The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 /*
   62  *      Virtual memory object module.
   63  */
   64 
   65 #include <sys/cdefs.h>
   66 __FBSDID("$FreeBSD: releng/9.0/sys/vm/vm_object.c 225418 2011-09-06 10:30:11Z kib $");
   67 
   68 #include "opt_vm.h"
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/lock.h>
   73 #include <sys/mman.h>
   74 #include <sys/mount.h>
   75 #include <sys/kernel.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/mutex.h>
   78 #include <sys/proc.h>           /* for curproc, pageproc */
   79 #include <sys/socket.h>
   80 #include <sys/resourcevar.h>
   81 #include <sys/vnode.h>
   82 #include <sys/vmmeter.h>
   83 #include <sys/sx.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_param.h>
   87 #include <vm/pmap.h>
   88 #include <vm/vm_map.h>
   89 #include <vm/vm_object.h>
   90 #include <vm/vm_page.h>
   91 #include <vm/vm_pageout.h>
   92 #include <vm/vm_pager.h>
   93 #include <vm/swap_pager.h>
   94 #include <vm/vm_kern.h>
   95 #include <vm/vm_extern.h>
   96 #include <vm/vm_reserv.h>
   97 #include <vm/uma.h>
   98 
   99 static int old_msync;
  100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
  101     "Use old (insecure) msync behavior");
  102 
  103 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
  104                     int pagerflags, int flags, int *clearobjflags);
  105 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
  106                     int *clearobjflags);
  107 static void     vm_object_qcollapse(vm_object_t object);
  108 static void     vm_object_vndeallocate(vm_object_t object);
  109 
  110 /*
  111  *      Virtual memory objects maintain the actual data
  112  *      associated with allocated virtual memory.  A given
  113  *      page of memory exists within exactly one object.
  114  *
  115  *      An object is only deallocated when all "references"
  116  *      are given up.  Only one "reference" to a given
  117  *      region of an object should be writeable.
  118  *
  119  *      Associated with each object is a list of all resident
  120  *      memory pages belonging to that object; this list is
  121  *      maintained by the "vm_page" module, and locked by the object's
  122  *      lock.
  123  *
  124  *      Each object also records a "pager" routine which is
  125  *      used to retrieve (and store) pages to the proper backing
  126  *      storage.  In addition, objects may be backed by other
  127  *      objects from which they were virtual-copied.
  128  *
  129  *      The only items within the object structure which are
  130  *      modified after time of creation are:
  131  *              reference count         locked by object's lock
  132  *              pager routine           locked by object's lock
  133  *
  134  */
  135 
  136 struct object_q vm_object_list;
  137 struct mtx vm_object_list_mtx;  /* lock for object list and count */
  138 
  139 struct vm_object kernel_object_store;
  140 struct vm_object kmem_object_store;
  141 
  142 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
  143 
  144 static long object_collapses;
  145 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
  146     &object_collapses, 0, "VM object collapses");
  147 
  148 static long object_bypasses;
  149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
  150     &object_bypasses, 0, "VM object bypasses");
  151 
  152 static uma_zone_t obj_zone;
  153 
  154 static int vm_object_zinit(void *mem, int size, int flags);
  155 
  156 #ifdef INVARIANTS
  157 static void vm_object_zdtor(void *mem, int size, void *arg);
  158 
  159 static void
  160 vm_object_zdtor(void *mem, int size, void *arg)
  161 {
  162         vm_object_t object;
  163 
  164         object = (vm_object_t)mem;
  165         KASSERT(TAILQ_EMPTY(&object->memq),
  166             ("object %p has resident pages",
  167             object));
  168 #if VM_NRESERVLEVEL > 0
  169         KASSERT(LIST_EMPTY(&object->rvq),
  170             ("object %p has reservations",
  171             object));
  172 #endif
  173         KASSERT(object->cache == NULL,
  174             ("object %p has cached pages",
  175             object));
  176         KASSERT(object->paging_in_progress == 0,
  177             ("object %p paging_in_progress = %d",
  178             object, object->paging_in_progress));
  179         KASSERT(object->resident_page_count == 0,
  180             ("object %p resident_page_count = %d",
  181             object, object->resident_page_count));
  182         KASSERT(object->shadow_count == 0,
  183             ("object %p shadow_count = %d",
  184             object, object->shadow_count));
  185 }
  186 #endif
  187 
  188 static int
  189 vm_object_zinit(void *mem, int size, int flags)
  190 {
  191         vm_object_t object;
  192 
  193         object = (vm_object_t)mem;
  194         bzero(&object->mtx, sizeof(object->mtx));
  195         VM_OBJECT_LOCK_INIT(object, "standard object");
  196 
  197         /* These are true for any object that has been freed */
  198         object->paging_in_progress = 0;
  199         object->resident_page_count = 0;
  200         object->shadow_count = 0;
  201         return (0);
  202 }
  203 
  204 void
  205 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
  206 {
  207 
  208         TAILQ_INIT(&object->memq);
  209         LIST_INIT(&object->shadow_head);
  210 
  211         object->root = NULL;
  212         object->type = type;
  213         object->size = size;
  214         object->generation = 1;
  215         object->ref_count = 1;
  216         object->memattr = VM_MEMATTR_DEFAULT;
  217         object->flags = 0;
  218         object->cred = NULL;
  219         object->charge = 0;
  220         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
  221                 object->flags = OBJ_ONEMAPPING;
  222         object->pg_color = 0;
  223         object->handle = NULL;
  224         object->backing_object = NULL;
  225         object->backing_object_offset = (vm_ooffset_t) 0;
  226 #if VM_NRESERVLEVEL > 0
  227         LIST_INIT(&object->rvq);
  228 #endif
  229         object->cache = NULL;
  230 
  231         mtx_lock(&vm_object_list_mtx);
  232         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
  233         mtx_unlock(&vm_object_list_mtx);
  234 }
  235 
  236 /*
  237  *      vm_object_init:
  238  *
  239  *      Initialize the VM objects module.
  240  */
  241 void
  242 vm_object_init(void)
  243 {
  244         TAILQ_INIT(&vm_object_list);
  245         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
  246         
  247         VM_OBJECT_LOCK_INIT(kernel_object, "kernel object");
  248         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  249             kernel_object);
  250 #if VM_NRESERVLEVEL > 0
  251         kernel_object->flags |= OBJ_COLORED;
  252         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  253 #endif
  254 
  255         VM_OBJECT_LOCK_INIT(kmem_object, "kmem object");
  256         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  257             kmem_object);
  258 #if VM_NRESERVLEVEL > 0
  259         kmem_object->flags |= OBJ_COLORED;
  260         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  261 #endif
  262 
  263         /*
  264          * The lock portion of struct vm_object must be type stable due
  265          * to vm_pageout_fallback_object_lock locking a vm object
  266          * without holding any references to it.
  267          */
  268         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
  269 #ifdef INVARIANTS
  270             vm_object_zdtor,
  271 #else
  272             NULL,
  273 #endif
  274             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
  275 }
  276 
  277 void
  278 vm_object_clear_flag(vm_object_t object, u_short bits)
  279 {
  280 
  281         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  282         object->flags &= ~bits;
  283 }
  284 
  285 /*
  286  *      Sets the default memory attribute for the specified object.  Pages
  287  *      that are allocated to this object are by default assigned this memory
  288  *      attribute.
  289  *
  290  *      Presently, this function must be called before any pages are allocated
  291  *      to the object.  In the future, this requirement may be relaxed for
  292  *      "default" and "swap" objects.
  293  */
  294 int
  295 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
  296 {
  297 
  298         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  299         switch (object->type) {
  300         case OBJT_DEFAULT:
  301         case OBJT_DEVICE:
  302         case OBJT_PHYS:
  303         case OBJT_SG:
  304         case OBJT_SWAP:
  305         case OBJT_VNODE:
  306                 if (!TAILQ_EMPTY(&object->memq))
  307                         return (KERN_FAILURE);
  308                 break;
  309         case OBJT_DEAD:
  310                 return (KERN_INVALID_ARGUMENT);
  311         }
  312         object->memattr = memattr;
  313         return (KERN_SUCCESS);
  314 }
  315 
  316 void
  317 vm_object_pip_add(vm_object_t object, short i)
  318 {
  319 
  320         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  321         object->paging_in_progress += i;
  322 }
  323 
  324 void
  325 vm_object_pip_subtract(vm_object_t object, short i)
  326 {
  327 
  328         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  329         object->paging_in_progress -= i;
  330 }
  331 
  332 void
  333 vm_object_pip_wakeup(vm_object_t object)
  334 {
  335 
  336         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  337         object->paging_in_progress--;
  338         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  339                 vm_object_clear_flag(object, OBJ_PIPWNT);
  340                 wakeup(object);
  341         }
  342 }
  343 
  344 void
  345 vm_object_pip_wakeupn(vm_object_t object, short i)
  346 {
  347 
  348         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  349         if (i)
  350                 object->paging_in_progress -= i;
  351         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  352                 vm_object_clear_flag(object, OBJ_PIPWNT);
  353                 wakeup(object);
  354         }
  355 }
  356 
  357 void
  358 vm_object_pip_wait(vm_object_t object, char *waitid)
  359 {
  360 
  361         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  362         while (object->paging_in_progress) {
  363                 object->flags |= OBJ_PIPWNT;
  364                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
  365         }
  366 }
  367 
  368 /*
  369  *      vm_object_allocate:
  370  *
  371  *      Returns a new object with the given size.
