The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 /*
   62  *      Virtual memory object module.
   63  */
   64 
   65 #include <sys/cdefs.h>
   66 __FBSDID("$FreeBSD$");
   67 
   68 #include "opt_vm.h"
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/lock.h>
   73 #include <sys/mman.h>
   74 #include <sys/mount.h>
   75 #include <sys/kernel.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/mutex.h>
   78 #include <sys/proc.h>           /* for curproc, pageproc */
   79 #include <sys/socket.h>
   80 #include <sys/resourcevar.h>
   81 #include <sys/vnode.h>
   82 #include <sys/vmmeter.h>
   83 #include <sys/sx.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_param.h>
   87 #include <vm/pmap.h>
   88 #include <vm/vm_map.h>
   89 #include <vm/vm_object.h>
   90 #include <vm/vm_page.h>
   91 #include <vm/vm_pageout.h>
   92 #include <vm/vm_pager.h>
   93 #include <vm/swap_pager.h>
   94 #include <vm/vm_kern.h>
   95 #include <vm/vm_extern.h>
   96 #include <vm/vm_reserv.h>
   97 #include <vm/uma.h>
   98 
   99 static int msync_flush_flags = 0;
  100 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, CTLFLAG_RW, &msync_flush_flags, 0,
  101     "Does nothing; kept for backward compatibility");
  102 
  103 static int old_msync;
  104 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
  105     "Use old (insecure) msync behavior");
  106 
  107 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
  108                     int pagerflags, int flags, boolean_t *clearobjflags,
  109                     boolean_t *eio);
  110 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
  111                     boolean_t *clearobjflags);
  112 static void     vm_object_qcollapse(vm_object_t object);
  113 static void     vm_object_vndeallocate(vm_object_t object);
  114 
  115 /*
  116  *      Virtual memory objects maintain the actual data
  117  *      associated with allocated virtual memory.  A given
  118  *      page of memory exists within exactly one object.
  119  *
  120  *      An object is only deallocated when all "references"
  121  *      are given up.  Only one "reference" to a given
  122  *      region of an object should be writeable.
  123  *
  124  *      Associated with each object is a list of all resident
  125  *      memory pages belonging to that object; this list is
  126  *      maintained by the "vm_page" module, and locked by the object's
  127  *      lock.
  128  *
  129  *      Each object also records a "pager" routine which is
  130  *      used to retrieve (and store) pages to the proper backing
  131  *      storage.  In addition, objects may be backed by other
  132  *      objects from which they were virtual-copied.
  133  *
  134  *      The only items within the object structure which are
  135  *      modified after time of creation are:
  136  *              reference count         locked by object's lock
  137  *              pager routine           locked by object's lock
  138  *
  139  */
  140 
  141 struct object_q vm_object_list;
  142 struct mtx vm_object_list_mtx;  /* lock for object list and count */
  143 
  144 struct vm_object kernel_object_store;
  145 struct vm_object kmem_object_store;
  146 
  147 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
  148 
  149 static long object_collapses;
  150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
  151     &object_collapses, 0, "VM object collapses");
  152 
  153 static long object_bypasses;
  154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
  155     &object_bypasses, 0, "VM object bypasses");
  156 
  157 static uma_zone_t obj_zone;
  158 
  159 static int vm_object_zinit(void *mem, int size, int flags);
  160 
  161 #ifdef INVARIANTS
  162 static void vm_object_zdtor(void *mem, int size, void *arg);
  163 
  164 static void
  165 vm_object_zdtor(void *mem, int size, void *arg)
  166 {
  167         vm_object_t object;
  168 
  169         object = (vm_object_t)mem;
  170         KASSERT(TAILQ_EMPTY(&object->memq),
  171             ("object %p has resident pages",
  172             object));
  173 #if VM_NRESERVLEVEL > 0
  174         KASSERT(LIST_EMPTY(&object->rvq),
  175             ("object %p has reservations",
  176             object));
  177 #endif
  178         KASSERT(object->cache == NULL,
  179             ("object %p has cached pages",
  180             object));
  181         KASSERT(object->paging_in_progress == 0,
  182             ("object %p paging_in_progress = %d",
  183             object, object->paging_in_progress));
  184         KASSERT(object->resident_page_count == 0,
  185             ("object %p resident_page_count = %d",
  186             object, object->resident_page_count));
  187         KASSERT(object->shadow_count == 0,
  188             ("object %p shadow_count = %d",
  189             object, object->shadow_count));
  190 }
  191 #endif
  192 
  193 static int
  194 vm_object_zinit(void *mem, int size, int flags)
  195 {
  196         vm_object_t object;
  197 
  198         object = (vm_object_t)mem;
  199         bzero(&object->mtx, sizeof(object->mtx));
  200         VM_OBJECT_LOCK_INIT(object, "standard object");
  201 
  202         /* These are true for any object that has been freed */
  203         object->paging_in_progress = 0;
  204         object->resident_page_count = 0;
  205         object->shadow_count = 0;
  206         return (0);
  207 }
  208 
  209 void
  210 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
  211 {
  212 
  213         TAILQ_INIT(&object->memq);
  214         LIST_INIT(&object->shadow_head);
  215 
  216         object->root = NULL;
  217         object->type = type;
  218         object->size = size;
  219         object->generation = 1;
  220         object->ref_count = 1;
  221         object->memattr = VM_MEMATTR_DEFAULT;
  222         object->flags = 0;
  223         object->uip = NULL;
  224         object->charge = 0;
  225         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
  226                 object->flags = OBJ_ONEMAPPING;
  227         object->pg_color = 0;
  228         object->handle = NULL;
  229         object->backing_object = NULL;
  230         object->backing_object_offset = (vm_ooffset_t) 0;
  231 #if VM_NRESERVLEVEL > 0
  232         LIST_INIT(&object->rvq);
  233 #endif
  234         object->cache = NULL;
  235 
  236         mtx_lock(&vm_object_list_mtx);
  237         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
  238         mtx_unlock(&vm_object_list_mtx);
  239 }
  240 
  241 /*
  242  *      vm_object_init:
  243  *
  244  *      Initialize the VM objects module.
  245  */
  246 void
  247 vm_object_init(void)
  248 {
  249         TAILQ_INIT(&vm_object_list);
  250         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
  251         
  252         VM_OBJECT_LOCK_INIT(kernel_object, "kernel object");
  253         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  254             kernel_object);
  255 #if VM_NRESERVLEVEL > 0
  256         kernel_object->flags |= OBJ_COLORED;
  257         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  258 #endif
  259 
  260         VM_OBJECT_LOCK_INIT(kmem_object, "kmem object");
  261         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  262             kmem_object);
  263 #if VM_NRESERVLEVEL > 0
  264         kmem_object->flags |= OBJ_COLORED;
  265         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  266 #endif
  267 
  268         /*
  269          * The lock portion of struct vm_object must be type stable due
  270          * to vm_pageout_fallback_object_lock locking a vm object
  271          * without holding any references to it.
  272          */
  273         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
  274 #ifdef INVARIANTS
  275             vm_object_zdtor,
  276 #else
  277             NULL,
  278 #endif
  279             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
  280 }
  281 
  282 void
  283 vm_object_clear_flag(vm_object_t object, u_short bits)
  284 {
  285 
  286         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  287         object->flags &= ~bits;
  288 }
  289 
  290 /*
  291  *      Sets the default memory attribute for the specified object.  Pages
  292  *      that are allocated to this object are by default assigned this memory
  293  *      attribute.
  294  *
  295  *      Presently, this function must be called before any pages are allocated
  296  *      to the object.  In the future, this requirement may be relaxed for
  297  *      "default" and "swap" objects.
  298  */
  299 int
  300 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
  301 {
  302 
  303         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  304         switch (object->type) {
  305         case OBJT_DEFAULT:
  306         case OBJT_DEVICE:
  307         case OBJT_PHYS:
  308         case OBJT_SG:
  309         case OBJT_SWAP:
  310         case OBJT_VNODE:
  311                 if (!TAILQ_EMPTY(&object->memq))
  312                         return (KERN_FAILURE);
  313                 break;
  314         case OBJT_DEAD:
  315                 return (KERN_INVALID_ARGUMENT);
  316         }
  317         object->memattr = memattr;
  318         return (KERN_SUCCESS);
  319 }
  320 
  321 void
  322 vm_object_pip_add(vm_object_t object, short i)
  323 {
  324 
  325         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  326         object->paging_in_progress += i;
  327 }
  328 
  329 void
  330 vm_object_pip_subtract(vm_object_t object, short i)
  331 {
  332 
  333         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  334         object->paging_in_progress -= i;
  335 }
  336 
  337 void
  338 vm_object_pip_wakeup(vm_object_t object)
  339 {
  340 
  341         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  342         object->paging_in_progress--;
  343         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  344                 vm_object_clear_flag(object, OBJ_PIPWNT);
  345                 wakeup(object);
  346         }
  347 }
  348 
  349 void
  350 vm_object_pip_wakeupn(vm_object_t object, short i)
  351 {
  352 
  353         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  354         if (i)
  355                 object->paging_in_progress -= i;
  356         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  357                 vm_object_clear_flag(object, OBJ_PIPWNT);
  358                 wakeup(object);
  359         }
  360 }
  361 
  362 void
  363 vm_object_pip_wait(vm_object_t object, char *waitid)
  364 {
  365 
  366         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  367         while (object->paging_in_progress) {
  368                 object->flags |= OBJ_PIPWNT;
  369                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
  370         }
  371 }
  372 
  373 /*
  374  *      vm_object_allocate:
  375  *
  376  *      Returns a new object with the given size.
  377  */
  378 vm_object_t
  379 vm_object_allocate(objtype_t type, vm_pindex_t size)
  380 {
  381         vm_object_t object;
  382 
  383         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
  384         _vm_object_allocate(type, size, object);
  385         return (object);
  386 }
  387 
  388 
  389 /*
  390  *      vm_object_reference:
  391  *
  392  *      Gets another reference to the given object.  Note: OBJ_DEAD
  393  *      objects can be referenced during final cleaning.
