The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 /*
   62  *      Virtual memory object module.
   63  */
   64 
   65 #include <sys/cdefs.h>
   66 __FBSDID("$FreeBSD: releng/8.0/sys/vm/vm_object.c 195840 2009-07-24 13:50:29Z jhb $");
   67 
   68 #include "opt_vm.h"
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/lock.h>
   73 #include <sys/mman.h>
   74 #include <sys/mount.h>
   75 #include <sys/kernel.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/mutex.h>
   78 #include <sys/proc.h>           /* for curproc, pageproc */
   79 #include <sys/socket.h>
   80 #include <sys/resourcevar.h>
   81 #include <sys/vnode.h>
   82 #include <sys/vmmeter.h>
   83 #include <sys/sx.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_param.h>
   87 #include <vm/pmap.h>
   88 #include <vm/vm_map.h>
   89 #include <vm/vm_object.h>
   90 #include <vm/vm_page.h>
   91 #include <vm/vm_pageout.h>
   92 #include <vm/vm_pager.h>
   93 #include <vm/swap_pager.h>
   94 #include <vm/vm_kern.h>
   95 #include <vm/vm_extern.h>
   96 #include <vm/vm_reserv.h>
   97 #include <vm/uma.h>
   98 
   99 #define EASY_SCAN_FACTOR       8
  100 
  101 #define MSYNC_FLUSH_HARDSEQ     0x01
  102 #define MSYNC_FLUSH_SOFTSEQ     0x02
  103 
  104 /*
  105  * msync / VM object flushing optimizations
  106  */
  107 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
  108 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, CTLFLAG_RW, &msync_flush_flags, 0,
  109     "Enable sequential iteration optimization");
  110 
  111 static int old_msync;
  112 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
  113     "Use old (insecure) msync behavior");
  114 
  115 static void     vm_object_qcollapse(vm_object_t object);
  116 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
  117 static void     vm_object_vndeallocate(vm_object_t object);
  118 
  119 /*
  120  *      Virtual memory objects maintain the actual data
  121  *      associated with allocated virtual memory.  A given
  122  *      page of memory exists within exactly one object.
  123  *
  124  *      An object is only deallocated when all "references"
  125  *      are given up.  Only one "reference" to a given
  126  *      region of an object should be writeable.
  127  *
  128  *      Associated with each object is a list of all resident
  129  *      memory pages belonging to that object; this list is
  130  *      maintained by the "vm_page" module, and locked by the object's
  131  *      lock.
  132  *
  133  *      Each object also records a "pager" routine which is
  134  *      used to retrieve (and store) pages to the proper backing
  135  *      storage.  In addition, objects may be backed by other
  136  *      objects from which they were virtual-copied.
  137  *
  138  *      The only items within the object structure which are
  139  *      modified after time of creation are:
  140  *              reference count         locked by object's lock
  141  *              pager routine           locked by object's lock
  142  *
  143  */
  144 
  145 struct object_q vm_object_list;
  146 struct mtx vm_object_list_mtx;  /* lock for object list and count */
  147 
  148 struct vm_object kernel_object_store;
  149 struct vm_object kmem_object_store;
  150 
  151 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
  152 
  153 static long object_collapses;
  154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
  155     &object_collapses, 0, "VM object collapses");
  156 
  157 static long object_bypasses;
  158 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
  159     &object_bypasses, 0, "VM object bypasses");
  160 
  161 static uma_zone_t obj_zone;
  162 
  163 static int vm_object_zinit(void *mem, int size, int flags);
  164 
  165 #ifdef INVARIANTS
  166 static void vm_object_zdtor(void *mem, int size, void *arg);
  167 
  168 static void
  169 vm_object_zdtor(void *mem, int size, void *arg)
  170 {
  171         vm_object_t object;
  172 
  173         object = (vm_object_t)mem;
  174         KASSERT(TAILQ_EMPTY(&object->memq),
  175             ("object %p has resident pages",
  176             object));
  177 #if VM_NRESERVLEVEL > 0
  178         KASSERT(LIST_EMPTY(&object->rvq),
  179             ("object %p has reservations",
  180             object));
  181 #endif
  182         KASSERT(object->cache == NULL,
  183             ("object %p has cached pages",
  184             object));
  185         KASSERT(object->paging_in_progress == 0,
  186             ("object %p paging_in_progress = %d",
  187             object, object->paging_in_progress));
  188         KASSERT(object->resident_page_count == 0,
  189             ("object %p resident_page_count = %d",
  190             object, object->resident_page_count));
  191         KASSERT(object->shadow_count == 0,
  192             ("object %p shadow_count = %d",
  193             object, object->shadow_count));
  194 }
  195 #endif
  196 
  197 static int
  198 vm_object_zinit(void *mem, int size, int flags)
  199 {
  200         vm_object_t object;
  201 
  202         object = (vm_object_t)mem;
  203         bzero(&object->mtx, sizeof(object->mtx));
  204         VM_OBJECT_LOCK_INIT(object, "standard object");
  205 
  206         /* These are true for any object that has been freed */
  207         object->paging_in_progress = 0;
  208         object->resident_page_count = 0;
  209         object->shadow_count = 0;
  210         return (0);
  211 }
  212 
  213 void
  214 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
  215 {
  216 
  217         TAILQ_INIT(&object->memq);
  218         LIST_INIT(&object->shadow_head);
  219 
  220         object->root = NULL;
  221         object->type = type;
  222         object->size = size;
  223         object->generation = 1;
  224         object->ref_count = 1;
  225         object->memattr = VM_MEMATTR_DEFAULT;
  226         object->flags = 0;
  227         object->uip = NULL;
  228         object->charge = 0;
  229         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
  230                 object->flags = OBJ_ONEMAPPING;
  231         object->pg_color = 0;
  232         object->handle = NULL;
  233         object->backing_object = NULL;
  234         object->backing_object_offset = (vm_ooffset_t) 0;
  235 #if VM_NRESERVLEVEL > 0
  236         LIST_INIT(&object->rvq);
  237 #endif
  238         object->cache = NULL;
  239 
  240         mtx_lock(&vm_object_list_mtx);
  241         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
  242         mtx_unlock(&vm_object_list_mtx);
  243 }
  244 
  245 /*
  246  *      vm_object_init:
  247  *
  248  *      Initialize the VM objects module.
  249  */
  250 void
  251 vm_object_init(void)
  252 {
  253         TAILQ_INIT(&vm_object_list);
  254         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
  255         
  256         VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
  257         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  258             kernel_object);
  259 #if VM_NRESERVLEVEL > 0
  260         kernel_object->flags |= OBJ_COLORED;
  261         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  262 #endif
  263 
  264         VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
  265         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  266             kmem_object);
  267 #if VM_NRESERVLEVEL > 0
  268         kmem_object->flags |= OBJ_COLORED;
  269         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  270 #endif
  271 
  272         /*
  273          * The lock portion of struct vm_object must be type stable due
  274          * to vm_pageout_fallback_object_lock locking a vm object
  275          * without holding any references to it.
  276          */
  277         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
  278 #ifdef INVARIANTS
  279             vm_object_zdtor,
  280 #else
  281             NULL,
  282 #endif
  283             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
  284 }
  285 
  286 void
  287 vm_object_clear_flag(vm_object_t object, u_short bits)
  288 {
  289 
  290         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  291         object->flags &= ~bits;
  292 }
  293 
  294 /*
  295  *      Sets the default memory attribute for the specified object.  Pages
  296  *      that are allocated to this object are by default assigned this memory
  297  *      attribute.
  298  *
  299  *      Presently, this function must be called before any pages are allocated
  300  *      to the object.  In the future, this requirement may be relaxed for
  301  *      "default" and "swap" objects.
  302  */
  303 int
  304 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
  305 {
  306 
  307         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  308         switch (object->type) {
  309         case OBJT_DEFAULT:
  310         case OBJT_DEVICE:
  311         case OBJT_PHYS:
  312         case OBJT_SG:
  313         case OBJT_SWAP:
  314         case OBJT_VNODE:
  315                 if (!TAILQ_EMPTY(&object->memq))
  316                         return (KERN_FAILURE);
  317                 break;
  318         case OBJT_DEAD:
  319                 return (KERN_INVALID_ARGUMENT);
  320         }
  321         object->memattr = memattr;
  322         return (KERN_SUCCESS);
  323 }
  324 
  325 void
  326 vm_object_pip_add(vm_object_t object, short i)
  327 {
  328 
  329         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  330         object->paging_in_progress += i;
  331 }
  332 
  333 void
  334 vm_object_pip_subtract(vm_object_t object, short i)
  335 {
  336 
  337         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  338         object->paging_in_progress -= i;
  339 }
  340 
  341 void
  342 vm_object_pip_wakeup(vm_object_t object)
  343 {
  344 
  345         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  346         object->paging_in_progress--;
  347         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  348                 vm_object_clear_flag(object, OBJ_PIPWNT);
  349                 wakeup(object);
  350         }
  351 }
  352 
  353 void
  354 vm_object_pip_wakeupn(vm_object_t object, short i)
  355 {
  356 
  357         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  358         if (i)
  359                 object->paging_in_progress -= i;
  360         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  361                 vm_object_clear_flag(object, OBJ_PIPWNT);
  362                 wakeup(object);
  363         }
  364 }
  365 
  366 void
  367 vm_object_pip_wait(vm_object_t object, char *waitid)
  368 {
  369 
  370         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  371         while (object->paging_in_progress) {
  372                 object->flags |= OBJ_PIPWNT;
  373                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
  374         }
  375 }
  376 
  377 /*
  378  *      vm_object_allocate:
  379  *
  380  *      Returns a new object with the given size.
  381  */
  382 vm_object_t
  383 vm_object_allocate(objtype_t type, vm_pindex_t size)
  384 {
  385         vm_object_t object;
  386 
  387         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
  388         _vm_object_allocate(type, size, object);
  389         return (object);
  390 }
  391 
  392 
  393 /*
  394  *      vm_object_reference:
  395  *
  396  *      Gets another reference to the given object.  Note: OBJ_DEAD
  397  *      objects can be referenced during final cleaning.
