FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61 /*
62 * Virtual memory object module.
63 */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD: releng/8.0/sys/vm/vm_object.c 195840 2009-07-24 13:50:29Z jhb $");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h> /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98
99 #define EASY_SCAN_FACTOR 8
100
101 #define MSYNC_FLUSH_HARDSEQ 0x01
102 #define MSYNC_FLUSH_SOFTSEQ 0x02
103
104 /*
105 * msync / VM object flushing optimizations
106 */
107 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
108 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, CTLFLAG_RW, &msync_flush_flags, 0,
109 "Enable sequential iteration optimization");
110
111 static int old_msync;
112 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
113 "Use old (insecure) msync behavior");
114
115 static void vm_object_qcollapse(vm_object_t object);
116 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
117 static void vm_object_vndeallocate(vm_object_t object);
118
119 /*
120 * Virtual memory objects maintain the actual data
121 * associated with allocated virtual memory. A given
122 * page of memory exists within exactly one object.
123 *
124 * An object is only deallocated when all "references"
125 * are given up. Only one "reference" to a given
126 * region of an object should be writeable.
127 *
128 * Associated with each object is a list of all resident
129 * memory pages belonging to that object; this list is
130 * maintained by the "vm_page" module, and locked by the object's
131 * lock.
132 *
133 * Each object also records a "pager" routine which is
134 * used to retrieve (and store) pages to the proper backing
135 * storage. In addition, objects may be backed by other
136 * objects from which they were virtual-copied.
137 *
138 * The only items within the object structure which are
139 * modified after time of creation are:
140 * reference count locked by object's lock
141 * pager routine locked by object's lock
142 *
143 */
144
145 struct object_q vm_object_list;
146 struct mtx vm_object_list_mtx; /* lock for object list and count */
147
148 struct vm_object kernel_object_store;
149 struct vm_object kmem_object_store;
150
151 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
152
153 static long object_collapses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
155 &object_collapses, 0, "VM object collapses");
156
157 static long object_bypasses;
158 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
159 &object_bypasses, 0, "VM object bypasses");
160
161 static uma_zone_t obj_zone;
162
163 static int vm_object_zinit(void *mem, int size, int flags);
164
165 #ifdef INVARIANTS
166 static void vm_object_zdtor(void *mem, int size, void *arg);
167
168 static void
169 vm_object_zdtor(void *mem, int size, void *arg)
170 {
171 vm_object_t object;
172
173 object = (vm_object_t)mem;
174 KASSERT(TAILQ_EMPTY(&object->memq),
175 ("object %p has resident pages",
176 object));
177 #if VM_NRESERVLEVEL > 0
178 KASSERT(LIST_EMPTY(&object->rvq),
179 ("object %p has reservations",
180 object));
181 #endif
182 KASSERT(object->cache == NULL,
183 ("object %p has cached pages",
184 object));
185 KASSERT(object->paging_in_progress == 0,
186 ("object %p paging_in_progress = %d",
187 object, object->paging_in_progress));
188 KASSERT(object->resident_page_count == 0,
189 ("object %p resident_page_count = %d",
190 object, object->resident_page_count));
191 KASSERT(object->shadow_count == 0,
192 ("object %p shadow_count = %d",
193 object, object->shadow_count));
194 }
195 #endif
196
197 static int
198 vm_object_zinit(void *mem, int size, int flags)
199 {
200 vm_object_t object;
201
202 object = (vm_object_t)mem;
203 bzero(&object->mtx, sizeof(object->mtx));
204 VM_OBJECT_LOCK_INIT(object, "standard object");
205
206 /* These are true for any object that has been freed */
207 object->paging_in_progress = 0;
208 object->resident_page_count = 0;
209 object->shadow_count = 0;
210 return (0);
211 }
212
213 void
214 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
215 {
216
217 TAILQ_INIT(&object->memq);
218 LIST_INIT(&object->shadow_head);
219
220 object->root = NULL;
221 object->type = type;
222 object->size = size;
223 object->generation = 1;
224 object->ref_count = 1;
225 object->memattr = VM_MEMATTR_DEFAULT;
226 object->flags = 0;
227 object->uip = NULL;
228 object->charge = 0;
229 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
230 object->flags = OBJ_ONEMAPPING;
231 object->pg_color = 0;
232 object->handle = NULL;
233 object->backing_object = NULL;
234 object->backing_object_offset = (vm_ooffset_t) 0;
235 #if VM_NRESERVLEVEL > 0
236 LIST_INIT(&object->rvq);
237 #endif
238 object->cache = NULL;
239
240 mtx_lock(&vm_object_list_mtx);
241 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
242 mtx_unlock(&vm_object_list_mtx);
243 }
244
245 /*
246 * vm_object_init:
247 *
248 * Initialize the VM objects module.
249 */
250 void
251 vm_object_init(void)
252 {
253 TAILQ_INIT(&vm_object_list);
254 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
255
256 VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
257 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
258 kernel_object);
259 #if VM_NRESERVLEVEL > 0
260 kernel_object->flags |= OBJ_COLORED;
261 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
262 #endif
263
264 VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
265 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
266 kmem_object);
267 #if VM_NRESERVLEVEL > 0
268 kmem_object->flags |= OBJ_COLORED;
269 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
270 #endif
271
272 /*
273 * The lock portion of struct vm_object must be type stable due
274 * to vm_pageout_fallback_object_lock locking a vm object
275 * without holding any references to it.
276 */
277 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
278 #ifdef INVARIANTS
279 vm_object_zdtor,
280 #else
281 NULL,
282 #endif
283 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
284 }
285
286 void
287 vm_object_clear_flag(vm_object_t object, u_short bits)
288 {
289
290 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
291 object->flags &= ~bits;
292 }
293
294 /*
295 * Sets the default memory attribute for the specified object. Pages
296 * that are allocated to this object are by default assigned this memory
297 * attribute.
298 *
299 * Presently, this function must be called before any pages are allocated
300 * to the object. In the future, this requirement may be relaxed for
301 * "default" and "swap" objects.
302 */
303 int
304 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
305 {
306
307 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
308 switch (object->type) {
309 case OBJT_DEFAULT:
310 case OBJT_DEVICE:
311 case OBJT_PHYS:
312 case OBJT_SG:
313 case OBJT_SWAP:
314 case OBJT_VNODE:
315 if (!TAILQ_EMPTY(&object->memq))
316 return (KERN_FAILURE);
317 break;
318 case OBJT_DEAD:
319 return (KERN_INVALID_ARGUMENT);
320 }
321 object->memattr = memattr;
322 return (KERN_SUCCESS);
323 }
324
325 void
326 vm_object_pip_add(vm_object_t object, short i)
327 {
328
329 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
330 object->paging_in_progress += i;
331 }
332
333 void
334 vm_object_pip_subtract(vm_object_t object, short i)
335 {
336
337 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
338 object->paging_in_progress -= i;
339 }
340
341 void
342 vm_object_pip_wakeup(vm_object_t object)
343 {
344
345 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
346 object->paging_in_progress--;
347 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
348 vm_object_clear_flag(object, OBJ_PIPWNT);
349 wakeup(object);
350 }
351 }
352
353 void
354 vm_object_pip_wakeupn(vm_object_t object, short i)
355 {
356
357 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
358 if (i)
359 object->paging_in_progress -= i;
360 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
361 vm_object_clear_flag(object, OBJ_PIPWNT);
362 wakeup(object);
363 }
364 }
365
366 void
367 vm_object_pip_wait(vm_object_t object, char *waitid)
368 {
369
370 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
371 while (object->paging_in_progress) {
372 object->flags |= OBJ_PIPWNT;
373 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
374 }
375 }
376
377 /*
378 * vm_object_allocate:
379 *
380 * Returns a new object with the given size.
381 */
382 vm_object_t
383 vm_object_allocate(objtype_t type, vm_pindex_t size)
384 {
385 vm_object_t object;
386
387 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
388 _vm_object_allocate(type, size, object);
389 return (object);
390 }
391
392
393 /*
394 * vm_object_reference:
395 *
396 * Gets another reference to the given object. Note: OBJ_DEAD
397 * objects can be referenced during final cleaning.
398 */
399 void
400 vm_object_reference(vm_object_t object)
401 {
402 if (object == NULL)
403 return;
404 VM_OBJECT_LOCK(object);
405 vm_object_reference_locked(object);
406 VM_OBJECT_UNLOCK(object);
407 }
408
409 /*
410 * vm_object_reference_locked:
411 *
412 * Gets another reference to the given object.
413 *
414 * The object must be locked.
415 */
416 void
417 vm_object_reference_locked(vm_object_t object)
418 {
419 struct vnode *vp;
420
421 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
422 object->ref_count++;
423 if (object->type == OBJT_VNODE) {
424 vp = object->handle;
425 vref(vp);
426 }
427 }
428
429 /*
430 * Handle deallocating an object of type OBJT_VNODE.
