The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 /*
   62  *      Virtual memory object module.
   63  */
   64 
   65 #include <sys/cdefs.h>
   66 __FBSDID("$FreeBSD: releng/9.1/sys/vm/vm_object.c 237805 2012-06-29 17:21:19Z jhb $");
   67 
   68 #include "opt_vm.h"
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/lock.h>
   73 #include <sys/mman.h>
   74 #include <sys/mount.h>
   75 #include <sys/kernel.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/mutex.h>
   78 #include <sys/proc.h>           /* for curproc, pageproc */
   79 #include <sys/socket.h>
   80 #include <sys/resourcevar.h>
   81 #include <sys/vnode.h>
   82 #include <sys/vmmeter.h>
   83 #include <sys/sx.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_param.h>
   87 #include <vm/pmap.h>
   88 #include <vm/vm_map.h>
   89 #include <vm/vm_object.h>
   90 #include <vm/vm_page.h>
   91 #include <vm/vm_pageout.h>
   92 #include <vm/vm_pager.h>
   93 #include <vm/swap_pager.h>
   94 #include <vm/vm_kern.h>
   95 #include <vm/vm_extern.h>
   96 #include <vm/vm_reserv.h>
   97 #include <vm/uma.h>
   98 
   99 static int old_msync;
  100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
  101     "Use old (insecure) msync behavior");
  102 
  103 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
  104                     int pagerflags, int flags, boolean_t *clearobjflags,
  105                     boolean_t *eio);
  106 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
  107                     boolean_t *clearobjflags);
  108 static void     vm_object_qcollapse(vm_object_t object);
  109 static void     vm_object_vndeallocate(vm_object_t object);
  110 
  111 /*
  112  *      Virtual memory objects maintain the actual data
  113  *      associated with allocated virtual memory.  A given
  114  *      page of memory exists within exactly one object.
  115  *
  116  *      An object is only deallocated when all "references"
  117  *      are given up.  Only one "reference" to a given
  118  *      region of an object should be writeable.
  119  *
  120  *      Associated with each object is a list of all resident
  121  *      memory pages belonging to that object; this list is
  122  *      maintained by the "vm_page" module, and locked by the object's
  123  *      lock.
  124  *
  125  *      Each object also records a "pager" routine which is
  126  *      used to retrieve (and store) pages to the proper backing
  127  *      storage.  In addition, objects may be backed by other
  128  *      objects from which they were virtual-copied.
  129  *
  130  *      The only items within the object structure which are
  131  *      modified after time of creation are:
  132  *              reference count         locked by object's lock
  133  *              pager routine           locked by object's lock
  134  *
  135  */
  136 
  137 struct object_q vm_object_list;
  138 struct mtx vm_object_list_mtx;  /* lock for object list and count */
  139 
  140 struct vm_object kernel_object_store;
  141 struct vm_object kmem_object_store;
  142 
  143 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
  144 
  145 static long object_collapses;
  146 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
  147     &object_collapses, 0, "VM object collapses");
  148 
  149 static long object_bypasses;
  150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
  151     &object_bypasses, 0, "VM object bypasses");
  152 
  153 static uma_zone_t obj_zone;
  154 
  155 static int vm_object_zinit(void *mem, int size, int flags);
  156 
  157 #ifdef INVARIANTS
  158 static void vm_object_zdtor(void *mem, int size, void *arg);
  159 
  160 static void
  161 vm_object_zdtor(void *mem, int size, void *arg)
  162 {
  163         vm_object_t object;
  164 
  165         object = (vm_object_t)mem;
  166         KASSERT(TAILQ_EMPTY(&object->memq),
  167             ("object %p has resident pages",
  168             object));
  169 #if VM_NRESERVLEVEL > 0
  170         KASSERT(LIST_EMPTY(&object->rvq),
  171             ("object %p has reservations",
  172             object));
  173 #endif
  174         KASSERT(object->cache == NULL,
  175             ("object %p has cached pages",
  176             object));
  177         KASSERT(object->paging_in_progress == 0,
  178             ("object %p paging_in_progress = %d",
  179             object, object->paging_in_progress));
  180         KASSERT(object->resident_page_count == 0,
  181             ("object %p resident_page_count = %d",
  182             object, object->resident_page_count));
  183         KASSERT(object->shadow_count == 0,
  184             ("object %p shadow_count = %d",
  185             object, object->shadow_count));
  186 }
  187 #endif
  188 
  189 static int
  190 vm_object_zinit(void *mem, int size, int flags)
  191 {
  192         vm_object_t object;
  193 
  194         object = (vm_object_t)mem;
  195         bzero(&object->mtx, sizeof(object->mtx));
  196         VM_OBJECT_LOCK_INIT(object, "standard object");
  197 
  198         /* These are true for any object that has been freed */
  199         object->paging_in_progress = 0;
  200         object->resident_page_count = 0;
  201         object->shadow_count = 0;
  202         return (0);
  203 }
  204 
  205 void
  206 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
  207 {
  208 
  209         TAILQ_INIT(&object->memq);
  210         LIST_INIT(&object->shadow_head);
  211 
  212         object->root = NULL;
  213         object->type = type;
  214         object->size = size;
  215         object->generation = 1;
  216         object->ref_count = 1;
  217         object->memattr = VM_MEMATTR_DEFAULT;
  218         object->flags = 0;
  219         object->cred = NULL;
  220         object->charge = 0;
  221         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
  222                 object->flags = OBJ_ONEMAPPING;
  223         object->pg_color = 0;
  224         object->handle = NULL;
  225         object->backing_object = NULL;
  226         object->backing_object_offset = (vm_ooffset_t) 0;
  227 #if VM_NRESERVLEVEL > 0
  228         LIST_INIT(&object->rvq);
  229 #endif
  230         object->cache = NULL;
  231 
  232         mtx_lock(&vm_object_list_mtx);
  233         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
  234         mtx_unlock(&vm_object_list_mtx);
  235 }
  236 
  237 /*
  238  *      vm_object_init:
  239  *
  240  *      Initialize the VM objects module.
  241  */
  242 void
  243 vm_object_init(void)
  244 {
  245         TAILQ_INIT(&vm_object_list);
  246         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
  247         
  248         VM_OBJECT_LOCK_INIT(kernel_object, "kernel object");
  249         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  250             kernel_object);
  251 #if VM_NRESERVLEVEL > 0
  252         kernel_object->flags |= OBJ_COLORED;
  253         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  254 #endif
  255 
  256         VM_OBJECT_LOCK_INIT(kmem_object, "kmem object");
  257         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  258             kmem_object);
  259 #if VM_NRESERVLEVEL > 0
  260         kmem_object->flags |= OBJ_COLORED;
  261         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  262 #endif
  263 
  264         /*
  265          * The lock portion of struct vm_object must be type stable due
  266          * to vm_pageout_fallback_object_lock locking a vm object
  267          * without holding any references to it.
  268          */
  269         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
  270 #ifdef INVARIANTS
  271             vm_object_zdtor,
  272 #else
  273             NULL,
  274 #endif
  275             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
  276 }
  277 
  278 void
  279 vm_object_clear_flag(vm_object_t object, u_short bits)
  280 {
  281 
  282         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  283         object->flags &= ~bits;
  284 }
  285 
  286 /*
  287  *      Sets the default memory attribute for the specified object.  Pages
  288  *      that are allocated to this object are by default assigned this memory
  289  *      attribute.
  290  *
  291  *      Presently, this function must be called before any pages are allocated
  292  *      to the object.  In the future, this requirement may be relaxed for
  293  *      "default" and "swap" objects.
  294  */
  295 int
  296 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
  297 {
  298 
  299         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  300         switch (object->type) {
  301         case OBJT_DEFAULT:
  302         case OBJT_DEVICE:
  303         case OBJT_PHYS:
  304         case OBJT_SG:
  305         case OBJT_SWAP:
  306         case OBJT_VNODE:
  307                 if (!TAILQ_EMPTY(&object->memq))
  308                         return (KERN_FAILURE);
  309                 break;
  310         case OBJT_DEAD:
  311                 return (KERN_INVALID_ARGUMENT);
  312         }
  313         object->memattr = memattr;
  314         return (KERN_SUCCESS);
  315 }
  316 
  317 void
  318 vm_object_pip_add(vm_object_t object, short i)
  319 {
  320 
  321         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  322         object->paging_in_progress += i;
  323 }
  324 
  325 void
  326 vm_object_pip_subtract(vm_object_t object, short i)
  327 {
  328 
  329         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  330         object->paging_in_progress -= i;
  331 }
  332 
  333 void
  334 vm_object_pip_wakeup(vm_object_t object)
  335 {
  336 
  337         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  338         object->paging_in_progress--;
  339         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  340                 vm_object_clear_flag(object, OBJ_PIPWNT);
  341                 wakeup(object);
  342         }
  343 }
  344 
  345 void
  346 vm_object_pip_wakeupn(vm_object_t object, short i)
  347 {
  348 
  349         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  350         if (i)
  351                 object->paging_in_progress -= i;
  352         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  353                 vm_object_clear_flag(object, OBJ_PIPWNT);
  354                 wakeup(object);
  355         }
  356 }
  357 
  358 void
  359 vm_object_pip_wait(vm_object_t object, char *waitid)
  360 {
  361 
  362         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  363         while (object->paging_in_progress) {
  364                 object->flags |= OBJ_PIPWNT;
  365                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
  366         }
  367 }
  368 
  369 /*
  370  *      vm_object_allocate:
  371  *
  372  *      Returns a new object with the given size.
  373  */
  374 vm_object_t
  375 vm_object_allocate(objtype_t type, vm_pindex_t size)
  376 {
  377         vm_object_t object;
  378 
  379         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
  380         _vm_object_allocate(type, size, object);
  381         return (object);
  382 }
  383 
  384 
  385 /*
  386  *      vm_object_reference:
  387  *
  388  *      Gets another reference to the given object.  Note: OBJ_DEAD
  389  *      objects can be referenced during final cleaning.