  398  */
  399 void
  400 vm_object_reference(vm_object_t object)
  401 {
  402         if (object == NULL)
  403                 return;
  404         VM_OBJECT_LOCK(object);
  405         vm_object_reference_locked(object);
  406         VM_OBJECT_UNLOCK(object);
  407 }
  408 
  409 /*
  410  *      vm_object_reference_locked:
  411  *
  412  *      Gets another reference to the given object.
  413  *
  414  *      The object must be locked.
  415  */
  416 void
  417 vm_object_reference_locked(vm_object_t object)
  418 {
  419         struct vnode *vp;
  420 
  421         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  422         object->ref_count++;
  423         if (object->type == OBJT_VNODE) {
  424                 vp = object->handle;
  425                 vref(vp);
  426         }
  427 }
  428 
  429 /*
  430  * Handle deallocating an object of type OBJT_VNODE.
  431  */
  432 static void
  433 vm_object_vndeallocate(vm_object_t object)
  434 {
  435         struct vnode *vp = (struct vnode *) object->handle;
  436 
  437         VFS_ASSERT_GIANT(vp->v_mount);
  438         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  439         KASSERT(object->type == OBJT_VNODE,
  440             ("vm_object_vndeallocate: not a vnode object"));
  441         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
  442 #ifdef INVARIANTS
  443         if (object->ref_count == 0) {
  444                 vprint("vm_object_vndeallocate", vp);
  445                 panic("vm_object_vndeallocate: bad object reference count");
  446         }
  447 #endif
  448 
  449         object->ref_count--;
  450         if (object->ref_count == 0) {
  451                 mp_fixme("Unlocked vflag access.");
  452                 vp->v_vflag &= ~VV_TEXT;
  453         }
  454         VM_OBJECT_UNLOCK(object);
  455         /*
  456          * vrele may need a vop lock
  457          */
  458         vrele(vp);
  459 }
  460 
  461 /*
  462  *      vm_object_deallocate:
  463  *
  464  *      Release a reference to the specified object,
  465  *      gained either through a vm_object_allocate
  466  *      or a vm_object_reference call.  When all references
  467  *      are gone, storage associated with this object
  468  *      may be relinquished.
  469  *
  470  *      No object may be locked.
  471  */
  472 void
  473 vm_object_deallocate(vm_object_t object)
  474 {
  475         vm_object_t temp;
  476 
  477         while (object != NULL) {
  478                 int vfslocked;
  479 
  480                 vfslocked = 0;
  481         restart:
  482                 VM_OBJECT_LOCK(object);
  483                 if (object->type == OBJT_VNODE) {
  484                         struct vnode *vp = (struct vnode *) object->handle;
  485 
  486                         /*
  487                          * Conditionally acquire Giant for a vnode-backed
  488                          * object.  We have to be careful since the type of
  489                          * a vnode object can change while the object is
  490                          * unlocked.
  491                          */
  492                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
  493                                 vfslocked = 1;
  494                                 if (!mtx_trylock(&Giant)) {
  495                                         VM_OBJECT_UNLOCK(object);
  496                                         mtx_lock(&Giant);
  497                                         goto restart;
  498                                 }
  499                         }
  500                         vm_object_vndeallocate(object);
  501                         VFS_UNLOCK_GIANT(vfslocked);
  502                         return;
  503                 } else
  504                         /*
  505                          * This is to handle the case that the object
  506                          * changed type while we dropped its lock to
  507                          * obtain Giant.
  508                          */
  509                         VFS_UNLOCK_GIANT(vfslocked);
  510 
  511                 KASSERT(object->ref_count != 0,
  512                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
  513 
  514                 /*
  515                  * If the reference count goes to 0 we start calling
  516                  * vm_object_terminate() on the object chain.
  517                  * A ref count of 1 may be a special case depending on the
  518                  * shadow count being 0 or 1.
  519                  */
  520                 object->ref_count--;
  521                 if (object->ref_count > 1) {
  522                         VM_OBJECT_UNLOCK(object);
  523                         return;
  524                 } else if (object->ref_count == 1) {
  525                         if (object->shadow_count == 0 &&
  526                             object->handle == NULL &&
  527                             (object->type == OBJT_DEFAULT ||
  528                              object->type == OBJT_SWAP)) {
  529                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
  530                         } else if ((object->shadow_count == 1) &&
  531                             (object->handle == NULL) &&
  532                             (object->type == OBJT_DEFAULT ||
  533                              object->type == OBJT_SWAP)) {
  534                                 vm_object_t robject;
  535 
  536                                 robject = LIST_FIRST(&object->shadow_head);
  537                                 KASSERT(robject != NULL,
  538                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
  539                                          object->ref_count,
  540                                          object->shadow_count));
  541                                 if (!VM_OBJECT_TRYLOCK(robject)) {
  542                                         /*
  543                                          * Avoid a potential deadlock.
  544                                          */
  545                                         object->ref_count++;
  546                                         VM_OBJECT_UNLOCK(object);
  547                                         /*
  548                                          * More likely than not the thread
  549                                          * holding robject's lock has lower
  550                                          * priority than the current thread.
  551                                          * Let the lower priority thread run.
  552                                          */
  553                                         pause("vmo_de", 1);
  554                                         continue;
  555                                 }
  556                                 /*
  557                                  * Collapse object into its shadow unless its
  558                                  * shadow is dead.  In that case, object will
  559                                  * be deallocated by the thread that is
  560                                  * deallocating its shadow.
  561                                  */
  562                                 if ((robject->flags & OBJ_DEAD) == 0 &&
  563                                     (robject->handle == NULL) &&
  564                                     (robject->type == OBJT_DEFAULT ||
  565                                      robject->type == OBJT_SWAP)) {
  566 
  567                                         robject->ref_count++;
  568 retry:
  569                                         if (robject->paging_in_progress) {
  570                                                 VM_OBJECT_UNLOCK(object);
  571                                                 vm_object_pip_wait(robject,
  572                                                     "objde1");
  573                                                 temp = robject->backing_object;
  574                                                 if (object == temp) {
  575                                                         VM_OBJECT_LOCK(object);
  576                                                         goto retry;
  577                                                 }
  578                                         } else if (object->paging_in_progress) {
  579                                                 VM_OBJECT_UNLOCK(robject);
  580                                                 object->flags |= OBJ_PIPWNT;
  581                                                 msleep(object,
  582                                                     VM_OBJECT_MTX(object),
  583                                                     PDROP | PVM, "objde2", 0);
  584                                                 VM_OBJECT_LOCK(robject);
  585                                                 temp = robject->backing_object;
  586                                                 if (object == temp) {
  587                                                         VM_OBJECT_LOCK(object);
  588                                                         goto retry;
  589                                                 }
  590                                         } else
  591                                                 VM_OBJECT_UNLOCK(object);
  592 
  593                                         if (robject->ref_count == 1) {
  594                                                 robject->ref_count--;
  595                                                 object = robject;
  596                                                 goto doterm;
  597                                         }
  598                                         object = robject;
  599                                         vm_object_collapse(object);
  600                                         VM_OBJECT_UNLOCK(object);
  601                                         continue;
  602                                 }
  603                                 VM_OBJECT_UNLOCK(robject);
  604                         }
  605                         VM_OBJECT_UNLOCK(object);
  606                         return;
  607                 }
  608 doterm:
  609                 temp = object->backing_object;
  610                 if (temp != NULL) {
  611                         VM_OBJECT_LOCK(temp);
  612                         LIST_REMOVE(object, shadow_list);
  613                         temp->shadow_count--;
  614                         temp->generation++;
  615                         VM_OBJECT_UNLOCK(temp);
  616                         object->backing_object = NULL;
  617                 }
  618                 /*
  619                  * Don't double-terminate, we could be in a termination
  620                  * recursion due to the terminate having to sync data
  621                  * to disk.
  622                  */
  623                 if ((object->flags & OBJ_DEAD) == 0)
  624                         vm_object_terminate(object);
  625                 else
  626                         VM_OBJECT_UNLOCK(object);
  627                 object = temp;
  628         }
  629 }
  630 
  631 /*
  632  *      vm_object_destroy removes the object from the global object list
  633  *      and frees the space for the object.
  634  */
  635 void
  636 vm_object_destroy(vm_object_t object)
  637 {
  638 
  639         /*
  640          * Remove the object from the global object list.
  641          */
  642         mtx_lock(&vm_object_list_mtx);
  643         TAILQ_REMOVE(&vm_object_list, object, object_list);
  644         mtx_unlock(&vm_object_list_mtx);
  645 
  646         /*
  647          * Release the allocation charge.
  648          */
  649         if (object->uip != NULL) {
  650                 KASSERT(object->type == OBJT_DEFAULT ||
  651                     object->type == OBJT_SWAP,
  652                     ("vm_object_terminate: non-swap obj %p has uip",
  653                      object));
  654                 swap_release_by_uid(object->charge, object->uip);
  655                 object->charge = 0;
  656                 uifree(object->uip);
  657                 object->uip = NULL;
  658         }
  659 
  660         /*
  661          * Free the space for the object.
  662          */
  663         uma_zfree(obj_zone, object);
  664 }
  665 
  666 /*
  667  *      vm_object_terminate actually destroys the specified object, freeing
  668  *      up all previously used resources.
  669  *
  670  *      The object must be locked.
  671  *      This routine may block.
  672  */
  673 void
  674 vm_object_terminate(vm_object_t object)
  675 {
  676         vm_page_t p;
  677 
  678         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  679 
  680         /*
  681          * Make sure no one uses us.
  682          */
  683         vm_object_set_flag(object, OBJ_DEAD);
  684 
  685         /*
  686          * wait for the pageout daemon to be done with the object
  687          */
  688         vm_object_pip_wait(object, "objtrm");
  689 
  690         KASSERT(!object->paging_in_progress,
  691                 ("vm_object_terminate: pageout in progress"));
  692 
  693         /*
  694          * Clean and free the pages, as appropriate. All references to the
  695          * object are gone, so we don't need to lock it.
  696          */
  697         if (object->type == OBJT_VNODE) {
  698                 struct vnode *vp = (struct vnode *)object->handle;
  699 
  700                 /*
  701                  * Clean pages and flush buffers.
