The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 /*
   62  *      Virtual memory object module.
   63  */
   64 
   65 #include <sys/cdefs.h>
   66 __FBSDID("$FreeBSD: releng/8.3/sys/vm/vm_object.c 229725 2012-01-06 19:32:39Z jhb $");
   67 
   68 #include "opt_vm.h"
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/lock.h>
   73 #include <sys/mman.h>
   74 #include <sys/mount.h>
   75 #include <sys/kernel.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/mutex.h>
   78 #include <sys/proc.h>           /* for curproc, pageproc */
   79 #include <sys/socket.h>
   80 #include <sys/resourcevar.h>
   81 #include <sys/vnode.h>
   82 #include <sys/vmmeter.h>
   83 #include <sys/sx.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_param.h>
   87 #include <vm/pmap.h>
   88 #include <vm/vm_map.h>
   89 #include <vm/vm_object.h>
   90 #include <vm/vm_page.h>
   91 #include <vm/vm_pageout.h>
   92 #include <vm/vm_pager.h>
   93 #include <vm/swap_pager.h>
   94 #include <vm/vm_kern.h>
   95 #include <vm/vm_extern.h>
   96 #include <vm/vm_reserv.h>
   97 #include <vm/uma.h>
   98 
   99 static int msync_flush_flags = 0;
  100 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, CTLFLAG_RW, &msync_flush_flags, 0,
  101     "Does nothing; kept for backward compatibility");
  102 
  103 static int old_msync;
  104 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
  105     "Use old (insecure) msync behavior");
  106 
  107 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
  108                     int pagerflags, int flags, int *clearobjflags);
  109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
  110                     int *clearobjflags);
  111 static void     vm_object_qcollapse(vm_object_t object);
  112 static void     vm_object_vndeallocate(vm_object_t object);
  113 
  114 /*
  115  *      Virtual memory objects maintain the actual data
  116  *      associated with allocated virtual memory.  A given
  117  *      page of memory exists within exactly one object.
  118  *
  119  *      An object is only deallocated when all "references"
  120  *      are given up.  Only one "reference" to a given
  121  *      region of an object should be writeable.
  122  *
  123  *      Associated with each object is a list of all resident
  124  *      memory pages belonging to that object; this list is
  125  *      maintained by the "vm_page" module, and locked by the object's
  126  *      lock.
  127  *
  128  *      Each object also records a "pager" routine which is
  129  *      used to retrieve (and store) pages to the proper backing
  130  *      storage.  In addition, objects may be backed by other
  131  *      objects from which they were virtual-copied.
  132  *
  133  *      The only items within the object structure which are
  134  *      modified after time of creation are:
  135  *              reference count         locked by object's lock
  136  *              pager routine           locked by object's lock
  137  *
  138  */
  139 
  140 struct object_q vm_object_list;
  141 struct mtx vm_object_list_mtx;  /* lock for object list and count */
  142 
  143 struct vm_object kernel_object_store;
  144 struct vm_object kmem_object_store;
  145 
  146 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
  147 
  148 static long object_collapses;
  149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
  150     &object_collapses, 0, "VM object collapses");
  151 
  152 static long object_bypasses;
  153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
  154     &object_bypasses, 0, "VM object bypasses");
  155 
  156 static uma_zone_t obj_zone;
  157 
  158 static int vm_object_zinit(void *mem, int size, int flags);
  159 
  160 #ifdef INVARIANTS
  161 static void vm_object_zdtor(void *mem, int size, void *arg);
  162 
  163 static void
  164 vm_object_zdtor(void *mem, int size, void *arg)
  165 {
  166         vm_object_t object;
  167 
  168         object = (vm_object_t)mem;
  169         KASSERT(TAILQ_EMPTY(&object->memq),
  170             ("object %p has resident pages",
  171             object));
  172 #if VM_NRESERVLEVEL > 0
  173         KASSERT(LIST_EMPTY(&object->rvq),
  174             ("object %p has reservations",
  175             object));
  176 #endif
  177         KASSERT(object->cache == NULL,
  178             ("object %p has cached pages",
  179             object));
  180         KASSERT(object->paging_in_progress == 0,
  181             ("object %p paging_in_progress = %d",
  182             object, object->paging_in_progress));
  183         KASSERT(object->resident_page_count == 0,
  184             ("object %p resident_page_count = %d",
  185             object, object->resident_page_count));
  186         KASSERT(object->shadow_count == 0,
  187             ("object %p shadow_count = %d",
  188             object, object->shadow_count));
  189 }
  190 #endif
  191 
  192 static int
  193 vm_object_zinit(void *mem, int size, int flags)
  194 {
  195         vm_object_t object;
  196 
  197         object = (vm_object_t)mem;
  198         bzero(&object->mtx, sizeof(object->mtx));
  199         VM_OBJECT_LOCK_INIT(object, "standard object");
  200 
  201         /* These are true for any object that has been freed */
  202         object->paging_in_progress = 0;
  203         object->resident_page_count = 0;
  204         object->shadow_count = 0;
  205         return (0);
  206 }
  207 
  208 void
  209 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
  210 {
  211 
  212         TAILQ_INIT(&object->memq);
  213         LIST_INIT(&object->shadow_head);
  214 
  215         object->root = NULL;
  216         object->type = type;
  217         object->size = size;
  218         object->generation = 1;
  219         object->ref_count = 1;
  220         object->memattr = VM_MEMATTR_DEFAULT;
  221         object->flags = 0;
  222         object->uip = NULL;
  223         object->charge = 0;
  224         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
  225                 object->flags = OBJ_ONEMAPPING;
  226         object->pg_color = 0;
  227         object->handle = NULL;
  228         object->backing_object = NULL;
  229         object->backing_object_offset = (vm_ooffset_t) 0;
  230 #if VM_NRESERVLEVEL > 0
  231         LIST_INIT(&object->rvq);
  232 #endif
  233         object->cache = NULL;
  234 
  235         mtx_lock(&vm_object_list_mtx);
  236         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
  237         mtx_unlock(&vm_object_list_mtx);
  238 }
  239 
  240 /*
  241  *      vm_object_init:
  242  *
  243  *      Initialize the VM objects module.
  244  */
  245 void
  246 vm_object_init(void)
  247 {
  248         TAILQ_INIT(&vm_object_list);
  249         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
  250         
  251         VM_OBJECT_LOCK_INIT(kernel_object, "kernel object");
  252         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  253             kernel_object);
  254 #if VM_NRESERVLEVEL > 0
  255         kernel_object->flags |= OBJ_COLORED;
  256         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  257 #endif
  258 
  259         VM_OBJECT_LOCK_INIT(kmem_object, "kmem object");
  260         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  261             kmem_object);
  262 #if VM_NRESERVLEVEL > 0
  263         kmem_object->flags |= OBJ_COLORED;
  264         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  265 #endif
  266 
  267         /*
  268          * The lock portion of struct vm_object must be type stable due
  269          * to vm_pageout_fallback_object_lock locking a vm object
  270          * without holding any references to it.
  271          */
  272         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
  273 #ifdef INVARIANTS
  274             vm_object_zdtor,
  275 #else
  276             NULL,
  277 #endif
  278             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
  279 }
  280 
  281 void
  282 vm_object_clear_flag(vm_object_t object, u_short bits)
  283 {
  284 
  285         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  286         object->flags &= ~bits;
  287 }
  288 
  289 /*
  290  *      Sets the default memory attribute for the specified object.  Pages
  291  *      that are allocated to this object are by default assigned this memory
  292  *      attribute.
  293  *
  294  *      Presently, this function must be called before any pages are allocated
  295  *      to the object.  In the future, this requirement may be relaxed for
  296  *      "default" and "swap" objects.
  297  */
  298 int
  299 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
  300 {
  301 
  302         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  303         switch (object->type) {
  304         case OBJT_DEFAULT:
  305         case OBJT_DEVICE:
  306         case OBJT_PHYS:
  307         case OBJT_SG:
  308         case OBJT_SWAP:
  309         case OBJT_VNODE:
  310                 if (!TAILQ_EMPTY(&object->memq))
  311                         return (KERN_FAILURE);
  312                 break;
  313         case OBJT_DEAD:
  314                 return (KERN_INVALID_ARGUMENT);
  315         }
  316         object->memattr = memattr;
  317         return (KERN_SUCCESS);
  318 }
  319 
  320 void
  321 vm_object_pip_add(vm_object_t object, short i)
  322 {
  323 
  324         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  325         object->paging_in_progress += i;
  326 }
  327 
  328 void
  329 vm_object_pip_subtract(vm_object_t object, short i)
  330 {
  331 
  332         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  333         object->paging_in_progress -= i;
  334 }
  335 
  336 void
  337 vm_object_pip_wakeup(vm_object_t object)
  338 {
  339 
  340         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  341         object->paging_in_progress--;
  342         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  343                 vm_object_clear_flag(object, OBJ_PIPWNT);
  344                 wakeup(object);
  345         }
  346 }
  347 
  348 void
  349 vm_object_pip_wakeupn(vm_object_t object, short i)
  350 {
  351 
  352         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  353         if (i)
  354                 object->paging_in_progress -= i;
  355         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  356                 vm_object_clear_flag(object, OBJ_PIPWNT);
  357                 wakeup(object);
  358         }
  359 }
  360 
  361 void
  362 vm_object_pip_wait(vm_object_t object, char *waitid)
  363 {
  364 
  365         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  366         while (object->paging_in_progress) {
  367                 object->flags |= OBJ_PIPWNT;
  368                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
  369         }
  370 }
  371 
  372 /*
  373  *      vm_object_allocate:
  374  *
  375  *      Returns a new object with the given size.
