */
  143 
  144 struct object_q vm_object_list;
  145 struct mtx vm_object_list_mtx;  /* lock for object list and count */
  146 
  147 struct vm_object kernel_object_store;
  148 struct vm_object kmem_object_store;
  149 
  150 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
  151 
  152 static long object_collapses;
  153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
  154     &object_collapses, 0, "VM object collapses");
  155 
  156 static long object_bypasses;
  157 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
  158     &object_bypasses, 0, "VM object bypasses");
  159 
  160 static uma_zone_t obj_zone;
  161 
  162 static int vm_object_zinit(void *mem, int size, int flags);
  163 
  164 #ifdef INVARIANTS
  165 static void vm_object_zdtor(void *mem, int size, void *arg);
  166 
  167 static void
  168 vm_object_zdtor(void *mem, int size, void *arg)
  169 {
  170         vm_object_t object;
  171 
  172         object = (vm_object_t)mem;
  173         KASSERT(TAILQ_EMPTY(&object->memq),
  174             ("object %p has resident pages",
  175             object));
  176 #if VM_NRESERVLEVEL > 0
  177         KASSERT(LIST_EMPTY(&object->rvq),
  178             ("object %p has reservations",
  179             object));
  180 #endif
  181         KASSERT(object->cache == NULL,
  182             ("object %p has cached pages",
  183             object));
  184         KASSERT(object->paging_in_progress == 0,
  185             ("object %p paging_in_progress = %d",
  186             object, object->paging_in_progress));
  187         KASSERT(object->resident_page_count == 0,
  188             ("object %p resident_page_count = %d",
  189             object, object->resident_page_count));
  190         KASSERT(object->shadow_count == 0,
  191             ("object %p shadow_count = %d",
  192             object, object->shadow_count));
  193 }
  194 #endif
  195 
  196 static int
  197 vm_object_zinit(void *mem, int size, int flags)
  198 {
  199         vm_object_t object;
  200 
  201         object = (vm_object_t)mem;
  202         bzero(&object->mtx, sizeof(object->mtx));
  203         VM_OBJECT_LOCK_INIT(object, "standard object");
  204 
  205         /* These are true for any object that has been freed */
  206         object->paging_in_progress = 0;
  207         object->resident_page_count = 0;
  208         object->shadow_count = 0;
  209         return (0);
  210 }
  211 
  212 void
  213 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
  214 {
  215 
  216         TAILQ_INIT(&object->memq);
  217         LIST_INIT(&object->shadow_head);
  218 
  219         object->root = NULL;
  220         object->type = type;
  221         object->size = size;
  222         object->generation = 1;
  223         object->ref_count = 1;
  224         object->memattr = VM_MEMATTR_DEFAULT;
  225         object->flags = 0;
  226         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
  227                 object->flags = OBJ_ONEMAPPING;
  228         object->pg_color = 0;
  229         object->handle = NULL;
  230         object->backing_object = NULL;
  231         object->backing_object_offset = (vm_ooffset_t) 0;
  232 #if VM_NRESERVLEVEL > 0
  233         LIST_INIT(&object->rvq);
  234 #endif
  235         object->cache = NULL;
  236 
  237         mtx_lock(&vm_object_list_mtx);
  238         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
  239         mtx_unlock(&vm_object_list_mtx);
  240 }
  241 
  242 /*
  243  *      vm_object_init:
  244  *
  245  *      Initialize the VM objects module.
  246  */
  247 void
  248 vm_object_init(void)
  249 {
  250         TAILQ_INIT(&vm_object_list);
  251         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
  252         
  253         VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
  254         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  255             kernel_object);
  256 #if VM_NRESERVLEVEL > 0
  257         kernel_object->flags |= OBJ_COLORED;
  258         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  259 #endif
  260 
  261         VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
  262         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  263             kmem_object);
  264 #if VM_NRESERVLEVEL > 0
  265         kmem_object->flags |= OBJ_COLORED;
  266         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  267 #endif
  268 
  269         /*
  270          * The lock portion of struct vm_object must be type stable due
  271          * to vm_pageout_fallback_object_lock locking a vm object
  272          * without holding any references to it.
  273          */
  274         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
  275 #ifdef INVARIANTS
  276             vm_object_zdtor,
  277 #else
  278             NULL,
  279 #endif
  280             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
  281 }
  282 
  283 void
  284 vm_object_clear_flag(vm_object_t object, u_short bits)
  285 {
  286 
  287         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  288         object->flags &= ~bits;
  289 }
  290 
  291 /*
  292  *      Sets the default memory attribute for the specified object.  Pages
  293  *      that are allocated to this object are by default assigned this memory
  294  *      attribute.
  295  *
  296  *      Presently, this function must be called before any pages are allocated
  297  *      to the object.  In the future, this requirement may be relaxed for
  298  *      "default" and "swap" objects.
  299  */
  300 int
  301 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
  302 {
  303 
  304         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  305         switch (object->type) {
  306         case OBJT_DEFAULT:
  307         case OBJT_DEVICE:
  308         case OBJT_PHYS:
  309         case OBJT_SG:
  310         case OBJT_SWAP:
  311         case OBJT_VNODE:
  312                 if (!TAILQ_EMPTY(&object->memq))
  313                         return (KERN_FAILURE);
  314                 break;
  315         case OBJT_DEAD:
  316                 return (KERN_INVALID_ARGUMENT);
  317         }
  318         object->memattr = memattr;
  319         return (KERN_SUCCESS);
  320 }
  321 
  322 void
  323 vm_object_pip_add(vm_object_t object, short i)
  324 {
  325 
  326         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  327         object->paging_in_progress += i;
  328 }
  329 
  330 void
  331 vm_object_pip_subtract(vm_object_t object, short i)
  332 {
  333 
  334         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  335         object->paging_in_progress -= i;
  336 }
  337 
  338 void
  339 vm_object_pip_wakeup(vm_object_t object)
  340 {
  341 
  342         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  343         object->paging_in_progress--;
  344         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  345                 vm_object_clear_flag(object, OBJ_PIPWNT);
  346                 wakeup(object);
  347         }
  348 }
  349 
  350 void
  351 vm_object_pip_wakeupn(vm_object_t object, short i)
  352 {
  353 
  354         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  355         if (i)
  356                 object->paging_in_progress -= i;
  357         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  358                 vm_object_clear_flag(object, OBJ_PIPWNT);
  359                 wakeup(object);
  360         }
  361 }
  362 
  363 void
  364 vm_object_pip_wait(vm_object_t object, char *waitid)
  365 {
  366 
  367         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  368         while (object->paging_in_progress) {
  369                 object->flags |= OBJ_PIPWNT;
  370                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
  371         }
  372 }
  373 
  374 /*
  375  *      vm_object_allocate:
  376  *
  377  *      Returns a new object with the given size.
  378  */
  379 vm_object_t
  380 vm_object_allocate(objtype_t type, vm_pindex_t size)
  381 {
  382         vm_object_t object;
  383 
  384         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
  385         _vm_object_allocate(type, size, object);
  386         return (object);
  387 }
  388 
  389 
  390 /*
  391  *      vm_object_reference:
  392  *
  393  *      Gets another reference to the given object.  Note: OBJ_DEAD
  394  *      objects can be referenced during final cleaning.
  395  */
  396 void
  397 vm_object_reference(vm_object_t object)
  398 {
  399         struct vnode *vp;
  400 
  401         if (object == NULL)
  402                 return;
  403         VM_OBJECT_LOCK(object);
  404         object->ref_count++;
  405         if (object->type == OBJT_VNODE) {
  406                 int vfslocked;
  407 
  408                 vp = object->handle;
  409                 VM_OBJECT_UNLOCK(object);
  410                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  411                 vget(vp, LK_RETRY, curthread);
  412                 VFS_UNLOCK_GIANT(vfslocked);
  413         } else
  414                 VM_OBJECT_UNLOCK(object);
  415 }
  416 
  417 /*
  418  *      vm_object_reference_locked:
  419  *
  420  *      Gets another reference to the given object.
  421  *
  422  *      The object must be locked.
  423  */
  424 void
  425 vm_object_reference_locked(vm_object_t object)
  426 {
  427         struct vnode *vp;
  428 
  429         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  430         KASSERT((object->flags & OBJ_DEAD) == 0,
  431             ("vm_object_reference_locked: dead object referenced"));
  432         object->ref_count++;
  433         if (object->type == OBJT_VNODE) {
  434                 vp = object->handle;
  435                 vref(vp);
  436         }
  437 }
  438 
  439 /*
  440  * Handle deallocating an object of type OBJT_VNODE.
  441  */
  442 static void
  443 vm_object_vndeallocate(vm_object_t object)
  444 {
  445         struct vnode *vp = (struct vnode *) object->handle;
  446 
  447         VFS_ASSERT_GIANT(vp->v_mount);
  448         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  449         KASSERT(object->type == OBJT_VNODE,
  450             ("vm_object_vndeallocate: not a vnode object"));
  451         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
  452 #ifdef INVARIANTS
  453         if (object->ref_count == 0) {
  454                 vprint("vm_object_vndeallocate", vp);
  455                 panic("vm_object_vndeallocate: bad object reference count");
  456         }
  457 #endif
  458 
  459         object->ref_count--;
  460         if (object->ref_count == 0) {
  461                 mp_fixme("Unlocked vflag access.");
  462                 vp->v_vflag &= ~VV_TEXT;
  463         }
  464         VM_OBJECT_UNLOCK(object);
  465         /*
  466          * vrele may need a vop lock
  467          */
  468         vrele(vp);
  469 }
  470 
  471 /*
  472  *      vm_object_deallocate:
  473  *
  474  *      Release a reference to the specified object,
  475  *      gained either through a vm_object_allocate
  476  *      or a vm_object_reference call.  When all references
  477  *      are gone, storage associated with this object
  478  *      may be relinquished.