  702                  */
  703                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  704                 VM_OBJECT_UNLOCK(object);
  705 
  706                 vinvalbuf(vp, V_SAVE, 0, 0);
  707 
  708                 VM_OBJECT_LOCK(object);
  709         }
  710 
  711         KASSERT(object->ref_count == 0, 
  712                 ("vm_object_terminate: object with references, ref_count=%d",
  713                 object->ref_count));
  714 
  715         /*
  716          * Now free any remaining pages. For internal objects, this also
  717          * removes them from paging queues. Don't free wired pages, just
  718          * remove them from the object. 
  719          */
  720         vm_page_lock_queues();
  721         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
  722                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
  723                         ("vm_object_terminate: freeing busy page %p "
  724                         "p->busy = %d, p->oflags %x\n", p, p->busy, p->oflags));
  725                 if (p->wire_count == 0) {
  726                         vm_page_free(p);
  727                         cnt.v_pfree++;
  728                 } else {
  729                         vm_page_remove(p);
  730                 }
  731         }
  732         vm_page_unlock_queues();
  733 
  734 #if VM_NRESERVLEVEL > 0
  735         if (__predict_false(!LIST_EMPTY(&object->rvq)))
  736                 vm_reserv_break_all(object);
  737 #endif
  738         if (__predict_false(object->cache != NULL))
  739                 vm_page_cache_free(object, 0, 0);
  740 
  741         /*
  742          * Let the pager know object is dead.
  743          */
  744         vm_pager_deallocate(object);
  745         VM_OBJECT_UNLOCK(object);
  746 
  747         vm_object_destroy(object);
  748 }
  749 
  750 /*
  751  *      vm_object_page_clean
  752  *
  753  *      Clean all dirty pages in the specified range of object.  Leaves page 
  754  *      on whatever queue it is currently on.   If NOSYNC is set then do not
  755  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
  756  *      leaving the object dirty.
  757  *
  758  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
  759  *      synchronous clustering mode implementation.
  760  *
  761  *      Odd semantics: if start == end, we clean everything.
  762  *
  763  *      The object must be locked.
  764  */
  765 void
  766 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
  767 {
  768         vm_page_t p, np;
  769         vm_pindex_t tstart, tend;
  770         vm_pindex_t pi;
  771         int clearobjflags;
  772         int pagerflags;
  773         int curgeneration;
  774 
  775         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  776         if (object->type != OBJT_VNODE ||
  777                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
  778                 return;
  779 
  780         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
  781         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
  782 
  783         vm_object_set_flag(object, OBJ_CLEANING);
  784 
  785         tstart = start;
  786         if (end == 0) {
  787                 tend = object->size;
  788         } else {
  789                 tend = end;
  790         }
  791 
  792         vm_page_lock_queues();
  793         /*
  794          * If the caller is smart and only msync()s a range he knows is
  795          * dirty, we may be able to avoid an object scan.  This results in
  796          * a phenominal improvement in performance.  We cannot do this
  797          * as a matter of course because the object may be huge - e.g.
  798          * the size might be in the gigabytes or terrabytes.
  799          */
  800         if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
  801                 vm_pindex_t tscan;
  802                 int scanlimit;
  803                 int scanreset;
  804 
  805                 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
  806                 if (scanreset < 16)
  807                         scanreset = 16;
  808                 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
  809 
  810                 scanlimit = scanreset;
  811                 tscan = tstart;
  812                 while (tscan < tend) {
  813                         curgeneration = object->generation;
  814                         p = vm_page_lookup(object, tscan);
  815                         if (p == NULL || p->valid == 0) {
  816                                 if (--scanlimit == 0)
  817                                         break;
  818                                 ++tscan;
  819                                 continue;
  820                         }
  821                         vm_page_test_dirty(p);
  822                         if (p->dirty == 0) {
  823                                 if (--scanlimit == 0)
  824                                         break;
  825                                 ++tscan;
  826                                 continue;
  827                         }
  828                         /*
  829                          * If we have been asked to skip nosync pages and 
  830                          * this is a nosync page, we can't continue.
  831                          */
  832                         if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
  833                                 if (--scanlimit == 0)
  834                                         break;
  835                                 ++tscan;
  836                                 continue;
  837                         }
  838                         scanlimit = scanreset;
  839 
  840                         /*
  841                          * This returns 0 if it was unable to busy the first
  842                          * page (i.e. had to sleep).
  843                          */
  844                         tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
  845                 }
  846 
  847                 /*
  848                  * If everything was dirty and we flushed it successfully,
  849                  * and the requested range is not the entire object, we
  850                  * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
  851                  * return immediately.
  852                  */
  853                 if (tscan >= tend && (tstart || tend < object->size)) {
  854                         vm_page_unlock_queues();
  855                         vm_object_clear_flag(object, OBJ_CLEANING);
  856                         return;
  857                 }
  858                 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
  859         }
  860 
  861         /*
  862          * Generally set CLEANCHK interlock and make the page read-only so
  863          * we can then clear the object flags.
  864          *
  865          * However, if this is a nosync mmap then the object is likely to 
  866          * stay dirty so do not mess with the page and do not clear the
  867          * object flags.
  868          */
  869         clearobjflags = 1;
  870         TAILQ_FOREACH(p, &object->memq, listq) {
  871                 p->oflags |= VPO_CLEANCHK;
  872                 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC))
  873                         clearobjflags = 0;
  874                 else
  875                         pmap_remove_write(p);
  876         }
  877 
  878         if (clearobjflags && (tstart == 0) && (tend == object->size)) {
  879                 struct vnode *vp;
  880 
  881                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
  882                 if (object->type == OBJT_VNODE &&
  883                     (vp = (struct vnode *)object->handle) != NULL) {
  884                         VI_LOCK(vp);
  885                         if (vp->v_iflag & VI_OBJDIRTY)
  886                                 vp->v_iflag &= ~VI_OBJDIRTY;
  887                         VI_UNLOCK(vp);
  888                 }
  889         }
  890 
  891 rescan:
  892         curgeneration = object->generation;
  893 
  894         for (p = TAILQ_FIRST(&object->memq); p; p = np) {
  895                 int n;
  896 
  897                 np = TAILQ_NEXT(p, listq);
  898 
  899 again:
  900                 pi = p->pindex;
  901                 if ((p->oflags & VPO_CLEANCHK) == 0 ||
  902                         (pi < tstart) || (pi >= tend) ||
  903                     p->valid == 0) {
  904                         p->oflags &= ~VPO_CLEANCHK;
  905                         continue;
  906                 }
  907 
  908                 vm_page_test_dirty(p);
  909                 if (p->dirty == 0) {
  910                         p->oflags &= ~VPO_CLEANCHK;
  911                         continue;
  912                 }
  913 
  914                 /*
  915                  * If we have been asked to skip nosync pages and this is a
  916                  * nosync page, skip it.  Note that the object flags were
  917                  * not cleared in this case so we do not have to set them.
  918                  */
  919                 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
  920                         p->oflags &= ~VPO_CLEANCHK;
  921                         continue;
  922                 }
  923 
  924                 n = vm_object_page_collect_flush(object, p,
  925                         curgeneration, pagerflags);
  926                 if (n == 0)
  927                         goto rescan;
  928 
  929                 if (object->generation != curgeneration)
  930                         goto rescan;
  931 
  932                 /*
  933                  * Try to optimize the next page.  If we can't we pick up
  934                  * our (random) scan where we left off.
  935                  */
  936                 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
  937                         if ((p = vm_page_lookup(object, pi + n)) != NULL)
  938                                 goto again;
  939                 }
  940         }
  941         vm_page_unlock_queues();
  942 #if 0
  943         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
  944 #endif
  945 
  946         vm_object_clear_flag(object, OBJ_CLEANING);
  947         return;
  948 }
  949 
  950 static int
  951 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
  952 {
  953         int runlen;
  954         int maxf;
  955         int chkb;
  956         int maxb;
  957         int i;
  958         vm_pindex_t pi;
  959         vm_page_t maf[vm_pageout_page_count];
  960         vm_page_t mab[vm_pageout_page_count];
  961         vm_page_t ma[vm_pageout_page_count];
  962 
  963         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  964         pi = p->pindex;
  965         while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
  966                 vm_page_lock_queues();
  967                 if (object->generation != curgeneration) {
  968                         return(0);
  969                 }
  970         }
  971         maxf = 0;
  972         for(i = 1; i < vm_pageout_page_count; i++) {
  973                 vm_page_t tp;
  974 
  975                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
  976                         if ((tp->oflags & VPO_BUSY) ||
  977                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
  978                                  (tp->oflags & VPO_CLEANCHK) == 0) ||
  979                                 (tp->busy != 0))
  980                                 break;
  981                         vm_page_test_dirty(tp);
  982                         if (tp->dirty == 0) {
  983                                 tp->oflags &= ~VPO_CLEANCHK;
  984                                 break;
  985                         }
  986                         maf[ i - 1 ] = tp;
  987                         maxf++;
  988                         continue;
  989                 }
  990                 break;
  991         }
  992 
  993         maxb = 0;
  994         chkb = vm_pageout_page_count -  maxf;
  995         if (chkb) {
  996                 for(i = 1; i < chkb;i++) {
  997                         vm_page_t tp;
  998 
  999                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
 1000                                 if ((tp->oflags & VPO_BUSY) ||
 1001                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
 1002                                          (tp->oflags & VPO_CLEANCHK) == 0) ||
 1003                                         (tp->busy != 0))
 1004                                         break;
 1005                                 vm_page_test_dirty(tp);
 1006                                 if (tp->dirty == 0) {
 1007                                         tp->oflags &= ~VPO_CLEANCHK;
 1008                                         break;
 1009                                 }
 1010                                 mab[ i - 1 ] = tp;
 1011                                 maxb++;
 1012                                 continue;
 1013                         }
 1014                         break;
 1015                 }
 1016         }
 1017 
 1018         for(i = 0; i < maxb; i++) {
 1019                 int index = (maxb - i) - 1;
 1020                 ma[index] = mab[i];
 1021                 ma[index]->oflags &= ~VPO_CLEANCHK;
 1022         }
 1023         p->oflags &= ~VPO_CLEANCHK;
 1024         ma[maxb] = p;
 1025         for(i = 0; i < maxf; i++) {
 1026                 int index = (maxb + i) + 1;
 1027                 ma[index] = maf[i];
 1028                 ma[index]->oflags &= ~VPO_CLEANCHK;
 1029         }
 1030         runlen = maxb + maxf + 1;
 1031 
 1032         vm_pageout_flush(ma, runlen, pagerflags);
 1033         for (i = 0; i < runlen; i++) {
 1034                 if (ma[i]->dirty) {
 1035                         pmap_remove_write(ma[i]);
 1036                         ma[i]->oflags |= VPO_CLEANCHK;
 1037 
 1038                         /*
 1039                          * maxf will end up being the actual number of pages
 1040                          * we wrote out contiguously, non-inclusive of the
 1041                          * first page.  We do not count look-behind pages.