  376  */
  377 vm_object_t
  378 vm_object_allocate(objtype_t type, vm_pindex_t size)
  379 {
  380         vm_object_t object;
  381 
  382         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
  383         _vm_object_allocate(type, size, object);
  384         return (object);
  385 }
  386 
  387 
  388 /*
  389  *      vm_object_reference:
  390  *
  391  *      Gets another reference to the given object.  Note: OBJ_DEAD
  392  *      objects can be referenced during final cleaning.
  393  */
  394 void
  395 vm_object_reference(vm_object_t object)
  396 {
  397         if (object == NULL)
  398                 return;
  399         VM_OBJECT_LOCK(object);
  400         vm_object_reference_locked(object);
  401         VM_OBJECT_UNLOCK(object);
  402 }
  403 
  404 /*
  405  *      vm_object_reference_locked:
  406  *
  407  *      Gets another reference to the given object.
  408  *
  409  *      The object must be locked.
  410  */
  411 void
  412 vm_object_reference_locked(vm_object_t object)
  413 {
  414         struct vnode *vp;
  415 
  416         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  417         object->ref_count++;
  418         if (object->type == OBJT_VNODE) {
  419                 vp = object->handle;
  420                 vref(vp);
  421         }
  422 }
  423 
  424 /*
  425  * Handle deallocating an object of type OBJT_VNODE.
  426  */
  427 static void
  428 vm_object_vndeallocate(vm_object_t object)
  429 {
  430         struct vnode *vp = (struct vnode *) object->handle;
  431 
  432         VFS_ASSERT_GIANT(vp->v_mount);
  433         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  434         KASSERT(object->type == OBJT_VNODE,
  435             ("vm_object_vndeallocate: not a vnode object"));
  436         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
  437 #ifdef INVARIANTS
  438         if (object->ref_count == 0) {
  439                 vprint("vm_object_vndeallocate", vp);
  440                 panic("vm_object_vndeallocate: bad object reference count");
  441         }
  442 #endif
  443 
  444         if (object->ref_count > 1) {
  445                 object->ref_count--;
  446                 VM_OBJECT_UNLOCK(object);
  447                 /* vrele may need the vnode lock. */
  448                 vrele(vp);
  449         } else {
  450                 vhold(vp);
  451                 VM_OBJECT_UNLOCK(object);
  452                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  453                 vdrop(vp);
  454                 VM_OBJECT_LOCK(object);
  455                 object->ref_count--;
  456                 if (object->type == OBJT_DEAD) {
  457                         VM_OBJECT_UNLOCK(object);
  458                         VOP_UNLOCK(vp, 0);
  459                 } else {
  460                         if (object->ref_count == 0)
  461                                 vp->v_vflag &= ~VV_TEXT;
  462                         VM_OBJECT_UNLOCK(object);
  463                         vput(vp);
  464                 }
  465         }
  466 }
  467 
  468 /*
  469  *      vm_object_deallocate:
  470  *
  471  *      Release a reference to the specified object,
  472  *      gained either through a vm_object_allocate
  473  *      or a vm_object_reference call.  When all references
  474  *      are gone, storage associated with this object
  475  *      may be relinquished.
  476  *
  477  *      No object may be locked.
  478  */
  479 void
  480 vm_object_deallocate(vm_object_t object)
  481 {
  482         vm_object_t temp;
  483 
  484         while (object != NULL) {
  485                 int vfslocked;
  486 
  487                 vfslocked = 0;
  488         restart:
  489                 VM_OBJECT_LOCK(object);
  490                 if (object->type == OBJT_VNODE) {
  491                         struct vnode *vp = (struct vnode *) object->handle;
  492 
  493                         /*
  494                          * Conditionally acquire Giant for a vnode-backed
  495                          * object.  We have to be careful since the type of
  496                          * a vnode object can change while the object is
  497                          * unlocked.
  498                          */
  499                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
  500                                 vfslocked = 1;
  501                                 if (!mtx_trylock(&Giant)) {
  502                                         VM_OBJECT_UNLOCK(object);
  503                                         mtx_lock(&Giant);
  504                                         goto restart;
  505                                 }
  506                         }
  507                         vm_object_vndeallocate(object);
  508                         VFS_UNLOCK_GIANT(vfslocked);
  509                         return;
  510                 } else
  511                         /*
  512                          * This is to handle the case that the object
  513                          * changed type while we dropped its lock to
  514                          * obtain Giant.
  515                          */
  516                         VFS_UNLOCK_GIANT(vfslocked);
  517 
  518                 KASSERT(object->ref_count != 0,
  519                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
  520 
  521                 /*
  522                  * If the reference count goes to 0 we start calling
  523                  * vm_object_terminate() on the object chain.
  524                  * A ref count of 1 may be a special case depending on the
  525                  * shadow count being 0 or 1.
  526                  */
  527                 object->ref_count--;
  528                 if (object->ref_count > 1) {
  529                         VM_OBJECT_UNLOCK(object);
  530                         return;
  531                 } else if (object->ref_count == 1) {
  532                         if (object->shadow_count == 0 &&
  533                             object->handle == NULL &&
  534                             (object->type == OBJT_DEFAULT ||
  535                              object->type == OBJT_SWAP)) {
  536                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
  537                         } else if ((object->shadow_count == 1) &&
  538                             (object->handle == NULL) &&
  539                             (object->type == OBJT_DEFAULT ||
  540                              object->type == OBJT_SWAP)) {
  541                                 vm_object_t robject;
  542 
  543                                 robject = LIST_FIRST(&object->shadow_head);
  544                                 KASSERT(robject != NULL,
  545                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
  546                                          object->ref_count,
  547                                          object->shadow_count));
  548                                 if (!VM_OBJECT_TRYLOCK(robject)) {
  549                                         /*
  550                                          * Avoid a potential deadlock.
  551                                          */
  552                                         object->ref_count++;
  553                                         VM_OBJECT_UNLOCK(object);
  554                                         /*
  555                                          * More likely than not the thread
  556                                          * holding robject's lock has lower
  557                                          * priority than the current thread.
  558                                          * Let the lower priority thread run.
  559                                          */
  560                                         pause("vmo_de", 1);
  561                                         continue;
  562                                 }
  563                                 /*
  564                                  * Collapse object into its shadow unless its
  565                                  * shadow is dead.  In that case, object will
  566                                  * be deallocated by the thread that is
  567                                  * deallocating its shadow.
  568                                  */
  569                                 if ((robject->flags & OBJ_DEAD) == 0 &&
  570                                     (robject->handle == NULL) &&
  571                                     (robject->type == OBJT_DEFAULT ||
  572                                      robject->type == OBJT_SWAP)) {
  573 
  574                                         robject->ref_count++;
  575 retry:
  576                                         if (robject->paging_in_progress) {
  577                                                 VM_OBJECT_UNLOCK(object);
  578                                                 vm_object_pip_wait(robject,
  579                                                     "objde1");
  580                                                 temp = robject->backing_object;
  581                                                 if (object == temp) {
  582                                                         VM_OBJECT_LOCK(object);
  583                                                         goto retry;
  584                                                 }
  585                                         } else if (object->paging_in_progress) {
  586                                                 VM_OBJECT_UNLOCK(robject);
  587                                                 object->flags |= OBJ_PIPWNT;
  588                                                 msleep(object,
  589                                                     VM_OBJECT_MTX(object),
  590                                                     PDROP | PVM, "objde2", 0);
  591                                                 VM_OBJECT_LOCK(robject);
  592                                                 temp = robject->backing_object;
  593                                                 if (object == temp) {
  594                                                         VM_OBJECT_LOCK(object);
  595                                                         goto retry;
  596                                                 }
  597                                         } else
  598                                                 VM_OBJECT_UNLOCK(object);
  599 
  600                                         if (robject->ref_count == 1) {
  601                                                 robject->ref_count--;
  602                                                 object = robject;
  603                                                 goto doterm;
  604                                         }
  605                                         object = robject;
  606                                         vm_object_collapse(object);
  607                                         VM_OBJECT_UNLOCK(object);
  608                                         continue;
  609                                 }
  610                                 VM_OBJECT_UNLOCK(robject);
  611                         }
  612                         VM_OBJECT_UNLOCK(object);
  613                         return;
  614                 }
  615 doterm:
  616                 temp = object->backing_object;
  617                 if (temp != NULL) {
  618                         VM_OBJECT_LOCK(temp);
  619                         LIST_REMOVE(object, shadow_list);
  620                         temp->shadow_count--;
  621                         VM_OBJECT_UNLOCK(temp);
  622                         object->backing_object = NULL;
  623                 }
  624                 /*
  625                  * Don't double-terminate, we could be in a termination
  626                  * recursion due to the terminate having to sync data
  627                  * to disk.
  628                  */
  629                 if ((object->flags & OBJ_DEAD) == 0)
  630                         vm_object_terminate(object);
  631                 else
  632                         VM_OBJECT_UNLOCK(object);
  633                 object = temp;
  634         }
  635 }
  636 
  637 /*
  638  *      vm_object_destroy removes the object from the global object list
  639  *      and frees the space for the object.
  640  */
  641 void
  642 vm_object_destroy(vm_object_t object)
  643 {
  644 
  645         /*
  646          * Remove the object from the global object list.
  647          */
  648         mtx_lock(&vm_object_list_mtx);
  649         TAILQ_REMOVE(&vm_object_list, object, object_list);
  650         mtx_unlock(&vm_object_list_mtx);
  651 
  652         /*
  653          * Release the allocation charge.
  654          */
  655         if (object->uip != NULL) {
  656                 KASSERT(object->type == OBJT_DEFAULT ||
  657                     object->type == OBJT_SWAP,
  658                     ("vm_object_terminate: non-swap obj %p has uip",
  659                      object));
  660                 swap_release_by_uid(object->charge, object->uip);
  661                 object->charge = 0;
  662                 uifree(object->uip);
  663                 object->uip = NULL;
  664         }
  665 
  666         /*
  667          * Free the space for the object.
