FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.c
1 /*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
34 */
35
36 /*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 * - a pageq mutex is required when adding or removing a page from a
67 * page queue (vm_page_queue[]), regardless of other mutexes or the
68 * busy state of a page.
69 *
70 * - a hash chain mutex is required when associating or disassociating
71 * a page from the VM PAGE CACHE hash table (vm_page_buckets),
72 * regardless of other mutexes or the busy state of a page.
73 *
74 * - either a hash chain mutex OR a busied page is required in order
75 * to modify the page flags. A hash chain mutex must be obtained in
76 * order to busy a page. A page's flags cannot be modified by a
77 * hash chain mutex if the page is marked busy.
78 *
79 * - The object memq mutex is held when inserting or removing
80 * pages from an object (vm_page_insert() or vm_page_remove()). This
81 * is different from the object's main mutex.
82 *
83 * Generally speaking, you have to be aware of side effects when running
84 * vm_page ops. A vm_page_lookup() will return with the hash chain
85 * locked, whether it was able to lookup the page or not. vm_page_free(),
86 * vm_page_cache(), vm_page_activate(), and a number of other routines
87 * will release the hash chain mutex for you. Intermediate manipulation
88 * routines such as vm_page_flag_set() expect the hash chain to be held
89 * on entry and the hash chain will remain held on return.
90 *
91 * pageq scanning can only occur with the pageq in question locked.
92 * We have a known bottleneck with the active queue, but the cache
93 * and free queues are actually arrays already.
94 */
95
96 /*
97 * Resident memory management module.
98 */
99
100 #include <sys/cdefs.h>
101 __FBSDID("$FreeBSD: releng/8.1/sys/vm/vm_page.c 206410 2010-04-09 06:40:30Z alc $");
102
103 #include "opt_vm.h"
104
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/lock.h>
108 #include <sys/kernel.h>
109 #include <sys/limits.h>
110 #include <sys/malloc.h>
111 #include <sys/mutex.h>
112 #include <sys/proc.h>
113 #include <sys/sysctl.h>
114 #include <sys/vmmeter.h>
115 #include <sys/vnode.h>
116
117 #include <vm/vm.h>
118 #include <vm/vm_param.h>
119 #include <vm/vm_kern.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_pager.h>
124 #include <vm/vm_phys.h>
125 #include <vm/vm_reserv.h>
126 #include <vm/vm_extern.h>
127 #include <vm/uma.h>
128 #include <vm/uma_int.h>
129
130 #include <machine/md_var.h>
131
132 /*
133 * Associated with page of user-allocatable memory is a
134 * page structure.
135 */
136
137 struct vpgqueues vm_page_queues[PQ_COUNT];
138 struct mtx vm_page_queue_mtx;
139 struct mtx vm_page_queue_free_mtx;
140
141 vm_page_t vm_page_array = 0;
142 int vm_page_array_size = 0;
143 long first_page = 0;
144 int vm_page_zero_count = 0;
145
146 static int boot_pages = UMA_BOOT_PAGES;
147 TUNABLE_INT("vm.boot_pages", &boot_pages);
148 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
149 "number of pages allocated for bootstrapping the VM system");
150
151 static void vm_page_enqueue(int queue, vm_page_t m);
152
153 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
154 #if PAGE_SIZE == 32768
155 #ifdef CTASSERT
156 CTASSERT(sizeof(u_long) >= 8);
157 #endif
158 #endif
159
160 /*
161 * vm_set_page_size:
162 *
163 * Sets the page size, perhaps based upon the memory
164 * size. Must be called before any use of page-size
165 * dependent functions.
166 */
167 void
168 vm_set_page_size(void)
169 {
170 if (cnt.v_page_size == 0)
171 cnt.v_page_size = PAGE_SIZE;
172 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
173 panic("vm_set_page_size: page size not a power of two");
174 }
175
176 /*
177 * vm_page_blacklist_lookup:
178 *
179 * See if a physical address in this page has been listed
180 * in the blacklist tunable. Entries in the tunable are
181 * separated by spaces or commas. If an invalid integer is
182 * encountered then the rest of the string is skipped.
183 */
184 static int
185 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
186 {
187 vm_paddr_t bad;
188 char *cp, *pos;
189
190 for (pos = list; *pos != '\0'; pos = cp) {
191 bad = strtoq(pos, &cp, 0);
192 if (*cp != '\0') {
193 if (*cp == ' ' || *cp == ',') {
194 cp++;
195 if (cp == pos)
196 continue;
197 } else
198 break;
199 }
200 if (pa == trunc_page(bad))
201 return (1);
202 }
203 return (0);
204 }
205
206 /*
207 * vm_page_startup:
208 *
209 * Initializes the resident memory module.
210 *
211 * Allocates memory for the page cells, and
212 * for the object/offset-to-page hash table headers.
213 * Each page cell is initialized and placed on the free list.
214 */
215 vm_offset_t
216 vm_page_startup(vm_offset_t vaddr)
217 {
218 vm_offset_t mapped;
219 vm_paddr_t page_range;
220 vm_paddr_t new_end;
221 int i;
222 vm_paddr_t pa;
223 int nblocks;
224 vm_paddr_t last_pa;
225 char *list;
226
227 /* the biggest memory array is the second group of pages */
228 vm_paddr_t end;
229 vm_paddr_t biggestsize;
230 vm_paddr_t low_water, high_water;
231 int biggestone;
232
233 biggestsize = 0;
234 biggestone = 0;
235 nblocks = 0;
236 vaddr = round_page(vaddr);
237
238 for (i = 0; phys_avail[i + 1]; i += 2) {
239 phys_avail[i] = round_page(phys_avail[i]);
240 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
241 }
242
243 low_water = phys_avail[0];
244 high_water = phys_avail[1];
245
246 for (i = 0; phys_avail[i + 1]; i += 2) {
247 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
248
249 if (size > biggestsize) {
250 biggestone = i;
251 biggestsize = size;
252 }
253 if (phys_avail[i] < low_water)
254 low_water = phys_avail[i];
255 if (phys_avail[i + 1] > high_water)
256 high_water = phys_avail[i + 1];
257 ++nblocks;
258 }
259
260 #ifdef XEN
261 low_water = 0;
262 #endif
263
264 end = phys_avail[biggestone+1];
265
266 /*
267 * Initialize the locks.