  479  *
  480  *      No object may be locked.
  481  */
  482 void
  483 vm_object_deallocate(vm_object_t object)
  484 {
  485         vm_object_t temp;
  486 
  487         while (object != NULL) {
  488                 int vfslocked;
  489 
  490                 vfslocked = 0;
  491         restart:
  492                 VM_OBJECT_LOCK(object);
  493                 if (object->type == OBJT_VNODE) {
  494                         struct vnode *vp = (struct vnode *) object->handle;
  495 
  496                         /*
  497                          * Conditionally acquire Giant for a vnode-backed
  498                          * object.  We have to be careful since the type of
  499                          * a vnode object can change while the object is
  500                          * unlocked.
  501                          */
  502                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
  503                                 vfslocked = 1;
  504                                 if (!mtx_trylock(&Giant)) {
  505                                         VM_OBJECT_UNLOCK(object);
  506                                         mtx_lock(&Giant);
  507                                         goto restart;
  508                                 }
  509                         }
  510                         vm_object_vndeallocate(object);
  511                         VFS_UNLOCK_GIANT(vfslocked);
  512                         return;
  513                 } else
  514                         /*
  515                          * This is to handle the case that the object
  516                          * changed type while we dropped its lock to
  517                          * obtain Giant.
  518                          */
  519                         VFS_UNLOCK_GIANT(vfslocked);
  520 
  521                 KASSERT(object->ref_count != 0,
  522                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
  523 
  524                 /*
  525                  * If the reference count goes to 0 we start calling
  526                  * vm_object_terminate() on the object chain.
  527                  * A ref count of 1 may be a special case depending on the
  528                  * shadow count being 0 or 1.
  529                  */
  530                 object->ref_count--;
  531                 if (object->ref_count > 1) {
  532                         VM_OBJECT_UNLOCK(object);
  533                         return;
  534                 } else if (object->ref_count == 1) {
  535                         if (object->shadow_count == 0 &&
  536                             object->handle == NULL &&
  537                             (object->type == OBJT_DEFAULT ||
  538                              object->type == OBJT_SWAP)) {
  539                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
  540                         } else if ((object->shadow_count == 1) &&
  541                             (object->handle == NULL) &&
  542                             (object->type == OBJT_DEFAULT ||
  543                              object->type == OBJT_SWAP)) {
  544                                 vm_object_t robject;
  545 
  546                                 robject = LIST_FIRST(&object->shadow_head);
  547                                 KASSERT(robject != NULL,
  548                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
  549                                          object->ref_count,
  550                                          object->shadow_count));
  551                                 if (!VM_OBJECT_TRYLOCK(robject)) {
  552                                         /*
  553                                          * Avoid a potential deadlock.
  554                                          */
  555                                         object->ref_count++;
  556                                         VM_OBJECT_UNLOCK(object);
  557                                         /*
  558                                          * More likely than not the thread
  559                                          * holding robject's lock has lower
  560                                          * priority than the current thread.
  561                                          * Let the lower priority thread run.
  562                                          */
  563                                         pause("vmo_de", 1);
  564                                         continue;
  565                                 }
  566                                 /*
  567                                  * Collapse object into its shadow unless its
  568                                  * shadow is dead.  In that case, object will
  569                                  * be deallocated by the thread that is
  570                                  * deallocating its shadow.
  571                                  */
  572                                 if ((robject->flags & OBJ_DEAD) == 0 &&
  573                                     (robject->handle == NULL) &&
  574                                     (robject->type == OBJT_DEFAULT ||
  575                                      robject->type == OBJT_SWAP)) {
  576 
  577                                         robject->ref_count++;
  578 retry:
  579                                         if (robject->paging_in_progress) {
  580                                                 VM_OBJECT_UNLOCK(object);
  581                                                 vm_object_pip_wait(robject,
  582                                                     "objde1");
  583                                                 temp = robject->backing_object;
  584                                                 if (object == temp) {
  585                                                         VM_OBJECT_LOCK(object);
  586                                                         goto retry;
  587                                                 }
  588                                         } else if (object->paging_in_progress) {
  589                                                 VM_OBJECT_UNLOCK(robject);
  590                                                 object->flags |= OBJ_PIPWNT;
  591                                                 msleep(object,
  592                                                     VM_OBJECT_MTX(object),
  593                                                     PDROP | PVM, "objde2", 0);
  594                                                 VM_OBJECT_LOCK(robject);
  595                                                 temp = robject->backing_object;
  596                                                 if (object == temp) {
  597                                                         VM_OBJECT_LOCK(object);
  598                                                         goto retry;
  599                                                 }
  600                                         } else
  601                                                 VM_OBJECT_UNLOCK(object);
  602 
  603                                         if (robject->ref_count == 1) {
  604                                                 robject->ref_count--;
  605                                                 object = robject;
  606                                                 goto doterm;
  607                                         }
  608                                         object = robject;
  609                                         vm_object_collapse(object);
  610                                         VM_OBJECT_UNLOCK(object);
  611                                         continue;
  612                                 }
  613                                 VM_OBJECT_UNLOCK(robject);
  614                         }
  615                         VM_OBJECT_UNLOCK(object);
  616                         return;
  617                 }
  618 doterm:
  619                 temp = object->backing_object;
  620                 if (temp != NULL) {
  621                         VM_OBJECT_LOCK(temp);
  622                         LIST_REMOVE(object, shadow_list);
  623                         temp->shadow_count--;
  624                         temp->generation++;
  625                         VM_OBJECT_UNLOCK(temp);
  626                         object->backing_object = NULL;
  627                 }
  628                 /*
  629                  * Don't double-terminate, we could be in a termination
  630                  * recursion due to the terminate having to sync data
  631                  * to disk.
  632                  */
  633                 if ((object->flags & OBJ_DEAD) == 0)
  634                         vm_object_terminate(object);
  635                 else
  636                         VM_OBJECT_UNLOCK(object);
  637                 object = temp;
  638         }
  639 }
  640 
  641 /*
  642  *      vm_object_destroy removes the object from the global object list
  643  *      and frees the space for the object.
  644  */
  645 void
  646 vm_object_destroy(vm_object_t object)
  647 {
  648 
  649         /*
  650          * Remove the object from the global object list.
  651          */
  652         mtx_lock(&vm_object_list_mtx);
  653         TAILQ_REMOVE(&vm_object_list, object, object_list);
  654         mtx_unlock(&vm_object_list_mtx);
  655 
  656         /*
  657          * Free the space for the object.
  658          */
  659         uma_zfree(obj_zone, object);
  660 }
  661 
  662 /*
  663  *      vm_object_terminate actually destroys the specified object, freeing
  664  *      up all previously used resources.
  665  *
  666  *      The object must be locked.
  667  *      This routine may block.
  668  */
  669 void
  670 vm_object_terminate(vm_object_t object)
  671 {
  672         vm_page_t p;
  673 
  674         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  675 
  676         /*
  677          * Make sure no one uses us.
  678          */
  679         vm_object_set_flag(object, OBJ_DEAD);
  680 
  681         /*
  682          * wait for the pageout daemon to be done with the object
  683          */
  684         vm_object_pip_wait(object, "objtrm");
  685 
  686         KASSERT(!object->paging_in_progress,
  687                 ("vm_object_terminate: pageout in progress"));
  688 
  689         /*
  690          * Clean and free the pages, as appropriate. All references to the
  691          * object are gone, so we don't need to lock it.
  692          */
  693         if (object->type == OBJT_VNODE) {
  694                 struct vnode *vp = (struct vnode *)object->handle;
  695 
  696                 /*
  697                  * Clean pages and flush buffers.
  698                  */
  699                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  700                 VM_OBJECT_UNLOCK(object);
  701 
  702                 vinvalbuf(vp, V_SAVE, NULL, 0, 0);
  703 
  704                 VM_OBJECT_LOCK(object);
  705         }
  706 
  707         KASSERT(object->ref_count == 0, 
  708                 ("vm_object_terminate: object with references, ref_count=%d",
  709                 object->ref_count));
  710 
  711         /*
  712          * Now free any remaining pages. For internal objects, this also
  713          * removes them from paging queues. Don't free wired pages, just
  714          * remove them from the object. 
  715          */
  716         vm_page_lock_queues();
  717         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
  718                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
  719                         ("vm_object_terminate: freeing busy page %p "
  720                         "p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
  721                 if (p->wire_count == 0) {
  722                         vm_page_free(p);
  723                         cnt.v_pfree++;
  724                 } else {
  725                         vm_page_remove(p);
  726                 }
  727         }
  728         vm_page_unlock_queues();
  729 
  730 #if VM_NRESERVLEVEL > 0
  731         if (__predict_false(!LIST_EMPTY(&object->rvq)))
  732                 vm_reserv_break_all(object);
  733 #endif
  734         if (__predict_false(object->cache != NULL))
  735                 vm_page_cache_free(object, 0, 0);
  736 
  737         /*
  738          * Let the pager know object is dead.
  739          */
  740         vm_pager_deallocate(object);
  741         VM_OBJECT_UNLOCK(object);
  742 
  743         vm_object_destroy(object);
  744 }
  745 
  746 /*
  747  *      vm_object_page_clean
  748  *
  749  *      Clean all dirty pages in the specified range of object.  Leaves page 
  750  *      on whatever queue it is currently on.   If NOSYNC is set then do not
  751  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
  752  *      leaving the object dirty.