431 */
432 static void
433 vm_object_vndeallocate(vm_object_t object)
434 {
435 struct vnode *vp = (struct vnode *) object->handle;
436
437 VFS_ASSERT_GIANT(vp->v_mount);
438 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
439 KASSERT(object->type == OBJT_VNODE,
440 ("vm_object_vndeallocate: not a vnode object"));
441 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
442 #ifdef INVARIANTS
443 if (object->ref_count == 0) {
444 vprint("vm_object_vndeallocate", vp);
445 panic("vm_object_vndeallocate: bad object reference count");
446 }
447 #endif
448
449 object->ref_count--;
450 if (object->ref_count == 0) {
451 mp_fixme("Unlocked vflag access.");
452 vp->v_vflag &= ~VV_TEXT;
453 }
454 VM_OBJECT_UNLOCK(object);
455 /*
456 * vrele may need a vop lock
457 */
458 vrele(vp);
459 }
460
461 /*
462 * vm_object_deallocate:
463 *
464 * Release a reference to the specified object,
465 * gained either through a vm_object_allocate
466 * or a vm_object_reference call. When all references
467 * are gone, storage associated with this object
468 * may be relinquished.
469 *
470 * No object may be locked.
471 */
472 void
473 vm_object_deallocate(vm_object_t object)
474 {
475 vm_object_t temp;
476
477 while (object != NULL) {
478 int vfslocked;
479
480 vfslocked = 0;
481 restart:
482 VM_OBJECT_LOCK(object);
483 if (object->type == OBJT_VNODE) {
484 struct vnode *vp = (struct vnode *) object->handle;
485
486 /*
487 * Conditionally acquire Giant for a vnode-backed
488 * object. We have to be careful since the type of
489 * a vnode object can change while the object is
490 * unlocked.
491 */
492 if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
493 vfslocked = 1;
494 if (!mtx_trylock(&Giant)) {
495 VM_OBJECT_UNLOCK(object);
496 mtx_lock(&Giant);
497 goto restart;
498 }
499 }
500 vm_object_vndeallocate(object);
501 VFS_UNLOCK_GIANT(vfslocked);
502 return;
503 } else
504 /*
505 * This is to handle the case that the object
506 * changed type while we dropped its lock to
507 * obtain Giant.
508 */
509 VFS_UNLOCK_GIANT(vfslocked);
510
511 KASSERT(object->ref_count != 0,
512 ("vm_object_deallocate: object deallocated too many times: %d", object->type));
513
514 /*
515 * If the reference count goes to 0 we start calling
516 * vm_object_terminate() on the object chain.
517 * A ref count of 1 may be a special case depending on the
518 * shadow count being 0 or 1.
519 */
520 object->ref_count--;
521 if (object->ref_count > 1) {
522 VM_OBJECT_UNLOCK(object);
523 return;
524 } else if (object->ref_count == 1) {
525 if (object->shadow_count == 0 &&
526 object->handle == NULL &&
527 (object->type == OBJT_DEFAULT ||
528 object->type == OBJT_SWAP)) {
529 vm_object_set_flag(object, OBJ_ONEMAPPING);
530 } else if ((object->shadow_count == 1) &&
531 (object->handle == NULL) &&
532 (object->type == OBJT_DEFAULT ||
533 object->type == OBJT_SWAP)) {
534 vm_object_t robject;
535
536 robject = LIST_FIRST(&object->shadow_head);
537 KASSERT(robject != NULL,
538 ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
539 object->ref_count,
540 object->shadow_count));
541 if (!VM_OBJECT_TRYLOCK(robject)) {
542 /*
543 * Avoid a potential deadlock.
544 */
545 object->ref_count++;
546 VM_OBJECT_UNLOCK(object);
547 /*
548 * More likely than not the thread
549 * holding robject's lock has lower
550 * priority than the current thread.
551 * Let the lower priority thread run.
552 */
553 pause("vmo_de", 1);
554 continue;
555 }
556 /*
557 * Collapse object into its shadow unless its
558 * shadow is dead. In that case, object will
559 * be deallocated by the thread that is
560 * deallocating its shadow.
561 */
562 if ((robject->flags & OBJ_DEAD) == 0 &&
563 (robject->handle == NULL) &&
564 (robject->type == OBJT_DEFAULT ||
565 robject->type == OBJT_SWAP)) {
566
567 robject->ref_count++;
568 retry:
569 if (robject->paging_in_progress) {
570 VM_OBJECT_UNLOCK(object);
571 vm_object_pip_wait(robject,
572 "objde1");
573 temp = robject->backing_object;
574 if (object == temp) {
575 VM_OBJECT_LOCK(object);
576 goto retry;
577 }
578 } else if (object->paging_in_progress) {
579 VM_OBJECT_UNLOCK(robject);
580 object->flags |= OBJ_PIPWNT;
581 msleep(object,
582 VM_OBJECT_MTX(object),
583 PDROP | PVM, "objde2", 0);
584 VM_OBJECT_LOCK(robject);
585 temp = robject->backing_object;
586 if (object == temp) {
587 VM_OBJECT_LOCK(object);
588 goto retry;
589 }
590 } else
591 VM_OBJECT_UNLOCK(object);
592
593 if (robject->ref_count == 1) {
594 robject->ref_count--;
595 object = robject;
596 goto doterm;
597 }
598 object = robject;
599 vm_object_collapse(object);
600 VM_OBJECT_UNLOCK(object);
601 continue;
602 }
603 VM_OBJECT_UNLOCK(robject);
604 }
605 VM_OBJECT_UNLOCK(object);
606 return;
607 }
608 doterm:
609 temp = object->backing_object;
610 if (temp != NULL) {
611 VM_OBJECT_LOCK(temp);
612 LIST_REMOVE(object, shadow_list);
613 temp->shadow_count--;
614 temp->generation++;
615 VM_OBJECT_UNLOCK(temp);
616 object->backing_object = NULL;
617 }
618 /*
619 * Don't double-terminate, we could be in a termination
620 * recursion due to the terminate having to sync data
621 * to disk.
622 */
623 if ((object->flags & OBJ_DEAD) == 0)
624 vm_object_terminate(object);
625 else
626 VM_OBJECT_UNLOCK(object);
627 object = temp;
628 }
629 }
630
631 /*
632 * vm_object_destroy removes the object from the global object list
633 * and frees the space for the object.
634 */
635 void
636 vm_object_destroy(vm_object_t object)
637 {
638
639 /*
640 * Remove the object from the global object list.
641 */
642 mtx_lock(&vm_object_list_mtx);
643 TAILQ_REMOVE(&vm_object_list, object, object_list);
644 mtx_unlock(&vm_object_list_mtx);
645
646 /*
647 * Release the allocation charge.
648 */
649 if (object->uip != NULL) {
650 KASSERT(object->type == OBJT_DEFAULT ||
651 object->type == OBJT_SWAP,
652 ("vm_object_terminate: non-swap obj %p has uip",
653 object));
654 swap_release_by_uid(object->charge, object->uip);
655 object->charge = 0;
656 uifree(object->uip);
657 object->uip = NULL;
658 }
659
660 /*
661 * Free the space for the object.
662 */
663 uma_zfree(obj_zone, object);
664 }
665
666 /*
667 * vm_object_terminate actually destroys the specified object, freeing
668 * up all previously used resources.
669 *
670 * The object must be locked.
671 * This routine may block.
672 */
673 void
674 vm_object_terminate(vm_object_t object)
675 {
676 vm_page_t p;
677
678 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
679
680 /*
681 * Make sure no one uses us.
682 */
683 vm_object_set_flag(object, OBJ_DEAD);
684
685 /*
686 * wait for the pageout daemon to be done with the object
687 */
688 vm_object_pip_wait(object, "objtrm");
689
690 KASSERT(!object->paging_in_progress,
691 ("vm_object_terminate: pageout in progress"));
692
693 /*
694 * Clean and free the pages, as appropriate. All references to the
695 * object are gone, so we don't need to lock it.
696 */
697 if (object->type == OBJT_VNODE) {
698 struct vnode *vp = (struct vnode *)object->handle;
699
700 /*
701 * Clean pages and flush buffers.
702 */
703 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
704 VM_OBJECT_UNLOCK(object);
705
706 vinvalbuf(vp, V_SAVE, 0, 0);
707
708 VM_OBJECT_LOCK(object);
709 }
710
711 KASSERT(object->ref_count == 0,
712 ("vm_object_terminate: object with references, ref_count=%d",
713 object->ref_count));
714
715 /*
716 * Now free any remaining pages. For internal objects, this also
717 * removes them from paging queues. Don't free wired pages, just
718 * remove them from the object.