  390  */
  391 void
  392 vm_object_reference(vm_object_t object)
  393 {
  394         if (object == NULL)
  395                 return;
  396         VM_OBJECT_LOCK(object);
  397         vm_object_reference_locked(object);
  398         VM_OBJECT_UNLOCK(object);
  399 }
  400 
  401 /*
  402  *      vm_object_reference_locked:
  403  *
  404  *      Gets another reference to the given object.
  405  *
  406  *      The object must be locked.
  407  */
  408 void
  409 vm_object_reference_locked(vm_object_t object)
  410 {
  411         struct vnode *vp;
  412 
  413         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  414         object->ref_count++;
  415         if (object->type == OBJT_VNODE) {
  416                 vp = object->handle;
  417                 vref(vp);
  418         }
  419 }
  420 
  421 /*
  422  * Handle deallocating an object of type OBJT_VNODE.
  423  */
  424 static void
  425 vm_object_vndeallocate(vm_object_t object)
  426 {
  427         struct vnode *vp = (struct vnode *) object->handle;
  428 
  429         VFS_ASSERT_GIANT(vp->v_mount);
  430         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  431         KASSERT(object->type == OBJT_VNODE,
  432             ("vm_object_vndeallocate: not a vnode object"));
  433         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
  434 #ifdef INVARIANTS
  435         if (object->ref_count == 0) {
  436                 vprint("vm_object_vndeallocate", vp);
  437                 panic("vm_object_vndeallocate: bad object reference count");
  438         }
  439 #endif
  440 
  441         if (object->ref_count > 1) {
  442                 object->ref_count--;
  443                 VM_OBJECT_UNLOCK(object);
  444                 /* vrele may need the vnode lock. */
  445                 vrele(vp);
  446         } else {
  447                 vhold(vp);
  448                 VM_OBJECT_UNLOCK(object);
  449                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  450                 vdrop(vp);
  451                 VM_OBJECT_LOCK(object);
  452                 object->ref_count--;
  453                 if (object->type == OBJT_DEAD) {
  454                         VM_OBJECT_UNLOCK(object);
  455                         VOP_UNLOCK(vp, 0);
  456                 } else {
  457                         if (object->ref_count == 0)
  458                                 vp->v_vflag &= ~VV_TEXT;
  459                         VM_OBJECT_UNLOCK(object);
  460                         vput(vp);
  461                 }
  462         }
  463 }
  464 
  465 /*
  466  *      vm_object_deallocate:
  467  *
  468  *      Release a reference to the specified object,
  469  *      gained either through a vm_object_allocate
  470  *      or a vm_object_reference call.  When all references
  471  *      are gone, storage associated with this object
  472  *      may be relinquished.
  473  *
  474  *      No object may be locked.
  475  */
  476 void
  477 vm_object_deallocate(vm_object_t object)
  478 {
  479         vm_object_t temp;
  480 
  481         while (object != NULL) {
  482                 int vfslocked;
  483 
  484                 vfslocked = 0;
  485         restart:
  486                 VM_OBJECT_LOCK(object);
  487                 if (object->type == OBJT_VNODE) {
  488                         struct vnode *vp = (struct vnode *) object->handle;
  489 
  490                         /*
  491                          * Conditionally acquire Giant for a vnode-backed
  492                          * object.  We have to be careful since the type of
  493                          * a vnode object can change while the object is
  494                          * unlocked.
  495                          */
  496                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
  497                                 vfslocked = 1;
  498                                 if (!mtx_trylock(&Giant)) {
  499                                         VM_OBJECT_UNLOCK(object);
  500                                         mtx_lock(&Giant);
  501                                         goto restart;
  502                                 }
  503                         }
  504                         vm_object_vndeallocate(object);
  505                         VFS_UNLOCK_GIANT(vfslocked);
  506                         return;
  507                 } else
  508                         /*
  509                          * This is to handle the case that the object
  510                          * changed type while we dropped its lock to
  511                          * obtain Giant.
  512                          */
  513                         VFS_UNLOCK_GIANT(vfslocked);
  514 
  515                 KASSERT(object->ref_count != 0,
  516                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
  517 
  518                 /*
  519                  * If the reference count goes to 0 we start calling
  520                  * vm_object_terminate() on the object chain.
  521                  * A ref count of 1 may be a special case depending on the
  522                  * shadow count being 0 or 1.
  523                  */
  524                 object->ref_count--;
  525                 if (object->ref_count > 1) {
  526                         VM_OBJECT_UNLOCK(object);
  527                         return;
  528                 } else if (object->ref_count == 1) {
  529                         if (object->shadow_count == 0 &&
  530                             object->handle == NULL &&
  531                             (object->type == OBJT_DEFAULT ||
  532                              object->type == OBJT_SWAP)) {
  533                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
  534                         } else if ((object->shadow_count == 1) &&
  535                             (object->handle == NULL) &&
  536                             (object->type == OBJT_DEFAULT ||
  537                              object->type == OBJT_SWAP)) {
  538                                 vm_object_t robject;
  539 
  540                                 robject = LIST_FIRST(&object->shadow_head);
  541                                 KASSERT(robject != NULL,
  542                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
  543                                          object->ref_count,
  544                                          object->shadow_count));
  545                                 if (!VM_OBJECT_TRYLOCK(robject)) {
  546                                         /*
  547                                          * Avoid a potential deadlock.
  548                                          */
  549                                         object->ref_count++;
  550                                         VM_OBJECT_UNLOCK(object);
  551                                         /*
  552                                          * More likely than not the thread
  553                                          * holding robject's lock has lower
  554                                          * priority than the current thread.
  555                                          * Let the lower priority thread run.
  556                                          */
  557                                         pause("vmo_de", 1);
  558                                         continue;
  559                                 }
  560                                 /*
  561                                  * Collapse object into its shadow unless its
  562                                  * shadow is dead.  In that case, object will
  563                                  * be deallocated by the thread that is
  564                                  * deallocating its shadow.
  565                                  */
  566                                 if ((robject->flags & OBJ_DEAD) == 0 &&
  567                                     (robject->handle == NULL) &&
  568                                     (robject->type == OBJT_DEFAULT ||
  569                                      robject->type == OBJT_SWAP)) {
  570 
  571                                         robject->ref_count++;
  572 retry:
  573                                         if (robject->paging_in_progress) {
  574                                                 VM_OBJECT_UNLOCK(object);
  575                                                 vm_object_pip_wait(robject,
  576                                                     "objde1");
  577                                                 temp = robject->backing_object;
  578                                                 if (object == temp) {
  579                                                         VM_OBJECT_LOCK(object);
  580                                                         goto retry;
  581                                                 }
  582                                         } else if (object->paging_in_progress) {
  583                                                 VM_OBJECT_UNLOCK(robject);
  584                                                 object->flags |= OBJ_PIPWNT;
  585                                                 msleep(object,
  586                                                     VM_OBJECT_MTX(object),
  587                                                     PDROP | PVM, "objde2", 0);
  588                                                 VM_OBJECT_LOCK(robject);
  589                                                 temp = robject->backing_object;
  590                                                 if (object == temp) {
  591                                                         VM_OBJECT_LOCK(object);
  592                                                         goto retry;
  593                                                 }
  594                                         } else
  595                                                 VM_OBJECT_UNLOCK(object);
  596 
  597                                         if (robject->ref_count == 1) {
  598                                                 robject->ref_count--;
  599                                                 object = robject;
  600                                                 goto doterm;
  601                                         }
  602                                         object = robject;
  603                                         vm_object_collapse(object);
  604                                         VM_OBJECT_UNLOCK(object);
  605                                         continue;
  606                                 }
  607                                 VM_OBJECT_UNLOCK(robject);
  608                         }
  609                         VM_OBJECT_UNLOCK(object);
  610                         return;
  611                 }
  612 doterm:
  613                 temp = object->backing_object;
  614                 if (temp != NULL) {
  615                         VM_OBJECT_LOCK(temp);
  616                         LIST_REMOVE(object, shadow_list);
  617                         temp->shadow_count--;
  618                         VM_OBJECT_UNLOCK(temp);
  619                         object->backing_object = NULL;
  620                 }
  621                 /*
  622                  * Don't double-terminate, we could be in a termination
  623                  * recursion due to the terminate having to sync data
  624                  * to disk.
  625                  */
  626                 if ((object->flags & OBJ_DEAD) == 0)
  627                         vm_object_terminate(object);
  628                 else
  629                         VM_OBJECT_UNLOCK(object);
  630                 object = temp;
  631         }
  632 }
  633 
  634 /*
  635  *      vm_object_destroy removes the object from the global object list
  636  *      and frees the space for the object.
  637  */
  638 void
  639 vm_object_destroy(vm_object_t object)
  640 {
  641 
  642         /*
  643          * Remove the object from the global object list.
  644          */
  645         mtx_lock(&vm_object_list_mtx);
  646         TAILQ_REMOVE(&vm_object_list, object, object_list);
  647         mtx_unlock(&vm_object_list_mtx);
  648 
  649         /*
  650          * Release the allocation charge.
  651          */
  652         if (object->cred != NULL) {
  653                 KASSERT(object->type == OBJT_DEFAULT ||
  654                     object->type == OBJT_SWAP,
  655                     ("vm_object_terminate: non-swap obj %p has cred",
  656                      object));
  657                 swap_release_by_cred(object->charge, object->cred);
  658                 object->charge = 0;
  659                 crfree(object->cred);
  660                 object->cred = NULL;
  661         }
  662 
  663         /*
  664          * Free the space for the object.
  665          */
  666         uma_zfree(obj_zone, object);
  667 }
  668 
  669 /*
  670  *      vm_object_terminate actually destroys the specified object, freeing
  671  *      up all previously used resources.
  672  *
  673  *      The object must be locked.
  674  *      This routine may block.