  753  *
  754  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
  755  *      synchronous clustering mode implementation.
  756  *
  757  *      Odd semantics: if start == end, we clean everything.
  758  *
  759  *      The object must be locked.
  760  */
  761 void
  762 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
  763 {
  764         vm_page_t p, np;
  765         vm_pindex_t tstart, tend;
  766         vm_pindex_t pi;
  767         int clearobjflags;
  768         int pagerflags;
  769         int curgeneration;
  770 
  771         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  772         if (object->type != OBJT_VNODE ||
  773                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
  774                 return;
  775 
  776         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
  777         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
  778 
  779         vm_object_set_flag(object, OBJ_CLEANING);
  780 
  781         tstart = start;
  782         if (end == 0) {
  783                 tend = object->size;
  784         } else {
  785                 tend = end;
  786         }
  787 
  788         vm_page_lock_queues();
  789         /*
  790          * If the caller is smart and only msync()s a range he knows is
  791          * dirty, we may be able to avoid an object scan.  This results in
  792          * a phenominal improvement in performance.  We cannot do this
  793          * as a matter of course because the object may be huge - e.g.
  794          * the size might be in the gigabytes or terrabytes.
  795          */
  796         if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
  797                 vm_pindex_t tscan;
  798                 int scanlimit;
  799                 int scanreset;
  800 
  801                 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
  802                 if (scanreset < 16)
  803                         scanreset = 16;
  804                 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
  805 
  806                 scanlimit = scanreset;
  807                 tscan = tstart;
  808                 while (tscan < tend) {
  809                         curgeneration = object->generation;
  810                         p = vm_page_lookup(object, tscan);
  811                         if (p == NULL || p->valid == 0) {
  812                                 if (--scanlimit == 0)
  813                                         break;
  814                                 ++tscan;
  815                                 continue;
  816                         }
  817                         vm_page_test_dirty(p);
  818                         if ((p->dirty & p->valid) == 0) {
  819                                 if (--scanlimit == 0)
  820                                         break;
  821                                 ++tscan;
  822                                 continue;
  823                         }
  824                         /*
  825                          * If we have been asked to skip nosync pages and 
  826                          * this is a nosync page, we can't continue.
  827                          */
  828                         if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
  829                                 if (--scanlimit == 0)
  830                                         break;
  831                                 ++tscan;
  832                                 continue;
  833                         }
  834                         scanlimit = scanreset;
  835 
  836                         /*
  837                          * This returns 0 if it was unable to busy the first
  838                          * page (i.e. had to sleep).
  839                          */
  840                         tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
  841                 }
  842 
  843                 /*
  844                  * If everything was dirty and we flushed it successfully,
  845                  * and the requested range is not the entire object, we
  846                  * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
  847                  * return immediately.
  848                  */
  849                 if (tscan >= tend && (tstart || tend < object->size)) {
  850                         vm_page_unlock_queues();
  851                         vm_object_clear_flag(object, OBJ_CLEANING);
  852                         return;
  853                 }
  854                 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
  855         }
  856 
  857         /*
  858          * Generally set CLEANCHK interlock and make the page read-only so
  859          * we can then clear the object flags.
  860          *
  861          * However, if this is a nosync mmap then the object is likely to 
  862          * stay dirty so do not mess with the page and do not clear the
  863          * object flags.
  864          */
  865         clearobjflags = 1;
  866         TAILQ_FOREACH(p, &object->memq, listq) {
  867                 p->oflags |= VPO_CLEANCHK;
  868                 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC))
  869                         clearobjflags = 0;
  870                 else
  871                         pmap_remove_write(p);
  872         }
  873 
  874         if (clearobjflags && (tstart == 0) && (tend == object->size)) {
  875                 struct vnode *vp;
  876 
  877                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
  878                 if (object->type == OBJT_VNODE &&
  879                     (vp = (struct vnode *)object->handle) != NULL) {
  880                         VI_LOCK(vp);
  881                         if (vp->v_iflag & VI_OBJDIRTY)
  882                                 vp->v_iflag &= ~VI_OBJDIRTY;
  883                         VI_UNLOCK(vp);
  884                 }
  885         }
  886 
  887 rescan:
  888         curgeneration = object->generation;
  889 
  890         for (p = TAILQ_FIRST(&object->memq); p; p = np) {
  891                 int n;
  892 
  893                 np = TAILQ_NEXT(p, listq);
  894 
  895 again:
  896                 pi = p->pindex;
  897                 if ((p->oflags & VPO_CLEANCHK) == 0 ||
  898                         (pi < tstart) || (pi >= tend) ||
  899                     p->valid == 0) {
  900                         p->oflags &= ~VPO_CLEANCHK;
  901                         continue;
  902                 }
  903 
  904                 vm_page_test_dirty(p);
  905                 if ((p->dirty & p->valid) == 0) {
  906                         p->oflags &= ~VPO_CLEANCHK;
  907                         continue;
  908                 }
  909 
  910                 /*
  911                  * If we have been asked to skip nosync pages and this is a
  912                  * nosync page, skip it.  Note that the object flags were
  913                  * not cleared in this case so we do not have to set them.
  914                  */
  915                 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
  916                         p->oflags &= ~VPO_CLEANCHK;
  917                         continue;
  918                 }
  919 
  920                 n = vm_object_page_collect_flush(object, p,
  921                         curgeneration, pagerflags);
  922                 if (n == 0)
  923                         goto rescan;
  924 
  925                 if (object->generation != curgeneration)
  926                         goto rescan;
  927 
  928                 /*
  929                  * Try to optimize the next page.  If we can't we pick up
  930                  * our (random) scan where we left off.
  931                  */
  932                 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
  933                         if ((p = vm_page_lookup(object, pi + n)) != NULL)
  934                                 goto again;
  935                 }
  936         }
  937         vm_page_unlock_queues();
  938 #if 0
  939         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
  940 #endif
  941 
  942         vm_object_clear_flag(object, OBJ_CLEANING);
  943         return;
  944 }
  945 
  946 static int
  947 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
  948 {
  949         int runlen;
  950         int maxf;
  951         int chkb;
  952         int maxb;
  953         int i;
  954         vm_pindex_t pi;
  955         vm_page_t maf[vm_pageout_page_count];
  956         vm_page_t mab[vm_pageout_page_count];
  957         vm_page_t ma[vm_pageout_page_count];
  958 
  959         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  960         pi = p->pindex;
  961         while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
  962                 vm_page_lock_queues();
  963                 if (object->generation != curgeneration) {
  964                         return(0);
  965                 }
  966         }
  967         maxf = 0;
  968         for(i = 1; i < vm_pageout_page_count; i++) {
  969                 vm_page_t tp;
  970 
  971                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
  972                         if ((tp->oflags & VPO_BUSY) ||
  973                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
  974                                  (tp->oflags & VPO_CLEANCHK) == 0) ||
  975                                 (tp->busy != 0))
  976                                 break;
  977                         vm_page_test_dirty(tp);
  978                         if ((tp->dirty & tp->valid) == 0) {
  979                                 tp->oflags &= ~VPO_CLEANCHK;
  980                                 break;
  981                         }
  982                         maf[ i - 1 ] = tp;
  983                         maxf++;
  984                         continue;
  985                 }
  986                 break;
  987         }
  988 
  989         maxb = 0;
  990         chkb = vm_pageout_page_count -  maxf;
  991         if (chkb) {
  992                 for(i = 1; i < chkb;i++) {
  993                         vm_page_t tp;
  994 
  995                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
  996                                 if ((tp->oflags & VPO_BUSY) ||
  997                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
  998                                          (tp->oflags & VPO_CLEANCHK) == 0) ||
  999                                         (tp->busy != 0))
 1000                                         break;
 1001                                 vm_page_test_dirty(tp);
 1002                                 if ((tp->dirty & tp->valid) == 0) {
 1003                                         tp->oflags &= ~VPO_CLEANCHK;
 1004                                         break;
 1005                                 }
 1006                                 mab[ i - 1 ] = tp;
 1007                                 maxb++;
 1008                                 continue;
 1009                         }
 1010                         break;
 1011                 }
 1012         }
 1013 
 1014         for(i = 0; i < maxb; i++) {
 1015                 int index = (maxb - i) - 1;
 1016                 ma[index] = mab[i];
 1017                 ma[index]->oflags &= ~VPO_CLEANCHK;
 1018         }
 1019         p->oflags &= ~VPO_CLEANCHK;
 1020         ma[maxb] = p;
 1021         for(i = 0; i < maxf; i++) {
 1022                 int index = (maxb + i) + 1;
 1023                 ma[index] = maf[i];
 1024                 ma[index]->oflags &= ~VPO_CLEANCHK;
 1025         }
 1026         runlen = maxb + maxf + 1;
 1027 
 1028         vm_pageout_flush(ma, runlen, pagerflags);
 1029         for (i = 0; i < runlen; i++) {
 1030                 if (ma[i]->valid & ma[i]->dirty) {
 1031                         pmap_remove_write(ma[i]);
 1032                         ma[i]->oflags |= VPO_CLEANCHK;
 1033 
 1034                         /*
 1035                          * maxf will end up being the actual number of pages
 1036                          * we wrote out contiguously, non-inclusive of the
 1037                          * first page.  We do not count look-behind pages.
 1038                          */
 1039                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
 1040                                 maxf = i - maxb - 1;
 1041                 }
 1042         }
 1043         return(maxf + 1);
 1044 }
 1045 
 1046 /*
 1047  * Note that there is absolutely no sense in writing out
 1048  * anonymous objects, so we track down the vnode object
 1049  * to write out.
