The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_object.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 /*
   62  *      Virtual memory object module.
   63  */
   64 
   65 #include <sys/cdefs.h>
   66 __FBSDID("$FreeBSD$");
   67 
   68 #include "opt_vm.h"
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/lock.h>
   73 #include <sys/mman.h>
   74 #include <sys/mount.h>
   75 #include <sys/kernel.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/mutex.h>
   78 #include <sys/proc.h>           /* for curproc, pageproc */
   79 #include <sys/socket.h>
   80 #include <sys/resourcevar.h>
   81 #include <sys/vnode.h>
   82 #include <sys/vmmeter.h>
   83 #include <sys/sx.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_param.h>
   87 #include <vm/pmap.h>
   88 #include <vm/vm_map.h>
   89 #include <vm/vm_object.h>
   90 #include <vm/vm_page.h>
   91 #include <vm/vm_pageout.h>
   92 #include <vm/vm_pager.h>
   93 #include <vm/swap_pager.h>
   94 #include <vm/vm_kern.h>
   95 #include <vm/vm_extern.h>
   96 #include <vm/vm_reserv.h>
   97 #include <vm/uma.h>
   98 
   99 static int old_msync;
  100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
  101     "Use old (insecure) msync behavior");
  102 
  103 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
  104                     int pagerflags, int flags, boolean_t *clearobjflags,
  105                     boolean_t *eio);
  106 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
  107                     boolean_t *clearobjflags);
  108 static void     vm_object_qcollapse(vm_object_t object);
  109 static void     vm_object_vndeallocate(vm_object_t object);
  110 
  111 /*
  112  *      Virtual memory objects maintain the actual data
  113  *      associated with allocated virtual memory.  A given
  114  *      page of memory exists within exactly one object.
  115  *
  116  *      An object is only deallocated when all "references"
  117  *      are given up.  Only one "reference" to a given
  118  *      region of an object should be writeable.
  119  *
  120  *      Associated with each object is a list of all resident
  121  *      memory pages belonging to that object; this list is
  122  *      maintained by the "vm_page" module, and locked by the object's
  123  *      lock.
  124  *
  125  *      Each object also records a "pager" routine which is
  126  *      used to retrieve (and store) pages to the proper backing
  127  *      storage.  In addition, objects may be backed by other
  128  *      objects from which they were virtual-copied.
  129  *
  130  *      The only items within the object structure which are
  131  *      modified after time of creation are:
  132  *              reference count         locked by object's lock
  133  *              pager routine           locked by object's lock
  134  *
  135  */
  136 
  137 struct object_q vm_object_list;
  138 struct mtx vm_object_list_mtx;  /* lock for object list and count */
  139 
  140 struct vm_object kernel_object_store;
  141 struct vm_object kmem_object_store;
  142 
  143 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
  144     "VM object stats");
  145 
  146 static long object_collapses;
  147 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
  148     &object_collapses, 0, "VM object collapses");
  149 
  150 static long object_bypasses;
  151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
  152     &object_bypasses, 0, "VM object bypasses");
  153 
  154 static uma_zone_t obj_zone;
  155 
  156 static int vm_object_zinit(void *mem, int size, int flags);
  157 
  158 #ifdef INVARIANTS
  159 static void vm_object_zdtor(void *mem, int size, void *arg);
  160 
  161 static void
  162 vm_object_zdtor(void *mem, int size, void *arg)
  163 {
  164         vm_object_t object;
  165 
  166         object = (vm_object_t)mem;
  167         KASSERT(object->ref_count == 0,
  168             ("object %p ref_count = %d", object, object->ref_count));
  169         KASSERT(TAILQ_EMPTY(&object->memq),
  170             ("object %p has resident pages",
  171             object));
  172 #if VM_NRESERVLEVEL > 0
  173         KASSERT(LIST_EMPTY(&object->rvq),
  174             ("object %p has reservations",
  175             object));
  176 #endif
  177         KASSERT(object->cache == NULL,
  178             ("object %p has cached pages",
  179             object));
  180         KASSERT(object->paging_in_progress == 0,
  181             ("object %p paging_in_progress = %d",
  182             object, object->paging_in_progress));
  183         KASSERT(object->resident_page_count == 0,
  184             ("object %p resident_page_count = %d",
  185             object, object->resident_page_count));
  186         KASSERT(object->shadow_count == 0,
  187             ("object %p shadow_count = %d",
  188             object, object->shadow_count));
  189         KASSERT(object->type == OBJT_DEAD,
  190             ("object %p has non-dead type %d",
  191             object, object->type));
  192 }
  193 #endif
  194 
  195 static int
  196 vm_object_zinit(void *mem, int size, int flags)
  197 {
  198         vm_object_t object;
  199 
  200         object = (vm_object_t)mem;
  201         bzero(&object->mtx, sizeof(object->mtx));
  202         VM_OBJECT_LOCK_INIT(object, "standard object");
  203 
  204         /* These are true for any object that has been freed */
  205         object->type = OBJT_DEAD;
  206         object->ref_count = 0;
  207         object->paging_in_progress = 0;
  208         object->resident_page_count = 0;
  209         object->shadow_count = 0;
  210 
  211         mtx_lock(&vm_object_list_mtx);
  212         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
  213         mtx_unlock(&vm_object_list_mtx);
  214         return (0);
  215 }
  216 
  217 void
  218 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
  219 {
  220 
  221         TAILQ_INIT(&object->memq);
  222         LIST_INIT(&object->shadow_head);
  223 
  224         object->root = NULL;
  225         object->type = type;
  226         object->size = size;
  227         object->generation = 1;
  228         object->ref_count = 1;
  229         object->memattr = VM_MEMATTR_DEFAULT;
  230         object->flags = 0;
  231         object->cred = NULL;
  232         object->charge = 0;
  233         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
  234                 object->flags = OBJ_ONEMAPPING;
  235         object->pg_color = 0;
  236         object->handle = NULL;
  237         object->backing_object = NULL;
  238         object->backing_object_offset = (vm_ooffset_t) 0;
  239 #if VM_NRESERVLEVEL > 0
  240         LIST_INIT(&object->rvq);
  241 #endif
  242         object->cache = NULL;
  243 }
  244 
  245 /*
  246  *      vm_object_init:
  247  *
  248  *      Initialize the VM objects module.
  249  */
  250 void
  251 vm_object_init(void)
  252 {
  253         TAILQ_INIT(&vm_object_list);
  254         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
  255         
  256         VM_OBJECT_LOCK_INIT(kernel_object, "kernel object");
  257         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  258             kernel_object);
  259 #if VM_NRESERVLEVEL > 0
  260         kernel_object->flags |= OBJ_COLORED;
  261         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  262 #endif
  263 
  264         VM_OBJECT_LOCK_INIT(kmem_object, "kmem object");
  265         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
  266             kmem_object);
  267 #if VM_NRESERVLEVEL > 0
  268         kmem_object->flags |= OBJ_COLORED;
  269         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
  270 #endif
  271 
  272         /*
  273          * The lock portion of struct vm_object must be type stable due
  274          * to vm_pageout_fallback_object_lock locking a vm object
  275          * without holding any references to it.
  276          */
  277         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
  278 #ifdef INVARIANTS
  279             vm_object_zdtor,
  280 #else
  281             NULL,
  282 #endif
  283             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
  284 }
  285 
  286 void
  287 vm_object_clear_flag(vm_object_t object, u_short bits)
  288 {
  289 
  290         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  291         object->flags &= ~bits;
  292 }
  293 
  294 /*
  295  *      Sets the default memory attribute for the specified object.  Pages
  296  *      that are allocated to this object are by default assigned this memory
  297  *      attribute.
  298  *
  299  *      Presently, this function must be called before any pages are allocated
  300  *      to the object.  In the future, this requirement may be relaxed for
  301  *      "default" and "swap" objects.
  302  */
  303 int
  304 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
  305 {
  306 
  307         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  308         switch (object->type) {
  309         case OBJT_DEFAULT:
  310         case OBJT_DEVICE:
  311         case OBJT_PHYS:
  312         case OBJT_SG:
  313         case OBJT_SWAP:
  314         case OBJT_VNODE:
  315                 if (!TAILQ_EMPTY(&object->memq))
  316                         return (KERN_FAILURE);
  317                 break;
  318         case OBJT_DEAD:
  319                 return (KERN_INVALID_ARGUMENT);
  320         }
  321         object->memattr = memattr;
  322         return (KERN_SUCCESS);
  323 }
  324 
  325 void
  326 vm_object_pip_add(vm_object_t object, short i)
  327 {
  328 
  329         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  330         object->paging_in_progress += i;
  331 }
  332 
  333 void
  334 vm_object_pip_subtract(vm_object_t object, short i)
  335 {
  336 
  337         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  338         object->paging_in_progress -= i;
  339 }
  340 
  341 void
  342 vm_object_pip_wakeup(vm_object_t object)
  343 {
  344 
  345         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  346         object->paging_in_progress--;
  347         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  348                 vm_object_clear_flag(object, OBJ_PIPWNT);
  349                 wakeup(object);
  350         }
  351 }
  352 
  353 void
  354 vm_object_pip_wakeupn(vm_object_t object, short i)
  355 {
  356 
  357         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  358         if (i)
  359                 object->paging_in_progress -= i;
  360         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
  361                 vm_object_clear_flag(object, OBJ_PIPWNT);
  362                 wakeup(object);
  363         }
  364 }
  365 
  366 void
  367 vm_object_pip_wait(vm_object_t object, char *waitid)
  368 {
  369 
  370         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  371         while (object->paging_in_progress) {
  372                 object->flags |= OBJ_PIPWNT;
  373                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
  374         }
  375 }
  376 
  377 /*
  378  *      vm_object_allocate:
  379  *
  380  *      Returns a new object with the given size.