 1042                          */
 1043                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
 1044                                 maxf = i - maxb - 1;
 1045                 }
 1046         }
 1047         return(maxf + 1);
 1048 }
 1049 
 1050 /*
 1051  * Note that there is absolutely no sense in writing out
 1052  * anonymous objects, so we track down the vnode object
 1053  * to write out.
 1054  * We invalidate (remove) all pages from the address space
 1055  * for semantic correctness.
 1056  *
 1057  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
 1058  * may start out with a NULL object.
 1059  */
 1060 void
 1061 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
 1062     boolean_t syncio, boolean_t invalidate)
 1063 {
 1064         vm_object_t backing_object;
 1065         struct vnode *vp;
 1066         struct mount *mp;
 1067         int flags;
 1068 
 1069         if (object == NULL)
 1070                 return;
 1071         VM_OBJECT_LOCK(object);
 1072         while ((backing_object = object->backing_object) != NULL) {
 1073                 VM_OBJECT_LOCK(backing_object);
 1074                 offset += object->backing_object_offset;
 1075                 VM_OBJECT_UNLOCK(object);
 1076                 object = backing_object;
 1077                 if (object->size < OFF_TO_IDX(offset + size))
 1078                         size = IDX_TO_OFF(object->size) - offset;
 1079         }
 1080         /*
 1081          * Flush pages if writing is allowed, invalidate them
 1082          * if invalidation requested.  Pages undergoing I/O
 1083          * will be ignored by vm_object_page_remove().
 1084          *
 1085          * We cannot lock the vnode and then wait for paging
 1086          * to complete without deadlocking against vm_fault.
 1087          * Instead we simply call vm_object_page_remove() and
 1088          * allow it to block internally on a page-by-page
 1089          * basis when it encounters pages undergoing async
 1090          * I/O.
 1091          */
 1092         if (object->type == OBJT_VNODE &&
 1093             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
 1094                 int vfslocked;
 1095                 vp = object->handle;
 1096                 VM_OBJECT_UNLOCK(object);
 1097                 (void) vn_start_write(vp, &mp, V_WAIT);
 1098                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1099                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1100                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
 1101                 flags |= invalidate ? OBJPC_INVAL : 0;
 1102                 VM_OBJECT_LOCK(object);
 1103                 vm_object_page_clean(object,
 1104                     OFF_TO_IDX(offset),
 1105                     OFF_TO_IDX(offset + size + PAGE_MASK),
 1106                     flags);
 1107                 VM_OBJECT_UNLOCK(object);
 1108                 VOP_UNLOCK(vp, 0);
 1109                 VFS_UNLOCK_GIANT(vfslocked);
 1110                 vn_finished_write(mp);
 1111                 VM_OBJECT_LOCK(object);
 1112         }
 1113         if ((object->type == OBJT_VNODE ||
 1114              object->type == OBJT_DEVICE) && invalidate) {
 1115                 boolean_t purge;
 1116                 purge = old_msync || (object->type == OBJT_DEVICE);
 1117                 vm_object_page_remove(object,
 1118                     OFF_TO_IDX(offset),
 1119                     OFF_TO_IDX(offset + size + PAGE_MASK),
 1120                     purge ? FALSE : TRUE);
 1121         }
 1122         VM_OBJECT_UNLOCK(object);
 1123 }
 1124 
 1125 /*
 1126  *      vm_object_madvise:
 1127  *
 1128  *      Implements the madvise function at the object/page level.
 1129  *
 1130  *      MADV_WILLNEED   (any object)
 1131  *
 1132  *          Activate the specified pages if they are resident.
 1133  *
 1134  *      MADV_DONTNEED   (any object)
 1135  *
 1136  *          Deactivate the specified pages if they are resident.
 1137  *
 1138  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
 1139  *                       OBJ_ONEMAPPING only)
 1140  *
 1141  *          Deactivate and clean the specified pages if they are
 1142  *          resident.  This permits the process to reuse the pages
 1143  *          without faulting or the kernel to reclaim the pages
 1144  *          without I/O.
 1145  */
 1146 void
 1147 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
 1148 {
 1149         vm_pindex_t end, tpindex;
 1150         vm_object_t backing_object, tobject;
 1151         vm_page_t m;
 1152 
 1153         if (object == NULL)
 1154                 return;
 1155         VM_OBJECT_LOCK(object);
 1156         end = pindex + count;
 1157         /*
 1158          * Locate and adjust resident pages
 1159          */
 1160         for (; pindex < end; pindex += 1) {
 1161 relookup:
 1162                 tobject = object;
 1163                 tpindex = pindex;
 1164 shadowlookup:
 1165                 /*
 1166                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
 1167                  * and those pages must be OBJ_ONEMAPPING.
 1168                  */
 1169                 if (advise == MADV_FREE) {
 1170                         if ((tobject->type != OBJT_DEFAULT &&
 1171                              tobject->type != OBJT_SWAP) ||
 1172                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
 1173                                 goto unlock_tobject;
 1174                         }
 1175                 }
 1176                 m = vm_page_lookup(tobject, tpindex);
 1177                 if (m == NULL && advise == MADV_WILLNEED) {
 1178                         /*
 1179                          * If the page is cached, reactivate it.
 1180                          */
 1181                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
 1182                             VM_ALLOC_NOBUSY);
 1183                 }
 1184                 if (m == NULL) {
 1185                         /*
 1186                          * There may be swap even if there is no backing page
 1187                          */
 1188                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1189                                 swap_pager_freespace(tobject, tpindex, 1);
 1190                         /*
 1191                          * next object
 1192                          */
 1193                         backing_object = tobject->backing_object;
 1194                         if (backing_object == NULL)
 1195                                 goto unlock_tobject;
 1196                         VM_OBJECT_LOCK(backing_object);
 1197                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
 1198                         if (tobject != object)
 1199                                 VM_OBJECT_UNLOCK(tobject);
 1200                         tobject = backing_object;
 1201                         goto shadowlookup;
 1202                 }
 1203                 /*
 1204                  * If the page is busy or not in a normal active state,
 1205                  * we skip it.  If the page is not managed there are no
 1206                  * page queues to mess with.  Things can break if we mess
 1207                  * with pages in any of the below states.
 1208                  */
 1209                 vm_page_lock_queues();
 1210                 if (m->hold_count ||
 1211                     m->wire_count ||
 1212                     (m->flags & PG_UNMANAGED) ||
 1213                     m->valid != VM_PAGE_BITS_ALL) {
 1214                         vm_page_unlock_queues();
 1215                         goto unlock_tobject;
 1216                 }
 1217                 if ((m->oflags & VPO_BUSY) || m->busy) {
 1218                         vm_page_flag_set(m, PG_REFERENCED);
 1219                         vm_page_unlock_queues();
 1220                         if (object != tobject)
 1221                                 VM_OBJECT_UNLOCK(object);
 1222                         m->oflags |= VPO_WANTED;
 1223                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 0);
 1224                         VM_OBJECT_LOCK(object);
 1225                         goto relookup;
 1226                 }
 1227                 if (advise == MADV_WILLNEED) {
 1228                         vm_page_activate(m);
 1229                 } else if (advise == MADV_DONTNEED) {
 1230                         vm_page_dontneed(m);
 1231                 } else if (advise == MADV_FREE) {
 1232                         /*
 1233                          * Mark the page clean.  This will allow the page
 1234                          * to be freed up by the system.  However, such pages
 1235                          * are often reused quickly by malloc()/free()
 1236                          * so we do not do anything that would cause
 1237                          * a page fault if we can help it.
 1238                          *
 1239                          * Specifically, we do not try to actually free
 1240                          * the page now nor do we try to put it in the
 1241                          * cache (which would cause a page fault on reuse).
 1242                          *
 1243                          * But we do make the page is freeable as we
 1244                          * can without actually taking the step of unmapping
 1245                          * it.
 1246                          */
 1247                         pmap_clear_modify(m);
 1248                         m->dirty = 0;
 1249                         m->act_count = 0;
 1250                         vm_page_dontneed(m);
 1251                 }
 1252                 vm_page_unlock_queues();
 1253                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1254                         swap_pager_freespace(tobject, tpindex, 1);
 1255 unlock_tobject:
 1256                 if (tobject != object)
 1257                         VM_OBJECT_UNLOCK(tobject);
 1258         }       
 1259         VM_OBJECT_UNLOCK(object);
 1260 }
 1261 
 1262 /*
 1263  *      vm_object_shadow:
 1264  *
 1265  *      Create a new object which is backed by the
 1266  *      specified existing object range.  The source
 1267  *      object reference is deallocated.
 1268  *
 1269  *      The new object and offset into that object
 1270  *      are returned in the source parameters.
 1271  */
 1272 void
 1273 vm_object_shadow(
 1274         vm_object_t *object,    /* IN/OUT */
 1275         vm_ooffset_t *offset,   /* IN/OUT */
 1276         vm_size_t length)
 1277 {
 1278         vm_object_t source;
 1279         vm_object_t result;
 1280 
 1281         source = *object;
 1282 
 1283         /*
 1284          * Don't create the new object if the old object isn't shared.