 1050  * We invalidate (remove) all pages from the address space
 1051  * for semantic correctness.
 1052  *
 1053  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
 1054  * may start out with a NULL object.
 1055  */
 1056 void
 1057 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
 1058     boolean_t syncio, boolean_t invalidate)
 1059 {
 1060         vm_object_t backing_object;
 1061         struct vnode *vp;
 1062         struct mount *mp;
 1063         int flags;
 1064 
 1065         if (object == NULL)
 1066                 return;
 1067         VM_OBJECT_LOCK(object);
 1068         while ((backing_object = object->backing_object) != NULL) {
 1069                 VM_OBJECT_LOCK(backing_object);
 1070                 offset += object->backing_object_offset;
 1071                 VM_OBJECT_UNLOCK(object);
 1072                 object = backing_object;
 1073                 if (object->size < OFF_TO_IDX(offset + size))
 1074                         size = IDX_TO_OFF(object->size) - offset;
 1075         }
 1076         /*
 1077          * Flush pages if writing is allowed, invalidate them
 1078          * if invalidation requested.  Pages undergoing I/O
 1079          * will be ignored by vm_object_page_remove().
 1080          *
 1081          * We cannot lock the vnode and then wait for paging
 1082          * to complete without deadlocking against vm_fault.
 1083          * Instead we simply call vm_object_page_remove() and
 1084          * allow it to block internally on a page-by-page
 1085          * basis when it encounters pages undergoing async
 1086          * I/O.
 1087          */
 1088         if (object->type == OBJT_VNODE &&
 1089             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
 1090                 int vfslocked;
 1091                 vp = object->handle;
 1092                 VM_OBJECT_UNLOCK(object);
 1093                 (void) vn_start_write(vp, &mp, V_WAIT);
 1094                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1095                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
 1096                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
 1097                 flags |= invalidate ? OBJPC_INVAL : 0;
 1098                 VM_OBJECT_LOCK(object);
 1099                 vm_object_page_clean(object,
 1100                     OFF_TO_IDX(offset),
 1101                     OFF_TO_IDX(offset + size + PAGE_MASK),
 1102                     flags);
 1103                 VM_OBJECT_UNLOCK(object);
 1104                 VOP_UNLOCK(vp, 0, curthread);
 1105                 VFS_UNLOCK_GIANT(vfslocked);
 1106                 vn_finished_write(mp);
 1107                 VM_OBJECT_LOCK(object);
 1108         }
 1109         if ((object->type == OBJT_VNODE ||
 1110              object->type == OBJT_DEVICE) && invalidate) {
 1111                 boolean_t purge;
 1112                 purge = old_msync || (object->type == OBJT_DEVICE);
 1113                 vm_object_page_remove(object,
 1114                     OFF_TO_IDX(offset),
 1115                     OFF_TO_IDX(offset + size + PAGE_MASK),
 1116                     purge ? FALSE : TRUE);
 1117         }
 1118         VM_OBJECT_UNLOCK(object);
 1119 }
 1120 
 1121 /*
 1122  *      vm_object_madvise:
 1123  *
 1124  *      Implements the madvise function at the object/page level.
 1125  *
 1126  *      MADV_WILLNEED   (any object)
 1127  *
 1128  *          Activate the specified pages if they are resident.
 1129  *
 1130  *      MADV_DONTNEED   (any object)
 1131  *
 1132  *          Deactivate the specified pages if they are resident.
 1133  *
 1134  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
 1135  *                       OBJ_ONEMAPPING only)
 1136  *
 1137  *          Deactivate and clean the specified pages if they are
 1138  *          resident.  This permits the process to reuse the pages
 1139  *          without faulting or the kernel to reclaim the pages
 1140  *          without I/O.
 1141  */
 1142 void
 1143 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
 1144 {
 1145         vm_pindex_t end, tpindex;
 1146         vm_object_t backing_object, tobject;
 1147         vm_page_t m;
 1148 
 1149         if (object == NULL)
 1150                 return;
 1151         VM_OBJECT_LOCK(object);
 1152         end = pindex + count;
 1153         /*
 1154          * Locate and adjust resident pages
 1155          */
 1156         for (; pindex < end; pindex += 1) {
 1157 relookup:
 1158                 tobject = object;
 1159                 tpindex = pindex;
 1160 shadowlookup:
 1161                 /*
 1162                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
 1163                  * and those pages must be OBJ_ONEMAPPING.
 1164                  */
 1165                 if (advise == MADV_FREE) {
 1166                         if ((tobject->type != OBJT_DEFAULT &&
 1167                              tobject->type != OBJT_SWAP) ||
 1168                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
 1169                                 goto unlock_tobject;
 1170                         }
 1171                 }
 1172                 m = vm_page_lookup(tobject, tpindex);
 1173                 if (m == NULL && advise == MADV_WILLNEED) {
 1174                         /*
 1175                          * If the page is cached, reactivate it.
 1176                          */
 1177                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
 1178                             VM_ALLOC_NOBUSY);
 1179                 }
 1180                 if (m == NULL) {
 1181                         /*
 1182                          * There may be swap even if there is no backing page
 1183                          */
 1184                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1185                                 swap_pager_freespace(tobject, tpindex, 1);
 1186                         /*
 1187                          * next object
 1188                          */
 1189                         backing_object = tobject->backing_object;
 1190                         if (backing_object == NULL)
 1191                                 goto unlock_tobject;
 1192                         VM_OBJECT_LOCK(backing_object);
 1193                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
 1194                         if (tobject != object)
 1195                                 VM_OBJECT_UNLOCK(tobject);
 1196                         tobject = backing_object;
 1197                         goto shadowlookup;
 1198                 }
 1199                 /*
 1200                  * If the page is busy or not in a normal active state,
 1201                  * we skip it.  If the page is not managed there are no
 1202                  * page queues to mess with.  Things can break if we mess
 1203                  * with pages in any of the below states.
 1204                  */
 1205                 vm_page_lock_queues();
 1206                 if (m->hold_count ||
 1207                     m->wire_count ||
 1208                     (m->flags & PG_UNMANAGED) ||
 1209                     m->valid != VM_PAGE_BITS_ALL) {
 1210                         vm_page_unlock_queues();
 1211                         goto unlock_tobject;
 1212                 }
 1213                 if ((m->oflags & VPO_BUSY) || m->busy) {
 1214                         vm_page_flag_set(m, PG_REFERENCED);
 1215                         vm_page_unlock_queues();
 1216                         if (object != tobject)
 1217                                 VM_OBJECT_UNLOCK(object);
 1218                         m->oflags |= VPO_WANTED;
 1219                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 0);
 1220                         VM_OBJECT_LOCK(object);
 1221                         goto relookup;
 1222                 }
 1223                 if (advise == MADV_WILLNEED) {
 1224                         vm_page_activate(m);
 1225                 } else if (advise == MADV_DONTNEED) {
 1226                         vm_page_dontneed(m);
 1227                 } else if (advise == MADV_FREE) {
 1228                         /*
 1229                          * Mark the page clean.  This will allow the page
 1230                          * to be freed up by the system.  However, such pages
 1231                          * are often reused quickly by malloc()/free()
 1232                          * so we do not do anything that would cause
 1233                          * a page fault if we can help it.
 1234                          *
 1235                          * Specifically, we do not try to actually free
 1236                          * the page now nor do we try to put it in the
 1237                          * cache (which would cause a page fault on reuse).
 1238                          *
 1239                          * But we do make the page is freeable as we
 1240                          * can without actually taking the step of unmapping
 1241                          * it.
 1242                          */
 1243                         pmap_clear_modify(m);
 1244                         m->dirty = 0;
 1245                         m->act_count = 0;
 1246                         vm_page_dontneed(m);
 1247                 }
 1248                 vm_page_unlock_queues();
 1249                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1250                         swap_pager_freespace(tobject, tpindex, 1);
 1251 unlock_tobject:
 1252                 if (tobject != object)
 1253                         VM_OBJECT_UNLOCK(tobject);
 1254         }       
 1255         VM_OBJECT_UNLOCK(object);
 1256 }
 1257 
 1258 /*
 1259  *      vm_object_shadow:
 1260  *
 1261  *      Create a new object which is backed by the
 1262  *      specified existing object range.  The source
 1263  *      object reference is deallocated.
 1264  *
 1265  *      The new object and offset into that object
 1266  *      are returned in the source parameters.
 1267  */
 1268 void
 1269 vm_object_shadow(
 1270         vm_object_t *object,    /* IN/OUT */
 1271         vm_ooffset_t *offset,   /* IN/OUT */
 1272         vm_size_t length)
 1273 {
 1274         vm_object_t source;
 1275         vm_object_t result;
 1276 
 1277         source = *object;
 1278 
 1279         /*
 1280          * Don't create the new object if the old object isn't shared.
 1281          */
 1282         if (source != NULL) {
 1283                 VM_OBJECT_LOCK(source);
 1284                 if (source->ref_count == 1 &&
 1285                     source->handle == NULL &&
 1286                     (source->type == OBJT_DEFAULT ||
 1287                      source->type == OBJT_SWAP)) {
 1288                         VM_OBJECT_UNLOCK(source);
 1289                         return;
 1290                 }
 1291                 VM_OBJECT_UNLOCK(source);
 1292         }
 1293 
 1294         /*
 1295          * Allocate a new object with the given length.
 1296          */
 1297         result = vm_object_allocate(OBJT_DEFAULT, length);
 1298 
 1299         /*
 1300          * The new object shadows the source object, adding a reference to it.
