The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 /*
   62  *      Virtual memory object module.
   63  */
   64 
   65 #include <sys/cdefs.h>
   66 __FBSDID("$FreeBSD: releng/8.2/sys/vm/vm_object.c 215867 2010-11-26 15:33:09Z kib $");
   67 
   68 #include "opt_vm.h"
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/lock.h>
   73 #include <sys/mman.h>
   74 #include <sys/mount.h>
   75 #include <sys/kernel.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/mutex.h>
   78 #include <sys/proc.h>           /* for curproc, pageproc */
   79 #include <sys/socket.h>
   80 #include <sys/resourcevar.h>
   81 #include <sys/vnode.h>
   82 #include <sys/vmmeter.h>
   83 #include <sys/sx.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_param.h>
   87 #include <vm/pmap.h>
   88 #include <vm/vm_map.h>
   89 #include <vm/vm_object.h>
   90 #include <vm/vm_page.h>
   91 #include <vm/vm_pageout.h>
   92 #include <vm/vm_pager.h>
   93 #include <vm/swap_pager.h>
   94 #include <vm/vm_kern.h>
   95 #include <vm/vm_extern.h>
   96 #include <vm/vm_reserv.h>
   97 #include <vm/uma.h>
   98 
   99 static int msync_flush_flags = 0;
  100 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, CTLFLAG_RW, &msync_flush_flags, 0,
  101     "Does nothing; kept for backward compatibility");
  102 
  103 static int old_msync;
  104 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
  105     "Use old (insecure) msync behavior");
  106 
  107 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
  108                     int pagerflags);
  109 static void     vm_object_qcollapse(vm_object_t object);
  110 static void     vm_object_vndeallocate(vm_object_t object);
  111 
  112 /*
  113  *      Virtual memory objects maintain the actual data
  114  *      associated with allocated virtual memory.  A given
  115  *      page of memory exists within exactly one object.
  116  *
  117  *      An object is only deallocated when all "references"
  118  *      are given up.  Only one "reference" to a given
  119  *      region of an object should be writeable.
  120  *
  121  *      Associated with each object is a list of all resident
  122  *      memory pages belonging to that object; this list is
  123  *      maintained by the "vm_page" module, and locked by the object's
  124  *      lock.
  125  *
  126  *      Each object also records a "pager" routine which is
  127  *      used to retrieve (and store) pages to the proper backing
  128  *      storage.  In addition, objects may be backed by other
  129  *      objects from which they were virtual-copied.
  130  *
  131  *      The only items within the object structure which are
  132  *      modified after time of creation are:
  133  *              reference count         locked by object's lock
  134  *              pager routine           locked by object's lock
  135  *
  136  */
  137 
  138 struct object_q vm_object_list;
  139 struct mtx vm_object_list_mtx;  /* lock for object list and count */
  140 
  141 struct vm_object kernel_object_store;
  142 struct vm_object kmem_object_store;
  143 
  144 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
  145 
  146 static long object_collapses;
  147 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
  148     &object_collapses, 0, "VM object collapses");
  149 
  150 static long object_bypasses;
  151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
  152     &object_bypasses, 0, "VM object bypasses");
  153 
  154 static uma_zone_t obj_zone;
  155 
  156 static int vm_object_zinit(void *mem, int size, int flags);
  157 
  158 #ifdef INVARIANTS
  159 static void vm_object_zdtor(void *mem, int size, void *arg);
  160 
  161 static void
  162 vm_object_zdtor(void *mem, int size, void *arg)
  163 {
  164         vm_object_t object;
  165 
  166         object = (vm_object_t)mem;
  167         KASSERT(TAILQ_EMPTY(&object->memq),
  168             ("object %p has resident pages",
  169             object));
  170 #if VM_NRESERVLEVEL > 0
  171         KASSERT(LIST_EMPTY(&object->rvq),
  172             ("object %p has reservations",
  173             object));
  174 #endif
  175         KASSERT(object->cache == NULL,
  176             ("object %p has cached pages",
  177             object));
  178         KASSERT(object->paging_in_progress == 0,
  179             ("object %p paging_in_progress = %d",
  180             object, object->paging_in_progress));
  181         KASSERT(object->resident_page_count == 0,
  182             ("object %p resident_page_count = %d",
  183             object, object->resident_page_count));
  184         KASSERT(object->shadow_count == 0,
  185             ("object %p shadow_count = %d",
  186             object, object->shadow_count));
  187 }
  188 #endif
  189 
  190 static int
  191 vm_object_zinit(void *mem, int size, int flags)
  192 {
  193         vm_object_t object;
  194 
  195         object = (vm_object_t)mem;
  196         bzero(&object->mtx, sizeof(object->mtx));
  197         VM_OBJECT_LOCK_INIT(object, "standard object");
  198 
  199         /* These are true for any object that has been freed */
  200         object->paging_in_progress = 0;
  201         object->resident_page_count = 0;
  202         object->shadow_count = 0;
  203         return (0);
  204 }
  205 
  206 void
  207 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
  208 {
  209 
  210         TAILQ_INIT(&object->memq);
  211         LIST_INIT(&object->shadow_head);
  212 
  213         object->root = NULL;
  214         object->type = type;
  215         object->size = size;
  216         object->generation = 1;
  217         object->ref_count = 1;
  218         object->memattr = VM_MEMATTR_DEFAULT;
  219         object->flags = 0;
  220         object->uip = NULL;
  221         object->charge = 0;
  222         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
  223                 object->flags = OBJ_ONEMAPPING;
  224         object->pg_color = 0;
  225         object->handle = NULL;
  226         object->backing_object = NULL;
  227         object->backing_object_offset = (vm_ooffset_t) 0;
  228 #if VM_NRESERVLEVEL > 0
  229         LIST_INIT(&object->rvq);
  230 #endif
  231         object->cache = NULL;
  232 
  233         mtx_lock(&vm_object_list_mtx);
  234         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
  235         mtx_unlock(&vm_object_list_mtx);
  236 }
  237 
  238 /*
  239  *      vm_object_init:
  240  *
  241  *      Initialize the VM objects module.
  242  */
  243 void
  244 vm_object_init(void)
  245 {
  246         TAILQ_INIT(&vm_object_list);
  247         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
  248         
  249         VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
  250         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  251             kernel_object);
  252 #if VM_NRESERVLEVEL > 0
  253         kernel_object->flags |= OBJ_COLORED;
  254         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  255 #endif
  256 
  257         VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
  258         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  259             kmem_object);
  260 #if VM_NRESERVLEVEL > 0
  261         kmem_object->flags |= OBJ_COLORED;
  262         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  263 #endif
  264 
  265         /*
  266          * The lock portion of struct vm_object must be type stable due
  267          * to vm_pageout_fallback_object_lock locking a vm object
  268          * without holding any references to it.
  269          */
  270         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
  271 #ifdef INVARIANTS
  272             vm_object_zdtor,
  273 #else
  274             NULL,
  275 #endif
  276             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
  277 }
  278 
  279 void
  280 vm_object_clear_flag(vm_object_t object, u_short bits)
  281 {
  282 
  283         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  284         object->flags &= ~bits;
  285 }
  286 
  287 /*
  288  *      Sets the default memory attribute for the specified object.  Pages
  289  *      that are allocated to this object are by default assigned this memory
  290  *      attribute.
  291  *
  292  *      Presently, this function must be called before any pages are allocated
  293  *      to the object.  In the future, this requirement may be relaxed for
  294  *      "default" and "swap" objects.
  295  */
  296 int
  297 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
  298 {
  299 
  300         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  301         switch (object->type) {
  302         case OBJT_DEFAULT:
  303         case OBJT_DEVICE:
  304         case OBJT_PHYS:
  305         case OBJT_SG:
  306         case OBJT_SWAP:
  307         case OBJT_VNODE:
  308                 if (!TAILQ_EMPTY(&object->memq))
  309                         return (KERN_FAILURE);
  310                 break;
  311         case OBJT_DEAD:
  312                 return (KERN_INVALID_ARGUMENT);
  313         }
  314         object->memattr = memattr;
  315         return (KERN_SUCCESS);
  316 }
  317 
  318 void
  319 vm_object_pip_add(vm_object_t object, short i)
  320 {
  321 
  322         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  323         object->paging_in_progress += i;
  324 }
  325 
  326 void
  327 vm_object_pip_subtract(vm_object_t object, short i)
  328 {
  329 
  330         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  331         object->paging_in_progress -= i;
  332 }
  333 
  334 void
  335 vm_object_pip_wakeup(vm_object_t object)
  336 {
  337 
  338         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  339         object->paging_in_progress--;
  340         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  341                 vm_object_clear_flag(object, OBJ_PIPWNT);
  342                 wakeup(object);
  343         }
  344 }
  345 
  346 void
  347 vm_object_pip_wakeupn(vm_object_t object, short i)
  348 {
  349 
  350         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  351         if (i)
  352                 object->paging_in_progress -= i;
  353         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  354                 vm_object_clear_flag(object, OBJ_PIPWNT);
  355                 wakeup(object);
  356         }
  357 }
  358 
  359 void
  360 vm_object_pip_wait(vm_object_t object, char *waitid)
  361 {
  362 
  363         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  364         while (object->paging_in_progress) {
  365                 object->flags |= OBJ_PIPWNT;
  366                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
  367         }
  368 }
  369 
  370 /*
  371  *      vm_object_allocate:
  372  *
  373  *      Returns a new object with the given size.