  372  */
  373 vm_object_t
  374 vm_object_allocate(objtype_t type, vm_pindex_t size)
  375 {
  376         vm_object_t object;
  377 
  378         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
  379         _vm_object_allocate(type, size, object);
  380         return (object);
  381 }
  382 
  383 
  384 /*
  385  *      vm_object_reference:
  386  *
  387  *      Gets another reference to the given object.  Note: OBJ_DEAD
  388  *      objects can be referenced during final cleaning.
  389  */
  390 void
  391 vm_object_reference(vm_object_t object)
  392 {
  393         if (object == NULL)
  394                 return;
  395         VM_OBJECT_LOCK(object);
  396         vm_object_reference_locked(object);
  397         VM_OBJECT_UNLOCK(object);
  398 }
  399 
  400 /*
  401  *      vm_object_reference_locked:
  402  *
  403  *      Gets another reference to the given object.
  404  *
  405  *      The object must be locked.
  406  */
  407 void
  408 vm_object_reference_locked(vm_object_t object)
  409 {
  410         struct vnode *vp;
  411 
  412         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  413         object->ref_count++;
  414         if (object->type == OBJT_VNODE) {
  415                 vp = object->handle;
  416                 vref(vp);
  417         }
  418 }
  419 
  420 /*
  421  * Handle deallocating an object of type OBJT_VNODE.
  422  */
  423 static void
  424 vm_object_vndeallocate(vm_object_t object)
  425 {
  426         struct vnode *vp = (struct vnode *) object->handle;
  427 
  428         VFS_ASSERT_GIANT(vp->v_mount);
  429         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  430         KASSERT(object->type == OBJT_VNODE,
  431             ("vm_object_vndeallocate: not a vnode object"));
  432         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
  433 #ifdef INVARIANTS
  434         if (object->ref_count == 0) {
  435                 vprint("vm_object_vndeallocate", vp);
  436                 panic("vm_object_vndeallocate: bad object reference count");
  437         }
  438 #endif
  439 
  440         if (object->ref_count > 1) {
  441                 object->ref_count--;
  442                 VM_OBJECT_UNLOCK(object);
  443                 /* vrele may need the vnode lock. */
  444                 vrele(vp);
  445         } else {
  446                 vhold(vp);
  447                 VM_OBJECT_UNLOCK(object);
  448                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  449                 vdrop(vp);
  450                 VM_OBJECT_LOCK(object);
  451                 object->ref_count--;
  452                 if (object->type == OBJT_DEAD) {
  453                         VM_OBJECT_UNLOCK(object);
  454                         VOP_UNLOCK(vp, 0);
  455                 } else {
  456                         if (object->ref_count == 0)
  457                                 vp->v_vflag &= ~VV_TEXT;
  458                         VM_OBJECT_UNLOCK(object);
  459                         vput(vp);
  460                 }
  461         }
  462 }
  463 
  464 /*
  465  *      vm_object_deallocate:
  466  *
  467  *      Release a reference to the specified object,
  468  *      gained either through a vm_object_allocate
  469  *      or a vm_object_reference call.  When all references
  470  *      are gone, storage associated with this object
  471  *      may be relinquished.
  472  *
  473  *      No object may be locked.
  474  */
  475 void
  476 vm_object_deallocate(vm_object_t object)
  477 {
  478         vm_object_t temp;
  479 
  480         while (object != NULL) {
  481                 int vfslocked;
  482 
  483                 vfslocked = 0;
  484         restart:
  485                 VM_OBJECT_LOCK(object);
  486                 if (object->type == OBJT_VNODE) {
  487                         struct vnode *vp = (struct vnode *) object->handle;
  488 
  489                         /*
  490                          * Conditionally acquire Giant for a vnode-backed
  491                          * object.  We have to be careful since the type of
  492                          * a vnode object can change while the object is
  493                          * unlocked.
  494                          */
  495                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
  496                                 vfslocked = 1;
  497                                 if (!mtx_trylock(&Giant)) {
  498                                         VM_OBJECT_UNLOCK(object);
  499                                         mtx_lock(&Giant);
  500                                         goto restart;
  501                                 }
  502                         }
  503                         vm_object_vndeallocate(object);
  504                         VFS_UNLOCK_GIANT(vfslocked);
  505                         return;
  506                 } else
  507                         /*
  508                          * This is to handle the case that the object
  509                          * changed type while we dropped its lock to
  510                          * obtain Giant.
  511                          */
  512                         VFS_UNLOCK_GIANT(vfslocked);
  513 
  514                 KASSERT(object->ref_count != 0,
  515                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
  516 
  517                 /*
  518                  * If the reference count goes to 0 we start calling
  519                  * vm_object_terminate() on the object chain.
  520                  * A ref count of 1 may be a special case depending on the
  521                  * shadow count being 0 or 1.
  522                  */
  523                 object->ref_count--;
  524                 if (object->ref_count > 1) {
  525                         VM_OBJECT_UNLOCK(object);
  526                         return;
  527                 } else if (object->ref_count == 1) {
  528                         if (object->shadow_count == 0 &&
  529                             object->handle == NULL &&
  530                             (object->type == OBJT_DEFAULT ||
  531                              object->type == OBJT_SWAP)) {
  532                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
  533                         } else if ((object->shadow_count == 1) &&
  534                             (object->handle == NULL) &&
  535                             (object->type == OBJT_DEFAULT ||
  536                              object->type == OBJT_SWAP)) {
  537                                 vm_object_t robject;
  538 
  539                                 robject = LIST_FIRST(&object->shadow_head);
  540                                 KASSERT(robject != NULL,
  541                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
  542                                          object->ref_count,
  543                                          object->shadow_count));
  544                                 if (!VM_OBJECT_TRYLOCK(robject)) {
  545                                         /*
  546                                          * Avoid a potential deadlock.
  547                                          */
  548                                         object->ref_count++;
  549                                         VM_OBJECT_UNLOCK(object);
  550                                         /*
  551                                          * More likely than not the thread
  552                                          * holding robject's lock has lower
  553                                          * priority than the current thread.
  554                                          * Let the lower priority thread run.
  555                                          */
  556                                         pause("vmo_de", 1);
  557                                         continue;
  558                                 }
  559                                 /*
  560                                  * Collapse object into its shadow unless its
  561                                  * shadow is dead.  In that case, object will
  562                                  * be deallocated by the thread that is
  563                                  * deallocating its shadow.
  564                                  */
  565                                 if ((robject->flags & OBJ_DEAD) == 0 &&
  566                                     (robject->handle == NULL) &&
  567                                     (robject->type == OBJT_DEFAULT ||
  568                                      robject->type == OBJT_SWAP)) {
  569 
  570                                         robject->ref_count++;
  571 retry:
  572                                         if (robject->paging_in_progress) {
  573                                                 VM_OBJECT_UNLOCK(object);
  574                                                 vm_object_pip_wait(robject,
  575                                                     "objde1");
  576                                                 temp = robject->backing_object;
  577                                                 if (object == temp) {
  578                                                         VM_OBJECT_LOCK(object);
  579                                                         goto retry;
  580                                                 }
  581                                         } else if (object->paging_in_progress) {
  582                                                 VM_OBJECT_UNLOCK(robject);
  583                                                 object->flags |= OBJ_PIPWNT;
  584                                                 msleep(object,
  585                                                     VM_OBJECT_MTX(object),
  586                                                     PDROP | PVM, "objde2", 0);
  587                                                 VM_OBJECT_LOCK(robject);
  588                                                 temp = robject->backing_object;
  589                                                 if (object == temp) {
  590                                                         VM_OBJECT_LOCK(object);
  591                                                         goto retry;
  592                                                 }
  593                                         } else
  594                                                 VM_OBJECT_UNLOCK(object);
  595 
  596                                         if (robject->ref_count == 1) {
  597                                                 robject->ref_count--;
  598                                                 object = robject;
  599                                                 goto doterm;
  600                                         }
  601                                         object = robject;
  602                                         vm_object_collapse(object);
  603                                         VM_OBJECT_UNLOCK(object);
  604                                         continue;
  605                                 }
  606                                 VM_OBJECT_UNLOCK(robject);
  607                         }
  608                         VM_OBJECT_UNLOCK(object);
  609                         return;
  610                 }
  611 doterm:
  612                 temp = object->backing_object;
  613                 if (temp != NULL) {
  614                         VM_OBJECT_LOCK(temp);
  615                         LIST_REMOVE(object, shadow_list);
  616                         temp->shadow_count--;
  617                         VM_OBJECT_UNLOCK(temp);
  618                         object->backing_object = NULL;
  619                 }
  620                 /*
  621                  * Don't double-terminate, we could be in a termination
  622                  * recursion due to the terminate having to sync data
  623                  * to disk.
  624                  */
  625                 if ((object->flags & OBJ_DEAD) == 0)
  626                         vm_object_terminate(object);
  627                 else
  628                         VM_OBJECT_UNLOCK(object);
  629                 object = temp;
  630         }
  631 }
  632 
  633 /*
  634  *      vm_object_destroy removes the object from the global object list
  635  *      and frees the space for the object.
  636  */
  637 void
  638 vm_object_destroy(vm_object_t object)
  639 {
  640 
  641         /*
  642          * Remove the object from the global object list.
  643          */
  644         mtx_lock(&vm_object_list_mtx);
  645         TAILQ_REMOVE(&vm_object_list, object, object_list);
  646         mtx_unlock(&vm_object_list_mtx);
  647 
  648         /*
  649          * Release the allocation charge.