 1301          * Our caller changes his reference to point to the new object,
 1302          * removing a reference to the source object.  Net result: no change
 1303          * of reference count.
 1304          *
 1305          * Try to optimize the result object's page color when shadowing
 1306          * in order to maintain page coloring consistency in the combined 
 1307          * shadowed object.
 1308          */
 1309         result->backing_object = source;
 1310         /*
 1311          * Store the offset into the source object, and fix up the offset into
 1312          * the new object.
 1313          */
 1314         result->backing_object_offset = *offset;
 1315         if (source != NULL) {
 1316                 VM_OBJECT_LOCK(source);
 1317                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
 1318                 source->shadow_count++;
 1319                 source->generation++;
 1320 #if VM_NRESERVLEVEL > 0
 1321                 result->flags |= source->flags & (OBJ_NEEDGIANT | OBJ_COLORED);
 1322                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
 1323                     ((1 << (VM_NFREEORDER - 1)) - 1);
 1324 #else
 1325                 result->flags |= source->flags & OBJ_NEEDGIANT;
 1326 #endif
 1327                 VM_OBJECT_UNLOCK(source);
 1328         }
 1329 
 1330 
 1331         /*
 1332          * Return the new things
 1333          */
 1334         *offset = 0;
 1335         *object = result;
 1336 }
 1337 
 1338 /*
 1339  *      vm_object_split:
 1340  *
 1341  * Split the pages in a map entry into a new object.  This affords
 1342  * easier removal of unused pages, and keeps object inheritance from
 1343  * being a negative impact on memory usage.
 1344  */
 1345 void
 1346 vm_object_split(vm_map_entry_t entry)
 1347 {
 1348         vm_page_t m, m_next;
 1349         vm_object_t orig_object, new_object, source;
 1350         vm_pindex_t idx, offidxstart;
 1351         vm_size_t size;
 1352 
 1353         orig_object = entry->object.vm_object;
 1354         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
 1355                 return;
 1356         if (orig_object->ref_count <= 1)
 1357                 return;
 1358         VM_OBJECT_UNLOCK(orig_object);
 1359 
 1360         offidxstart = OFF_TO_IDX(entry->offset);
 1361         size = atop(entry->end - entry->start);
 1362 
 1363         /*
 1364          * If swap_pager_copy() is later called, it will convert new_object
 1365          * into a swap object.
 1366          */
 1367         new_object = vm_object_allocate(OBJT_DEFAULT, size);
 1368 
 1369         /*
 1370          * At this point, the new object is still private, so the order in
 1371          * which the original and new objects are locked does not matter.
 1372          */
 1373         VM_OBJECT_LOCK(new_object);
 1374         VM_OBJECT_LOCK(orig_object);
 1375         source = orig_object->backing_object;
 1376         if (source != NULL) {
 1377                 VM_OBJECT_LOCK(source);
 1378                 if ((source->flags & OBJ_DEAD) != 0) {
 1379                         VM_OBJECT_UNLOCK(source);
 1380                         VM_OBJECT_UNLOCK(orig_object);
 1381                         VM_OBJECT_UNLOCK(new_object);
 1382                         vm_object_deallocate(new_object);
 1383                         VM_OBJECT_LOCK(orig_object);
 1384                         return;
 1385                 }
 1386                 LIST_INSERT_HEAD(&source->shadow_head,
 1387                                   new_object, shadow_list);
 1388                 source->shadow_count++;
 1389                 source->generation++;
 1390                 vm_object_reference_locked(source);     /* for new_object */
 1391                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1392                 VM_OBJECT_UNLOCK(source);
 1393                 new_object->backing_object_offset = 
 1394                         orig_object->backing_object_offset + entry->offset;
 1395                 new_object->backing_object = source;
 1396         }
 1397         new_object->flags |= orig_object->flags & OBJ_NEEDGIANT;
 1398 retry:
 1399         if ((m = TAILQ_FIRST(&orig_object->memq)) != NULL) {
 1400                 if (m->pindex < offidxstart) {
 1401                         m = vm_page_splay(offidxstart, orig_object->root);
 1402                         if ((orig_object->root = m)->pindex < offidxstart)
 1403                                 m = TAILQ_NEXT(m, listq);
 1404                 }
 1405         }
 1406         vm_page_lock_queues();
 1407         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
 1408             m = m_next) {
 1409                 m_next = TAILQ_NEXT(m, listq);
 1410 
 1411                 /*
 1412                  * We must wait for pending I/O to complete before we can
 1413                  * rename the page.
 1414                  *
 1415                  * We do not have to VM_PROT_NONE the page as mappings should
 1416                  * not be changed by this operation.
 1417                  */
 1418                 if ((m->oflags & VPO_BUSY) || m->busy) {
 1419                         vm_page_flag_set(m, PG_REFERENCED);
 1420                         vm_page_unlock_queues();
 1421                         VM_OBJECT_UNLOCK(new_object);
 1422                         m->oflags |= VPO_WANTED;
 1423                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
 1424                         VM_OBJECT_LOCK(new_object);
 1425                         goto retry;
 1426                 }
 1427                 vm_page_rename(m, new_object, idx);
 1428                 /* page automatically made dirty by rename and cache handled */
 1429                 vm_page_busy(m);
 1430         }
 1431         vm_page_unlock_queues();
 1432         if (orig_object->type == OBJT_SWAP) {
 1433                 /*
 1434                  * swap_pager_copy() can sleep, in which case the orig_object's
 1435                  * and new_object's locks are released and reacquired. 
 1436                  */
 1437                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
 1438 
 1439                 /*
 1440                  * Transfer any cached pages from orig_object to new_object.
 1441                  */
 1442                 if (__predict_false(orig_object->cache != NULL))
 1443                         vm_page_cache_transfer(orig_object, offidxstart,
 1444                             new_object);
 1445         }
 1446         VM_OBJECT_UNLOCK(orig_object);
 1447         TAILQ_FOREACH(m, &new_object->memq, listq)
 1448                 vm_page_wakeup(m);
 1449         VM_OBJECT_UNLOCK(new_object);
 1450         entry->object.vm_object = new_object;
 1451         entry->offset = 0LL;
 1452         vm_object_deallocate(orig_object);
 1453         VM_OBJECT_LOCK(new_object);
 1454 }
 1455 
 1456 #define OBSC_TEST_ALL_SHADOWED  0x0001
 1457 #define OBSC_COLLAPSE_NOWAIT    0x0002
 1458 #define OBSC_COLLAPSE_WAIT      0x0004
 1459 
 1460 static int
 1461 vm_object_backing_scan(vm_object_t object, int op)
 1462 {
 1463         int r = 1;
 1464         vm_page_t p;
 1465         vm_object_t backing_object;
 1466         vm_pindex_t backing_offset_index;
 1467 
 1468         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1469         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
 1470 
 1471         backing_object = object->backing_object;
 1472         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1473 
 1474         /*
 1475          * Initial conditions
 1476          */
 1477         if (op & OBSC_TEST_ALL_SHADOWED) {
 1478                 /*
 1479                  * We do not want to have to test for the existence of cache
 1480                  * or swap pages in the backing object.  XXX but with the
 1481                  * new swapper this would be pretty easy to do.
 1482                  *
 1483                  * XXX what about anonymous MAP_SHARED memory that hasn't
 1484                  * been ZFOD faulted yet?  If we do not test for this, the
 1485                  * shadow test may succeed! XXX
 1486                  */
 1487                 if (backing_object->type != OBJT_DEFAULT) {
 1488                         return (0);
 1489                 }
 1490         }
 1491         if (op & OBSC_COLLAPSE_WAIT) {
 1492                 vm_object_set_flag(backing_object, OBJ_DEAD);
 1493         }
 1494 
 1495         /*
 1496          * Our scan
 1497          */
 1498         p = TAILQ_FIRST(&backing_object->memq);
 1499         while (p) {
 1500                 vm_page_t next = TAILQ_NEXT(p, listq);
 1501                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
 1502 
 1503                 if (op & OBSC_TEST_ALL_SHADOWED) {
 1504                         vm_page_t pp;
 1505 
 1506                         /*
 1507                          * Ignore pages outside the parent object's range
 1508                          * and outside the parent object's mapping of the 
 1509                          * backing object.
 1510                          *
 1511                          * note that we do not busy the backing object's
 1512                          * page.
 1513                          */
 1514                         if (
 1515                             p->pindex < backing_offset_index ||
 1516                             new_pindex >= object->size
 1517                         ) {
 1518                                 p = next;
 1519                                 continue;
 1520                         }
 1521 
 1522                         /*
 1523                          * See if the parent has the page or if the parent's
 1524                          * object pager has the page.  If the parent has the
 1525                          * page but the page is not valid, the parent's
 1526                          * object pager must have the page.
 1527                          *
 1528                          * If this fails, the parent does not completely shadow
 1529                          * the object and we might as well give up now.