268 */
269 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
270 MTX_RECURSE);
271 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
272 MTX_DEF);
273
274 /*
275 * Initialize the queue headers for the hold queue, the active queue,
276 * and the inactive queue.
277 */
278 for (i = 0; i < PQ_COUNT; i++)
279 TAILQ_INIT(&vm_page_queues[i].pl);
280 vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
281 vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
282 vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
283
284 /*
285 * Allocate memory for use when boot strapping the kernel memory
286 * allocator.
287 */
288 new_end = end - (boot_pages * UMA_SLAB_SIZE);
289 new_end = trunc_page(new_end);
290 mapped = pmap_map(&vaddr, new_end, end,
291 VM_PROT_READ | VM_PROT_WRITE);
292 bzero((void *)mapped, end - new_end);
293 uma_startup((void *)mapped, boot_pages);
294
295 #if defined(__amd64__) || defined(__i386__) || defined(__arm__)
296 /*
297 * Allocate a bitmap to indicate that a random physical page
298 * needs to be included in a minidump.
299 *
300 * The amd64 port needs this to indicate which direct map pages
301 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
302 *
303 * However, i386 still needs this workspace internally within the
304 * minidump code. In theory, they are not needed on i386, but are
305 * included should the sf_buf code decide to use them.
306 */
307 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
308 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
309 new_end -= vm_page_dump_size;
310 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
311 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
312 bzero((void *)vm_page_dump, vm_page_dump_size);
313 #endif
314 /*
315 * Compute the number of pages of memory that will be available for
316 * use (taking into account the overhead of a page structure per
317 * page).
318 */
319 first_page = low_water / PAGE_SIZE;
320 #ifdef VM_PHYSSEG_SPARSE
321 page_range = 0;
322 for (i = 0; phys_avail[i + 1] != 0; i += 2)
323 page_range += atop(phys_avail[i + 1] - phys_avail[i]);
324 #elif defined(VM_PHYSSEG_DENSE)
325 page_range = high_water / PAGE_SIZE - first_page;
326 #else
327 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
328 #endif
329 end = new_end;
330
331 /*
332 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
333 */
334 vaddr += PAGE_SIZE;
335
336 /*
337 * Initialize the mem entry structures now, and put them in the free
338 * queue.
339 */
340 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
341 mapped = pmap_map(&vaddr, new_end, end,
342 VM_PROT_READ | VM_PROT_WRITE);
343 vm_page_array = (vm_page_t) mapped;
344 #if VM_NRESERVLEVEL > 0
345 /*
346 * Allocate memory for the reservation management system's data
347 * structures.
348 */
349 new_end = vm_reserv_startup(&vaddr, new_end, high_water);
350 #endif
351 #ifdef __amd64__
352 /*
353 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
354 * so the pages must be tracked for a crashdump to include this data.
355 * This includes the vm_page_array and the early UMA bootstrap pages.
356 */
357 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
358 dump_add_page(pa);
359 #endif
360 phys_avail[biggestone + 1] = new_end;
361
362 /*
363 * Clear all of the page structures
364 */
365 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
366 for (i = 0; i < page_range; i++)
367 vm_page_array[i].order = VM_NFREEORDER;
368 vm_page_array_size = page_range;
369
370 /*
371 * Initialize the physical memory allocator.
372 */
373 vm_phys_init();
374
375 /*
376 * Add every available physical page that is not blacklisted to
377 * the free lists.
378 */
379 cnt.v_page_count = 0;
380 cnt.v_free_count = 0;
381 list = getenv("vm.blacklist");
382 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
383 pa = phys_avail[i];
384 last_pa = phys_avail[i + 1];
385 while (pa < last_pa) {
386 if (list != NULL &&
387 vm_page_blacklist_lookup(list, pa))
388 printf("Skipping page with pa 0x%jx\n",
389 (uintmax_t)pa);
390 else
391 vm_phys_add_page(pa);
392 pa += PAGE_SIZE;
393 }
394 }
395 freeenv(list);
396 #if VM_NRESERVLEVEL > 0
397 /*
398 * Initialize the reservation management system.
399 */
400 vm_reserv_init();
401 #endif
402 return (vaddr);
403 }
404
405 void
406 vm_page_flag_set(vm_page_t m, unsigned short bits)
407 {
408
409 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
410 m->flags |= bits;
411 }
412
413 void
414 vm_page_flag_clear(vm_page_t m, unsigned short bits)
415 {
416
417 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
418 m->flags &= ~bits;
419 }
420
421 void
422 vm_page_busy(vm_page_t m)
423 {
424
425 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
426 KASSERT((m->oflags & VPO_BUSY) == 0,
427 ("vm_page_busy: page already busy!!!"));
428 m->oflags |= VPO_BUSY;
429 }
430
431 /*
432 * vm_page_flash:
433 *
434 * wakeup anyone waiting for the page.
435 */
436 void
437 vm_page_flash(vm_page_t m)
438 {
439
440 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
441 if (m->oflags & VPO_WANTED) {
442 m->oflags &= ~VPO_WANTED;
443 wakeup(m);
444 }
445 }
446
447 /*
448 * vm_page_wakeup:
449 *
450 * clear the VPO_BUSY flag and wakeup anyone waiting for the
451 * page.
452 *
453 */
454 void
455 vm_page_wakeup(vm_page_t m)
456 {
457
458 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
459 KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
460 m->oflags &= ~VPO_BUSY;
461 vm_page_flash(m);
462 }
463
464 void
465 vm_page_io_start(vm_page_t m)
466 {
467
468 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
469 m->busy++;
470 }
471
472 void
473 vm_page_io_finish(vm_page_t m)
474 {
475
476 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
477 m->busy--;
478 if (m->busy == 0)
479 vm_page_flash(m);
480 }
481
482 /*
483 * Keep page from being freed by the page daemon
484 * much of the same effect as wiring, except much lower
485 * overhead and should be used only for *very* temporary
486 * holding ("wiring").
487 */
488 void
489 vm_page_hold(vm_page_t mem)
490 {
491
492 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
493 mem->hold_count++;
494 }
495
496 void
497 vm_page_unhold(vm_page_t mem)
498 {
499
500 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
501 --mem->hold_count;
502 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
503 if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
504 vm_page_free_toq(mem);
505 }
506
507 /*
508 * vm_page_free:
509 *
510 * Free a page.