  374  */
  375 vm_object_t
  376 vm_object_allocate(objtype_t type, vm_pindex_t size)
  377 {
  378         vm_object_t object;
  379 
  380         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
  381         _vm_object_allocate(type, size, object);
  382         return (object);
  383 }
  384 
  385 
  386 /*
  387  *      vm_object_reference:
  388  *
  389  *      Gets another reference to the given object.  Note: OBJ_DEAD
  390  *      objects can be referenced during final cleaning.
  391  */
  392 void
  393 vm_object_reference(vm_object_t object)
  394 {
  395         if (object == NULL)
  396                 return;
  397         VM_OBJECT_LOCK(object);
  398         vm_object_reference_locked(object);
  399         VM_OBJECT_UNLOCK(object);
  400 }
  401 
  402 /*
  403  *      vm_object_reference_locked:
  404  *
  405  *      Gets another reference to the given object.
  406  *
  407  *      The object must be locked.
  408  */
  409 void
  410 vm_object_reference_locked(vm_object_t object)
  411 {
  412         struct vnode *vp;
  413 
  414         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  415         object->ref_count++;
  416         if (object->type == OBJT_VNODE) {
  417                 vp = object->handle;
  418                 vref(vp);
  419         }
  420 }
  421 
  422 /*
  423  * Handle deallocating an object of type OBJT_VNODE.
  424  */
  425 static void
  426 vm_object_vndeallocate(vm_object_t object)
  427 {
  428         struct vnode *vp = (struct vnode *) object->handle;
  429 
  430         VFS_ASSERT_GIANT(vp->v_mount);
  431         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  432         KASSERT(object->type == OBJT_VNODE,
  433             ("vm_object_vndeallocate: not a vnode object"));
  434         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
  435 #ifdef INVARIANTS
  436         if (object->ref_count == 0) {
  437                 vprint("vm_object_vndeallocate", vp);
  438                 panic("vm_object_vndeallocate: bad object reference count");
  439         }
  440 #endif
  441 
  442         object->ref_count--;
  443         if (object->ref_count == 0) {
  444                 mp_fixme("Unlocked vflag access.");
  445                 vp->v_vflag &= ~VV_TEXT;
  446         }
  447         VM_OBJECT_UNLOCK(object);
  448         /*
  449          * vrele may need a vop lock
  450          */
  451         vrele(vp);
  452 }
  453 
  454 /*
  455  *      vm_object_deallocate:
  456  *
  457  *      Release a reference to the specified object,
  458  *      gained either through a vm_object_allocate
  459  *      or a vm_object_reference call.  When all references
  460  *      are gone, storage associated with this object
  461  *      may be relinquished.
  462  *
  463  *      No object may be locked.
  464  */
  465 void
  466 vm_object_deallocate(vm_object_t object)
  467 {
  468         vm_object_t temp;
  469 
  470         while (object != NULL) {
  471                 int vfslocked;
  472 
  473                 vfslocked = 0;
  474         restart:
  475                 VM_OBJECT_LOCK(object);
  476                 if (object->type == OBJT_VNODE) {
  477                         struct vnode *vp = (struct vnode *) object->handle;
  478 
  479                         /*
  480                          * Conditionally acquire Giant for a vnode-backed
  481                          * object.  We have to be careful since the type of
  482                          * a vnode object can change while the object is
  483                          * unlocked.
  484                          */
  485                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
  486                                 vfslocked = 1;
  487                                 if (!mtx_trylock(&Giant)) {
  488                                         VM_OBJECT_UNLOCK(object);
  489                                         mtx_lock(&Giant);
  490                                         goto restart;
  491                                 }
  492                         }
  493                         vm_object_vndeallocate(object);
  494                         VFS_UNLOCK_GIANT(vfslocked);
  495                         return;
  496                 } else
  497                         /*
  498                          * This is to handle the case that the object
  499                          * changed type while we dropped its lock to
  500                          * obtain Giant.
  501                          */
  502                         VFS_UNLOCK_GIANT(vfslocked);
  503 
  504                 KASSERT(object->ref_count != 0,
  505                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
  506 
  507                 /*
  508                  * If the reference count goes to 0 we start calling
  509                  * vm_object_terminate() on the object chain.
  510                  * A ref count of 1 may be a special case depending on the
  511                  * shadow count being 0 or 1.
  512                  */
  513                 object->ref_count--;
  514                 if (object->ref_count > 1) {
  515                         VM_OBJECT_UNLOCK(object);
  516                         return;
  517                 } else if (object->ref_count == 1) {
  518                         if (object->shadow_count == 0 &&
  519                             object->handle == NULL &&
  520                             (object->type == OBJT_DEFAULT ||
  521                              object->type == OBJT_SWAP)) {
  522                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
  523                         } else if ((object->shadow_count == 1) &&
  524                             (object->handle == NULL) &&
  525                             (object->type == OBJT_DEFAULT ||
  526                              object->type == OBJT_SWAP)) {
  527                                 vm_object_t robject;
  528 
  529                                 robject = LIST_FIRST(&object->shadow_head);
  530                                 KASSERT(robject != NULL,
  531                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
  532                                          object->ref_count,
  533                                          object->shadow_count));
  534                                 if (!VM_OBJECT_TRYLOCK(robject)) {
  535                                         /*
  536                                          * Avoid a potential deadlock.
  537                                          */
  538                                         object->ref_count++;
  539                                         VM_OBJECT_UNLOCK(object);
  540                                         /*
  541                                          * More likely than not the thread
  542                                          * holding robject's lock has lower
  543                                          * priority than the current thread.
  544                                          * Let the lower priority thread run.
  545                                          */
  546                                         pause("vmo_de", 1);
  547                                         continue;
  548                                 }
  549                                 /*
  550                                  * Collapse object into its shadow unless its
  551                                  * shadow is dead.  In that case, object will
  552                                  * be deallocated by the thread that is
  553                                  * deallocating its shadow.
  554                                  */
  555                                 if ((robject->flags & OBJ_DEAD) == 0 &&
  556                                     (robject->handle == NULL) &&
  557                                     (robject->type == OBJT_DEFAULT ||
  558                                      robject->type == OBJT_SWAP)) {
  559 
  560                                         robject->ref_count++;
  561 retry:
  562                                         if (robject->paging_in_progress) {
  563                                                 VM_OBJECT_UNLOCK(object);
  564                                                 vm_object_pip_wait(robject,
  565                                                     "objde1");
  566                                                 temp = robject->backing_object;
  567                                                 if (object == temp) {
  568                                                         VM_OBJECT_LOCK(object);
  569                                                         goto retry;
  570                                                 }
  571                                         } else if (object->paging_in_progress) {
  572                                                 VM_OBJECT_UNLOCK(robject);
  573                                                 object->flags |= OBJ_PIPWNT;
  574                                                 msleep(object,
  575                                                     VM_OBJECT_MTX(object),
  576                                                     PDROP | PVM, "objde2", 0);
  577                                                 VM_OBJECT_LOCK(robject);
  578                                                 temp = robject->backing_object;
  579                                                 if (object == temp) {
  580                                                         VM_OBJECT_LOCK(object);
  581                                                         goto retry;
  582                                                 }
  583                                         } else
  584                                                 VM_OBJECT_UNLOCK(object);
  585 
  586                                         if (robject->ref_count == 1) {
  587                                                 robject->ref_count--;
  588                                                 object = robject;
  589                                                 goto doterm;
  590                                         }
  591                                         object = robject;
  592                                         vm_object_collapse(object);
  593                                         VM_OBJECT_UNLOCK(object);
  594                                         continue;
  595                                 }
  596                                 VM_OBJECT_UNLOCK(robject);
  597                         }
  598                         VM_OBJECT_UNLOCK(object);
  599                         return;
  600                 }
  601 doterm:
  602                 temp = object->backing_object;
  603                 if (temp != NULL) {
  604                         VM_OBJECT_LOCK(temp);
  605                         LIST_REMOVE(object, shadow_list);
  606                         temp->shadow_count--;
  607                         VM_OBJECT_UNLOCK(temp);
  608                         object->backing_object = NULL;
  609                 }
  610                 /*
  611                  * Don't double-terminate, we could be in a termination
  612                  * recursion due to the terminate having to sync data
  613                  * to disk.
  614                  */
  615                 if ((object->flags & OBJ_DEAD) == 0)
  616                         vm_object_terminate(object);
  617                 else
  618                         VM_OBJECT_UNLOCK(object);
  619                 object = temp;
  620         }
  621 }
  622 
  623 /*
  624  *      vm_object_destroy removes the object from the global object list
  625  *      and frees the space for the object.
  626  */
  627 void
  628 vm_object_destroy(vm_object_t object)
  629 {
  630 
  631         /*
  632          * Remove the object from the global object list.
  633          */
  634         mtx_lock(&vm_object_list_mtx);
  635         TAILQ_REMOVE(&vm_object_list, object, object_list);
  636         mtx_unlock(&vm_object_list_mtx);
  637 
  638         /*
  639          * Release the allocation charge.