  650          */
  651         if (object->cred != NULL) {
  652                 KASSERT(object->type == OBJT_DEFAULT ||
  653                     object->type == OBJT_SWAP,
  654                     ("vm_object_terminate: non-swap obj %p has cred",
  655                      object));
  656                 swap_release_by_cred(object->charge, object->cred);
  657                 object->charge = 0;
  658                 crfree(object->cred);
  659                 object->cred = NULL;
  660         }
  661 
  662         /*
  663          * Free the space for the object.
  664          */
  665         uma_zfree(obj_zone, object);
  666 }
  667 
  668 /*
  669  *      vm_object_terminate actually destroys the specified object, freeing
  670  *      up all previously used resources.
  671  *
  672  *      The object must be locked.
  673  *      This routine may block.
  674  */
  675 void
  676 vm_object_terminate(vm_object_t object)
  677 {
  678         vm_page_t p, p_next;
  679 
  680         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  681 
  682         /*
  683          * Make sure no one uses us.
  684          */
  685         vm_object_set_flag(object, OBJ_DEAD);
  686 
  687         /*
  688          * wait for the pageout daemon to be done with the object
  689          */
  690         vm_object_pip_wait(object, "objtrm");
  691 
  692         KASSERT(!object->paging_in_progress,
  693                 ("vm_object_terminate: pageout in progress"));
  694 
  695         /*
  696          * Clean and free the pages, as appropriate. All references to the
  697          * object are gone, so we don't need to lock it.
  698          */
  699         if (object->type == OBJT_VNODE) {
  700                 struct vnode *vp = (struct vnode *)object->handle;
  701 
  702                 /*
  703                  * Clean pages and flush buffers.
  704                  */
  705                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  706                 VM_OBJECT_UNLOCK(object);
  707 
  708                 vinvalbuf(vp, V_SAVE, 0, 0);
  709 
  710                 VM_OBJECT_LOCK(object);
  711         }
  712 
  713         KASSERT(object->ref_count == 0, 
  714                 ("vm_object_terminate: object with references, ref_count=%d",
  715                 object->ref_count));
  716 
  717         /*
  718          * Free any remaining pageable pages.  This also removes them from the
  719          * paging queues.  However, don't free wired pages, just remove them
  720          * from the object.  Rather than incrementally removing each page from
  721          * the object, the page and object are reset to any empty state. 
  722          */
  723         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
  724                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
  725                     ("vm_object_terminate: freeing busy page %p", p));
  726                 vm_page_lock(p);
  727                 /*
  728                  * Optimize the page's removal from the object by resetting
  729                  * its "object" field.  Specifically, if the page is not
  730                  * wired, then the effect of this assignment is that
  731                  * vm_page_free()'s call to vm_page_remove() will return
  732                  * immediately without modifying the page or the object.
  733                  */ 
  734                 p->object = NULL;
  735                 if (p->wire_count == 0) {
  736                         vm_page_free(p);
  737                         PCPU_INC(cnt.v_pfree);
  738                 }
  739                 vm_page_unlock(p);
  740         }
  741         /*
  742          * If the object contained any pages, then reset it to an empty state.
  743          * None of the object's fields, including "resident_page_count", were
  744          * modified by the preceding loop.
  745          */
  746         if (object->resident_page_count != 0) {
  747                 object->root = NULL;
  748                 TAILQ_INIT(&object->memq);
  749                 object->resident_page_count = 0;
  750                 if (object->type == OBJT_VNODE)
  751                         vdrop(object->handle);
  752         }
  753 
  754 #if VM_NRESERVLEVEL > 0
  755         if (__predict_false(!LIST_EMPTY(&object->rvq)))
  756                 vm_reserv_break_all(object);
  757 #endif
  758         if (__predict_false(object->cache != NULL))
  759                 vm_page_cache_free(object, 0, 0);
  760 
  761         /*
  762          * Let the pager know object is dead.
  763          */
  764         vm_pager_deallocate(object);
  765         VM_OBJECT_UNLOCK(object);
  766 
  767         vm_object_destroy(object);
  768 }
  769 
  770 /*
  771  * Make the page read-only so that we can clear the object flags.  However, if
  772  * this is a nosync mmap then the object is likely to stay dirty so do not
  773  * mess with the page and do not clear the object flags.  Returns TRUE if the
  774  * page should be flushed, and FALSE otherwise.
  775  */
  776 static boolean_t
  777 vm_object_page_remove_write(vm_page_t p, int flags, int *clearobjflags)
  778 {
  779 
  780         /*
  781          * If we have been asked to skip nosync pages and this is a
  782          * nosync page, skip it.  Note that the object flags were not
  783          * cleared in this case so we do not have to set them.
  784          */
  785         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
  786                 *clearobjflags = 0;
  787                 return (FALSE);
  788         } else {
  789                 pmap_remove_write(p);
  790                 return (p->dirty != 0);
  791         }
  792 }
  793 
  794 /*
  795  *      vm_object_page_clean
  796  *
  797  *      Clean all dirty pages in the specified range of object.  Leaves page 
  798  *      on whatever queue it is currently on.   If NOSYNC is set then do not
  799  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
  800  *      leaving the object dirty.
  801  *
  802  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
  803  *      synchronous clustering mode implementation.
  804  *
  805  *      Odd semantics: if start == end, we clean everything.
  806  *
  807  *      The object must be locked.
  808  */
  809 void
  810 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
  811     int flags)
  812 {
  813         vm_page_t np, p;
  814         vm_pindex_t pi, tend, tstart;
  815         int clearobjflags, curgeneration, n, pagerflags;
  816 
  817         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
  818         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  819         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
  820         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
  821             object->resident_page_count == 0)
  822                 return;
  823 
  824         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
  825             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
  826         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
  827 
  828         tstart = OFF_TO_IDX(start);
  829         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
  830         clearobjflags = tstart == 0 && tend >= object->size;
  831 
  832 rescan:
  833         curgeneration = object->generation;
  834 
  835         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
  836                 pi = p->pindex;
  837                 if (pi >= tend)
  838                         break;
  839                 np = TAILQ_NEXT(p, listq);
  840                 if (p->valid == 0)
  841                         continue;
  842                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
  843                         if (object->generation != curgeneration)
  844                                 goto rescan;
  845                         np = vm_page_find_least(object, pi);
  846                         continue;
  847                 }
  848                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
  849                         continue;
  850 
  851                 n = vm_object_page_collect_flush(object, p, pagerflags,
  852                     flags, &clearobjflags);
  853                 if (object->generation != curgeneration)
  854                         goto rescan;
  855 
  856                 /*
  857                  * If the VOP_PUTPAGES() did a truncated write, so
  858                  * that even the first page of the run is not fully
  859                  * written, vm_pageout_flush() returns 0 as the run
  860                  * length.  Since the condition that caused truncated
  861                  * write may be permanent, e.g. exhausted free space,
  862                  * accepting n == 0 would cause an infinite loop.
  863                  *
  864                  * Forwarding the iterator leaves the unwritten page
  865                  * behind, but there is not much we can do there if
  866                  * filesystem refuses to write it.
  867                  */
  868                 if (n == 0)
  869                         n = 1;
  870                 np = vm_page_find_least(object, pi + n);
  871         }
  872 #if 0
  873         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
  874 #endif
  875 
  876         if (clearobjflags)
  877                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
  878 }
  879 
  880 static int
  881 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
  882     int flags, int *clearobjflags)
  883 {
  884         vm_page_t ma[vm_pageout_page_count], p_first, tp;
  885         int count, i, mreq, runlen;
  886 
  887         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
  888         vm_page_lock_assert(p, MA_NOTOWNED);
  889         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  890 
  891         count = 1;
  892         mreq = 0;
  893 
  894         for (tp = p; count < vm_pageout_page_count; count++) {
  895                 tp = vm_page_next(tp);
  896                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
  897                         break;
  898                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  899                         break;
  900         }
  901 
  902         for (p_first = p; count < vm_pageout_page_count; count++) {
  903                 tp = vm_page_prev(p_first);
  904                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
  905                         break;
  906                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  907                         break;
  908                 p_first = tp;
  909                 mreq++;
  910         }
  911 
  912         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
  913                 ma[i] = tp;
  914 
  915         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen);
  916         return (runlen);
  917 }
  918 
  919 /*
  920  * Note that there is absolutely no sense in writing out
  921  * anonymous objects, so we track down the vnode object
  922  * to write out.
  923  * We invalidate (remove) all pages from the address space
  924  * for semantic correctness.
  925  *
  926  * If the backing object is a device object with unmanaged pages, then any
  927  * mappings to the specified range of pages must be removed before this
  928  * function is called.
  929  *
  930  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
  931  * may start out with a NULL object.
  932  */
  933 void
  934 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
  935     boolean_t syncio, boolean_t invalidate)
  936 {
  937         vm_object_t backing_object;
  938         struct vnode *vp;
  939         struct mount *mp;
  940         int flags;
  941 
  942         if (object == NULL)
  943                 return;
  944         VM_OBJECT_LOCK(object);
  945         while ((backing_object = object->backing_object) != NULL) {
  946                 VM_OBJECT_LOCK(backing_object);
  947                 offset += object->backing_object_offset;
  948                 VM_OBJECT_UNLOCK(object);
  949                 object = backing_object;
  950                 if (object->size < OFF_TO_IDX(offset + size))
  951                         size = IDX_TO_OFF(object->size) - offset;
  952         }
  953         /*
  954          * Flush pages if writing is allowed, invalidate them
  955          * if invalidation requested.  Pages undergoing I/O
  956          * will be ignored by vm_object_page_remove().