 1285          */
 1286         if (source != NULL) {
 1287                 VM_OBJECT_LOCK(source);
 1288                 if (source->ref_count == 1 &&
 1289                     source->handle == NULL &&
 1290                     (source->type == OBJT_DEFAULT ||
 1291                      source->type == OBJT_SWAP)) {
 1292                         VM_OBJECT_UNLOCK(source);
 1293                         return;
 1294                 }
 1295                 VM_OBJECT_UNLOCK(source);
 1296         }
 1297 
 1298         /*
 1299          * Allocate a new object with the given length.
 1300          */
 1301         result = vm_object_allocate(OBJT_DEFAULT, length);
 1302 
 1303         /*
 1304          * The new object shadows the source object, adding a reference to it.
 1305          * Our caller changes his reference to point to the new object,
 1306          * removing a reference to the source object.  Net result: no change
 1307          * of reference count.
 1308          *
 1309          * Try to optimize the result object's page color when shadowing
 1310          * in order to maintain page coloring consistency in the combined 
 1311          * shadowed object.
 1312          */
 1313         result->backing_object = source;
 1314         /*
 1315          * Store the offset into the source object, and fix up the offset into
 1316          * the new object.
 1317          */
 1318         result->backing_object_offset = *offset;
 1319         if (source != NULL) {
 1320                 VM_OBJECT_LOCK(source);
 1321                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
 1322                 source->shadow_count++;
 1323                 source->generation++;
 1324 #if VM_NRESERVLEVEL > 0
 1325                 result->flags |= source->flags & OBJ_COLORED;
 1326                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
 1327                     ((1 << (VM_NFREEORDER - 1)) - 1);
 1328 #endif
 1329                 VM_OBJECT_UNLOCK(source);
 1330         }
 1331 
 1332 
 1333         /*
 1334          * Return the new things
 1335          */
 1336         *offset = 0;
 1337         *object = result;
 1338 }
 1339 
 1340 /*
 1341  *      vm_object_split:
 1342  *
 1343  * Split the pages in a map entry into a new object.  This affords
 1344  * easier removal of unused pages, and keeps object inheritance from
 1345  * being a negative impact on memory usage.
 1346  */
 1347 void
 1348 vm_object_split(vm_map_entry_t entry)
 1349 {
 1350         vm_page_t m, m_next;
 1351         vm_object_t orig_object, new_object, source;
 1352         vm_pindex_t idx, offidxstart;
 1353         vm_size_t size;
 1354 
 1355         orig_object = entry->object.vm_object;
 1356         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
 1357                 return;
 1358         if (orig_object->ref_count <= 1)
 1359                 return;
 1360         VM_OBJECT_UNLOCK(orig_object);
 1361 
 1362         offidxstart = OFF_TO_IDX(entry->offset);
 1363         size = atop(entry->end - entry->start);
 1364 
 1365         /*
 1366          * If swap_pager_copy() is later called, it will convert new_object
 1367          * into a swap object.
 1368          */
 1369         new_object = vm_object_allocate(OBJT_DEFAULT, size);
 1370 
 1371         /*
 1372          * At this point, the new object is still private, so the order in
 1373          * which the original and new objects are locked does not matter.
 1374          */
 1375         VM_OBJECT_LOCK(new_object);
 1376         VM_OBJECT_LOCK(orig_object);
 1377         source = orig_object->backing_object;
 1378         if (source != NULL) {
 1379                 VM_OBJECT_LOCK(source);
 1380                 if ((source->flags & OBJ_DEAD) != 0) {
 1381                         VM_OBJECT_UNLOCK(source);
 1382                         VM_OBJECT_UNLOCK(orig_object);
 1383                         VM_OBJECT_UNLOCK(new_object);
 1384                         vm_object_deallocate(new_object);
 1385                         VM_OBJECT_LOCK(orig_object);
 1386                         return;
 1387                 }
 1388                 LIST_INSERT_HEAD(&source->shadow_head,
 1389                                   new_object, shadow_list);
 1390                 source->shadow_count++;
 1391                 source->generation++;
 1392                 vm_object_reference_locked(source);     /* for new_object */
 1393                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1394                 VM_OBJECT_UNLOCK(source);
 1395                 new_object->backing_object_offset = 
 1396                         orig_object->backing_object_offset + entry->offset;
 1397                 new_object->backing_object = source;
 1398         }
 1399         if (orig_object->uip != NULL) {
 1400                 new_object->uip = orig_object->uip;
 1401                 uihold(orig_object->uip);
 1402                 new_object->charge = ptoa(size);
 1403                 KASSERT(orig_object->charge >= ptoa(size),
 1404                     ("orig_object->charge < 0"));
 1405                 orig_object->charge -= ptoa(size);
 1406         }
 1407 retry:
 1408         if ((m = TAILQ_FIRST(&orig_object->memq)) != NULL) {
 1409                 if (m->pindex < offidxstart) {
 1410                         m = vm_page_splay(offidxstart, orig_object->root);
 1411                         if ((orig_object->root = m)->pindex < offidxstart)
 1412                                 m = TAILQ_NEXT(m, listq);
 1413                 }
 1414         }
 1415         vm_page_lock_queues();
 1416         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
 1417             m = m_next) {
 1418                 m_next = TAILQ_NEXT(m, listq);
 1419 
 1420                 /*
 1421                  * We must wait for pending I/O to complete before we can
 1422                  * rename the page.
 1423                  *
 1424                  * We do not have to VM_PROT_NONE the page as mappings should
 1425                  * not be changed by this operation.
 1426                  */
 1427                 if ((m->oflags & VPO_BUSY) || m->busy) {
 1428                         vm_page_flag_set(m, PG_REFERENCED);
 1429                         vm_page_unlock_queues();
 1430                         VM_OBJECT_UNLOCK(new_object);
 1431                         m->oflags |= VPO_WANTED;
 1432                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
 1433                         VM_OBJECT_LOCK(new_object);
 1434                         goto retry;
 1435                 }
 1436                 vm_page_rename(m, new_object, idx);
 1437                 /* page automatically made dirty by rename and cache handled */
 1438                 vm_page_busy(m);
 1439         }
 1440         vm_page_unlock_queues();
 1441         if (orig_object->type == OBJT_SWAP) {
 1442                 /*
 1443                  * swap_pager_copy() can sleep, in which case the orig_object's
 1444                  * and new_object's locks are released and reacquired. 
 1445                  */
 1446                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
 1447 
 1448                 /*
 1449                  * Transfer any cached pages from orig_object to new_object.
 1450                  */
 1451                 if (__predict_false(orig_object->cache != NULL))
 1452                         vm_page_cache_transfer(orig_object, offidxstart,
 1453                             new_object);
 1454         }
 1455         VM_OBJECT_UNLOCK(orig_object);
 1456         TAILQ_FOREACH(m, &new_object->memq, listq)
 1457                 vm_page_wakeup(m);
 1458         VM_OBJECT_UNLOCK(new_object);
 1459         entry->object.vm_object = new_object;
 1460         entry->offset = 0LL;
 1461         vm_object_deallocate(orig_object);
 1462         VM_OBJECT_LOCK(new_object);
 1463 }
 1464 
 1465 #define OBSC_TEST_ALL_SHADOWED  0x0001
 1466 #define OBSC_COLLAPSE_NOWAIT    0x0002
 1467 #define OBSC_COLLAPSE_WAIT      0x0004
 1468 
 1469 static int
 1470 vm_object_backing_scan(vm_object_t object, int op)
 1471 {
 1472         int r = 1;
 1473         vm_page_t p;
 1474         vm_object_t backing_object;
 1475         vm_pindex_t backing_offset_index;
 1476 
 1477         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1478         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
 1479 
 1480         backing_object = object->backing_object;
 1481         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1482 
 1483         /*
 1484          * Initial conditions
 1485          */
 1486         if (op & OBSC_TEST_ALL_SHADOWED) {
 1487                 /*
 1488                  * We do not want to have to test for the existence of cache
 1489                  * or swap pages in the backing object.  XXX but with the
 1490                  * new swapper this would be pretty easy to do.
 1491                  *
 1492                  * XXX what about anonymous MAP_SHARED memory that hasn't
 1493                  * been ZFOD faulted yet?  If we do not test for this, the
 1494                  * shadow test may succeed! XXX
 1495                  */
 1496                 if (backing_object->type != OBJT_DEFAULT) {
 1497                         return (0);
 1498                 }
 1499         }
 1500         if (op & OBSC_COLLAPSE_WAIT) {
 1501                 vm_object_set_flag(backing_object, OBJ_DEAD);
 1502         }
 1503 
 1504         /*
 1505          * Our scan
 1506          */
 1507         p = TAILQ_FIRST(&backing_object->memq);
 1508         while (p) {
 1509                 vm_page_t next = TAILQ_NEXT(p, listq);
 1510                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
 1511 
 1512                 if (op & OBSC_TEST_ALL_SHADOWED) {
 1513                         vm_page_t pp;
 1514 
 1515                         /*
 1516                          * Ignore pages outside the parent object's range
 1517                          * and outside the parent object's mapping of the 
 1518                          * backing object.
 1519                          *
 1520                          * note that we do not busy the backing object's
 1521                          * page.
 1522                          */
 1523                         if (
 1524                             p->pindex < backing_offset_index ||
 1525                             new_pindex >= object->size
 1526                         ) {
 1527                                 p = next;
 1528                                 continue;
 1529                         }
 1530 
 1531                         /*
 1532                          * See if the parent has the page or if the parent's
 1533                          * object pager has the page.  If the parent has the
 1534                          * page but the page is not valid, the parent's
 1535                          * object pager must have the page.
 1536                          *
 1537                          * If this fails, the parent does not completely shadow
 1538                          * the object and we might as well give up now.