  640          */
  641         if (object->uip != NULL) {
  642                 KASSERT(object->type == OBJT_DEFAULT ||
  643                     object->type == OBJT_SWAP,
  644                     ("vm_object_terminate: non-swap obj %p has uip",
  645                      object));
  646                 swap_release_by_uid(object->charge, object->uip);
  647                 object->charge = 0;
  648                 uifree(object->uip);
  649                 object->uip = NULL;
  650         }
  651 
  652         /*
  653          * Free the space for the object.
  654          */
  655         uma_zfree(obj_zone, object);
  656 }
  657 
  658 /*
  659  *      vm_object_terminate actually destroys the specified object, freeing
  660  *      up all previously used resources.
  661  *
  662  *      The object must be locked.
  663  *      This routine may block.
  664  */
  665 void
  666 vm_object_terminate(vm_object_t object)
  667 {
  668         vm_page_t p;
  669 
  670         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  671 
  672         /*
  673          * Make sure no one uses us.
  674          */
  675         vm_object_set_flag(object, OBJ_DEAD);
  676 
  677         /*
  678          * wait for the pageout daemon to be done with the object
  679          */
  680         vm_object_pip_wait(object, "objtrm");
  681 
  682         KASSERT(!object->paging_in_progress,
  683                 ("vm_object_terminate: pageout in progress"));
  684 
  685         /*
  686          * Clean and free the pages, as appropriate. All references to the
  687          * object are gone, so we don't need to lock it.
  688          */
  689         if (object->type == OBJT_VNODE) {
  690                 struct vnode *vp = (struct vnode *)object->handle;
  691 
  692                 /*
  693                  * Clean pages and flush buffers.
  694                  */
  695                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  696                 VM_OBJECT_UNLOCK(object);
  697 
  698                 vinvalbuf(vp, V_SAVE, 0, 0);
  699 
  700                 VM_OBJECT_LOCK(object);
  701         }
  702 
  703         KASSERT(object->ref_count == 0, 
  704                 ("vm_object_terminate: object with references, ref_count=%d",
  705                 object->ref_count));
  706 
  707         /*
  708          * Now free any remaining pages. For internal objects, this also
  709          * removes them from paging queues. Don't free wired pages, just
  710          * remove them from the object. 
  711          */
  712         vm_page_lock_queues();
  713         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
  714                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
  715                         ("vm_object_terminate: freeing busy page %p "
  716                         "p->busy = %d, p->oflags %x\n", p, p->busy, p->oflags));
  717                 if (p->wire_count == 0) {
  718                         vm_page_free(p);
  719                         cnt.v_pfree++;
  720                 } else {
  721                         vm_page_remove(p);
  722                 }
  723         }
  724         vm_page_unlock_queues();
  725 
  726 #if VM_NRESERVLEVEL > 0
  727         if (__predict_false(!LIST_EMPTY(&object->rvq)))
  728                 vm_reserv_break_all(object);
  729 #endif
  730         if (__predict_false(object->cache != NULL))
  731                 vm_page_cache_free(object, 0, 0);
  732 
  733         /*
  734          * Let the pager know object is dead.
  735          */
  736         vm_pager_deallocate(object);
  737         VM_OBJECT_UNLOCK(object);
  738 
  739         vm_object_destroy(object);
  740 }
  741 
  742 /*
  743  *      vm_object_page_clean
  744  *
  745  *      Clean all dirty pages in the specified range of object.  Leaves page 
  746  *      on whatever queue it is currently on.   If NOSYNC is set then do not
  747  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
  748  *      leaving the object dirty.
  749  *
  750  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
  751  *      synchronous clustering mode implementation.
  752  *
  753  *      Odd semantics: if start == end, we clean everything.
  754  *
  755  *      The object must be locked.
  756  */
  757 void
  758 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
  759     int flags)
  760 {
  761         vm_page_t np, p;
  762         vm_pindex_t pi, tend;
  763         int clearobjflags, curgeneration, n, pagerflags;
  764 
  765         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  766         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
  767         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
  768             object->resident_page_count == 0)
  769                 return;
  770 
  771         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
  772             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
  773         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
  774 
  775         tend = (end == 0) ? object->size : end;
  776 
  777         vm_object_set_flag(object, OBJ_CLEANING);
  778 
  779         vm_page_lock_queues();
  780 
  781         /*
  782          * Make the page read-only so we can then clear the object flags.
  783          *
  784          * However, if this is a nosync mmap then the object is likely to 
  785          * stay dirty so do not mess with the page and do not clear the
  786          * object flags.
  787          */
  788         clearobjflags = 1;
  789         for (p = vm_page_find_least(object, start);
  790             p != NULL && p->pindex < tend; p = TAILQ_NEXT(p, listq)) {
  791                 if ((flags & OBJPC_NOSYNC) != 0 &&
  792                     (p->oflags & VPO_NOSYNC) != 0)
  793                         clearobjflags = 0;
  794                 else
  795                         pmap_remove_write(p);
  796         }
  797 
  798         if (clearobjflags && (start == 0) && (tend == object->size))
  799                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
  800 
  801 rescan:
  802         curgeneration = object->generation;
  803 
  804         for (p = vm_page_find_least(object, start); p != NULL; p = np) {
  805                 pi = p->pindex;
  806                 if (pi >= tend)
  807                         break;
  808                 np = TAILQ_NEXT(p, listq);
  809                 if (p->valid == 0)
  810                         continue;
  811                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
  812                         vm_page_lock_queues();
  813                         if (object->generation != curgeneration)
  814                                 goto rescan;
  815                         np = vm_page_find_least(object, pi);
  816                         continue;
  817                 }
  818                 vm_page_test_dirty(p);
  819                 if (p->dirty == 0)
  820                         continue;
  821 
  822                 /*
  823                  * If we have been asked to skip nosync pages and this is a
  824                  * nosync page, skip it.  Note that the object flags were
  825                  * not cleared in this case so we do not have to set them.
  826                  */
  827                 if ((flags & OBJPC_NOSYNC) != 0 &&
  828                     (p->oflags & VPO_NOSYNC) != 0)
  829                         continue;
  830 
  831                 n = vm_object_page_collect_flush(object, p, pagerflags);
  832                 if (object->generation != curgeneration)
  833                         goto rescan;
  834                 np = vm_page_find_least(object, pi + n);
  835         }
  836         vm_page_unlock_queues();
  837 #if 0
  838         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
  839 #endif
  840 
  841         vm_object_clear_flag(object, OBJ_CLEANING);
  842 }
  843 
  844 static int
  845 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
  846 {
  847         vm_page_t ma[vm_pageout_page_count], p_first, tp;
  848         int count, i, mreq, runlen;
  849 
  850         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  851 
  852         count = 1;
  853         mreq = 0;
  854 
  855         for (tp = p; count < vm_pageout_page_count; count++) {
  856                 tp = vm_page_next(tp);
  857                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
  858                         break;
  859                 vm_page_test_dirty(tp);
  860                 if (tp->dirty == 0)
  861                         break;
  862         }
  863 
  864         for (p_first = p; count < vm_pageout_page_count; count++) {
  865                 tp = vm_page_prev(p_first);
  866                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
  867                         break;
  868                 vm_page_test_dirty(tp);
  869                 if (tp->dirty == 0)
  870                         break;
  871                 p_first = tp;
  872                 mreq++;
  873         }
  874 
  875         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
  876                 ma[i] = tp;
  877 
  878         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen);
  879         return (runlen);
  880 }
  881 
  882 /*
  883  * Note that there is absolutely no sense in writing out
  884  * anonymous objects, so we track down the vnode object
  885  * to write out.
  886  * We invalidate (remove) all pages from the address space
  887  * for semantic correctness.
  888  *
  889  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
  890  * may start out with a NULL object.
  891  */
  892 void
  893 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
  894     boolean_t syncio, boolean_t invalidate)
  895 {
  896         vm_object_t backing_object;
  897         struct vnode *vp;
  898         struct mount *mp;
  899         int flags;
  900 
  901         if (object == NULL)
  902                 return;
  903         VM_OBJECT_LOCK(object);
  904         while ((backing_object = object->backing_object) != NULL) {
  905                 VM_OBJECT_LOCK(backing_object);
  906                 offset += object->backing_object_offset;
  907                 VM_OBJECT_UNLOCK(object);
  908                 object = backing_object;
  909                 if (object->size < OFF_TO_IDX(offset + size))
  910                         size = IDX_TO_OFF(object->size) - offset;
  911         }
  912         /*
  913          * Flush pages if writing is allowed, invalidate them
  914          * if invalidation requested.  Pages undergoing I/O
  915          * will be ignored by vm_object_page_remove().
  916          *
  917          * We cannot lock the vnode and then wait for paging
  918          * to complete without deadlocking against vm_fault.
  919          * Instead we simply call vm_object_page_remove() and
  920          * allow it to block internally on a page-by-page
  921          * basis when it encounters pages undergoing async
  922          * I/O.