  675  */
  676 void
  677 vm_object_terminate(vm_object_t object)
  678 {
  679         vm_page_t p, p_next;
  680 
  681         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  682 
  683         /*
  684          * Make sure no one uses us.
  685          */
  686         vm_object_set_flag(object, OBJ_DEAD);
  687 
  688         /*
  689          * wait for the pageout daemon to be done with the object
  690          */
  691         vm_object_pip_wait(object, "objtrm");
  692 
  693         KASSERT(!object->paging_in_progress,
  694                 ("vm_object_terminate: pageout in progress"));
  695 
  696         /*
  697          * Clean and free the pages, as appropriate. All references to the
  698          * object are gone, so we don't need to lock it.
  699          */
  700         if (object->type == OBJT_VNODE) {
  701                 struct vnode *vp = (struct vnode *)object->handle;
  702 
  703                 /*
  704                  * Clean pages and flush buffers.
  705                  */
  706                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  707                 VM_OBJECT_UNLOCK(object);
  708 
  709                 vinvalbuf(vp, V_SAVE, 0, 0);
  710 
  711                 VM_OBJECT_LOCK(object);
  712         }
  713 
  714         KASSERT(object->ref_count == 0, 
  715                 ("vm_object_terminate: object with references, ref_count=%d",
  716                 object->ref_count));
  717 
  718         /*
  719          * Free any remaining pageable pages.  This also removes them from the
  720          * paging queues.  However, don't free wired pages, just remove them
  721          * from the object.  Rather than incrementally removing each page from
  722          * the object, the page and object are reset to any empty state. 
  723          */
  724         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
  725                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
  726                     ("vm_object_terminate: freeing busy page %p", p));
  727                 vm_page_lock(p);
  728                 /*
  729                  * Optimize the page's removal from the object by resetting
  730                  * its "object" field.  Specifically, if the page is not
  731                  * wired, then the effect of this assignment is that
  732                  * vm_page_free()'s call to vm_page_remove() will return
  733                  * immediately without modifying the page or the object.
  734                  */ 
  735                 p->object = NULL;
  736                 if (p->wire_count == 0) {
  737                         vm_page_free(p);
  738                         PCPU_INC(cnt.v_pfree);
  739                 }
  740                 vm_page_unlock(p);
  741         }
  742         /*
  743          * If the object contained any pages, then reset it to an empty state.
  744          * None of the object's fields, including "resident_page_count", were
  745          * modified by the preceding loop.
  746          */
  747         if (object->resident_page_count != 0) {
  748                 object->root = NULL;
  749                 TAILQ_INIT(&object->memq);
  750                 object->resident_page_count = 0;
  751                 if (object->type == OBJT_VNODE)
  752                         vdrop(object->handle);
  753         }
  754 
  755 #if VM_NRESERVLEVEL > 0
  756         if (__predict_false(!LIST_EMPTY(&object->rvq)))
  757                 vm_reserv_break_all(object);
  758 #endif
  759         if (__predict_false(object->cache != NULL))
  760                 vm_page_cache_free(object, 0, 0);
  761 
  762         /*
  763          * Let the pager know object is dead.
  764          */
  765         vm_pager_deallocate(object);
  766         VM_OBJECT_UNLOCK(object);
  767 
  768         vm_object_destroy(object);
  769 }
  770 
  771 /*
  772  * Make the page read-only so that we can clear the object flags.  However, if
  773  * this is a nosync mmap then the object is likely to stay dirty so do not
  774  * mess with the page and do not clear the object flags.  Returns TRUE if the
  775  * page should be flushed, and FALSE otherwise.
  776  */
  777 static boolean_t
  778 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
  779 {
  780 
  781         /*
  782          * If we have been asked to skip nosync pages and this is a
  783          * nosync page, skip it.  Note that the object flags were not
  784          * cleared in this case so we do not have to set them.
  785          */
  786         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
  787                 *clearobjflags = FALSE;
  788                 return (FALSE);
  789         } else {
  790                 pmap_remove_write(p);
  791                 return (p->dirty != 0);
  792         }
  793 }
  794 
  795 /*
  796  *      vm_object_page_clean
  797  *
  798  *      Clean all dirty pages in the specified range of object.  Leaves page 
  799  *      on whatever queue it is currently on.   If NOSYNC is set then do not
  800  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
  801  *      leaving the object dirty.
  802  *
  803  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
  804  *      synchronous clustering mode implementation.
  805  *
  806  *      Odd semantics: if start == end, we clean everything.
  807  *
  808  *      The object must be locked.
  809  *
  810  *      Returns FALSE if some page from the range was not written, as
  811  *      reported by the pager, and TRUE otherwise.
  812  */
  813 boolean_t
  814 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
  815     int flags)
  816 {
  817         vm_page_t np, p;
  818         vm_pindex_t pi, tend, tstart;
  819         int curgeneration, n, pagerflags;
  820         boolean_t clearobjflags, eio, res;
  821 
  822         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
  823         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  824         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
  825         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
  826             object->resident_page_count == 0)
  827                 return (TRUE);
  828 
  829         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
  830             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
  831         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
  832 
  833         tstart = OFF_TO_IDX(start);
  834         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
  835         clearobjflags = tstart == 0 && tend >= object->size;
  836         res = TRUE;
  837 
  838 rescan:
  839         curgeneration = object->generation;
  840 
  841         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
  842                 pi = p->pindex;
  843                 if (pi >= tend)
  844                         break;
  845                 np = TAILQ_NEXT(p, listq);
  846                 if (p->valid == 0)
  847                         continue;
  848                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
  849                         if (object->generation != curgeneration) {
  850                                 if ((flags & OBJPC_SYNC) != 0)
  851                                         goto rescan;
  852                                 else
  853                                         clearobjflags = FALSE;
  854                         }
  855                         np = vm_page_find_least(object, pi);
  856                         continue;
  857                 }
  858                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
  859                         continue;
  860 
  861                 n = vm_object_page_collect_flush(object, p, pagerflags,
  862                     flags, &clearobjflags, &eio);
  863                 if (eio) {
  864                         res = FALSE;
  865                         clearobjflags = FALSE;
  866                 }
  867                 if (object->generation != curgeneration) {
  868                         if ((flags & OBJPC_SYNC) != 0)
  869                                 goto rescan;
  870                         else
  871                                 clearobjflags = FALSE;
  872                 }
  873 
  874                 /*
  875                  * If the VOP_PUTPAGES() did a truncated write, so
  876                  * that even the first page of the run is not fully
  877                  * written, vm_pageout_flush() returns 0 as the run
  878                  * length.  Since the condition that caused truncated
  879                  * write may be permanent, e.g. exhausted free space,
  880                  * accepting n == 0 would cause an infinite loop.
  881                  *
  882                  * Forwarding the iterator leaves the unwritten page
  883                  * behind, but there is not much we can do there if
  884                  * filesystem refuses to write it.
  885                  */
  886                 if (n == 0) {
  887                         n = 1;
  888                         clearobjflags = FALSE;
  889                 }
  890                 np = vm_page_find_least(object, pi + n);
  891         }
  892 #if 0
  893         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
  894 #endif
  895 
  896         if (clearobjflags)
  897                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
  898         return (res);
  899 }
  900 
  901 static int
  902 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
  903     int flags, boolean_t *clearobjflags, boolean_t *eio)
  904 {
  905         vm_page_t ma[vm_pageout_page_count], p_first, tp;
  906         int count, i, mreq, runlen;
  907 
  908         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
  909         vm_page_lock_assert(p, MA_NOTOWNED);
  910         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  911 
  912         count = 1;
  913         mreq = 0;
  914 
  915         for (tp = p; count < vm_pageout_page_count; count++) {
  916                 tp = vm_page_next(tp);
  917                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
  918                         break;
  919                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  920                         break;
  921         }
  922 
  923         for (p_first = p; count < vm_pageout_page_count; count++) {
  924                 tp = vm_page_prev(p_first);
  925                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
  926                         break;
  927                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  928                         break;
  929                 p_first = tp;
  930                 mreq++;
  931         }
  932 
  933         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
  934                 ma[i] = tp;
  935 
  936         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
  937         return (runlen);
  938 }
  939 
  940 /*
  941  * Note that there is absolutely no sense in writing out
  942  * anonymous objects, so we track down the vnode object
  943  * to write out.
  944  * We invalidate (remove) all pages from the address space
  945  * for semantic correctness.
  946  *
  947  * If the backing object is a device object with unmanaged pages, then any
  948  * mappings to the specified range of pages must be removed before this
  949  * function is called.
  950  *
  951  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
  952  * may start out with a NULL object.
  953  */
  954 boolean_t
  955 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
  956     boolean_t syncio, boolean_t invalidate)
  957 {
  958         vm_object_t backing_object;
  959         struct vnode *vp;
  960         struct mount *mp;
  961         int error, flags, fsync_after;
  962         boolean_t res;
  963 
  964         if (object == NULL)
  965                 return (TRUE);
  966         res = TRUE;
  967         error = 0;
  968         VM_OBJECT_LOCK(object);
  969         while ((backing_object = object->backing_object) != NULL) {
  970                 VM_OBJECT_LOCK(backing_object);
  971                 offset += object->backing_object_offset;
  972                 VM_OBJECT_UNLOCK(object);
  973                 object = backing_object;
  974                 if (object->size < OFF_TO_IDX(offset + size))
  975                         size = IDX_TO_OFF(object->size) - offset;
  976         }
  977         /*
  978          * Flush pages if writing is allowed, invalidate them
  979          * if invalidation requested.  Pages undergoing I/O
  980          * will be ignored by vm_object_page_remove().
  981          *
  982          * We cannot lock the vnode and then wait for paging
  983          * to complete without deadlocking against vm_fault.
  984          * Instead we simply call vm_object_page_remove() and
  985          * allow it to block internally on a page-by-page
  986          * basis when it encounters pages undergoing async
  987          * I/O.