719 */
720 vm_page_lock_queues();
721 while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
722 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
723 ("vm_object_terminate: freeing busy page %p "
724 "p->busy = %d, p->oflags %x\n", p, p->busy, p->oflags));
725 if (p->wire_count == 0) {
726 vm_page_free(p);
727 cnt.v_pfree++;
728 } else {
729 vm_page_remove(p);
730 }
731 }
732 vm_page_unlock_queues();
733
734 #if VM_NRESERVLEVEL > 0
735 if (__predict_false(!LIST_EMPTY(&object->rvq)))
736 vm_reserv_break_all(object);
737 #endif
738 if (__predict_false(object->cache != NULL))
739 vm_page_cache_free(object, 0, 0);
740
741 /*
742 * Let the pager know object is dead.
743 */
744 vm_pager_deallocate(object);
745 VM_OBJECT_UNLOCK(object);
746
747 vm_object_destroy(object);
748 }
749
750 /*
751 * vm_object_page_clean
752 *
753 * Clean all dirty pages in the specified range of object. Leaves page
754 * on whatever queue it is currently on. If NOSYNC is set then do not
755 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
756 * leaving the object dirty.
757 *
758 * When stuffing pages asynchronously, allow clustering. XXX we need a
759 * synchronous clustering mode implementation.
760 *
761 * Odd semantics: if start == end, we clean everything.
762 *
763 * The object must be locked.
764 */
765 void
766 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
767 {
768 vm_page_t p, np;
769 vm_pindex_t tstart, tend;
770 vm_pindex_t pi;
771 int clearobjflags;
772 int pagerflags;
773 int curgeneration;
774
775 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
776 if (object->type != OBJT_VNODE ||
777 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
778 return;
779
780 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
781 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
782
783 vm_object_set_flag(object, OBJ_CLEANING);
784
785 tstart = start;
786 if (end == 0) {
787 tend = object->size;
788 } else {
789 tend = end;
790 }
791
792 vm_page_lock_queues();
793 /*
794 * If the caller is smart and only msync()s a range he knows is
795 * dirty, we may be able to avoid an object scan. This results in
796 * a phenominal improvement in performance. We cannot do this
797 * as a matter of course because the object may be huge - e.g.
798 * the size might be in the gigabytes or terrabytes.
799 */
800 if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
801 vm_pindex_t tscan;
802 int scanlimit;
803 int scanreset;
804
805 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
806 if (scanreset < 16)
807 scanreset = 16;
808 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
809
810 scanlimit = scanreset;
811 tscan = tstart;
812 while (tscan < tend) {
813 curgeneration = object->generation;
814 p = vm_page_lookup(object, tscan);
815 if (p == NULL || p->valid == 0) {
816 if (--scanlimit == 0)
817 break;
818 ++tscan;
819 continue;
820 }
821 vm_page_test_dirty(p);
822 if (p->dirty == 0) {
823 if (--scanlimit == 0)
824 break;
825 ++tscan;
826 continue;
827 }
828 /*
829 * If we have been asked to skip nosync pages and
830 * this is a nosync page, we can't continue.
831 */
832 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
833 if (--scanlimit == 0)
834 break;
835 ++tscan;
836 continue;
837 }
838 scanlimit = scanreset;
839
840 /*
841 * This returns 0 if it was unable to busy the first
842 * page (i.e. had to sleep).
843 */
844 tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
845 }
846
847 /*
848 * If everything was dirty and we flushed it successfully,
849 * and the requested range is not the entire object, we
850 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
851 * return immediately.
852 */
853 if (tscan >= tend && (tstart || tend < object->size)) {
854 vm_page_unlock_queues();
855 vm_object_clear_flag(object, OBJ_CLEANING);
856 return;
857 }
858 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
859 }
860
861 /*
862 * Generally set CLEANCHK interlock and make the page read-only so
863 * we can then clear the object flags.
864 *
865 * However, if this is a nosync mmap then the object is likely to
866 * stay dirty so do not mess with the page and do not clear the
867 * object flags.
868 */
869 clearobjflags = 1;
870 TAILQ_FOREACH(p, &object->memq, listq) {
871 p->oflags |= VPO_CLEANCHK;
872 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC))
873 clearobjflags = 0;
874 else
875 pmap_remove_write(p);
876 }
877
878 if (clearobjflags && (tstart == 0) && (tend == object->size)) {
879 struct vnode *vp;
880
881 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
882 if (object->type == OBJT_VNODE &&
883 (vp = (struct vnode *)object->handle) != NULL) {
884 VI_LOCK(vp);
885 if (vp->v_iflag & VI_OBJDIRTY)
886 vp->v_iflag &= ~VI_OBJDIRTY;
887 VI_UNLOCK(vp);
888 }
889 }
890
891 rescan:
892 curgeneration = object->generation;
893
894 for (p = TAILQ_FIRST(&object->memq); p; p = np) {
895 int n;
896
897 np = TAILQ_NEXT(p, listq);
898
899 again:
900 pi = p->pindex;
901 if ((p->oflags & VPO_CLEANCHK) == 0 ||
902 (pi < tstart) || (pi >= tend) ||
903 p->valid == 0) {
904 p->oflags &= ~VPO_CLEANCHK;
905 continue;
906 }
907
908 vm_page_test_dirty(p);
909 if (p->dirty == 0) {
910 p->oflags &= ~VPO_CLEANCHK;
911 continue;
912 }
913
914 /*
915 * If we have been asked to skip nosync pages and this is a
916 * nosync page, skip it. Note that the object flags were
917 * not cleared in this case so we do not have to set them.
918 */
919 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
920 p->oflags &= ~VPO_CLEANCHK;
921 continue;
922 }
923
924 n = vm_object_page_collect_flush(object, p,
925 curgeneration, pagerflags);
926 if (n == 0)
927 goto rescan;
928
929 if (object->generation != curgeneration)
930 goto rescan;
931
932 /*
933 * Try to optimize the next page. If we can't we pick up
934 * our (random) scan where we left off.
935 */
936 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
937 if ((p = vm_page_lookup(object, pi + n)) != NULL)
938 goto again;
939 }
940 }
941 vm_page_unlock_queues();
942 #if 0
943 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
944 #endif
945
946 vm_object_clear_flag(object, OBJ_CLEANING);
947 return;
948 }
949
950 static int
951 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
952 {
953 int runlen;
954 int maxf;
955 int chkb;
956 int maxb;
957 int i;
958 vm_pindex_t pi;
959 vm_page_t maf[vm_pageout_page_count];
960 vm_page_t mab[vm_pageout_page_count];
961 vm_page_t ma[vm_pageout_page_count];
962
963 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
964 pi = p->pindex;
965 while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
966 vm_page_lock_queues();
967 if (object->generation != curgeneration) {
968 return(0);
969 }
970 }
971 maxf = 0;
972 for(i = 1; i < vm_pageout_page_count; i++) {
973 vm_page_t tp;
974
975 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
976 if ((tp->oflags & VPO_BUSY) ||
977 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
978 (tp->oflags & VPO_CLEANCHK) == 0) ||
979 (tp->busy != 0))
980 break;
981 vm_page_test_dirty(tp);
982 if (tp->dirty == 0) {
983 tp->oflags &= ~VPO_CLEANCHK;
984 break;
985 }
986 maf[ i - 1 ] = tp;
987 maxf++;
988 continue;
989 }
990 break;
991 }
992
993 maxb = 0;
994 chkb = vm_pageout_page_count - maxf;
995 if (chkb) {
996 for(i = 1; i < chkb;i++) {
997 vm_page_t tp;
998
999 if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
1000 if ((tp->oflags & VPO_BUSY) ||
1001 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1002 (tp->oflags & VPO_CLEANCHK) == 0) ||
1003 (tp->busy != 0))
1004 break;
1005 vm_page_test_dirty(tp);
1006 if (tp->dirty == 0) {
1007 tp->oflags &= ~VPO_CLEANCHK;
1008 break;
1009 }
1010 mab[ i - 1 ] = tp;
1011 maxb++;
1012 continue;
1013 }
1014 break;
1015 }
1016 }
1017
1018 for(i = 0; i < maxb; i++) {
1019 int index = (maxb - i) - 1;
1020 ma[index] = mab[i];
1021 ma[index]->oflags &= ~VPO_CLEANCHK;
1022 }
1023 p->oflags &= ~VPO_CLEANCHK;
1024 ma[maxb] = p;
1025 for(i = 0; i < maxf; i++) {
1026 int index = (maxb + i) + 1;
1027 ma[index] = maf[i];
1028 ma[index]->oflags &= ~VPO_CLEANCHK;
1029 }
1030 runlen = maxb + maxf + 1;
1031
1032 vm_pageout_flush(ma, runlen, pagerflags);
1033 for (i = 0; i < runlen; i++) {
1034 if (ma[i]->dirty) {
1035 pmap_remove_write(ma[i]);
1036 ma[i]->oflags |= VPO_CLEANCHK;
1037
1038 /*
1039 * maxf will end up being the actual number of pages
1040 * we wrote out contiguously, non-inclusive of the
1041 * first page. We do not count look-behind pages.