  923          */
  924         if (object->type == OBJT_VNODE &&
  925             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
  926                 int vfslocked;
  927                 vp = object->handle;
  928                 VM_OBJECT_UNLOCK(object);
  929                 (void) vn_start_write(vp, &mp, V_WAIT);
  930                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  931                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  932                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
  933                 flags |= invalidate ? OBJPC_INVAL : 0;
  934                 VM_OBJECT_LOCK(object);
  935                 vm_object_page_clean(object,
  936                     OFF_TO_IDX(offset),
  937                     OFF_TO_IDX(offset + size + PAGE_MASK),
  938                     flags);
  939                 VM_OBJECT_UNLOCK(object);
  940                 VOP_UNLOCK(vp, 0);
  941                 VFS_UNLOCK_GIANT(vfslocked);
  942                 vn_finished_write(mp);
  943                 VM_OBJECT_LOCK(object);
  944         }
  945         if ((object->type == OBJT_VNODE ||
  946              object->type == OBJT_DEVICE) && invalidate) {
  947                 boolean_t purge;
  948                 purge = old_msync || (object->type == OBJT_DEVICE);
  949                 vm_object_page_remove(object,
  950                     OFF_TO_IDX(offset),
  951                     OFF_TO_IDX(offset + size + PAGE_MASK),
  952                     purge ? FALSE : TRUE);
  953         }
  954         VM_OBJECT_UNLOCK(object);
  955 }
  956 
  957 /*
  958  *      vm_object_madvise:
  959  *
  960  *      Implements the madvise function at the object/page level.
  961  *
  962  *      MADV_WILLNEED   (any object)
  963  *
  964  *          Activate the specified pages if they are resident.
  965  *
  966  *      MADV_DONTNEED   (any object)
  967  *
  968  *          Deactivate the specified pages if they are resident.
  969  *
  970  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
  971  *                       OBJ_ONEMAPPING only)
  972  *
  973  *          Deactivate and clean the specified pages if they are
  974  *          resident.  This permits the process to reuse the pages
  975  *          without faulting or the kernel to reclaim the pages
  976  *          without I/O.
  977  */
  978 void
  979 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
  980 {
  981         vm_pindex_t end, tpindex;
  982         vm_object_t backing_object, tobject;
  983         vm_page_t m;
  984 
  985         if (object == NULL)
  986                 return;
  987         VM_OBJECT_LOCK(object);
  988         end = pindex + count;
  989         /*
  990          * Locate and adjust resident pages
  991          */
  992         for (; pindex < end; pindex += 1) {
  993 relookup:
  994                 tobject = object;
  995                 tpindex = pindex;
  996 shadowlookup:
  997                 /*
  998                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
  999                  * and those pages must be OBJ_ONEMAPPING.
 1000                  */
 1001                 if (advise == MADV_FREE) {
 1002                         if ((tobject->type != OBJT_DEFAULT &&
 1003                              tobject->type != OBJT_SWAP) ||
 1004                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
 1005                                 goto unlock_tobject;
 1006                         }
 1007                 } else if (tobject->type == OBJT_PHYS)
 1008                         goto unlock_tobject;
 1009                 m = vm_page_lookup(tobject, tpindex);
 1010                 if (m == NULL && advise == MADV_WILLNEED) {
 1011                         /*
 1012                          * If the page is cached, reactivate it.
 1013                          */
 1014                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
 1015                             VM_ALLOC_NOBUSY);
 1016                 }
 1017                 if (m == NULL) {
 1018                         /*
 1019                          * There may be swap even if there is no backing page
 1020                          */
 1021                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1022                                 swap_pager_freespace(tobject, tpindex, 1);
 1023                         /*
 1024                          * next object
 1025                          */
 1026                         backing_object = tobject->backing_object;
 1027                         if (backing_object == NULL)
 1028                                 goto unlock_tobject;
 1029                         VM_OBJECT_LOCK(backing_object);
 1030                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
 1031                         if (tobject != object)
 1032                                 VM_OBJECT_UNLOCK(tobject);
 1033                         tobject = backing_object;
 1034                         goto shadowlookup;
 1035                 } else if (m->valid != VM_PAGE_BITS_ALL)
 1036                         goto unlock_tobject;
 1037                 /*
 1038                  * If the page is not in a normal state, skip it.
 1039                  */
 1040                 vm_page_lock_queues();
 1041                 if (m->hold_count != 0 || m->wire_count != 0) {
 1042                         vm_page_unlock_queues();
 1043                         goto unlock_tobject;
 1044                 }
 1045                 if ((m->oflags & VPO_BUSY) || m->busy) {
 1046                         if (advise == MADV_WILLNEED)
 1047                                 /*
 1048                                  * Reference the page before unlocking and
 1049                                  * sleeping so that the page daemon is less
 1050                                  * likely to reclaim it. 
 1051                                  */
 1052                                 vm_page_flag_set(m, PG_REFERENCED);
 1053                         vm_page_unlock_queues();
 1054                         if (object != tobject)
 1055                                 VM_OBJECT_UNLOCK(object);
 1056                         m->oflags |= VPO_WANTED;
 1057                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
 1058                             0);
 1059                         VM_OBJECT_LOCK(object);
 1060                         goto relookup;
 1061                 }
 1062                 if (advise == MADV_WILLNEED) {
 1063                         vm_page_activate(m);
 1064                 } else if (advise == MADV_DONTNEED) {
 1065                         vm_page_dontneed(m);
 1066                 } else if (advise == MADV_FREE) {
 1067                         /*
 1068                          * Mark the page clean.  This will allow the page
 1069                          * to be freed up by the system.  However, such pages
 1070                          * are often reused quickly by malloc()/free()
 1071                          * so we do not do anything that would cause
 1072                          * a page fault if we can help it.
 1073                          *
 1074                          * Specifically, we do not try to actually free
 1075                          * the page now nor do we try to put it in the
 1076                          * cache (which would cause a page fault on reuse).
 1077                          *
 1078                          * But we do make the page is freeable as we
 1079                          * can without actually taking the step of unmapping
 1080                          * it.
 1081                          */
 1082                         pmap_clear_modify(m);
 1083                         m->dirty = 0;
 1084                         m->act_count = 0;
 1085                         vm_page_dontneed(m);
 1086                 }
 1087                 vm_page_unlock_queues();
 1088                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1089                         swap_pager_freespace(tobject, tpindex, 1);
 1090 unlock_tobject:
 1091                 if (tobject != object)
 1092                         VM_OBJECT_UNLOCK(tobject);
 1093         }       
 1094         VM_OBJECT_UNLOCK(object);
 1095 }
 1096 
 1097 /*
 1098  *      vm_object_shadow:
 1099  *
 1100  *      Create a new object which is backed by the
 1101  *      specified existing object range.  The source
 1102  *      object reference is deallocated.
 1103  *
 1104  *      The new object and offset into that object
 1105  *      are returned in the source parameters.
 1106  */
 1107 void
 1108 vm_object_shadow(
 1109         vm_object_t *object,    /* IN/OUT */
 1110         vm_ooffset_t *offset,   /* IN/OUT */
 1111         vm_size_t length)
 1112 {
 1113         vm_object_t source;
 1114         vm_object_t result;
 1115 
 1116         source = *object;
 1117 
 1118         /*
 1119          * Don't create the new object if the old object isn't shared.
 1120          */
 1121         if (source != NULL) {
 1122                 VM_OBJECT_LOCK(source);
 1123                 if (source->ref_count == 1 &&
 1124                     source->handle == NULL &&
 1125                     (source->type == OBJT_DEFAULT ||
 1126                      source->type == OBJT_SWAP)) {
 1127                         VM_OBJECT_UNLOCK(source);
 1128                         return;
 1129                 }
 1130                 VM_OBJECT_UNLOCK(source);
 1131         }
 1132 
 1133         /*
 1134          * Allocate a new object with the given length.
 1135          */
 1136         result = vm_object_allocate(OBJT_DEFAULT, length);
 1137 
 1138         /*
 1139          * The new object shadows the source object, adding a reference to it.
 1140          * Our caller changes his reference to point to the new object,
 1141          * removing a reference to the source object.  Net result: no change
 1142          * of reference count.
 1143          *
 1144          * Try to optimize the result object's page color when shadowing
 1145          * in order to maintain page coloring consistency in the combined 
 1146          * shadowed object.
 1147          */
 1148         result->backing_object = source;
 1149         /*
 1150          * Store the offset into the source object, and fix up the offset into
 1151          * the new object.
 1152          */
 1153         result->backing_object_offset = *offset;
 1154         if (source != NULL) {
 1155                 VM_OBJECT_LOCK(source);
 1156                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
 1157                 source->shadow_count++;
 1158 #if VM_NRESERVLEVEL > 0
 1159                 result->flags |= source->flags & OBJ_COLORED;
 1160                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
 1161                     ((1 << (VM_NFREEORDER - 1)) - 1);
 1162 #endif
 1163                 VM_OBJECT_UNLOCK(source);
 1164         }
 1165 
 1166 
 1167         /*
 1168          * Return the new things
 1169          */
 1170         *offset = 0;
 1171         *object = result;
 1172 }
 1173 
 1174 /*
 1175  *      vm_object_split:
 1176  *
 1177  * Split the pages in a map entry into a new object.  This affords
 1178  * easier removal of unused pages, and keeps object inheritance from
 1179  * being a negative impact on memory usage.