 1539                          */
 1540 
 1541                         pp = vm_page_lookup(object, new_pindex);
 1542                         if (
 1543                             (pp == NULL || pp->valid == 0) &&
 1544                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
 1545                         ) {
 1546                                 r = 0;
 1547                                 break;
 1548                         }
 1549                 }
 1550 
 1551                 /*
 1552                  * Check for busy page
 1553                  */
 1554                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
 1555                         vm_page_t pp;
 1556 
 1557                         if (op & OBSC_COLLAPSE_NOWAIT) {
 1558                                 if ((p->oflags & VPO_BUSY) ||
 1559                                     !p->valid || 
 1560                                     p->busy) {
 1561                                         p = next;
 1562                                         continue;
 1563                                 }
 1564                         } else if (op & OBSC_COLLAPSE_WAIT) {
 1565                                 if ((p->oflags & VPO_BUSY) || p->busy) {
 1566                                         vm_page_lock_queues();
 1567                                         vm_page_flag_set(p, PG_REFERENCED);
 1568                                         vm_page_unlock_queues();
 1569                                         VM_OBJECT_UNLOCK(object);
 1570                                         p->oflags |= VPO_WANTED;
 1571                                         msleep(p, VM_OBJECT_MTX(backing_object),
 1572                                             PDROP | PVM, "vmocol", 0);
 1573                                         VM_OBJECT_LOCK(object);
 1574                                         VM_OBJECT_LOCK(backing_object);
 1575                                         /*
 1576                                          * If we slept, anything could have
 1577                                          * happened.  Since the object is
 1578                                          * marked dead, the backing offset
 1579                                          * should not have changed so we
 1580                                          * just restart our scan.
 1581                                          */
 1582                                         p = TAILQ_FIRST(&backing_object->memq);
 1583                                         continue;
 1584                                 }
 1585                         }
 1586 
 1587                         KASSERT(
 1588                             p->object == backing_object,
 1589                             ("vm_object_backing_scan: object mismatch")
 1590                         );
 1591 
 1592                         /*
 1593                          * Destroy any associated swap
 1594                          */
 1595                         if (backing_object->type == OBJT_SWAP) {
 1596                                 swap_pager_freespace(
 1597                                     backing_object, 
 1598                                     p->pindex,
 1599                                     1
 1600                                 );
 1601                         }
 1602 
 1603                         if (
 1604                             p->pindex < backing_offset_index ||
 1605                             new_pindex >= object->size
 1606                         ) {
 1607                                 /*
 1608                                  * Page is out of the parent object's range, we 
 1609                                  * can simply destroy it. 
 1610                                  */
 1611                                 vm_page_lock_queues();
 1612                                 KASSERT(!pmap_page_is_mapped(p),
 1613                                     ("freeing mapped page %p", p));
 1614                                 if (p->wire_count == 0)
 1615                                         vm_page_free(p);
 1616                                 else
 1617                                         vm_page_remove(p);
 1618                                 vm_page_unlock_queues();
 1619                                 p = next;
 1620                                 continue;
 1621                         }
 1622 
 1623                         pp = vm_page_lookup(object, new_pindex);
 1624                         if (
 1625                             pp != NULL ||
 1626                             vm_pager_has_page(object, new_pindex, NULL, NULL)
 1627                         ) {
 1628                                 /*
 1629                                  * page already exists in parent OR swap exists
 1630                                  * for this location in the parent.  Destroy 
 1631                                  * the original page from the backing object.
 1632                                  *
 1633                                  * Leave the parent's page alone
 1634                                  */
 1635                                 vm_page_lock_queues();
 1636                                 KASSERT(!pmap_page_is_mapped(p),
 1637                                     ("freeing mapped page %p", p));
 1638                                 if (p->wire_count == 0)
 1639                                         vm_page_free(p);
 1640                                 else
 1641                                         vm_page_remove(p);
 1642                                 vm_page_unlock_queues();
 1643                                 p = next;
 1644                                 continue;
 1645                         }
 1646 
 1647 #if VM_NRESERVLEVEL > 0
 1648                         /*
 1649                          * Rename the reservation.
 1650                          */
 1651                         vm_reserv_rename(p, object, backing_object,
 1652                             backing_offset_index);
 1653 #endif
 1654 
 1655                         /*
 1656                          * Page does not exist in parent, rename the
 1657                          * page from the backing object to the main object. 
 1658                          *
 1659                          * If the page was mapped to a process, it can remain 
 1660                          * mapped through the rename.
 1661                          */
 1662                         vm_page_lock_queues();
 1663                         vm_page_rename(p, object, new_pindex);
 1664                         vm_page_unlock_queues();
 1665                         /* page automatically made dirty by rename */
 1666                 }
 1667                 p = next;
 1668         }
 1669         return (r);
 1670 }
 1671 
 1672 
 1673 /*
 1674  * this version of collapse allows the operation to occur earlier and
 1675  * when paging_in_progress is true for an object...  This is not a complete
 1676  * operation, but should plug 99.9% of the rest of the leaks.
 1677  */
 1678 static void
 1679 vm_object_qcollapse(vm_object_t object)
 1680 {
 1681         vm_object_t backing_object = object->backing_object;
 1682 
 1683         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1684         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
 1685 
 1686         if (backing_object->ref_count != 1)
 1687                 return;
 1688 
 1689         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
 1690 }
 1691 
 1692 /*
 1693  *      vm_object_collapse:
 1694  *
 1695  *      Collapse an object with the object backing it.
 1696  *      Pages in the backing object are moved into the
 1697  *      parent, and the backing object is deallocated.
 1698  */
 1699 void
 1700 vm_object_collapse(vm_object_t object)
 1701 {
 1702         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1703         
 1704         while (TRUE) {
 1705                 vm_object_t backing_object;
 1706 
 1707                 /*
 1708                  * Verify that the conditions are right for collapse:
 1709                  *
 1710                  * The object exists and the backing object exists.
 1711                  */
 1712                 if ((backing_object = object->backing_object) == NULL)
 1713                         break;
 1714 
 1715                 /*
 1716                  * we check the backing object first, because it is most likely
 1717                  * not collapsable.
 1718                  */
 1719                 VM_OBJECT_LOCK(backing_object);
 1720                 if (backing_object->handle != NULL ||
 1721                     (backing_object->type != OBJT_DEFAULT &&
 1722                      backing_object->type != OBJT_SWAP) ||
 1723                     (backing_object->flags & OBJ_DEAD) ||
 1724                     object->handle != NULL ||
 1725                     (object->type != OBJT_DEFAULT &&
 1726                      object->type != OBJT_SWAP) ||
 1727                     (object->flags & OBJ_DEAD)) {
 1728                         VM_OBJECT_UNLOCK(backing_object);
 1729                         break;
 1730                 }
 1731 
 1732                 if (
 1733                     object->paging_in_progress != 0 ||
 1734                     backing_object->paging_in_progress != 0
 1735                 ) {
 1736                         vm_object_qcollapse(object);
 1737                         VM_OBJECT_UNLOCK(backing_object);
 1738                         break;
 1739                 }
 1740                 /*
 1741                  * We know that we can either collapse the backing object (if
 1742                  * the parent is the only reference to it) or (perhaps) have
 1743                  * the parent bypass the object if the parent happens to shadow
 1744                  * all the resident pages in the entire backing object.
 1745                  *
 1746                  * This is ignoring pager-backed pages such as swap pages.
 1747                  * vm_object_backing_scan fails the shadowing test in this
 1748                  * case.
 1749                  */
 1750                 if (backing_object->ref_count == 1) {
 1751                         /*
 1752                          * If there is exactly one reference to the backing
 1753                          * object, we can collapse it into the parent.  
 1754                          */
 1755                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
 1756 
 1757 #if VM_NRESERVLEVEL > 0
 1758                         /*
 1759                          * Break any reservations from backing_object.
 1760                          */
 1761                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
 1762                                 vm_reserv_break_all(backing_object);
 1763 #endif
 1764 
 1765                         /*
 1766                          * Move the pager from backing_object to object.
 1767                          */
 1768                         if (backing_object->type == OBJT_SWAP) {
 1769                                 /*
 1770                                  * swap_pager_copy() can sleep, in which case
 1771                                  * the backing_object's and object's locks are
 1772                                  * released and reacquired.
 1773                                  */
 1774                                 swap_pager_copy(
 1775                                     backing_object,
 1776                                     object,
 1777                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
 1778 
 1779                                 /*
 1780                                  * Free any cached pages from backing_object.
 1781                                  */
 1782                                 if (__predict_false(backing_object->cache != NULL))
 1783                                         vm_page_cache_free(backing_object, 0, 0);
 1784                         }
 1785                         /*
 1786                          * Object now shadows whatever backing_object did.
 1787                          * Note that the reference to 
 1788                          * backing_object->backing_object moves from within 
 1789                          * backing_object to within object.
 1790                          */
 1791                         LIST_REMOVE(object, shadow_list);
 1792                         backing_object->shadow_count--;
 1793                         backing_object->generation++;
 1794                         if (backing_object->backing_object) {
 1795                                 VM_OBJECT_LOCK(backing_object->backing_object);
 1796                                 LIST_REMOVE(backing_object, shadow_list);
 1797                                 LIST_INSERT_HEAD(
 1798                                     &backing_object->backing_object->shadow_head,
 1799                                     object, shadow_list);
 1800                                 /*
 1801                                  * The shadow_count has not changed.
 1802                                  */
 1803                                 backing_object->backing_object->generation++;
 1804                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
 1805                         }
 1806                         object->backing_object = backing_object->backing_object;
 1807                         object->backing_object_offset +=
 1808                             backing_object->backing_object_offset;
 1809 
 1810                         /*
 1811                          * Discard backing_object.
 1812                          *
 1813                          * Since the backing object has no pages, no pager left,
 1814                          * and no object references within it, all that is
 1815                          * necessary is to dispose of it.
 1816                          */
 1817                         KASSERT(backing_object->ref_count == 1, (
 1818 "backing_object %p was somehow re-referenced during collapse!",
 1819                             backing_object));
 1820                         VM_OBJECT_UNLOCK(backing_object);
 1821                         vm_object_destroy(backing_object);
 1822 
 1823                         object_collapses++;
 1824                 } else {
 1825                         vm_object_t new_backing_object;
 1826 
 1827                         /*
 1828                          * If we do not entirely shadow the backing object,
 1829                          * there is nothing we can do so we give up.