1042 */
1043 if (i >= maxb + 1 && (maxf > i - maxb - 1))
1044 maxf = i - maxb - 1;
1045 }
1046 }
1047 return(maxf + 1);
1048 }
1049
1050 /*
1051 * Note that there is absolutely no sense in writing out
1052 * anonymous objects, so we track down the vnode object
1053 * to write out.
1054 * We invalidate (remove) all pages from the address space
1055 * for semantic correctness.
1056 *
1057 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1058 * may start out with a NULL object.
1059 */
1060 void
1061 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1062 boolean_t syncio, boolean_t invalidate)
1063 {
1064 vm_object_t backing_object;
1065 struct vnode *vp;
1066 struct mount *mp;
1067 int flags;
1068
1069 if (object == NULL)
1070 return;
1071 VM_OBJECT_LOCK(object);
1072 while ((backing_object = object->backing_object) != NULL) {
1073 VM_OBJECT_LOCK(backing_object);
1074 offset += object->backing_object_offset;
1075 VM_OBJECT_UNLOCK(object);
1076 object = backing_object;
1077 if (object->size < OFF_TO_IDX(offset + size))
1078 size = IDX_TO_OFF(object->size) - offset;
1079 }
1080 /*
1081 * Flush pages if writing is allowed, invalidate them
1082 * if invalidation requested. Pages undergoing I/O
1083 * will be ignored by vm_object_page_remove().
1084 *
1085 * We cannot lock the vnode and then wait for paging
1086 * to complete without deadlocking against vm_fault.
1087 * Instead we simply call vm_object_page_remove() and
1088 * allow it to block internally on a page-by-page
1089 * basis when it encounters pages undergoing async
1090 * I/O.
1091 */
1092 if (object->type == OBJT_VNODE &&
1093 (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1094 int vfslocked;
1095 vp = object->handle;
1096 VM_OBJECT_UNLOCK(object);
1097 (void) vn_start_write(vp, &mp, V_WAIT);
1098 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1099 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1100 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1101 flags |= invalidate ? OBJPC_INVAL : 0;
1102 VM_OBJECT_LOCK(object);
1103 vm_object_page_clean(object,
1104 OFF_TO_IDX(offset),
1105 OFF_TO_IDX(offset + size + PAGE_MASK),
1106 flags);
1107 VM_OBJECT_UNLOCK(object);
1108 VOP_UNLOCK(vp, 0);
1109 VFS_UNLOCK_GIANT(vfslocked);
1110 vn_finished_write(mp);
1111 VM_OBJECT_LOCK(object);
1112 }
1113 if ((object->type == OBJT_VNODE ||
1114 object->type == OBJT_DEVICE) && invalidate) {
1115 boolean_t purge;
1116 purge = old_msync || (object->type == OBJT_DEVICE);
1117 vm_object_page_remove(object,
1118 OFF_TO_IDX(offset),
1119 OFF_TO_IDX(offset + size + PAGE_MASK),
1120 purge ? FALSE : TRUE);
1121 }
1122 VM_OBJECT_UNLOCK(object);
1123 }
1124
1125 /*
1126 * vm_object_madvise:
1127 *
1128 * Implements the madvise function at the object/page level.
1129 *
1130 * MADV_WILLNEED (any object)
1131 *
1132 * Activate the specified pages if they are resident.
1133 *
1134 * MADV_DONTNEED (any object)
1135 *
1136 * Deactivate the specified pages if they are resident.
1137 *
1138 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects,
1139 * OBJ_ONEMAPPING only)
1140 *
1141 * Deactivate and clean the specified pages if they are
1142 * resident. This permits the process to reuse the pages
1143 * without faulting or the kernel to reclaim the pages
1144 * without I/O.
1145 */
1146 void
1147 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1148 {
1149 vm_pindex_t end, tpindex;
1150 vm_object_t backing_object, tobject;
1151 vm_page_t m;
1152
1153 if (object == NULL)
1154 return;
1155 VM_OBJECT_LOCK(object);
1156 end = pindex + count;
1157 /*
1158 * Locate and adjust resident pages
1159 */
1160 for (; pindex < end; pindex += 1) {
1161 relookup:
1162 tobject = object;
1163 tpindex = pindex;
1164 shadowlookup:
1165 /*
1166 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1167 * and those pages must be OBJ_ONEMAPPING.
1168 */
1169 if (advise == MADV_FREE) {
1170 if ((tobject->type != OBJT_DEFAULT &&
1171 tobject->type != OBJT_SWAP) ||
1172 (tobject->flags & OBJ_ONEMAPPING) == 0) {
1173 goto unlock_tobject;
1174 }
1175 }
1176 m = vm_page_lookup(tobject, tpindex);
1177 if (m == NULL && advise == MADV_WILLNEED) {
1178 /*
1179 * If the page is cached, reactivate it.
1180 */
1181 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1182 VM_ALLOC_NOBUSY);
1183 }
1184 if (m == NULL) {
1185 /*
1186 * There may be swap even if there is no backing page
1187 */
1188 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1189 swap_pager_freespace(tobject, tpindex, 1);
1190 /*
1191 * next object
1192 */
1193 backing_object = tobject->backing_object;
1194 if (backing_object == NULL)
1195 goto unlock_tobject;
1196 VM_OBJECT_LOCK(backing_object);
1197 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1198 if (tobject != object)
1199 VM_OBJECT_UNLOCK(tobject);
1200 tobject = backing_object;
1201 goto shadowlookup;
1202 }
1203 /*
1204 * If the page is busy or not in a normal active state,
1205 * we skip it. If the page is not managed there are no
1206 * page queues to mess with. Things can break if we mess
1207 * with pages in any of the below states.
1208 */
1209 vm_page_lock_queues();
1210 if (m->hold_count ||
1211 m->wire_count ||
1212 (m->flags & PG_UNMANAGED) ||
1213 m->valid != VM_PAGE_BITS_ALL) {
1214 vm_page_unlock_queues();
1215 goto unlock_tobject;
1216 }
1217 if ((m->oflags & VPO_BUSY) || m->busy) {
1218 vm_page_flag_set(m, PG_REFERENCED);
1219 vm_page_unlock_queues();
1220 if (object != tobject)
1221 VM_OBJECT_UNLOCK(object);
1222 m->oflags |= VPO_WANTED;
1223 msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 0);
1224 VM_OBJECT_LOCK(object);
1225 goto relookup;
1226 }
1227 if (advise == MADV_WILLNEED) {
1228 vm_page_activate(m);
1229 } else if (advise == MADV_DONTNEED) {
1230 vm_page_dontneed(m);
1231 } else if (advise == MADV_FREE) {
1232 /*
1233 * Mark the page clean. This will allow the page
1234 * to be freed up by the system. However, such pages
1235 * are often reused quickly by malloc()/free()
1236 * so we do not do anything that would cause
1237 * a page fault if we can help it.
1238 *
1239 * Specifically, we do not try to actually free
1240 * the page now nor do we try to put it in the
1241 * cache (which would cause a page fault on reuse).
1242 *
1243 * But we do make the page is freeable as we
1244 * can without actually taking the step of unmapping
1245 * it.
1246 */
1247 pmap_clear_modify(m);
1248 m->dirty = 0;
1249 m->act_count = 0;
1250 vm_page_dontneed(m);
1251 }
1252 vm_page_unlock_queues();
1253 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1254 swap_pager_freespace(tobject, tpindex, 1);
1255 unlock_tobject:
1256 if (tobject != object)
1257 VM_OBJECT_UNLOCK(tobject);
1258 }
1259 VM_OBJECT_UNLOCK(object);
1260 }
1261
1262 /*
1263 * vm_object_shadow:
1264 *
1265 * Create a new object which is backed by the
1266 * specified existing object range. The source
1267 * object reference is deallocated.
1268 *
1269 * The new object and offset into that object
1270 * are returned in the source parameters.
1271 */
1272 void
1273 vm_object_shadow(
1274 vm_object_t *object, /* IN/OUT */
1275 vm_ooffset_t *offset, /* IN/OUT */
1276 vm_size_t length)
1277 {
1278 vm_object_t source;
1279 vm_object_t result;
1280
1281 source = *object;
1282
1283 /*
1284 * Don't create the new object if the old object isn't shared.
1285 */
1286 if (source != NULL) {
1287 VM_OBJECT_LOCK(source);
1288 if (source->ref_count == 1 &&
1289 source->handle == NULL &&
1290 (source->type == OBJT_DEFAULT ||
1291 source->type == OBJT_SWAP)) {
1292 VM_OBJECT_UNLOCK(source);
1293 return;
1294 }
1295 VM_OBJECT_UNLOCK(source);
1296 }
1297
1298 /*
1299 * Allocate a new object with the given length.