 1180  */
 1181 void
 1182 vm_object_split(vm_map_entry_t entry)
 1183 {
 1184         vm_page_t m, m_next;
 1185         vm_object_t orig_object, new_object, source;
 1186         vm_pindex_t idx, offidxstart;
 1187         vm_size_t size;
 1188 
 1189         orig_object = entry->object.vm_object;
 1190         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
 1191                 return;
 1192         if (orig_object->ref_count <= 1)
 1193                 return;
 1194         VM_OBJECT_UNLOCK(orig_object);
 1195 
 1196         offidxstart = OFF_TO_IDX(entry->offset);
 1197         size = atop(entry->end - entry->start);
 1198 
 1199         /*
 1200          * If swap_pager_copy() is later called, it will convert new_object
 1201          * into a swap object.
 1202          */
 1203         new_object = vm_object_allocate(OBJT_DEFAULT, size);
 1204 
 1205         /*
 1206          * At this point, the new object is still private, so the order in
 1207          * which the original and new objects are locked does not matter.
 1208          */
 1209         VM_OBJECT_LOCK(new_object);
 1210         VM_OBJECT_LOCK(orig_object);
 1211         source = orig_object->backing_object;
 1212         if (source != NULL) {
 1213                 VM_OBJECT_LOCK(source);
 1214                 if ((source->flags & OBJ_DEAD) != 0) {
 1215                         VM_OBJECT_UNLOCK(source);
 1216                         VM_OBJECT_UNLOCK(orig_object);
 1217                         VM_OBJECT_UNLOCK(new_object);
 1218                         vm_object_deallocate(new_object);
 1219                         VM_OBJECT_LOCK(orig_object);
 1220                         return;
 1221                 }
 1222                 LIST_INSERT_HEAD(&source->shadow_head,
 1223                                   new_object, shadow_list);
 1224                 source->shadow_count++;
 1225                 vm_object_reference_locked(source);     /* for new_object */
 1226                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1227                 VM_OBJECT_UNLOCK(source);
 1228                 new_object->backing_object_offset = 
 1229                         orig_object->backing_object_offset + entry->offset;
 1230                 new_object->backing_object = source;
 1231         }
 1232         if (orig_object->uip != NULL) {
 1233                 new_object->uip = orig_object->uip;
 1234                 uihold(orig_object->uip);
 1235                 new_object->charge = ptoa(size);
 1236                 KASSERT(orig_object->charge >= ptoa(size),
 1237                     ("orig_object->charge < 0"));
 1238                 orig_object->charge -= ptoa(size);
 1239         }
 1240 retry:
 1241         m = vm_page_find_least(orig_object, offidxstart);
 1242         vm_page_lock_queues();
 1243         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
 1244             m = m_next) {
 1245                 m_next = TAILQ_NEXT(m, listq);
 1246 
 1247                 /*
 1248                  * We must wait for pending I/O to complete before we can
 1249                  * rename the page.
 1250                  *
 1251                  * We do not have to VM_PROT_NONE the page as mappings should
 1252                  * not be changed by this operation.
 1253                  */
 1254                 if ((m->oflags & VPO_BUSY) || m->busy) {
 1255                         vm_page_unlock_queues();
 1256                         VM_OBJECT_UNLOCK(new_object);
 1257                         m->oflags |= VPO_WANTED;
 1258                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
 1259                         VM_OBJECT_LOCK(new_object);
 1260                         goto retry;
 1261                 }
 1262                 vm_page_rename(m, new_object, idx);
 1263                 /* page automatically made dirty by rename and cache handled */
 1264                 vm_page_busy(m);
 1265         }
 1266         vm_page_unlock_queues();
 1267         if (orig_object->type == OBJT_SWAP) {
 1268                 /*
 1269                  * swap_pager_copy() can sleep, in which case the orig_object's
 1270                  * and new_object's locks are released and reacquired. 
 1271                  */
 1272                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
 1273 
 1274                 /*
 1275                  * Transfer any cached pages from orig_object to new_object.
 1276                  */
 1277                 if (__predict_false(orig_object->cache != NULL))
 1278                         vm_page_cache_transfer(orig_object, offidxstart,
 1279                             new_object);
 1280         }
 1281         VM_OBJECT_UNLOCK(orig_object);
 1282         TAILQ_FOREACH(m, &new_object->memq, listq)
 1283                 vm_page_wakeup(m);
 1284         VM_OBJECT_UNLOCK(new_object);
 1285         entry->object.vm_object = new_object;
 1286         entry->offset = 0LL;
 1287         vm_object_deallocate(orig_object);
 1288         VM_OBJECT_LOCK(new_object);
 1289 }
 1290 
 1291 #define OBSC_TEST_ALL_SHADOWED  0x0001
 1292 #define OBSC_COLLAPSE_NOWAIT    0x0002
 1293 #define OBSC_COLLAPSE_WAIT      0x0004
 1294 
 1295 static int
 1296 vm_object_backing_scan(vm_object_t object, int op)
 1297 {
 1298         int r = 1;
 1299         vm_page_t p;
 1300         vm_object_t backing_object;
 1301         vm_pindex_t backing_offset_index;
 1302 
 1303         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1304         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
 1305 
 1306         backing_object = object->backing_object;
 1307         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1308 
 1309         /*
 1310          * Initial conditions
 1311          */
 1312         if (op & OBSC_TEST_ALL_SHADOWED) {
 1313                 /*
 1314                  * We do not want to have to test for the existence of cache
 1315                  * or swap pages in the backing object.  XXX but with the
 1316                  * new swapper this would be pretty easy to do.
 1317                  *
 1318                  * XXX what about anonymous MAP_SHARED memory that hasn't
 1319                  * been ZFOD faulted yet?  If we do not test for this, the
 1320                  * shadow test may succeed! XXX
 1321                  */
 1322                 if (backing_object->type != OBJT_DEFAULT) {
 1323                         return (0);
 1324                 }
 1325         }
 1326         if (op & OBSC_COLLAPSE_WAIT) {
 1327                 vm_object_set_flag(backing_object, OBJ_DEAD);
 1328         }
 1329 
 1330         /*
 1331          * Our scan
 1332          */
 1333         p = TAILQ_FIRST(&backing_object->memq);
 1334         while (p) {
 1335                 vm_page_t next = TAILQ_NEXT(p, listq);
 1336                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
 1337 
 1338                 if (op & OBSC_TEST_ALL_SHADOWED) {
 1339                         vm_page_t pp;
 1340 
 1341                         /*
 1342                          * Ignore pages outside the parent object's range
 1343                          * and outside the parent object's mapping of the 
 1344                          * backing object.
 1345                          *
 1346                          * note that we do not busy the backing object's
 1347                          * page.
 1348                          */
 1349                         if (
 1350                             p->pindex < backing_offset_index ||
 1351                             new_pindex >= object->size
 1352                         ) {
 1353                                 p = next;
 1354                                 continue;
 1355                         }
 1356 
 1357                         /*
 1358                          * See if the parent has the page or if the parent's
 1359                          * object pager has the page.  If the parent has the
 1360                          * page but the page is not valid, the parent's
 1361                          * object pager must have the page.
 1362                          *
 1363                          * If this fails, the parent does not completely shadow
 1364                          * the object and we might as well give up now.
 1365                          */
 1366 
 1367                         pp = vm_page_lookup(object, new_pindex);
 1368                         if (
 1369                             (pp == NULL || pp->valid == 0) &&
 1370                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
 1371                         ) {
 1372                                 r = 0;
 1373                                 break;
 1374                         }
 1375                 }
 1376 
 1377                 /*
 1378                  * Check for busy page
 1379                  */
 1380                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
 1381                         vm_page_t pp;
 1382 
 1383                         if (op & OBSC_COLLAPSE_NOWAIT) {
 1384                                 if ((p->oflags & VPO_BUSY) ||
 1385                                     !p->valid || 
 1386                                     p->busy) {
 1387                                         p = next;
 1388                                         continue;
 1389                                 }
 1390                         } else if (op & OBSC_COLLAPSE_WAIT) {
 1391                                 if ((p->oflags & VPO_BUSY) || p->busy) {
 1392                                         VM_OBJECT_UNLOCK(object);
 1393                                         p->oflags |= VPO_WANTED;
 1394                                         msleep(p, VM_OBJECT_MTX(backing_object),
 1395                                             PDROP | PVM, "vmocol", 0);
 1396                                         VM_OBJECT_LOCK(object);
 1397                                         VM_OBJECT_LOCK(backing_object);
 1398                                         /*
 1399                                          * If we slept, anything could have
 1400                                          * happened.  Since the object is
 1401                                          * marked dead, the backing offset
 1402                                          * should not have changed so we
 1403                                          * just restart our scan.
 1404                                          */
 1405                                         p = TAILQ_FIRST(&backing_object->memq);
 1406                                         continue;
 1407                                 }
 1408                         }
 1409 
 1410                         KASSERT(
 1411                             p->object == backing_object,
 1412                             ("vm_object_backing_scan: object mismatch")
 1413                         );
 1414 
 1415                         /*
 1416                          * Destroy any associated swap
 1417                          */
 1418                         if (backing_object->type == OBJT_SWAP) {
 1419                                 swap_pager_freespace(
 1420                                     backing_object, 
 1421                                     p->pindex,
 1422                                     1
 1423                                 );
 1424                         }
 1425 
 1426                         if (
 1427                             p->pindex < backing_offset_index ||
 1428                             new_pindex >= object->size
 1429                         ) {
 1430                                 /*
 1431                                  * Page is out of the parent object's range, we 
 1432                                  * can simply destroy it. 