  381  */
  382 vm_object_t
  383 vm_object_allocate(objtype_t type, vm_pindex_t size)
  384 {
  385         vm_object_t object;
  386 
  387         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
  388         _vm_object_allocate(type, size, object);
  389         return (object);
  390 }
  391 
  392 
  393 /*
  394  *      vm_object_reference:
  395  *
  396  *      Gets another reference to the given object.  Note: OBJ_DEAD
  397  *      objects can be referenced during final cleaning.
  398  */
  399 void
  400 vm_object_reference(vm_object_t object)
  401 {
  402         if (object == NULL)
  403                 return;
  404         VM_OBJECT_LOCK(object);
  405         vm_object_reference_locked(object);
  406         VM_OBJECT_UNLOCK(object);
  407 }
  408 
  409 /*
  410  *      vm_object_reference_locked:
  411  *
  412  *      Gets another reference to the given object.
  413  *
  414  *      The object must be locked.
  415  */
  416 void
  417 vm_object_reference_locked(vm_object_t object)
  418 {
  419         struct vnode *vp;
  420 
  421         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  422         object->ref_count++;
  423         if (object->type == OBJT_VNODE) {
  424                 vp = object->handle;
  425                 vref(vp);
  426         }
  427 }
  428 
  429 /*
  430  * Handle deallocating an object of type OBJT_VNODE.
  431  */
  432 static void
  433 vm_object_vndeallocate(vm_object_t object)
  434 {
  435         struct vnode *vp = (struct vnode *) object->handle;
  436 
  437         VFS_ASSERT_GIANT(vp->v_mount);
  438         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  439         KASSERT(object->type == OBJT_VNODE,
  440             ("vm_object_vndeallocate: not a vnode object"));
  441         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
  442 #ifdef INVARIANTS
  443         if (object->ref_count == 0) {
  444                 vprint("vm_object_vndeallocate", vp);
  445                 panic("vm_object_vndeallocate: bad object reference count");
  446         }
  447 #endif
  448 
  449         if (object->ref_count > 1) {
  450                 object->ref_count--;
  451                 VM_OBJECT_UNLOCK(object);
  452                 /* vrele may need the vnode lock. */
  453                 vrele(vp);
  454         } else {
  455                 vhold(vp);
  456                 VM_OBJECT_UNLOCK(object);
  457                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  458                 vdrop(vp);
  459                 VM_OBJECT_LOCK(object);
  460                 object->ref_count--;
  461                 if (object->type == OBJT_DEAD) {
  462                         VM_OBJECT_UNLOCK(object);
  463                         VOP_UNLOCK(vp, 0);
  464                 } else {
  465                         if (object->ref_count == 0)
  466                                 VOP_UNSET_TEXT(vp);
  467                         VM_OBJECT_UNLOCK(object);
  468                         vput(vp);
  469                 }
  470         }
  471 }
  472 
  473 /*
  474  *      vm_object_deallocate:
  475  *
  476  *      Release a reference to the specified object,
  477  *      gained either through a vm_object_allocate
  478  *      or a vm_object_reference call.  When all references
  479  *      are gone, storage associated with this object
  480  *      may be relinquished.
  481  *
  482  *      No object may be locked.
  483  */
  484 void
  485 vm_object_deallocate(vm_object_t object)
  486 {
  487         vm_object_t temp;
  488 
  489         while (object != NULL) {
  490                 int vfslocked;
  491 
  492                 vfslocked = 0;
  493         restart:
  494                 VM_OBJECT_LOCK(object);
  495                 if (object->type == OBJT_VNODE) {
  496                         struct vnode *vp = (struct vnode *) object->handle;
  497 
  498                         /*
  499                          * Conditionally acquire Giant for a vnode-backed
  500                          * object.  We have to be careful since the type of
  501                          * a vnode object can change while the object is
  502                          * unlocked.
  503                          */
  504                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
  505                                 vfslocked = 1;
  506                                 if (!mtx_trylock(&Giant)) {
  507                                         VM_OBJECT_UNLOCK(object);
  508                                         mtx_lock(&Giant);
  509                                         goto restart;
  510                                 }
  511                         }
  512                         vm_object_vndeallocate(object);
  513                         VFS_UNLOCK_GIANT(vfslocked);
  514                         return;
  515                 } else
  516                         /*
  517                          * This is to handle the case that the object
  518                          * changed type while we dropped its lock to
  519                          * obtain Giant.
  520                          */
  521                         VFS_UNLOCK_GIANT(vfslocked);
  522 
  523                 KASSERT(object->ref_count != 0,
  524                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
  525 
  526                 /*
  527                  * If the reference count goes to 0 we start calling
  528                  * vm_object_terminate() on the object chain.
  529                  * A ref count of 1 may be a special case depending on the
  530                  * shadow count being 0 or 1.
  531                  */
  532                 object->ref_count--;
  533                 if (object->ref_count > 1) {
  534                         VM_OBJECT_UNLOCK(object);
  535                         return;
  536                 } else if (object->ref_count == 1) {
  537                         if (object->shadow_count == 0 &&
  538                             object->handle == NULL &&
  539                             (object->type == OBJT_DEFAULT ||
  540                              object->type == OBJT_SWAP)) {
  541                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
  542                         } else if ((object->shadow_count == 1) &&
  543                             (object->handle == NULL) &&
  544                             (object->type == OBJT_DEFAULT ||
  545                              object->type == OBJT_SWAP)) {
  546                                 vm_object_t robject;
  547 
  548                                 robject = LIST_FIRST(&object->shadow_head);
  549                                 KASSERT(robject != NULL,
  550                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
  551                                          object->ref_count,
  552                                          object->shadow_count));
  553                                 if (!VM_OBJECT_TRYLOCK(robject)) {
  554                                         /*
  555                                          * Avoid a potential deadlock.
  556                                          */
  557                                         object->ref_count++;
  558                                         VM_OBJECT_UNLOCK(object);
  559                                         /*
  560                                          * More likely than not the thread
  561                                          * holding robject's lock has lower
  562                                          * priority than the current thread.
  563                                          * Let the lower priority thread run.
  564                                          */
  565                                         pause("vmo_de", 1);
  566                                         continue;
  567                                 }
  568                                 /*
  569                                  * Collapse object into its shadow unless its
  570                                  * shadow is dead.  In that case, object will
  571                                  * be deallocated by the thread that is
  572                                  * deallocating its shadow.
  573                                  */
  574                                 if ((robject->flags & OBJ_DEAD) == 0 &&
  575                                     (robject->handle == NULL) &&
  576                                     (robject->type == OBJT_DEFAULT ||
  577                                      robject->type == OBJT_SWAP)) {
  578 
  579                                         robject->ref_count++;
  580 retry:
  581                                         if (robject->paging_in_progress) {
  582                                                 VM_OBJECT_UNLOCK(object);
  583                                                 vm_object_pip_wait(robject,
  584                                                     "objde1");
  585                                                 temp = robject->backing_object;
  586                                                 if (object == temp) {
  587                                                         VM_OBJECT_LOCK(object);
  588                                                         goto retry;
  589                                                 }
  590                                         } else if (object->paging_in_progress) {
  591                                                 VM_OBJECT_UNLOCK(robject);
  592                                                 object->flags |= OBJ_PIPWNT;
  593                                                 msleep(object,
  594                                                     VM_OBJECT_MTX(object),
  595                                                     PDROP | PVM, "objde2", 0);
  596                                                 VM_OBJECT_LOCK(robject);
  597                                                 temp = robject->backing_object;
  598                                                 if (object == temp) {
  599                                                         VM_OBJECT_LOCK(object);
  600                                                         goto retry;
  601                                                 }
  602                                         } else
  603                                                 VM_OBJECT_UNLOCK(object);
  604 
  605                                         if (robject->ref_count == 1) {
  606                                                 robject->ref_count--;
  607                                                 object = robject;
  608                                                 goto doterm;
  609                                         }
  610                                         object = robject;
  611                                         vm_object_collapse(object);
  612                                         VM_OBJECT_UNLOCK(object);
  613                                         continue;
  614                                 }
  615                                 VM_OBJECT_UNLOCK(robject);
  616                         }
  617                         VM_OBJECT_UNLOCK(object);
  618                         return;
  619                 }
  620 doterm:
  621                 temp = object->backing_object;
  622                 if (temp != NULL) {
  623                         VM_OBJECT_LOCK(temp);
  624                         LIST_REMOVE(object, shadow_list);
  625                         temp->shadow_count--;
  626                         VM_OBJECT_UNLOCK(temp);
  627                         object->backing_object = NULL;
  628                 }
  629                 /*
  630                  * Don't double-terminate, we could be in a termination
  631                  * recursion due to the terminate having to sync data
  632                  * to disk.
  633                  */
  634                 if ((object->flags & OBJ_DEAD) == 0)
  635                         vm_object_terminate(object);
  636                 else
  637                         VM_OBJECT_UNLOCK(object);
  638                 object = temp;
  639         }
  640 }
  641 
  642 /*
  643  *      vm_object_destroy removes the object from the global object list
  644  *      and frees the space for the object.
  645  */
  646 void
  647 vm_object_destroy(vm_object_t object)
  648 {
  649 
  650         /*
  651          * Release the allocation charge.
  652          */
  653         if (object->cred != NULL) {
  654                 swap_release_by_cred(object->charge, object->cred);
  655                 object->charge = 0;
  656                 crfree(object->cred);
  657                 object->cred = NULL;
  658         }
  659 
  660         /*
  661          * Free the space for the object.
  662          */
  663         uma_zfree(obj_zone, object);
  664 }
  665 
  666 /*
  667  *      vm_object_terminate actually destroys the specified object, freeing
  668  *      up all previously used resources.
  669  *
  670  *      The object must be locked.
  671  *      This routine may block.
  672  */
  673 void
  674 vm_object_terminate(vm_object_t object)
  675 {
  676         vm_page_t p, p_next;
  677 
  678         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  679 
  680         /*
  681          * Make sure no one uses us.