1300 */
1301 result = vm_object_allocate(OBJT_DEFAULT, length);
1302
1303 /*
1304 * The new object shadows the source object, adding a reference to it.
1305 * Our caller changes his reference to point to the new object,
1306 * removing a reference to the source object. Net result: no change
1307 * of reference count.
1308 *
1309 * Try to optimize the result object's page color when shadowing
1310 * in order to maintain page coloring consistency in the combined
1311 * shadowed object.
1312 */
1313 result->backing_object = source;
1314 /*
1315 * Store the offset into the source object, and fix up the offset into
1316 * the new object.
1317 */
1318 result->backing_object_offset = *offset;
1319 if (source != NULL) {
1320 VM_OBJECT_LOCK(source);
1321 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1322 source->shadow_count++;
1323 source->generation++;
1324 #if VM_NRESERVLEVEL > 0
1325 result->flags |= source->flags & OBJ_COLORED;
1326 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1327 ((1 << (VM_NFREEORDER - 1)) - 1);
1328 #endif
1329 VM_OBJECT_UNLOCK(source);
1330 }
1331
1332
1333 /*
1334 * Return the new things
1335 */
1336 *offset = 0;
1337 *object = result;
1338 }
1339
1340 /*
1341 * vm_object_split:
1342 *
1343 * Split the pages in a map entry into a new object. This affords
1344 * easier removal of unused pages, and keeps object inheritance from
1345 * being a negative impact on memory usage.
1346 */
1347 void
1348 vm_object_split(vm_map_entry_t entry)
1349 {
1350 vm_page_t m, m_next;
1351 vm_object_t orig_object, new_object, source;
1352 vm_pindex_t idx, offidxstart;
1353 vm_size_t size;
1354
1355 orig_object = entry->object.vm_object;
1356 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1357 return;
1358 if (orig_object->ref_count <= 1)
1359 return;
1360 VM_OBJECT_UNLOCK(orig_object);
1361
1362 offidxstart = OFF_TO_IDX(entry->offset);
1363 size = atop(entry->end - entry->start);
1364
1365 /*
1366 * If swap_pager_copy() is later called, it will convert new_object
1367 * into a swap object.
1368 */
1369 new_object = vm_object_allocate(OBJT_DEFAULT, size);
1370
1371 /*
1372 * At this point, the new object is still private, so the order in
1373 * which the original and new objects are locked does not matter.
1374 */
1375 VM_OBJECT_LOCK(new_object);
1376 VM_OBJECT_LOCK(orig_object);
1377 source = orig_object->backing_object;
1378 if (source != NULL) {
1379 VM_OBJECT_LOCK(source);
1380 if ((source->flags & OBJ_DEAD) != 0) {
1381 VM_OBJECT_UNLOCK(source);
1382 VM_OBJECT_UNLOCK(orig_object);
1383 VM_OBJECT_UNLOCK(new_object);
1384 vm_object_deallocate(new_object);
1385 VM_OBJECT_LOCK(orig_object);
1386 return;
1387 }
1388 LIST_INSERT_HEAD(&source->shadow_head,
1389 new_object, shadow_list);
1390 source->shadow_count++;
1391 source->generation++;
1392 vm_object_reference_locked(source); /* for new_object */
1393 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1394 VM_OBJECT_UNLOCK(source);
1395 new_object->backing_object_offset =
1396 orig_object->backing_object_offset + entry->offset;
1397 new_object->backing_object = source;
1398 }
1399 if (orig_object->uip != NULL) {
1400 new_object->uip = orig_object->uip;
1401 uihold(orig_object->uip);
1402 new_object->charge = ptoa(size);
1403 KASSERT(orig_object->charge >= ptoa(size),
1404 ("orig_object->charge < 0"));
1405 orig_object->charge -= ptoa(size);
1406 }
1407 retry:
1408 if ((m = TAILQ_FIRST(&orig_object->memq)) != NULL) {
1409 if (m->pindex < offidxstart) {
1410 m = vm_page_splay(offidxstart, orig_object->root);
1411 if ((orig_object->root = m)->pindex < offidxstart)
1412 m = TAILQ_NEXT(m, listq);
1413 }
1414 }
1415 vm_page_lock_queues();
1416 for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1417 m = m_next) {
1418 m_next = TAILQ_NEXT(m, listq);
1419
1420 /*
1421 * We must wait for pending I/O to complete before we can
1422 * rename the page.
1423 *
1424 * We do not have to VM_PROT_NONE the page as mappings should
1425 * not be changed by this operation.
1426 */
1427 if ((m->oflags & VPO_BUSY) || m->busy) {
1428 vm_page_flag_set(m, PG_REFERENCED);
1429 vm_page_unlock_queues();
1430 VM_OBJECT_UNLOCK(new_object);
1431 m->oflags |= VPO_WANTED;
1432 msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1433 VM_OBJECT_LOCK(new_object);
1434 goto retry;
1435 }
1436 vm_page_rename(m, new_object, idx);
1437 /* page automatically made dirty by rename and cache handled */
1438 vm_page_busy(m);
1439 }
1440 vm_page_unlock_queues();
1441 if (orig_object->type == OBJT_SWAP) {
1442 /*
1443 * swap_pager_copy() can sleep, in which case the orig_object's
1444 * and new_object's locks are released and reacquired.
1445 */
1446 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1447
1448 /*
1449 * Transfer any cached pages from orig_object to new_object.
1450 */
1451 if (__predict_false(orig_object->cache != NULL))
1452 vm_page_cache_transfer(orig_object, offidxstart,
1453 new_object);
1454 }
1455 VM_OBJECT_UNLOCK(orig_object);
1456 TAILQ_FOREACH(m, &new_object->memq, listq)
1457 vm_page_wakeup(m);
1458 VM_OBJECT_UNLOCK(new_object);
1459 entry->object.vm_object = new_object;
1460 entry->offset = 0LL;
1461 vm_object_deallocate(orig_object);
1462 VM_OBJECT_LOCK(new_object);
1463 }
1464
1465 #define OBSC_TEST_ALL_SHADOWED 0x0001
1466 #define OBSC_COLLAPSE_NOWAIT 0x0002
1467 #define OBSC_COLLAPSE_WAIT 0x0004
1468
1469 static int
1470 vm_object_backing_scan(vm_object_t object, int op)
1471 {
1472 int r = 1;
1473 vm_page_t p;
1474 vm_object_t backing_object;
1475 vm_pindex_t backing_offset_index;
1476
1477 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1478 VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1479
1480 backing_object = object->backing_object;
1481 backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1482
1483 /*
1484 * Initial conditions
1485 */
1486 if (op & OBSC_TEST_ALL_SHADOWED) {
1487 /*
1488 * We do not want to have to test for the existence of cache
1489 * or swap pages in the backing object. XXX but with the
1490 * new swapper this would be pretty easy to do.
1491 *
1492 * XXX what about anonymous MAP_SHARED memory that hasn't
1493 * been ZFOD faulted yet? If we do not test for this, the
1494 * shadow test may succeed! XXX
1495 */
1496 if (backing_object->type != OBJT_DEFAULT) {
1497 return (0);
1498 }
1499 }
1500 if (op & OBSC_COLLAPSE_WAIT) {
1501 vm_object_set_flag(backing_object, OBJ_DEAD);
1502 }
1503
1504 /*
1505 * Our scan
1506 */
1507 p = TAILQ_FIRST(&backing_object->memq);
1508 while (p) {
1509 vm_page_t next = TAILQ_NEXT(p, listq);
1510 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1511
1512 if (op & OBSC_TEST_ALL_SHADOWED) {
1513 vm_page_t pp;
1514
1515 /*
1516 * Ignore pages outside the parent object's range
1517 * and outside the parent object's mapping of the
1518 * backing object.
1519 *
1520 * note that we do not busy the backing object's
1521 * page.
1522 */
1523 if (
1524 p->pindex < backing_offset_index ||
1525 new_pindex >= object->size
1526 ) {
1527 p = next;
1528 continue;
1529 }
1530
1531 /*
1532 * See if the parent has the page or if the parent's
1533 * object pager has the page. If the parent has the
1534 * page but the page is not valid, the parent's
1535 * object pager must have the page.
1536 *
1537 * If this fails, the parent does not completely shadow
1538 * the object and we might as well give up now.