  988          */
  989         if (object->type == OBJT_VNODE &&
  990             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
  991                 int vfslocked;
  992                 vp = object->handle;
  993                 VM_OBJECT_UNLOCK(object);
  994                 (void) vn_start_write(vp, &mp, V_WAIT);
  995                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  996                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  997                 if (syncio && !invalidate && offset == 0 &&
  998                     OFF_TO_IDX(size) == object->size) {
  999                         /*
 1000                          * If syncing the whole mapping of the file,
 1001                          * it is faster to schedule all the writes in
 1002                          * async mode, also allowing the clustering,
 1003                          * and then wait for i/o to complete.
 1004                          */
 1005                         flags = 0;
 1006                         fsync_after = TRUE;
 1007                 } else {
 1008                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
 1009                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
 1010                         fsync_after = FALSE;
 1011                 }
 1012                 VM_OBJECT_LOCK(object);
 1013                 res = vm_object_page_clean(object, offset, offset + size,
 1014                     flags);
 1015                 VM_OBJECT_UNLOCK(object);
 1016                 if (fsync_after)
 1017                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
 1018                 VOP_UNLOCK(vp, 0);
 1019                 VFS_UNLOCK_GIANT(vfslocked);
 1020                 vn_finished_write(mp);
 1021                 if (error != 0)
 1022                         res = FALSE;
 1023                 VM_OBJECT_LOCK(object);
 1024         }
 1025         if ((object->type == OBJT_VNODE ||
 1026              object->type == OBJT_DEVICE) && invalidate) {
 1027                 if (object->type == OBJT_DEVICE)
 1028                         /*
 1029                          * The option OBJPR_NOTMAPPED must be passed here
 1030                          * because vm_object_page_remove() cannot remove
 1031                          * unmanaged mappings.
 1032                          */
 1033                         flags = OBJPR_NOTMAPPED;
 1034                 else if (old_msync)
 1035                         flags = 0;
 1036                 else
 1037                         flags = OBJPR_CLEANONLY;
 1038                 vm_object_page_remove(object, OFF_TO_IDX(offset),
 1039                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
 1040         }
 1041         VM_OBJECT_UNLOCK(object);
 1042         return (res);
 1043 }
 1044 
 1045 /*
 1046  *      vm_object_madvise:
 1047  *
 1048  *      Implements the madvise function at the object/page level.
 1049  *
 1050  *      MADV_WILLNEED   (any object)
 1051  *
 1052  *          Activate the specified pages if they are resident.
 1053  *
 1054  *      MADV_DONTNEED   (any object)
 1055  *
 1056  *          Deactivate the specified pages if they are resident.
 1057  *
 1058  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
 1059  *                       OBJ_ONEMAPPING only)
 1060  *
 1061  *          Deactivate and clean the specified pages if they are
 1062  *          resident.  This permits the process to reuse the pages
 1063  *          without faulting or the kernel to reclaim the pages
 1064  *          without I/O.
 1065  */
 1066 void
 1067 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
 1068     int advise)
 1069 {
 1070         vm_pindex_t tpindex;
 1071         vm_object_t backing_object, tobject;
 1072         vm_page_t m;
 1073 
 1074         if (object == NULL)
 1075                 return;
 1076         VM_OBJECT_LOCK(object);
 1077         /*
 1078          * Locate and adjust resident pages
 1079          */
 1080         for (; pindex < end; pindex += 1) {
 1081 relookup:
 1082                 tobject = object;
 1083                 tpindex = pindex;
 1084 shadowlookup:
 1085                 /*
 1086                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
 1087                  * and those pages must be OBJ_ONEMAPPING.
 1088                  */
 1089                 if (advise == MADV_FREE) {
 1090                         if ((tobject->type != OBJT_DEFAULT &&
 1091                              tobject->type != OBJT_SWAP) ||
 1092                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
 1093                                 goto unlock_tobject;
 1094                         }
 1095                 } else if (tobject->type == OBJT_PHYS)
 1096                         goto unlock_tobject;
 1097                 m = vm_page_lookup(tobject, tpindex);
 1098                 if (m == NULL && advise == MADV_WILLNEED) {
 1099                         /*
 1100                          * If the page is cached, reactivate it.
 1101                          */
 1102                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
 1103                             VM_ALLOC_NOBUSY);
 1104                 }
 1105                 if (m == NULL) {
 1106                         /*
 1107                          * There may be swap even if there is no backing page
 1108                          */
 1109                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1110                                 swap_pager_freespace(tobject, tpindex, 1);
 1111                         /*
 1112                          * next object
 1113                          */
 1114                         backing_object = tobject->backing_object;
 1115                         if (backing_object == NULL)
 1116                                 goto unlock_tobject;
 1117                         VM_OBJECT_LOCK(backing_object);
 1118                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
 1119                         if (tobject != object)
 1120                                 VM_OBJECT_UNLOCK(tobject);
 1121                         tobject = backing_object;
 1122                         goto shadowlookup;
 1123                 } else if (m->valid != VM_PAGE_BITS_ALL)
 1124                         goto unlock_tobject;
 1125                 /*
 1126                  * If the page is not in a normal state, skip it.
 1127                  */
 1128                 vm_page_lock(m);
 1129                 if (m->hold_count != 0 || m->wire_count != 0) {
 1130                         vm_page_unlock(m);
 1131                         goto unlock_tobject;
 1132                 }
 1133                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
 1134                     ("vm_object_madvise: page %p is fictitious", m));
 1135                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1136                     ("vm_object_madvise: page %p is not managed", m));
 1137                 if ((m->oflags & VPO_BUSY) || m->busy) {
 1138                         if (advise == MADV_WILLNEED) {
 1139                                 /*
 1140                                  * Reference the page before unlocking and
 1141                                  * sleeping so that the page daemon is less
 1142                                  * likely to reclaim it. 
 1143                                  */
 1144                                 vm_page_aflag_set(m, PGA_REFERENCED);
 1145                         }
 1146                         vm_page_unlock(m);
 1147                         if (object != tobject)
 1148                                 VM_OBJECT_UNLOCK(object);
 1149                         m->oflags |= VPO_WANTED;
 1150                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
 1151                             0);
 1152                         VM_OBJECT_LOCK(object);
 1153                         goto relookup;
 1154                 }
 1155                 if (advise == MADV_WILLNEED) {
 1156                         vm_page_activate(m);
 1157                 } else if (advise == MADV_DONTNEED) {
 1158                         vm_page_dontneed(m);
 1159                 } else if (advise == MADV_FREE) {
 1160                         /*
 1161                          * Mark the page clean.  This will allow the page
 1162                          * to be freed up by the system.  However, such pages
 1163                          * are often reused quickly by malloc()/free()
 1164                          * so we do not do anything that would cause
 1165                          * a page fault if we can help it.
 1166                          *
 1167                          * Specifically, we do not try to actually free
 1168                          * the page now nor do we try to put it in the
 1169                          * cache (which would cause a page fault on reuse).
 1170                          *
 1171                          * But we do make the page is freeable as we
 1172                          * can without actually taking the step of unmapping
 1173                          * it.
 1174                          */
 1175                         pmap_clear_modify(m);
 1176                         m->dirty = 0;
 1177                         m->act_count = 0;
 1178                         vm_page_dontneed(m);
 1179                 }
 1180                 vm_page_unlock(m);
 1181                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1182                         swap_pager_freespace(tobject, tpindex, 1);
 1183 unlock_tobject:
 1184                 if (tobject != object)
 1185                         VM_OBJECT_UNLOCK(tobject);
 1186         }       
 1187         VM_OBJECT_UNLOCK(object);
 1188 }
 1189 
 1190 /*
 1191  *      vm_object_shadow:
 1192  *
 1193  *      Create a new object which is backed by the
 1194  *      specified existing object range.  The source
 1195  *      object reference is deallocated.
 1196  *
 1197  *      The new object and offset into that object
 1198  *      are returned in the source parameters.
 1199  */
 1200 void
 1201 vm_object_shadow(
 1202         vm_object_t *object,    /* IN/OUT */
 1203         vm_ooffset_t *offset,   /* IN/OUT */
 1204         vm_size_t length)
 1205 {
 1206         vm_object_t source;
 1207         vm_object_t result;
 1208 
 1209         source = *object;
 1210 
 1211         /*
 1212          * Don't create the new object if the old object isn't shared.
 1213          */
 1214         if (source != NULL) {
 1215                 VM_OBJECT_LOCK(source);
 1216                 if (source->ref_count == 1 &&
 1217                     source->handle == NULL &&
 1218                     (source->type == OBJT_DEFAULT ||
 1219                      source->type == OBJT_SWAP)) {
 1220                         VM_OBJECT_UNLOCK(source);
 1221                         return;
 1222                 }
 1223                 VM_OBJECT_UNLOCK(source);
 1224         }
 1225 
 1226         /*
 1227          * Allocate a new object with the given length.
 1228          */
 1229         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
 1230 
 1231         /*
 1232          * The new object shadows the source object, adding a reference to it.
 1233          * Our caller changes his reference to point to the new object,
 1234          * removing a reference to the source object.  Net result: no change
 1235          * of reference count.
 1236          *
 1237          * Try to optimize the result object's page color when shadowing
 1238          * in order to maintain page coloring consistency in the combined 
 1239          * shadowed object.
 1240          */
 1241         result->backing_object = source;
 1242         /*
 1243          * Store the offset into the source object, and fix up the offset into
 1244          * the new object.
 1245          */
 1246         result->backing_object_offset = *offset;
 1247         if (source != NULL) {
 1248                 VM_OBJECT_LOCK(source);
 1249                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
 1250                 source->shadow_count++;
 1251 #if VM_NRESERVLEVEL > 0
 1252                 result->flags |= source->flags & OBJ_COLORED;
 1253                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
 1254                     ((1 << (VM_NFREEORDER - 1)) - 1);
 1255 #endif
 1256                 VM_OBJECT_UNLOCK(source);
 1257         }
 1258 
 1259 
 1260         /*
 1261          * Return the new things
 1262          */
 1263         *offset = 0;
 1264         *object = result;
 1265 }
 1266 
 1267 /*
 1268  *      vm_object_split:
 1269  *
 1270  * Split the pages in a map entry into a new object.  This affords
 1271  * easier removal of unused pages, and keeps object inheritance from
 1272  * being a negative impact on memory usage.