511 */
512 void
513 vm_page_free(vm_page_t m)
514 {
515
516 m->flags &= ~PG_ZERO;
517 vm_page_free_toq(m);
518 }
519
520 /*
521 * vm_page_free_zero:
522 *
523 * Free a page to the zerod-pages queue
524 */
525 void
526 vm_page_free_zero(vm_page_t m)
527 {
528
529 m->flags |= PG_ZERO;
530 vm_page_free_toq(m);
531 }
532
533 /*
534 * vm_page_sleep:
535 *
536 * Sleep and release the page queues lock.
537 *
538 * The object containing the given page must be locked.
539 */
540 void
541 vm_page_sleep(vm_page_t m, const char *msg)
542 {
543
544 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
545 if (!mtx_owned(&vm_page_queue_mtx))
546 vm_page_lock_queues();
547 vm_page_flag_set(m, PG_REFERENCED);
548 vm_page_unlock_queues();
549
550 /*
551 * It's possible that while we sleep, the page will get
552 * unbusied and freed. If we are holding the object
553 * lock, we will assume we hold a reference to the object
554 * such that even if m->object changes, we can re-lock
555 * it.
556 */
557 m->oflags |= VPO_WANTED;
558 msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
559 }
560
561 /*
562 * vm_page_dirty:
563 *
564 * make page all dirty
565 */
566 void
567 vm_page_dirty(vm_page_t m)
568 {
569
570 KASSERT((m->flags & PG_CACHED) == 0,
571 ("vm_page_dirty: page in cache!"));
572 KASSERT(!VM_PAGE_IS_FREE(m),
573 ("vm_page_dirty: page is free!"));
574 KASSERT(m->valid == VM_PAGE_BITS_ALL,
575 ("vm_page_dirty: page is invalid!"));
576 m->dirty = VM_PAGE_BITS_ALL;
577 }
578
579 /*
580 * vm_page_splay:
581 *
582 * Implements Sleator and Tarjan's top-down splay algorithm. Returns
583 * the vm_page containing the given pindex. If, however, that
584 * pindex is not found in the vm_object, returns a vm_page that is
585 * adjacent to the pindex, coming before or after it.
586 */
587 vm_page_t
588 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
589 {
590 struct vm_page dummy;
591 vm_page_t lefttreemax, righttreemin, y;
592
593 if (root == NULL)
594 return (root);
595 lefttreemax = righttreemin = &dummy;
596 for (;; root = y) {
597 if (pindex < root->pindex) {
598 if ((y = root->left) == NULL)
599 break;
600 if (pindex < y->pindex) {
601 /* Rotate right. */
602 root->left = y->right;
603 y->right = root;
604 root = y;
605 if ((y = root->left) == NULL)
606 break;
607 }
608 /* Link into the new root's right tree. */
609 righttreemin->left = root;
610 righttreemin = root;
611 } else if (pindex > root->pindex) {
612 if ((y = root->right) == NULL)
613 break;
614 if (pindex > y->pindex) {
615 /* Rotate left. */
616 root->right = y->left;
617 y->left = root;
618 root = y;
619 if ((y = root->right) == NULL)
620 break;
621 }
622 /* Link into the new root's left tree. */
623 lefttreemax->right = root;
624 lefttreemax = root;
625 } else
626 break;
627 }
628 /* Assemble the new root. */
629 lefttreemax->right = root->left;
630 righttreemin->left = root->right;
631 root->left = dummy.right;
632 root->right = dummy.left;
633 return (root);
634 }
635
636 /*
637 * vm_page_insert: [ internal use only ]
638 *
639 * Inserts the given mem entry into the object and object list.
640 *
641 * The pagetables are not updated but will presumably fault the page
642 * in if necessary, or if a kernel page the caller will at some point
643 * enter the page into the kernel's pmap. We are not allowed to block
644 * here so we *can't* do this anyway.
645 *
646 * The object and page must be locked.
647 * This routine may not block.
648 */
649 void
650 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
651 {
652 vm_page_t root;
653
654 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
655 if (m->object != NULL)
656 panic("vm_page_insert: page already inserted");
657
658 /*
659 * Record the object/offset pair in this page
660 */
661 m->object = object;
662 m->pindex = pindex;
663
664 /*
665 * Now link into the object's ordered list of backed pages.
666 */
667 root = object->root;
668 if (root == NULL) {
669 m->left = NULL;
670 m->right = NULL;
671 TAILQ_INSERT_TAIL(&object->memq, m, listq);
672 } else {
673 root = vm_page_splay(pindex, root);
674 if (pindex < root->pindex) {
675 m->left = root->left;
676 m->right = root;
677 root->left = NULL;
678 TAILQ_INSERT_BEFORE(root, m, listq);
679 } else if (pindex == root->pindex)
680 panic("vm_page_insert: offset already allocated");
681 else {
682 m->right = root->right;
683 m->left = root;
684 root->right = NULL;
685 TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
686 }
687 }
688 object->root = m;
689 object->generation++;
690
691 /*
692 * show that the object has one more resident page.
693 */
694 object->resident_page_count++;
695 /*
696 * Hold the vnode until the last page is released.
697 */
698 if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
699 vhold((struct vnode *)object->handle);
700
701 /*
702 * Since we are inserting a new and possibly dirty page,
703 * update the object's OBJ_MIGHTBEDIRTY flag.
704 */
705 if (m->flags & PG_WRITEABLE)
706 vm_object_set_writeable_dirty(object);
707 }
708
709 /*
710 * vm_page_remove:
711 * NOTE: used by device pager as well -wfj
712 *
713 * Removes the given mem entry from the object/offset-page
714 * table and the object page list, but do not invalidate/terminate
715 * the backing store.
716 *
717 * The object and page must be locked.
718 * The underlying pmap entry (if any) is NOT removed here.
719 * This routine may not block.
720 */
721 void
722 vm_page_remove(vm_page_t m)
723 {
724 vm_object_t object;
725 vm_page_t root;
726
727 if ((object = m->object) == NULL)
728 return;
729 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
730 if (m->oflags & VPO_BUSY) {
731 m->oflags &= ~VPO_BUSY;
732 vm_page_flash(m);
733 }
734 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
735
736 /*
737 * Now remove from the object's list of backed pages.