1539 */
1540
1541 pp = vm_page_lookup(object, new_pindex);
1542 if (
1543 (pp == NULL || pp->valid == 0) &&
1544 !vm_pager_has_page(object, new_pindex, NULL, NULL)
1545 ) {
1546 r = 0;
1547 break;
1548 }
1549 }
1550
1551 /*
1552 * Check for busy page
1553 */
1554 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1555 vm_page_t pp;
1556
1557 if (op & OBSC_COLLAPSE_NOWAIT) {
1558 if ((p->oflags & VPO_BUSY) ||
1559 !p->valid ||
1560 p->busy) {
1561 p = next;
1562 continue;
1563 }
1564 } else if (op & OBSC_COLLAPSE_WAIT) {
1565 if ((p->oflags & VPO_BUSY) || p->busy) {
1566 vm_page_lock_queues();
1567 vm_page_flag_set(p, PG_REFERENCED);
1568 vm_page_unlock_queues();
1569 VM_OBJECT_UNLOCK(object);
1570 p->oflags |= VPO_WANTED;
1571 msleep(p, VM_OBJECT_MTX(backing_object),
1572 PDROP | PVM, "vmocol", 0);
1573 VM_OBJECT_LOCK(object);
1574 VM_OBJECT_LOCK(backing_object);
1575 /*
1576 * If we slept, anything could have
1577 * happened. Since the object is
1578 * marked dead, the backing offset
1579 * should not have changed so we
1580 * just restart our scan.
1581 */
1582 p = TAILQ_FIRST(&backing_object->memq);
1583 continue;
1584 }
1585 }
1586
1587 KASSERT(
1588 p->object == backing_object,
1589 ("vm_object_backing_scan: object mismatch")
1590 );
1591
1592 /*
1593 * Destroy any associated swap
1594 */
1595 if (backing_object->type == OBJT_SWAP) {
1596 swap_pager_freespace(
1597 backing_object,
1598 p->pindex,
1599 1
1600 );
1601 }
1602
1603 if (
1604 p->pindex < backing_offset_index ||
1605 new_pindex >= object->size
1606 ) {
1607 /*
1608 * Page is out of the parent object's range, we
1609 * can simply destroy it.
1610 */
1611 vm_page_lock_queues();
1612 KASSERT(!pmap_page_is_mapped(p),
1613 ("freeing mapped page %p", p));
1614 if (p->wire_count == 0)
1615 vm_page_free(p);
1616 else
1617 vm_page_remove(p);
1618 vm_page_unlock_queues();
1619 p = next;
1620 continue;
1621 }
1622
1623 pp = vm_page_lookup(object, new_pindex);
1624 if (
1625 pp != NULL ||
1626 vm_pager_has_page(object, new_pindex, NULL, NULL)
1627 ) {
1628 /*
1629 * page already exists in parent OR swap exists
1630 * for this location in the parent. Destroy
1631 * the original page from the backing object.
1632 *
1633 * Leave the parent's page alone
1634 */
1635 vm_page_lock_queues();
1636 KASSERT(!pmap_page_is_mapped(p),
1637 ("freeing mapped page %p", p));
1638 if (p->wire_count == 0)
1639 vm_page_free(p);
1640 else
1641 vm_page_remove(p);
1642 vm_page_unlock_queues();
1643 p = next;
1644 continue;
1645 }
1646
1647 #if VM_NRESERVLEVEL > 0
1648 /*
1649 * Rename the reservation.
1650 */
1651 vm_reserv_rename(p, object, backing_object,
1652 backing_offset_index);
1653 #endif
1654
1655 /*
1656 * Page does not exist in parent, rename the
1657 * page from the backing object to the main object.
1658 *
1659 * If the page was mapped to a process, it can remain
1660 * mapped through the rename.
1661 */
1662 vm_page_lock_queues();
1663 vm_page_rename(p, object, new_pindex);
1664 vm_page_unlock_queues();
1665 /* page automatically made dirty by rename */
1666 }
1667 p = next;
1668 }
1669 return (r);
1670 }
1671
1672
1673 /*
1674 * this version of collapse allows the operation to occur earlier and
1675 * when paging_in_progress is true for an object... This is not a complete
1676 * operation, but should plug 99.9% of the rest of the leaks.
1677 */
1678 static void
1679 vm_object_qcollapse(vm_object_t object)
1680 {
1681 vm_object_t backing_object = object->backing_object;
1682
1683 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1684 VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1685
1686 if (backing_object->ref_count != 1)
1687 return;
1688
1689 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1690 }
1691
1692 /*
1693 * vm_object_collapse:
1694 *
1695 * Collapse an object with the object backing it.
1696 * Pages in the backing object are moved into the
1697 * parent, and the backing object is deallocated.
1698 */
1699 void
1700 vm_object_collapse(vm_object_t object)
1701 {
1702 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1703
1704 while (TRUE) {
1705 vm_object_t backing_object;
1706
1707 /*
1708 * Verify that the conditions are right for collapse:
1709 *
1710 * The object exists and the backing object exists.
1711 */
1712 if ((backing_object = object->backing_object) == NULL)
1713 break;
1714
1715 /*
1716 * we check the backing object first, because it is most likely
1717 * not collapsable.
1718 */
1719 VM_OBJECT_LOCK(backing_object);
1720 if (backing_object->handle != NULL ||
1721 (backing_object->type != OBJT_DEFAULT &&
1722 backing_object->type != OBJT_SWAP) ||
1723 (backing_object->flags & OBJ_DEAD) ||
1724 object->handle != NULL ||
1725 (object->type != OBJT_DEFAULT &&
1726 object->type != OBJT_SWAP) ||
1727 (object->flags & OBJ_DEAD)) {
1728 VM_OBJECT_UNLOCK(backing_object);
1729 break;
1730 }
1731
1732 if (
1733 object->paging_in_progress != 0 ||
1734 backing_object->paging_in_progress != 0
1735 ) {
1736 vm_object_qcollapse(object);
1737 VM_OBJECT_UNLOCK(backing_object);
1738 break;
1739 }
1740 /*
1741 * We know that we can either collapse the backing object (if
1742 * the parent is the only reference to it) or (perhaps) have
1743 * the parent bypass the object if the parent happens to shadow
1744 * all the resident pages in the entire backing object.
1745 *
1746 * This is ignoring pager-backed pages such as swap pages.
1747 * vm_object_backing_scan fails the shadowing test in this
1748 * case.
1749 */
1750 if (backing_object->ref_count == 1) {
1751 /*
1752 * If there is exactly one reference to the backing
1753 * object, we can collapse it into the parent.
1754 */
1755 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1756
1757 #if VM_NRESERVLEVEL > 0
1758 /*
1759 * Break any reservations from backing_object.
1760 */
1761 if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1762 vm_reserv_break_all(backing_object);
1763 #endif
1764
1765 /*
1766 * Move the pager from backing_object to object.
1767 */
1768 if (backing_object->type == OBJT_SWAP) {
1769 /*
1770 * swap_pager_copy() can sleep, in which case
1771 * the backing_object's and object's locks are
1772 * released and reacquired.
1773 */
1774 swap_pager_copy(
1775 backing_object,
1776 object,
1777 OFF_TO_IDX(object->backing_object_offset), TRUE);
1778
1779 /*
1780 * Free any cached pages from backing_object.
1781 */
1782 if (__predict_false(backing_object->cache != NULL))
1783 vm_page_cache_free(backing_object, 0, 0);
1784 }
1785 /*
1786 * Object now shadows whatever backing_object did.
1787 * Note that the reference to
1788 * backing_object->backing_object moves from within
1789 * backing_object to within object.
1790 */
1791 LIST_REMOVE(object, shadow_list);
1792 backing_object->shadow_count--;
1793 backing_object->generation++;
1794 if (backing_object->backing_object) {
1795 VM_OBJECT_LOCK(backing_object->backing_object);
1796 LIST_REMOVE(backing_object, shadow_list);
1797 LIST_INSERT_HEAD(
1798 &backing_object->backing_object->shadow_head,
1799 object, shadow_list);
1800 /*
1801 * The shadow_count has not changed.
1802 */
1803 backing_object->backing_object->generation++;
1804 VM_OBJECT_UNLOCK(backing_object->backing_object);
1805 }
1806 object->backing_object = backing_object->backing_object;
1807 object->backing_object_offset +=
1808 backing_object->backing_object_offset;
1809
1810 /*
1811 * Discard backing_object.
1812 *
1813 * Since the backing object has no pages, no pager left,
1814 * and no object references within it, all that is
1815 * necessary is to dispose of it.
1816 */
1817 KASSERT(backing_object->ref_count == 1, (
1818 "backing_object %p was somehow re-referenced during collapse!",
1819 backing_object));
1820 VM_OBJECT_UNLOCK(backing_object);
1821 vm_object_destroy(backing_object);
1822
1823 object_collapses++;
1824 } else {
1825 vm_object_t new_backing_object;
1826
1827 /*
1828 * If we do not entirely shadow the backing object,
1829 * there is nothing we can do so we give up.
1830 */
1831 if (object->resident_page_count != object->size &&
1832 vm_object_backing_scan(object,
1833 OBSC_TEST_ALL_SHADOWED) == 0) {
1834 VM_OBJECT_UNLOCK(backing_object);
1835 break;
1836 }
1837
1838 /*
1839 * Make the parent shadow the next object in the
1840 * chain. Deallocating backing_object will not remove
1841 * it, since its reference count is at least 2.