  957          *
  958          * We cannot lock the vnode and then wait for paging
  959          * to complete without deadlocking against vm_fault.
  960          * Instead we simply call vm_object_page_remove() and
  961          * allow it to block internally on a page-by-page
  962          * basis when it encounters pages undergoing async
  963          * I/O.
  964          */
  965         if (object->type == OBJT_VNODE &&
  966             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
  967                 int vfslocked;
  968                 vp = object->handle;
  969                 VM_OBJECT_UNLOCK(object);
  970                 (void) vn_start_write(vp, &mp, V_WAIT);
  971                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  972                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  973                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
  974                 flags |= invalidate ? OBJPC_INVAL : 0;
  975                 VM_OBJECT_LOCK(object);
  976                 vm_object_page_clean(object, offset, offset + size, flags);
  977                 VM_OBJECT_UNLOCK(object);
  978                 VOP_UNLOCK(vp, 0);
  979                 VFS_UNLOCK_GIANT(vfslocked);
  980                 vn_finished_write(mp);
  981                 VM_OBJECT_LOCK(object);
  982         }
  983         if ((object->type == OBJT_VNODE ||
  984              object->type == OBJT_DEVICE) && invalidate) {
  985                 if (object->type == OBJT_DEVICE)
  986                         /*
  987                          * The option OBJPR_NOTMAPPED must be passed here
  988                          * because vm_object_page_remove() cannot remove
  989                          * unmanaged mappings.
  990                          */
  991                         flags = OBJPR_NOTMAPPED;
  992                 else if (old_msync)
  993                         flags = 0;
  994                 else
  995                         flags = OBJPR_CLEANONLY;
  996                 vm_object_page_remove(object, OFF_TO_IDX(offset),
  997                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
  998         }
  999         VM_OBJECT_UNLOCK(object);
 1000 }
 1001 
 1002 /*
 1003  *      vm_object_madvise:
 1004  *
 1005  *      Implements the madvise function at the object/page level.
 1006  *
 1007  *      MADV_WILLNEED   (any object)
 1008  *
 1009  *          Activate the specified pages if they are resident.
 1010  *
 1011  *      MADV_DONTNEED   (any object)
 1012  *
 1013  *          Deactivate the specified pages if they are resident.
 1014  *
 1015  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
 1016  *                       OBJ_ONEMAPPING only)
 1017  *
 1018  *          Deactivate and clean the specified pages if they are
 1019  *          resident.  This permits the process to reuse the pages
 1020  *          without faulting or the kernel to reclaim the pages
 1021  *          without I/O.
 1022  */
 1023 void
 1024 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
 1025 {
 1026         vm_pindex_t end, tpindex;
 1027         vm_object_t backing_object, tobject;
 1028         vm_page_t m;
 1029 
 1030         if (object == NULL)
 1031                 return;
 1032         VM_OBJECT_LOCK(object);
 1033         end = pindex + count;
 1034         /*
 1035          * Locate and adjust resident pages
 1036          */
 1037         for (; pindex < end; pindex += 1) {
 1038 relookup:
 1039                 tobject = object;
 1040                 tpindex = pindex;
 1041 shadowlookup:
 1042                 /*
 1043                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
 1044                  * and those pages must be OBJ_ONEMAPPING.
 1045                  */
 1046                 if (advise == MADV_FREE) {
 1047                         if ((tobject->type != OBJT_DEFAULT &&
 1048                              tobject->type != OBJT_SWAP) ||
 1049                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
 1050                                 goto unlock_tobject;
 1051                         }
 1052                 } else if (tobject->type == OBJT_PHYS)
 1053                         goto unlock_tobject;
 1054                 m = vm_page_lookup(tobject, tpindex);
 1055                 if (m == NULL && advise == MADV_WILLNEED) {
 1056                         /*
 1057                          * If the page is cached, reactivate it.
 1058                          */
 1059                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
 1060                             VM_ALLOC_NOBUSY);
 1061                 }
 1062                 if (m == NULL) {
 1063                         /*
 1064                          * There may be swap even if there is no backing page
 1065                          */
 1066                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1067                                 swap_pager_freespace(tobject, tpindex, 1);
 1068                         /*
 1069                          * next object
 1070                          */
 1071                         backing_object = tobject->backing_object;
 1072                         if (backing_object == NULL)
 1073                                 goto unlock_tobject;
 1074                         VM_OBJECT_LOCK(backing_object);
 1075                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
 1076                         if (tobject != object)
 1077                                 VM_OBJECT_UNLOCK(tobject);
 1078                         tobject = backing_object;
 1079                         goto shadowlookup;
 1080                 } else if (m->valid != VM_PAGE_BITS_ALL)
 1081                         goto unlock_tobject;
 1082                 /*
 1083                  * If the page is not in a normal state, skip it.
 1084                  */
 1085                 vm_page_lock(m);
 1086                 if (m->hold_count != 0 || m->wire_count != 0) {
 1087                         vm_page_unlock(m);
 1088                         goto unlock_tobject;
 1089                 }
 1090                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
 1091                     ("vm_object_madvise: page %p is fictitious", m));
 1092                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1093                     ("vm_object_madvise: page %p is not managed", m));
 1094                 if ((m->oflags & VPO_BUSY) || m->busy) {
 1095                         if (advise == MADV_WILLNEED) {
 1096                                 /*
 1097                                  * Reference the page before unlocking and
 1098                                  * sleeping so that the page daemon is less
 1099                                  * likely to reclaim it. 
 1100                                  */
 1101                                 vm_page_aflag_set(m, PGA_REFERENCED);
 1102                         }
 1103                         vm_page_unlock(m);
 1104                         if (object != tobject)
 1105                                 VM_OBJECT_UNLOCK(object);
 1106                         m->oflags |= VPO_WANTED;
 1107                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
 1108                             0);
 1109                         VM_OBJECT_LOCK(object);
 1110                         goto relookup;
 1111                 }
 1112                 if (advise == MADV_WILLNEED) {
 1113                         vm_page_activate(m);
 1114                 } else if (advise == MADV_DONTNEED) {
 1115                         vm_page_dontneed(m);
 1116                 } else if (advise == MADV_FREE) {
 1117                         /*
 1118                          * Mark the page clean.  This will allow the page
 1119                          * to be freed up by the system.  However, such pages
 1120                          * are often reused quickly by malloc()/free()
 1121                          * so we do not do anything that would cause
 1122                          * a page fault if we can help it.
 1123                          *
 1124                          * Specifically, we do not try to actually free
 1125                          * the page now nor do we try to put it in the
 1126                          * cache (which would cause a page fault on reuse).
 1127                          *
 1128                          * But we do make the page is freeable as we
 1129                          * can without actually taking the step of unmapping
 1130                          * it.
 1131                          */
 1132                         pmap_clear_modify(m);
 1133                         m->dirty = 0;
 1134                         m->act_count = 0;
 1135                         vm_page_dontneed(m);
 1136                 }
 1137                 vm_page_unlock(m);
 1138                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1139                         swap_pager_freespace(tobject, tpindex, 1);
 1140 unlock_tobject:
 1141                 if (tobject != object)
 1142                         VM_OBJECT_UNLOCK(tobject);
 1143         }       
 1144         VM_OBJECT_UNLOCK(object);
 1145 }
 1146 
 1147 /*
 1148  *      vm_object_shadow:
 1149  *
 1150  *      Create a new object which is backed by the
 1151  *      specified existing object range.  The source
 1152  *      object reference is deallocated.
 1153  *
 1154  *      The new object and offset into that object
 1155  *      are returned in the source parameters.
 1156  */
 1157 void
 1158 vm_object_shadow(
 1159         vm_object_t *object,    /* IN/OUT */
 1160         vm_ooffset_t *offset,   /* IN/OUT */
 1161         vm_size_t length)
 1162 {
 1163         vm_object_t source;
 1164         vm_object_t result;
 1165 
 1166         source = *object;
 1167 
 1168         /*
 1169          * Don't create the new object if the old object isn't shared.
 1170          */
 1171         if (source != NULL) {
 1172                 VM_OBJECT_LOCK(source);
 1173                 if (source->ref_count == 1 &&
 1174                     source->handle == NULL &&
 1175                     (source->type == OBJT_DEFAULT ||
 1176                      source->type == OBJT_SWAP)) {
 1177                         VM_OBJECT_UNLOCK(source);
 1178                         return;
 1179                 }
 1180                 VM_OBJECT_UNLOCK(source);
 1181         }
 1182 
 1183         /*
 1184          * Allocate a new object with the given length.
 1185          */
 1186         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
 1187 
 1188         /*
 1189          * The new object shadows the source object, adding a reference to it.
 1190          * Our caller changes his reference to point to the new object,
 1191          * removing a reference to the source object.  Net result: no change
 1192          * of reference count.
 1193          *
 1194          * Try to optimize the result object's page color when shadowing
 1195          * in order to maintain page coloring consistency in the combined 
 1196          * shadowed object.
 1197          */
 1198         result->backing_object = source;
 1199         /*
 1200          * Store the offset into the source object, and fix up the offset into
 1201          * the new object.