  668          */
  669         uma_zfree(obj_zone, object);
  670 }
  671 
  672 /*
  673  *      vm_object_terminate actually destroys the specified object, freeing
  674  *      up all previously used resources.
  675  *
  676  *      The object must be locked.
  677  *      This routine may block.
  678  */
  679 void
  680 vm_object_terminate(vm_object_t object)
  681 {
  682         vm_page_t p, p_next;
  683 
  684         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  685 
  686         /*
  687          * Make sure no one uses us.
  688          */
  689         vm_object_set_flag(object, OBJ_DEAD);
  690 
  691         /*
  692          * wait for the pageout daemon to be done with the object
  693          */
  694         vm_object_pip_wait(object, "objtrm");
  695 
  696         KASSERT(!object->paging_in_progress,
  697                 ("vm_object_terminate: pageout in progress"));
  698 
  699         /*
  700          * Clean and free the pages, as appropriate. All references to the
  701          * object are gone, so we don't need to lock it.
  702          */
  703         if (object->type == OBJT_VNODE) {
  704                 struct vnode *vp = (struct vnode *)object->handle;
  705 
  706                 /*
  707                  * Clean pages and flush buffers.
  708                  */
  709                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  710                 VM_OBJECT_UNLOCK(object);
  711 
  712                 vinvalbuf(vp, V_SAVE, 0, 0);
  713 
  714                 VM_OBJECT_LOCK(object);
  715         }
  716 
  717         KASSERT(object->ref_count == 0, 
  718                 ("vm_object_terminate: object with references, ref_count=%d",
  719                 object->ref_count));
  720 
  721         /*
  722          * Free any remaining pageable pages.  This also removes them from the
  723          * paging queues.  However, don't free wired pages, just remove them
  724          * from the object.  Rather than incrementally removing each page from
  725          * the object, the page and object are reset to any empty state. 
  726          */
  727         vm_page_lock_queues();
  728         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
  729                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
  730                     ("vm_object_terminate: freeing busy page %p", p));
  731                 /*
  732                  * Optimize the page's removal from the object by resetting
  733                  * its "object" field.  Specifically, if the page is not
  734                  * wired, then the effect of this assignment is that
  735                  * vm_page_free()'s call to vm_page_remove() will return
  736                  * immediately without modifying the page or the object.
  737                  */ 
  738                 p->object = NULL;
  739                 if (p->wire_count == 0) {
  740                         vm_page_free(p);
  741                         cnt.v_pfree++;
  742                 }
  743         }
  744         vm_page_unlock_queues();
  745         /*
  746          * If the object contained any pages, then reset it to an empty state.
  747          * None of the object's fields, including "resident_page_count", were
  748          * modified by the preceding loop.
  749          */
  750         if (object->resident_page_count != 0) {
  751                 object->root = NULL;
  752                 TAILQ_INIT(&object->memq);
  753                 object->resident_page_count = 0;
  754                 if (object->type == OBJT_VNODE)
  755                         vdrop(object->handle);
  756         }
  757 
  758 #if VM_NRESERVLEVEL > 0
  759         if (__predict_false(!LIST_EMPTY(&object->rvq)))
  760                 vm_reserv_break_all(object);
  761 #endif
  762         if (__predict_false(object->cache != NULL))
  763                 vm_page_cache_free(object, 0, 0);
  764 
  765         /*
  766          * Let the pager know object is dead.
  767          */
  768         vm_pager_deallocate(object);
  769         VM_OBJECT_UNLOCK(object);
  770 
  771         vm_object_destroy(object);
  772 }
  773 
  774 static boolean_t
  775 vm_object_page_remove_write(vm_page_t p, int flags, int *clearobjflags)
  776 {
  777 
  778         /*
  779          * If we have been asked to skip nosync pages and this is a
  780          * nosync page, skip it.  Note that the object flags were not
  781          * cleared in this case so we do not have to set them.
  782          */
  783         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
  784                 *clearobjflags = 0;
  785                 return (FALSE);
  786         } else {
  787                 pmap_remove_write(p);
  788                 return (p->dirty != 0);
  789         }
  790 }
  791 
  792 /*
  793  *      vm_object_page_clean
  794  *
  795  *      Clean all dirty pages in the specified range of object.  Leaves page 
  796  *      on whatever queue it is currently on.   If NOSYNC is set then do not
  797  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
  798  *      leaving the object dirty.
  799  *
  800  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
  801  *      synchronous clustering mode implementation.
  802  *
  803  *      Odd semantics: if start == end, we clean everything.
  804  *
  805  *      The object must be locked.
  806  */
  807 void
  808 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
  809     int flags)
  810 {
  811         vm_page_t np, p;
  812         vm_pindex_t pi, tend;
  813         int clearobjflags, curgeneration, n, pagerflags;
  814 
  815         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  816         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
  817         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
  818             object->resident_page_count == 0)
  819                 return;
  820 
  821         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
  822             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
  823         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
  824 
  825         tend = (end == 0) ? object->size : end;
  826 
  827         vm_object_set_flag(object, OBJ_CLEANING);
  828 
  829         vm_page_lock_queues();
  830 
  831         /*
  832          * Make the page read-only so we can then clear the object flags.
  833          *
  834          * However, if this is a nosync mmap then the object is likely to 
  835          * stay dirty so do not mess with the page and do not clear the
  836          * object flags.
  837          */
  838         clearobjflags = 1;
  839 
  840 rescan:
  841         curgeneration = object->generation;
  842 
  843         for (p = vm_page_find_least(object, start); p != NULL; p = np) {
  844                 pi = p->pindex;
  845                 if (pi >= tend)
  846                         break;
  847                 np = TAILQ_NEXT(p, listq);
  848                 if (p->valid == 0)
  849                         continue;
  850                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
  851                         vm_page_lock_queues();
  852                         if (object->generation != curgeneration)
  853                                 goto rescan;
  854                         np = vm_page_find_least(object, pi);
  855                         continue;
  856                 }
  857                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
  858                         continue;
  859 
  860                 n = vm_object_page_collect_flush(object, p, pagerflags,
  861                     flags, &clearobjflags);
  862                 if (object->generation != curgeneration)
  863                         goto rescan;
  864 
  865                 /*
  866                  * If the VOP_PUTPAGES() did a truncated write, so
  867                  * that even the first page of the run is not fully
  868                  * written, vm_pageout_flush() returns 0 as the run
  869                  * length.  Since the condition that caused truncated
  870                  * write may be permanent, e.g. exhausted free space,
  871                  * accepting n == 0 would cause an infinite loop.
  872                  *
  873                  * Forwarding the iterator leaves the unwritten page
  874                  * behind, but there is not much we can do there if
  875                  * filesystem refuses to write it.
  876                  */
  877                 if (n == 0)
  878                         n = 1;
  879                 np = vm_page_find_least(object, pi + n);
  880         }
  881         vm_page_unlock_queues();
  882 #if 0
  883         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
  884 #endif
  885 
  886         vm_object_clear_flag(object, OBJ_CLEANING);
  887         if (clearobjflags && start == 0 && tend == object->size)
  888                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
  889 }
  890 
  891 static int
  892 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
  893     int flags, int *clearobjflags)
  894 {
  895         vm_page_t ma[vm_pageout_page_count], p_first, tp;
  896         int count, i, mreq, runlen;
  897 
  898         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  899 
  900         count = 1;
  901         mreq = 0;
  902 
  903         for (tp = p; count < vm_pageout_page_count; count++) {
  904                 tp = vm_page_next(tp);
  905                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
  906                         break;
  907                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  908                         break;
  909         }
  910 
  911         for (p_first = p; count < vm_pageout_page_count; count++) {
  912                 tp = vm_page_prev(p_first);
  913                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
  914                         break;
  915                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  916                         break;
  917                 p_first = tp;
  918                 mreq++;
  919         }
  920 
  921         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
  922                 ma[i] = tp;
  923 
  924         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen);
  925         return (runlen);
  926 }
  927 
  928 /*
  929  * Note that there is absolutely no sense in writing out
  930  * anonymous objects, so we track down the vnode object
  931  * to write out.
  932  * We invalidate (remove) all pages from the address space
  933  * for semantic correctness.
  934  *
  935  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
  936  * may start out with a NULL object.
  937  */
  938 void
  939 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
  940     boolean_t syncio, boolean_t invalidate)
  941 {
  942         vm_object_t backing_object;
  943         struct vnode *vp;
  944         struct mount *mp;
  945         int flags, fsync_after;
  946 
  947         if (object == NULL)
  948                 return;
  949         VM_OBJECT_LOCK(object);
  950         while ((backing_object = object->backing_object) != NULL) {
  951                 VM_OBJECT_LOCK(backing_object);
  952                 offset += object->backing_object_offset;
  953                 VM_OBJECT_UNLOCK(object);
  954                 object = backing_object;
  955                 if (object->size < OFF_TO_IDX(offset + size))
  956                         size = IDX_TO_OFF(object->size) - offset;
  957         }
  958         /*
  959          * Flush pages if writing is allowed, invalidate them
  960          * if invalidation requested.  Pages undergoing I/O
  961          * will be ignored by vm_object_page_remove().
  962          *
  963          * We cannot lock the vnode and then wait for paging
  964          * to complete without deadlocking against vm_fault.
  965          * Instead we simply call vm_object_page_remove() and
  966          * allow it to block internally on a page-by-page
  967          * basis when it encounters pages undergoing async
  968          * I/O.
  969          */
  970         if (object->type == OBJT_VNODE &&
  971             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
  972                 int vfslocked;
  973                 vp = object->handle;
  974                 VM_OBJECT_UNLOCK(object);
  975                 (void) vn_start_write(vp, &mp, V_WAIT);
  976                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  977                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  978                 if (syncio && !invalidate && offset == 0 &&
  979                     OFF_TO_IDX(size) == object->size) {
  980                         /*
  981                          * If syncing the whole mapping of the file,
  982                          * it is faster to schedule all the writes in
  983                          * async mode, also allowing the clustering,
  984                          * and then wait for i/o to complete.