 1273  */
 1274 void
 1275 vm_object_split(vm_map_entry_t entry)
 1276 {
 1277         vm_page_t m, m_next;
 1278         vm_object_t orig_object, new_object, source;
 1279         vm_pindex_t idx, offidxstart;
 1280         vm_size_t size;
 1281 
 1282         orig_object = entry->object.vm_object;
 1283         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
 1284                 return;
 1285         if (orig_object->ref_count <= 1)
 1286                 return;
 1287         VM_OBJECT_UNLOCK(orig_object);
 1288 
 1289         offidxstart = OFF_TO_IDX(entry->offset);
 1290         size = atop(entry->end - entry->start);
 1291 
 1292         /*
 1293          * If swap_pager_copy() is later called, it will convert new_object
 1294          * into a swap object.
 1295          */
 1296         new_object = vm_object_allocate(OBJT_DEFAULT, size);
 1297 
 1298         /*
 1299          * At this point, the new object is still private, so the order in
 1300          * which the original and new objects are locked does not matter.
 1301          */
 1302         VM_OBJECT_LOCK(new_object);
 1303         VM_OBJECT_LOCK(orig_object);
 1304         source = orig_object->backing_object;
 1305         if (source != NULL) {
 1306                 VM_OBJECT_LOCK(source);
 1307                 if ((source->flags & OBJ_DEAD) != 0) {
 1308                         VM_OBJECT_UNLOCK(source);
 1309                         VM_OBJECT_UNLOCK(orig_object);
 1310                         VM_OBJECT_UNLOCK(new_object);
 1311                         vm_object_deallocate(new_object);
 1312                         VM_OBJECT_LOCK(orig_object);
 1313                         return;
 1314                 }
 1315                 LIST_INSERT_HEAD(&source->shadow_head,
 1316                                   new_object, shadow_list);
 1317                 source->shadow_count++;
 1318                 vm_object_reference_locked(source);     /* for new_object */
 1319                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1320                 VM_OBJECT_UNLOCK(source);
 1321                 new_object->backing_object_offset = 
 1322                         orig_object->backing_object_offset + entry->offset;
 1323                 new_object->backing_object = source;
 1324         }
 1325         if (orig_object->cred != NULL) {
 1326                 new_object->cred = orig_object->cred;
 1327                 crhold(orig_object->cred);
 1328                 new_object->charge = ptoa(size);
 1329                 KASSERT(orig_object->charge >= ptoa(size),
 1330                     ("orig_object->charge < 0"));
 1331                 orig_object->charge -= ptoa(size);
 1332         }
 1333 retry:
 1334         m = vm_page_find_least(orig_object, offidxstart);
 1335         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
 1336             m = m_next) {
 1337                 m_next = TAILQ_NEXT(m, listq);
 1338 
 1339                 /*
 1340                  * We must wait for pending I/O to complete before we can
 1341                  * rename the page.
 1342                  *
 1343                  * We do not have to VM_PROT_NONE the page as mappings should
 1344                  * not be changed by this operation.
 1345                  */
 1346                 if ((m->oflags & VPO_BUSY) || m->busy) {
 1347                         VM_OBJECT_UNLOCK(new_object);
 1348                         m->oflags |= VPO_WANTED;
 1349                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
 1350                         VM_OBJECT_LOCK(new_object);
 1351                         goto retry;
 1352                 }
 1353                 vm_page_lock(m);
 1354                 vm_page_rename(m, new_object, idx);
 1355                 vm_page_unlock(m);
 1356                 /* page automatically made dirty by rename and cache handled */
 1357                 vm_page_busy(m);
 1358         }
 1359         if (orig_object->type == OBJT_SWAP) {
 1360                 /*
 1361                  * swap_pager_copy() can sleep, in which case the orig_object's
 1362                  * and new_object's locks are released and reacquired. 
 1363                  */
 1364                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
 1365 
 1366                 /*
 1367                  * Transfer any cached pages from orig_object to new_object.
 1368                  */
 1369                 if (__predict_false(orig_object->cache != NULL))
 1370                         vm_page_cache_transfer(orig_object, offidxstart,
 1371                             new_object);
 1372         }
 1373         VM_OBJECT_UNLOCK(orig_object);
 1374         TAILQ_FOREACH(m, &new_object->memq, listq)
 1375                 vm_page_wakeup(m);
 1376         VM_OBJECT_UNLOCK(new_object);
 1377         entry->object.vm_object = new_object;
 1378         entry->offset = 0LL;
 1379         vm_object_deallocate(orig_object);
 1380         VM_OBJECT_LOCK(new_object);
 1381 }
 1382 
 1383 #define OBSC_TEST_ALL_SHADOWED  0x0001
 1384 #define OBSC_COLLAPSE_NOWAIT    0x0002
 1385 #define OBSC_COLLAPSE_WAIT      0x0004
 1386 
 1387 static int
 1388 vm_object_backing_scan(vm_object_t object, int op)
 1389 {
 1390         int r = 1;
 1391         vm_page_t p;
 1392         vm_object_t backing_object;
 1393         vm_pindex_t backing_offset_index;
 1394 
 1395         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1396         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
 1397 
 1398         backing_object = object->backing_object;
 1399         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1400 
 1401         /*
 1402          * Initial conditions
 1403          */
 1404         if (op & OBSC_TEST_ALL_SHADOWED) {
 1405                 /*
 1406                  * We do not want to have to test for the existence of cache
 1407                  * or swap pages in the backing object.  XXX but with the
 1408                  * new swapper this would be pretty easy to do.
 1409                  *
 1410                  * XXX what about anonymous MAP_SHARED memory that hasn't
 1411                  * been ZFOD faulted yet?  If we do not test for this, the
 1412                  * shadow test may succeed! XXX
 1413                  */
 1414                 if (backing_object->type != OBJT_DEFAULT) {
 1415                         return (0);
 1416                 }
 1417         }
 1418         if (op & OBSC_COLLAPSE_WAIT) {
 1419                 vm_object_set_flag(backing_object, OBJ_DEAD);
 1420         }
 1421 
 1422         /*
 1423          * Our scan
 1424          */
 1425         p = TAILQ_FIRST(&backing_object->memq);
 1426         while (p) {
 1427                 vm_page_t next = TAILQ_NEXT(p, listq);
 1428                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
 1429 
 1430                 if (op & OBSC_TEST_ALL_SHADOWED) {
 1431                         vm_page_t pp;
 1432 
 1433                         /*
 1434                          * Ignore pages outside the parent object's range
 1435                          * and outside the parent object's mapping of the 
 1436                          * backing object.
 1437                          *
 1438                          * note that we do not busy the backing object's
 1439                          * page.
 1440                          */
 1441                         if (
 1442                             p->pindex < backing_offset_index ||
 1443                             new_pindex >= object->size
 1444                         ) {
 1445                                 p = next;
 1446                                 continue;
 1447                         }
 1448 
 1449                         /*
 1450                          * See if the parent has the page or if the parent's
 1451                          * object pager has the page.  If the parent has the
 1452                          * page but the page is not valid, the parent's
 1453                          * object pager must have the page.
 1454                          *
 1455                          * If this fails, the parent does not completely shadow
 1456                          * the object and we might as well give up now.
 1457                          */
 1458 
 1459                         pp = vm_page_lookup(object, new_pindex);
 1460                         if (
 1461                             (pp == NULL || pp->valid == 0) &&
 1462                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
 1463                         ) {
 1464                                 r = 0;
 1465                                 break;
 1466                         }
 1467                 }
 1468 
 1469                 /*
 1470                  * Check for busy page
 1471                  */
 1472                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
 1473                         vm_page_t pp;
 1474 
 1475                         if (op & OBSC_COLLAPSE_NOWAIT) {
 1476                                 if ((p->oflags & VPO_BUSY) ||
 1477                                     !p->valid || 
 1478                                     p->busy) {
 1479                                         p = next;
 1480                                         continue;
 1481                                 }
 1482                         } else if (op & OBSC_COLLAPSE_WAIT) {
 1483                                 if ((p->oflags & VPO_BUSY) || p->busy) {
 1484                                         VM_OBJECT_UNLOCK(object);
 1485                                         p->oflags |= VPO_WANTED;
 1486                                         msleep(p, VM_OBJECT_MTX(backing_object),
 1487                                             PDROP | PVM, "vmocol", 0);
 1488                                         VM_OBJECT_LOCK(object);
 1489                                         VM_OBJECT_LOCK(backing_object);
 1490                                         /*
 1491                                          * If we slept, anything could have
 1492                                          * happened.  Since the object is
 1493                                          * marked dead, the backing offset
 1494                                          * should not have changed so we
 1495                                          * just restart our scan.
 1496                                          */
 1497                                         p = TAILQ_FIRST(&backing_object->memq);
 1498                                         continue;
 1499                                 }
 1500                         }
 1501 
 1502                         KASSERT(
 1503                             p->object == backing_object,
 1504                             ("vm_object_backing_scan: object mismatch")
 1505                         );
 1506 
 1507                         /*
 1508                          * Destroy any associated swap
 1509                          */
 1510                         if (backing_object->type == OBJT_SWAP) {
 1511                                 swap_pager_freespace(
 1512                                     backing_object, 
 1513                                     p->pindex,
 1514                                     1
 1515                                 );
 1516                         }
 1517 
 1518                         if (
 1519                             p->pindex < backing_offset_index ||
 1520                             new_pindex >= object->size
 1521                         ) {
 1522                                 /*
 1523                                  * Page is out of the parent object's range, we 
 1524                                  * can simply destroy it. 