 1202          */
 1203         result->backing_object_offset = *offset;
 1204         if (source != NULL) {
 1205                 VM_OBJECT_LOCK(source);
 1206                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
 1207                 source->shadow_count++;
 1208 #if VM_NRESERVLEVEL > 0
 1209                 result->flags |= source->flags & OBJ_COLORED;
 1210                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
 1211                     ((1 << (VM_NFREEORDER - 1)) - 1);
 1212 #endif
 1213                 VM_OBJECT_UNLOCK(source);
 1214         }
 1215 
 1216 
 1217         /*
 1218          * Return the new things
 1219          */
 1220         *offset = 0;
 1221         *object = result;
 1222 }
 1223 
 1224 /*
 1225  *      vm_object_split:
 1226  *
 1227  * Split the pages in a map entry into a new object.  This affords
 1228  * easier removal of unused pages, and keeps object inheritance from
 1229  * being a negative impact on memory usage.
 1230  */
 1231 void
 1232 vm_object_split(vm_map_entry_t entry)
 1233 {
 1234         vm_page_t m, m_next;
 1235         vm_object_t orig_object, new_object, source;
 1236         vm_pindex_t idx, offidxstart;
 1237         vm_size_t size;
 1238 
 1239         orig_object = entry->object.vm_object;
 1240         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
 1241                 return;
 1242         if (orig_object->ref_count <= 1)
 1243                 return;
 1244         VM_OBJECT_UNLOCK(orig_object);
 1245 
 1246         offidxstart = OFF_TO_IDX(entry->offset);
 1247         size = atop(entry->end - entry->start);
 1248 
 1249         /*
 1250          * If swap_pager_copy() is later called, it will convert new_object
 1251          * into a swap object.
 1252          */
 1253         new_object = vm_object_allocate(OBJT_DEFAULT, size);
 1254 
 1255         /*
 1256          * At this point, the new object is still private, so the order in
 1257          * which the original and new objects are locked does not matter.
 1258          */
 1259         VM_OBJECT_LOCK(new_object);
 1260         VM_OBJECT_LOCK(orig_object);
 1261         source = orig_object->backing_object;
 1262         if (source != NULL) {
 1263                 VM_OBJECT_LOCK(source);
 1264                 if ((source->flags & OBJ_DEAD) != 0) {
 1265                         VM_OBJECT_UNLOCK(source);
 1266                         VM_OBJECT_UNLOCK(orig_object);
 1267                         VM_OBJECT_UNLOCK(new_object);
 1268                         vm_object_deallocate(new_object);
 1269                         VM_OBJECT_LOCK(orig_object);
 1270                         return;
 1271                 }
 1272                 LIST_INSERT_HEAD(&source->shadow_head,
 1273                                   new_object, shadow_list);
 1274                 source->shadow_count++;
 1275                 vm_object_reference_locked(source);     /* for new_object */
 1276                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1277                 VM_OBJECT_UNLOCK(source);
 1278                 new_object->backing_object_offset = 
 1279                         orig_object->backing_object_offset + entry->offset;
 1280                 new_object->backing_object = source;
 1281         }
 1282         if (orig_object->cred != NULL) {
 1283                 new_object->cred = orig_object->cred;
 1284                 crhold(orig_object->cred);
 1285                 new_object->charge = ptoa(size);
 1286                 KASSERT(orig_object->charge >= ptoa(size),
 1287                     ("orig_object->charge < 0"));
 1288                 orig_object->charge -= ptoa(size);
 1289         }
 1290 retry:
 1291         m = vm_page_find_least(orig_object, offidxstart);
 1292         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
 1293             m = m_next) {
 1294                 m_next = TAILQ_NEXT(m, listq);
 1295 
 1296                 /*
 1297                  * We must wait for pending I/O to complete before we can
 1298                  * rename the page.
 1299                  *
 1300                  * We do not have to VM_PROT_NONE the page as mappings should
 1301                  * not be changed by this operation.
 1302                  */
 1303                 if ((m->oflags & VPO_BUSY) || m->busy) {
 1304                         VM_OBJECT_UNLOCK(new_object);
 1305                         m->oflags |= VPO_WANTED;
 1306                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
 1307                         VM_OBJECT_LOCK(new_object);
 1308                         goto retry;
 1309                 }
 1310                 vm_page_lock(m);
 1311                 vm_page_rename(m, new_object, idx);
 1312                 vm_page_unlock(m);
 1313                 /* page automatically made dirty by rename and cache handled */
 1314                 vm_page_busy(m);
 1315         }
 1316         if (orig_object->type == OBJT_SWAP) {
 1317                 /*
 1318                  * swap_pager_copy() can sleep, in which case the orig_object's
 1319                  * and new_object's locks are released and reacquired. 
 1320                  */
 1321                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
 1322 
 1323                 /*
 1324                  * Transfer any cached pages from orig_object to new_object.
 1325                  */
 1326                 if (__predict_false(orig_object->cache != NULL))
 1327                         vm_page_cache_transfer(orig_object, offidxstart,
 1328                             new_object);
 1329         }
 1330         VM_OBJECT_UNLOCK(orig_object);
 1331         TAILQ_FOREACH(m, &new_object->memq, listq)
 1332                 vm_page_wakeup(m);
 1333         VM_OBJECT_UNLOCK(new_object);
 1334         entry->object.vm_object = new_object;
 1335         entry->offset = 0LL;
 1336         vm_object_deallocate(orig_object);
 1337         VM_OBJECT_LOCK(new_object);
 1338 }
 1339 
 1340 #define OBSC_TEST_ALL_SHADOWED  0x0001
 1341 #define OBSC_COLLAPSE_NOWAIT    0x0002
 1342 #define OBSC_COLLAPSE_WAIT      0x0004
 1343 
 1344 static int
 1345 vm_object_backing_scan(vm_object_t object, int op)
 1346 {
 1347         int r = 1;
 1348         vm_page_t p;
 1349         vm_object_t backing_object;
 1350         vm_pindex_t backing_offset_index;
 1351 
 1352         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1353         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
 1354 
 1355         backing_object = object->backing_object;
 1356         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1357 
 1358         /*
 1359          * Initial conditions
 1360          */
 1361         if (op & OBSC_TEST_ALL_SHADOWED) {
 1362                 /*
 1363                  * We do not want to have to test for the existence of cache
 1364                  * or swap pages in the backing object.  XXX but with the
 1365                  * new swapper this would be pretty easy to do.
 1366                  *
 1367                  * XXX what about anonymous MAP_SHARED memory that hasn't
 1368                  * been ZFOD faulted yet?  If we do not test for this, the
 1369                  * shadow test may succeed! XXX
 1370                  */
 1371                 if (backing_object->type != OBJT_DEFAULT) {
 1372                         return (0);
 1373                 }
 1374         }
 1375         if (op & OBSC_COLLAPSE_WAIT) {
 1376                 vm_object_set_flag(backing_object, OBJ_DEAD);
 1377         }
 1378 
 1379         /*
 1380          * Our scan
 1381          */
 1382         p = TAILQ_FIRST(&backing_object->memq);
 1383         while (p) {
 1384                 vm_page_t next = TAILQ_NEXT(p, listq);
 1385                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
 1386 
 1387                 if (op & OBSC_TEST_ALL_SHADOWED) {
 1388                         vm_page_t pp;
 1389 
 1390                         /*
 1391                          * Ignore pages outside the parent object's range
 1392                          * and outside the parent object's mapping of the 
 1393                          * backing object.
 1394                          *
 1395                          * note that we do not busy the backing object's
 1396                          * page.
 1397                          */
 1398                         if (
 1399                             p->pindex < backing_offset_index ||
 1400                             new_pindex >= object->size
 1401                         ) {
 1402                                 p = next;
 1403                                 continue;
 1404                         }
 1405 
 1406                         /*
 1407                          * See if the parent has the page or if the parent's
 1408                          * object pager has the page.  If the parent has the
 1409                          * page but the page is not valid, the parent's
 1410                          * object pager must have the page.
 1411                          *
 1412                          * If this fails, the parent does not completely shadow
 1413                          * the object and we might as well give up now.
 1414                          */
 1415 
 1416                         pp = vm_page_lookup(object, new_pindex);
 1417                         if (
 1418                             (pp == NULL || pp->valid == 0) &&
 1419                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
 1420                         ) {
 1421                                 r = 0;
 1422                                 break;
 1423                         }
 1424                 }
 1425 
 1426                 /*
 1427                  * Check for busy page
 1428                  */
 1429                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
 1430                         vm_page_t pp;
 1431 
 1432                         if (op & OBSC_COLLAPSE_NOWAIT) {
 1433                                 if ((p->oflags & VPO_BUSY) ||
 1434                                     !p->valid || 
 1435                                     p->busy) {
 1436                                         p = next;
 1437                                         continue;
 1438                                 }
 1439                         } else if (op & OBSC_COLLAPSE_WAIT) {
 1440                                 if ((p->oflags & VPO_BUSY) || p->busy) {
 1441                                         VM_OBJECT_UNLOCK(object);
 1442                                         p->oflags |= VPO_WANTED;
 1443                                         msleep(p, VM_OBJECT_MTX(backing_object),
 1444                                             PDROP | PVM, "vmocol", 0);
 1445                                         VM_OBJECT_LOCK(object);
 1446                                         VM_OBJECT_LOCK(backing_object);
 1447                                         /*
 1448                                          * If we slept, anything could have
 1449                                          * happened.  Since the object is
 1450                                          * marked dead, the backing offset
 1451                                          * should not have changed so we
 1452                                          * just restart our scan.