 1530                          */
 1531 
 1532                         pp = vm_page_lookup(object, new_pindex);
 1533                         if (
 1534                             (pp == NULL || pp->valid == 0) &&
 1535                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
 1536                         ) {
 1537                                 r = 0;
 1538                                 break;
 1539                         }
 1540                 }
 1541 
 1542                 /*
 1543                  * Check for busy page
 1544                  */
 1545                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
 1546                         vm_page_t pp;
 1547 
 1548                         if (op & OBSC_COLLAPSE_NOWAIT) {
 1549                                 if ((p->oflags & VPO_BUSY) ||
 1550                                     !p->valid || 
 1551                                     p->busy) {
 1552                                         p = next;
 1553                                         continue;
 1554                                 }
 1555                         } else if (op & OBSC_COLLAPSE_WAIT) {
 1556                                 if ((p->oflags & VPO_BUSY) || p->busy) {
 1557                                         vm_page_lock_queues();
 1558                                         vm_page_flag_set(p, PG_REFERENCED);
 1559                                         vm_page_unlock_queues();
 1560                                         VM_OBJECT_UNLOCK(object);
 1561                                         p->oflags |= VPO_WANTED;
 1562                                         msleep(p, VM_OBJECT_MTX(backing_object),
 1563                                             PDROP | PVM, "vmocol", 0);
 1564                                         VM_OBJECT_LOCK(object);
 1565                                         VM_OBJECT_LOCK(backing_object);
 1566                                         /*
 1567                                          * If we slept, anything could have
 1568                                          * happened.  Since the object is
 1569                                          * marked dead, the backing offset
 1570                                          * should not have changed so we
 1571                                          * just restart our scan.
 1572                                          */
 1573                                         p = TAILQ_FIRST(&backing_object->memq);
 1574                                         continue;
 1575                                 }
 1576                         }
 1577 
 1578                         KASSERT(
 1579                             p->object == backing_object,
 1580                             ("vm_object_backing_scan: object mismatch")
 1581                         );
 1582 
 1583                         /*
 1584                          * Destroy any associated swap
 1585                          */
 1586                         if (backing_object->type == OBJT_SWAP) {
 1587                                 swap_pager_freespace(
 1588                                     backing_object, 
 1589                                     p->pindex,
 1590                                     1
 1591                                 );
 1592                         }
 1593 
 1594                         if (
 1595                             p->pindex < backing_offset_index ||
 1596                             new_pindex >= object->size
 1597                         ) {
 1598                                 /*
 1599                                  * Page is out of the parent object's range, we 
 1600                                  * can simply destroy it. 
 1601                                  */
 1602                                 vm_page_lock_queues();
 1603                                 KASSERT(!pmap_page_is_mapped(p),
 1604                                     ("freeing mapped page %p", p));
 1605                                 if (p->wire_count == 0)
 1606                                         vm_page_free(p);
 1607                                 else
 1608                                         vm_page_remove(p);
 1609                                 vm_page_unlock_queues();
 1610                                 p = next;
 1611                                 continue;
 1612                         }
 1613 
 1614                         pp = vm_page_lookup(object, new_pindex);
 1615                         if (
 1616                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
 1617                             (pp != NULL && pp->valid == 0)
 1618                         ) {
 1619                                 /*
 1620                                  * The page in the parent is not (yet) valid.
 1621                                  * We don't know anything about the state of
 1622                                  * the original page.  It might be mapped,
 1623                                  * so we must avoid the next if here.
 1624                                  *
 1625                                  * This is due to a race in vm_fault() where
 1626                                  * we must unbusy the original (backing_obj)
 1627                                  * page before we can (re)lock the parent.
 1628                                  * Hence we can get here.
 1629                                  */
 1630                                 p = next;
 1631                                 continue;
 1632                         }
 1633                         if (
 1634                             pp != NULL ||
 1635                             vm_pager_has_page(object, new_pindex, NULL, NULL)
 1636                         ) {
 1637                                 /*
 1638                                  * page already exists in parent OR swap exists
 1639                                  * for this location in the parent.  Destroy 
 1640                                  * the original page from the backing object.
 1641                                  *
 1642                                  * Leave the parent's page alone
 1643                                  */
 1644                                 vm_page_lock_queues();
 1645                                 KASSERT(!pmap_page_is_mapped(p),
 1646                                     ("freeing mapped page %p", p));
 1647                                 if (p->wire_count == 0)
 1648                                         vm_page_free(p);
 1649                                 else
 1650                                         vm_page_remove(p);
 1651                                 vm_page_unlock_queues();
 1652                                 p = next;
 1653                                 continue;
 1654                         }
 1655 
 1656 #if VM_NRESERVLEVEL > 0
 1657                         /*
 1658                          * Rename the reservation.
 1659                          */
 1660                         vm_reserv_rename(p, object, backing_object,
 1661                             backing_offset_index);
 1662 #endif
 1663 
 1664                         /*
 1665                          * Page does not exist in parent, rename the
 1666                          * page from the backing object to the main object. 
 1667                          *
 1668                          * If the page was mapped to a process, it can remain 
 1669                          * mapped through the rename.
 1670                          */
 1671                         vm_page_lock_queues();
 1672                         vm_page_rename(p, object, new_pindex);
 1673                         vm_page_unlock_queues();
 1674                         /* page automatically made dirty by rename */
 1675                 }
 1676                 p = next;
 1677         }
 1678         return (r);
 1679 }
 1680 
 1681 
 1682 /*
 1683  * this version of collapse allows the operation to occur earlier and
 1684  * when paging_in_progress is true for an object...  This is not a complete
 1685  * operation, but should plug 99.9% of the rest of the leaks.
 1686  */
 1687 static void
 1688 vm_object_qcollapse(vm_object_t object)
 1689 {
 1690         vm_object_t backing_object = object->backing_object;
 1691 
 1692         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1693         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
 1694 
 1695         if (backing_object->ref_count != 1)
 1696                 return;
 1697 
 1698         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
 1699 }
 1700 
 1701 /*
 1702  *      vm_object_collapse:
 1703  *
 1704  *      Collapse an object with the object backing it.
 1705  *      Pages in the backing object are moved into the
 1706  *      parent, and the backing object is deallocated.
 1707  */
 1708 void
 1709 vm_object_collapse(vm_object_t object)
 1710 {
 1711         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1712         
 1713         while (TRUE) {
 1714                 vm_object_t backing_object;
 1715 
 1716                 /*
 1717                  * Verify that the conditions are right for collapse:
 1718                  *
 1719                  * The object exists and the backing object exists.
 1720                  */
 1721                 if ((backing_object = object->backing_object) == NULL)
 1722                         break;
 1723 
 1724                 /*
 1725                  * we check the backing object first, because it is most likely
 1726                  * not collapsable.
 1727                  */
 1728                 VM_OBJECT_LOCK(backing_object);
 1729                 if (backing_object->handle != NULL ||
 1730                     (backing_object->type != OBJT_DEFAULT &&
 1731                      backing_object->type != OBJT_SWAP) ||
 1732                     (backing_object->flags & OBJ_DEAD) ||
 1733                     object->handle != NULL ||
 1734                     (object->type != OBJT_DEFAULT &&
 1735                      object->type != OBJT_SWAP) ||
 1736                     (object->flags & OBJ_DEAD)) {
 1737                         VM_OBJECT_UNLOCK(backing_object);
 1738                         break;
 1739                 }
 1740 
 1741                 if (
 1742                     object->paging_in_progress != 0 ||
 1743                     backing_object->paging_in_progress != 0
 1744                 ) {
 1745                         vm_object_qcollapse(object);
 1746                         VM_OBJECT_UNLOCK(backing_object);
 1747                         break;
 1748                 }
 1749                 /*
 1750                  * We know that we can either collapse the backing object (if
 1751                  * the parent is the only reference to it) or (perhaps) have
 1752                  * the parent bypass the object if the parent happens to shadow
 1753                  * all the resident pages in the entire backing object.
 1754                  *
 1755                  * This is ignoring pager-backed pages such as swap pages.
 1756                  * vm_object_backing_scan fails the shadowing test in this
 1757                  * case.
 1758                  */
 1759                 if (backing_object->ref_count == 1) {
 1760                         /*
 1761                          * If there is exactly one reference to the backing
 1762                          * object, we can collapse it into the parent.  
 1763                          */
 1764                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
 1765 
 1766 #if VM_NRESERVLEVEL > 0
 1767                         /*
 1768                          * Break any reservations from backing_object.
 1769                          */
 1770                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
 1771                                 vm_reserv_break_all(backing_object);
 1772 #endif
 1773 
 1774                         /*
 1775                          * Move the pager from backing_object to object.
 1776                          */
 1777                         if (backing_object->type == OBJT_SWAP) {
 1778                                 /*
 1779                                  * swap_pager_copy() can sleep, in which case
 1780                                  * the backing_object's and object's locks are
 1781                                  * released and reacquired.
 1782                                  */
 1783                                 swap_pager_copy(
 1784                                     backing_object,
 1785                                     object,
 1786                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
 1787 
 1788                                 /*
 1789                                  * Free any cached pages from backing_object.
 1790                                  */
 1791                                 if (__predict_false(backing_object->cache != NULL))
 1792                                         vm_page_cache_free(backing_object, 0, 0);
 1793                         }
 1794                         /*
 1795                          * Object now shadows whatever backing_object did.
 1796                          * Note that the reference to 
 1797                          * backing_object->backing_object moves from within 
 1798                          * backing_object to within object.
 1799                          */
 1800                         LIST_REMOVE(object, shadow_list);
 1801                         backing_object->shadow_count--;
 1802                         backing_object->generation++;
 1803                         if (backing_object->backing_object) {
 1804                                 VM_OBJECT_LOCK(backing_object->backing_object);
 1805                                 LIST_REMOVE(backing_object, shadow_list);
 1806                                 LIST_INSERT_HEAD(
 1807                                     &backing_object->backing_object->shadow_head,
 1808                                     object, shadow_list);
 1809                                 /*
 1810                                  * The shadow_count has not changed.
 1811                                  */
 1812                                 backing_object->backing_object->generation++;
 1813                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
 1814                         }
 1815                         object->backing_object = backing_object->backing_object;
 1816                         object->backing_object_offset +=
 1817                             backing_object->backing_object_offset;
 1818 
 1819                         /*
 1820                          * Discard backing_object.