  985                          */
  986                         flags = 0;
  987                         fsync_after = TRUE;
  988                 } else {
  989                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
  990                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
  991                         fsync_after = FALSE;
  992                 }
  993                 VM_OBJECT_LOCK(object);
  994                 vm_object_page_clean(object,
  995                     OFF_TO_IDX(offset),
  996                     OFF_TO_IDX(offset + size + PAGE_MASK),
  997                     flags);
  998                 VM_OBJECT_UNLOCK(object);
  999                 if (fsync_after)
 1000                         (void) VOP_FSYNC(vp, MNT_WAIT, curthread);
 1001                 VOP_UNLOCK(vp, 0);
 1002                 VFS_UNLOCK_GIANT(vfslocked);
 1003                 vn_finished_write(mp);
 1004                 VM_OBJECT_LOCK(object);
 1005         }
 1006         if ((object->type == OBJT_VNODE ||
 1007              object->type == OBJT_DEVICE) && invalidate) {
 1008                 boolean_t purge;
 1009                 purge = old_msync || (object->type == OBJT_DEVICE);
 1010                 vm_object_page_remove(object,
 1011                     OFF_TO_IDX(offset),
 1012                     OFF_TO_IDX(offset + size + PAGE_MASK),
 1013                     purge ? FALSE : TRUE);
 1014         }
 1015         VM_OBJECT_UNLOCK(object);
 1016 }
 1017 
 1018 /*
 1019  *      vm_object_madvise:
 1020  *
 1021  *      Implements the madvise function at the object/page level.
 1022  *
 1023  *      MADV_WILLNEED   (any object)
 1024  *
 1025  *          Activate the specified pages if they are resident.
 1026  *
 1027  *      MADV_DONTNEED   (any object)
 1028  *
 1029  *          Deactivate the specified pages if they are resident.
 1030  *
 1031  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
 1032  *                       OBJ_ONEMAPPING only)
 1033  *
 1034  *          Deactivate and clean the specified pages if they are
 1035  *          resident.  This permits the process to reuse the pages
 1036  *          without faulting or the kernel to reclaim the pages
 1037  *          without I/O.
 1038  */
 1039 void
 1040 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
 1041 {
 1042         vm_pindex_t end, tpindex;
 1043         vm_object_t backing_object, tobject;
 1044         vm_page_t m;
 1045 
 1046         if (object == NULL)
 1047                 return;
 1048         VM_OBJECT_LOCK(object);
 1049         end = pindex + count;
 1050         /*
 1051          * Locate and adjust resident pages
 1052          */
 1053         for (; pindex < end; pindex += 1) {
 1054 relookup:
 1055                 tobject = object;
 1056                 tpindex = pindex;
 1057 shadowlookup:
 1058                 /*
 1059                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
 1060                  * and those pages must be OBJ_ONEMAPPING.
 1061                  */
 1062                 if (advise == MADV_FREE) {
 1063                         if ((tobject->type != OBJT_DEFAULT &&
 1064                              tobject->type != OBJT_SWAP) ||
 1065                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
 1066                                 goto unlock_tobject;
 1067                         }
 1068                 } else if (tobject->type == OBJT_PHYS)
 1069                         goto unlock_tobject;
 1070                 m = vm_page_lookup(tobject, tpindex);
 1071                 if (m == NULL && advise == MADV_WILLNEED) {
 1072                         /*
 1073                          * If the page is cached, reactivate it.
 1074                          */
 1075                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
 1076                             VM_ALLOC_NOBUSY);
 1077                 }
 1078                 if (m == NULL) {
 1079                         /*
 1080                          * There may be swap even if there is no backing page
 1081                          */
 1082                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1083                                 swap_pager_freespace(tobject, tpindex, 1);
 1084                         /*
 1085                          * next object
 1086                          */
 1087                         backing_object = tobject->backing_object;
 1088                         if (backing_object == NULL)
 1089                                 goto unlock_tobject;
 1090                         VM_OBJECT_LOCK(backing_object);
 1091                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
 1092                         if (tobject != object)
 1093                                 VM_OBJECT_UNLOCK(tobject);
 1094                         tobject = backing_object;
 1095                         goto shadowlookup;
 1096                 } else if (m->valid != VM_PAGE_BITS_ALL)
 1097                         goto unlock_tobject;
 1098                 /*
 1099                  * If the page is not in a normal state, skip it.
 1100                  */
 1101                 vm_page_lock_queues();
 1102                 if (m->hold_count != 0 || m->wire_count != 0) {
 1103                         vm_page_unlock_queues();
 1104                         goto unlock_tobject;
 1105                 }
 1106                 if ((m->oflags & VPO_BUSY) || m->busy) {
 1107                         if (advise == MADV_WILLNEED)
 1108                                 /*
 1109                                  * Reference the page before unlocking and
 1110                                  * sleeping so that the page daemon is less
 1111                                  * likely to reclaim it. 
 1112                                  */
 1113                                 vm_page_flag_set(m, PG_REFERENCED);
 1114                         vm_page_unlock_queues();
 1115                         if (object != tobject)
 1116                                 VM_OBJECT_UNLOCK(object);
 1117                         m->oflags |= VPO_WANTED;
 1118                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
 1119                             0);
 1120                         VM_OBJECT_LOCK(object);
 1121                         goto relookup;
 1122                 }
 1123                 if (advise == MADV_WILLNEED) {
 1124                         vm_page_activate(m);
 1125                 } else if (advise == MADV_DONTNEED) {
 1126                         vm_page_dontneed(m);
 1127                 } else if (advise == MADV_FREE) {
 1128                         /*
 1129                          * Mark the page clean.  This will allow the page
 1130                          * to be freed up by the system.  However, such pages
 1131                          * are often reused quickly by malloc()/free()
 1132                          * so we do not do anything that would cause
 1133                          * a page fault if we can help it.
 1134                          *
 1135                          * Specifically, we do not try to actually free
 1136                          * the page now nor do we try to put it in the
 1137                          * cache (which would cause a page fault on reuse).
 1138                          *
 1139                          * But we do make the page is freeable as we
 1140                          * can without actually taking the step of unmapping
 1141                          * it.
 1142                          */
 1143                         pmap_clear_modify(m);
 1144                         m->dirty = 0;
 1145                         m->act_count = 0;
 1146                         vm_page_dontneed(m);
 1147                 }
 1148                 vm_page_unlock_queues();
 1149                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1150                         swap_pager_freespace(tobject, tpindex, 1);
 1151 unlock_tobject:
 1152                 if (tobject != object)
 1153                         VM_OBJECT_UNLOCK(tobject);
 1154         }       
 1155         VM_OBJECT_UNLOCK(object);
 1156 }
 1157 
 1158 /*
 1159  *      vm_object_shadow:
 1160  *
 1161  *      Create a new object which is backed by the
 1162  *      specified existing object range.  The source
 1163  *      object reference is deallocated.
 1164  *
 1165  *      The new object and offset into that object
 1166  *      are returned in the source parameters.
 1167  */
 1168 void
 1169 vm_object_shadow(
 1170         vm_object_t *object,    /* IN/OUT */
 1171         vm_ooffset_t *offset,   /* IN/OUT */
 1172         vm_size_t length)
 1173 {
 1174         vm_object_t source;
 1175         vm_object_t result;
 1176 
 1177         source = *object;
 1178 
 1179         /*
 1180          * Don't create the new object if the old object isn't shared.
 1181          */
 1182         if (source != NULL) {
 1183                 VM_OBJECT_LOCK(source);
 1184                 if (source->ref_count == 1 &&
 1185                     source->handle == NULL &&
 1186                     (source->type == OBJT_DEFAULT ||
 1187                      source->type == OBJT_SWAP)) {
 1188                         VM_OBJECT_UNLOCK(source);
 1189                         return;
 1190                 }
 1191                 VM_OBJECT_UNLOCK(source);
 1192         }
 1193 
 1194         /*
 1195          * Allocate a new object with the given length.
 1196          */
 1197         result = vm_object_allocate(OBJT_DEFAULT, length);
 1198 
 1199         /*
 1200          * The new object shadows the source object, adding a reference to it.
 1201          * Our caller changes his reference to point to the new object,
 1202          * removing a reference to the source object.  Net result: no change
 1203          * of reference count.
 1204          *
 1205          * Try to optimize the result object's page color when shadowing
 1206          * in order to maintain page coloring consistency in the combined 
 1207          * shadowed object.
 1208          */
 1209         result->backing_object = source;
 1210         /*
 1211          * Store the offset into the source object, and fix up the offset into
 1212          * the new object.
 1213          */
 1214         result->backing_object_offset = *offset;
 1215         if (source != NULL) {
 1216                 VM_OBJECT_LOCK(source);
 1217                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
 1218                 source->shadow_count++;
 1219 #if VM_NRESERVLEVEL > 0
 1220                 result->flags |= source->flags & OBJ_COLORED;
 1221                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
 1222                     ((1 << (VM_NFREEORDER - 1)) - 1);
 1223 #endif
 1224                 VM_OBJECT_UNLOCK(source);
 1225         }
 1226 
 1227 
 1228         /*
 1229          * Return the new things
 1230          */
 1231         *offset = 0;
 1232         *object = result;
 1233 }
 1234 
 1235 /*
 1236  *      vm_object_split:
 1237  *
 1238  * Split the pages in a map entry into a new object.  This affords
 1239  * easier removal of unused pages, and keeps object inheritance from
 1240  * being a negative impact on memory usage.