  394  */
  395 void
  396 vm_object_reference(vm_object_t object)
  397 {
  398         if (object == NULL)
  399                 return;
  400         VM_OBJECT_LOCK(object);
  401         vm_object_reference_locked(object);
  402         VM_OBJECT_UNLOCK(object);
  403 }
  404 
  405 /*
  406  *      vm_object_reference_locked:
  407  *
  408  *      Gets another reference to the given object.
  409  *
  410  *      The object must be locked.
  411  */
  412 void
  413 vm_object_reference_locked(vm_object_t object)
  414 {
  415         struct vnode *vp;
  416 
  417         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  418         object->ref_count++;
  419         if (object->type == OBJT_VNODE) {
  420                 vp = object->handle;
  421                 vref(vp);
  422         }
  423 }
  424 
  425 /*
  426  * Handle deallocating an object of type OBJT_VNODE.
  427  */
  428 static void
  429 vm_object_vndeallocate(vm_object_t object)
  430 {
  431         struct vnode *vp = (struct vnode *) object->handle;
  432 
  433         VFS_ASSERT_GIANT(vp->v_mount);
  434         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  435         KASSERT(object->type == OBJT_VNODE,
  436             ("vm_object_vndeallocate: not a vnode object"));
  437         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
  438 #ifdef INVARIANTS
  439         if (object->ref_count == 0) {
  440                 vprint("vm_object_vndeallocate", vp);
  441                 panic("vm_object_vndeallocate: bad object reference count");
  442         }
  443 #endif
  444 
  445         if (object->ref_count > 1) {
  446                 object->ref_count--;
  447                 VM_OBJECT_UNLOCK(object);
  448                 /* vrele may need the vnode lock. */
  449                 vrele(vp);
  450         } else {
  451                 vhold(vp);
  452                 VM_OBJECT_UNLOCK(object);
  453                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  454                 vdrop(vp);
  455                 VM_OBJECT_LOCK(object);
  456                 object->ref_count--;
  457                 if (object->type == OBJT_DEAD) {
  458                         VM_OBJECT_UNLOCK(object);
  459                         VOP_UNLOCK(vp, 0);
  460                 } else {
  461                         if (object->ref_count == 0)
  462                                 vp->v_vflag &= ~VV_TEXT;
  463                         VM_OBJECT_UNLOCK(object);
  464                         vput(vp);
  465                 }
  466         }
  467 }
  468 
  469 /*
  470  *      vm_object_deallocate:
  471  *
  472  *      Release a reference to the specified object,
  473  *      gained either through a vm_object_allocate
  474  *      or a vm_object_reference call.  When all references
  475  *      are gone, storage associated with this object
  476  *      may be relinquished.
  477  *
  478  *      No object may be locked.
  479  */
  480 void
  481 vm_object_deallocate(vm_object_t object)
  482 {
  483         vm_object_t temp;
  484 
  485         while (object != NULL) {
  486                 int vfslocked;
  487 
  488                 vfslocked = 0;
  489         restart:
  490                 VM_OBJECT_LOCK(object);
  491                 if (object->type == OBJT_VNODE) {
  492                         struct vnode *vp = (struct vnode *) object->handle;
  493 
  494                         /*
  495                          * Conditionally acquire Giant for a vnode-backed
  496                          * object.  We have to be careful since the type of
  497                          * a vnode object can change while the object is
  498                          * unlocked.
  499                          */
  500                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
  501                                 vfslocked = 1;
  502                                 if (!mtx_trylock(&Giant)) {
  503                                         VM_OBJECT_UNLOCK(object);
  504                                         mtx_lock(&Giant);
  505                                         goto restart;
  506                                 }
  507                         }
  508                         vm_object_vndeallocate(object);
  509                         VFS_UNLOCK_GIANT(vfslocked);
  510                         return;
  511                 } else
  512                         /*
  513                          * This is to handle the case that the object
  514                          * changed type while we dropped its lock to
  515                          * obtain Giant.
  516                          */
  517                         VFS_UNLOCK_GIANT(vfslocked);
  518 
  519                 KASSERT(object->ref_count != 0,
  520                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
  521 
  522                 /*
  523                  * If the reference count goes to 0 we start calling
  524                  * vm_object_terminate() on the object chain.
  525                  * A ref count of 1 may be a special case depending on the
  526                  * shadow count being 0 or 1.
  527                  */
  528                 object->ref_count--;
  529                 if (object->ref_count > 1) {
  530                         VM_OBJECT_UNLOCK(object);
  531                         return;
  532                 } else if (object->ref_count == 1) {
  533                         if (object->shadow_count == 0 &&
  534                             object->handle == NULL &&
  535                             (object->type == OBJT_DEFAULT ||
  536                              object->type == OBJT_SWAP)) {
  537                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
  538                         } else if ((object->shadow_count == 1) &&
  539                             (object->handle == NULL) &&
  540                             (object->type == OBJT_DEFAULT ||
  541                              object->type == OBJT_SWAP)) {
  542                                 vm_object_t robject;
  543 
  544                                 robject = LIST_FIRST(&object->shadow_head);
  545                                 KASSERT(robject != NULL,
  546                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
  547                                          object->ref_count,
  548                                          object->shadow_count));
  549                                 if (!VM_OBJECT_TRYLOCK(robject)) {
  550                                         /*
  551                                          * Avoid a potential deadlock.
  552                                          */
  553                                         object->ref_count++;
  554                                         VM_OBJECT_UNLOCK(object);
  555                                         /*
  556                                          * More likely than not the thread
  557                                          * holding robject's lock has lower
  558                                          * priority than the current thread.
  559                                          * Let the lower priority thread run.
  560                                          */
  561                                         pause("vmo_de", 1);
  562                                         continue;
  563                                 }
  564                                 /*
  565                                  * Collapse object into its shadow unless its
  566                                  * shadow is dead.  In that case, object will
  567                                  * be deallocated by the thread that is
  568                                  * deallocating its shadow.
  569                                  */
  570                                 if ((robject->flags & OBJ_DEAD) == 0 &&
  571                                     (robject->handle == NULL) &&
  572                                     (robject->type == OBJT_DEFAULT ||
  573                                      robject->type == OBJT_SWAP)) {
  574 
  575                                         robject->ref_count++;
  576 retry:
  577                                         if (robject->paging_in_progress) {
  578                                                 VM_OBJECT_UNLOCK(object);
  579                                                 vm_object_pip_wait(robject,
  580                                                     "objde1");
  581                                                 temp = robject->backing_object;
  582                                                 if (object == temp) {
  583                                                         VM_OBJECT_LOCK(object);
  584                                                         goto retry;
  585                                                 }
  586                                         } else if (object->paging_in_progress) {
  587                                                 VM_OBJECT_UNLOCK(robject);
  588                                                 object->flags |= OBJ_PIPWNT;
  589                                                 msleep(object,
  590                                                     VM_OBJECT_MTX(object),
  591                                                     PDROP | PVM, "objde2", 0);
  592                                                 VM_OBJECT_LOCK(robject);
  593                                                 temp = robject->backing_object;
  594                                                 if (object == temp) {
  595                                                         VM_OBJECT_LOCK(object);
  596                                                         goto retry;
  597                                                 }
  598                                         } else
  599                                                 VM_OBJECT_UNLOCK(object);
  600 
  601                                         if (robject->ref_count == 1) {
  602                                                 robject->ref_count--;
  603                                                 object = robject;
  604                                                 goto doterm;
  605                                         }
  606                                         object = robject;
  607                                         vm_object_collapse(object);
  608                                         VM_OBJECT_UNLOCK(object);
  609                                         continue;
  610                                 }
  611                                 VM_OBJECT_UNLOCK(robject);
  612                         }
  613                         VM_OBJECT_UNLOCK(object);
  614                         return;
  615                 }
  616 doterm:
  617                 temp = object->backing_object;
  618                 if (temp != NULL) {
  619                         VM_OBJECT_LOCK(temp);
  620                         LIST_REMOVE(object, shadow_list);
  621                         temp->shadow_count--;
  622                         VM_OBJECT_UNLOCK(temp);
  623                         object->backing_object = NULL;
  624                 }
  625                 /*
  626                  * Don't double-terminate, we could be in a termination
  627                  * recursion due to the terminate having to sync data
  628                  * to disk.
  629                  */
  630                 if ((object->flags & OBJ_DEAD) == 0)
  631                         vm_object_terminate(object);
  632                 else
  633                         VM_OBJECT_UNLOCK(object);
  634                 object = temp;
  635         }
  636 }
  637 
  638 /*
  639  *      vm_object_destroy removes the object from the global object list
  640  *      and frees the space for the object.
  641  */
  642 void
  643 vm_object_destroy(vm_object_t object)
  644 {
  645 
  646         /*
  647          * Remove the object from the global object list.
  648          */
  649         mtx_lock(&vm_object_list_mtx);
  650         TAILQ_REMOVE(&vm_object_list, object, object_list);
  651         mtx_unlock(&vm_object_list_mtx);
  652 
  653         /*
  654          * Release the allocation charge.
  655          */
  656         if (object->uip != NULL) {
  657                 KASSERT(object->type == OBJT_DEFAULT ||
  658                     object->type == OBJT_SWAP,
  659                     ("vm_object_terminate: non-swap obj %p has uip",
  660                      object));
  661                 swap_release_by_uid(object->charge, object->uip);
  662                 object->charge = 0;
  663                 uifree(object->uip);
  664                 object->uip = NULL;
  665         }
  666 
  667         /*
  668          * Free the space for the object.
  669          */
  670         uma_zfree(obj_zone, object);
  671 }
  672 
  673 /*
  674  *      vm_object_terminate actually destroys the specified object, freeing
  675  *      up all previously used resources.