738 */
739 if (m != object->root)
740 vm_page_splay(m->pindex, object->root);
741 if (m->left == NULL)
742 root = m->right;
743 else {
744 root = vm_page_splay(m->pindex, m->left);
745 root->right = m->right;
746 }
747 object->root = root;
748 TAILQ_REMOVE(&object->memq, m, listq);
749
750 /*
751 * And show that the object has one fewer resident page.
752 */
753 object->resident_page_count--;
754 object->generation++;
755 /*
756 * The vnode may now be recycled.
757 */
758 if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
759 vdrop((struct vnode *)object->handle);
760
761 m->object = NULL;
762 }
763
764 /*
765 * vm_page_lookup:
766 *
767 * Returns the page associated with the object/offset
768 * pair specified; if none is found, NULL is returned.
769 *
770 * The object must be locked.
771 * This routine may not block.
772 * This is a critical path routine
773 */
774 vm_page_t
775 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
776 {
777 vm_page_t m;
778
779 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
780 if ((m = object->root) != NULL && m->pindex != pindex) {
781 m = vm_page_splay(pindex, m);
782 if ((object->root = m)->pindex != pindex)
783 m = NULL;
784 }
785 return (m);
786 }
787
788 /*
789 * vm_page_rename:
790 *
791 * Move the given memory entry from its
792 * current object to the specified target object/offset.
793 *
794 * The object must be locked.
795 * This routine may not block.
796 *
797 * Note: swap associated with the page must be invalidated by the move. We
798 * have to do this for several reasons: (1) we aren't freeing the
799 * page, (2) we are dirtying the page, (3) the VM system is probably
800 * moving the page from object A to B, and will then later move
801 * the backing store from A to B and we can't have a conflict.
802 *
803 * Note: we *always* dirty the page. It is necessary both for the
804 * fact that we moved it, and because we may be invalidating
805 * swap. If the page is on the cache, we have to deactivate it
806 * or vm_page_dirty() will panic. Dirty pages are not allowed
807 * on the cache.
808 */
809 void
810 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
811 {
812
813 vm_page_remove(m);
814 vm_page_insert(m, new_object, new_pindex);
815 vm_page_dirty(m);
816 }
817
818 /*
819 * Convert all of the given object's cached pages that have a
820 * pindex within the given range into free pages. If the value
821 * zero is given for "end", then the range's upper bound is
822 * infinity. If the given object is backed by a vnode and it
823 * transitions from having one or more cached pages to none, the
824 * vnode's hold count is reduced.
825 */
826 void
827 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
828 {
829 vm_page_t m, m_next;
830 boolean_t empty;
831
832 mtx_lock(&vm_page_queue_free_mtx);
833 if (__predict_false(object->cache == NULL)) {
834 mtx_unlock(&vm_page_queue_free_mtx);
835 return;
836 }
837 m = object->cache = vm_page_splay(start, object->cache);
838 if (m->pindex < start) {
839 if (m->right == NULL)
840 m = NULL;
841 else {
842 m_next = vm_page_splay(start, m->right);
843 m_next->left = m;
844 m->right = NULL;
845 m = object->cache = m_next;
846 }
847 }
848
849 /*
850 * At this point, "m" is either (1) a reference to the page
851 * with the least pindex that is greater than or equal to
852 * "start" or (2) NULL.
853 */
854 for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
855 /*
856 * Find "m"'s successor and remove "m" from the
857 * object's cache.
858 */
859 if (m->right == NULL) {
860 object->cache = m->left;
861 m_next = NULL;
862 } else {
863 m_next = vm_page_splay(start, m->right);
864 m_next->left = m->left;
865 object->cache = m_next;
866 }
867 /* Convert "m" to a free page. */
868 m->object = NULL;
869 m->valid = 0;
870 /* Clear PG_CACHED and set PG_FREE. */
871 m->flags ^= PG_CACHED | PG_FREE;
872 KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
873 ("vm_page_cache_free: page %p has inconsistent flags", m));
874 cnt.v_cache_count--;
875 cnt.v_free_count++;
876 }
877 empty = object->cache == NULL;
878 mtx_unlock(&vm_page_queue_free_mtx);
879 if (object->type == OBJT_VNODE && empty)
880 vdrop(object->handle);
881 }
882
883 /*
884 * Returns the cached page that is associated with the given
885 * object and offset. If, however, none exists, returns NULL.
886 *
887 * The free page queue must be locked.
888 */
889 static inline vm_page_t
890 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
891 {
892 vm_page_t m;
893
894 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
895 if ((m = object->cache) != NULL && m->pindex != pindex) {
896 m = vm_page_splay(pindex, m);
897 if ((object->cache = m)->pindex != pindex)
898 m = NULL;
899 }
900 return (m);
901 }
902
903 /*
904 * Remove the given cached page from its containing object's
905 * collection of cached pages.
906 *
907 * The free page queue must be locked.
908 */
909 void
910 vm_page_cache_remove(vm_page_t m)
911 {
912 vm_object_t object;
913 vm_page_t root;
914
915 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
916 KASSERT((m->flags & PG_CACHED) != 0,
917 ("vm_page_cache_remove: page %p is not cached", m));
918 object = m->object;
919 if (m != object->cache) {
920 root = vm_page_splay(m->pindex, object->cache);
921 KASSERT(root == m,
922 ("vm_page_cache_remove: page %p is not cached in object %p",
923 m, object));
924 }
925 if (m->left == NULL)
926 root = m->right;
927 else if (m->right == NULL)
928 root = m->left;
929 else {
930 root = vm_page_splay(m->pindex, m->left);
931 root->right = m->right;
932 }
933 object->cache = root;
934 m->object = NULL;
935 cnt.v_cache_count--;
936 }
937
938 /*
939 * Transfer all of the cached pages with offset greater than or
940 * equal to 'offidxstart' from the original object's cache to the
941 * new object's cache. However, any cached pages with offset
942 * greater than or equal to the new object's size are kept in the
943 * original object. Initially, the new object's cache must be
944 * empty. Offset 'offidxstart' in the original object must
945 * correspond to offset zero in the new object.
946 *
947 * The new object must be locked.
948 */
949 void
950 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
951 vm_object_t new_object)
952 {
953 vm_page_t m, m_next;
954
955 /*
956 * Insertion into an object's collection of cached pages
957 * requires the object to be locked. In contrast, removal does
958 * not.