 1241  */
 1242 void
 1243 vm_object_split(vm_map_entry_t entry)
 1244 {
 1245         vm_page_t m, m_next;
 1246         vm_object_t orig_object, new_object, source;
 1247         vm_pindex_t idx, offidxstart;
 1248         vm_size_t size;
 1249 
 1250         orig_object = entry->object.vm_object;
 1251         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
 1252                 return;
 1253         if (orig_object->ref_count <= 1)
 1254                 return;
 1255         VM_OBJECT_UNLOCK(orig_object);
 1256 
 1257         offidxstart = OFF_TO_IDX(entry->offset);
 1258         size = atop(entry->end - entry->start);
 1259 
 1260         /*
 1261          * If swap_pager_copy() is later called, it will convert new_object
 1262          * into a swap object.
 1263          */
 1264         new_object = vm_object_allocate(OBJT_DEFAULT, size);
 1265 
 1266         /*
 1267          * At this point, the new object is still private, so the order in
 1268          * which the original and new objects are locked does not matter.
 1269          */
 1270         VM_OBJECT_LOCK(new_object);
 1271         VM_OBJECT_LOCK(orig_object);
 1272         source = orig_object->backing_object;
 1273         if (source != NULL) {
 1274                 VM_OBJECT_LOCK(source);
 1275                 if ((source->flags & OBJ_DEAD) != 0) {
 1276                         VM_OBJECT_UNLOCK(source);
 1277                         VM_OBJECT_UNLOCK(orig_object);
 1278                         VM_OBJECT_UNLOCK(new_object);
 1279                         vm_object_deallocate(new_object);
 1280                         VM_OBJECT_LOCK(orig_object);
 1281                         return;
 1282                 }
 1283                 LIST_INSERT_HEAD(&source->shadow_head,
 1284                                   new_object, shadow_list);
 1285                 source->shadow_count++;
 1286                 vm_object_reference_locked(source);     /* for new_object */
 1287                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1288                 VM_OBJECT_UNLOCK(source);
 1289                 new_object->backing_object_offset = 
 1290                         orig_object->backing_object_offset + entry->offset;
 1291                 new_object->backing_object = source;
 1292         }
 1293         if (orig_object->uip != NULL) {
 1294                 new_object->uip = orig_object->uip;
 1295                 uihold(orig_object->uip);
 1296                 new_object->charge = ptoa(size);
 1297                 KASSERT(orig_object->charge >= ptoa(size),
 1298                     ("orig_object->charge < 0"));
 1299                 orig_object->charge -= ptoa(size);
 1300         }
 1301 retry:
 1302         m = vm_page_find_least(orig_object, offidxstart);
 1303         vm_page_lock_queues();
 1304         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
 1305             m = m_next) {
 1306                 m_next = TAILQ_NEXT(m, listq);
 1307 
 1308                 /*
 1309                  * We must wait for pending I/O to complete before we can
 1310                  * rename the page.
 1311                  *
 1312                  * We do not have to VM_PROT_NONE the page as mappings should
 1313                  * not be changed by this operation.
 1314                  */
 1315                 if ((m->oflags & VPO_BUSY) || m->busy) {
 1316                         vm_page_unlock_queues();
 1317                         VM_OBJECT_UNLOCK(new_object);
 1318                         m->oflags |= VPO_WANTED;
 1319                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
 1320                         VM_OBJECT_LOCK(new_object);
 1321                         goto retry;
 1322                 }
 1323                 vm_page_rename(m, new_object, idx);
 1324                 /* page automatically made dirty by rename and cache handled */
 1325                 vm_page_busy(m);
 1326         }
 1327         vm_page_unlock_queues();
 1328         if (orig_object->type == OBJT_SWAP) {
 1329                 /*
 1330                  * swap_pager_copy() can sleep, in which case the orig_object's
 1331                  * and new_object's locks are released and reacquired. 
 1332                  */
 1333                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
 1334 
 1335                 /*
 1336                  * Transfer any cached pages from orig_object to new_object.
 1337                  */
 1338                 if (__predict_false(orig_object->cache != NULL))
 1339                         vm_page_cache_transfer(orig_object, offidxstart,
 1340                             new_object);
 1341         }
 1342         VM_OBJECT_UNLOCK(orig_object);
 1343         TAILQ_FOREACH(m, &new_object->memq, listq)
 1344                 vm_page_wakeup(m);
 1345         VM_OBJECT_UNLOCK(new_object);
 1346         entry->object.vm_object = new_object;
 1347         entry->offset = 0LL;
 1348         vm_object_deallocate(orig_object);
 1349         VM_OBJECT_LOCK(new_object);
 1350 }
 1351 
 1352 #define OBSC_TEST_ALL_SHADOWED  0x0001
 1353 #define OBSC_COLLAPSE_NOWAIT    0x0002
 1354 #define OBSC_COLLAPSE_WAIT      0x0004
 1355 
 1356 static int
 1357 vm_object_backing_scan(vm_object_t object, int op)
 1358 {
 1359         int r = 1;
 1360         vm_page_t p;
 1361         vm_object_t backing_object;
 1362         vm_pindex_t backing_offset_index;
 1363 
 1364         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1365         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
 1366 
 1367         backing_object = object->backing_object;
 1368         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1369 
 1370         /*
 1371          * Initial conditions
 1372          */
 1373         if (op & OBSC_TEST_ALL_SHADOWED) {
 1374                 /*
 1375                  * We do not want to have to test for the existence of cache
 1376                  * or swap pages in the backing object.  XXX but with the
 1377                  * new swapper this would be pretty easy to do.
 1378                  *
 1379                  * XXX what about anonymous MAP_SHARED memory that hasn't
 1380                  * been ZFOD faulted yet?  If we do not test for this, the
 1381                  * shadow test may succeed! XXX
 1382                  */
 1383                 if (backing_object->type != OBJT_DEFAULT) {
 1384                         return (0);
 1385                 }
 1386         }
 1387         if (op & OBSC_COLLAPSE_WAIT) {
 1388                 vm_object_set_flag(backing_object, OBJ_DEAD);
 1389         }
 1390 
 1391         /*
 1392          * Our scan
 1393          */
 1394         p = TAILQ_FIRST(&backing_object->memq);
 1395         while (p) {
 1396                 vm_page_t next = TAILQ_NEXT(p, listq);
 1397                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
 1398 
 1399                 if (op & OBSC_TEST_ALL_SHADOWED) {
 1400                         vm_page_t pp;
 1401 
 1402                         /*
 1403                          * Ignore pages outside the parent object's range
 1404                          * and outside the parent object's mapping of the 
 1405                          * backing object.
 1406                          *
 1407                          * note that we do not busy the backing object's
 1408                          * page.
 1409                          */
 1410                         if (
 1411                             p->pindex < backing_offset_index ||
 1412                             new_pindex >= object->size
 1413                         ) {
 1414                                 p = next;
 1415                                 continue;
 1416                         }
 1417 
 1418                         /*
 1419                          * See if the parent has the page or if the parent's
 1420                          * object pager has the page.  If the parent has the
 1421                          * page but the page is not valid, the parent's
 1422                          * object pager must have the page.
 1423                          *
 1424                          * If this fails, the parent does not completely shadow
 1425                          * the object and we might as well give up now.
 1426                          */
 1427 
 1428                         pp = vm_page_lookup(object, new_pindex);
 1429                         if (
 1430                             (pp == NULL || pp->valid == 0) &&
 1431                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
 1432                         ) {
 1433                                 r = 0;
 1434                                 break;
 1435                         }
 1436                 }
 1437 
 1438                 /*
 1439                  * Check for busy page
 1440                  */
 1441                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
 1442                         vm_page_t pp;
 1443 
 1444                         if (op & OBSC_COLLAPSE_NOWAIT) {
 1445                                 if ((p->oflags & VPO_BUSY) ||
 1446                                     !p->valid || 
 1447                                     p->busy) {
 1448                                         p = next;
 1449                                         continue;
 1450                                 }
 1451                         } else if (op & OBSC_COLLAPSE_WAIT) {
 1452                                 if ((p->oflags & VPO_BUSY) || p->busy) {
 1453                                         VM_OBJECT_UNLOCK(object);
 1454                                         p->oflags |= VPO_WANTED;
 1455                                         msleep(p, VM_OBJECT_MTX(backing_object),
 1456                                             PDROP | PVM, "vmocol", 0);
 1457                                         VM_OBJECT_LOCK(object);
 1458                                         VM_OBJECT_LOCK(backing_object);
 1459                                         /*
 1460                                          * If we slept, anything could have
 1461                                          * happened.  Since the object is
 1462                                          * marked dead, the backing offset
 1463                                          * should not have changed so we
 1464                                          * just restart our scan.
 1465                                          */
 1466                                         p = TAILQ_FIRST(&backing_object->memq);
 1467                                         continue;
 1468                                 }
 1469                         }
 1470 
 1471                         KASSERT(
 1472                             p->object == backing_object,
 1473                             ("vm_object_backing_scan: object mismatch")
 1474                         );
 1475 
 1476                         /*
 1477                          * Destroy any associated swap
 1478                          */
 1479                         if (backing_object->type == OBJT_SWAP) {
 1480                                 swap_pager_freespace(
 1481                                     backing_object, 
 1482                                     p->pindex,
 1483                                     1
 1484                                 );
 1485                         }
 1486 
 1487                         if (
 1488                             p->pindex < backing_offset_index ||
 1489                             new_pindex >= object->size
 1490                         ) {
 1491                                 /*
 1492                                  * Page is out of the parent object's range, we 
 1493                                  * can simply destroy it. 