 1453                                          */
 1454                                         p = TAILQ_FIRST(&backing_object->memq);
 1455                                         continue;
 1456                                 }
 1457                         }
 1458 
 1459                         KASSERT(
 1460                             p->object == backing_object,
 1461                             ("vm_object_backing_scan: object mismatch")
 1462                         );
 1463 
 1464                         /*
 1465                          * Destroy any associated swap
 1466                          */
 1467                         if (backing_object->type == OBJT_SWAP) {
 1468                                 swap_pager_freespace(
 1469                                     backing_object, 
 1470                                     p->pindex,
 1471                                     1
 1472                                 );
 1473                         }
 1474 
 1475                         if (
 1476                             p->pindex < backing_offset_index ||
 1477                             new_pindex >= object->size
 1478                         ) {
 1479                                 /*
 1480                                  * Page is out of the parent object's range, we 
 1481                                  * can simply destroy it. 
 1482                                  */
 1483                                 vm_page_lock(p);
 1484                                 KASSERT(!pmap_page_is_mapped(p),
 1485                                     ("freeing mapped page %p", p));
 1486                                 if (p->wire_count == 0)
 1487                                         vm_page_free(p);
 1488                                 else
 1489                                         vm_page_remove(p);
 1490                                 vm_page_unlock(p);
 1491                                 p = next;
 1492                                 continue;
 1493                         }
 1494 
 1495                         pp = vm_page_lookup(object, new_pindex);
 1496                         if (
 1497                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
 1498                             (pp != NULL && pp->valid == 0)
 1499                         ) {
 1500                                 /*
 1501                                  * The page in the parent is not (yet) valid.
 1502                                  * We don't know anything about the state of
 1503                                  * the original page.  It might be mapped,
 1504                                  * so we must avoid the next if here.
 1505                                  *
 1506                                  * This is due to a race in vm_fault() where
 1507                                  * we must unbusy the original (backing_obj)
 1508                                  * page before we can (re)lock the parent.
 1509                                  * Hence we can get here.
 1510                                  */
 1511                                 p = next;
 1512                                 continue;
 1513                         }
 1514                         if (
 1515                             pp != NULL ||
 1516                             vm_pager_has_page(object, new_pindex, NULL, NULL)
 1517                         ) {
 1518                                 /*
 1519                                  * page already exists in parent OR swap exists
 1520                                  * for this location in the parent.  Destroy 
 1521                                  * the original page from the backing object.
 1522                                  *
 1523                                  * Leave the parent's page alone
 1524                                  */
 1525                                 vm_page_lock(p);
 1526                                 KASSERT(!pmap_page_is_mapped(p),
 1527                                     ("freeing mapped page %p", p));
 1528                                 if (p->wire_count == 0)
 1529                                         vm_page_free(p);
 1530                                 else
 1531                                         vm_page_remove(p);
 1532                                 vm_page_unlock(p);
 1533                                 p = next;
 1534                                 continue;
 1535                         }
 1536 
 1537 #if VM_NRESERVLEVEL > 0
 1538                         /*
 1539                          * Rename the reservation.
 1540                          */
 1541                         vm_reserv_rename(p, object, backing_object,
 1542                             backing_offset_index);
 1543 #endif
 1544 
 1545                         /*
 1546                          * Page does not exist in parent, rename the
 1547                          * page from the backing object to the main object. 
 1548                          *
 1549                          * If the page was mapped to a process, it can remain 
 1550                          * mapped through the rename.
 1551                          */
 1552                         vm_page_lock(p);
 1553                         vm_page_rename(p, object, new_pindex);
 1554                         vm_page_unlock(p);
 1555                         /* page automatically made dirty by rename */
 1556                 }
 1557                 p = next;
 1558         }
 1559         return (r);
 1560 }
 1561 
 1562 
 1563 /*
 1564  * this version of collapse allows the operation to occur earlier and
 1565  * when paging_in_progress is true for an object...  This is not a complete
 1566  * operation, but should plug 99.9% of the rest of the leaks.
 1567  */
 1568 static void
 1569 vm_object_qcollapse(vm_object_t object)
 1570 {
 1571         vm_object_t backing_object = object->backing_object;
 1572 
 1573         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1574         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
 1575 
 1576         if (backing_object->ref_count != 1)
 1577                 return;
 1578 
 1579         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
 1580 }
 1581 
 1582 /*
 1583  *      vm_object_collapse:
 1584  *
 1585  *      Collapse an object with the object backing it.
 1586  *      Pages in the backing object are moved into the
 1587  *      parent, and the backing object is deallocated.
 1588  */
 1589 void
 1590 vm_object_collapse(vm_object_t object)
 1591 {
 1592         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1593         
 1594         while (TRUE) {
 1595                 vm_object_t backing_object;
 1596 
 1597                 /*
 1598                  * Verify that the conditions are right for collapse:
 1599                  *
 1600                  * The object exists and the backing object exists.
 1601                  */
 1602                 if ((backing_object = object->backing_object) == NULL)
 1603                         break;
 1604 
 1605                 /*
 1606                  * we check the backing object first, because it is most likely
 1607                  * not collapsable.
 1608                  */
 1609                 VM_OBJECT_LOCK(backing_object);
 1610                 if (backing_object->handle != NULL ||
 1611                     (backing_object->type != OBJT_DEFAULT &&
 1612                      backing_object->type != OBJT_SWAP) ||
 1613                     (backing_object->flags & OBJ_DEAD) ||
 1614                     object->handle != NULL ||
 1615                     (object->type != OBJT_DEFAULT &&
 1616                      object->type != OBJT_SWAP) ||
 1617                     (object->flags & OBJ_DEAD)) {
 1618                         VM_OBJECT_UNLOCK(backing_object);
 1619                         break;
 1620                 }
 1621 
 1622                 if (
 1623                     object->paging_in_progress != 0 ||
 1624                     backing_object->paging_in_progress != 0
 1625                 ) {
 1626                         vm_object_qcollapse(object);
 1627                         VM_OBJECT_UNLOCK(backing_object);
 1628                         break;
 1629                 }
 1630                 /*
 1631                  * We know that we can either collapse the backing object (if
 1632                  * the parent is the only reference to it) or (perhaps) have
 1633                  * the parent bypass the object if the parent happens to shadow
 1634                  * all the resident pages in the entire backing object.
 1635                  *
 1636                  * This is ignoring pager-backed pages such as swap pages.
 1637                  * vm_object_backing_scan fails the shadowing test in this
 1638                  * case.
 1639                  */
 1640                 if (backing_object->ref_count == 1) {
 1641                         /*
 1642                          * If there is exactly one reference to the backing
 1643                          * object, we can collapse it into the parent.  
 1644                          */
 1645                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
 1646 
 1647 #if VM_NRESERVLEVEL > 0
 1648                         /*
 1649                          * Break any reservations from backing_object.
 1650                          */
 1651                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
 1652                                 vm_reserv_break_all(backing_object);
 1653 #endif
 1654 
 1655                         /*
 1656                          * Move the pager from backing_object to object.
 1657                          */
 1658                         if (backing_object->type == OBJT_SWAP) {
 1659                                 /*
 1660                                  * swap_pager_copy() can sleep, in which case
 1661                                  * the backing_object's and object's locks are
 1662                                  * released and reacquired.
 1663                                  */
 1664                                 swap_pager_copy(
 1665                                     backing_object,
 1666                                     object,
 1667                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
 1668 
 1669                                 /*
 1670                                  * Free any cached pages from backing_object.
 1671                                  */
 1672                                 if (__predict_false(backing_object->cache != NULL))
 1673                                         vm_page_cache_free(backing_object, 0, 0);
 1674                         }
 1675                         /*
 1676                          * Object now shadows whatever backing_object did.
 1677                          * Note that the reference to 
 1678                          * backing_object->backing_object moves from within 
 1679                          * backing_object to within object.
 1680                          */
 1681                         LIST_REMOVE(object, shadow_list);
 1682                         backing_object->shadow_count--;
 1683                         if (backing_object->backing_object) {
 1684                                 VM_OBJECT_LOCK(backing_object->backing_object);
 1685                                 LIST_REMOVE(backing_object, shadow_list);
 1686                                 LIST_INSERT_HEAD(
 1687                                     &backing_object->backing_object->shadow_head,
 1688                                     object, shadow_list);
 1689                                 /*
 1690                                  * The shadow_count has not changed.
 1691                                  */
 1692                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
 1693                         }
 1694                         object->backing_object = backing_object->backing_object;
 1695                         object->backing_object_offset +=
 1696                             backing_object->backing_object_offset;
 1697 
 1698                         /*
 1699                          * Discard backing_object.
 1700                          *
 1701                          * Since the backing object has no pages, no pager left,
 1702                          * and no object references within it, all that is
 1703                          * necessary is to dispose of it.
 1704                          */
 1705                         KASSERT(backing_object->ref_count == 1, (
 1706 "backing_object %p was somehow re-referenced during collapse!",
 1707                             backing_object));
 1708                         VM_OBJECT_UNLOCK(backing_object);
 1709                         vm_object_destroy(backing_object);
 1710 
 1711                         object_collapses++;
 1712                 } else {
 1713                         vm_object_t new_backing_object;
 1714 
 1715                         /*
 1716                          * If we do not entirely shadow the backing object,
 1717                          * there is nothing we can do so we give up.
 1718                          */
 1719                         if (object->resident_page_count != object->size &&
 1720                             vm_object_backing_scan(object,
 1721                             OBSC_TEST_ALL_SHADOWED) == 0) {
 1722                                 VM_OBJECT_UNLOCK(backing_object);
 1723                                 break;
 1724                         }
 1725 
 1726                         /*
 1727                          * Make the parent shadow the next object in the
 1728                          * chain.  Deallocating backing_object will not remove
 1729                          * it, since its reference count is at least 2.