  682          */
  683         vm_object_set_flag(object, OBJ_DEAD);
  684 
  685         /*
  686          * wait for the pageout daemon to be done with the object
  687          */
  688         vm_object_pip_wait(object, "objtrm");
  689 
  690         KASSERT(!object->paging_in_progress,
  691                 ("vm_object_terminate: pageout in progress"));
  692 
  693         /*
  694          * Clean and free the pages, as appropriate. All references to the
  695          * object are gone, so we don't need to lock it.
  696          */
  697         if (object->type == OBJT_VNODE) {
  698                 struct vnode *vp = (struct vnode *)object->handle;
  699 
  700                 /*
  701                  * Clean pages and flush buffers.
  702                  */
  703                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  704                 VM_OBJECT_UNLOCK(object);
  705 
  706                 vinvalbuf(vp, V_SAVE, 0, 0);
  707 
  708                 VM_OBJECT_LOCK(object);
  709         }
  710 
  711         KASSERT(object->ref_count == 0, 
  712                 ("vm_object_terminate: object with references, ref_count=%d",
  713                 object->ref_count));
  714 
  715         /*
  716          * Free any remaining pageable pages.  This also removes them from the
  717          * paging queues.  However, don't free wired pages, just remove them
  718          * from the object.  Rather than incrementally removing each page from
  719          * the object, the page and object are reset to any empty state. 
  720          */
  721         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
  722                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
  723                     ("vm_object_terminate: freeing busy page %p", p));
  724                 vm_page_lock(p);
  725                 /*
  726                  * Optimize the page's removal from the object by resetting
  727                  * its "object" field.  Specifically, if the page is not
  728                  * wired, then the effect of this assignment is that
  729                  * vm_page_free()'s call to vm_page_remove() will return
  730                  * immediately without modifying the page or the object.
  731                  */ 
  732                 p->object = NULL;
  733                 if (p->wire_count == 0) {
  734                         vm_page_free(p);
  735                         PCPU_INC(cnt.v_pfree);
  736                 }
  737                 vm_page_unlock(p);
  738         }
  739         /*
  740          * If the object contained any pages, then reset it to an empty state.
  741          * None of the object's fields, including "resident_page_count", were
  742          * modified by the preceding loop.
  743          */
  744         if (object->resident_page_count != 0) {
  745                 object->root = NULL;
  746                 TAILQ_INIT(&object->memq);
  747                 object->resident_page_count = 0;
  748                 if (object->type == OBJT_VNODE)
  749                         vdrop(object->handle);
  750         }
  751 
  752 #if VM_NRESERVLEVEL > 0
  753         if (__predict_false(!LIST_EMPTY(&object->rvq)))
  754                 vm_reserv_break_all(object);
  755 #endif
  756         if (__predict_false(object->cache != NULL))
  757                 vm_page_cache_free(object, 0, 0);
  758 
  759         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
  760             object->type == OBJT_SWAP,
  761             ("%s: non-swap obj %p has cred", __func__, object));
  762 
  763         /*
  764          * Let the pager know object is dead.
  765          */
  766         vm_pager_deallocate(object);
  767         VM_OBJECT_UNLOCK(object);
  768 
  769         vm_object_destroy(object);
  770 }
  771 
  772 /*
  773  * Make the page read-only so that we can clear the object flags.  However, if
  774  * this is a nosync mmap then the object is likely to stay dirty so do not
  775  * mess with the page and do not clear the object flags.  Returns TRUE if the
  776  * page should be flushed, and FALSE otherwise.
  777  */
  778 static boolean_t
  779 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
  780 {
  781 
  782         /*
  783          * If we have been asked to skip nosync pages and this is a
  784          * nosync page, skip it.  Note that the object flags were not
  785          * cleared in this case so we do not have to set them.
  786          */
  787         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
  788                 *clearobjflags = FALSE;
  789                 return (FALSE);
  790         } else {
  791                 pmap_remove_write(p);
  792                 return (p->dirty != 0);
  793         }
  794 }
  795 
  796 /*
  797  *      vm_object_page_clean
  798  *
  799  *      Clean all dirty pages in the specified range of object.  Leaves page 
  800  *      on whatever queue it is currently on.   If NOSYNC is set then do not
  801  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
  802  *      leaving the object dirty.
  803  *
  804  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
  805  *      synchronous clustering mode implementation.
  806  *
  807  *      Odd semantics: if start == end, we clean everything.
  808  *
  809  *      The object must be locked.
  810  *
  811  *      Returns FALSE if some page from the range was not written, as
  812  *      reported by the pager, and TRUE otherwise.
  813  */
  814 boolean_t
  815 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
  816     int flags)
  817 {
  818         vm_page_t np, p;
  819         vm_pindex_t pi, tend, tstart;
  820         int curgeneration, n, pagerflags;
  821         boolean_t clearobjflags, eio, res;
  822 
  823         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
  824         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  825         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
  826         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
  827             object->resident_page_count == 0)
  828                 return (TRUE);
  829 
  830         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
  831             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
  832         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
  833 
  834         tstart = OFF_TO_IDX(start);
  835         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
  836         clearobjflags = tstart == 0 && tend >= object->size;
  837         res = TRUE;
  838 
  839 rescan:
  840         curgeneration = object->generation;
  841 
  842         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
  843                 pi = p->pindex;
  844                 if (pi >= tend)
  845                         break;
  846                 np = TAILQ_NEXT(p, listq);
  847                 if (p->valid == 0)
  848                         continue;
  849                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
  850                         if (object->generation != curgeneration) {
  851                                 if ((flags & OBJPC_SYNC) != 0)
  852                                         goto rescan;
  853                                 else
  854                                         clearobjflags = FALSE;
  855                         }
  856                         np = vm_page_find_least(object, pi);
  857                         continue;
  858                 }
  859                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
  860                         continue;
  861 
  862                 n = vm_object_page_collect_flush(object, p, pagerflags,
  863                     flags, &clearobjflags, &eio);
  864                 if (eio) {
  865                         res = FALSE;
  866                         clearobjflags = FALSE;
  867                 }
  868                 if (object->generation != curgeneration) {
  869                         if ((flags & OBJPC_SYNC) != 0)
  870                                 goto rescan;
  871                         else
  872                                 clearobjflags = FALSE;
  873                 }
  874 
  875                 /*
  876                  * If the VOP_PUTPAGES() did a truncated write, so
  877                  * that even the first page of the run is not fully
  878                  * written, vm_pageout_flush() returns 0 as the run
  879                  * length.  Since the condition that caused truncated
  880                  * write may be permanent, e.g. exhausted free space,
  881                  * accepting n == 0 would cause an infinite loop.
  882                  *
  883                  * Forwarding the iterator leaves the unwritten page
  884                  * behind, but there is not much we can do there if
  885                  * filesystem refuses to write it.
  886                  */
  887                 if (n == 0) {
  888                         n = 1;
  889                         clearobjflags = FALSE;
  890                 }
  891                 np = vm_page_find_least(object, pi + n);
  892         }
  893 #if 0
  894         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
  895 #endif
  896 
  897         if (clearobjflags)
  898                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
  899         return (res);
  900 }
  901 
  902 static int
  903 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
  904     int flags, boolean_t *clearobjflags, boolean_t *eio)
  905 {
  906         vm_page_t ma[vm_pageout_page_count], p_first, tp;
  907         int count, i, mreq, runlen;
  908 
  909         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
  910         vm_page_lock_assert(p, MA_NOTOWNED);
  911         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  912 
  913         count = 1;
  914         mreq = 0;
  915 
  916         for (tp = p; count < vm_pageout_page_count; count++) {
  917                 tp = vm_page_next(tp);
  918                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
  919                         break;
  920                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  921                         break;
  922         }
  923 
  924         for (p_first = p; count < vm_pageout_page_count; count++) {
  925                 tp = vm_page_prev(p_first);
  926                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
  927                         break;
  928                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
  929                         break;
  930                 p_first = tp;
  931                 mreq++;
  932         }
  933 
  934         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
  935                 ma[i] = tp;
  936 
  937         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
  938         return (runlen);
  939 }
  940 
  941 /*
  942  * Note that there is absolutely no sense in writing out
  943  * anonymous objects, so we track down the vnode object
  944  * to write out.
  945  * We invalidate (remove) all pages from the address space
  946  * for semantic correctness.
  947  *
  948  * If the backing object is a device object with unmanaged pages, then any
  949  * mappings to the specified range of pages must be removed before this
  950  * function is called.
  951  *
  952  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
  953  * may start out with a NULL object.
  954  */
  955 boolean_t
  956 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
  957     boolean_t syncio, boolean_t invalidate)
  958 {
  959         vm_object_t backing_object;
  960         struct vnode *vp;
  961         struct mount *mp;
  962         int error, flags, fsync_after;
  963         boolean_t res;
  964 
  965         if (object == NULL)
  966                 return (TRUE);
  967         res = TRUE;
  968         error = 0;
  969         VM_OBJECT_LOCK(object);
  970         while ((backing_object = object->backing_object) != NULL) {
  971                 VM_OBJECT_LOCK(backing_object);
  972                 offset += object->backing_object_offset;
  973                 VM_OBJECT_UNLOCK(object);
  974                 object = backing_object;
  975                 if (object->size < OFF_TO_IDX(offset + size))
  976                         size = IDX_TO_OFF(object->size) - offset;
  977         }
  978         /*
  979          * Flush pages if writing is allowed, invalidate them
  980          * if invalidation requested.  Pages undergoing I/O
  981          * will be ignored by vm_object_page_remove().
  982          *
  983          * We cannot lock the vnode and then wait for paging
  984          * to complete without deadlocking against vm_fault.
  985          * Instead we simply call vm_object_page_remove() and
  986          * allow it to block internally on a page-by-page
  987          * basis when it encounters pages undergoing async
  988          * I/O.