959 */
960 VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
961 KASSERT(new_object->cache == NULL,
962 ("vm_page_cache_transfer: object %p has cached pages",
963 new_object));
964 mtx_lock(&vm_page_queue_free_mtx);
965 if ((m = orig_object->cache) != NULL) {
966 /*
967 * Transfer all of the pages with offset greater than or
968 * equal to 'offidxstart' from the original object's
969 * cache to the new object's cache.
970 */
971 m = vm_page_splay(offidxstart, m);
972 if (m->pindex < offidxstart) {
973 orig_object->cache = m;
974 new_object->cache = m->right;
975 m->right = NULL;
976 } else {
977 orig_object->cache = m->left;
978 new_object->cache = m;
979 m->left = NULL;
980 }
981 while ((m = new_object->cache) != NULL) {
982 if ((m->pindex - offidxstart) >= new_object->size) {
983 /*
984 * Return all of the cached pages with
985 * offset greater than or equal to the
986 * new object's size to the original
987 * object's cache.
988 */
989 new_object->cache = m->left;
990 m->left = orig_object->cache;
991 orig_object->cache = m;
992 break;
993 }
994 m_next = vm_page_splay(m->pindex, m->right);
995 /* Update the page's object and offset. */
996 m->object = new_object;
997 m->pindex -= offidxstart;
998 if (m_next == NULL)
999 break;
1000 m->right = NULL;
1001 m_next->left = m;
1002 new_object->cache = m_next;
1003 }
1004 KASSERT(new_object->cache == NULL ||
1005 new_object->type == OBJT_SWAP,
1006 ("vm_page_cache_transfer: object %p's type is incompatible"
1007 " with cached pages", new_object));
1008 }
1009 mtx_unlock(&vm_page_queue_free_mtx);
1010 }
1011
1012 /*
1013 * vm_page_alloc:
1014 *
1015 * Allocate and return a memory cell associated
1016 * with this VM object/offset pair.
1017 *
1018 * page_req classes:
1019 * VM_ALLOC_NORMAL normal process request
1020 * VM_ALLOC_SYSTEM system *really* needs a page
1021 * VM_ALLOC_INTERRUPT interrupt time request
1022 * VM_ALLOC_ZERO zero page
1023 * VM_ALLOC_WIRED wire the allocated page
1024 * VM_ALLOC_NOOBJ page is not associated with a vm object
1025 * VM_ALLOC_NOBUSY do not set the page busy
1026 * VM_ALLOC_IFNOTCACHED return NULL, do not reactivate if the page
1027 * is cached
1028 *
1029 * This routine may not sleep.
1030 */
1031 vm_page_t
1032 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1033 {
1034 struct vnode *vp = NULL;
1035 vm_object_t m_object;
1036 vm_page_t m;
1037 int flags, page_req;
1038
1039 page_req = req & VM_ALLOC_CLASS_MASK;
1040 KASSERT(curthread->td_intr_nesting_level == 0 ||
1041 page_req == VM_ALLOC_INTERRUPT,
1042 ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1043
1044 if ((req & VM_ALLOC_NOOBJ) == 0) {
1045 KASSERT(object != NULL,
1046 ("vm_page_alloc: NULL object."));
1047 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1048 }
1049
1050 /*
1051 * The pager is allowed to eat deeper into the free page list.
1052 */
1053 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1054 page_req = VM_ALLOC_SYSTEM;
1055 };
1056
1057 mtx_lock(&vm_page_queue_free_mtx);
1058 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1059 (page_req == VM_ALLOC_SYSTEM &&
1060 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1061 (page_req == VM_ALLOC_INTERRUPT &&
1062 cnt.v_free_count + cnt.v_cache_count > 0)) {
1063 /*
1064 * Allocate from the free queue if the number of free pages
1065 * exceeds the minimum for the request class.
1066 */
1067 if (object != NULL &&
1068 (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1069 if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1070 mtx_unlock(&vm_page_queue_free_mtx);
1071 return (NULL);
1072 }
1073 if (vm_phys_unfree_page(m))
1074 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1075 #if VM_NRESERVLEVEL > 0
1076 else if (!vm_reserv_reactivate_page(m))
1077 #else
1078 else
1079 #endif
1080 panic("vm_page_alloc: cache page %p is missing"
1081 " from the free queue", m);
1082 } else if ((req & VM_ALLOC_IFCACHED) != 0) {
1083 mtx_unlock(&vm_page_queue_free_mtx);
1084 return (NULL);
1085 #if VM_NRESERVLEVEL > 0
1086 } else if (object == NULL || object->type == OBJT_DEVICE ||
1087 object->type == OBJT_SG ||
1088 (object->flags & OBJ_COLORED) == 0 ||
1089 (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1090 #else
1091 } else {
1092 #endif
1093 m = vm_phys_alloc_pages(object != NULL ?
1094 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1095 #if VM_NRESERVLEVEL > 0
1096 if (m == NULL && vm_reserv_reclaim_inactive()) {
1097 m = vm_phys_alloc_pages(object != NULL ?
1098 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1099 0);
1100 }
1101 #endif
1102 }
1103 } else {
1104 /*
1105 * Not allocatable, give up.
1106 */
1107 mtx_unlock(&vm_page_queue_free_mtx);
1108 atomic_add_int(&vm_pageout_deficit, 1);
1109 pagedaemon_wakeup();
1110 return (NULL);
1111 }
1112
1113 /*
1114 * At this point we had better have found a good page.
1115 */
1116
1117 KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1118 KASSERT(m->queue == PQ_NONE,
1119 ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1120 KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1121 KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1122 KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1123 KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1124 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1125 ("vm_page_alloc: page %p has unexpected memattr %d", m,
1126 pmap_page_get_memattr(m)));
1127 if ((m->flags & PG_CACHED) != 0) {
1128 KASSERT(m->valid != 0,
1129 ("vm_page_alloc: cached page %p is invalid", m));
1130 if (m->object == object && m->pindex == pindex)
1131 cnt.v_reactivated++;
1132 else
1133 m->valid = 0;
1134 m_object = m->object;
1135 vm_page_cache_remove(m);
1136 if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1137 vp = m_object->handle;
1138 } else {
1139 KASSERT(VM_PAGE_IS_FREE(m),
1140 ("vm_page_alloc: page %p is not free", m));
1141 KASSERT(m->valid == 0,
1142 ("vm_page_alloc: free page %p is valid", m));
1143 cnt.v_free_count--;
1144 }
1145
1146 /*
1147 * Initialize structure. Only the PG_ZERO flag is inherited.