 1494                                  */
 1495                                 vm_page_lock_queues();
 1496                                 KASSERT(!pmap_page_is_mapped(p),
 1497                                     ("freeing mapped page %p", p));
 1498                                 if (p->wire_count == 0)
 1499                                         vm_page_free(p);
 1500                                 else
 1501                                         vm_page_remove(p);
 1502                                 vm_page_unlock_queues();
 1503                                 p = next;
 1504                                 continue;
 1505                         }
 1506 
 1507                         pp = vm_page_lookup(object, new_pindex);
 1508                         if (
 1509                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
 1510                             (pp != NULL && pp->valid == 0)
 1511                         ) {
 1512                                 /*
 1513                                  * The page in the parent is not (yet) valid.
 1514                                  * We don't know anything about the state of
 1515                                  * the original page.  It might be mapped,
 1516                                  * so we must avoid the next if here.
 1517                                  *
 1518                                  * This is due to a race in vm_fault() where
 1519                                  * we must unbusy the original (backing_obj)
 1520                                  * page before we can (re)lock the parent.
 1521                                  * Hence we can get here.
 1522                                  */
 1523                                 p = next;
 1524                                 continue;
 1525                         }
 1526                         if (
 1527                             pp != NULL ||
 1528                             vm_pager_has_page(object, new_pindex, NULL, NULL)
 1529                         ) {
 1530                                 /*
 1531                                  * page already exists in parent OR swap exists
 1532                                  * for this location in the parent.  Destroy 
 1533                                  * the original page from the backing object.
 1534                                  *
 1535                                  * Leave the parent's page alone
 1536                                  */
 1537                                 vm_page_lock_queues();
 1538                                 KASSERT(!pmap_page_is_mapped(p),
 1539                                     ("freeing mapped page %p", p));
 1540                                 if (p->wire_count == 0)
 1541                                         vm_page_free(p);
 1542                                 else
 1543                                         vm_page_remove(p);
 1544                                 vm_page_unlock_queues();
 1545                                 p = next;
 1546                                 continue;
 1547                         }
 1548 
 1549 #if VM_NRESERVLEVEL > 0
 1550                         /*
 1551                          * Rename the reservation.
 1552                          */
 1553                         vm_reserv_rename(p, object, backing_object,
 1554                             backing_offset_index);
 1555 #endif
 1556 
 1557                         /*
 1558                          * Page does not exist in parent, rename the
 1559                          * page from the backing object to the main object. 
 1560                          *
 1561                          * If the page was mapped to a process, it can remain 
 1562                          * mapped through the rename.
 1563                          */
 1564                         vm_page_lock_queues();
 1565                         vm_page_rename(p, object, new_pindex);
 1566                         vm_page_unlock_queues();
 1567                         /* page automatically made dirty by rename */
 1568                 }
 1569                 p = next;
 1570         }
 1571         return (r);
 1572 }
 1573 
 1574 
 1575 /*
 1576  * this version of collapse allows the operation to occur earlier and
 1577  * when paging_in_progress is true for an object...  This is not a complete
 1578  * operation, but should plug 99.9% of the rest of the leaks.
 1579  */
 1580 static void
 1581 vm_object_qcollapse(vm_object_t object)
 1582 {
 1583         vm_object_t backing_object = object->backing_object;
 1584 
 1585         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1586         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
 1587 
 1588         if (backing_object->ref_count != 1)
 1589                 return;
 1590 
 1591         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
 1592 }
 1593 
 1594 /*
 1595  *      vm_object_collapse:
 1596  *
 1597  *      Collapse an object with the object backing it.
 1598  *      Pages in the backing object are moved into the
 1599  *      parent, and the backing object is deallocated.
 1600  */
 1601 void
 1602 vm_object_collapse(vm_object_t object)
 1603 {
 1604         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1605         
 1606         while (TRUE) {
 1607                 vm_object_t backing_object;
 1608 
 1609                 /*
 1610                  * Verify that the conditions are right for collapse:
 1611                  *
 1612                  * The object exists and the backing object exists.
 1613                  */
 1614                 if ((backing_object = object->backing_object) == NULL)
 1615                         break;
 1616 
 1617                 /*
 1618                  * we check the backing object first, because it is most likely
 1619                  * not collapsable.
 1620                  */
 1621                 VM_OBJECT_LOCK(backing_object);
 1622                 if (backing_object->handle != NULL ||
 1623                     (backing_object->type != OBJT_DEFAULT &&
 1624                      backing_object->type != OBJT_SWAP) ||
 1625                     (backing_object->flags & OBJ_DEAD) ||
 1626                     object->handle != NULL ||
 1627                     (object->type != OBJT_DEFAULT &&
 1628                      object->type != OBJT_SWAP) ||
 1629                     (object->flags & OBJ_DEAD)) {
 1630                         VM_OBJECT_UNLOCK(backing_object);
 1631                         break;
 1632                 }
 1633 
 1634                 if (
 1635                     object->paging_in_progress != 0 ||
 1636                     backing_object->paging_in_progress != 0
 1637                 ) {
 1638                         vm_object_qcollapse(object);
 1639                         VM_OBJECT_UNLOCK(backing_object);
 1640                         break;
 1641                 }
 1642                 /*
 1643                  * We know that we can either collapse the backing object (if
 1644                  * the parent is the only reference to it) or (perhaps) have
 1645                  * the parent bypass the object if the parent happens to shadow
 1646                  * all the resident pages in the entire backing object.
 1647                  *
 1648                  * This is ignoring pager-backed pages such as swap pages.
 1649                  * vm_object_backing_scan fails the shadowing test in this
 1650                  * case.
 1651                  */
 1652                 if (backing_object->ref_count == 1) {
 1653                         /*
 1654                          * If there is exactly one reference to the backing
 1655                          * object, we can collapse it into the parent.  
 1656                          */
 1657                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
 1658 
 1659 #if VM_NRESERVLEVEL > 0
 1660                         /*
 1661                          * Break any reservations from backing_object.
 1662                          */
 1663                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
 1664                                 vm_reserv_break_all(backing_object);
 1665 #endif
 1666 
 1667                         /*
 1668                          * Move the pager from backing_object to object.
 1669                          */
 1670                         if (backing_object->type == OBJT_SWAP) {
 1671                                 /*
 1672                                  * swap_pager_copy() can sleep, in which case
 1673                                  * the backing_object's and object's locks are
 1674                                  * released and reacquired.
 1675                                  */
 1676                                 swap_pager_copy(
 1677                                     backing_object,
 1678                                     object,
 1679                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
 1680 
 1681                                 /*
 1682                                  * Free any cached pages from backing_object.
 1683                                  */
 1684                                 if (__predict_false(backing_object->cache != NULL))
 1685                                         vm_page_cache_free(backing_object, 0, 0);
 1686                         }
 1687                         /*
 1688                          * Object now shadows whatever backing_object did.
 1689                          * Note that the reference to 
 1690                          * backing_object->backing_object moves from within 
 1691                          * backing_object to within object.
 1692                          */
 1693                         LIST_REMOVE(object, shadow_list);
 1694                         backing_object->shadow_count--;
 1695                         if (backing_object->backing_object) {
 1696                                 VM_OBJECT_LOCK(backing_object->backing_object);
 1697                                 LIST_REMOVE(backing_object, shadow_list);
 1698                                 LIST_INSERT_HEAD(
 1699                                     &backing_object->backing_object->shadow_head,
 1700                                     object, shadow_list);
 1701                                 /*
 1702                                  * The shadow_count has not changed.
 1703                                  */
 1704                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
 1705                         }
 1706                         object->backing_object = backing_object->backing_object;
 1707                         object->backing_object_offset +=
 1708                             backing_object->backing_object_offset;
 1709 
 1710                         /*
 1711                          * Discard backing_object.
 1712                          *
 1713                          * Since the backing object has no pages, no pager left,
 1714                          * and no object references within it, all that is
 1715                          * necessary is to dispose of it.
 1716                          */
 1717                         KASSERT(backing_object->ref_count == 1, (
 1718 "backing_object %p was somehow re-referenced during collapse!",
 1719                             backing_object));
 1720                         VM_OBJECT_UNLOCK(backing_object);
 1721                         vm_object_destroy(backing_object);
 1722 
 1723                         object_collapses++;
 1724                 } else {
 1725                         vm_object_t new_backing_object;
 1726 
 1727                         /*
 1728                          * If we do not entirely shadow the backing object,
 1729                          * there is nothing we can do so we give up.
 1730                          */
 1731                         if (object->resident_page_count != object->size &&
 1732                             vm_object_backing_scan(object,
 1733                             OBSC_TEST_ALL_SHADOWED) == 0) {
 1734                                 VM_OBJECT_UNLOCK(backing_object);
 1735                                 break;
 1736                         }
 1737 
 1738                         /*
 1739                          * Make the parent shadow the next object in the
 1740                          * chain.  Deallocating backing_object will not remove
 1741                          * it, since its reference count is at least 2.
 1742                          */
 1743                         LIST_REMOVE(object, shadow_list);
 1744                         backing_object->shadow_count--;
 1745 
 1746                         new_backing_object = backing_object->backing_object;
 1747                         if ((object->backing_object = new_backing_object) != NULL) {
 1748                                 VM_OBJECT_LOCK(new_backing_object);
 1749                                 LIST_INSERT_HEAD(
 1750                                     &new_backing_object->shadow_head,
 1751                                     object,
 1752                                     shadow_list
 1753                                 );
 1754                                 new_backing_object->shadow_count++;
 1755                                 vm_object_reference_locked(new_backing_object);
 1756                                 VM_OBJECT_UNLOCK(new_backing_object);
 1757                                 object->backing_object_offset +=
 1758                                         backing_object->backing_object_offset;
 1759                         }
 1760 
 1761                         /*
 1762                          * Drop the reference count on backing_object. Since
 1763                          * its ref_count was at least 2, it will not vanish.
 1764                          */
 1765                         backing_object->ref_count--;
 1766                         VM_OBJECT_UNLOCK(backing_object);
 1767                         object_bypasses++;
 1768                 }
 1769 
 1770                 /*
 1771                  * Try again with this object's new backing object.