  989          */
  990         if (object->type == OBJT_VNODE &&
  991             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
  992                 int vfslocked;
  993                 vp = object->handle;
  994                 VM_OBJECT_UNLOCK(object);
  995                 (void) vn_start_write(vp, &mp, V_WAIT);
  996                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  997                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  998                 if (syncio && !invalidate && offset == 0 &&
  999                     OFF_TO_IDX(size) == object->size) {
 1000                         /*
 1001                          * If syncing the whole mapping of the file,
 1002                          * it is faster to schedule all the writes in
 1003                          * async mode, also allowing the clustering,
 1004                          * and then wait for i/o to complete.
 1005                          */
 1006                         flags = 0;
 1007                         fsync_after = TRUE;
 1008                 } else {
 1009                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
 1010                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
 1011                         fsync_after = FALSE;
 1012                 }
 1013                 VM_OBJECT_LOCK(object);
 1014                 res = vm_object_page_clean(object, offset, offset + size,
 1015                     flags);
 1016                 VM_OBJECT_UNLOCK(object);
 1017                 if (fsync_after)
 1018                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
 1019                 VOP_UNLOCK(vp, 0);
 1020                 VFS_UNLOCK_GIANT(vfslocked);
 1021                 vn_finished_write(mp);
 1022                 if (error != 0)
 1023                         res = FALSE;
 1024                 VM_OBJECT_LOCK(object);
 1025         }
 1026         if ((object->type == OBJT_VNODE ||
 1027              object->type == OBJT_DEVICE) && invalidate) {
 1028                 if (object->type == OBJT_DEVICE)
 1029                         /*
 1030                          * The option OBJPR_NOTMAPPED must be passed here
 1031                          * because vm_object_page_remove() cannot remove
 1032                          * unmanaged mappings.
 1033                          */
 1034                         flags = OBJPR_NOTMAPPED;
 1035                 else if (old_msync)
 1036                         flags = OBJPR_NOTWIRED;
 1037                 else
 1038                         flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED;
 1039                 vm_object_page_remove(object, OFF_TO_IDX(offset),
 1040                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
 1041         }
 1042         VM_OBJECT_UNLOCK(object);
 1043         return (res);
 1044 }
 1045 
 1046 /*
 1047  *      vm_object_madvise:
 1048  *
 1049  *      Implements the madvise function at the object/page level.
 1050  *
 1051  *      MADV_WILLNEED   (any object)
 1052  *
 1053  *          Activate the specified pages if they are resident.
 1054  *
 1055  *      MADV_DONTNEED   (any object)
 1056  *
 1057  *          Deactivate the specified pages if they are resident.
 1058  *
 1059  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
 1060  *                       OBJ_ONEMAPPING only)
 1061  *
 1062  *          Deactivate and clean the specified pages if they are
 1063  *          resident.  This permits the process to reuse the pages
 1064  *          without faulting or the kernel to reclaim the pages
 1065  *          without I/O.
 1066  */
 1067 void
 1068 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
 1069     int advise)
 1070 {
 1071         vm_pindex_t tpindex;
 1072         vm_object_t backing_object, tobject;
 1073         vm_page_t m;
 1074 
 1075         if (object == NULL)
 1076                 return;
 1077         VM_OBJECT_LOCK(object);
 1078         /*
 1079          * Locate and adjust resident pages
 1080          */
 1081         for (; pindex < end; pindex += 1) {
 1082 relookup:
 1083                 tobject = object;
 1084                 tpindex = pindex;
 1085 shadowlookup:
 1086                 /*
 1087                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
 1088                  * and those pages must be OBJ_ONEMAPPING.
 1089                  */
 1090                 if (advise == MADV_FREE) {
 1091                         if ((tobject->type != OBJT_DEFAULT &&
 1092                              tobject->type != OBJT_SWAP) ||
 1093                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
 1094                                 goto unlock_tobject;
 1095                         }
 1096                 } else if (tobject->type == OBJT_PHYS)
 1097                         goto unlock_tobject;
 1098                 m = vm_page_lookup(tobject, tpindex);
 1099                 if (m == NULL && advise == MADV_WILLNEED) {
 1100                         /*
 1101                          * If the page is cached, reactivate it.
 1102                          */
 1103                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
 1104                             VM_ALLOC_NOBUSY);
 1105                 }
 1106                 if (m == NULL) {
 1107                         /*
 1108                          * There may be swap even if there is no backing page
 1109                          */
 1110                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1111                                 swap_pager_freespace(tobject, tpindex, 1);
 1112                         /*
 1113                          * next object
 1114                          */
 1115                         backing_object = tobject->backing_object;
 1116                         if (backing_object == NULL)
 1117                                 goto unlock_tobject;
 1118                         VM_OBJECT_LOCK(backing_object);
 1119                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
 1120                         if (tobject != object)
 1121                                 VM_OBJECT_UNLOCK(tobject);
 1122                         tobject = backing_object;
 1123                         goto shadowlookup;
 1124                 } else if (m->valid != VM_PAGE_BITS_ALL)
 1125                         goto unlock_tobject;
 1126                 /*
 1127                  * If the page is not in a normal state, skip it.
 1128                  */
 1129                 vm_page_lock(m);
 1130                 if (m->hold_count != 0 || m->wire_count != 0) {
 1131                         vm_page_unlock(m);
 1132                         goto unlock_tobject;
 1133                 }
 1134                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
 1135                     ("vm_object_madvise: page %p is fictitious", m));
 1136                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1137                     ("vm_object_madvise: page %p is not managed", m));
 1138                 if ((m->oflags & VPO_BUSY) || m->busy) {
 1139                         if (advise == MADV_WILLNEED) {
 1140                                 /*
 1141                                  * Reference the page before unlocking and
 1142                                  * sleeping so that the page daemon is less
 1143                                  * likely to reclaim it. 
 1144                                  */
 1145                                 vm_page_aflag_set(m, PGA_REFERENCED);
 1146                         }
 1147                         vm_page_unlock(m);
 1148                         if (object != tobject)
 1149                                 VM_OBJECT_UNLOCK(object);
 1150                         m->oflags |= VPO_WANTED;
 1151                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
 1152                             0);
 1153                         VM_OBJECT_LOCK(object);
 1154                         goto relookup;
 1155                 }
 1156                 if (advise == MADV_WILLNEED) {
 1157                         vm_page_activate(m);
 1158                 } else if (advise == MADV_DONTNEED) {
 1159                         vm_page_dontneed(m);
 1160                 } else if (advise == MADV_FREE) {
 1161                         /*
 1162                          * Mark the page clean.  This will allow the page
 1163                          * to be freed up by the system.  However, such pages
 1164                          * are often reused quickly by malloc()/free()
 1165                          * so we do not do anything that would cause
 1166                          * a page fault if we can help it.
 1167                          *
 1168                          * Specifically, we do not try to actually free
 1169                          * the page now nor do we try to put it in the
 1170                          * cache (which would cause a page fault on reuse).
 1171                          *
 1172                          * But we do make the page is freeable as we
 1173                          * can without actually taking the step of unmapping
 1174                          * it.
 1175                          */
 1176                         pmap_clear_modify(m);
 1177                         m->dirty = 0;
 1178                         m->act_count = 0;
 1179                         vm_page_dontneed(m);
 1180                 }
 1181                 vm_page_unlock(m);
 1182                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
 1183                         swap_pager_freespace(tobject, tpindex, 1);
 1184 unlock_tobject:
 1185                 if (tobject != object)
 1186                         VM_OBJECT_UNLOCK(tobject);
 1187         }       
 1188         VM_OBJECT_UNLOCK(object);
 1189 }
 1190 
 1191 /*
 1192  *      vm_object_shadow:
 1193  *
 1194  *      Create a new object which is backed by the
 1195  *      specified existing object range.  The source
 1196  *      object reference is deallocated.
 1197  *
 1198  *      The new object and offset into that object
 1199  *      are returned in the source parameters.
 1200  */
 1201 void
 1202 vm_object_shadow(
 1203         vm_object_t *object,    /* IN/OUT */
 1204         vm_ooffset_t *offset,   /* IN/OUT */
 1205         vm_size_t length)
 1206 {
 1207         vm_object_t source;
 1208         vm_object_t result;
 1209 
 1210         source = *object;
 1211 
 1212         /*
 1213          * Don't create the new object if the old object isn't shared.
 1214          */
 1215         if (source != NULL) {
 1216                 VM_OBJECT_LOCK(source);
 1217                 if (source->ref_count == 1 &&
 1218                     source->handle == NULL &&
 1219                     (source->type == OBJT_DEFAULT ||
 1220                      source->type == OBJT_SWAP)) {
 1221                         VM_OBJECT_UNLOCK(source);
 1222                         return;
 1223                 }
 1224                 VM_OBJECT_UNLOCK(source);
 1225         }
 1226 
 1227         /*
 1228          * Allocate a new object with the given length.
 1229          */
 1230         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
 1231 
 1232         /*
 1233          * The new object shadows the source object, adding a reference to it.
 1234          * Our caller changes his reference to point to the new object,
 1235          * removing a reference to the source object.  Net result: no change
 1236          * of reference count.
 1237          *
 1238          * Try to optimize the result object's page color when shadowing
 1239          * in order to maintain page coloring consistency in the combined 
 1240          * shadowed object.
 1241          */
 1242         result->backing_object = source;
 1243         /*
 1244          * Store the offset into the source object, and fix up the offset into
 1245          * the new object.
 1246          */
 1247         result->backing_object_offset = *offset;
 1248         if (source != NULL) {
 1249                 VM_OBJECT_LOCK(source);
 1250                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
 1251                 source->shadow_count++;
 1252 #if VM_NRESERVLEVEL > 0
 1253                 result->flags |= source->flags & OBJ_COLORED;
 1254                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
 1255                     ((1 << (VM_NFREEORDER - 1)) - 1);
 1256 #endif
 1257                 VM_OBJECT_UNLOCK(source);
 1258         }
 1259 
 1260 
 1261         /*
 1262          * Return the new things
 1263          */
 1264         *offset = 0;
 1265         *object = result;
 1266 }
 1267 
 1268 /*
 1269  *      vm_object_split:
 1270  *
 1271  * Split the pages in a map entry into a new object.  This affords
 1272  * easier removal of unused pages, and keeps object inheritance from
 1273  * being a negative impact on memory usage.