 1730                          */
 1731                         LIST_REMOVE(object, shadow_list);
 1732                         backing_object->shadow_count--;
 1733 
 1734                         new_backing_object = backing_object->backing_object;
 1735                         if ((object->backing_object = new_backing_object) != NULL) {
 1736                                 VM_OBJECT_LOCK(new_backing_object);
 1737                                 LIST_INSERT_HEAD(
 1738                                     &new_backing_object->shadow_head,
 1739                                     object,
 1740                                     shadow_list
 1741                                 );
 1742                                 new_backing_object->shadow_count++;
 1743                                 vm_object_reference_locked(new_backing_object);
 1744                                 VM_OBJECT_UNLOCK(new_backing_object);
 1745                                 object->backing_object_offset +=
 1746                                         backing_object->backing_object_offset;
 1747                         }
 1748 
 1749                         /*
 1750                          * Drop the reference count on backing_object. Since
 1751                          * its ref_count was at least 2, it will not vanish.
 1752                          */
 1753                         backing_object->ref_count--;
 1754                         VM_OBJECT_UNLOCK(backing_object);
 1755                         object_bypasses++;
 1756                 }
 1757 
 1758                 /*
 1759                  * Try again with this object's new backing object.
 1760                  */
 1761         }
 1762 }
 1763 
 1764 /*
 1765  *      vm_object_page_remove:
 1766  *
 1767  *      For the given object, either frees or invalidates each of the
 1768  *      specified pages.  In general, a page is freed.  However, if a page is
 1769  *      wired for any reason other than the existence of a managed, wired
 1770  *      mapping, then it may be invalidated but not removed from the object.
 1771  *      Pages are specified by the given range ["start", "end") and the option
 1772  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
 1773  *      extends from "start" to the end of the object.  If the option
 1774  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
 1775  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
 1776  *      specified, then the pages within the specified range must have no
 1777  *      mappings.  Otherwise, if this option is not specified, any mappings to
 1778  *      the specified pages are removed before the pages are freed or
 1779  *      invalidated.
 1780  *
 1781  *      In general, this operation should only be performed on objects that
 1782  *      contain managed pages.  There are, however, two exceptions.  First, it
 1783  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
 1784  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
 1785  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
 1786  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
 1787  *
 1788  *      The object must be locked.
 1789  */
 1790 void
 1791 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 1792     int options)
 1793 {
 1794         vm_page_t p, next;
 1795         int wirings;
 1796 
 1797         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1798         KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_PHYS) ||
 1799             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
 1800             ("vm_object_page_remove: illegal options for object %p", object));
 1801         if (object->resident_page_count == 0)
 1802                 goto skipmemq;
 1803         vm_object_pip_add(object, 1);
 1804 again:
 1805         p = vm_page_find_least(object, start);
 1806 
 1807         /*
 1808          * Here, the variable "p" is either (1) the page with the least pindex
 1809          * greater than or equal to the parameter "start" or (2) NULL. 
 1810          */
 1811         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 1812                 next = TAILQ_NEXT(p, listq);
 1813 
 1814                 /*
 1815                  * If the page is wired for any reason besides the existence
 1816                  * of managed, wired mappings, then it cannot be freed.  For
 1817                  * example, fictitious pages, which represent device memory,
 1818                  * are inherently wired and cannot be freed.  They can,
 1819                  * however, be invalidated if the option OBJPR_CLEANONLY is
 1820                  * not specified.
 1821                  */
 1822                 vm_page_lock(p);
 1823                 if ((wirings = p->wire_count) != 0 &&
 1824                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
 1825                         if ((options & OBJPR_NOTMAPPED) == 0) {
 1826                                 pmap_remove_all(p);
 1827                                 /* Account for removal of wired mappings. */
 1828                                 if (wirings != 0)
 1829                                         p->wire_count -= wirings;
 1830                         }
 1831                         if ((options & OBJPR_CLEANONLY) == 0) {
 1832                                 p->valid = 0;
 1833                                 vm_page_undirty(p);
 1834                         }
 1835                         vm_page_unlock(p);
 1836                         continue;
 1837                 }
 1838                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
 1839                         goto again;
 1840                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
 1841                     ("vm_object_page_remove: page %p is fictitious", p));
 1842                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
 1843                         if ((options & OBJPR_NOTMAPPED) == 0)
 1844                                 pmap_remove_write(p);
 1845                         if (p->dirty) {
 1846                                 vm_page_unlock(p);
 1847                                 continue;
 1848                         }
 1849                 }
 1850                 if ((options & OBJPR_NOTMAPPED) == 0) {
 1851                         pmap_remove_all(p);
 1852                         /* Account for removal of wired mappings. */
 1853                         if (wirings != 0)
 1854                                 p->wire_count -= wirings;
 1855                 }
 1856                 vm_page_free(p);
 1857                 vm_page_unlock(p);
 1858         }
 1859         vm_object_pip_wakeup(object);
 1860 skipmemq:
 1861         if (__predict_false(object->cache != NULL))
 1862                 vm_page_cache_free(object, start, end);
 1863 }
 1864 
 1865 /*
 1866  *      Populate the specified range of the object with valid pages.  Returns
 1867  *      TRUE if the range is successfully populated and FALSE otherwise.
 1868  *
 1869  *      Note: This function should be optimized to pass a larger array of
 1870  *      pages to vm_pager_get_pages() before it is applied to a non-
 1871  *      OBJT_DEVICE object.
 1872  *
 1873  *      The object must be locked.
 1874  */
 1875 boolean_t
 1876 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1877 {
 1878         vm_page_t m, ma[1];
 1879         vm_pindex_t pindex;
 1880         int rv;
 1881 
 1882         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1883         for (pindex = start; pindex < end; pindex++) {
 1884                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
 1885                     VM_ALLOC_RETRY);
 1886                 if (m->valid != VM_PAGE_BITS_ALL) {
 1887                         ma[0] = m;
 1888                         rv = vm_pager_get_pages(object, ma, 1, 0);
 1889                         m = vm_page_lookup(object, pindex);
 1890                         if (m == NULL)
 1891                                 break;
 1892                         if (rv != VM_PAGER_OK) {
 1893                                 vm_page_lock(m);
 1894                                 vm_page_free(m);
 1895                                 vm_page_unlock(m);
 1896                                 break;
 1897                         }
 1898                 }
 1899                 /*
 1900                  * Keep "m" busy because a subsequent iteration may unlock
 1901                  * the object.
 1902                  */
 1903         }
 1904         if (pindex > start) {
 1905                 m = vm_page_lookup(object, start);
 1906                 while (m != NULL && m->pindex < pindex) {
 1907                         vm_page_wakeup(m);
 1908                         m = TAILQ_NEXT(m, listq);
 1909                 }
 1910         }
 1911         return (pindex == end);
 1912 }
 1913 
 1914 /*
 1915  *      Routine:        vm_object_coalesce
 1916  *      Function:       Coalesces two objects backing up adjoining
 1917  *                      regions of memory into a single object.
 1918  *
 1919  *      returns TRUE if objects were combined.
 1920  *
 1921  *      NOTE:   Only works at the moment if the second object is NULL -
 1922  *              if it's not, which object do we lock first?
 1923  *
 1924  *      Parameters:
 1925  *              prev_object     First object to coalesce
 1926  *              prev_offset     Offset into prev_object
 1927  *              prev_size       Size of reference to prev_object
 1928  *              next_size       Size of reference to the second object
 1929  *              reserved        Indicator that extension region has
 1930  *                              swap accounted for
 1931  *
 1932  *      Conditions:
 1933  *      The object must *not* be locked.
 1934  */
 1935 boolean_t
 1936 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
 1937     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
 1938 {
 1939         vm_pindex_t next_pindex;
 1940 
 1941         if (prev_object == NULL)
 1942                 return (TRUE);
 1943         VM_OBJECT_LOCK(prev_object);
 1944         if (prev_object->type != OBJT_DEFAULT &&
 1945             prev_object->type != OBJT_SWAP) {
 1946                 VM_OBJECT_UNLOCK(prev_object);
 1947                 return (FALSE);
 1948         }
 1949 
 1950         /*
 1951          * Try to collapse the object first
 1952          */
 1953         vm_object_collapse(prev_object);
 1954 
 1955         /*
 1956          * Can't coalesce if: . more than one reference . paged out . shadows
 1957          * another object . has a copy elsewhere (any of which mean that the
 1958          * pages not mapped to prev_entry may be in use anyway)
 1959          */
 1960         if (prev_object->backing_object != NULL) {
 1961                 VM_OBJECT_UNLOCK(prev_object);
 1962                 return (FALSE);
 1963         }
 1964 
 1965         prev_size >>= PAGE_SHIFT;
 1966         next_size >>= PAGE_SHIFT;
 1967         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
 1968 
 1969         if ((prev_object->ref_count > 1) &&
 1970             (prev_object->size != next_pindex)) {
 1971                 VM_OBJECT_UNLOCK(prev_object);
 1972                 return (FALSE);
 1973         }
 1974 
 1975         /*
 1976          * Account for the charge.
 1977          */
 1978         if (prev_object->cred != NULL) {
 1979 
 1980                 /*
 1981                  * If prev_object was charged, then this mapping,
 1982                  * althought not charged now, may become writable
 1983                  * later. Non-NULL cred in the object would prevent
 1984                  * swap reservation during enabling of the write
 1985                  * access, so reserve swap now. Failed reservation
 1986                  * cause allocation of the separate object for the map
 1987                  * entry, and swap reservation for this entry is
 1988                  * managed in appropriate time.