  676  *
  677  *      The object must be locked.
  678  *      This routine may block.
  679  */
  680 void
  681 vm_object_terminate(vm_object_t object)
  682 {
  683         vm_page_t p, p_next;
  684 
  685         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  686 
  687         /*
  688          * Make sure no one uses us.
  689          */
  690         vm_object_set_flag(object, OBJ_DEAD);
  691 
  692         /*
  693          * wait for the pageout daemon to be done with the object
  694          */
  695         vm_object_pip_wait(object, "objtrm");
  696 
  697         KASSERT(!object->paging_in_progress,
  698                 ("vm_object_terminate: pageout in progress"));
  699 
  700         /*
  701          * Clean and free the pages, as appropriate. All references to the
  702          * object are gone, so we don't need to lock it.
  703          */
  704         if (object->type == OBJT_VNODE) {
  705                 struct vnode *vp = (struct vnode *)object->handle;
  706 
  707                 /*
  708                  * Clean pages and flush buffers.
  709                  */
  710                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  711                 VM_OBJECT_UNLOCK(object);
  712 
  713                 vinvalbuf(vp, V_SAVE, 0, 0);
  714 
  715                 VM_OBJECT_LOCK(object);
  716         }
  717 
  718         KASSERT(object->ref_count == 0, 
  719                 ("vm_object_terminate: object with references, ref_count=%d",
  720                 object->ref_count));
  721 
  722         /*
  723          * Free any remaining pageable pages.  This also removes them from the
  724          * paging queues.  However, don't free wired pages, just remove them
  725          * from the object.  Rather than incrementally removing each page from
  726          * the object, the page and object are reset to any empty state. 
  727          */
  728         vm_page_lock_queues();
  729         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
  730                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
  731                     ("vm_object_terminate: freeing busy page %p", p));
  732                 /*
  733                  * Optimize the page's removal from the object by resetting
  734                  * its "object" field.  Specifically, if the page is not
  735                  * wired, then the effect of this assignment is that
  736                  * vm_page_free()'s call to vm_page_remove() will return
  737                  * immediately without modifying the page or the object.
  738                  */ 
  739                 p->object = NULL;
  740                 if (p->wire_count == 0) {
  741                         vm_page_free(p);
  742                         cnt.v_pfree++;
  743                 }
  744         }
  745         vm_page_unlock_queues();
  746         /*
  747          * If the object contained any pages, then reset it to an empty state.
  748          * None of the object's fields, including "resident_page_count", were
  749          * modified by the preceding loop.
  750          */
  751         if (object->resident_page_count != 0) {
  752                 object->root = NULL;
  753                 TAILQ_INIT(&object->memq);
  754                 object->resident_page_count = 0;
  755                 if (object->type == OBJT_VNODE)
  756                         vdrop(object->handle);
  757         }
  758 
  759 #if VM_NRESERVLEVEL > 0
  760         if (__predict_false(!LIST_EMPTY(&object->rvq)))
  761                 vm_reserv_break_all(object);
  762 #endif
  763         if (__predict_false(object->cache != NULL))
  764                 vm_page_cache_free(object, 0, 0);
  765 
  766         /*
  767          * Let the pager know object is dead.
  768          */
  769         vm_pager_deallocate(object);
  770         VM_OBJECT_UNLOCK(object);
  771 
  772         vm_object_destroy(object);
  773 }
  774 
  775 static boolean_t
  776 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
  777 {
  778 
  779         /*
  780          * If we have been asked to skip nosync pages and this is a
  781          * nosync page, skip it.  Note that the object flags were not
  782          * cleared in this case so we do not have to set them.
  783          */
  784         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
  785                 *clearobjflags = FALSE;
  786                 return (FALSE);
  787         } else {
  788                 pmap_remove_write(p);
  789                 return (p->dirty != 0);
  790         }
  791 }
  792 
  793 /*
  794  *      vm_object_page_clean
  795  *
  796  *      Clean all dirty pages in the specified range of object.  Leaves page 
  797  *      on whatever queue it is currently on.   If NOSYNC is set then do not
  798  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
  799  *      leaving the object dirty.
  800  *
  801  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
  802  *      synchronous clustering mode implementation.
  803  *
  804  *      Odd semantics: if start == end, we clean everything.
  805  *
  806  *      The object must be locked.
  807  *
  808  *      Returns FALSE if some page from the range was not written, as
  809  *      reported by the pager, and TRUE otherwise.
  810  */
  811 boolean_t
  812 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
  813     int flags)
  814 {
  815         vm_page_t np, p;
  816         vm_pindex_t pi, tend;
  817         int curgeneration, n, pagerflags;
  818         boolean_t clearobjflags, eio, res;
  819 
  820         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  821         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
  822         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
  823             object->resident_page_count == 0)
  824                 return (TRUE);
  825 
  826         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
  827             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
  828         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
  829 
  830         tend = (end == 0) ? object->size : end;
  831 
  832         vm_object_set_flag(object, OBJ_CLEANING);
  833 
  834         vm_page_lock_queues();
  835 
  836         /*
  837          * Make the page read-only so we can then clear the object flags.
  838          *
  839          * However, if this is a nosync mmap then the object is likely to 
  840          * stay dirty so do not mess with the page and do not clear the
  841          * object flags.
  842          */
  843         clearobjflags = TRUE;
  844         res = TRUE;
  845 
  846 rescan:
  847         curgeneration = object->generation;
  848 
  849         for (p = vm_page_find_least(object, start); p != NULL; p = np) {
  850                 pi = p->pindex;
  851                 if (pi >= tend)
  852                         break;
  853                 np = TAILQ_NEXT(p, listq);
  854                 if (p->valid == 0)
  855                         continue;
  856                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
  857                         vm_page_lock_queues();
  858                         if (object->generation != curgeneration)
  859                                 goto rescan;
  860                         np = vm_page_find_least(object, pi);
  861                         continue;
  862                 }
  863                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
  864                         continue;
  865 
  866                 n = vm_object_page_collect_flush(object, p, pagerflags,
  867                     flags, &clearobjflags, &eio);
  868                 if (eio) {
  869                         res = FALSE;
  870                         clearobjflags = FALSE;
  871                 }
  872                 if (object->generation != curgeneration)
  873                         goto rescan;
  874 
  875                 /*
  876                  * If the VOP_PUTPAGES() did a truncated write, so
  877                  * that even the first page of the run is not fully
  878                  * written, vm_pageout_flush() returns 0 as the run
  879                  * length.  Since the condition that caused truncated
  880                  * write may be permanent, e.g. exhausted free space,
  881                  * accepting n == 0 would cause an infinite loop.
  882                  *
  883                  * Forwarding the iterator leaves the unwritten page
  884                  * behind, but there is not much we can do there if
  885                  * filesystem refuses to write it.
  886                  */
  887                 if (n == 0) {
  888                         n = 1;
  889                         clearobjflags = FALSE;
  890                 }
  891                 np = vm_page_find_least(object, pi + n);
  892         }
  893         vm_page_unlock_queues();
  894 #if 0
  895         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
  896 #endif
  897 
  898         vm_object_clear_flag(object, OBJ_CLEANING);
  899         if (clearobjflags && start == 0 && tend == object->size)
  900                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
  901         return (res);
  902 }
  903 
  904 static int
  905 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
  906     int flags, boolean_t *clearobjflags, boolean_t *eio)
  907 {
  908         vm_page_t ma[vm_pageout_page_count], p_first, tp;
  909         int count, i, mreq, runlen;
  910 
  911         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  912 
  913         count = 1;
  914         mreq = 0;
  915 
  916         for (tp = p; count < vm_pageout_page_count; count++) {
  917                 tp = vm_page_next(tp);
  918                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
  919                         break;
  920                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  921                         break;
  922         }
  923 
  924         for (p_first = p; count < vm_pageout_page_count; count++) {
  925                 tp = vm_page_prev(p_first);
  926                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
  927                         break;
  928                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  929                         break;
  930                 p_first = tp;
  931                 mreq++;
  932         }
  933 
  934         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
  935                 ma[i] = tp;
  936 
  937         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
  938         return (runlen);
  939 }
  940 
  941 /*
  942  * Note that there is absolutely no sense in writing out
  943  * anonymous objects, so we track down the vnode object
  944  * to write out.
  945  * We invalidate (remove) all pages from the address space
  946  * for semantic correctness.
  947  *
  948  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
  949  * may start out with a NULL object.
  950  */
  951 boolean_t
  952 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
  953     boolean_t syncio, boolean_t invalidate)
  954 {
  955         vm_object_t backing_object;
  956         struct vnode *vp;
  957         struct mount *mp;
  958         int error, flags, fsync_after;
  959         boolean_t res;
  960 
  961         if (object == NULL)
  962                 return (TRUE);
  963         res = TRUE;
  964         error = 0;
  965         VM_OBJECT_LOCK(object);
  966         while ((backing_object = object->backing_object) != NULL) {
  967                 VM_OBJECT_LOCK(backing_object);
  968                 offset += object->backing_object_offset;
  969                 VM_OBJECT_UNLOCK(object);
  970                 object = backing_object;
  971                 if (object->size < OFF_TO_IDX(offset + size))
  972                         size = IDX_TO_OFF(object->size) - offset;
  973         }
  974         /*
  975          * Flush pages if writing is allowed, invalidate them
  976          * if invalidation requested.  Pages undergoing I/O
  977          * will be ignored by vm_object_page_remove().
  978          *
  979          * We cannot lock the vnode and then wait for paging
  980          * to complete without deadlocking against vm_fault.
  981          * Instead we simply call vm_object_page_remove() and
  982          * allow it to block internally on a page-by-page
  983          * basis when it encounters pages undergoing async
  984          * I/O.