 1274  */
 1275 void
 1276 vm_object_split(vm_map_entry_t entry)
 1277 {
 1278         vm_page_t m, m_next;
 1279         vm_object_t orig_object, new_object, source;
 1280         vm_pindex_t idx, offidxstart;
 1281         vm_size_t size;
 1282 
 1283         orig_object = entry->object.vm_object;
 1284         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
 1285                 return;
 1286         if (orig_object->ref_count <= 1)
 1287                 return;
 1288         VM_OBJECT_UNLOCK(orig_object);
 1289 
 1290         offidxstart = OFF_TO_IDX(entry->offset);
 1291         size = atop(entry->end - entry->start);
 1292 
 1293         /*
 1294          * If swap_pager_copy() is later called, it will convert new_object
 1295          * into a swap object.
 1296          */
 1297         new_object = vm_object_allocate(OBJT_DEFAULT, size);
 1298 
 1299         /*
 1300          * At this point, the new object is still private, so the order in
 1301          * which the original and new objects are locked does not matter.
 1302          */
 1303         VM_OBJECT_LOCK(new_object);
 1304         VM_OBJECT_LOCK(orig_object);
 1305         source = orig_object->backing_object;
 1306         if (source != NULL) {
 1307                 VM_OBJECT_LOCK(source);
 1308                 if ((source->flags & OBJ_DEAD) != 0) {
 1309                         VM_OBJECT_UNLOCK(source);
 1310                         VM_OBJECT_UNLOCK(orig_object);
 1311                         VM_OBJECT_UNLOCK(new_object);
 1312                         vm_object_deallocate(new_object);
 1313                         VM_OBJECT_LOCK(orig_object);
 1314                         return;
 1315                 }
 1316                 LIST_INSERT_HEAD(&source->shadow_head,
 1317                                   new_object, shadow_list);
 1318                 source->shadow_count++;
 1319                 vm_object_reference_locked(source);     /* for new_object */
 1320                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
 1321                 VM_OBJECT_UNLOCK(source);
 1322                 new_object->backing_object_offset = 
 1323                         orig_object->backing_object_offset + entry->offset;
 1324                 new_object->backing_object = source;
 1325         }
 1326         if (orig_object->cred != NULL) {
 1327                 new_object->cred = orig_object->cred;
 1328                 crhold(orig_object->cred);
 1329                 new_object->charge = ptoa(size);
 1330                 KASSERT(orig_object->charge >= ptoa(size),
 1331                     ("orig_object->charge < 0"));
 1332                 orig_object->charge -= ptoa(size);
 1333         }
 1334 retry:
 1335         m = vm_page_find_least(orig_object, offidxstart);
 1336         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
 1337             m = m_next) {
 1338                 m_next = TAILQ_NEXT(m, listq);
 1339 
 1340                 /*
 1341                  * We must wait for pending I/O to complete before we can
 1342                  * rename the page.
 1343                  *
 1344                  * We do not have to VM_PROT_NONE the page as mappings should
 1345                  * not be changed by this operation.
 1346                  */
 1347                 if ((m->oflags & VPO_BUSY) || m->busy) {
 1348                         VM_OBJECT_UNLOCK(new_object);
 1349                         m->oflags |= VPO_WANTED;
 1350                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
 1351                         VM_OBJECT_LOCK(new_object);
 1352                         goto retry;
 1353                 }
 1354                 vm_page_lock(m);
 1355                 vm_page_rename(m, new_object, idx);
 1356                 vm_page_unlock(m);
 1357                 /* page automatically made dirty by rename and cache handled */
 1358                 vm_page_busy(m);
 1359         }
 1360         if (orig_object->type == OBJT_SWAP) {
 1361                 /*
 1362                  * swap_pager_copy() can sleep, in which case the orig_object's
 1363                  * and new_object's locks are released and reacquired. 
 1364                  */
 1365                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
 1366 
 1367                 /*
 1368                  * Transfer any cached pages from orig_object to new_object.
 1369                  */
 1370                 if (__predict_false(orig_object->cache != NULL))
 1371                         vm_page_cache_transfer(orig_object, offidxstart,
 1372                             new_object);
 1373         }
 1374         VM_OBJECT_UNLOCK(orig_object);
 1375         TAILQ_FOREACH(m, &new_object->memq, listq)
 1376                 vm_page_wakeup(m);
 1377         VM_OBJECT_UNLOCK(new_object);
 1378         entry->object.vm_object = new_object;
 1379         entry->offset = 0LL;
 1380         vm_object_deallocate(orig_object);
 1381         VM_OBJECT_LOCK(new_object);
 1382 }
 1383 
 1384 #define OBSC_TEST_ALL_SHADOWED  0x0001
 1385 #define OBSC_COLLAPSE_NOWAIT    0x0002
 1386 #define OBSC_COLLAPSE_WAIT      0x0004
 1387 
 1388 static int
 1389 vm_object_backing_scan(vm_object_t object, int op)
 1390 {
 1391         int r = 1;
 1392         vm_page_t p;
 1393         vm_object_t backing_object;
 1394         vm_pindex_t backing_offset_index;
 1395 
 1396         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1397         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
 1398 
 1399         backing_object = object->backing_object;
 1400         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
 1401 
 1402         /*
 1403          * Initial conditions
 1404          */
 1405         if (op & OBSC_TEST_ALL_SHADOWED) {
 1406                 /*
 1407                  * We do not want to have to test for the existence of cache
 1408                  * or swap pages in the backing object.  XXX but with the
 1409                  * new swapper this would be pretty easy to do.
 1410                  *
 1411                  * XXX what about anonymous MAP_SHARED memory that hasn't
 1412                  * been ZFOD faulted yet?  If we do not test for this, the
 1413                  * shadow test may succeed! XXX
 1414                  */
 1415                 if (backing_object->type != OBJT_DEFAULT) {
 1416                         return (0);
 1417                 }
 1418         }
 1419         if (op & OBSC_COLLAPSE_WAIT) {
 1420                 vm_object_set_flag(backing_object, OBJ_DEAD);
 1421         }
 1422 
 1423         /*
 1424          * Our scan
 1425          */
 1426         p = TAILQ_FIRST(&backing_object->memq);
 1427         while (p) {
 1428                 vm_page_t next = TAILQ_NEXT(p, listq);
 1429                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
 1430 
 1431                 if (op & OBSC_TEST_ALL_SHADOWED) {
 1432                         vm_page_t pp;
 1433 
 1434                         /*
 1435                          * Ignore pages outside the parent object's range
 1436                          * and outside the parent object's mapping of the 
 1437                          * backing object.
 1438                          *
 1439                          * note that we do not busy the backing object's
 1440                          * page.
 1441                          */
 1442                         if (
 1443                             p->pindex < backing_offset_index ||
 1444                             new_pindex >= object->size
 1445                         ) {
 1446                                 p = next;
 1447                                 continue;
 1448                         }
 1449 
 1450                         /*
 1451                          * See if the parent has the page or if the parent's
 1452                          * object pager has the page.  If the parent has the
 1453                          * page but the page is not valid, the parent's
 1454                          * object pager must have the page.
 1455                          *
 1456                          * If this fails, the parent does not completely shadow
 1457                          * the object and we might as well give up now.
 1458                          */
 1459 
 1460                         pp = vm_page_lookup(object, new_pindex);
 1461                         if (
 1462                             (pp == NULL || pp->valid == 0) &&
 1463                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
 1464                         ) {
 1465                                 r = 0;
 1466                                 break;
 1467                         }
 1468                 }
 1469 
 1470                 /*
 1471                  * Check for busy page
 1472                  */
 1473                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
 1474                         vm_page_t pp;
 1475 
 1476                         if (op & OBSC_COLLAPSE_NOWAIT) {
 1477                                 if ((p->oflags & VPO_BUSY) ||
 1478                                     !p->valid || 
 1479                                     p->busy) {
 1480                                         p = next;
 1481                                         continue;
 1482                                 }
 1483                         } else if (op & OBSC_COLLAPSE_WAIT) {
 1484                                 if ((p->oflags & VPO_BUSY) || p->busy) {
 1485                                         VM_OBJECT_UNLOCK(object);
 1486                                         p->oflags |= VPO_WANTED;
 1487                                         msleep(p, VM_OBJECT_MTX(backing_object),
 1488                                             PDROP | PVM, "vmocol", 0);
 1489                                         VM_OBJECT_LOCK(object);
 1490                                         VM_OBJECT_LOCK(backing_object);
 1491                                         /*
 1492                                          * If we slept, anything could have
 1493                                          * happened.  Since the object is
 1494                                          * marked dead, the backing offset
 1495                                          * should not have changed so we
 1496                                          * just restart our scan.
 1497                                          */
 1498                                         p = TAILQ_FIRST(&backing_object->memq);
 1499                                         continue;
 1500                                 }
 1501                         }
 1502 
 1503                         KASSERT(
 1504                             p->object == backing_object,
 1505                             ("vm_object_backing_scan: object mismatch")
 1506                         );
 1507 
 1508                         /*
 1509                          * Destroy any associated swap
 1510                          */
 1511                         if (backing_object->type == OBJT_SWAP) {
 1512                                 swap_pager_freespace(
 1513                                     backing_object, 
 1514                                     p->pindex,
 1515                                     1
 1516                                 );
 1517                         }
 1518 
 1519                         if (
 1520                             p->pindex < backing_offset_index ||
 1521                             new_pindex >= object->size
 1522                         ) {
 1523                                 /*
 1524                                  * Page is out of the parent object's range, we 
 1525                                  * can simply destroy it. 