 1772                  */
 1773         }
 1774 }
 1775 
 1776 /*
 1777  *      vm_object_page_remove:
 1778  *
 1779  *      For the given object, either frees or invalidates each of the
 1780  *      specified pages.  In general, a page is freed.  However, if a
 1781  *      page is wired for any reason other than the existence of a
 1782  *      managed, wired mapping, then it may be invalidated but not
 1783  *      removed from the object.  Pages are specified by the given
 1784  *      range ["start", "end") and Boolean "clean_only".  As a
 1785  *      special case, if "end" is zero, then the range extends from
 1786  *      "start" to the end of the object.  If "clean_only" is TRUE,
 1787  *      then only the non-dirty pages within the specified range are
 1788  *      affected.
 1789  *
 1790  *      In general, this operation should only be performed on objects
 1791  *      that contain managed pages.  There are two exceptions.  First,
 1792  *      it may be performed on the kernel and kmem objects.  Second,
 1793  *      it may be used by msync(..., MS_INVALIDATE) to invalidate
 1794  *      device-backed pages.  In both of these cases, "clean_only"
 1795  *      must be FALSE.
 1796  *
 1797  *      The object must be locked.
 1798  */
 1799 void
 1800 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 1801     boolean_t clean_only)
 1802 {
 1803         vm_page_t p, next;
 1804         int wirings;
 1805 
 1806         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1807         if (object->resident_page_count == 0)
 1808                 goto skipmemq;
 1809 
 1810         /*
 1811          * Since physically-backed objects do not use managed pages, we can't
 1812          * remove pages from the object (we must instead remove the page
 1813          * references, and then destroy the object).
 1814          */
 1815         KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
 1816             object == kmem_object,
 1817             ("attempt to remove pages from a physical object"));
 1818 
 1819         vm_object_pip_add(object, 1);
 1820 again:
 1821         p = vm_page_find_least(object, start);
 1822         vm_page_lock_queues();
 1823         /*
 1824          * Assert: the variable p is either (1) the page with the
 1825          * least pindex greater than or equal to the parameter pindex
 1826          * or (2) NULL.
 1827          */
 1828         for (;
 1829              p != NULL && (p->pindex < end || end == 0);
 1830              p = next) {
 1831                 next = TAILQ_NEXT(p, listq);
 1832 
 1833                 /*
 1834                  * If the page is wired for any reason besides the
 1835                  * existence of managed, wired mappings, then it cannot
 1836                  * be freed.  For example, fictitious pages, which
 1837                  * represent device memory, are inherently wired and
 1838                  * cannot be freed.  They can, however, be invalidated
 1839                  * if "clean_only" is FALSE.
 1840                  */
 1841                 if ((wirings = p->wire_count) != 0 &&
 1842                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
 1843                         /* Fictitious pages do not have managed mappings. */
 1844                         if ((p->flags & PG_FICTITIOUS) == 0)
 1845                                 pmap_remove_all(p);
 1846                         /* Account for removal of managed, wired mappings. */
 1847                         p->wire_count -= wirings;
 1848                         if (!clean_only) {
 1849                                 p->valid = 0;
 1850                                 vm_page_undirty(p);
 1851                         }
 1852                         continue;
 1853                 }
 1854                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
 1855                         goto again;
 1856                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
 1857                     ("vm_object_page_remove: page %p is fictitious", p));
 1858                 if (clean_only && p->valid) {
 1859                         pmap_remove_write(p);
 1860                         if (p->dirty)
 1861                                 continue;
 1862                 }
 1863                 pmap_remove_all(p);
 1864                 /* Account for removal of managed, wired mappings. */
 1865                 if (wirings != 0)
 1866                         p->wire_count -= wirings;
 1867                 vm_page_free(p);
 1868         }
 1869         vm_page_unlock_queues();
 1870         vm_object_pip_wakeup(object);
 1871 skipmemq:
 1872         if (__predict_false(object->cache != NULL))
 1873                 vm_page_cache_free(object, start, end);
 1874 }
 1875 
 1876 /*
 1877  *      vm_object_page_cache:
 1878  *
 1879  *      For the given object, attempt to move the specified clean
 1880  *      pages to the cache queue.  If a page is wired for any reason,
 1881  *      then it will not be changed.  Pages are specified by the given
 1882  *      range ["start", "end").  As a special case, if "end" is zero,
 1883  *      then the range extends from "start" to the end of the object.
 1884  *      Any mappings to the specified pages are removed before the
 1885  *      pages are moved to the cache queue.
 1886  *
 1887  *      This operation should only be performed on objects that
 1888  *      contain managed pages.
 1889  *
 1890  *      The object must be locked.
 1891  */
 1892 void
 1893 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1894 {
 1895         vm_page_t p, next;
 1896 
 1897         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1898         KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_SG &&
 1899             object->type != OBJT_PHYS),
 1900             ("vm_object_page_cache: illegal object %p", object));
 1901         if (object->resident_page_count == 0)
 1902                 return;
 1903         p = vm_page_find_least(object, start);
 1904 
 1905         /*
 1906          * Here, the variable "p" is either (1) the page with the least pindex
 1907          * greater than or equal to the parameter "start" or (2) NULL. 
 1908          */
 1909         vm_page_lock_queues();
 1910         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 1911                 next = TAILQ_NEXT(p, listq);
 1912 
 1913                 vm_page_try_to_cache(p);
 1914         }
 1915         vm_page_unlock_queues();
 1916 }
 1917 
 1918 /*
 1919  *      Populate the specified range of the object with valid pages.  Returns
 1920  *      TRUE if the range is successfully populated and FALSE otherwise.
 1921  *
 1922  *      Note: This function should be optimized to pass a larger array of
 1923  *      pages to vm_pager_get_pages() before it is applied to a non-
 1924  *      OBJT_DEVICE object.
 1925  *
 1926  *      The object must be locked.
 1927  */
 1928 boolean_t
 1929 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1930 {
 1931         vm_page_t m, ma[1];
 1932         vm_pindex_t pindex;
 1933         int rv;
 1934 
 1935         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1936         for (pindex = start; pindex < end; pindex++) {
 1937                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
 1938                     VM_ALLOC_RETRY);
 1939                 if (m->valid != VM_PAGE_BITS_ALL) {
 1940                         ma[0] = m;
 1941                         rv = vm_pager_get_pages(object, ma, 1, 0);
 1942                         m = vm_page_lookup(object, pindex);
 1943                         if (m == NULL)
 1944                                 break;
 1945                         if (rv != VM_PAGER_OK) {
 1946                                 vm_page_lock_queues();
 1947                                 vm_page_free(m);
 1948                                 vm_page_unlock_queues();
 1949                                 break;
 1950                         }
 1951                 }
 1952                 /*
 1953                  * Keep "m" busy because a subsequent iteration may unlock
 1954                  * the object.
 1955                  */
 1956         }
 1957         if (pindex > start) {
 1958                 m = vm_page_lookup(object, start);
 1959                 while (m != NULL && m->pindex < pindex) {
 1960                         vm_page_wakeup(m);
 1961                         m = TAILQ_NEXT(m, listq);
 1962                 }
 1963         }
 1964         return (pindex == end);
 1965 }
 1966 
 1967 /*
 1968  *      Routine:        vm_object_coalesce
 1969  *      Function:       Coalesces two objects backing up adjoining
 1970  *                      regions of memory into a single object.
 1971  *
 1972  *      returns TRUE if objects were combined.
 1973  *
 1974  *      NOTE:   Only works at the moment if the second object is NULL -
 1975  *              if it's not, which object do we lock first?
 1976  *
 1977  *      Parameters:
 1978  *              prev_object     First object to coalesce
 1979  *              prev_offset     Offset into prev_object
 1980  *              prev_size       Size of reference to prev_object
 1981  *              next_size       Size of reference to the second object
 1982  *              reserved        Indicator that extension region has
 1983  *                              swap accounted for
 1984  *
 1985  *      Conditions:
 1986  *      The object must *not* be locked.
 1987  */
 1988 boolean_t
 1989 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
 1990     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
 1991 {
 1992         vm_pindex_t next_pindex;
 1993 
 1994         if (prev_object == NULL)
 1995                 return (TRUE);
 1996         VM_OBJECT_LOCK(prev_object);
 1997         if (prev_object->type != OBJT_DEFAULT &&
 1998             prev_object->type != OBJT_SWAP) {
 1999                 VM_OBJECT_UNLOCK(prev_object);
 2000                 return (FALSE);
 2001         }
 2002 
 2003         /*
 2004          * Try to collapse the object first
 2005          */
 2006         vm_object_collapse(prev_object);
 2007 
 2008         /*
 2009          * Can't coalesce if: . more than one reference . paged out . shadows
 2010          * another object . has a copy elsewhere (any of which mean that the
 2011          * pages not mapped to prev_entry may be in use anyway)
 2012          */
 2013         if (prev_object->backing_object != NULL) {
 2014                 VM_OBJECT_UNLOCK(prev_object);
 2015                 return (FALSE);
 2016         }
 2017 
 2018         prev_size >>= PAGE_SHIFT;
 2019         next_size >>= PAGE_SHIFT;
 2020         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
 2021 
 2022         if ((prev_object->ref_count > 1) &&
 2023             (prev_object->size != next_pindex)) {
 2024                 VM_OBJECT_UNLOCK(prev_object);
 2025                 return (FALSE);
 2026         }
 2027 
 2028         /*
 2029          * Account for the charge.
 2030          */
 2031         if (prev_object->uip != NULL) {
 2032 
 2033                 /*
 2034                  * If prev_object was charged, then this mapping,
 2035                  * althought not charged now, may become writable
 2036                  * later. Non-NULL uip in the object would prevent
 2037                  * swap reservation during enabling of the write
 2038                  * access, so reserve swap now. Failed reservation
 2039                  * cause allocation of the separate object for the map
 2040                  * entry, and swap reservation for this entry is
 2041                  * managed in appropriate time.