  985          */
  986         if (object->type == OBJT_VNODE &&
  987             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
  988                 int vfslocked;
  989                 vp = object->handle;
  990                 VM_OBJECT_UNLOCK(object);
  991                 (void) vn_start_write(vp, &mp, V_WAIT);
  992                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  993                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  994                 if (syncio && !invalidate && offset == 0 &&
  995                     OFF_TO_IDX(size) == object->size) {
  996                         /*
  997                          * If syncing the whole mapping of the file,
  998                          * it is faster to schedule all the writes in
  999                          * async mode, also allowing the clustering,
 1000                          * and then wait for i/o to complete.
 1001                          */
 1002                         flags = 0;
 1003                         fsync_after = TRUE;
 1004                 } else {
 1005                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
 1006                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
 1007                         fsync_after = FALSE;
 1008                 }
 1009                 VM_OBJECT_LOCK(object);
 1010                 res = vm_object_page_clean(object,
 1011                     OFF_TO_IDX(offset),
 1012                     OFF_TO_IDX(offset + size + PAGE_MASK),
 1013                     flags);
 1014                 VM_OBJECT_UNLOCK(object);
 1015                 if (fsync_after)
 1016                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
 1017                 VOP_UNLOCK(vp, 0);
 1018                 VFS_UNLOCK_GIANT(vfslocked);
 1019                 vn_finished_write(mp);
 1020                 if (error != 0)
 1021                         res = FALSE;
 1022                 VM_OBJECT_LOCK(object);
 1023         }
 1024         if ((object->type == OBJT_VNODE ||
 1025              object->type == OBJT_DEVICE) && invalidate) {
 1026                 boolean_t purge;
 1027                 purge = old_msync || (object->type == OBJT_DEVICE);
 1028                 vm_object_page_remove(object,
 1029                     OFF_TO_IDX(offset),
 1030                     OFF_TO_IDX(offset + size + PAGE_MASK),
 1031                     purge ? FALSE : TRUE);
 1032         }
 1033         VM_OBJECT_UNLOCK(object);
 1034         return (res);
 1035 }
 1036 
 1037 /*
 1038  *      vm_object_madvise:
 1039  *
 1040  *      Implements the madvise function at the object/page level.
 1041  *
 1042  *      MADV_WILLNEED   (any object)
 1043  *
 1044  *          Activate the specified pages if they are resident.
 1045  *
 1046  *      MADV_DONTNEED   (any object)
 1047  *
 1048  *          Deactivate the specified pages if they are resident.
 1049  *
 1050  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
 1051  *                       OBJ_ONEMAPPING only)
 1052  *
 1053  *          Deactivate and clean the specified pages if they are
 1054  *          resident.  This permits the process to reuse the pages
 1055  *          without faulting or the kernel to reclaim the pages
 1056  *          without I/O.
 1057  */
 1058 void
 1059 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
 1060     int advise)
 1061 {
 1062         vm_pindex_t tpindex;
 1063         vm_object_t backing_object, tobject;
 1064         vm_page_t m;
 1065 
 1066         if (object == NULL)
 1067                 return;
 1068         VM_OBJECT_LOCK(object);
 1069         /*
 1070          * Locate and adjust resident pages
 1071          */
 1072         for (; pindex < end; pindex += 1) {
 1073 relookup:
 1074                 tobject = object;
 1075                 tpindex = pindex;
 1076 shadowlookup:
 1077                 /*
 1078                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
 1079                  * and those pages must be OBJ_ONEMAPPING.
 1080                  */
 1081                 if (advise == MADV_FREE) {
 1082                         if ((tobject->type != OBJT_DEFAULT &&
 1083                              tobject->type != OBJT_SWAP) ||
 1084                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
 1085                                 goto unlock_tobject;
 1086                         }
 1087                 } else if (tobject->type == OBJT_PHYS)
 1088                         goto unlock_tobject;
 1089                 m = vm_page_lookup(tobject, tpindex);
 1090                 if (m == NULL && advise == MADV_WILLNEED) {
 1091                         /*
 1092                          * If the page is cached, reactivate it.
 1093                          */
 1094                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
 1095                             VM_ALLOC_NOBUSY);
 1096                 }
 1097                 if (m == NULL) {
 1098                         /*
 1099                          * There may be swap even if there is no backing page
 1100                          */
 1101                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1102                                 swap_pager_freespace(tobject, tpindex, 1);
 1103                         /*
 1104                          * next object
 1105                          */
 1106                         backing_object = tobject->backing_object;
 1107                         if (backing_object == NULL)
 1108                                 goto unlock_tobject;
 1109                         VM_OBJECT_LOCK(backing_object);
 1110                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
 1111                         if (tobject != object)
 1112                                 VM_OBJECT_UNLOCK(tobject);
 1113                         tobject = backing_object;
 1114                         goto shadowlookup;
 1115                 } else if (m->valid != VM_PAGE_BITS_ALL)
 1116                         goto unlock_tobject;
 1117                 /*
 1118                  * If the page is not in a normal state, skip it.
 1119                  */
 1120                 vm_page_lock_queues();
 1121                 if (m->hold_count != 0 || m->wire_count != 0) {
 1122                         vm_page_unlock_queues();
 1123                         goto unlock_tobject;
 1124                 }
 1125                 if ((m->oflags & VPO_BUSY) || m->busy) {
 1126                         if (advise == MADV_WILLNEED)
 1127                                 /*
 1128                                  * Reference the page before unlocking and
 1129                                  * sleeping so that the page daemon is less
 1130                                  * likely to reclaim it. 
 1131                                  */
 1132                                 vm_page_flag_set(m, PG_REFERENCED);
 1133                         vm_page_unlock_queues();
 1134                         if (object != tobject)
 1135                                 VM_OBJECT_UNLOCK(object);
 1136                         m->oflags |= VPO_WANTED;
 1137                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
 1138                             0);
 1139                         VM_OBJECT_LOCK(object);
 1140                         goto relookup;
 1141                 }
 1142                 if (advise == MADV_WILLNEED) {
 1143                         vm_page_activate(m);
 1144                 } else if (advise == MADV_DONTNEED) {
 1145                         vm_page_dontneed(m);
 1146                 } else if (advise == MADV_FREE) {
 1147                         /*
 1148                          * Mark the page clean.  This will allow the page
 1149                          * to be freed up by the system.  However, such pages
 1150                          * are often reused quickly by malloc()/free()
 1151                          * so we do not do anything that would cause
 1152                          * a page fault if we can help it.
 1153                          *
 1154                          * Specifically, we do not try to actually free
 1155                          * the page now nor do we try to put it in the
 1156                          * cache (which would cause a page fault on reuse).
 1157                          *
 1158                          * But we do make the page is freeable as we
 1159                          * can without actually taking the step of unmapping
 1160                          * it.
 1161                          */
 1162                         pmap_clear_modify(m);
 1163                         m->dirty = 0;
 1164                         m->act_count = 0;
 1165                         vm_page_dontneed(m);
 1166                 }
 1167                 vm_page_unlock_queues();
 1168                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1169                         swap_pager_freespace(tobject, tpindex, 1);
 1170 unlock_tobject:
 1171                 if (tobject != object)
 1172                         VM_OBJECT_UNLOCK(tobject);
 1173         }       
 1174         VM_OBJECT_UNLOCK(object);
 1175 }
 1176 
 1177 /*
 1178  *      vm_object_shadow:
 1179  *
 1180  *      Create a new object which is backed by the
 1181  *      specified existing object range.  The source
 1182  *      object reference is deallocated.
 1183  *
 1184  *      The new object and offset into that object
 1185  *      are returned in the source parameters.
 1186  */
 1187 void
 1188 vm_object_shadow(
 1189         vm_object_t *object,    /* IN/OUT */
 1190         vm_ooffset_t *offset,   /* IN/OUT */
 1191         vm_size_t length)
 1192 {
 1193         vm_object_t source;
 1194         vm_object_t result;
 1195 
 1196         source = *object;
 1197 
 1198         /*
 1199          * Don't create the new object if the old object isn't shared.
 1200          */
 1201         if (source != NULL) {
 1202                 VM_OBJECT_LOCK(source);
 1203                 if (source->ref_count == 1 &&
 1204                     source->handle == NULL &&
 1205                     (source->type == OBJT_DEFAULT ||
 1206                      source->type == OBJT_SWAP)) {
 1207                         VM_OBJECT_UNLOCK(source);
 1208                         return;
 1209                 }
 1210                 VM_OBJECT_UNLOCK(source);
 1211         }
 1212 
 1213         /*
 1214          * Allocate a new object with the given length.
 1215          */
 1216         result = vm_object_allocate(OBJT_DEFAULT, length);
 1217 
 1218         /*
 1219          * The new object shadows the source object, adding a reference to it.
 1220          * Our caller changes his reference to point to the new object,
 1221          * removing a reference to the source object.  Net result: no change
 1222          * of reference count.
 1223          *
 1224          * Try to optimize the result object's page color when shadowing
 1225          * in order to maintain page coloring consistency in the combined 
 1226          * shadowed object.
 1227          */
 1228         result->backing_object = source;
 1229         /*
 1230          * Store the offset into the source object, and fix up the offset into
 1231          * the new object.
 1232          */
 1233         result->backing_object_offset = *offset;
 1234         if (source != NULL) {
 1235                 VM_OBJECT_LOCK(source);
 1236                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
 1237                 source->shadow_count++;
 1238 #if VM_NRESERVLEVEL > 0
 1239                 result->flags |= source->flags & OBJ_COLORED;
 1240                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
 1241                     ((1 << (VM_NFREEORDER - 1)) - 1);
 1242 #endif
 1243                 VM_OBJECT_UNLOCK(source);
 1244         }
 1245 
 1246 
 1247         /*
 1248          * Return the new things
 1249          */
 1250         *offset = 0;
 1251         *object = result;
 1252 }
 1253 
 1254 /*
 1255  *      vm_object_split:
 1256  *
 1257  * Split the pages in a map entry into a new object.  This affords
 1258  * easier removal of unused pages, and keeps object inheritance from
 1259  * being a negative impact on memory usage.