 1526                                  */
 1527                                 vm_page_lock(p);
 1528                                 KASSERT(!pmap_page_is_mapped(p),
 1529                                     ("freeing mapped page %p", p));
 1530                                 if (p->wire_count == 0)
 1531                                         vm_page_free(p);
 1532                                 else
 1533                                         vm_page_remove(p);
 1534                                 vm_page_unlock(p);
 1535                                 p = next;
 1536                                 continue;
 1537                         }
 1538 
 1539                         pp = vm_page_lookup(object, new_pindex);
 1540                         if (
 1541                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
 1542                             (pp != NULL && pp->valid == 0)
 1543                         ) {
 1544                                 /*
 1545                                  * The page in the parent is not (yet) valid.
 1546                                  * We don't know anything about the state of
 1547                                  * the original page.  It might be mapped,
 1548                                  * so we must avoid the next if here.
 1549                                  *
 1550                                  * This is due to a race in vm_fault() where
 1551                                  * we must unbusy the original (backing_obj)
 1552                                  * page before we can (re)lock the parent.
 1553                                  * Hence we can get here.
 1554                                  */
 1555                                 p = next;
 1556                                 continue;
 1557                         }
 1558                         if (
 1559                             pp != NULL ||
 1560                             vm_pager_has_page(object, new_pindex, NULL, NULL)
 1561                         ) {
 1562                                 /*
 1563                                  * page already exists in parent OR swap exists
 1564                                  * for this location in the parent.  Destroy 
 1565                                  * the original page from the backing object.
 1566                                  *
 1567                                  * Leave the parent's page alone
 1568                                  */
 1569                                 vm_page_lock(p);
 1570                                 KASSERT(!pmap_page_is_mapped(p),
 1571                                     ("freeing mapped page %p", p));
 1572                                 if (p->wire_count == 0)
 1573                                         vm_page_free(p);
 1574                                 else
 1575                                         vm_page_remove(p);
 1576                                 vm_page_unlock(p);
 1577                                 p = next;
 1578                                 continue;
 1579                         }
 1580 
 1581 #if VM_NRESERVLEVEL > 0
 1582                         /*
 1583                          * Rename the reservation.
 1584                          */
 1585                         vm_reserv_rename(p, object, backing_object,
 1586                             backing_offset_index);
 1587 #endif
 1588 
 1589                         /*
 1590                          * Page does not exist in parent, rename the
 1591                          * page from the backing object to the main object. 
 1592                          *
 1593                          * If the page was mapped to a process, it can remain 
 1594                          * mapped through the rename.
 1595                          */
 1596                         vm_page_lock(p);
 1597                         vm_page_rename(p, object, new_pindex);
 1598                         vm_page_unlock(p);
 1599                         /* page automatically made dirty by rename */
 1600                 }
 1601                 p = next;
 1602         }
 1603         return (r);
 1604 }
 1605 
 1606 
 1607 /*
 1608  * this version of collapse allows the operation to occur earlier and
 1609  * when paging_in_progress is true for an object...  This is not a complete
 1610  * operation, but should plug 99.9% of the rest of the leaks.
 1611  */
 1612 static void
 1613 vm_object_qcollapse(vm_object_t object)
 1614 {
 1615         vm_object_t backing_object = object->backing_object;
 1616 
 1617         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1618         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
 1619 
 1620         if (backing_object->ref_count != 1)
 1621                 return;
 1622 
 1623         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
 1624 }
 1625 
 1626 /*
 1627  *      vm_object_collapse:
 1628  *
 1629  *      Collapse an object with the object backing it.
 1630  *      Pages in the backing object are moved into the
 1631  *      parent, and the backing object is deallocated.
 1632  */
 1633 void
 1634 vm_object_collapse(vm_object_t object)
 1635 {
 1636         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1637         
 1638         while (TRUE) {
 1639                 vm_object_t backing_object;
 1640 
 1641                 /*
 1642                  * Verify that the conditions are right for collapse:
 1643                  *
 1644                  * The object exists and the backing object exists.
 1645                  */
 1646                 if ((backing_object = object->backing_object) == NULL)
 1647                         break;
 1648 
 1649                 /*
 1650                  * we check the backing object first, because it is most likely
 1651                  * not collapsable.
 1652                  */
 1653                 VM_OBJECT_LOCK(backing_object);
 1654                 if (backing_object->handle != NULL ||
 1655                     (backing_object->type != OBJT_DEFAULT &&
 1656                      backing_object->type != OBJT_SWAP) ||
 1657                     (backing_object->flags & OBJ_DEAD) ||
 1658                     object->handle != NULL ||
 1659                     (object->type != OBJT_DEFAULT &&
 1660                      object->type != OBJT_SWAP) ||
 1661                     (object->flags & OBJ_DEAD)) {
 1662                         VM_OBJECT_UNLOCK(backing_object);
 1663                         break;
 1664                 }
 1665 
 1666                 if (
 1667                     object->paging_in_progress != 0 ||
 1668                     backing_object->paging_in_progress != 0
 1669                 ) {
 1670                         vm_object_qcollapse(object);
 1671                         VM_OBJECT_UNLOCK(backing_object);
 1672                         break;
 1673                 }
 1674                 /*
 1675                  * We know that we can either collapse the backing object (if
 1676                  * the parent is the only reference to it) or (perhaps) have
 1677                  * the parent bypass the object if the parent happens to shadow
 1678                  * all the resident pages in the entire backing object.
 1679                  *
 1680                  * This is ignoring pager-backed pages such as swap pages.
 1681                  * vm_object_backing_scan fails the shadowing test in this
 1682                  * case.
 1683                  */
 1684                 if (backing_object->ref_count == 1) {
 1685                         /*
 1686                          * If there is exactly one reference to the backing
 1687                          * object, we can collapse it into the parent.  
 1688                          */
 1689                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
 1690 
 1691 #if VM_NRESERVLEVEL > 0
 1692                         /*
 1693                          * Break any reservations from backing_object.
 1694                          */
 1695                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
 1696                                 vm_reserv_break_all(backing_object);
 1697 #endif
 1698 
 1699                         /*
 1700                          * Move the pager from backing_object to object.
 1701                          */
 1702                         if (backing_object->type == OBJT_SWAP) {
 1703                                 /*
 1704                                  * swap_pager_copy() can sleep, in which case
 1705                                  * the backing_object's and object's locks are
 1706                                  * released and reacquired.
 1707                                  */
 1708                                 swap_pager_copy(
 1709                                     backing_object,
 1710                                     object,
 1711                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
 1712 
 1713                                 /*
 1714                                  * Free any cached pages from backing_object.
 1715                                  */
 1716                                 if (__predict_false(backing_object->cache != NULL))
 1717                                         vm_page_cache_free(backing_object, 0, 0);
 1718                         }
 1719                         /*
 1720                          * Object now shadows whatever backing_object did.
 1721                          * Note that the reference to 
 1722                          * backing_object->backing_object moves from within 
 1723                          * backing_object to within object.
 1724                          */
 1725                         LIST_REMOVE(object, shadow_list);
 1726                         backing_object->shadow_count--;
 1727                         if (backing_object->backing_object) {
 1728                                 VM_OBJECT_LOCK(backing_object->backing_object);
 1729                                 LIST_REMOVE(backing_object, shadow_list);
 1730                                 LIST_INSERT_HEAD(
 1731                                     &backing_object->backing_object->shadow_head,
 1732                                     object, shadow_list);
 1733                                 /*
 1734                                  * The shadow_count has not changed.
 1735                                  */
 1736                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
 1737                         }
 1738                         object->backing_object = backing_object->backing_object;
 1739                         object->backing_object_offset +=
 1740                             backing_object->backing_object_offset;
 1741 
 1742                         /*
 1743                          * Discard backing_object.
 1744                          *
 1745                          * Since the backing object has no pages, no pager left,
 1746                          * and no object references within it, all that is
 1747                          * necessary is to dispose of it.
 1748                          */
 1749                         KASSERT(backing_object->ref_count == 1, (
 1750 "backing_object %p was somehow re-referenced during collapse!",
 1751                             backing_object));
 1752                         backing_object->type = OBJT_DEAD;
 1753                         backing_object->ref_count = 0;
 1754                         VM_OBJECT_UNLOCK(backing_object);
 1755                         vm_object_destroy(backing_object);
 1756 
 1757                         object_collapses++;
 1758                 } else {
 1759                         vm_object_t new_backing_object;
 1760 
 1761                         /*
 1762                          * If we do not entirely shadow the backing object,
 1763                          * there is nothing we can do so we give up.
 1764                          */
 1765                         if (object->resident_page_count != object->size &&
 1766                             vm_object_backing_scan(object,
 1767                             OBSC_TEST_ALL_SHADOWED) == 0) {
 1768                                 VM_OBJECT_UNLOCK(backing_object);
 1769                                 break;
 1770                         }
 1771 
 1772                         /*
 1773                          * Make the parent shadow the next object in the
 1774                          * chain.  Deallocating backing_object will not remove
 1775                          * it, since its reference count is at least 2.
 1776                          */
 1777                         LIST_REMOVE(object, shadow_list);
 1778                         backing_object->shadow_count--;
 1779 
 1780                         new_backing_object = backing_object->backing_object;
 1781                         if ((object->backing_object = new_backing_object) != NULL) {
 1782                                 VM_OBJECT_LOCK(new_backing_object);
 1783                                 LIST_INSERT_HEAD(
 1784                                     &new_backing_object->shadow_head,
 1785                                     object,
 1786                                     shadow_list
 1787                                 );
 1788                                 new_backing_object->shadow_count++;
 1789                                 vm_object_reference_locked(new_backing_object);
 1790                                 VM_OBJECT_UNLOCK(new_backing_object);
 1791                                 object->backing_object_offset +=
 1792                                         backing_object->backing_object_offset;
 1793                         }
 1794 
 1795                         /*
 1796                          * Drop the reference count on backing_object. Since
 1797                          * its ref_count was at least 2, it will not vanish.
 1798                          */
 1799                         backing_object->ref_count--;
 1800                         VM_OBJECT_UNLOCK(backing_object);
 1801                         object_bypasses++;
 1802                 }
 1803 
 1804                 /*
 1805                  * Try again with this object's new backing object.