 1433                                  */
 1434                                 vm_page_lock_queues();
 1435                                 KASSERT(!pmap_page_is_mapped(p),
 1436                                     ("freeing mapped page %p", p));
 1437                                 if (p->wire_count == 0)
 1438                                         vm_page_free(p);
 1439                                 else
 1440                                         vm_page_remove(p);
 1441                                 vm_page_unlock_queues();
 1442                                 p = next;
 1443                                 continue;
 1444                         }
 1445 
 1446                         pp = vm_page_lookup(object, new_pindex);
 1447                         if (
 1448                             pp != NULL ||
 1449                             vm_pager_has_page(object, new_pindex, NULL, NULL)
 1450                         ) {
 1451                                 /*
 1452                                  * page already exists in parent OR swap exists
 1453                                  * for this location in the parent.  Destroy 
 1454                                  * the original page from the backing object.
 1455                                  *
 1456                                  * Leave the parent's page alone
 1457                                  */
 1458                                 vm_page_lock_queues();
 1459                                 KASSERT(!pmap_page_is_mapped(p),
 1460                                     ("freeing mapped page %p", p));
 1461                                 if (p->wire_count == 0)
 1462                                         vm_page_free(p);
 1463                                 else
 1464                                         vm_page_remove(p);
 1465                                 vm_page_unlock_queues();
 1466                                 p = next;
 1467                                 continue;
 1468                         }
 1469 
 1470 #if VM_NRESERVLEVEL > 0
 1471                         /*
 1472                          * Rename the reservation.
 1473                          */
 1474                         vm_reserv_rename(p, object, backing_object,
 1475                             backing_offset_index);
 1476 #endif
 1477 
 1478                         /*
 1479                          * Page does not exist in parent, rename the
 1480                          * page from the backing object to the main object. 
 1481                          *
 1482                          * If the page was mapped to a process, it can remain 
 1483                          * mapped through the rename.
 1484                          */
 1485                         vm_page_lock_queues();
 1486                         vm_page_rename(p, object, new_pindex);
 1487                         vm_page_unlock_queues();
 1488                         /* page automatically made dirty by rename */
 1489                 }
 1490                 p = next;
 1491         }
 1492         return (r);
 1493 }
 1494 
 1495 
 1496 /*
 1497  * this version of collapse allows the operation to occur earlier and
 1498  * when paging_in_progress is true for an object...  This is not a complete
 1499  * operation, but should plug 99.9% of the rest of the leaks.
 1500  */
 1501 static void
 1502 vm_object_qcollapse(vm_object_t object)
 1503 {
 1504         vm_object_t backing_object = object->backing_object;
 1505 
 1506         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1507         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
 1508 
 1509         if (backing_object->ref_count != 1)
 1510                 return;
 1511 
 1512         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
 1513 }
 1514 
 1515 /*
 1516  *      vm_object_collapse:
 1517  *
 1518  *      Collapse an object with the object backing it.
 1519  *      Pages in the backing object are moved into the
 1520  *      parent, and the backing object is deallocated.
 1521  */
 1522 void
 1523 vm_object_collapse(vm_object_t object)
 1524 {
 1525         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1526         
 1527         while (TRUE) {
 1528                 vm_object_t backing_object;
 1529 
 1530                 /*
 1531                  * Verify that the conditions are right for collapse:
 1532                  *
 1533                  * The object exists and the backing object exists.
 1534                  */
 1535                 if ((backing_object = object->backing_object) == NULL)
 1536                         break;
 1537 
 1538                 /*
 1539                  * we check the backing object first, because it is most likely
 1540                  * not collapsable.
 1541                  */
 1542                 VM_OBJECT_LOCK(backing_object);
 1543                 if (backing_object->handle != NULL ||
 1544                     (backing_object->type != OBJT_DEFAULT &&
 1545                      backing_object->type != OBJT_SWAP) ||
 1546                     (backing_object->flags & OBJ_DEAD) ||
 1547                     object->handle != NULL ||
 1548                     (object->type != OBJT_DEFAULT &&
 1549                      object->type != OBJT_SWAP) ||
 1550                     (object->flags & OBJ_DEAD)) {
 1551                         VM_OBJECT_UNLOCK(backing_object);
 1552                         break;
 1553                 }
 1554 
 1555                 if (
 1556                     object->paging_in_progress != 0 ||
 1557                     backing_object->paging_in_progress != 0
 1558                 ) {
 1559                         vm_object_qcollapse(object);
 1560                         VM_OBJECT_UNLOCK(backing_object);
 1561                         break;
 1562                 }
 1563                 /*
 1564                  * We know that we can either collapse the backing object (if
 1565                  * the parent is the only reference to it) or (perhaps) have
 1566                  * the parent bypass the object if the parent happens to shadow
 1567                  * all the resident pages in the entire backing object.
 1568                  *
 1569                  * This is ignoring pager-backed pages such as swap pages.
 1570                  * vm_object_backing_scan fails the shadowing test in this
 1571                  * case.
 1572                  */
 1573                 if (backing_object->ref_count == 1) {
 1574                         /*
 1575                          * If there is exactly one reference to the backing
 1576                          * object, we can collapse it into the parent.  
 1577                          */
 1578                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
 1579 
 1580 #if VM_NRESERVLEVEL > 0
 1581                         /*
 1582                          * Break any reservations from backing_object.
 1583                          */
 1584                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
 1585                                 vm_reserv_break_all(backing_object);
 1586 #endif
 1587 
 1588                         /*
 1589                          * Move the pager from backing_object to object.
 1590                          */
 1591                         if (backing_object->type == OBJT_SWAP) {
 1592                                 /*
 1593                                  * swap_pager_copy() can sleep, in which case
 1594                                  * the backing_object's and object's locks are
 1595                                  * released and reacquired.
 1596                                  */
 1597                                 swap_pager_copy(
 1598                                     backing_object,
 1599                                     object,
 1600                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
 1601 
 1602                                 /*
 1603                                  * Free any cached pages from backing_object.
 1604                                  */
 1605                                 if (__predict_false(backing_object->cache != NULL))
 1606                                         vm_page_cache_free(backing_object, 0, 0);
 1607                         }
 1608                         /*
 1609                          * Object now shadows whatever backing_object did.
 1610                          * Note that the reference to 
 1611                          * backing_object->backing_object moves from within 
 1612                          * backing_object to within object.
 1613                          */
 1614                         LIST_REMOVE(object, shadow_list);
 1615                         backing_object->shadow_count--;
 1616                         if (backing_object->backing_object) {
 1617                                 VM_OBJECT_LOCK(backing_object->backing_object);
 1618                                 LIST_REMOVE(backing_object, shadow_list);
 1619                                 LIST_INSERT_HEAD(
 1620                                     &backing_object->backing_object->shadow_head,
 1621                                     object, shadow_list);
 1622                                 /*
 1623                                  * The shadow_count has not changed.
 1624                                  */
 1625                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
 1626                         }
 1627                         object->backing_object = backing_object->backing_object;
 1628                         object->backing_object_offset +=
 1629                             backing_object->backing_object_offset;
 1630 
 1631                         /*
 1632                          * Discard backing_object.
 1633                          *
 1634                          * Since the backing object has no pages, no pager left,
 1635                          * and no object references within it, all that is
 1636                          * necessary is to dispose of it.
 1637                          */
 1638                         KASSERT(backing_object->ref_count == 1, (
 1639 "backing_object %p was somehow re-referenced during collapse!",
 1640                             backing_object));
 1641                         VM_OBJECT_UNLOCK(backing_object);
 1642                         vm_object_destroy(backing_object);
 1643 
 1644                         object_collapses++;
 1645                 } else {
 1646                         vm_object_t new_backing_object;
 1647 
 1648                         /*
 1649                          * If we do not entirely shadow the backing object,
 1650                          * there is nothing we can do so we give up.
 1651                          */
 1652                         if (object->resident_page_count != object->size &&
 1653                             vm_object_backing_scan(object,
 1654                             OBSC_TEST_ALL_SHADOWED) == 0) {
 1655                                 VM_OBJECT_UNLOCK(backing_object);
 1656                                 break;
 1657                         }
 1658 
 1659                         /*
 1660                          * Make the parent shadow the next object in the
 1661                          * chain.  Deallocating backing_object will not remove
 1662                          * it, since its reference count is at least 2.
 1663                          */
 1664                         LIST_REMOVE(object, shadow_list);
 1665                         backing_object->shadow_count--;
 1666 
 1667                         new_backing_object = backing_object->backing_object;
 1668                         if ((object->backing_object = new_backing_object) != NULL) {
 1669                                 VM_OBJECT_LOCK(new_backing_object);
 1670                                 LIST_INSERT_HEAD(
 1671                                     &new_backing_object->shadow_head,
 1672                                     object,
 1673                                     shadow_list
 1674                                 );
 1675                                 new_backing_object->shadow_count++;
 1676                                 vm_object_reference_locked(new_backing_object);
 1677                                 VM_OBJECT_UNLOCK(new_backing_object);
 1678                                 object->backing_object_offset +=
 1679                                         backing_object->backing_object_offset;
 1680                         }
 1681 
 1682                         /*
 1683                          * Drop the reference count on backing_object. Since
 1684                          * its ref_count was at least 2, it will not vanish.