 1821                          *
 1822                          * Since the backing object has no pages, no pager left,
 1823                          * and no object references within it, all that is
 1824                          * necessary is to dispose of it.
 1825                          */
 1826                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
 1827                         VM_OBJECT_UNLOCK(backing_object);
 1828 
 1829                         mtx_lock(&vm_object_list_mtx);
 1830                         TAILQ_REMOVE(
 1831                             &vm_object_list, 
 1832                             backing_object,
 1833                             object_list
 1834                         );
 1835                         mtx_unlock(&vm_object_list_mtx);
 1836 
 1837                         uma_zfree(obj_zone, backing_object);
 1838 
 1839                         object_collapses++;
 1840                 } else {
 1841                         vm_object_t new_backing_object;
 1842 
 1843                         /*
 1844                          * If we do not entirely shadow the backing object,
 1845                          * there is nothing we can do so we give up.
 1846                          */
 1847                         if (object->resident_page_count != object->size &&
 1848                             vm_object_backing_scan(object,
 1849                             OBSC_TEST_ALL_SHADOWED) == 0) {
 1850                                 VM_OBJECT_UNLOCK(backing_object);
 1851                                 break;
 1852                         }
 1853 
 1854                         /*
 1855                          * Make the parent shadow the next object in the
 1856                          * chain.  Deallocating backing_object will not remove
 1857                          * it, since its reference count is at least 2.
 1858                          */
 1859                         LIST_REMOVE(object, shadow_list);
 1860                         backing_object->shadow_count--;
 1861                         backing_object->generation++;
 1862 
 1863                         new_backing_object = backing_object->backing_object;
 1864                         if ((object->backing_object = new_backing_object) != NULL) {
 1865                                 VM_OBJECT_LOCK(new_backing_object);
 1866                                 LIST_INSERT_HEAD(
 1867                                     &new_backing_object->shadow_head,
 1868                                     object,
 1869                                     shadow_list
 1870                                 );
 1871                                 new_backing_object->shadow_count++;
 1872                                 new_backing_object->generation++;
 1873                                 vm_object_reference_locked(new_backing_object);
 1874                                 VM_OBJECT_UNLOCK(new_backing_object);
 1875                                 object->backing_object_offset +=
 1876                                         backing_object->backing_object_offset;
 1877                         }
 1878 
 1879                         /*
 1880                          * Drop the reference count on backing_object. Since
 1881                          * its ref_count was at least 2, it will not vanish.
 1882                          */
 1883                         backing_object->ref_count--;
 1884                         VM_OBJECT_UNLOCK(backing_object);
 1885                         object_bypasses++;
 1886                 }
 1887 
 1888                 /*
 1889                  * Try again with this object's new backing object.
 1890                  */
 1891         }
 1892 }
 1893 
 1894 /*
 1895  *      vm_object_page_remove:
 1896  *
 1897  *      For the given object, either frees or invalidates each of the
 1898  *      specified pages.  In general, a page is freed.  However, if a
 1899  *      page is wired for any reason other than the existence of a
 1900  *      managed, wired mapping, then it may be invalidated but not
 1901  *      removed from the object.  Pages are specified by the given
 1902  *      range ["start", "end") and Boolean "clean_only".  As a
 1903  *      special case, if "end" is zero, then the range extends from
 1904  *      "start" to the end of the object.  If "clean_only" is TRUE,
 1905  *      then only the non-dirty pages within the specified range are
 1906  *      affected.
 1907  *
 1908  *      In general, this operation should only be performed on objects
 1909  *      that contain managed pages.  There are two exceptions.  First,
 1910  *      it may be performed on the kernel and kmem objects.  Second,
 1911  *      it may be used by msync(..., MS_INVALIDATE) to invalidate
 1912  *      device-backed pages.
 1913  *
 1914  *      The object must be locked.
 1915  */
 1916 void
 1917 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 1918     boolean_t clean_only)
 1919 {
 1920         vm_page_t p, next;
 1921 
 1922         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1923         if (object->resident_page_count == 0)
 1924                 goto skipmemq;
 1925 
 1926         /*
 1927          * Since physically-backed objects do not use managed pages, we can't
 1928          * remove pages from the object (we must instead remove the page
 1929          * references, and then destroy the object).
 1930          */
 1931         KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
 1932             object == kmem_object,
 1933             ("attempt to remove pages from a physical object"));
 1934 
 1935         vm_object_pip_add(object, 1);
 1936 again:
 1937         vm_page_lock_queues();
 1938         if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
 1939                 if (p->pindex < start) {
 1940                         p = vm_page_splay(start, object->root);
 1941                         if ((object->root = p)->pindex < start)
 1942                                 p = TAILQ_NEXT(p, listq);
 1943                 }
 1944         }
 1945         /*
 1946          * Assert: the variable p is either (1) the page with the
 1947          * least pindex greater than or equal to the parameter pindex
 1948          * or (2) NULL.
 1949          */
 1950         for (;
 1951              p != NULL && (p->pindex < end || end == 0);
 1952              p = next) {
 1953                 next = TAILQ_NEXT(p, listq);
 1954 
 1955                 if (p->wire_count != 0) {
 1956                         /* Fictitious pages do not have managed mappings. */
 1957                         if ((p->flags & PG_FICTITIOUS) == 0)
 1958                                 pmap_remove_all(p);
 1959                         if (!clean_only)
 1960                                 p->valid = 0;
 1961                         continue;
 1962                 }
 1963                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
 1964                         goto again;
 1965                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
 1966                     ("vm_object_page_remove: page %p is fictitious", p));
 1967                 if (clean_only && p->valid) {
 1968                         pmap_remove_write(p);
 1969                         if (p->valid & p->dirty)
 1970                                 continue;
 1971                 }
 1972                 pmap_remove_all(p);
 1973                 vm_page_free(p);
 1974         }
 1975         vm_page_unlock_queues();
 1976         vm_object_pip_wakeup(object);
 1977 skipmemq:
 1978         if (__predict_false(object->cache != NULL))
 1979                 vm_page_cache_free(object, start, end);
 1980 }
 1981 
 1982 /*
 1983  *      Populate the specified range of the object with valid pages.  Returns
 1984  *      TRUE if the range is successfully populated and FALSE otherwise.
 1985  *
 1986  *      Note: This function should be optimized to pass a larger array of
 1987  *      pages to vm_pager_get_pages() before it is applied to a non-
 1988  *      OBJT_DEVICE object.
 1989  *
 1990  *      The object must be locked.
 1991  */
 1992 boolean_t
 1993 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1994 {
 1995         vm_page_t m, ma[1];
 1996         vm_pindex_t pindex;
 1997         int rv;
 1998 
 1999         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2000         for (pindex = start; pindex < end; pindex++) {
 2001                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
 2002                     VM_ALLOC_RETRY);
 2003                 if (m->valid != VM_PAGE_BITS_ALL) {
 2004                         ma[0] = m;
 2005                         rv = vm_pager_get_pages(object, ma, 1, 0);
 2006                         m = vm_page_lookup(object, pindex);
 2007                         if (m == NULL)
 2008                                 break;
 2009                         if (rv != VM_PAGER_OK) {
 2010                                 vm_page_lock_queues();
 2011                                 vm_page_free(m);
 2012                                 vm_page_unlock_queues();
 2013                                 break;
 2014                         }
 2015                 }
 2016                 /*
 2017                  * Keep "m" busy because a subsequent iteration may unlock
 2018                  * the object.
 2019                  */
 2020         }
 2021         if (pindex > start) {
 2022                 m = vm_page_lookup(object, start);
 2023                 while (m != NULL && m->pindex < pindex) {
 2024                         vm_page_wakeup(m);
 2025                         m = TAILQ_NEXT(m, listq);
 2026                 }
 2027         }
 2028         return (pindex == end);
 2029 }
 2030 
 2031 /*
 2032  *      Routine:        vm_object_coalesce
 2033  *      Function:       Coalesces two objects backing up adjoining
 2034  *                      regions of memory into a single object.
 2035  *
 2036  *      returns TRUE if objects were combined.
 2037  *
 2038  *      NOTE:   Only works at the moment if the second object is NULL -
 2039  *              if it's not, which object do we lock first?
 2040  *
 2041  *      Parameters:
 2042  *              prev_object     First object to coalesce
 2043  *              prev_offset     Offset into prev_object
 2044  *              prev_size       Size of reference to prev_object
 2045  *              next_size       Size of reference to the second object
 2046  *
 2047  *      Conditions:
 2048  *      The object must *not* be locked.
 2049  */
 2050 boolean_t
 2051 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
 2052         vm_size_t prev_size, vm_size_t next_size)
 2053 {
 2054         vm_pindex_t next_pindex;
 2055 
 2056         if (prev_object == NULL)
 2057                 return (TRUE);
 2058         VM_OBJECT_LOCK(prev_object);
 2059         if (prev_object->type != OBJT_DEFAULT &&
 2060             prev_object->type != OBJT_SWAP) {
 2061                 VM_OBJECT_UNLOCK(prev_object);
 2062                 return (FALSE);
 2063         }
 2064 
 2065         /*
 2066          * Try to collapse the object first
 2067          */
 2068         vm_object_collapse(prev_object);
 2069 
 2070         /*
 2071          * Can't coalesce if: . more than one reference . paged out . shadows
 2072          * another object . has a copy elsewhere (any of which mean that the
 2073          * pages not mapped to prev_entry may be in use anyway)
 2074          */
 2075         if (prev_object->backing_object != NULL) {
 2076                 VM_OBJECT_UNLOCK(prev_object);
 2077                 return (FALSE);
 2078         }
 2079 
 2080         prev_size >>= PAGE_SHIFT;
 2081         next_size >>= PAGE_SHIFT;
 2082         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
 2083 
 2084         if ((prev_object->ref_count > 1) &&
 2085             (prev_object->size != next_pindex)) {
 2086                 VM_OBJECT_UNLOCK(prev_object);
 2087                 return (FALSE);
 2088         }
 2089 
 2090         /*
 2091          * Remove any pages that may still be in the object from a previous
 2092          * deallocation.