 1260  */
 1261 void
 1262 vm_object_split(vm_map_entry_t entry)
 1263 {
 1264         vm_page_t m, m_next;
 1265         vm_object_t orig_object, new_object, source;
 1266         vm_pindex_t idx, offidxstart;
 1267         vm_size_t size;
 1268 
 1269         orig_object = entry->object.vm_object;
 1270         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
 1271                 return;
 1272         if (orig_object->ref_count <= 1)
 1273                 return;
 1274         VM_OBJECT_UNLOCK(orig_object);
 1275 
 1276         offidxstart = OFF_TO_IDX(entry->offset);
 1277         size = atop(entry->end - entry->start);
 1278 
 1279         /*
 1280          * If swap_pager_copy() is later called, it will convert new_object
 1281          * into a swap object.
 1282          */
 1283         new_object = vm_object_allocate(OBJT_DEFAULT, size);
 1284 
 1285         /*
 1286          * At this point, the new object is still private, so the order in
 1287          * which the original and new objects are locked does not matter.
 1288          */
 1289         VM_OBJECT_LOCK(new_object);
 1290         VM_OBJECT_LOCK(orig_object);
 1291         source = orig_object->backing_object;
 1292         if (source != NULL) {
 1293                 VM_OBJECT_LOCK(source);
 1294                 if ((source->flags & OBJ_DEAD) != 0) {
 1295                         VM_OBJECT_UNLOCK(source);
 1296                         VM_OBJECT_UNLOCK(orig_object);
 1297                         VM_OBJECT_UNLOCK(new_object);
 1298                         vm_object_deallocate(new_object);
 1299                         VM_OBJECT_LOCK(orig_object);
 1300                         return;
 1301                 }
 1302                 LIST_INSERT_HEAD(&source->shadow_head,
 1303                                   new_object, shadow_list);
 1304                 source->shadow_count++;
 1305                 vm_object_reference_locked(source);     /* for new_object */
 1306                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1307                 VM_OBJECT_UNLOCK(source);
 1308                 new_object->backing_object_offset = 
 1309                         orig_object->backing_object_offset + entry->offset;
 1310                 new_object->backing_object = source;
 1311         }
 1312         if (orig_object->uip != NULL) {
 1313                 new_object->uip = orig_object->uip;
 1314                 uihold(orig_object->uip);
 1315                 new_object->charge = ptoa(size);
 1316                 KASSERT(orig_object->charge >= ptoa(size),
 1317                     ("orig_object->charge < 0"));
 1318                 orig_object->charge -= ptoa(size);
 1319         }
 1320 retry:
 1321         m = vm_page_find_least(orig_object, offidxstart);
 1322         vm_page_lock_queues();
 1323         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
 1324             m = m_next) {
 1325                 m_next = TAILQ_NEXT(m, listq);
 1326 
 1327                 /*
 1328                  * We must wait for pending I/O to complete before we can
 1329                  * rename the page.
 1330                  *
 1331                  * We do not have to VM_PROT_NONE the page as mappings should
 1332                  * not be changed by this operation.
 1333                  */
 1334                 if ((m->oflags & VPO_BUSY) || m->busy) {
 1335                         vm_page_unlock_queues();
 1336                         VM_OBJECT_UNLOCK(new_object);
 1337                         m->oflags |= VPO_WANTED;
 1338                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
 1339                         VM_OBJECT_LOCK(new_object);
 1340                         goto retry;
 1341                 }
 1342                 vm_page_rename(m, new_object, idx);
 1343                 /* page automatically made dirty by rename and cache handled */
 1344                 vm_page_busy(m);
 1345         }
 1346         vm_page_unlock_queues();
 1347         if (orig_object->type == OBJT_SWAP) {
 1348                 /*
 1349                  * swap_pager_copy() can sleep, in which case the orig_object's
 1350                  * and new_object's locks are released and reacquired. 
 1351                  */
 1352                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
 1353 
 1354                 /*
 1355                  * Transfer any cached pages from orig_object to new_object.
 1356                  */
 1357                 if (__predict_false(orig_object->cache != NULL))
 1358                         vm_page_cache_transfer(orig_object, offidxstart,
 1359                             new_object);
 1360         }
 1361         VM_OBJECT_UNLOCK(orig_object);
 1362         TAILQ_FOREACH(m, &new_object->memq, listq)
 1363                 vm_page_wakeup(m);
 1364         VM_OBJECT_UNLOCK(new_object);
 1365         entry->object.vm_object = new_object;
 1366         entry->offset = 0LL;
 1367         vm_object_deallocate(orig_object);
 1368         VM_OBJECT_LOCK(new_object);
 1369 }
 1370 
 1371 #define OBSC_TEST_ALL_SHADOWED  0x0001
 1372 #define OBSC_COLLAPSE_NOWAIT    0x0002
 1373 #define OBSC_COLLAPSE_WAIT      0x0004
 1374 
 1375 static int
 1376 vm_object_backing_scan(vm_object_t object, int op)
 1377 {
 1378         int r = 1;
 1379         vm_page_t p;
 1380         vm_object_t backing_object;
 1381         vm_pindex_t backing_offset_index;
 1382 
 1383         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1384         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
 1385 
 1386         backing_object = object->backing_object;
 1387         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1388 
 1389         /*
 1390          * Initial conditions
 1391          */
 1392         if (op & OBSC_TEST_ALL_SHADOWED) {
 1393                 /*
 1394                  * We do not want to have to test for the existence of cache
 1395                  * or swap pages in the backing object.  XXX but with the
 1396                  * new swapper this would be pretty easy to do.
 1397                  *
 1398                  * XXX what about anonymous MAP_SHARED memory that hasn't
 1399                  * been ZFOD faulted yet?  If we do not test for this, the
 1400                  * shadow test may succeed! XXX
 1401                  */
 1402                 if (backing_object->type != OBJT_DEFAULT) {
 1403                         return (0);
 1404                 }
 1405         }
 1406         if (op & OBSC_COLLAPSE_WAIT) {
 1407                 vm_object_set_flag(backing_object, OBJ_DEAD);
 1408         }
 1409 
 1410         /*
 1411          * Our scan
 1412          */
 1413         p = TAILQ_FIRST(&backing_object->memq);
 1414         while (p) {
 1415                 vm_page_t next = TAILQ_NEXT(p, listq);
 1416                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
 1417 
 1418                 if (op & OBSC_TEST_ALL_SHADOWED) {
 1419                         vm_page_t pp;
 1420 
 1421                         /*
 1422                          * Ignore pages outside the parent object's range
 1423                          * and outside the parent object's mapping of the 
 1424                          * backing object.
 1425                          *
 1426                          * note that we do not busy the backing object's
 1427                          * page.
 1428                          */
 1429                         if (
 1430                             p->pindex < backing_offset_index ||
 1431                             new_pindex >= object->size
 1432                         ) {
 1433                                 p = next;
 1434                                 continue;
 1435                         }
 1436 
 1437                         /*
 1438                          * See if the parent has the page or if the parent's
 1439                          * object pager has the page.  If the parent has the
 1440                          * page but the page is not valid, the parent's
 1441                          * object pager must have the page.
 1442                          *
 1443                          * If this fails, the parent does not completely shadow
 1444                          * the object and we might as well give up now.
 1445                          */
 1446 
 1447                         pp = vm_page_lookup(object, new_pindex);
 1448                         if (
 1449                             (pp == NULL || pp->valid == 0) &&
 1450                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
 1451                         ) {
 1452                                 r = 0;
 1453                                 break;
 1454                         }
 1455                 }
 1456 
 1457                 /*
 1458                  * Check for busy page
 1459                  */
 1460                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
 1461                         vm_page_t pp;
 1462 
 1463                         if (op & OBSC_COLLAPSE_NOWAIT) {
 1464                                 if ((p->oflags & VPO_BUSY) ||
 1465                                     !p->valid || 
 1466                                     p->busy) {
 1467                                         p = next;
 1468                                         continue;
 1469                                 }
 1470                         } else if (op & OBSC_COLLAPSE_WAIT) {
 1471                                 if ((p->oflags & VPO_BUSY) || p->busy) {
 1472                                         VM_OBJECT_UNLOCK(object);
 1473                                         p->oflags |= VPO_WANTED;
 1474                                         msleep(p, VM_OBJECT_MTX(backing_object),
 1475                                             PDROP | PVM, "vmocol", 0);
 1476                                         VM_OBJECT_LOCK(object);
 1477                                         VM_OBJECT_LOCK(backing_object);
 1478                                         /*
 1479                                          * If we slept, anything could have
 1480                                          * happened.  Since the object is
 1481                                          * marked dead, the backing offset
 1482                                          * should not have changed so we
 1483                                          * just restart our scan.
 1484                                          */
 1485                                         p = TAILQ_FIRST(&backing_object->memq);
 1486                                         continue;
 1487                                 }
 1488                         }
 1489 
 1490                         KASSERT(
 1491                             p->object == backing_object,
 1492                             ("vm_object_backing_scan: object mismatch")
 1493                         );
 1494 
 1495                         /*
 1496                          * Destroy any associated swap
 1497                          */
 1498                         if (backing_object->type == OBJT_SWAP) {
 1499                                 swap_pager_freespace(
 1500                                     backing_object, 
 1501                                     p->pindex,
 1502                                     1
 1503                                 );
 1504                         }
 1505 
 1506                         if (
 1507                             p->pindex < backing_offset_index ||
 1508                             new_pindex >= object->size
 1509                         ) {
 1510                                 /*
 1511                                  * Page is out of the parent object's range, we 
 1512                                  * can simply destroy it. 