 1685                          */
 1686                         backing_object->ref_count--;
 1687                         VM_OBJECT_UNLOCK(backing_object);
 1688                         object_bypasses++;
 1689                 }
 1690 
 1691                 /*
 1692                  * Try again with this object's new backing object.
 1693                  */
 1694         }
 1695 }
 1696 
 1697 /*
 1698  *      vm_object_page_remove:
 1699  *
 1700  *      For the given object, either frees or invalidates each of the
 1701  *      specified pages.  In general, a page is freed.  However, if a
 1702  *      page is wired for any reason other than the existence of a
 1703  *      managed, wired mapping, then it may be invalidated but not
 1704  *      removed from the object.  Pages are specified by the given
 1705  *      range ["start", "end") and Boolean "clean_only".  As a
 1706  *      special case, if "end" is zero, then the range extends from
 1707  *      "start" to the end of the object.  If "clean_only" is TRUE,
 1708  *      then only the non-dirty pages within the specified range are
 1709  *      affected.
 1710  *
 1711  *      In general, this operation should only be performed on objects
 1712  *      that contain managed pages.  There are two exceptions.  First,
 1713  *      it may be performed on the kernel and kmem objects.  Second,
 1714  *      it may be used by msync(..., MS_INVALIDATE) to invalidate
 1715  *      device-backed pages.  In both of these cases, "clean_only"
 1716  *      must be FALSE.
 1717  *
 1718  *      The object must be locked.
 1719  */
 1720 void
 1721 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 1722     boolean_t clean_only)
 1723 {
 1724         vm_page_t p, next;
 1725         int wirings;
 1726 
 1727         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1728         if (object->resident_page_count == 0)
 1729                 goto skipmemq;
 1730 
 1731         /*
 1732          * Since physically-backed objects do not use managed pages, we can't
 1733          * remove pages from the object (we must instead remove the page
 1734          * references, and then destroy the object).
 1735          */
 1736         KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
 1737             object == kmem_object,
 1738             ("attempt to remove pages from a physical object"));
 1739 
 1740         vm_object_pip_add(object, 1);
 1741 again:
 1742         p = vm_page_find_least(object, start);
 1743         vm_page_lock_queues();
 1744         /*
 1745          * Assert: the variable p is either (1) the page with the
 1746          * least pindex greater than or equal to the parameter pindex
 1747          * or (2) NULL.
 1748          */
 1749         for (;
 1750              p != NULL && (p->pindex < end || end == 0);
 1751              p = next) {
 1752                 next = TAILQ_NEXT(p, listq);
 1753 
 1754                 /*
 1755                  * If the page is wired for any reason besides the
 1756                  * existence of managed, wired mappings, then it cannot
 1757                  * be freed.  For example, fictitious pages, which
 1758                  * represent device memory, are inherently wired and
 1759                  * cannot be freed.  They can, however, be invalidated
 1760                  * if "clean_only" is FALSE.
 1761                  */
 1762                 if ((wirings = p->wire_count) != 0 &&
 1763                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
 1764                         /* Fictitious pages do not have managed mappings. */
 1765                         if ((p->flags & PG_FICTITIOUS) == 0)
 1766                                 pmap_remove_all(p);
 1767                         /* Account for removal of managed, wired mappings. */
 1768                         p->wire_count -= wirings;
 1769                         if (!clean_only) {
 1770                                 p->valid = 0;
 1771                                 vm_page_undirty(p);
 1772                         }
 1773                         continue;
 1774                 }
 1775                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
 1776                         goto again;
 1777                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
 1778                     ("vm_object_page_remove: page %p is fictitious", p));
 1779                 if (clean_only && p->valid) {
 1780                         pmap_remove_write(p);
 1781                         if (p->dirty)
 1782                                 continue;
 1783                 }
 1784                 pmap_remove_all(p);
 1785                 /* Account for removal of managed, wired mappings. */
 1786                 if (wirings != 0)
 1787                         p->wire_count -= wirings;
 1788                 vm_page_free(p);
 1789         }
 1790         vm_page_unlock_queues();
 1791         vm_object_pip_wakeup(object);
 1792 skipmemq:
 1793         if (__predict_false(object->cache != NULL))
 1794                 vm_page_cache_free(object, start, end);
 1795 }
 1796 
 1797 /*
 1798  *      Populate the specified range of the object with valid pages.  Returns
 1799  *      TRUE if the range is successfully populated and FALSE otherwise.
 1800  *
 1801  *      Note: This function should be optimized to pass a larger array of
 1802  *      pages to vm_pager_get_pages() before it is applied to a non-
 1803  *      OBJT_DEVICE object.
 1804  *
 1805  *      The object must be locked.
 1806  */
 1807 boolean_t
 1808 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1809 {
 1810         vm_page_t m, ma[1];
 1811         vm_pindex_t pindex;
 1812         int rv;
 1813 
 1814         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1815         for (pindex = start; pindex < end; pindex++) {
 1816                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
 1817                     VM_ALLOC_RETRY);
 1818                 if (m->valid != VM_PAGE_BITS_ALL) {
 1819                         ma[0] = m;
 1820                         rv = vm_pager_get_pages(object, ma, 1, 0);
 1821                         m = vm_page_lookup(object, pindex);
 1822                         if (m == NULL)
 1823                                 break;
 1824                         if (rv != VM_PAGER_OK) {
 1825                                 vm_page_lock_queues();
 1826                                 vm_page_free(m);
 1827                                 vm_page_unlock_queues();
 1828                                 break;
 1829                         }
 1830                 }
 1831                 /*
 1832                  * Keep "m" busy because a subsequent iteration may unlock
 1833                  * the object.
 1834                  */
 1835         }
 1836         if (pindex > start) {
 1837                 m = vm_page_lookup(object, start);
 1838                 while (m != NULL && m->pindex < pindex) {
 1839                         vm_page_wakeup(m);
 1840                         m = TAILQ_NEXT(m, listq);
 1841                 }
 1842         }
 1843         return (pindex == end);
 1844 }
 1845 
 1846 /*
 1847  *      Routine:        vm_object_coalesce
 1848  *      Function:       Coalesces two objects backing up adjoining
 1849  *                      regions of memory into a single object.
 1850  *
 1851  *      returns TRUE if objects were combined.
 1852  *
 1853  *      NOTE:   Only works at the moment if the second object is NULL -
 1854  *              if it's not, which object do we lock first?
 1855  *
 1856  *      Parameters:
 1857  *              prev_object     First object to coalesce
 1858  *              prev_offset     Offset into prev_object
 1859  *              prev_size       Size of reference to prev_object
 1860  *              next_size       Size of reference to the second object
 1861  *              reserved        Indicator that extension region has
 1862  *                              swap accounted for
 1863  *
 1864  *      Conditions:
 1865  *      The object must *not* be locked.
 1866  */
 1867 boolean_t
 1868 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
 1869     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
 1870 {
 1871         vm_pindex_t next_pindex;
 1872 
 1873         if (prev_object == NULL)
 1874                 return (TRUE);
 1875         VM_OBJECT_LOCK(prev_object);
 1876         if (prev_object->type != OBJT_DEFAULT &&
 1877             prev_object->type != OBJT_SWAP) {
 1878                 VM_OBJECT_UNLOCK(prev_object);
 1879                 return (FALSE);
 1880         }
 1881 
 1882         /*
 1883          * Try to collapse the object first
 1884          */
 1885         vm_object_collapse(prev_object);
 1886 
 1887         /*
 1888          * Can't coalesce if: . more than one reference . paged out . shadows
 1889          * another object . has a copy elsewhere (any of which mean that the
 1890          * pages not mapped to prev_entry may be in use anyway)
 1891          */
 1892         if (prev_object->backing_object != NULL) {
 1893                 VM_OBJECT_UNLOCK(prev_object);
 1894                 return (FALSE);
 1895         }
 1896 
 1897         prev_size >>= PAGE_SHIFT;
 1898         next_size >>= PAGE_SHIFT;
 1899         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
 1900 
 1901         if ((prev_object->ref_count > 1) &&
 1902             (prev_object->size != next_pindex)) {
 1903                 VM_OBJECT_UNLOCK(prev_object);
 1904                 return (FALSE);
 1905         }
 1906 
 1907         /*
 1908          * Account for the charge.
 1909          */
 1910         if (prev_object->uip != NULL) {
 1911 
 1912                 /*
 1913                  * If prev_object was charged, then this mapping,
 1914                  * althought not charged now, may become writable
 1915                  * later. Non-NULL uip in the object would prevent
 1916                  * swap reservation during enabling of the write
 1917                  * access, so reserve swap now. Failed reservation
 1918                  * cause allocation of the separate object for the map
 1919                  * entry, and swap reservation for this entry is
 1920                  * managed in appropriate time.
 1921                  */
 1922                 if (!reserved && !swap_reserve_by_uid(ptoa(next_size),
 1923                     prev_object->uip)) {
 1924                         return (FALSE);
 1925                 }
 1926                 prev_object->charge += ptoa(next_size);
 1927         }
 1928 
 1929         /*
 1930          * Remove any pages that may still be in the object from a previous
 1931          * deallocation.