1842 */
1843 LIST_REMOVE(object, shadow_list);
1844 backing_object->shadow_count--;
1845 backing_object->generation++;
1846
1847 new_backing_object = backing_object->backing_object;
1848 if ((object->backing_object = new_backing_object) != NULL) {
1849 VM_OBJECT_LOCK(new_backing_object);
1850 LIST_INSERT_HEAD(
1851 &new_backing_object->shadow_head,
1852 object,
1853 shadow_list
1854 );
1855 new_backing_object->shadow_count++;
1856 new_backing_object->generation++;
1857 vm_object_reference_locked(new_backing_object);
1858 VM_OBJECT_UNLOCK(new_backing_object);
1859 object->backing_object_offset +=
1860 backing_object->backing_object_offset;
1861 }
1862
1863 /*
1864 * Drop the reference count on backing_object. Since
1865 * its ref_count was at least 2, it will not vanish.
1866 */
1867 backing_object->ref_count--;
1868 VM_OBJECT_UNLOCK(backing_object);
1869 object_bypasses++;
1870 }
1871
1872 /*
1873 * Try again with this object's new backing object.
1874 */
1875 }
1876 }
1877
1878 /*
1879 * vm_object_page_remove:
1880 *
1881 * For the given object, either frees or invalidates each of the
1882 * specified pages. In general, a page is freed. However, if a
1883 * page is wired for any reason other than the existence of a
1884 * managed, wired mapping, then it may be invalidated but not
1885 * removed from the object. Pages are specified by the given
1886 * range ["start", "end") and Boolean "clean_only". As a
1887 * special case, if "end" is zero, then the range extends from
1888 * "start" to the end of the object. If "clean_only" is TRUE,
1889 * then only the non-dirty pages within the specified range are
1890 * affected.
1891 *
1892 * In general, this operation should only be performed on objects
1893 * that contain managed pages. There are two exceptions. First,
1894 * it may be performed on the kernel and kmem objects. Second,
1895 * it may be used by msync(..., MS_INVALIDATE) to invalidate
1896 * device-backed pages.
1897 *
1898 * The object must be locked.
1899 */
1900 void
1901 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1902 boolean_t clean_only)
1903 {
1904 vm_page_t p, next;
1905 int wirings;
1906
1907 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1908 if (object->resident_page_count == 0)
1909 goto skipmemq;
1910
1911 /*
1912 * Since physically-backed objects do not use managed pages, we can't
1913 * remove pages from the object (we must instead remove the page
1914 * references, and then destroy the object).
1915 */
1916 KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1917 object == kmem_object,
1918 ("attempt to remove pages from a physical object"));
1919
1920 vm_object_pip_add(object, 1);
1921 again:
1922 if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1923 if (p->pindex < start) {
1924 p = vm_page_splay(start, object->root);
1925 if ((object->root = p)->pindex < start)
1926 p = TAILQ_NEXT(p, listq);
1927 }
1928 }
1929 vm_page_lock_queues();
1930 /*
1931 * Assert: the variable p is either (1) the page with the
1932 * least pindex greater than or equal to the parameter pindex
1933 * or (2) NULL.
1934 */
1935 for (;
1936 p != NULL && (p->pindex < end || end == 0);
1937 p = next) {
1938 next = TAILQ_NEXT(p, listq);
1939
1940 /*
1941 * If the page is wired for any reason besides the
1942 * existence of managed, wired mappings, then it cannot
1943 * be freed. For example, fictitious pages, which
1944 * represent device memory, are inherently wired and
1945 * cannot be freed. They can, however, be invalidated
1946 * if "clean_only" is FALSE.
1947 */
1948 if ((wirings = p->wire_count) != 0 &&
1949 (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1950 /* Fictitious pages do not have managed mappings. */
1951 if ((p->flags & PG_FICTITIOUS) == 0)
1952 pmap_remove_all(p);
1953 /* Account for removal of managed, wired mappings. */
1954 p->wire_count -= wirings;
1955 if (!clean_only) {
1956 p->valid = 0;
1957 vm_page_undirty(p);
1958 }
1959 continue;
1960 }
1961 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1962 goto again;
1963 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1964 ("vm_object_page_remove: page %p is fictitious", p));
1965 if (clean_only && p->valid) {
1966 pmap_remove_write(p);
1967 if (p->dirty)
1968 continue;
1969 }
1970 pmap_remove_all(p);
1971 /* Account for removal of managed, wired mappings. */
1972 if (wirings != 0)
1973 p->wire_count -= wirings;
1974 vm_page_free(p);
1975 }
1976 vm_page_unlock_queues();
1977 vm_object_pip_wakeup(object);
1978 skipmemq:
1979 if (__predict_false(object->cache != NULL))
1980 vm_page_cache_free(object, start, end);
1981 }
1982
1983 /*
1984 * Populate the specified range of the object with valid pages. Returns
1985 * TRUE if the range is successfully populated and FALSE otherwise.
1986 *
1987 * Note: This function should be optimized to pass a larger array of
1988 * pages to vm_pager_get_pages() before it is applied to a non-
1989 * OBJT_DEVICE object.
1990 *
1991 * The object must be locked.
1992 */
1993 boolean_t
1994 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1995 {
1996 vm_page_t m, ma[1];
1997 vm_pindex_t pindex;
1998 int rv;
1999
2000 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2001 for (pindex = start; pindex < end; pindex++) {
2002 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
2003 VM_ALLOC_RETRY);
2004 if (m->valid != VM_PAGE_BITS_ALL) {
2005 ma[0] = m;
2006 rv = vm_pager_get_pages(object, ma, 1, 0);
2007 m = vm_page_lookup(object, pindex);
2008 if (m == NULL)
2009 break;
2010 if (rv != VM_PAGER_OK) {
2011 vm_page_lock_queues();
2012 vm_page_free(m);
2013 vm_page_unlock_queues();
2014 break;
2015 }
2016 }
2017 /*
2018 * Keep "m" busy because a subsequent iteration may unlock
2019 * the object.
2020 */
2021 }
2022 if (pindex > start) {
2023 m = vm_page_lookup(object, start);
2024 while (m != NULL && m->pindex < pindex) {
2025 vm_page_wakeup(m);
2026 m = TAILQ_NEXT(m, listq);
2027 }
2028 }
2029 return (pindex == end);
2030 }
2031
2032 /*
2033 * Routine: vm_object_coalesce
2034 * Function: Coalesces two objects backing up adjoining
2035 * regions of memory into a single object.
2036 *
2037 * returns TRUE if objects were combined.
2038 *
2039 * NOTE: Only works at the moment if the second object is NULL -
2040 * if it's not, which object do we lock first?
2041 *
2042 * Parameters:
2043 * prev_object First object to coalesce
2044 * prev_offset Offset into prev_object
2045 * prev_size Size of reference to prev_object
2046 * next_size Size of reference to the second object
2047 * reserved Indicator that extension region has
2048 * swap accounted for
2049 *
2050 * Conditions:
2051 * The object must *not* be locked.
2052 */
2053 boolean_t
2054 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2055 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2056 {
2057 vm_pindex_t next_pindex;
2058
2059 if (prev_object == NULL)
2060 return (TRUE);
2061 VM_OBJECT_LOCK(prev_object);
2062 if (prev_object->type != OBJT_DEFAULT &&
2063 prev_object->type != OBJT_SWAP) {
2064 VM_OBJECT_UNLOCK(prev_object);
2065 return (FALSE);
2066 }
2067
2068 /*
2069 * Try to collapse the object first
2070 */
2071 vm_object_collapse(prev_object);
2072
2073 /*
2074 * Can't coalesce if: . more than one reference . paged out . shadows
2075 * another object . has a copy elsewhere (any of which mean that the
2076 * pages not mapped to prev_entry may be in use anyway)
2077 */
2078 if (prev_object->backing_object != NULL) {
2079 VM_OBJECT_UNLOCK(prev_object);
2080 return (FALSE);
2081 }
2082
2083 prev_size >>= PAGE_SHIFT;
2084 next_size >>= PAGE_SHIFT;
2085 next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2086
2087 if ((prev_object->ref_count > 1) &&
2088 (prev_object->size != next_pindex)) {
2089 VM_OBJECT_UNLOCK(prev_object);
2090 return (FALSE);
2091 }
2092
2093 /*
2094 * Account for the charge.
2095 */
2096 if (prev_object->uip != NULL) {
2097
2098 /*
2099 * If prev_object was charged, then this mapping,
2100 * althought not charged now, may become writable
2101 * later. Non-NULL uip in the object would prevent
2102 * swap reservation during enabling of the write
2103 * access, so reserve swap now. Failed reservation
2104 * cause allocation of the separate object for the map
2105 * entry, and swap reservation for this entry is
2106 * managed in appropriate time.