 1513                                  */
 1514                                 vm_page_lock_queues();
 1515                                 KASSERT(!pmap_page_is_mapped(p),
 1516                                     ("freeing mapped page %p", p));
 1517                                 if (p->wire_count == 0)
 1518                                         vm_page_free(p);
 1519                                 else
 1520                                         vm_page_remove(p);
 1521                                 vm_page_unlock_queues();
 1522                                 p = next;
 1523                                 continue;
 1524                         }
 1525 
 1526                         pp = vm_page_lookup(object, new_pindex);
 1527                         if (
 1528                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
 1529                             (pp != NULL && pp->valid == 0)
 1530                         ) {
 1531                                 /*
 1532                                  * The page in the parent is not (yet) valid.
 1533                                  * We don't know anything about the state of
 1534                                  * the original page.  It might be mapped,
 1535                                  * so we must avoid the next if here.
 1536                                  *
 1537                                  * This is due to a race in vm_fault() where
 1538                                  * we must unbusy the original (backing_obj)
 1539                                  * page before we can (re)lock the parent.
 1540                                  * Hence we can get here.
 1541                                  */
 1542                                 p = next;
 1543                                 continue;
 1544                         }
 1545                         if (
 1546                             pp != NULL ||
 1547                             vm_pager_has_page(object, new_pindex, NULL, NULL)
 1548                         ) {
 1549                                 /*
 1550                                  * page already exists in parent OR swap exists
 1551                                  * for this location in the parent.  Destroy 
 1552                                  * the original page from the backing object.
 1553                                  *
 1554                                  * Leave the parent's page alone
 1555                                  */
 1556                                 vm_page_lock_queues();
 1557                                 KASSERT(!pmap_page_is_mapped(p),
 1558                                     ("freeing mapped page %p", p));
 1559                                 if (p->wire_count == 0)
 1560                                         vm_page_free(p);
 1561                                 else
 1562                                         vm_page_remove(p);
 1563                                 vm_page_unlock_queues();
 1564                                 p = next;
 1565                                 continue;
 1566                         }
 1567 
 1568 #if VM_NRESERVLEVEL > 0
 1569                         /*
 1570                          * Rename the reservation.
 1571                          */
 1572                         vm_reserv_rename(p, object, backing_object,
 1573                             backing_offset_index);
 1574 #endif
 1575 
 1576                         /*
 1577                          * Page does not exist in parent, rename the
 1578                          * page from the backing object to the main object. 
 1579                          *
 1580                          * If the page was mapped to a process, it can remain 
 1581                          * mapped through the rename.
 1582                          */
 1583                         vm_page_lock_queues();
 1584                         vm_page_rename(p, object, new_pindex);
 1585                         vm_page_unlock_queues();
 1586                         /* page automatically made dirty by rename */
 1587                 }
 1588                 p = next;
 1589         }
 1590         return (r);
 1591 }
 1592 
 1593 
 1594 /*
 1595  * this version of collapse allows the operation to occur earlier and
 1596  * when paging_in_progress is true for an object...  This is not a complete
 1597  * operation, but should plug 99.9% of the rest of the leaks.
 1598  */
 1599 static void
 1600 vm_object_qcollapse(vm_object_t object)
 1601 {
 1602         vm_object_t backing_object = object->backing_object;
 1603 
 1604         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1605         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
 1606 
 1607         if (backing_object->ref_count != 1)
 1608                 return;
 1609 
 1610         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
 1611 }
 1612 
 1613 /*
 1614  *      vm_object_collapse:
 1615  *
 1616  *      Collapse an object with the object backing it.
 1617  *      Pages in the backing object are moved into the
 1618  *      parent, and the backing object is deallocated.
 1619  */
 1620 void
 1621 vm_object_collapse(vm_object_t object)
 1622 {
 1623         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1624         
 1625         while (TRUE) {
 1626                 vm_object_t backing_object;
 1627 
 1628                 /*
 1629                  * Verify that the conditions are right for collapse:
 1630                  *
 1631                  * The object exists and the backing object exists.
 1632                  */
 1633                 if ((backing_object = object->backing_object) == NULL)
 1634                         break;
 1635 
 1636                 /*
 1637                  * we check the backing object first, because it is most likely
 1638                  * not collapsable.
 1639                  */
 1640                 VM_OBJECT_LOCK(backing_object);
 1641                 if (backing_object->handle != NULL ||
 1642                     (backing_object->type != OBJT_DEFAULT &&
 1643                      backing_object->type != OBJT_SWAP) ||
 1644                     (backing_object->flags & OBJ_DEAD) ||
 1645                     object->handle != NULL ||
 1646                     (object->type != OBJT_DEFAULT &&
 1647                      object->type != OBJT_SWAP) ||
 1648                     (object->flags & OBJ_DEAD)) {
 1649                         VM_OBJECT_UNLOCK(backing_object);
 1650                         break;
 1651                 }
 1652 
 1653                 if (
 1654                     object->paging_in_progress != 0 ||
 1655                     backing_object->paging_in_progress != 0
 1656                 ) {
 1657                         vm_object_qcollapse(object);
 1658                         VM_OBJECT_UNLOCK(backing_object);
 1659                         break;
 1660                 }
 1661                 /*
 1662                  * We know that we can either collapse the backing object (if
 1663                  * the parent is the only reference to it) or (perhaps) have
 1664                  * the parent bypass the object if the parent happens to shadow
 1665                  * all the resident pages in the entire backing object.
 1666                  *
 1667                  * This is ignoring pager-backed pages such as swap pages.
 1668                  * vm_object_backing_scan fails the shadowing test in this
 1669                  * case.
 1670                  */
 1671                 if (backing_object->ref_count == 1) {
 1672                         /*
 1673                          * If there is exactly one reference to the backing
 1674                          * object, we can collapse it into the parent.  
 1675                          */
 1676                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
 1677 
 1678 #if VM_NRESERVLEVEL > 0
 1679                         /*
 1680                          * Break any reservations from backing_object.
 1681                          */
 1682                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
 1683                                 vm_reserv_break_all(backing_object);
 1684 #endif
 1685 
 1686                         /*
 1687                          * Move the pager from backing_object to object.
 1688                          */
 1689                         if (backing_object->type == OBJT_SWAP) {
 1690                                 /*
 1691                                  * swap_pager_copy() can sleep, in which case
 1692                                  * the backing_object's and object's locks are
 1693                                  * released and reacquired.
 1694                                  */
 1695                                 swap_pager_copy(
 1696                                     backing_object,
 1697                                     object,
 1698                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
 1699 
 1700                                 /*
 1701                                  * Free any cached pages from backing_object.
 1702                                  */
 1703                                 if (__predict_false(backing_object->cache != NULL))
 1704                                         vm_page_cache_free(backing_object, 0, 0);
 1705                         }
 1706                         /*
 1707                          * Object now shadows whatever backing_object did.
 1708                          * Note that the reference to 
 1709                          * backing_object->backing_object moves from within 
 1710                          * backing_object to within object.
 1711                          */
 1712                         LIST_REMOVE(object, shadow_list);
 1713                         backing_object->shadow_count--;
 1714                         if (backing_object->backing_object) {
 1715                                 VM_OBJECT_LOCK(backing_object->backing_object);
 1716                                 LIST_REMOVE(backing_object, shadow_list);
 1717                                 LIST_INSERT_HEAD(
 1718                                     &backing_object->backing_object->shadow_head,
 1719                                     object, shadow_list);
 1720                                 /*
 1721                                  * The shadow_count has not changed.
 1722                                  */
 1723                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
 1724                         }
 1725                         object->backing_object = backing_object->backing_object;
 1726                         object->backing_object_offset +=
 1727                             backing_object->backing_object_offset;
 1728 
 1729                         /*
 1730                          * Discard backing_object.
 1731                          *
 1732                          * Since the backing object has no pages, no pager left,
 1733                          * and no object references within it, all that is
 1734                          * necessary is to dispose of it.
 1735                          */
 1736                         KASSERT(backing_object->ref_count == 1, (
 1737 "backing_object %p was somehow re-referenced during collapse!",
 1738                             backing_object));
 1739                         VM_OBJECT_UNLOCK(backing_object);
 1740                         vm_object_destroy(backing_object);
 1741 
 1742                         object_collapses++;
 1743                 } else {
 1744                         vm_object_t new_backing_object;
 1745 
 1746                         /*
 1747                          * If we do not entirely shadow the backing object,
 1748                          * there is nothing we can do so we give up.
 1749                          */
 1750                         if (object->resident_page_count != object->size &&
 1751                             vm_object_backing_scan(object,
 1752                             OBSC_TEST_ALL_SHADOWED) == 0) {
 1753                                 VM_OBJECT_UNLOCK(backing_object);
 1754                                 break;
 1755                         }
 1756 
 1757                         /*
 1758                          * Make the parent shadow the next object in the
 1759                          * chain.  Deallocating backing_object will not remove
 1760                          * it, since its reference count is at least 2.
 1761                          */
 1762                         LIST_REMOVE(object, shadow_list);
 1763                         backing_object->shadow_count--;
 1764 
 1765                         new_backing_object = backing_object->backing_object;
 1766                         if ((object->backing_object = new_backing_object) != NULL) {
 1767                                 VM_OBJECT_LOCK(new_backing_object);
 1768                                 LIST_INSERT_HEAD(
 1769                                     &new_backing_object->shadow_head,
 1770                                     object,
 1771                                     shadow_list
 1772                                 );
 1773                                 new_backing_object->shadow_count++;
 1774                                 vm_object_reference_locked(new_backing_object);
 1775                                 VM_OBJECT_UNLOCK(new_backing_object);
 1776                                 object->backing_object_offset +=
 1777                                         backing_object->backing_object_offset;
 1778                         }
 1779 
 1780                         /*
 1781                          * Drop the reference count on backing_object. Since
 1782                          * its ref_count was at least 2, it will not vanish.