 1932          */
 1933         if (next_pindex < prev_object->size) {
 1934                 vm_object_page_remove(prev_object,
 1935                                       next_pindex,
 1936                                       next_pindex + next_size, FALSE);
 1937                 if (prev_object->type == OBJT_SWAP)
 1938                         swap_pager_freespace(prev_object,
 1939                                              next_pindex, next_size);
 1940 #if 0
 1941                 if (prev_object->uip != NULL) {
 1942                         KASSERT(prev_object->charge >=
 1943                             ptoa(prev_object->size - next_pindex),
 1944                             ("object %p overcharged 1 %jx %jx", prev_object,
 1945                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
 1946                         prev_object->charge -= ptoa(prev_object->size -
 1947                             next_pindex);
 1948                 }
 1949 #endif
 1950         }
 1951 
 1952         /*
 1953          * Extend the object if necessary.
 1954          */
 1955         if (next_pindex + next_size > prev_object->size)
 1956                 prev_object->size = next_pindex + next_size;
 1957 
 1958         VM_OBJECT_UNLOCK(prev_object);
 1959         return (TRUE);
 1960 }
 1961 
 1962 void
 1963 vm_object_set_writeable_dirty(vm_object_t object)
 1964 {
 1965 
 1966         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1967         if (object->type != OBJT_VNODE ||
 1968             (object->flags & OBJ_MIGHTBEDIRTY) != 0)
 1969                 return;
 1970         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
 1971 }
 1972 
 1973 #include "opt_ddb.h"
 1974 #ifdef DDB
 1975 #include <sys/kernel.h>
 1976 
 1977 #include <sys/cons.h>
 1978 
 1979 #include <ddb/ddb.h>
 1980 
 1981 static int
 1982 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
 1983 {
 1984         vm_map_t tmpm;
 1985         vm_map_entry_t tmpe;
 1986         vm_object_t obj;
 1987         int entcount;
 1988 
 1989         if (map == 0)
 1990                 return 0;
 1991 
 1992         if (entry == 0) {
 1993                 tmpe = map->header.next;
 1994                 entcount = map->nentries;
 1995                 while (entcount-- && (tmpe != &map->header)) {
 1996                         if (_vm_object_in_map(map, object, tmpe)) {
 1997                                 return 1;
 1998                         }
 1999                         tmpe = tmpe->next;
 2000                 }
 2001         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2002                 tmpm = entry->object.sub_map;
 2003                 tmpe = tmpm->header.next;
 2004                 entcount = tmpm->nentries;
 2005                 while (entcount-- && tmpe != &tmpm->header) {
 2006                         if (_vm_object_in_map(tmpm, object, tmpe)) {
 2007                                 return 1;
 2008                         }
 2009                         tmpe = tmpe->next;
 2010                 }
 2011         } else if ((obj = entry->object.vm_object) != NULL) {
 2012                 for (; obj; obj = obj->backing_object)
 2013                         if (obj == object) {
 2014                                 return 1;
 2015                         }
 2016         }
 2017         return 0;
 2018 }
 2019 
 2020 static int
 2021 vm_object_in_map(vm_object_t object)
 2022 {
 2023         struct proc *p;
 2024 
 2025         /* sx_slock(&allproc_lock); */
 2026         FOREACH_PROC_IN_SYSTEM(p) {
 2027                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
 2028                         continue;
 2029                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
 2030                         /* sx_sunlock(&allproc_lock); */
 2031                         return 1;
 2032                 }
 2033         }
 2034         /* sx_sunlock(&allproc_lock); */
 2035         if (_vm_object_in_map(kernel_map, object, 0))
 2036                 return 1;
 2037         if (_vm_object_in_map(kmem_map, object, 0))
 2038                 return 1;
 2039         if (_vm_object_in_map(pager_map, object, 0))
 2040                 return 1;
 2041         if (_vm_object_in_map(buffer_map, object, 0))
 2042                 return 1;
 2043         return 0;
 2044 }
 2045 
 2046 DB_SHOW_COMMAND(vmochk, vm_object_check)
 2047 {
 2048         vm_object_t object;
 2049 
 2050         /*
 2051          * make sure that internal objs are in a map somewhere
 2052          * and none have zero ref counts.
 2053          */
 2054         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2055                 if (object->handle == NULL &&
 2056                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
 2057                         if (object->ref_count == 0) {
 2058                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
 2059                                         (long)object->size);
 2060                         }
 2061                         if (!vm_object_in_map(object)) {
 2062                                 db_printf(
 2063                         "vmochk: internal obj is not in a map: "
 2064                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
 2065                                     object->ref_count, (u_long)object->size, 
 2066                                     (u_long)object->size,
 2067                                     (void *)object->backing_object);
 2068                         }
 2069                 }
 2070         }
 2071 }
 2072 
 2073 /*
 2074  *      vm_object_print:        [ debug ]
 2075  */
 2076 DB_SHOW_COMMAND(object, vm_object_print_static)
 2077 {
 2078         /* XXX convert args. */
 2079         vm_object_t object = (vm_object_t)addr;
 2080         boolean_t full = have_addr;
 2081 
 2082         vm_page_t p;
 2083 
 2084         /* XXX count is an (unused) arg.  Avoid shadowing it. */
 2085 #define count   was_count
 2086 
 2087         int count;
 2088 
 2089         if (object == NULL)
 2090                 return;
 2091 
 2092         db_iprintf(
 2093             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x uip %d charge %jx\n",
 2094             object, (int)object->type, (uintmax_t)object->size,
 2095             object->resident_page_count, object->ref_count, object->flags,
 2096             object->uip ? object->uip->ui_uid : -1, (uintmax_t)object->charge);
 2097         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
 2098             object->shadow_count, 
 2099             object->backing_object ? object->backing_object->ref_count : 0,
 2100             object->backing_object, (uintmax_t)object->backing_object_offset);
 2101 
 2102         if (!full)
 2103                 return;
 2104 
 2105         db_indent += 2;
 2106         count = 0;
 2107         TAILQ_FOREACH(p, &object->memq, listq) {
 2108                 if (count == 0)
 2109                         db_iprintf("memory:=");
 2110                 else if (count == 6) {
 2111                         db_printf("\n");
 2112                         db_iprintf(" ...");
 2113                         count = 0;
 2114                 } else
 2115                         db_printf(",");
 2116                 count++;
 2117 
 2118                 db_printf("(off=0x%jx,page=0x%jx)",
 2119                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
 2120         }
 2121         if (count != 0)
 2122                 db_printf("\n");
 2123         db_indent -= 2;
 2124 }
 2125 
 2126 /* XXX. */
 2127 #undef count
 2128 
 2129 /* XXX need this non-static entry for calling from vm_map_print. */
 2130 void
 2131 vm_object_print(
 2132         /* db_expr_t */ long addr,
 2133         boolean_t have_addr,
 2134         /* db_expr_t */ long count,
 2135         char *modif)
 2136 {
 2137         vm_object_print_static(addr, have_addr, count, modif);
 2138 }
 2139 
 2140 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
 2141 {
 2142         vm_object_t object;
 2143         vm_pindex_t fidx;
 2144         vm_paddr_t pa;
 2145         vm_page_t m, prev_m;
 2146         int rcount, nl, c;
 2147 
 2148         nl = 0;
 2149         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2150                 db_printf("new object: %p\n", (void *)object);
 2151                 if (nl > 18) {
 2152                         c = cngetc();
 2153                         if (c != ' ')
 2154                                 return;
 2155                         nl = 0;
 2156                 }
 2157                 nl++;
 2158                 rcount = 0;
 2159                 fidx = 0;
 2160                 pa = -1;
 2161                 TAILQ_FOREACH(m, &object->memq, listq) {
 2162                         if (m->pindex > 128)
 2163                                 break;
 2164                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
 2165                             prev_m->pindex + 1 != m->pindex) {
 2166                                 if (rcount) {
 2167                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2168                                                 (long)fidx, rcount, (long)pa);
 2169                                         if (nl > 18) {
 2170                                                 c = cngetc();
 2171                                                 if (c != ' ')
 2172                                                         return;
 2173                                                 nl = 0;
 2174                                         }
 2175                                         nl++;
 2176                                         rcount = 0;
 2177                                 }
 2178                         }                               
 2179                         if (rcount &&
 2180                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
 2181                                 ++rcount;
 2182                                 continue;
 2183                         }
 2184                         if (rcount) {
 2185                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2186                                         (long)fidx, rcount, (long)pa);
 2187                                 if (nl > 18) {
 2188                                         c = cngetc();
 2189                                         if (c != ' ')
 2190                                                 return;
 2191                                         nl = 0;
 2192                                 }
 2193                                 nl++;
 2194                         }
 2195                         fidx = m->pindex;
 2196                         pa = VM_PAGE_TO_PHYS(m);
 2197                         rcount = 1;
 2198                 }
 2199                 if (rcount) {
 2200                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2201                                 (long)fidx, rcount, (long)pa);
 2202                         if (nl > 18) {
 2203                                 c = cngetc();
 2204                                 if (c != ' ')
 2205                                         return;
 2206                                 nl = 0;
 2207                         }
 2208                         nl++;
 2209                 }
 2210         }
 2211 }
 2212 #endif /* DDB */

Cache object: f51ce54fadb603546300689453c70e75


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.