 2093          */
 2094         if (next_pindex < prev_object->size) {
 2095                 vm_object_page_remove(prev_object,
 2096                                       next_pindex,
 2097                                       next_pindex + next_size, FALSE);
 2098                 if (prev_object->type == OBJT_SWAP)
 2099                         swap_pager_freespace(prev_object,
 2100                                              next_pindex, next_size);
 2101         }
 2102 
 2103         /*
 2104          * Extend the object if necessary.
 2105          */
 2106         if (next_pindex + next_size > prev_object->size)
 2107                 prev_object->size = next_pindex + next_size;
 2108 
 2109         VM_OBJECT_UNLOCK(prev_object);
 2110         return (TRUE);
 2111 }
 2112 
 2113 void
 2114 vm_object_set_writeable_dirty(vm_object_t object)
 2115 {
 2116         struct vnode *vp;
 2117 
 2118         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2119         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
 2120                 return;
 2121         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
 2122         if (object->type == OBJT_VNODE &&
 2123             (vp = (struct vnode *)object->handle) != NULL) {
 2124                 VI_LOCK(vp);
 2125                 vp->v_iflag |= VI_OBJDIRTY;
 2126                 VI_UNLOCK(vp);
 2127         }
 2128 }
 2129 
 2130 #include "opt_ddb.h"
 2131 #ifdef DDB
 2132 #include <sys/kernel.h>
 2133 
 2134 #include <sys/cons.h>
 2135 
 2136 #include <ddb/ddb.h>
 2137 
 2138 static int
 2139 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
 2140 {
 2141         vm_map_t tmpm;
 2142         vm_map_entry_t tmpe;
 2143         vm_object_t obj;
 2144         int entcount;
 2145 
 2146         if (map == 0)
 2147                 return 0;
 2148 
 2149         if (entry == 0) {
 2150                 tmpe = map->header.next;
 2151                 entcount = map->nentries;
 2152                 while (entcount-- && (tmpe != &map->header)) {
 2153                         if (_vm_object_in_map(map, object, tmpe)) {
 2154                                 return 1;
 2155                         }
 2156                         tmpe = tmpe->next;
 2157                 }
 2158         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2159                 tmpm = entry->object.sub_map;
 2160                 tmpe = tmpm->header.next;
 2161                 entcount = tmpm->nentries;
 2162                 while (entcount-- && tmpe != &tmpm->header) {
 2163                         if (_vm_object_in_map(tmpm, object, tmpe)) {
 2164                                 return 1;
 2165                         }
 2166                         tmpe = tmpe->next;
 2167                 }
 2168         } else if ((obj = entry->object.vm_object) != NULL) {
 2169                 for (; obj; obj = obj->backing_object)
 2170                         if (obj == object) {
 2171                                 return 1;
 2172                         }
 2173         }
 2174         return 0;
 2175 }
 2176 
 2177 static int
 2178 vm_object_in_map(vm_object_t object)
 2179 {
 2180         struct proc *p;
 2181 
 2182         /* sx_slock(&allproc_lock); */
 2183         FOREACH_PROC_IN_SYSTEM(p) {
 2184                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
 2185                         continue;
 2186                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
 2187                         /* sx_sunlock(&allproc_lock); */
 2188                         return 1;
 2189                 }
 2190         }
 2191         /* sx_sunlock(&allproc_lock); */
 2192         if (_vm_object_in_map(kernel_map, object, 0))
 2193                 return 1;
 2194         if (_vm_object_in_map(kmem_map, object, 0))
 2195                 return 1;
 2196         if (_vm_object_in_map(pager_map, object, 0))
 2197                 return 1;
 2198         if (_vm_object_in_map(buffer_map, object, 0))
 2199                 return 1;
 2200         return 0;
 2201 }
 2202 
 2203 DB_SHOW_COMMAND(vmochk, vm_object_check)
 2204 {
 2205         vm_object_t object;
 2206 
 2207         /*
 2208          * make sure that internal objs are in a map somewhere
 2209          * and none have zero ref counts.
 2210          */
 2211         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2212                 if (object->handle == NULL &&
 2213                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
 2214                         if (object->ref_count == 0) {
 2215                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
 2216                                         (long)object->size);
 2217                         }
 2218                         if (!vm_object_in_map(object)) {
 2219                                 db_printf(
 2220                         "vmochk: internal obj is not in a map: "
 2221                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
 2222                                     object->ref_count, (u_long)object->size, 
 2223                                     (u_long)object->size,
 2224                                     (void *)object->backing_object);
 2225                         }
 2226                 }
 2227         }
 2228 }
 2229 
 2230 /*
 2231  *      vm_object_print:        [ debug ]
 2232  */
 2233 DB_SHOW_COMMAND(object, vm_object_print_static)
 2234 {
 2235         /* XXX convert args. */
 2236         vm_object_t object = (vm_object_t)addr;
 2237         boolean_t full = have_addr;
 2238 
 2239         vm_page_t p;
 2240 
 2241         /* XXX count is an (unused) arg.  Avoid shadowing it. */
 2242 #define count   was_count
 2243 
 2244         int count;
 2245 
 2246         if (object == NULL)
 2247                 return;
 2248 
 2249         db_iprintf(
 2250             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
 2251             object, (int)object->type, (uintmax_t)object->size,
 2252             object->resident_page_count, object->ref_count, object->flags);
 2253         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
 2254             object->shadow_count, 
 2255             object->backing_object ? object->backing_object->ref_count : 0,
 2256             object->backing_object, (uintmax_t)object->backing_object_offset);
 2257 
 2258         if (!full)
 2259                 return;
 2260 
 2261         db_indent += 2;
 2262         count = 0;
 2263         TAILQ_FOREACH(p, &object->memq, listq) {
 2264                 if (count == 0)
 2265                         db_iprintf("memory:=");
 2266                 else if (count == 6) {
 2267                         db_printf("\n");
 2268                         db_iprintf(" ...");
 2269                         count = 0;
 2270                 } else
 2271                         db_printf(",");
 2272                 count++;
 2273 
 2274                 db_printf("(off=0x%jx,page=0x%jx)",
 2275                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
 2276         }
 2277         if (count != 0)
 2278                 db_printf("\n");
 2279         db_indent -= 2;
 2280 }
 2281 
 2282 /* XXX. */
 2283 #undef count
 2284 
 2285 /* XXX need this non-static entry for calling from vm_map_print. */
 2286 void
 2287 vm_object_print(
 2288         /* db_expr_t */ long addr,
 2289         boolean_t have_addr,
 2290         /* db_expr_t */ long count,
 2291         char *modif)
 2292 {
 2293         vm_object_print_static(addr, have_addr, count, modif);
 2294 }
 2295 
 2296 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
 2297 {
 2298         vm_object_t object;
 2299         vm_pindex_t fidx;
 2300         vm_paddr_t pa;
 2301         vm_page_t m, prev_m;
 2302         int rcount, nl, c;
 2303 
 2304         nl = 0;
 2305         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2306                 db_printf("new object: %p\n", (void *)object);
 2307                 if (nl > 18) {
 2308                         c = cngetc();
 2309                         if (c != ' ')
 2310                                 return;
 2311                         nl = 0;
 2312                 }
 2313                 nl++;
 2314                 rcount = 0;
 2315                 fidx = 0;
 2316                 pa = -1;
 2317                 TAILQ_FOREACH(m, &object->memq, listq) {
 2318                         if (m->pindex > 128)
 2319                                 break;
 2320                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
 2321                             prev_m->pindex + 1 != m->pindex) {
 2322                                 if (rcount) {
 2323                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2324                                                 (long)fidx, rcount, (long)pa);
 2325                                         if (nl > 18) {
 2326                                                 c = cngetc();
 2327                                                 if (c != ' ')
 2328                                                         return;
 2329                                                 nl = 0;
 2330                                         }
 2331                                         nl++;
 2332                                         rcount = 0;
 2333                                 }
 2334                         }                               
 2335                         if (rcount &&
 2336                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
 2337                                 ++rcount;
 2338                                 continue;
 2339                         }
 2340                         if (rcount) {
 2341                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2342                                         (long)fidx, rcount, (long)pa);
 2343                                 if (nl > 18) {
 2344                                         c = cngetc();
 2345                                         if (c != ' ')
 2346                                                 return;
 2347                                         nl = 0;
 2348                                 }
 2349                                 nl++;
 2350                         }
 2351                         fidx = m->pindex;
 2352                         pa = VM_PAGE_TO_PHYS(m);
 2353                         rcount = 1;
 2354                 }
 2355                 if (rcount) {
 2356                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2357                                 (long)fidx, rcount, (long)pa);
 2358                         if (nl > 18) {
 2359                                 c = cngetc();
 2360                                 if (c != ' ')
 2361                                         return;
 2362                                 nl = 0;
 2363                         }
 2364                         nl++;
 2365                 }
 2366         }
 2367 }
 2368 #endif /* DDB */

Cache object: bbe0fc73e67e4eb27198937211d53026


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.