2107 */
2108 if (!reserved && !swap_reserve_by_uid(ptoa(next_size),
2109 prev_object->uip)) {
2110 return (FALSE);
2111 }
2112 prev_object->charge += ptoa(next_size);
2113 }
2114
2115 /*
2116 * Remove any pages that may still be in the object from a previous
2117 * deallocation.
2118 */
2119 if (next_pindex < prev_object->size) {
2120 vm_object_page_remove(prev_object,
2121 next_pindex,
2122 next_pindex + next_size, FALSE);
2123 if (prev_object->type == OBJT_SWAP)
2124 swap_pager_freespace(prev_object,
2125 next_pindex, next_size);
2126 #if 0
2127 if (prev_object->uip != NULL) {
2128 KASSERT(prev_object->charge >=
2129 ptoa(prev_object->size - next_pindex),
2130 ("object %p overcharged 1 %jx %jx", prev_object,
2131 (uintmax_t)next_pindex, (uintmax_t)next_size));
2132 prev_object->charge -= ptoa(prev_object->size -
2133 next_pindex);
2134 }
2135 #endif
2136 }
2137
2138 /*
2139 * Extend the object if necessary.
2140 */
2141 if (next_pindex + next_size > prev_object->size)
2142 prev_object->size = next_pindex + next_size;
2143
2144 VM_OBJECT_UNLOCK(prev_object);
2145 return (TRUE);
2146 }
2147
2148 void
2149 vm_object_set_writeable_dirty(vm_object_t object)
2150 {
2151 struct vnode *vp;
2152
2153 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2154 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2155 return;
2156 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2157 if (object->type == OBJT_VNODE &&
2158 (vp = (struct vnode *)object->handle) != NULL) {
2159 VI_LOCK(vp);
2160 vp->v_iflag |= VI_OBJDIRTY;
2161 VI_UNLOCK(vp);
2162 }
2163 }
2164
2165 #include "opt_ddb.h"
2166 #ifdef DDB
2167 #include <sys/kernel.h>
2168
2169 #include <sys/cons.h>
2170
2171 #include <ddb/ddb.h>
2172
2173 static int
2174 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2175 {
2176 vm_map_t tmpm;
2177 vm_map_entry_t tmpe;
2178 vm_object_t obj;
2179 int entcount;
2180
2181 if (map == 0)
2182 return 0;
2183
2184 if (entry == 0) {
2185 tmpe = map->header.next;
2186 entcount = map->nentries;
2187 while (entcount-- && (tmpe != &map->header)) {
2188 if (_vm_object_in_map(map, object, tmpe)) {
2189 return 1;
2190 }
2191 tmpe = tmpe->next;
2192 }
2193 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2194 tmpm = entry->object.sub_map;
2195 tmpe = tmpm->header.next;
2196 entcount = tmpm->nentries;
2197 while (entcount-- && tmpe != &tmpm->header) {
2198 if (_vm_object_in_map(tmpm, object, tmpe)) {
2199 return 1;
2200 }
2201 tmpe = tmpe->next;
2202 }
2203 } else if ((obj = entry->object.vm_object) != NULL) {
2204 for (; obj; obj = obj->backing_object)
2205 if (obj == object) {
2206 return 1;
2207 }
2208 }
2209 return 0;
2210 }
2211
2212 static int
2213 vm_object_in_map(vm_object_t object)
2214 {
2215 struct proc *p;
2216
2217 /* sx_slock(&allproc_lock); */
2218 FOREACH_PROC_IN_SYSTEM(p) {
2219 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2220 continue;
2221 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2222 /* sx_sunlock(&allproc_lock); */
2223 return 1;
2224 }
2225 }
2226 /* sx_sunlock(&allproc_lock); */
2227 if (_vm_object_in_map(kernel_map, object, 0))
2228 return 1;
2229 if (_vm_object_in_map(kmem_map, object, 0))
2230 return 1;
2231 if (_vm_object_in_map(pager_map, object, 0))
2232 return 1;
2233 if (_vm_object_in_map(buffer_map, object, 0))
2234 return 1;
2235 return 0;
2236 }
2237
2238 DB_SHOW_COMMAND(vmochk, vm_object_check)
2239 {
2240 vm_object_t object;
2241
2242 /*
2243 * make sure that internal objs are in a map somewhere
2244 * and none have zero ref counts.
2245 */
2246 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2247 if (object->handle == NULL &&
2248 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2249 if (object->ref_count == 0) {
2250 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2251 (long)object->size);
2252 }
2253 if (!vm_object_in_map(object)) {
2254 db_printf(
2255 "vmochk: internal obj is not in a map: "
2256 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2257 object->ref_count, (u_long)object->size,
2258 (u_long)object->size,
2259 (void *)object->backing_object);
2260 }
2261 }
2262 }
2263 }
2264
2265 /*
2266 * vm_object_print: [ debug ]
2267 */
2268 DB_SHOW_COMMAND(object, vm_object_print_static)
2269 {
2270 /* XXX convert args. */
2271 vm_object_t object = (vm_object_t)addr;
2272 boolean_t full = have_addr;
2273
2274 vm_page_t p;
2275
2276 /* XXX count is an (unused) arg. Avoid shadowing it. */
2277 #define count was_count
2278
2279 int count;
2280
2281 if (object == NULL)
2282 return;
2283
2284 db_iprintf(
2285 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x uip %d charge %jx\n",
2286 object, (int)object->type, (uintmax_t)object->size,
2287 object->resident_page_count, object->ref_count, object->flags,
2288 object->uip ? object->uip->ui_uid : -1, (uintmax_t)object->charge);
2289 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2290 object->shadow_count,
2291 object->backing_object ? object->backing_object->ref_count : 0,
2292 object->backing_object, (uintmax_t)object->backing_object_offset);
2293
2294 if (!full)
2295 return;
2296
2297 db_indent += 2;
2298 count = 0;
2299 TAILQ_FOREACH(p, &object->memq, listq) {
2300 if (count == 0)
2301 db_iprintf("memory:=");
2302 else if (count == 6) {
2303 db_printf("\n");
2304 db_iprintf(" ...");
2305 count = 0;
2306 } else
2307 db_printf(",");
2308 count++;
2309
2310 db_printf("(off=0x%jx,page=0x%jx)",
2311 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2312 }
2313 if (count != 0)
2314 db_printf("\n");
2315 db_indent -= 2;
2316 }
2317
2318 /* XXX. */
2319 #undef count
2320
2321 /* XXX need this non-static entry for calling from vm_map_print. */
2322 void
2323 vm_object_print(
2324 /* db_expr_t */ long addr,
2325 boolean_t have_addr,
2326 /* db_expr_t */ long count,
2327 char *modif)
2328 {
2329 vm_object_print_static(addr, have_addr, count, modif);
2330 }
2331
2332 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2333 {
2334 vm_object_t object;
2335 vm_pindex_t fidx;
2336 vm_paddr_t pa;
2337 vm_page_t m, prev_m;
2338 int rcount, nl, c;
2339
2340 nl = 0;
2341 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2342 db_printf("new object: %p\n", (void *)object);
2343 if (nl > 18) {
2344 c = cngetc();
2345 if (c != ' ')
2346 return;
2347 nl = 0;
2348 }
2349 nl++;
2350 rcount = 0;
2351 fidx = 0;
2352 pa = -1;
2353 TAILQ_FOREACH(m, &object->memq, listq) {
2354 if (m->pindex > 128)
2355 break;
2356 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2357 prev_m->pindex + 1 != m->pindex) {
2358 if (rcount) {
2359 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2360 (long)fidx, rcount, (long)pa);
2361 if (nl > 18) {
2362 c = cngetc();
2363 if (c != ' ')
2364 return;
2365 nl = 0;
2366 }
2367 nl++;
2368 rcount = 0;
2369 }
2370 }
2371 if (rcount &&
2372 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2373 ++rcount;
2374 continue;
2375 }
2376 if (rcount) {
2377 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2378 (long)fidx, rcount, (long)pa);
2379 if (nl > 18) {
2380 c = cngetc();
2381 if (c != ' ')
2382 return;
2383 nl = 0;
2384 }
2385 nl++;
2386 }
2387 fidx = m->pindex;
2388 pa = VM_PAGE_TO_PHYS(m);
2389 rcount = 1;
2390 }
2391 if (rcount) {
2392 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2393 (long)fidx, rcount, (long)pa);
2394 if (nl > 18) {
2395 c = cngetc();
2396 if (c != ' ')
2397 return;
2398 nl = 0;
2399 }
2400 nl++;
2401 }
2402 }
2403 }
2404 #endif /* DDB */
Cache object: 87580e90bbc85499a33146cb0206fac8
|