 1783                          */
 1784                         backing_object->ref_count--;
 1785                         VM_OBJECT_UNLOCK(backing_object);
 1786                         object_bypasses++;
 1787                 }
 1788 
 1789                 /*
 1790                  * Try again with this object's new backing object.
 1791                  */
 1792         }
 1793 }
 1794 
 1795 /*
 1796  *      vm_object_page_remove:
 1797  *
 1798  *      For the given object, either frees or invalidates each of the
 1799  *      specified pages.  In general, a page is freed.  However, if a
 1800  *      page is wired for any reason other than the existence of a
 1801  *      managed, wired mapping, then it may be invalidated but not
 1802  *      removed from the object.  Pages are specified by the given
 1803  *      range ["start", "end") and Boolean "clean_only".  As a
 1804  *      special case, if "end" is zero, then the range extends from
 1805  *      "start" to the end of the object.  If "clean_only" is TRUE,
 1806  *      then only the non-dirty pages within the specified range are
 1807  *      affected.
 1808  *
 1809  *      In general, this operation should only be performed on objects
 1810  *      that contain managed pages.  There are two exceptions.  First,
 1811  *      it may be performed on the kernel and kmem objects.  Second,
 1812  *      it may be used by msync(..., MS_INVALIDATE) to invalidate
 1813  *      device-backed pages.  In both of these cases, "clean_only"
 1814  *      must be FALSE.
 1815  *
 1816  *      The object must be locked.
 1817  */
 1818 void
 1819 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 1820     boolean_t clean_only)
 1821 {
 1822         vm_page_t p, next;
 1823         int wirings;
 1824 
 1825         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1826         if (object->resident_page_count == 0)
 1827                 goto skipmemq;
 1828 
 1829         /*
 1830          * Since physically-backed objects do not use managed pages, we can't
 1831          * remove pages from the object (we must instead remove the page
 1832          * references, and then destroy the object).
 1833          */
 1834         KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
 1835             object == kmem_object,
 1836             ("attempt to remove pages from a physical object"));
 1837 
 1838         vm_object_pip_add(object, 1);
 1839 again:
 1840         p = vm_page_find_least(object, start);
 1841         vm_page_lock_queues();
 1842         /*
 1843          * Assert: the variable p is either (1) the page with the
 1844          * least pindex greater than or equal to the parameter pindex
 1845          * or (2) NULL.
 1846          */
 1847         for (;
 1848              p != NULL && (p->pindex < end || end == 0);
 1849              p = next) {
 1850                 next = TAILQ_NEXT(p, listq);
 1851 
 1852                 /*
 1853                  * If the page is wired for any reason besides the
 1854                  * existence of managed, wired mappings, then it cannot
 1855                  * be freed.  For example, fictitious pages, which
 1856                  * represent device memory, are inherently wired and
 1857                  * cannot be freed.  They can, however, be invalidated
 1858                  * if "clean_only" is FALSE.
 1859                  */
 1860                 if ((wirings = p->wire_count) != 0 &&
 1861                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
 1862                         /* Fictitious pages do not have managed mappings. */
 1863                         if ((p->flags & PG_FICTITIOUS) == 0)
 1864                                 pmap_remove_all(p);
 1865                         /* Account for removal of managed, wired mappings. */
 1866                         p->wire_count -= wirings;
 1867                         if (!clean_only) {
 1868                                 p->valid = 0;
 1869                                 vm_page_undirty(p);
 1870                         }
 1871                         continue;
 1872                 }
 1873                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
 1874                         goto again;
 1875                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
 1876                     ("vm_object_page_remove: page %p is fictitious", p));
 1877                 if (clean_only && p->valid) {
 1878                         pmap_remove_write(p);
 1879                         if (p->dirty)
 1880                                 continue;
 1881                 }
 1882                 pmap_remove_all(p);
 1883                 /* Account for removal of managed, wired mappings. */
 1884                 if (wirings != 0)
 1885                         p->wire_count -= wirings;
 1886                 vm_page_free(p);
 1887         }
 1888         vm_page_unlock_queues();
 1889         vm_object_pip_wakeup(object);
 1890 skipmemq:
 1891         if (__predict_false(object->cache != NULL))
 1892                 vm_page_cache_free(object, start, end);
 1893 }
 1894 
 1895 /*
 1896  *      vm_object_page_cache:
 1897  *
 1898  *      For the given object, attempt to move the specified clean
 1899  *      pages to the cache queue.  If a page is wired for any reason,
 1900  *      then it will not be changed.  Pages are specified by the given
 1901  *      range ["start", "end").  As a special case, if "end" is zero,
 1902  *      then the range extends from "start" to the end of the object.
 1903  *      Any mappings to the specified pages are removed before the
 1904  *      pages are moved to the cache queue.
 1905  *
 1906  *      This operation should only be performed on objects that
 1907  *      contain managed pages.
 1908  *
 1909  *      The object must be locked.
 1910  */
 1911 void
 1912 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1913 {
 1914         vm_page_t p, next;
 1915 
 1916         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1917         KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_SG &&
 1918             object->type != OBJT_PHYS),
 1919             ("vm_object_page_cache: illegal object %p", object));
 1920         if (object->resident_page_count == 0)
 1921                 return;
 1922         p = vm_page_find_least(object, start);
 1923 
 1924         /*
 1925          * Here, the variable "p" is either (1) the page with the least pindex
 1926          * greater than or equal to the parameter "start" or (2) NULL. 
 1927          */
 1928         vm_page_lock_queues();
 1929         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 1930                 next = TAILQ_NEXT(p, listq);
 1931 
 1932                 vm_page_try_to_cache(p);
 1933         }
 1934         vm_page_unlock_queues();
 1935 }
 1936 
 1937 /*
 1938  *      Populate the specified range of the object with valid pages.  Returns
 1939  *      TRUE if the range is successfully populated and FALSE otherwise.
 1940  *
 1941  *      Note: This function should be optimized to pass a larger array of
 1942  *      pages to vm_pager_get_pages() before it is applied to a non-
 1943  *      OBJT_DEVICE object.
 1944  *
 1945  *      The object must be locked.
 1946  */
 1947 boolean_t
 1948 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1949 {
 1950         vm_page_t m, ma[1];
 1951         vm_pindex_t pindex;
 1952         int rv;
 1953 
 1954         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1955         for (pindex = start; pindex < end; pindex++) {
 1956                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
 1957                     VM_ALLOC_RETRY);
 1958                 if (m->valid != VM_PAGE_BITS_ALL) {
 1959                         ma[0] = m;
 1960                         rv = vm_pager_get_pages(object, ma, 1, 0);
 1961                         m = vm_page_lookup(object, pindex);
 1962                         if (m == NULL)
 1963                                 break;
 1964                         if (rv != VM_PAGER_OK) {
 1965                                 vm_page_lock_queues();
 1966                                 vm_page_free(m);
 1967                                 vm_page_unlock_queues();
 1968                                 break;
 1969                         }
 1970                 }
 1971                 /*
 1972                  * Keep "m" busy because a subsequent iteration may unlock
 1973                  * the object.
 1974                  */
 1975         }
 1976         if (pindex > start) {
 1977                 m = vm_page_lookup(object, start);
 1978                 while (m != NULL && m->pindex < pindex) {
 1979                         vm_page_wakeup(m);
 1980                         m = TAILQ_NEXT(m, listq);
 1981                 }
 1982         }
 1983         return (pindex == end);
 1984 }
 1985 
 1986 /*
 1987  *      Routine:        vm_object_coalesce
 1988  *      Function:       Coalesces two objects backing up adjoining
 1989  *                      regions of memory into a single object.
 1990  *
 1991  *      returns TRUE if objects were combined.
 1992  *
 1993  *      NOTE:   Only works at the moment if the second object is NULL -
 1994  *              if it's not, which object do we lock first?
 1995  *
 1996  *      Parameters:
 1997  *              prev_object     First object to coalesce
 1998  *              prev_offset     Offset into prev_object
 1999  *              prev_size       Size of reference to prev_object
 2000  *              next_size       Size of reference to the second object
 2001  *              reserved        Indicator that extension region has
 2002  *                              swap accounted for
 2003  *
 2004  *      Conditions:
 2005  *      The object must *not* be locked.
 2006  */
 2007 boolean_t
 2008 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
 2009     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
 2010 {
 2011         vm_pindex_t next_pindex;
 2012 
 2013         if (prev_object == NULL)
 2014                 return (TRUE);
 2015         VM_OBJECT_LOCK(prev_object);
 2016         if (prev_object->type != OBJT_DEFAULT &&
 2017             prev_object->type != OBJT_SWAP) {
 2018                 VM_OBJECT_UNLOCK(prev_object);
 2019                 return (FALSE);
 2020         }
 2021 
 2022         /*
 2023          * Try to collapse the object first
 2024          */
 2025         vm_object_collapse(prev_object);
 2026 
 2027         /*
 2028          * Can't coalesce if: . more than one reference . paged out . shadows
 2029          * another object . has a copy elsewhere (any of which mean that the
 2030          * pages not mapped to prev_entry may be in use anyway)
 2031          */
 2032         if (prev_object->backing_object != NULL) {
 2033                 VM_OBJECT_UNLOCK(prev_object);
 2034                 return (FALSE);
 2035         }
 2036 
 2037         prev_size >>= PAGE_SHIFT;
 2038         next_size >>= PAGE_SHIFT;
 2039         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
 2040 
 2041         if ((prev_object->ref_count > 1) &&
 2042             (prev_object->size != next_pindex)) {
 2043                 VM_OBJECT_UNLOCK(prev_object);
 2044                 return (FALSE);
 2045         }
 2046 
 2047         /*
 2048          * Account for the charge.
 2049          */
 2050         if (prev_object->uip != NULL) {
 2051 
 2052                 /*
 2053                  * If prev_object was charged, then this mapping,
 2054                  * althought not charged now, may become writable
 2055                  * later. Non-NULL uip in the object would prevent
 2056                  * swap reservation during enabling of the write
 2057                  * access, so reserve swap now. Failed reservation
 2058                  * cause allocation of the separate object for the map
 2059                  * entry, and swap reservation for this entry is
 2060                  * managed in appropriate time.