 1830                          */
 1831                         if (object->resident_page_count != object->size &&
 1832                             vm_object_backing_scan(object,
 1833                             OBSC_TEST_ALL_SHADOWED) == 0) {
 1834                                 VM_OBJECT_UNLOCK(backing_object);
 1835                                 break;
 1836                         }
 1837 
 1838                         /*
 1839                          * Make the parent shadow the next object in the
 1840                          * chain.  Deallocating backing_object will not remove
 1841                          * it, since its reference count is at least 2.
 1842                          */
 1843                         LIST_REMOVE(object, shadow_list);
 1844                         backing_object->shadow_count--;
 1845                         backing_object->generation++;
 1846 
 1847                         new_backing_object = backing_object->backing_object;
 1848                         if ((object->backing_object = new_backing_object) != NULL) {
 1849                                 VM_OBJECT_LOCK(new_backing_object);
 1850                                 LIST_INSERT_HEAD(
 1851                                     &new_backing_object->shadow_head,
 1852                                     object,
 1853                                     shadow_list
 1854                                 );
 1855                                 new_backing_object->shadow_count++;
 1856                                 new_backing_object->generation++;
 1857                                 vm_object_reference_locked(new_backing_object);
 1858                                 VM_OBJECT_UNLOCK(new_backing_object);
 1859                                 object->backing_object_offset +=
 1860                                         backing_object->backing_object_offset;
 1861                         }
 1862 
 1863                         /*
 1864                          * Drop the reference count on backing_object. Since
 1865                          * its ref_count was at least 2, it will not vanish.
 1866                          */
 1867                         backing_object->ref_count--;
 1868                         VM_OBJECT_UNLOCK(backing_object);
 1869                         object_bypasses++;
 1870                 }
 1871 
 1872                 /*
 1873                  * Try again with this object's new backing object.
 1874                  */
 1875         }
 1876 }
 1877 
 1878 /*
 1879  *      vm_object_page_remove:
 1880  *
 1881  *      For the given object, either frees or invalidates each of the
 1882  *      specified pages.  In general, a page is freed.  However, if a
 1883  *      page is wired for any reason other than the existence of a
 1884  *      managed, wired mapping, then it may be invalidated but not
 1885  *      removed from the object.  Pages are specified by the given
 1886  *      range ["start", "end") and Boolean "clean_only".  As a
 1887  *      special case, if "end" is zero, then the range extends from
 1888  *      "start" to the end of the object.  If "clean_only" is TRUE,
 1889  *      then only the non-dirty pages within the specified range are
 1890  *      affected.
 1891  *
 1892  *      In general, this operation should only be performed on objects
 1893  *      that contain managed pages.  There are two exceptions.  First,
 1894  *      it may be performed on the kernel and kmem objects.  Second,
 1895  *      it may be used by msync(..., MS_INVALIDATE) to invalidate
 1896  *      device-backed pages.
 1897  *
 1898  *      The object must be locked.
 1899  */
 1900 void
 1901 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 1902     boolean_t clean_only)
 1903 {
 1904         vm_page_t p, next;
 1905         int wirings;
 1906 
 1907         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1908         if (object->resident_page_count == 0)
 1909                 goto skipmemq;
 1910 
 1911         /*
 1912          * Since physically-backed objects do not use managed pages, we can't
 1913          * remove pages from the object (we must instead remove the page
 1914          * references, and then destroy the object).
 1915          */
 1916         KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
 1917             object == kmem_object,
 1918             ("attempt to remove pages from a physical object"));
 1919 
 1920         vm_object_pip_add(object, 1);
 1921 again:
 1922         if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
 1923                 if (p->pindex < start) {
 1924                         p = vm_page_splay(start, object->root);
 1925                         if ((object->root = p)->pindex < start)
 1926                                 p = TAILQ_NEXT(p, listq);
 1927                 }
 1928         }
 1929         vm_page_lock_queues();
 1930         /*
 1931          * Assert: the variable p is either (1) the page with the
 1932          * least pindex greater than or equal to the parameter pindex
 1933          * or (2) NULL.
 1934          */
 1935         for (;
 1936              p != NULL && (p->pindex < end || end == 0);
 1937              p = next) {
 1938                 next = TAILQ_NEXT(p, listq);
 1939 
 1940                 /*
 1941                  * If the page is wired for any reason besides the
 1942                  * existence of managed, wired mappings, then it cannot
 1943                  * be freed.  For example, fictitious pages, which
 1944                  * represent device memory, are inherently wired and
 1945                  * cannot be freed.  They can, however, be invalidated
 1946                  * if "clean_only" is FALSE.
 1947                  */
 1948                 if ((wirings = p->wire_count) != 0 &&
 1949                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
 1950                         /* Fictitious pages do not have managed mappings. */
 1951                         if ((p->flags & PG_FICTITIOUS) == 0)
 1952                                 pmap_remove_all(p);
 1953                         /* Account for removal of managed, wired mappings. */
 1954                         p->wire_count -= wirings;
 1955                         if (!clean_only) {
 1956                                 p->valid = 0;
 1957                                 vm_page_undirty(p);
 1958                         }
 1959                         continue;
 1960                 }
 1961                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
 1962                         goto again;
 1963                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
 1964                     ("vm_object_page_remove: page %p is fictitious", p));
 1965                 if (clean_only && p->valid) {
 1966                         pmap_remove_write(p);
 1967                         if (p->dirty)
 1968                                 continue;
 1969                 }
 1970                 pmap_remove_all(p);
 1971                 /* Account for removal of managed, wired mappings. */
 1972                 if (wirings != 0)
 1973                         p->wire_count -= wirings;
 1974                 vm_page_free(p);
 1975         }
 1976         vm_page_unlock_queues();
 1977         vm_object_pip_wakeup(object);
 1978 skipmemq:
 1979         if (__predict_false(object->cache != NULL))
 1980                 vm_page_cache_free(object, start, end);
 1981 }
 1982 
 1983 /*
 1984  *      Populate the specified range of the object with valid pages.  Returns
 1985  *      TRUE if the range is successfully populated and FALSE otherwise.
 1986  *
 1987  *      Note: This function should be optimized to pass a larger array of
 1988  *      pages to vm_pager_get_pages() before it is applied to a non-
 1989  *      OBJT_DEVICE object.
 1990  *
 1991  *      The object must be locked.
 1992  */
 1993 boolean_t
 1994 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1995 {
 1996         vm_page_t m, ma[1];
 1997         vm_pindex_t pindex;
 1998         int rv;
 1999 
 2000         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2001         for (pindex = start; pindex < end; pindex++) {
 2002                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
 2003                     VM_ALLOC_RETRY);
 2004                 if (m->valid != VM_PAGE_BITS_ALL) {
 2005                         ma[0] = m;
 2006                         rv = vm_pager_get_pages(object, ma, 1, 0);
 2007                         m = vm_page_lookup(object, pindex);
 2008                         if (m == NULL)
 2009                                 break;
 2010                         if (rv != VM_PAGER_OK) {
 2011                                 vm_page_lock_queues();
 2012                                 vm_page_free(m);
 2013                                 vm_page_unlock_queues();
 2014                                 break;
 2015                         }
 2016                 }
 2017                 /*
 2018                  * Keep "m" busy because a subsequent iteration may unlock
 2019                  * the object.
 2020                  */
 2021         }
 2022         if (pindex > start) {
 2023                 m = vm_page_lookup(object, start);
 2024                 while (m != NULL && m->pindex < pindex) {
 2025                         vm_page_wakeup(m);
 2026                         m = TAILQ_NEXT(m, listq);
 2027                 }
 2028         }
 2029         return (pindex == end);
 2030 }
 2031 
 2032 /*
 2033  *      Routine:        vm_object_coalesce
 2034  *      Function:       Coalesces two objects backing up adjoining
 2035  *                      regions of memory into a single object.
 2036  *
 2037  *      returns TRUE if objects were combined.
 2038  *
 2039  *      NOTE:   Only works at the moment if the second object is NULL -
 2040  *              if it's not, which object do we lock first?
 2041  *
 2042  *      Parameters:
 2043  *              prev_object     First object to coalesce
 2044  *              prev_offset     Offset into prev_object
 2045  *              prev_size       Size of reference to prev_object
 2046  *              next_size       Size of reference to the second object
 2047  *              reserved        Indicator that extension region has
 2048  *                              swap accounted for
 2049  *
 2050  *      Conditions:
 2051  *      The object must *not* be locked.
 2052  */
 2053 boolean_t
 2054 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
 2055     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
 2056 {
 2057         vm_pindex_t next_pindex;
 2058 
 2059         if (prev_object == NULL)
 2060                 return (TRUE);
 2061         VM_OBJECT_LOCK(prev_object);
 2062         if (prev_object->type != OBJT_DEFAULT &&
 2063             prev_object->type != OBJT_SWAP) {
 2064                 VM_OBJECT_UNLOCK(prev_object);
 2065                 return (FALSE);
 2066         }
 2067 
 2068         /*
 2069          * Try to collapse the object first
 2070          */
 2071         vm_object_collapse(prev_object);
 2072 
 2073         /*
 2074          * Can't coalesce if: . more than one reference . paged out . shadows
 2075          * another object . has a copy elsewhere (any of which mean that the
 2076          * pages not mapped to prev_entry may be in use anyway)
 2077          */
 2078         if (prev_object->backing_object != NULL) {
 2079                 VM_OBJECT_UNLOCK(prev_object);
 2080                 return (FALSE);
 2081         }
 2082 
 2083         prev_size >>= PAGE_SHIFT;
 2084         next_size >>= PAGE_SHIFT;
 2085         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
 2086 
 2087         if ((prev_object->ref_count > 1) &&
 2088             (prev_object->size != next_pindex)) {
 2089                 VM_OBJECT_UNLOCK(prev_object);
 2090                 return (FALSE);
 2091         }
 2092 
 2093         /*
 2094          * Account for the charge.
 2095          */
 2096         if (prev_object->uip != NULL) {
 2097 
 2098                 /*
 2099                  * If prev_object was charged, then this mapping,
 2100                  * althought not charged now, may become writable
 2101                  * later. Non-NULL uip in the object would prevent
 2102                  * swap reservation during enabling of the write
 2103                  * access, so reserve swap now. Failed reservation
 2104                  * cause allocation of the separate object for the map
 2105                  * entry, and swap reservation for this entry is
 2106                  * managed in appropriate time.