1148 */
1149 flags = 0;
1150 if (m->flags & PG_ZERO) {
1151 vm_page_zero_count--;
1152 if (req & VM_ALLOC_ZERO)
1153 flags = PG_ZERO;
1154 }
1155 if (object == NULL || object->type == OBJT_PHYS)
1156 flags |= PG_UNMANAGED;
1157 m->flags = flags;
1158 if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1159 m->oflags = 0;
1160 else
1161 m->oflags = VPO_BUSY;
1162 if (req & VM_ALLOC_WIRED) {
1163 atomic_add_int(&cnt.v_wire_count, 1);
1164 m->wire_count = 1;
1165 }
1166 m->act_count = 0;
1167 mtx_unlock(&vm_page_queue_free_mtx);
1168
1169 if (object != NULL) {
1170 /* Ignore device objects; the pager sets "memattr" for them. */
1171 if (object->memattr != VM_MEMATTR_DEFAULT &&
1172 object->type != OBJT_DEVICE && object->type != OBJT_SG)
1173 pmap_page_set_memattr(m, object->memattr);
1174 vm_page_insert(m, object, pindex);
1175 } else
1176 m->pindex = pindex;
1177
1178 /*
1179 * The following call to vdrop() must come after the above call
1180 * to vm_page_insert() in case both affect the same object and
1181 * vnode. Otherwise, the affected vnode's hold count could
1182 * temporarily become zero.
1183 */
1184 if (vp != NULL)
1185 vdrop(vp);
1186
1187 /*
1188 * Don't wakeup too often - wakeup the pageout daemon when
1189 * we would be nearly out of memory.
1190 */
1191 if (vm_paging_needed())
1192 pagedaemon_wakeup();
1193
1194 return (m);
1195 }
1196
1197 /*
1198 * vm_wait: (also see VM_WAIT macro)
1199 *
1200 * Block until free pages are available for allocation
1201 * - Called in various places before memory allocations.
1202 */
1203 void
1204 vm_wait(void)
1205 {
1206
1207 mtx_lock(&vm_page_queue_free_mtx);
1208 if (curproc == pageproc) {
1209 vm_pageout_pages_needed = 1;
1210 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1211 PDROP | PSWP, "VMWait", 0);
1212 } else {
1213 if (!vm_pages_needed) {
1214 vm_pages_needed = 1;
1215 wakeup(&vm_pages_needed);
1216 }
1217 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1218 "vmwait", 0);
1219 }
1220 }
1221
1222 /*
1223 * vm_waitpfault: (also see VM_WAITPFAULT macro)
1224 *
1225 * Block until free pages are available for allocation
1226 * - Called only in vm_fault so that processes page faulting
1227 * can be easily tracked.
1228 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1229 * processes will be able to grab memory first. Do not change
1230 * this balance without careful testing first.
1231 */
1232 void
1233 vm_waitpfault(void)
1234 {
1235
1236 mtx_lock(&vm_page_queue_free_mtx);
1237 if (!vm_pages_needed) {
1238 vm_pages_needed = 1;
1239 wakeup(&vm_pages_needed);
1240 }
1241 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1242 "pfault", 0);
1243 }
1244
1245 /*
1246 * vm_page_requeue:
1247 *
1248 * If the given page is contained within a page queue, move it to the tail
1249 * of that queue.
1250 *
1251 * The page queues must be locked.
1252 */
1253 void
1254 vm_page_requeue(vm_page_t m)
1255 {
1256 int queue = VM_PAGE_GETQUEUE(m);
1257 struct vpgqueues *vpq;
1258
1259 if (queue != PQ_NONE) {
1260 vpq = &vm_page_queues[queue];
1261 TAILQ_REMOVE(&vpq->pl, m, pageq);
1262 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1263 }
1264 }
1265
1266 /*
1267 * vm_pageq_remove:
1268 *
1269 * Remove a page from its queue.
1270 *
1271 * The queue containing the given page must be locked.
1272 * This routine may not block.
1273 */
1274 void
1275 vm_pageq_remove(vm_page_t m)
1276 {
1277 int queue = VM_PAGE_GETQUEUE(m);
1278 struct vpgqueues *pq;
1279
1280 if (queue != PQ_NONE) {
1281 VM_PAGE_SETQUEUE2(m, PQ_NONE);
1282 pq = &vm_page_queues[queue];
1283 TAILQ_REMOVE(&pq->pl, m, pageq);
1284 (*pq->cnt)--;
1285 }
1286 }
1287
1288 /*
1289 * vm_page_enqueue:
1290 *
1291 * Add the given page to the specified queue.
1292 *
1293 * The page queues must be locked.
1294 */
1295 static void
1296 vm_page_enqueue(int queue, vm_page_t m)
1297 {
1298 struct vpgqueues *vpq;
1299
1300 vpq = &vm_page_queues[queue];
1301 VM_PAGE_SETQUEUE2(m, queue);
1302 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1303 ++*vpq->cnt;
1304 }
1305
1306 /*
1307 * vm_page_activate:
1308 *
1309 * Put the specified page on the active list (if appropriate).
1310 * Ensure that act_count is at least ACT_INIT but do not otherwise
1311 * mess with it.
1312 *
1313 * The page queues must be locked.
1314 * This routine may not block.
1315 */
1316 void
1317 vm_page_activate(vm_page_t m)
1318 {
1319
1320 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1321 if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1322 vm_pageq_remove(m);
1323 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1324 if (m->act_count < ACT_INIT)
1325 m->act_count = ACT_INIT;
1326 vm_page_enqueue(PQ_ACTIVE, m);
1327 }
1328 } else {
1329 if (m->act_count < ACT_INIT)
1330 m->act_count = ACT_INIT;
1331 }
1332 }
1333
1334 /*
1335 * vm_page_free_wakeup:
1336 *
1337 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
1338 * routine is called when a page has been added to the cache or free
1339 * queues.
1340 *
1341 * The page queues must be locked.
1342 * This routine may not block.
1343 */
1344 static inline void
1345 vm_page_free_wakeup(void)
1346 {
1347
1348 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1349 /*
1350 * if pageout daemon needs pages, then tell it that there are
1351 * some free.