 1806                  */
 1807         }
 1808 }
 1809 
 1810 /*
 1811  *      vm_object_page_remove:
 1812  *
 1813  *      For the given object, either frees or invalidates each of the
 1814  *      specified pages.  In general, a page is freed.  However, if a page is
 1815  *      wired for any reason other than the existence of a managed, wired
 1816  *      mapping, then it may be invalidated but not removed from the object.
 1817  *      Pages are specified by the given range ["start", "end") and the option
 1818  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
 1819  *      extends from "start" to the end of the object.  If the option
 1820  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
 1821  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
 1822  *      specified, then the pages within the specified range must have no
 1823  *      mappings.  Otherwise, if this option is not specified, any mappings to
 1824  *      the specified pages are removed before the pages are freed or
 1825  *      invalidated.
 1826  *
 1827  *      In general, this operation should only be performed on objects that
 1828  *      contain managed pages.  There are, however, two exceptions.  First, it
 1829  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
 1830  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
 1831  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
 1832  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
 1833  *
 1834  *      The object must be locked.
 1835  */
 1836 void
 1837 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
 1838     int options)
 1839 {
 1840         vm_page_t p, next;
 1841         int wirings;
 1842 
 1843         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1844         KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_PHYS) ||
 1845             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
 1846             ("vm_object_page_remove: illegal options for object %p", object));
 1847         if (object->resident_page_count == 0)
 1848                 goto skipmemq;
 1849         vm_object_pip_add(object, 1);
 1850 again:
 1851         p = vm_page_find_least(object, start);
 1852 
 1853         /*
 1854          * Here, the variable "p" is either (1) the page with the least pindex
 1855          * greater than or equal to the parameter "start" or (2) NULL. 
 1856          */
 1857         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 1858                 next = TAILQ_NEXT(p, listq);
 1859 
 1860                 /*
 1861                  * If the page is wired for any reason besides the existence
 1862                  * of managed, wired mappings, then it cannot be freed.  For
 1863                  * example, fictitious pages, which represent device memory,
 1864                  * are inherently wired and cannot be freed.  They can,
 1865                  * however, be invalidated if the option OBJPR_CLEANONLY is
 1866                  * not specified.
 1867                  */
 1868                 vm_page_lock(p);
 1869                 if ((wirings = p->wire_count) != 0 &&
 1870                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
 1871                         if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) ==
 1872                             0) {
 1873                                 pmap_remove_all(p);
 1874                                 /* Account for removal of wired mappings. */
 1875                                 if (wirings != 0)
 1876                                         p->wire_count -= wirings;
 1877                         }
 1878                         if ((options & OBJPR_CLEANONLY) == 0) {
 1879                                 p->valid = 0;
 1880                                 vm_page_undirty(p);
 1881                         }
 1882                         goto next;
 1883                 }
 1884                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
 1885                         goto again;
 1886                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
 1887                     ("vm_object_page_remove: page %p is fictitious", p));
 1888                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
 1889                         if ((options & OBJPR_NOTMAPPED) == 0)
 1890                                 pmap_remove_write(p);
 1891                         if (p->dirty)
 1892                                 goto next;
 1893                 }
 1894                 if ((options & OBJPR_NOTMAPPED) == 0) {
 1895                         if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0)
 1896                                 goto next;
 1897                         pmap_remove_all(p);
 1898                         /* Account for removal of wired mappings. */
 1899                         if (wirings != 0) {
 1900                                 KASSERT(p->wire_count == wirings,
 1901                                     ("inconsistent wire count %d %d %p",
 1902                                     p->wire_count, wirings, p));
 1903                                 p->wire_count = 0;
 1904                                 atomic_subtract_int(&cnt.v_wire_count, 1);
 1905                         }
 1906                 }
 1907                 vm_page_free(p);
 1908 next:
 1909                 vm_page_unlock(p);
 1910         }
 1911         vm_object_pip_wakeup(object);
 1912 skipmemq:
 1913         if (__predict_false(object->cache != NULL))
 1914                 vm_page_cache_free(object, start, end);
 1915 }
 1916 
 1917 /*
 1918  *      vm_object_page_cache:
 1919  *
 1920  *      For the given object, attempt to move the specified clean
 1921  *      pages to the cache queue.  If a page is wired for any reason,
 1922  *      then it will not be changed.  Pages are specified by the given
 1923  *      range ["start", "end").  As a special case, if "end" is zero,
 1924  *      then the range extends from "start" to the end of the object.
 1925  *      Any mappings to the specified pages are removed before the
 1926  *      pages are moved to the cache queue.
 1927  *
 1928  *      This operation should only be performed on objects that
 1929  *      contain managed pages.
 1930  *
 1931  *      The object must be locked.
 1932  */
 1933 void
 1934 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1935 {
 1936         struct mtx *mtx, *new_mtx;
 1937         vm_page_t p, next;
 1938 
 1939         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1940         KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_SG &&
 1941             object->type != OBJT_PHYS),
 1942             ("vm_object_page_cache: illegal object %p", object));
 1943         if (object->resident_page_count == 0)
 1944                 return;
 1945         p = vm_page_find_least(object, start);
 1946 
 1947         /*
 1948          * Here, the variable "p" is either (1) the page with the least pindex
 1949          * greater than or equal to the parameter "start" or (2) NULL. 
 1950          */
 1951         mtx = NULL;
 1952         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
 1953                 next = TAILQ_NEXT(p, listq);
 1954 
 1955                 /*
 1956                  * Avoid releasing and reacquiring the same page lock.
 1957                  */
 1958                 new_mtx = vm_page_lockptr(p);
 1959                 if (mtx != new_mtx) {
 1960                         if (mtx != NULL)
 1961                                 mtx_unlock(mtx);
 1962                         mtx = new_mtx;
 1963                         mtx_lock(mtx);
 1964                 }
 1965                 vm_page_try_to_cache(p);
 1966         }
 1967         if (mtx != NULL)
 1968                 mtx_unlock(mtx);
 1969 }
 1970 
 1971 /*
 1972  *      Populate the specified range of the object with valid pages.  Returns
 1973  *      TRUE if the range is successfully populated and FALSE otherwise.
 1974  *
 1975  *      Note: This function should be optimized to pass a larger array of
 1976  *      pages to vm_pager_get_pages() before it is applied to a non-
 1977  *      OBJT_DEVICE object.
 1978  *
 1979  *      The object must be locked.
 1980  */
 1981 boolean_t
 1982 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1983 {
 1984         vm_page_t m, ma[1];
 1985         vm_pindex_t pindex;
 1986         int rv;
 1987 
 1988         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1989         for (pindex = start; pindex < end; pindex++) {
 1990                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
 1991                     VM_ALLOC_RETRY);
 1992                 if (m->valid != VM_PAGE_BITS_ALL) {
 1993                         ma[0] = m;
 1994                         rv = vm_pager_get_pages(object, ma, 1, 0);
 1995                         m = vm_page_lookup(object, pindex);
 1996                         if (m == NULL)
 1997                                 break;
 1998                         if (rv != VM_PAGER_OK) {
 1999                                 vm_page_lock(m);
 2000                                 vm_page_free(m);
 2001                                 vm_page_unlock(m);
 2002                                 break;
 2003                         }
 2004                 }
 2005                 /*
 2006                  * Keep "m" busy because a subsequent iteration may unlock
 2007                  * the object.
 2008                  */
 2009         }
 2010         if (pindex > start) {
 2011                 m = vm_page_lookup(object, start);
 2012                 while (m != NULL && m->pindex < pindex) {
 2013                         vm_page_wakeup(m);
 2014                         m = TAILQ_NEXT(m, listq);
 2015                 }
 2016         }
 2017         return (pindex == end);
 2018 }
 2019 
 2020 /*
 2021  *      Routine:        vm_object_coalesce
 2022  *      Function:       Coalesces two objects backing up adjoining
 2023  *                      regions of memory into a single object.
 2024  *
 2025  *      returns TRUE if objects were combined.
 2026  *
 2027  *      NOTE:   Only works at the moment if the second object is NULL -
 2028  *              if it's not, which object do we lock first?
 2029  *
 2030  *      Parameters:
 2031  *              prev_object     First object to coalesce
 2032  *              prev_offset     Offset into prev_object
 2033  *              prev_size       Size of reference to prev_object
 2034  *              next_size       Size of reference to the second object
 2035  *              reserved        Indicator that extension region has
 2036  *                              swap accounted for
 2037  *
 2038  *      Conditions:
 2039  *      The object must *not* be locked.
 2040  */
 2041 boolean_t
 2042 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
 2043     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
 2044 {
 2045         vm_pindex_t next_pindex;
 2046 
 2047         if (prev_object == NULL)
 2048                 return (TRUE);
 2049         VM_OBJECT_LOCK(prev_object);
 2050         if (prev_object->type != OBJT_DEFAULT &&
 2051             prev_object->type != OBJT_SWAP) {
 2052                 VM_OBJECT_UNLOCK(prev_object);
 2053                 return (FALSE);
 2054         }
 2055 
 2056         /*
 2057          * Try to collapse the object first
 2058          */
 2059         vm_object_collapse(prev_object);
 2060 
 2061         /*
 2062          * Can't coalesce if: . more than one reference . paged out . shadows
 2063          * another object . has a copy elsewhere (any of which mean that the
 2064          * pages not mapped to prev_entry may be in use anyway)
 2065          */
 2066         if (prev_object->backing_object != NULL) {
 2067                 VM_OBJECT_UNLOCK(prev_object);
 2068                 return (FALSE);
 2069         }
 2070 
 2071         prev_size >>= PAGE_SHIFT;
 2072         next_size >>= PAGE_SHIFT;
 2073         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
 2074 
 2075         if ((prev_object->ref_count > 1) &&
 2076             (prev_object->size != next_pindex)) {
 2077                 VM_OBJECT_UNLOCK(prev_object);
 2078                 return (FALSE);
 2079         }
 2080 
 2081         /*
 2082          * Account for the charge.