 2042                  */
 2043                 if (!reserved && !swap_reserve_by_uid(ptoa(next_size),
 2044                     prev_object->uip)) {
 2045                         return (FALSE);
 2046                 }
 2047                 prev_object->charge += ptoa(next_size);
 2048         }
 2049 
 2050         /*
 2051          * Remove any pages that may still be in the object from a previous
 2052          * deallocation.
 2053          */
 2054         if (next_pindex < prev_object->size) {
 2055                 vm_object_page_remove(prev_object,
 2056                                       next_pindex,
 2057                                       next_pindex + next_size, FALSE);
 2058                 if (prev_object->type == OBJT_SWAP)
 2059                         swap_pager_freespace(prev_object,
 2060                                              next_pindex, next_size);
 2061 #if 0
 2062                 if (prev_object->uip != NULL) {
 2063                         KASSERT(prev_object->charge >=
 2064                             ptoa(prev_object->size - next_pindex),
 2065                             ("object %p overcharged 1 %jx %jx", prev_object,
 2066                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
 2067                         prev_object->charge -= ptoa(prev_object->size -
 2068                             next_pindex);
 2069                 }
 2070 #endif
 2071         }
 2072 
 2073         /*
 2074          * Extend the object if necessary.
 2075          */
 2076         if (next_pindex + next_size > prev_object->size)
 2077                 prev_object->size = next_pindex + next_size;
 2078 
 2079         VM_OBJECT_UNLOCK(prev_object);
 2080         return (TRUE);
 2081 }
 2082 
 2083 void
 2084 vm_object_set_writeable_dirty(vm_object_t object)
 2085 {
 2086 
 2087         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2088         if (object->type != OBJT_VNODE)
 2089                 return;
 2090         object->generation++;
 2091         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
 2092                 return;
 2093         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
 2094 }
 2095 
 2096 #include "opt_ddb.h"
 2097 #ifdef DDB
 2098 #include <sys/kernel.h>
 2099 
 2100 #include <sys/cons.h>
 2101 
 2102 #include <ddb/ddb.h>
 2103 
 2104 static int
 2105 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
 2106 {
 2107         vm_map_t tmpm;
 2108         vm_map_entry_t tmpe;
 2109         vm_object_t obj;
 2110         int entcount;
 2111 
 2112         if (map == 0)
 2113                 return 0;
 2114 
 2115         if (entry == 0) {
 2116                 tmpe = map->header.next;
 2117                 entcount = map->nentries;
 2118                 while (entcount-- && (tmpe != &map->header)) {
 2119                         if (_vm_object_in_map(map, object, tmpe)) {
 2120                                 return 1;
 2121                         }
 2122                         tmpe = tmpe->next;
 2123                 }
 2124         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2125                 tmpm = entry->object.sub_map;
 2126                 tmpe = tmpm->header.next;
 2127                 entcount = tmpm->nentries;
 2128                 while (entcount-- && tmpe != &tmpm->header) {
 2129                         if (_vm_object_in_map(tmpm, object, tmpe)) {
 2130                                 return 1;
 2131                         }
 2132                         tmpe = tmpe->next;
 2133                 }
 2134         } else if ((obj = entry->object.vm_object) != NULL) {
 2135                 for (; obj; obj = obj->backing_object)
 2136                         if (obj == object) {
 2137                                 return 1;
 2138                         }
 2139         }
 2140         return 0;
 2141 }
 2142 
 2143 static int
 2144 vm_object_in_map(vm_object_t object)
 2145 {
 2146         struct proc *p;
 2147 
 2148         /* sx_slock(&allproc_lock); */
 2149         FOREACH_PROC_IN_SYSTEM(p) {
 2150                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
 2151                         continue;
 2152                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
 2153                         /* sx_sunlock(&allproc_lock); */
 2154                         return 1;
 2155                 }
 2156         }
 2157         /* sx_sunlock(&allproc_lock); */
 2158         if (_vm_object_in_map(kernel_map, object, 0))
 2159                 return 1;
 2160         if (_vm_object_in_map(kmem_map, object, 0))
 2161                 return 1;
 2162         if (_vm_object_in_map(pager_map, object, 0))
 2163                 return 1;
 2164         if (_vm_object_in_map(buffer_map, object, 0))
 2165                 return 1;
 2166         return 0;
 2167 }
 2168 
 2169 DB_SHOW_COMMAND(vmochk, vm_object_check)
 2170 {
 2171         vm_object_t object;
 2172 
 2173         /*
 2174          * make sure that internal objs are in a map somewhere
 2175          * and none have zero ref counts.
 2176          */
 2177         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2178                 if (object->handle == NULL &&
 2179                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
 2180                         if (object->ref_count == 0) {
 2181                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
 2182                                         (long)object->size);
 2183                         }
 2184                         if (!vm_object_in_map(object)) {
 2185                                 db_printf(
 2186                         "vmochk: internal obj is not in a map: "
 2187                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
 2188                                     object->ref_count, (u_long)object->size, 
 2189                                     (u_long)object->size,
 2190                                     (void *)object->backing_object);
 2191                         }
 2192                 }
 2193         }
 2194 }
 2195 
 2196 /*
 2197  *      vm_object_print:        [ debug ]
 2198  */
 2199 DB_SHOW_COMMAND(object, vm_object_print_static)
 2200 {
 2201         /* XXX convert args. */
 2202         vm_object_t object = (vm_object_t)addr;
 2203         boolean_t full = have_addr;
 2204 
 2205         vm_page_t p;
 2206 
 2207         /* XXX count is an (unused) arg.  Avoid shadowing it. */
 2208 #define count   was_count
 2209 
 2210         int count;
 2211 
 2212         if (object == NULL)
 2213                 return;
 2214 
 2215         db_iprintf(
 2216             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x uip %d charge %jx\n",
 2217             object, (int)object->type, (uintmax_t)object->size,
 2218             object->resident_page_count, object->ref_count, object->flags,
 2219             object->uip ? object->uip->ui_uid : -1, (uintmax_t)object->charge);
 2220         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
 2221             object->shadow_count, 
 2222             object->backing_object ? object->backing_object->ref_count : 0,
 2223             object->backing_object, (uintmax_t)object->backing_object_offset);
 2224 
 2225         if (!full)
 2226                 return;
 2227 
 2228         db_indent += 2;
 2229         count = 0;
 2230         TAILQ_FOREACH(p, &object->memq, listq) {
 2231                 if (count == 0)
 2232                         db_iprintf("memory:=");
 2233                 else if (count == 6) {
 2234                         db_printf("\n");
 2235                         db_iprintf(" ...");
 2236                         count = 0;
 2237                 } else
 2238                         db_printf(",");
 2239                 count++;
 2240 
 2241                 db_printf("(off=0x%jx,page=0x%jx)",
 2242                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
 2243         }
 2244         if (count != 0)
 2245                 db_printf("\n");
 2246         db_indent -= 2;
 2247 }
 2248 
 2249 /* XXX. */
 2250 #undef count
 2251 
 2252 /* XXX need this non-static entry for calling from vm_map_print. */
 2253 void
 2254 vm_object_print(
 2255         /* db_expr_t */ long addr,
 2256         boolean_t have_addr,
 2257         /* db_expr_t */ long count,
 2258         char *modif)
 2259 {
 2260         vm_object_print_static(addr, have_addr, count, modif);
 2261 }
 2262 
 2263 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
 2264 {
 2265         vm_object_t object;
 2266         vm_pindex_t fidx;
 2267         vm_paddr_t pa;
 2268         vm_page_t m, prev_m;
 2269         int rcount, nl, c;
 2270 
 2271         nl = 0;
 2272         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2273                 db_printf("new object: %p\n", (void *)object);
 2274                 if (nl > 18) {
 2275                         c = cngetc();
 2276                         if (c != ' ')
 2277                                 return;
 2278                         nl = 0;
 2279                 }
 2280                 nl++;
 2281                 rcount = 0;
 2282                 fidx = 0;
 2283                 pa = -1;
 2284                 TAILQ_FOREACH(m, &object->memq, listq) {
 2285                         if (m->pindex > 128)
 2286                                 break;
 2287                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
 2288                             prev_m->pindex + 1 != m->pindex) {
 2289                                 if (rcount) {
 2290                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2291                                                 (long)fidx, rcount, (long)pa);
 2292                                         if (nl > 18) {
 2293                                                 c = cngetc();
 2294                                                 if (c != ' ')
 2295                                                         return;
 2296                                                 nl = 0;
 2297                                         }
 2298                                         nl++;
 2299                                         rcount = 0;
 2300                                 }
 2301                         }                               
 2302                         if (rcount &&
 2303                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
 2304                                 ++rcount;
 2305                                 continue;
 2306                         }
 2307                         if (rcount) {
 2308                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2309                                         (long)fidx, rcount, (long)pa);
 2310                                 if (nl > 18) {
 2311                                         c = cngetc();
 2312                                         if (c != ' ')
 2313                                                 return;
 2314                                         nl = 0;
 2315                                 }
 2316                                 nl++;
 2317                         }
 2318                         fidx = m->pindex;
 2319                         pa = VM_PAGE_TO_PHYS(m);
 2320                         rcount = 1;
 2321                 }
 2322                 if (rcount) {
 2323                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2324                                 (long)fidx, rcount, (long)pa);
 2325                         if (nl > 18) {
 2326                                 c = cngetc();
 2327                                 if (c != ' ')
 2328                                         return;
 2329                                 nl = 0;
 2330                         }
 2331                         nl++;
 2332                 }
 2333         }
 2334 }
 2335 #endif /* DDB */

Cache object: 9e59f75a20c9c807c1d8030223242834


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.