1352 */
1353 if (vm_pageout_pages_needed &&
1354 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1355 wakeup(&vm_pageout_pages_needed);
1356 vm_pageout_pages_needed = 0;
1357 }
1358 /*
1359 * wakeup processes that are waiting on memory if we hit a
1360 * high water mark. And wakeup scheduler process if we have
1361 * lots of memory. this process will swapin processes.
1362 */
1363 if (vm_pages_needed && !vm_page_count_min()) {
1364 vm_pages_needed = 0;
1365 wakeup(&cnt.v_free_count);
1366 }
1367 }
1368
1369 /*
1370 * vm_page_free_toq:
1371 *
1372 * Returns the given page to the free list,
1373 * disassociating it with any VM object.
1374 *
1375 * Object and page must be locked prior to entry.
1376 * This routine may not block.
1377 */
1378
1379 void
1380 vm_page_free_toq(vm_page_t m)
1381 {
1382
1383 if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
1384 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1385 KASSERT(!pmap_page_is_mapped(m),
1386 ("vm_page_free_toq: freeing mapped page %p", m));
1387 PCPU_INC(cnt.v_tfree);
1388
1389 if (m->busy || VM_PAGE_IS_FREE(m)) {
1390 printf(
1391 "vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1392 (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1393 m->hold_count);
1394 if (VM_PAGE_IS_FREE(m))
1395 panic("vm_page_free: freeing free page");
1396 else
1397 panic("vm_page_free: freeing busy page");
1398 }
1399
1400 /*
1401 * unqueue, then remove page. Note that we cannot destroy
1402 * the page here because we do not want to call the pager's
1403 * callback routine until after we've put the page on the
1404 * appropriate free queue.
1405 */
1406 vm_pageq_remove(m);
1407 vm_page_remove(m);
1408
1409 /*
1410 * If fictitious remove object association and
1411 * return, otherwise delay object association removal.
1412 */
1413 if ((m->flags & PG_FICTITIOUS) != 0) {
1414 return;
1415 }
1416
1417 m->valid = 0;
1418 vm_page_undirty(m);
1419
1420 if (m->wire_count != 0) {
1421 if (m->wire_count > 1) {
1422 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1423 m->wire_count, (long)m->pindex);
1424 }
1425 panic("vm_page_free: freeing wired page");
1426 }
1427 if (m->hold_count != 0) {
1428 m->flags &= ~PG_ZERO;
1429 vm_page_enqueue(PQ_HOLD, m);
1430 } else {
1431 /*
1432 * Restore the default memory attribute to the page.
1433 */
1434 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1435 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1436
1437 /*
1438 * Insert the page into the physical memory allocator's
1439 * cache/free page queues.
1440 */
1441 mtx_lock(&vm_page_queue_free_mtx);
1442 m->flags |= PG_FREE;
1443 cnt.v_free_count++;
1444 #if VM_NRESERVLEVEL > 0
1445 if (!vm_reserv_free_page(m))
1446 #else
1447 if (TRUE)
1448 #endif
1449 vm_phys_free_pages(m, 0);
1450 if ((m->flags & PG_ZERO) != 0)
1451 ++vm_page_zero_count;
1452 else
1453 vm_page_zero_idle_wakeup();
1454 vm_page_free_wakeup();
1455 mtx_unlock(&vm_page_queue_free_mtx);
1456 }
1457 }
1458
1459 /*
1460 * vm_page_wire:
1461 *
1462 * Mark this page as wired down by yet
1463 * another map, removing it from paging queues
1464 * as necessary.
1465 *
1466 * The page queues must be locked.
1467 * This routine may not block.
1468 */
1469 void
1470 vm_page_wire(vm_page_t m)
1471 {
1472
1473 /*
1474 * Only bump the wire statistics if the page is not already wired,
1475 * and only unqueue the page if it is on some queue (if it is unmanaged
1476 * it is already off the queues).
1477 */
1478 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1479 if (m->flags & PG_FICTITIOUS)
1480 return;
1481 if (m->wire_count == 0) {
1482 if ((m->flags & PG_UNMANAGED) == 0)
1483 vm_pageq_remove(m);
1484 atomic_add_int(&cnt.v_wire_count, 1);
1485 }
1486 m->wire_count++;
1487 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1488 }
1489
1490 /*
1491 * vm_page_unwire:
1492 *
1493 * Release one wiring of this page, potentially
1494 * enabling it to be paged again.
1495 *
1496 * Many pages placed on the inactive queue should actually go
1497 * into the cache, but it is difficult to figure out which. What
1498 * we do instead, if the inactive target is well met, is to put
1499 * clean pages at the head of the inactive queue instead of the tail.
1500 * This will cause them to be moved to the cache more quickly and
1501 * if not actively re-referenced, freed more quickly. If we just
1502 * stick these pages at the end of the inactive queue, heavy filesystem
1503 * meta-data accesses can cause an unnecessary paging load on memory bound
1504 * processes. This optimization causes one-time-use metadata to be
1505 * reused more quickly.
1506 *
1507 * BUT, if we are in a low-memory situation we have no choice but to
1508 * put clean pages on the cache queue.
1509 *
1510 * A number of routines use vm_page_unwire() to guarantee that the page
1511 * will go into either the inactive or active queues, and will NEVER
1512 * be placed in the cache - for example, just after dirtying a page.
1513 * dirty pages in the cache are not allowed.
1514 *
1515 * The page queues must be locked.
1516 * This routine may not block.
1517 */
1518 void
1519 vm_page_unwire(vm_page_t m, int activate)
1520 {
1521
1522 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1523 if (m->flags & PG_FICTITIOUS)
1524 return;
1525 if (m->wire_count > 0) {
1526 m->wire_count--;
1527 if (m->wire_count == 0) {
1528 atomic_subtract_int(&cnt.v_wire_count, 1);
1529 if (m->flags & PG_UNMANAGED) {
1530 ;
1531 } else if (activate)
1532 vm_page_enqueue(PQ_ACTIVE, m);
1533 else {
1534 vm_page_flag_clear(m, PG_WINATCFLS);
1535 vm_page_enqueue(PQ_INACTIVE, m);
1536 }
1537 }
1538 } else {
1539 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1540 }
1541 }
1542
1543
1544 /*
1545 * Move the specified page to the inactive queue. If the page has
1546 * any associated swap, the swap is deallocated.