 2083          */
 2084         if (prev_object->cred != NULL) {
 2085 
 2086                 /*
 2087                  * If prev_object was charged, then this mapping,
 2088                  * althought not charged now, may become writable
 2089                  * later. Non-NULL cred in the object would prevent
 2090                  * swap reservation during enabling of the write
 2091                  * access, so reserve swap now. Failed reservation
 2092                  * cause allocation of the separate object for the map
 2093                  * entry, and swap reservation for this entry is
 2094                  * managed in appropriate time.
 2095                  */
 2096                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
 2097                     prev_object->cred)) {
 2098                         return (FALSE);
 2099                 }
 2100                 prev_object->charge += ptoa(next_size);
 2101         }
 2102 
 2103         /*
 2104          * Remove any pages that may still be in the object from a previous
 2105          * deallocation.
 2106          */
 2107         if (next_pindex < prev_object->size) {
 2108                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
 2109                     next_size, 0);
 2110                 if (prev_object->type == OBJT_SWAP)
 2111                         swap_pager_freespace(prev_object,
 2112                                              next_pindex, next_size);
 2113 #if 0
 2114                 if (prev_object->cred != NULL) {
 2115                         KASSERT(prev_object->charge >=
 2116                             ptoa(prev_object->size - next_pindex),
 2117                             ("object %p overcharged 1 %jx %jx", prev_object,
 2118                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
 2119                         prev_object->charge -= ptoa(prev_object->size -
 2120                             next_pindex);
 2121                 }
 2122 #endif
 2123         }
 2124 
 2125         /*
 2126          * Extend the object if necessary.
 2127          */
 2128         if (next_pindex + next_size > prev_object->size)
 2129                 prev_object->size = next_pindex + next_size;
 2130 
 2131         VM_OBJECT_UNLOCK(prev_object);
 2132         return (TRUE);
 2133 }
 2134 
 2135 void
 2136 vm_object_set_writeable_dirty(vm_object_t object)
 2137 {
 2138 
 2139         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2140         if (object->type != OBJT_VNODE)
 2141                 return;
 2142         object->generation++;
 2143         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
 2144                 return;
 2145         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
 2146 }
 2147 
 2148 #include "opt_ddb.h"
 2149 #ifdef DDB
 2150 #include <sys/kernel.h>
 2151 
 2152 #include <sys/cons.h>
 2153 
 2154 #include <ddb/ddb.h>
 2155 
 2156 static int
 2157 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
 2158 {
 2159         vm_map_t tmpm;
 2160         vm_map_entry_t tmpe;
 2161         vm_object_t obj;
 2162         int entcount;
 2163 
 2164         if (map == 0)
 2165                 return 0;
 2166 
 2167         if (entry == 0) {
 2168                 tmpe = map->header.next;
 2169                 entcount = map->nentries;
 2170                 while (entcount-- && (tmpe != &map->header)) {
 2171                         if (_vm_object_in_map(map, object, tmpe)) {
 2172                                 return 1;
 2173                         }
 2174                         tmpe = tmpe->next;
 2175                 }
 2176         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 2177                 tmpm = entry->object.sub_map;
 2178                 tmpe = tmpm->header.next;
 2179                 entcount = tmpm->nentries;
 2180                 while (entcount-- && tmpe != &tmpm->header) {
 2181                         if (_vm_object_in_map(tmpm, object, tmpe)) {
 2182                                 return 1;
 2183                         }
 2184                         tmpe = tmpe->next;
 2185                 }
 2186         } else if ((obj = entry->object.vm_object) != NULL) {
 2187                 for (; obj; obj = obj->backing_object)
 2188                         if (obj == object) {
 2189                                 return 1;
 2190                         }
 2191         }
 2192         return 0;
 2193 }
 2194 
 2195 static int
 2196 vm_object_in_map(vm_object_t object)
 2197 {
 2198         struct proc *p;
 2199 
 2200         /* sx_slock(&allproc_lock); */
 2201         FOREACH_PROC_IN_SYSTEM(p) {
 2202                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
 2203                         continue;
 2204                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
 2205                         /* sx_sunlock(&allproc_lock); */
 2206                         return 1;
 2207                 }
 2208         }
 2209         /* sx_sunlock(&allproc_lock); */
 2210         if (_vm_object_in_map(kernel_map, object, 0))
 2211                 return 1;
 2212         if (_vm_object_in_map(kmem_map, object, 0))
 2213                 return 1;
 2214         if (_vm_object_in_map(pager_map, object, 0))
 2215                 return 1;
 2216         if (_vm_object_in_map(buffer_map, object, 0))
 2217                 return 1;
 2218         return 0;
 2219 }
 2220 
 2221 DB_SHOW_COMMAND(vmochk, vm_object_check)
 2222 {
 2223         vm_object_t object;
 2224 
 2225         /*
 2226          * make sure that internal objs are in a map somewhere
 2227          * and none have zero ref counts.
 2228          */
 2229         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2230                 if (object->handle == NULL &&
 2231                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
 2232                         if (object->ref_count == 0) {
 2233                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
 2234                                         (long)object->size);
 2235                         }
 2236                         if (!vm_object_in_map(object)) {
 2237                                 db_printf(
 2238                         "vmochk: internal obj is not in a map: "
 2239                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
 2240                                     object->ref_count, (u_long)object->size, 
 2241                                     (u_long)object->size,
 2242                                     (void *)object->backing_object);
 2243                         }
 2244                 }
 2245         }
 2246 }
 2247 
 2248 /*
 2249  *      vm_object_print:        [ debug ]
 2250  */
 2251 DB_SHOW_COMMAND(object, vm_object_print_static)
 2252 {
 2253         /* XXX convert args. */
 2254         vm_object_t object = (vm_object_t)addr;
 2255         boolean_t full = have_addr;
 2256 
 2257         vm_page_t p;
 2258 
 2259         /* XXX count is an (unused) arg.  Avoid shadowing it. */
 2260 #define count   was_count
 2261 
 2262         int count;
 2263 
 2264         if (object == NULL)
 2265                 return;
 2266 
 2267         db_iprintf(
 2268             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
 2269             object, (int)object->type, (uintmax_t)object->size,
 2270             object->resident_page_count, object->ref_count, object->flags,
 2271             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
 2272         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
 2273             object->shadow_count, 
 2274             object->backing_object ? object->backing_object->ref_count : 0,
 2275             object->backing_object, (uintmax_t)object->backing_object_offset);
 2276 
 2277         if (!full)
 2278                 return;
 2279 
 2280         db_indent += 2;
 2281         count = 0;
 2282         TAILQ_FOREACH(p, &object->memq, listq) {
 2283                 if (count == 0)
 2284                         db_iprintf("memory:=");
 2285                 else if (count == 6) {
 2286                         db_printf("\n");
 2287                         db_iprintf(" ...");
 2288                         count = 0;
 2289                 } else
 2290                         db_printf(",");
 2291                 count++;
 2292 
 2293                 db_printf("(off=0x%jx,page=0x%jx)",
 2294                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
 2295         }
 2296         if (count != 0)
 2297                 db_printf("\n");
 2298         db_indent -= 2;
 2299 }
 2300 
 2301 /* XXX. */
 2302 #undef count
 2303 
 2304 /* XXX need this non-static entry for calling from vm_map_print. */
 2305 void
 2306 vm_object_print(
 2307         /* db_expr_t */ long addr,
 2308         boolean_t have_addr,
 2309         /* db_expr_t */ long count,
 2310         char *modif)
 2311 {
 2312         vm_object_print_static(addr, have_addr, count, modif);
 2313 }
 2314 
 2315 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
 2316 {
 2317         vm_object_t object;
 2318         vm_pindex_t fidx;
 2319         vm_paddr_t pa;
 2320         vm_page_t m, prev_m;
 2321         int rcount, nl, c;
 2322 
 2323         nl = 0;
 2324         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 2325                 db_printf("new object: %p\n", (void *)object);
 2326                 if (nl > 18) {
 2327                         c = cngetc();
 2328                         if (c != ' ')
 2329                                 return;
 2330                         nl = 0;
 2331                 }
 2332                 nl++;
 2333                 rcount = 0;
 2334                 fidx = 0;
 2335                 pa = -1;
 2336                 TAILQ_FOREACH(m, &object->memq, listq) {
 2337                         if (m->pindex > 128)
 2338                                 break;
 2339                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
 2340                             prev_m->pindex + 1 != m->pindex) {
 2341                                 if (rcount) {
 2342                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2343                                                 (long)fidx, rcount, (long)pa);
 2344                                         if (nl > 18) {
 2345                                                 c = cngetc();
 2346                                                 if (c != ' ')
 2347                                                         return;
 2348                                                 nl = 0;
 2349                                         }
 2350                                         nl++;
 2351                                         rcount = 0;
 2352                                 }
 2353                         }                               
 2354                         if (rcount &&
 2355                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
 2356                                 ++rcount;
 2357                                 continue;
 2358                         }
 2359                         if (rcount) {
 2360                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2361                                         (long)fidx, rcount, (long)pa);
 2362                                 if (nl > 18) {
 2363                                         c = cngetc();
 2364                                         if (c != ' ')
 2365                                                 return;
 2366                                         nl = 0;
 2367                                 }
 2368                                 nl++;
 2369                         }
 2370                         fidx = m->pindex;
 2371                         pa = VM_PAGE_TO_PHYS(m);
 2372                         rcount = 1;
 2373                 }
 2374                 if (rcount) {
 2375                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
 2376                                 (long)fidx, rcount, (long)pa);
 2377                         if (nl > 18) {
 2378                                 c = cngetc();
 2379                                 if (c != ' ')
 2380                                         return;
 2381                                 nl = 0;
 2382                         }
 2383                         nl++;
 2384                 }
 2385         }
 2386 }
 2387 #endif /* DDB */

Cache object: 95715832b852abe0a83567fa3df72e92


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.