 2061                  */
 2062                 if (!reserved && !swap_reserve_by_uid(ptoa(next_size),
 2063                     prev_object->uip)) {
 2064                         return (FALSE);
 2065                 }
 2066                 prev_object->charge += ptoa(next_size);
 2067         }
 2068 
 2069         /*
 2070          * Remove any pages that may still be in the object from a previous
 2071          * deallocation.
 2072          */
 2073         if (next_pindex < prev_object->size) {
 2074                 vm_object_page_remove(prev_object,
 2075                                       next_pindex,
 2076                                       next_pindex + next_size, FALSE);
 2077                 if (prev_object->type == OBJT_SWAP)
 2078                         swap_pager_freespace(prev_object,
 2079                                              next_pindex, next_size);
 2080 #if 0
 2081                 if (prev_object->uip != NULL) {
 2082                         KASSERT(prev_object->charge >=
 2083                             ptoa(prev_object->size - next_pindex),
 2084                             ("object %p overcharged 1 %jx %jx", prev_object,
 2085                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
 2086                         prev_object->charge -= ptoa(prev_object->size -
 2087                             next_pindex);
 2088                 }
 2089 #endif
 2090         }
 2091 
 2092         /*
 2093          * Extend the object if necessary.
 2094          */
 2095         if (next_pindex + next_size > prev_object->size)
 2096                 prev_object->size = next_pindex + next_size;
 2097 
 2098         VM_OBJECT_UNLOCK(prev_object);
 2099         return (TRUE);
 2100 }
 2101 
 2102 void
 2103 vm_object_set_writeable_dirty(vm_object_t object)
 2104 {
 2105 
 2106         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2107         if (object->type != OBJT_VNODE)
 2108                 return;
 2109         object->generation++;
 2110         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
 2111                 return;
 2112         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
 2113 }
 2114 
 2115 #include "opt_ddb.h"
 2116 #ifdef DDB
 2117 #include <sys/kernel.h>
 2118 
 2119 #include <sys/cons.h>
 2120 
 2121 #include <ddb/ddb.h>
 2122 
 2123 static int
 2124 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
 2125 {
 2126         vm_map_t tmpm;
 2127         vm_map_entry_t tmpe;
 2128         vm_object_t obj;
 2129         int entcount;
 2130 
 2131         if (map == 0)
 2132                 return 0;
 2133 
 2134         if (entry == 0) {
 2135                 tmpe = map->header.next;
 2136                 entcount = map->nentries;
 2137                 while (entcount-- && (tmpe != &map->header)) {
 2138                         if (_vm_object_in_map(map, object, tmpe)) {
 2139                                 return 1;
 2140                         }
 2141                         tmpe = tmpe->next;
 2142                 }
 2143         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2144                 tmpm = entry->object.sub_map;
 2145                 tmpe = tmpm->header.next;
 2146                 entcount = tmpm->nentries;
 2147                 while (entcount-- && tmpe != &tmpm->header) {
 2148                         if (_vm_object_in_map(tmpm, object, tmpe)) {
 2149                                 return 1;
 2150                         }
 2151                         tmpe = tmpe->next;
 2152                 }
 2153         } else if ((obj = entry->object.vm_object) != NULL) {
 2154                 for (; obj; obj = obj->backing_object)
 2155                         if (obj == object) {
 2156                                 return 1;
 2157                         }
 2158         }
 2159         return 0;
 2160 }
 2161 
 2162 static int
 2163 vm_object_in_map(vm_object_t object)
 2164 {
 2165         struct proc *p;
 2166 
 2167         /* sx_slock(&allproc_lock); */
 2168         FOREACH_PROC_IN_SYSTEM(p) {
 2169                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
 2170                         continue;
 2171                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
 2172                         /* sx_sunlock(&allproc_lock); */
 2173                         return 1;
 2174                 }
 2175         }
 2176         /* sx_sunlock(&allproc_lock); */
 2177         if (_vm_object_in_map(kernel_map, object, 0))
 2178                 return 1;
 2179         if (_vm_object_in_map(kmem_map, object, 0))
 2180                 return 1;
 2181         if (_vm_object_in_map(pager_map, object, 0))
 2182                 return 1;
 2183         if (_vm_object_in_map(buffer_map, object, 0))
 2184                 return 1;
 2185         return 0;
 2186 }
 2187 
 2188 DB_SHOW_COMMAND(vmochk, vm_object_check)
 2189 {
 2190         vm_object_t object;
 2191 
 2192         /*
 2193          * make sure that internal objs are in a map somewhere
 2194          * and none have zero ref counts.
 2195          */
 2196         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2197                 if (object->handle == NULL &&
 2198                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
 2199                         if (object->ref_count == 0) {
 2200                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
 2201                                         (long)object->size);
 2202                         }
 2203                         if (!vm_object_in_map(object)) {
 2204                                 db_printf(
 2205                         "vmochk: internal obj is not in a map: "
 2206                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
 2207                                     object->ref_count, (u_long)object->size, 
 2208                                     (u_long)object->size,
 2209                                     (void *)object->backing_object);
 2210                         }
 2211                 }
 2212         }
 2213 }
 2214 
 2215 /*
 2216  *      vm_object_print:        [ debug ]
 2217  */
 2218 DB_SHOW_COMMAND(object, vm_object_print_static)
 2219 {
 2220         /* XXX convert args. */
 2221         vm_object_t object = (vm_object_t)addr;
 2222         boolean_t full = have_addr;
 2223 
 2224         vm_page_t p;
 2225 
 2226         /* XXX count is an (unused) arg.  Avoid shadowing it. */
 2227 #define count   was_count
 2228 
 2229         int count;
 2230 
 2231         if (object == NULL)
 2232                 return;
 2233 
 2234         db_iprintf(
 2235             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x uip %d charge %jx\n",
 2236             object, (int)object->type, (uintmax_t)object->size,
 2237             object->resident_page_count, object->ref_count, object->flags,
 2238             object->uip ? object->uip->ui_uid : -1, (uintmax_t)object->charge);
 2239         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
 2240             object->shadow_count, 
 2241             object->backing_object ? object->backing_object->ref_count : 0,
 2242             object->backing_object, (uintmax_t)object->backing_object_offset);
 2243 
 2244         if (!full)
 2245                 return;
 2246 
 2247         db_indent += 2;
 2248         count = 0;
 2249         TAILQ_FOREACH(p, &object->memq, listq) {
 2250                 if (count == 0)
 2251                         db_iprintf("memory:=");
 2252                 else if (count == 6) {
 2253                         db_printf("\n");
 2254                         db_iprintf(" ...");
 2255                         count = 0;
 2256                 } else
 2257                         db_printf(",");
 2258                 count++;
 2259 
 2260                 db_printf("(off=0x%jx,page=0x%jx)",
 2261                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
 2262         }
 2263         if (count != 0)
 2264                 db_printf("\n");
 2265         db_indent -= 2;
 2266 }
 2267 
 2268 /* XXX. */
 2269 #undef count
 2270 
 2271 /* XXX need this non-static entry for calling from vm_map_print. */
 2272 void
 2273 vm_object_print(
 2274         /* db_expr_t */ long addr,
 2275         boolean_t have_addr,
 2276         /* db_expr_t */ long count,
 2277         char *modif)
 2278 {
 2279         vm_object_print_static(addr, have_addr, count, modif);
 2280 }
 2281 
 2282 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
 2283 {
 2284         vm_object_t object;
 2285         vm_pindex_t fidx;
 2286         vm_paddr_t pa;
 2287         vm_page_t m, prev_m;
 2288         int rcount, nl, c;
 2289 
 2290         nl = 0;
 2291         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2292                 db_printf("new object: %p\n", (void *)object);
 2293                 if (nl > 18) {
 2294                         c = cngetc();
 2295                         if (c != ' ')
 2296                                 return;
 2297                         nl = 0;
 2298                 }
 2299                 nl++;
 2300                 rcount = 0;
 2301                 fidx = 0;
 2302                 pa = -1;
 2303                 TAILQ_FOREACH(m, &object->memq, listq) {
 2304                         if (m->pindex > 128)
 2305                                 break;
 2306                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
 2307                             prev_m->pindex + 1 != m->pindex) {
 2308                                 if (rcount) {
 2309                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2310                                                 (long)fidx, rcount, (long)pa);
 2311                                         if (nl > 18) {
 2312                                                 c = cngetc();
 2313                                                 if (c != ' ')
 2314                                                         return;
 2315                                                 nl = 0;
 2316                                         }
 2317                                         nl++;
 2318                                         rcount = 0;
 2319                                 }
 2320                         }                               
 2321                         if (rcount &&
 2322                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
 2323                                 ++rcount;
 2324                                 continue;
 2325                         }
 2326                         if (rcount) {
 2327                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2328                                         (long)fidx, rcount, (long)pa);
 2329                                 if (nl > 18) {
 2330                                         c = cngetc();
 2331                                         if (c != ' ')
 2332                                                 return;
 2333                                         nl = 0;
 2334                                 }
 2335                                 nl++;
 2336                         }
 2337                         fidx = m->pindex;
 2338                         pa = VM_PAGE_TO_PHYS(m);
 2339                         rcount = 1;
 2340                 }
 2341                 if (rcount) {
 2342                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2343                                 (long)fidx, rcount, (long)pa);
 2344                         if (nl > 18) {
 2345                                 c = cngetc();
 2346                                 if (c != ' ')
 2347                                         return;
 2348                                 nl = 0;
 2349                         }
 2350                         nl++;
 2351                 }
 2352         }
 2353 }
 2354 #endif /* DDB */

Cache object: 2466466499cead124d5209a09d0cdfd2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.