 1525                                  */
 1526                                 vm_page_lock(p);
 1527                                 KASSERT(!pmap_page_is_mapped(p),
 1528                                     ("freeing mapped page %p", p));
 1529                                 if (p->wire_count == 0)
 1530                                         vm_page_free(p);
 1531                                 else
 1532                                         vm_page_remove(p);
 1533                                 vm_page_unlock(p);
 1534                                 p = next;
 1535                                 continue;
 1536                         }
 1537 
 1538                         pp = vm_page_lookup(object, new_pindex);
 1539                         if (
 1540                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
 1541                             (pp != NULL && pp->valid == 0)
 1542                         ) {
 1543                                 /*
 1544                                  * The page in the parent is not (yet) valid.
 1545                                  * We don't know anything about the state of
 1546                                  * the original page.  It might be mapped,
 1547                                  * so we must avoid the next if here.
 1548                                  *
 1549                                  * This is due to a race in vm_fault() where
 1550                                  * we must unbusy the original (backing_obj)
 1551                                  * page before we can (re)lock the parent.
 1552                                  * Hence we can get here.
 1553                                  */
 1554                                 p = next;
 1555                                 continue;
 1556                         }
 1557                         if (
 1558                             pp != NULL ||
 1559                             vm_pager_has_page(object, new_pindex, NULL, NULL)
 1560                         ) {
 1561                                 /*
 1562                                  * page already exists in parent OR swap exists
 1563                                  * for this location in the parent.  Destroy 
 1564                                  * the original page from the backing object.
 1565                                  *
 1566                                  * Leave the parent's page alone
 1567                                  */
 1568                                 vm_page_lock(p);
 1569                                 KASSERT(!pmap_page_is_mapped(p),
 1570                                     ("freeing mapped page %p", p));
 1571                                 if (p->wire_count == 0)
 1572                                         vm_page_free(p);
 1573                                 else
 1574                                         vm_page_remove(p);
 1575                                 vm_page_unlock(p);
 1576                                 p = next;
 1577                                 continue;
 1578                         }
 1579 
 1580 #if VM_NRESERVLEVEL > 0
 1581                         /*
 1582                          * Rename the reservation.
 1583                          */
 1584                         vm_reserv_rename(p, object, backing_object,
 1585                             backing_offset_index);
 1586 #endif
 1587 
 1588                         /*
 1589                          * Page does not exist in parent, rename the
 1590                          * page from the backing object to the main object. 
 1591                          *
 1592                          * If the page was mapped to a process, it can remain 
 1593                          * mapped through the rename.
 1594                          */
 1595                         vm_page_lock(p);
 1596                         vm_page_rename(p, object, new_pindex);
 1597                         vm_page_unlock(p);
 1598                         /* page automatically made dirty by rename */
 1599                 }
 1600                 p = next;
 1601         }
 1602         return (r);
 1603 }
 1604 
 1605 
 1606 /*
 1607  * this version of collapse allows the operation to occur earlier and
 1608  * when paging_in_progress is true for an object...  This is not a complete
 1609  * operation, but should plug 99.9% of the rest of the leaks.
 1610  */
 1611 static void
 1612 vm_object_qcollapse(vm_object_t object)
 1613 {
 1614         vm_object_t backing_object = object->backing_object;
 1615 
 1616         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1617         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
 1618 
 1619         if (backing_object->ref_count != 1)
 1620                 return;
 1621 
 1622         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
 1623 }
 1624 
 1625 /*
 1626  *      vm_object_collapse:
 1627  *
 1628  *      Collapse an object with the object backing it.
 1629  *      Pages in the backing object are moved into the
 1630  *      parent, and the backing object is deallocated.
 1631  */
 1632 void
 1633 vm_object_collapse(vm_object_t object)
 1634 {
 1635         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1636         
 1637         while (TRUE) {
 1638                 vm_object_t backing_object;
 1639 
 1640                 /*
 1641                  * Verify that the conditions are right for collapse:
 1642                  *
 1643                  * The object exists and the backing object exists.
 1644                  */
 1645                 if ((backing_object = object->backing_object) == NULL)
 1646                         break;
 1647 
 1648                 /*
 1649                  * we check the backing object first, because it is most likely
 1650                  * not collapsable.
 1651                  */
 1652                 VM_OBJECT_LOCK(backing_object);
 1653                 if (backing_object->handle != NULL ||
 1654                     (backing_object->type != OBJT_DEFAULT &&
 1655                      backing_object->type != OBJT_SWAP) ||
 1656                     (backing_object->flags & OBJ_DEAD) ||
 1657                     object->handle != NULL ||
 1658                     (object->type != OBJT_DEFAULT &&
 1659                      object->type != OBJT_SWAP) ||
 1660                     (object->flags & OBJ_DEAD)) {
 1661                         VM_OBJECT_UNLOCK(backing_object);
 1662                         break;
 1663                 }
 1664 
 1665                 if (
 1666                     object->paging_in_progress != 0 ||
 1667                     backing_object->paging_in_progress != 0
 1668                 ) {
 1669                         vm_object_qcollapse(object);
 1670                         VM_OBJECT_UNLOCK(backing_object);
 1671                         break;
 1672                 }
 1673                 /*
 1674                  * We know that we can either collapse the backing object (if
 1675                  * the parent is the only reference to it) or (perhaps) have
 1676                  * the parent bypass the object if the parent happens to shadow
 1677                  * all the resident pages in the entire backing object.
 1678                  *
 1679                  * This is ignoring pager-backed pages such as swap pages.
 1680                  * vm_object_backing_scan fails the shadowing test in this
 1681                  * case.
 1682                  */
 1683                 if (backing_object->ref_count == 1) {
 1684                         /*
 1685                          * If there is exactly one reference to the backing
 1686                          * object, we can collapse it into the parent.  
 1687                          */
 1688                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
 1689 
 1690 #if VM_NRESERVLEVEL > 0
 1691                         /*
 1692                          * Break any reservations from backing_object.
 1693                          */
 1694                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
 1695                                 vm_reserv_break_all(backing_object);
 1696 #endif
 1697 
 1698                         /*
 1699                          * Move the pager from backing_object to object.
 1700                          */
 1701                         if (backing_object->type == OBJT_SWAP) {
 1702                                 /*
 1703                                  * swap_pager_copy() can sleep, in which case
 1704                                  * the backing_object's and object's locks are
 1705                                  * released and reacquired.
 1706                                  */
 1707                                 swap_pager_copy(
 1708                                     backing_object,
 1709                                     object,
 1710                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
 1711 
 1712                                 /*
 1713                                  * Free any cached pages from backing_object.
 1714                                  */
 1715                                 if (__predict_false(backing_object->cache != NULL))
 1716                                         vm_page_cache_free(backing_object, 0, 0);
 1717                         }
 1718                         /*
 1719                          * Object now shadows whatever backing_object did.
 1720                          * Note that the reference to 
 1721                          * backing_object->backing_object moves from within 
 1722                          * backing_object to within object.
 1723                          */
 1724                         LIST_REMOVE(object, shadow_list);
 1725                         backing_object->shadow_count--;
 1726                         if (backing_object->backing_object) {
 1727                                 VM_OBJECT_LOCK(backing_object->backing_object);
 1728                                 LIST_REMOVE(backing_object, shadow_list);
 1729                                 LIST_INSERT_HEAD(
 1730                                     &backing_object->backing_object->shadow_head,
 1731                                     object, shadow_list);
 1732                                 /*
 1733                                  * The shadow_count has not changed.
 1734                                  */
 1735                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
 1736                         }
 1737                         object->backing_object = backing_object->backing_object;
 1738                         object->backing_object_offset +=
 1739                             backing_object->backing_object_offset;
 1740 
 1741                         /*
 1742                          * Discard backing_object.
 1743                          *
 1744                          * Since the backing object has no pages, no pager left,
 1745                          * and no object references within it, all that is
 1746                          * necessary is to dispose of it.
 1747                          */
 1748                         KASSERT(backing_object->ref_count == 1, (
 1749 "backing_object %p was somehow re-referenced during collapse!",
 1750                             backing_object));
 1751                         VM_OBJECT_UNLOCK(backing_object);
 1752                         vm_object_destroy(backing_object);
 1753 
 1754                         object_collapses++;
 1755                 } else {
 1756                         vm_object_t new_backing_object;
 1757 
 1758                         /*
 1759                          * If we do not entirely shadow the backing object,
 1760                          * there is nothing we can do so we give up.
 1761                          */
 1762                         if (object->resident_page_count != object->size &&
 1763                             vm_object_backing_scan(object,
 1764                             OBSC_TEST_ALL_SHADOWED) == 0) {
 1765                                 VM_OBJECT_UNLOCK(backing_object);
 1766                                 break;
 1767                         }
 1768 
 1769                         /*
 1770                          * Make the parent shadow the next object in the
 1771                          * chain.  Deallocating backing_object will not remove
 1772                          * it, since its reference count is at least 2.
 1773                          */
 1774                         LIST_REMOVE(object, shadow_list);
 1775                         backing_object->shadow_count--;
 1776 
 1777                         new_backing_object = backing_object->backing_object;
 1778                         if ((object->backing_object = new_backing_object) != NULL) {
 1779                                 VM_OBJECT_LOCK(new_backing_object);
 1780                                 LIST_INSERT_HEAD(
 1781                                     &new_backing_object->shadow_head,
 1782                                     object,
 1783                                     shadow_list
 1784                                 );
 1785                                 new_backing_object->shadow_count++;
 1786                                 vm_object_reference_locked(new_backing_object);
 1787                                 VM_OBJECT_UNLOCK(new_backing_object);
 1788                                 object->backing_object_offset +=
 1789                                         backing_object->backing_object_offset;
 1790                         }
 1791 
 1792                         /*
 1793                          * Drop the reference count on backing_object. Since
 1794                          * its ref_count was at least 2, it will not vanish.