 2107                  */
 2108                 if (!reserved && !swap_reserve_by_uid(ptoa(next_size),
 2109                     prev_object->uip)) {
 2110                         return (FALSE);
 2111                 }
 2112                 prev_object->charge += ptoa(next_size);
 2113         }
 2114 
 2115         /*
 2116          * Remove any pages that may still be in the object from a previous
 2117          * deallocation.
 2118          */
 2119         if (next_pindex < prev_object->size) {
 2120                 vm_object_page_remove(prev_object,
 2121                                       next_pindex,
 2122                                       next_pindex + next_size, FALSE);
 2123                 if (prev_object->type == OBJT_SWAP)
 2124                         swap_pager_freespace(prev_object,
 2125                                              next_pindex, next_size);
 2126 #if 0
 2127                 if (prev_object->uip != NULL) {
 2128                         KASSERT(prev_object->charge >=
 2129                             ptoa(prev_object->size - next_pindex),
 2130                             ("object %p overcharged 1 %jx %jx", prev_object,
 2131                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
 2132                         prev_object->charge -= ptoa(prev_object->size -
 2133                             next_pindex);
 2134                 }
 2135 #endif
 2136         }
 2137 
 2138         /*
 2139          * Extend the object if necessary.
 2140          */
 2141         if (next_pindex + next_size > prev_object->size)
 2142                 prev_object->size = next_pindex + next_size;
 2143 
 2144         VM_OBJECT_UNLOCK(prev_object);
 2145         return (TRUE);
 2146 }
 2147 
 2148 void
 2149 vm_object_set_writeable_dirty(vm_object_t object)
 2150 {
 2151         struct vnode *vp;
 2152 
 2153         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2154         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
 2155                 return;
 2156         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
 2157         if (object->type == OBJT_VNODE &&
 2158             (vp = (struct vnode *)object->handle) != NULL) {
 2159                 VI_LOCK(vp);
 2160                 vp->v_iflag |= VI_OBJDIRTY;
 2161                 VI_UNLOCK(vp);
 2162         }
 2163 }
 2164 
 2165 #include "opt_ddb.h"
 2166 #ifdef DDB
 2167 #include <sys/kernel.h>
 2168 
 2169 #include <sys/cons.h>
 2170 
 2171 #include <ddb/ddb.h>
 2172 
 2173 static int
 2174 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
 2175 {
 2176         vm_map_t tmpm;
 2177         vm_map_entry_t tmpe;
 2178         vm_object_t obj;
 2179         int entcount;
 2180 
 2181         if (map == 0)
 2182                 return 0;
 2183 
 2184         if (entry == 0) {
 2185                 tmpe = map->header.next;
 2186                 entcount = map->nentries;
 2187                 while (entcount-- && (tmpe != &map->header)) {
 2188                         if (_vm_object_in_map(map, object, tmpe)) {
 2189                                 return 1;
 2190                         }
 2191                         tmpe = tmpe->next;
 2192                 }
 2193         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2194                 tmpm = entry->object.sub_map;
 2195                 tmpe = tmpm->header.next;
 2196                 entcount = tmpm->nentries;
 2197                 while (entcount-- && tmpe != &tmpm->header) {
 2198                         if (_vm_object_in_map(tmpm, object, tmpe)) {
 2199                                 return 1;
 2200                         }
 2201                         tmpe = tmpe->next;
 2202                 }
 2203         } else if ((obj = entry->object.vm_object) != NULL) {
 2204                 for (; obj; obj = obj->backing_object)
 2205                         if (obj == object) {
 2206                                 return 1;
 2207                         }
 2208         }
 2209         return 0;
 2210 }
 2211 
 2212 static int
 2213 vm_object_in_map(vm_object_t object)
 2214 {
 2215         struct proc *p;
 2216 
 2217         /* sx_slock(&allproc_lock); */
 2218         FOREACH_PROC_IN_SYSTEM(p) {
 2219                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
 2220                         continue;
 2221                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
 2222                         /* sx_sunlock(&allproc_lock); */
 2223                         return 1;
 2224                 }
 2225         }
 2226         /* sx_sunlock(&allproc_lock); */
 2227         if (_vm_object_in_map(kernel_map, object, 0))
 2228                 return 1;
 2229         if (_vm_object_in_map(kmem_map, object, 0))
 2230                 return 1;
 2231         if (_vm_object_in_map(pager_map, object, 0))
 2232                 return 1;
 2233         if (_vm_object_in_map(buffer_map, object, 0))
 2234                 return 1;
 2235         return 0;
 2236 }
 2237 
 2238 DB_SHOW_COMMAND(vmochk, vm_object_check)
 2239 {
 2240         vm_object_t object;
 2241 
 2242         /*
 2243          * make sure that internal objs are in a map somewhere
 2244          * and none have zero ref counts.
 2245          */
 2246         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2247                 if (object->handle == NULL &&
 2248                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
 2249                         if (object->ref_count == 0) {
 2250                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
 2251                                         (long)object->size);
 2252                         }
 2253                         if (!vm_object_in_map(object)) {
 2254                                 db_printf(
 2255                         "vmochk: internal obj is not in a map: "
 2256                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
 2257                                     object->ref_count, (u_long)object->size, 
 2258                                     (u_long)object->size,
 2259                                     (void *)object->backing_object);
 2260                         }
 2261                 }
 2262         }
 2263 }
 2264 
 2265 /*
 2266  *      vm_object_print:        [ debug ]
 2267  */
 2268 DB_SHOW_COMMAND(object, vm_object_print_static)
 2269 {
 2270         /* XXX convert args. */
 2271         vm_object_t object = (vm_object_t)addr;
 2272         boolean_t full = have_addr;
 2273 
 2274         vm_page_t p;
 2275 
 2276         /* XXX count is an (unused) arg.  Avoid shadowing it. */
 2277 #define count   was_count
 2278 
 2279         int count;
 2280 
 2281         if (object == NULL)
 2282                 return;
 2283 
 2284         db_iprintf(
 2285             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x uip %d charge %jx\n",
 2286             object, (int)object->type, (uintmax_t)object->size,
 2287             object->resident_page_count, object->ref_count, object->flags,
 2288             object->uip ? object->uip->ui_uid : -1, (uintmax_t)object->charge);
 2289         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
 2290             object->shadow_count, 
 2291             object->backing_object ? object->backing_object->ref_count : 0,
 2292             object->backing_object, (uintmax_t)object->backing_object_offset);
 2293 
 2294         if (!full)
 2295                 return;
 2296 
 2297         db_indent += 2;
 2298         count = 0;
 2299         TAILQ_FOREACH(p, &object->memq, listq) {
 2300                 if (count == 0)
 2301                         db_iprintf("memory:=");
 2302                 else if (count == 6) {
 2303                         db_printf("\n");
 2304                         db_iprintf(" ...");
 2305                         count = 0;
 2306                 } else
 2307                         db_printf(",");
 2308                 count++;
 2309 
 2310                 db_printf("(off=0x%jx,page=0x%jx)",
 2311                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
 2312         }
 2313         if (count != 0)
 2314                 db_printf("\n");
 2315         db_indent -= 2;
 2316 }
 2317 
 2318 /* XXX. */
 2319 #undef count
 2320 
 2321 /* XXX need this non-static entry for calling from vm_map_print. */
 2322 void
 2323 vm_object_print(
 2324         /* db_expr_t */ long addr,
 2325         boolean_t have_addr,
 2326         /* db_expr_t */ long count,
 2327         char *modif)
 2328 {
 2329         vm_object_print_static(addr, have_addr, count, modif);
 2330 }
 2331 
 2332 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
 2333 {
 2334         vm_object_t object;
 2335         vm_pindex_t fidx;
 2336         vm_paddr_t pa;
 2337         vm_page_t m, prev_m;
 2338         int rcount, nl, c;
 2339 
 2340         nl = 0;
 2341         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2342                 db_printf("new object: %p\n", (void *)object);
 2343                 if (nl > 18) {
 2344                         c = cngetc();
 2345                         if (c != ' ')
 2346                                 return;
 2347                         nl = 0;
 2348                 }
 2349                 nl++;
 2350                 rcount = 0;
 2351                 fidx = 0;
 2352                 pa = -1;
 2353                 TAILQ_FOREACH(m, &object->memq, listq) {
 2354                         if (m->pindex > 128)
 2355                                 break;
 2356                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
 2357                             prev_m->pindex + 1 != m->pindex) {
 2358                                 if (rcount) {
 2359                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2360                                                 (long)fidx, rcount, (long)pa);
 2361                                         if (nl > 18) {
 2362                                                 c = cngetc();
 2363                                                 if (c != ' ')
 2364                                                         return;
 2365                                                 nl = 0;
 2366                                         }
 2367                                         nl++;
 2368                                         rcount = 0;
 2369                                 }
 2370                         }                               
 2371                         if (rcount &&
 2372                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
 2373                                 ++rcount;
 2374                                 continue;
 2375                         }
 2376                         if (rcount) {
 2377                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2378                                         (long)fidx, rcount, (long)pa);
 2379                                 if (nl > 18) {
 2380                                         c = cngetc();
 2381                                         if (c != ' ')
 2382                                                 return;
 2383                                         nl = 0;
 2384                                 }
 2385                                 nl++;
 2386                         }
 2387                         fidx = m->pindex;
 2388                         pa = VM_PAGE_TO_PHYS(m);
 2389                         rcount = 1;
 2390                 }
 2391                 if (rcount) {
 2392                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2393                                 (long)fidx, rcount, (long)pa);
 2394                         if (nl > 18) {
 2395                                 c = cngetc();
 2396                                 if (c != ' ')
 2397                                         return;
 2398                                 nl = 0;
 2399                         }
 2400                         nl++;
 2401                 }
 2402         }
 2403 }
 2404 #endif /* DDB */

Cache object: 87580e90bbc85499a33146cb0206fac8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.