 1989                  */
 1990                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
 1991                     prev_object->cred)) {
 1992                         return (FALSE);
 1993                 }
 1994                 prev_object->charge += ptoa(next_size);
 1995         }
 1996 
 1997         /*
 1998          * Remove any pages that may still be in the object from a previous
 1999          * deallocation.
 2000          */
 2001         if (next_pindex < prev_object->size) {
 2002                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
 2003                     next_size, 0);
 2004                 if (prev_object->type == OBJT_SWAP)
 2005                         swap_pager_freespace(prev_object,
 2006                                              next_pindex, next_size);
 2007 #if 0
 2008                 if (prev_object->cred != NULL) {
 2009                         KASSERT(prev_object->charge >=
 2010                             ptoa(prev_object->size - next_pindex),
 2011                             ("object %p overcharged 1 %jx %jx", prev_object,
 2012                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
 2013                         prev_object->charge -= ptoa(prev_object->size -
 2014                             next_pindex);
 2015                 }
 2016 #endif
 2017         }
 2018 
 2019         /*
 2020          * Extend the object if necessary.
 2021          */
 2022         if (next_pindex + next_size > prev_object->size)
 2023                 prev_object->size = next_pindex + next_size;
 2024 
 2025         VM_OBJECT_UNLOCK(prev_object);
 2026         return (TRUE);
 2027 }
 2028 
 2029 void
 2030 vm_object_set_writeable_dirty(vm_object_t object)
 2031 {
 2032 
 2033         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2034         if (object->type != OBJT_VNODE)
 2035                 return;
 2036         object->generation++;
 2037         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
 2038                 return;
 2039         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
 2040 }
 2041 
 2042 #include "opt_ddb.h"
 2043 #ifdef DDB
 2044 #include <sys/kernel.h>
 2045 
 2046 #include <sys/cons.h>
 2047 
 2048 #include <ddb/ddb.h>
 2049 
 2050 static int
 2051 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
 2052 {
 2053         vm_map_t tmpm;
 2054         vm_map_entry_t tmpe;
 2055         vm_object_t obj;
 2056         int entcount;
 2057 
 2058         if (map == 0)
 2059                 return 0;
 2060 
 2061         if (entry == 0) {
 2062                 tmpe = map->header.next;
 2063                 entcount = map->nentries;
 2064                 while (entcount-- && (tmpe != &map->header)) {
 2065                         if (_vm_object_in_map(map, object, tmpe)) {
 2066                                 return 1;
 2067                         }
 2068                         tmpe = tmpe->next;
 2069                 }
 2070         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2071                 tmpm = entry->object.sub_map;
 2072                 tmpe = tmpm->header.next;
 2073                 entcount = tmpm->nentries;
 2074                 while (entcount-- && tmpe != &tmpm->header) {
 2075                         if (_vm_object_in_map(tmpm, object, tmpe)) {
 2076                                 return 1;
 2077                         }
 2078                         tmpe = tmpe->next;
 2079                 }
 2080         } else if ((obj = entry->object.vm_object) != NULL) {
 2081                 for (; obj; obj = obj->backing_object)
 2082                         if (obj == object) {
 2083                                 return 1;
 2084                         }
 2085         }
 2086         return 0;
 2087 }
 2088 
 2089 static int
 2090 vm_object_in_map(vm_object_t object)
 2091 {
 2092         struct proc *p;
 2093 
 2094         /* sx_slock(&allproc_lock); */
 2095         FOREACH_PROC_IN_SYSTEM(p) {
 2096                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
 2097                         continue;
 2098                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
 2099                         /* sx_sunlock(&allproc_lock); */
 2100                         return 1;
 2101                 }
 2102         }
 2103         /* sx_sunlock(&allproc_lock); */
 2104         if (_vm_object_in_map(kernel_map, object, 0))
 2105                 return 1;
 2106         if (_vm_object_in_map(kmem_map, object, 0))
 2107                 return 1;
 2108         if (_vm_object_in_map(pager_map, object, 0))
 2109                 return 1;
 2110         if (_vm_object_in_map(buffer_map, object, 0))
 2111                 return 1;
 2112         return 0;
 2113 }
 2114 
 2115 DB_SHOW_COMMAND(vmochk, vm_object_check)
 2116 {
 2117         vm_object_t object;
 2118 
 2119         /*
 2120          * make sure that internal objs are in a map somewhere
 2121          * and none have zero ref counts.
 2122          */
 2123         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2124                 if (object->handle == NULL &&
 2125                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
 2126                         if (object->ref_count == 0) {
 2127                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
 2128                                         (long)object->size);
 2129                         }
 2130                         if (!vm_object_in_map(object)) {
 2131                                 db_printf(
 2132                         "vmochk: internal obj is not in a map: "
 2133                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
 2134                                     object->ref_count, (u_long)object->size, 
 2135                                     (u_long)object->size,
 2136                                     (void *)object->backing_object);
 2137                         }
 2138                 }
 2139         }
 2140 }
 2141 
 2142 /*
 2143  *      vm_object_print:        [ debug ]
 2144  */
 2145 DB_SHOW_COMMAND(object, vm_object_print_static)
 2146 {
 2147         /* XXX convert args. */
 2148         vm_object_t object = (vm_object_t)addr;
 2149         boolean_t full = have_addr;
 2150 
 2151         vm_page_t p;
 2152 
 2153         /* XXX count is an (unused) arg.  Avoid shadowing it. */
 2154 #define count   was_count
 2155 
 2156         int count;
 2157 
 2158         if (object == NULL)
 2159                 return;
 2160 
 2161         db_iprintf(
 2162             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
 2163             object, (int)object->type, (uintmax_t)object->size,
 2164             object->resident_page_count, object->ref_count, object->flags,
 2165             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
 2166         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
 2167             object->shadow_count, 
 2168             object->backing_object ? object->backing_object->ref_count : 0,
 2169             object->backing_object, (uintmax_t)object->backing_object_offset);
 2170 
 2171         if (!full)
 2172                 return;
 2173 
 2174         db_indent += 2;
 2175         count = 0;
 2176         TAILQ_FOREACH(p, &object->memq, listq) {
 2177                 if (count == 0)
 2178                         db_iprintf("memory:=");
 2179                 else if (count == 6) {
 2180                         db_printf("\n");
 2181                         db_iprintf(" ...");
 2182                         count = 0;
 2183                 } else
 2184                         db_printf(",");
 2185                 count++;
 2186 
 2187                 db_printf("(off=0x%jx,page=0x%jx)",
 2188                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
 2189         }
 2190         if (count != 0)
 2191                 db_printf("\n");
 2192         db_indent -= 2;
 2193 }
 2194 
 2195 /* XXX. */
 2196 #undef count
 2197 
 2198 /* XXX need this non-static entry for calling from vm_map_print. */
 2199 void
 2200 vm_object_print(
 2201         /* db_expr_t */ long addr,
 2202         boolean_t have_addr,
 2203         /* db_expr_t */ long count,
 2204         char *modif)
 2205 {
 2206         vm_object_print_static(addr, have_addr, count, modif);
 2207 }
 2208 
 2209 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
 2210 {
 2211         vm_object_t object;
 2212         vm_pindex_t fidx;
 2213         vm_paddr_t pa;
 2214         vm_page_t m, prev_m;
 2215         int rcount, nl, c;
 2216 
 2217         nl = 0;
 2218         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2219                 db_printf("new object: %p\n", (void *)object);
 2220                 if (nl > 18) {
 2221                         c = cngetc();
 2222                         if (c != ' ')
 2223                                 return;
 2224                         nl = 0;
 2225                 }
 2226                 nl++;
 2227                 rcount = 0;
 2228                 fidx = 0;
 2229                 pa = -1;
 2230                 TAILQ_FOREACH(m, &object->memq, listq) {
 2231                         if (m->pindex > 128)
 2232                                 break;
 2233                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
 2234                             prev_m->pindex + 1 != m->pindex) {
 2235                                 if (rcount) {
 2236                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2237                                                 (long)fidx, rcount, (long)pa);
 2238                                         if (nl > 18) {
 2239                                                 c = cngetc();
 2240                                                 if (c != ' ')
 2241                                                         return;
 2242                                                 nl = 0;
 2243                                         }
 2244                                         nl++;
 2245                                         rcount = 0;
 2246                                 }
 2247                         }                               
 2248                         if (rcount &&
 2249                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
 2250                                 ++rcount;
 2251                                 continue;
 2252                         }
 2253                         if (rcount) {
 2254                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2255                                         (long)fidx, rcount, (long)pa);
 2256                                 if (nl > 18) {
 2257                                         c = cngetc();
 2258                                         if (c != ' ')
 2259                                                 return;
 2260                                         nl = 0;
 2261                                 }
 2262                                 nl++;
 2263                         }
 2264                         fidx = m->pindex;
 2265                         pa = VM_PAGE_TO_PHYS(m);
 2266                         rcount = 1;
 2267                 }
 2268                 if (rcount) {
 2269                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2270                                 (long)fidx, rcount, (long)pa);
 2271                         if (nl > 18) {
 2272                                 c = cngetc();
 2273                                 if (c != ' ')
 2274                                         return;
 2275                                 nl = 0;
 2276                         }
 2277                         nl++;
 2278                 }
 2279         }
 2280 }
 2281 #endif /* DDB */

Cache object: 80971f6276e47f54e0728e0f33bd59a7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.