 1795                          */
 1796                         backing_object->ref_count--;
 1797                         VM_OBJECT_UNLOCK(backing_object);
 1798                         object_bypasses++;
 1799                 }
 1800 
 1801                 /*
 1802                  * Try again with this object's new backing object.
 1803                  */
 1804         }
 1805 }
 1806 
 1807 /*
 1808  *      vm_object_page_remove:
 1809  *
 1810  *      For the given object, either frees or invalidates each of the
 1811  *      specified pages.  In general, a page is freed.  However, if a page is
 1812  *      wired for any reason other than the existence of a managed, wired
 1813  *      mapping, then it may be invalidated but not removed from the object.
 1814  *      Pages are specified by the given range ["start", "end") and the option
 1815  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
 1816  *      extends from "start" to the end of the object.  If the option
 1817  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
 1818  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
 1819  *      specified, then the pages within the specified range must have no
 1820  *      mappings.  Otherwise, if this option is not specified, any mappings to
 1821  *      the specified pages are removed before the pages are freed or
 1822  *      invalidated.
 1823  *
 1824  *      In general, this operation should only be performed on objects that
 1825  *      contain managed pages.  There are, however, two exceptions.  First, it
 1826  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
 1827  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
 1828  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
 1829  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
 1830  *
 1831  *      The object must be locked.
 1832  */
 1833 void
 1834 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 1835     int options)
 1836 {
 1837         vm_page_t p, next;
 1838         int wirings;
 1839 
 1840         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1841         KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_PHYS) ||
 1842             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
 1843             ("vm_object_page_remove: illegal options for object %p", object));
 1844         if (object->resident_page_count == 0)
 1845                 goto skipmemq;
 1846         vm_object_pip_add(object, 1);
 1847 again:
 1848         p = vm_page_find_least(object, start);
 1849 
 1850         /*
 1851          * Here, the variable "p" is either (1) the page with the least pindex
 1852          * greater than or equal to the parameter "start" or (2) NULL. 
 1853          */
 1854         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 1855                 next = TAILQ_NEXT(p, listq);
 1856 
 1857                 /*
 1858                  * If the page is wired for any reason besides the existence
 1859                  * of managed, wired mappings, then it cannot be freed.  For
 1860                  * example, fictitious pages, which represent device memory,
 1861                  * are inherently wired and cannot be freed.  They can,
 1862                  * however, be invalidated if the option OBJPR_CLEANONLY is
 1863                  * not specified.
 1864                  */
 1865                 vm_page_lock(p);
 1866                 if ((wirings = p->wire_count) != 0 &&
 1867                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
 1868                         if ((options & OBJPR_NOTMAPPED) == 0) {
 1869                                 pmap_remove_all(p);
 1870                                 /* Account for removal of wired mappings. */
 1871                                 if (wirings != 0)
 1872                                         p->wire_count -= wirings;
 1873                         }
 1874                         if ((options & OBJPR_CLEANONLY) == 0) {
 1875                                 p->valid = 0;
 1876                                 vm_page_undirty(p);
 1877                         }
 1878                         vm_page_unlock(p);
 1879                         continue;
 1880                 }
 1881                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
 1882                         goto again;
 1883                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
 1884                     ("vm_object_page_remove: page %p is fictitious", p));
 1885                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
 1886                         if ((options & OBJPR_NOTMAPPED) == 0)
 1887                                 pmap_remove_write(p);
 1888                         if (p->dirty) {
 1889                                 vm_page_unlock(p);
 1890                                 continue;
 1891                         }
 1892                 }
 1893                 if ((options & OBJPR_NOTMAPPED) == 0) {
 1894                         pmap_remove_all(p);
 1895                         /* Account for removal of wired mappings. */
 1896                         if (wirings != 0)
 1897                                 p->wire_count -= wirings;
 1898                 }
 1899                 vm_page_free(p);
 1900                 vm_page_unlock(p);
 1901         }
 1902         vm_object_pip_wakeup(object);
 1903 skipmemq:
 1904         if (__predict_false(object->cache != NULL))
 1905                 vm_page_cache_free(object, start, end);
 1906 }
 1907 
 1908 /*
 1909  *      vm_object_page_cache:
 1910  *
 1911  *      For the given object, attempt to move the specified clean
 1912  *      pages to the cache queue.  If a page is wired for any reason,
 1913  *      then it will not be changed.  Pages are specified by the given
 1914  *      range ["start", "end").  As a special case, if "end" is zero,
 1915  *      then the range extends from "start" to the end of the object.
 1916  *      Any mappings to the specified pages are removed before the
 1917  *      pages are moved to the cache queue.
 1918  *
 1919  *      This operation should only be performed on objects that
 1920  *      contain managed pages.
 1921  *
 1922  *      The object must be locked.
 1923  */
 1924 void
 1925 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1926 {
 1927         struct mtx *mtx, *new_mtx;
 1928         vm_page_t p, next;
 1929 
 1930         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1931         KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_SG &&
 1932             object->type != OBJT_PHYS),
 1933             ("vm_object_page_cache: illegal object %p", object));
 1934         if (object->resident_page_count == 0)
 1935                 return;
 1936         p = vm_page_find_least(object, start);
 1937 
 1938         /*
 1939          * Here, the variable "p" is either (1) the page with the least pindex
 1940          * greater than or equal to the parameter "start" or (2) NULL. 
 1941          */
 1942         mtx = NULL;
 1943         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 1944                 next = TAILQ_NEXT(p, listq);
 1945 
 1946                 /*
 1947                  * Avoid releasing and reacquiring the same page lock.
 1948                  */
 1949                 new_mtx = vm_page_lockptr(p);
 1950                 if (mtx != new_mtx) {
 1951                         if (mtx != NULL)
 1952                                 mtx_unlock(mtx);
 1953                         mtx = new_mtx;
 1954                         mtx_lock(mtx);
 1955                 }
 1956                 vm_page_try_to_cache(p);
 1957         }
 1958         if (mtx != NULL)
 1959                 mtx_unlock(mtx);
 1960 }
 1961 
 1962 /*
 1963  *      Populate the specified range of the object with valid pages.  Returns
 1964  *      TRUE if the range is successfully populated and FALSE otherwise.
 1965  *
 1966  *      Note: This function should be optimized to pass a larger array of
 1967  *      pages to vm_pager_get_pages() before it is applied to a non-
 1968  *      OBJT_DEVICE object.
 1969  *
 1970  *      The object must be locked.
 1971  */
 1972 boolean_t
 1973 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1974 {
 1975         vm_page_t m, ma[1];
 1976         vm_pindex_t pindex;
 1977         int rv;
 1978 
 1979         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1980         for (pindex = start; pindex < end; pindex++) {
 1981                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
 1982                     VM_ALLOC_RETRY);
 1983                 if (m->valid != VM_PAGE_BITS_ALL) {
 1984                         ma[0] = m;
 1985                         rv = vm_pager_get_pages(object, ma, 1, 0);
 1986                         m = vm_page_lookup(object, pindex);
 1987                         if (m == NULL)
 1988                                 break;
 1989                         if (rv != VM_PAGER_OK) {
 1990                                 vm_page_lock(m);
 1991                                 vm_page_free(m);
 1992                                 vm_page_unlock(m);
 1993                                 break;
 1994                         }
 1995                 }
 1996                 /*
 1997                  * Keep "m" busy because a subsequent iteration may unlock
 1998                  * the object.
 1999                  */
 2000         }
 2001         if (pindex > start) {
 2002                 m = vm_page_lookup(object, start);
 2003                 while (m != NULL && m->pindex < pindex) {
 2004                         vm_page_wakeup(m);
 2005                         m = TAILQ_NEXT(m, listq);
 2006                 }
 2007         }
 2008         return (pindex == end);
 2009 }
 2010 
 2011 /*
 2012  *      Routine:        vm_object_coalesce
 2013  *      Function:       Coalesces two objects backing up adjoining
 2014  *                      regions of memory into a single object.
 2015  *
 2016  *      returns TRUE if objects were combined.
 2017  *
 2018  *      NOTE:   Only works at the moment if the second object is NULL -
 2019  *              if it's not, which object do we lock first?
 2020  *
 2021  *      Parameters:
 2022  *              prev_object     First object to coalesce
 2023  *              prev_offset     Offset into prev_object
 2024  *              prev_size       Size of reference to prev_object
 2025  *              next_size       Size of reference to the second object
 2026  *              reserved        Indicator that extension region has
 2027  *                              swap accounted for
 2028  *
 2029  *      Conditions:
 2030  *      The object must *not* be locked.
 2031  */
 2032 boolean_t
 2033 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
 2034     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
 2035 {
 2036         vm_pindex_t next_pindex;
 2037 
 2038         if (prev_object == NULL)
 2039                 return (TRUE);
 2040         VM_OBJECT_LOCK(prev_object);
 2041         if (prev_object->type != OBJT_DEFAULT &&
 2042             prev_object->type != OBJT_SWAP) {
 2043                 VM_OBJECT_UNLOCK(prev_object);
 2044                 return (FALSE);
 2045         }
 2046 
 2047         /*
 2048          * Try to collapse the object first
 2049          */
 2050         vm_object_collapse(prev_object);
 2051 
 2052         /*
 2053          * Can't coalesce if: . more than one reference . paged out . shadows
 2054          * another object . has a copy elsewhere (any of which mean that the
 2055          * pages not mapped to prev_entry may be in use anyway)
 2056          */
 2057         if (prev_object->backing_object != NULL) {
 2058                 VM_OBJECT_UNLOCK(prev_object);
 2059                 return (FALSE);
 2060         }
 2061 
 2062         prev_size >>= PAGE_SHIFT;
 2063         next_size >>= PAGE_SHIFT;
 2064         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
 2065 
 2066         if ((prev_object->ref_count > 1) &&
 2067             (prev_object->size != next_pindex)) {
 2068                 VM_OBJECT_UNLOCK(prev_object);
 2069                 return (FALSE);
 2070         }
 2071 
 2072         /*
 2073          * Account for the charge.
 2074          */
 2075         if (prev_object->cred != NULL) {
 2076 
 2077                 /*
 2078                  * If prev_object was charged, then this mapping,
 2079                  * althought not charged now, may become writable
 2080                  * later. Non-NULL cred in the object would prevent
 2081                  * swap reservation during enabling of the write
 2082                  * access, so reserve swap now. Failed reservation
 2083                  * cause allocation of the separate object for the map
 2084                  * entry, and swap reservation for this entry is
 2085                  * managed in appropriate time.
 2086                  */
 2087                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
 2088                     prev_object->cred)) {
 2089                         return (FALSE);
 2090                 }
 2091                 prev_object->charge += ptoa(next_size);
 2092         }
 2093 
 2094         /*
 2095          * Remove any pages that may still be in the object from a previous
 2096          * deallocation.
 2097          */
 2098         if (next_pindex < prev_object->size) {
 2099                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
 2100                     next_size, 0);
 2101                 if (prev_object->type == OBJT_SWAP)
 2102                         swap_pager_freespace(prev_object,
 2103                                              next_pindex, next_size);
 2104 #if 0
 2105                 if (prev_object->cred != NULL) {
 2106                         KASSERT(prev_object->charge >=
 2107                             ptoa(prev_object->size - next_pindex),
 2108                             ("object %p overcharged 1 %jx %jx", prev_object,
 2109                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
 2110                         prev_object->charge -= ptoa(prev_object->size -
 2111                             next_pindex);
 2112                 }
 2113 #endif
 2114         }
 2115 
 2116         /*
 2117          * Extend the object if necessary.
 2118          */
 2119         if (next_pindex + next_size > prev_object->size)
 2120                 prev_object->size = next_pindex + next_size;
 2121 
 2122         VM_OBJECT_UNLOCK(prev_object);
 2123         return (TRUE);
 2124 }
 2125 
 2126 void
 2127 vm_object_set_writeable_dirty(vm_object_t object)
 2128 {
 2129 
 2130         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2131         if (object->type != OBJT_VNODE)
 2132                 return;
 2133         object->generation++;
 2134         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
 2135                 return;
 2136         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
 2137 }
 2138 
 2139 #include "opt_ddb.h"
 2140 #ifdef DDB
 2141 #include <sys/kernel.h>
 2142 
 2143 #include <sys/cons.h>
 2144 
 2145 #include <ddb/ddb.h>
 2146 
 2147 static int
 2148 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
 2149 {
 2150         vm_map_t tmpm;
 2151         vm_map_entry_t tmpe;
 2152         vm_object_t obj;
 2153         int entcount;
 2154 
 2155         if (map == 0)
 2156                 return 0;
 2157 
 2158         if (entry == 0) {
 2159                 tmpe = map->header.next;
 2160                 entcount = map->nentries;
 2161                 while (entcount-- && (tmpe != &map->header)) {
 2162                         if (_vm_object_in_map(map, object, tmpe)) {
 2163                                 return 1;
 2164                         }
 2165                         tmpe = tmpe->next;
 2166                 }
 2167         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2168                 tmpm = entry->object.sub_map;
 2169                 tmpe = tmpm->header.next;
 2170                 entcount = tmpm->nentries;
 2171                 while (entcount-- && tmpe != &tmpm->header) {
 2172                         if (_vm_object_in_map(tmpm, object, tmpe)) {
 2173                                 return 1;
 2174                         }
 2175                         tmpe = tmpe->next;
 2176                 }
 2177         } else if ((obj = entry->object.vm_object) != NULL) {
 2178                 for (; obj; obj = obj->backing_object)
 2179                         if (obj == object) {
 2180                                 return 1;
 2181                         }
 2182         }
 2183         return 0;
 2184 }
 2185 
 2186 static int
 2187 vm_object_in_map(vm_object_t object)
 2188 {
 2189         struct proc *p;
 2190 
 2191         /* sx_slock(&allproc_lock); */
 2192         FOREACH_PROC_IN_SYSTEM(p) {
 2193                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
 2194                         continue;
 2195                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
 2196                         /* sx_sunlock(&allproc_lock); */
 2197                         return 1;
 2198                 }
 2199         }
 2200         /* sx_sunlock(&allproc_lock); */
 2201         if (_vm_object_in_map(kernel_map, object, 0))
 2202                 return 1;
 2203         if (_vm_object_in_map(kmem_map, object, 0))
 2204                 return 1;
 2205         if (_vm_object_in_map(pager_map, object, 0))
 2206                 return 1;
 2207         if (_vm_object_in_map(buffer_map, object, 0))
 2208                 return 1;
 2209         return 0;
 2210 }
 2211 
 2212 DB_SHOW_COMMAND(vmochk, vm_object_check)
 2213 {
 2214         vm_object_t object;
 2215 
 2216         /*
 2217          * make sure that internal objs are in a map somewhere
 2218          * and none have zero ref counts.
 2219          */
 2220         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2221                 if (object->handle == NULL &&
 2222                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
 2223                         if (object->ref_count == 0) {
 2224                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
 2225                                         (long)object->size);
 2226                         }
 2227                         if (!vm_object_in_map(object)) {
 2228                                 db_printf(
 2229                         "vmochk: internal obj is not in a map: "
 2230                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
 2231                                     object->ref_count, (u_long)object->size, 
 2232                                     (u_long)object->size,
 2233                                     (void *)object->backing_object);
 2234                         }
 2235                 }
 2236         }
 2237 }
 2238 
 2239 /*
 2240  *      vm_object_print:        [ debug ]
 2241  */
 2242 DB_SHOW_COMMAND(object, vm_object_print_static)
 2243 {
 2244         /* XXX convert args. */
 2245         vm_object_t object = (vm_object_t)addr;
 2246         boolean_t full = have_addr;
 2247 
 2248         vm_page_t p;
 2249 
 2250         /* XXX count is an (unused) arg.  Avoid shadowing it. */
 2251 #define count   was_count
 2252 
 2253         int count;
 2254 
 2255         if (object == NULL)
 2256                 return;
 2257 
 2258         db_iprintf(
 2259             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
 2260             object, (int)object->type, (uintmax_t)object->size,
 2261             object->resident_page_count, object->ref_count, object->flags,
 2262             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
 2263         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
 2264             object->shadow_count, 
 2265             object->backing_object ? object->backing_object->ref_count : 0,
 2266             object->backing_object, (uintmax_t)object->backing_object_offset);
 2267 
 2268         if (!full)
 2269                 return;
 2270 
 2271         db_indent += 2;
 2272         count = 0;
 2273         TAILQ_FOREACH(p, &object->memq, listq) {
 2274                 if (count == 0)
 2275                         db_iprintf("memory:=");
 2276                 else if (count == 6) {
 2277                         db_printf("\n");
 2278                         db_iprintf(" ...");
 2279                         count = 0;
 2280                 } else
 2281                         db_printf(",");
 2282                 count++;
 2283 
 2284                 db_printf("(off=0x%jx,page=0x%jx)",
 2285                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
 2286         }
 2287         if (count != 0)
 2288                 db_printf("\n");
 2289         db_indent -= 2;
 2290 }
 2291 
 2292 /* XXX. */
 2293 #undef count
 2294 
 2295 /* XXX need this non-static entry for calling from vm_map_print. */
 2296 void
 2297 vm_object_print(
 2298         /* db_expr_t */ long addr,
 2299         boolean_t have_addr,
 2300         /* db_expr_t */ long count,
 2301         char *modif)
 2302 {
 2303         vm_object_print_static(addr, have_addr, count, modif);
 2304 }
 2305 
 2306 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
 2307 {
 2308         vm_object_t object;
 2309         vm_pindex_t fidx;
 2310         vm_paddr_t pa;
 2311         vm_page_t m, prev_m;
 2312         int rcount, nl, c;
 2313 
 2314         nl = 0;
 2315         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2316                 db_printf("new object: %p\n", (void *)object);
 2317                 if (nl > 18) {
 2318                         c = cngetc();
 2319                         if (c != ' ')
 2320                                 return;
 2321                         nl = 0;
 2322                 }
 2323                 nl++;
 2324                 rcount = 0;
 2325                 fidx = 0;
 2326                 pa = -1;
 2327                 TAILQ_FOREACH(m, &object->memq, listq) {
 2328                         if (m->pindex > 128)
 2329                                 break;
 2330                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
 2331                             prev_m->pindex + 1 != m->pindex) {
 2332                                 if (rcount) {
 2333                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2334                                                 (long)fidx, rcount, (long)pa);
 2335                                         if (nl > 18) {
 2336                                                 c = cngetc();
 2337                                                 if (c != ' ')
 2338                                                         return;
 2339                                                 nl = 0;
 2340                                         }
 2341                                         nl++;
 2342                                         rcount = 0;
 2343                                 }
 2344                         }                               
 2345                         if (rcount &&
 2346                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
 2347                                 ++rcount;
 2348                                 continue;
 2349                         }
 2350                         if (rcount) {
 2351                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2352                                         (long)fidx, rcount, (long)pa);
 2353                                 if (nl > 18) {
 2354                                         c = cngetc();
 2355                                         if (c != ' ')
 2356                                                 return;
 2357                                         nl = 0;
 2358                                 }
 2359                                 nl++;
 2360                         }
 2361                         fidx = m->pindex;
 2362                         pa = VM_PAGE_TO_PHYS(m);
 2363                         rcount = 1;
 2364                 }
 2365                 if (rcount) {
 2366                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2367                                 (long)fidx, rcount, (long)pa);
 2368                         if (nl > 18) {
 2369                                 c = cngetc();
 2370                                 if (c != ' ')
 2371                                         return;
 2372                                 nl = 0;
 2373                         }
 2374                         nl++;
 2375                 }
 2376         }
 2377 }
 2378 #endif /* DDB */

Cache object: 973b7f9b987f592e9674c4fd2c868bc9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.