1547 *
1548 * Normally athead is 0 resulting in LRU operation. athead is set
1549 * to 1 if we want this page to be 'as if it were placed in the cache',
1550 * except without unmapping it from the process address space.
1551 *
1552 * This routine may not block.
1553 */
1554 static inline void
1555 _vm_page_deactivate(vm_page_t m, int athead)
1556 {
1557
1558 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1559
1560 /*
1561 * Ignore if already inactive.
1562 */
1563 if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1564 return;
1565 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1566 vm_page_flag_clear(m, PG_WINATCFLS);
1567 vm_pageq_remove(m);
1568 if (athead)
1569 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1570 else
1571 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1572 VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1573 cnt.v_inactive_count++;
1574 }
1575 }
1576
1577 void
1578 vm_page_deactivate(vm_page_t m)
1579 {
1580 _vm_page_deactivate(m, 0);
1581 }
1582
1583 /*
1584 * vm_page_try_to_cache:
1585 *
1586 * Returns 0 on failure, 1 on success
1587 */
1588 int
1589 vm_page_try_to_cache(vm_page_t m)
1590 {
1591
1592 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1593 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1594 if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1595 (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1596 return (0);
1597 }
1598 pmap_remove_all(m);
1599 if (m->dirty)
1600 return (0);
1601 vm_page_cache(m);
1602 return (1);
1603 }
1604
1605 /*
1606 * vm_page_try_to_free()
1607 *
1608 * Attempt to free the page. If we cannot free it, we do nothing.
1609 * 1 is returned on success, 0 on failure.
1610 */
1611 int
1612 vm_page_try_to_free(vm_page_t m)
1613 {
1614
1615 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1616 if (m->object != NULL)
1617 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1618 if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1619 (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1620 return (0);
1621 }
1622 pmap_remove_all(m);
1623 if (m->dirty)
1624 return (0);
1625 vm_page_free(m);
1626 return (1);
1627 }
1628
1629 /*
1630 * vm_page_cache
1631 *
1632 * Put the specified page onto the page cache queue (if appropriate).
1633 *
1634 * This routine may not block.
1635 */
1636 void
1637 vm_page_cache(vm_page_t m)
1638 {
1639 vm_object_t object;
1640 vm_page_t root;
1641
1642 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1643 object = m->object;
1644 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1645 if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1646 m->hold_count || m->wire_count) {
1647 panic("vm_page_cache: attempting to cache busy page");
1648 }
1649 pmap_remove_all(m);
1650 if (m->dirty != 0)
1651 panic("vm_page_cache: page %p is dirty", m);
1652 if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1653 (object->type == OBJT_SWAP &&
1654 !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1655 /*
1656 * Hypothesis: A cache-elgible page belonging to a
1657 * default object or swap object but without a backing
1658 * store must be zero filled.
1659 */
1660 vm_page_free(m);
1661 return;
1662 }
1663 KASSERT((m->flags & PG_CACHED) == 0,
1664 ("vm_page_cache: page %p is already cached", m));
1665 cnt.v_tcached++;
1666
1667 /*
1668 * Remove the page from the paging queues.
1669 */
1670 vm_pageq_remove(m);
1671
1672 /*
1673 * Remove the page from the object's collection of resident
1674 * pages.
1675 */
1676 if (m != object->root)
1677 vm_page_splay(m->pindex, object->root);
1678 if (m->left == NULL)
1679 root = m->right;
1680 else {
1681 root = vm_page_splay(m->pindex, m->left);
1682 root->right = m->right;
1683 }
1684 object->root = root;
1685 TAILQ_REMOVE(&object->memq, m, listq);
1686 object->resident_page_count--;
1687 object->generation++;
1688
1689 /*
1690 * Restore the default memory attribute to the page.
1691 */
1692 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1693 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1694
1695 /*
1696 * Insert the page into the object's collection of cached pages
1697 * and the physical memory allocator's cache/free page queues.
1698 */
1699 vm_page_flag_clear(m, PG_ZERO);
1700 mtx_lock(&vm_page_queue_free_mtx);
1701 m->flags |= PG_CACHED;
1702 cnt.v_cache_count++;
1703 root = object->cache;
1704 if (root == NULL) {
1705 m->left = NULL;
1706 m->right = NULL;
1707 } else {
1708 root = vm_page_splay(m->pindex, root);
1709 if (m->pindex < root->pindex) {
1710 m->left = root->left;
1711 m->right = root;
1712 root->left = NULL;
1713 } else if (__predict_false(m->pindex == root->pindex))
1714 panic("vm_page_cache: offset already cached");
1715 else {
1716 m->right = root->right;
1717 m->left = root;
1718 root->right = NULL;
1719 }
1720 }
1721 object->cache = m;
1722 #if VM_NRESERVLEVEL > 0
1723 if (!vm_reserv_free_page(m)) {
1724 #else
1725 if (TRUE) {
1726 #endif
1727 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
1728 vm_phys_free_pages(m, 0);
1729 }
1730 vm_page_free_wakeup();
1731 mtx_unlock(&vm_page_queue_free_mtx);
1732
1733 /*
1734 * Increment the vnode's hold count if this is the object's only
1735 * cached page. Decrement the vnode's hold count if this was
1736 * the object's only resident page.
1737 */
1738 if (object->type == OBJT_VNODE) {
1739 if (root == NULL && object->resident_page_count != 0)
1740 vhold(object->handle);
1741 else if (root != NULL && object->resident_page_count == 0)
1742 vdrop(object->handle);
1743 }
1744 }
1745
1746 /*
1747 * vm_page_dontneed
1748 *
1749 * Cache, deactivate, or do nothing as appropriate. This routine
1750 * is typically used by madvise() MADV_DONTNEED.
1751 *
1752 * Generally speaking we want to move the page into the cache so
1753 * it gets reused quickly. However, this can result in a silly syndrome
1754 * due to the page recycling too quickly. Small objects will not be
1755 * fully cached. On the otherhand, if we move the page to the inactive
1756 * queue we wind up with a problem whereby very large objects
1757 * unnecessarily blow away our inactive and cache queues.
1758 *
1759 * The solution is to move the pages based on a fixed weighting. We
1760 * either leave them alone, deactivate them, or move them to the cache,
1761 * where moving them to the cache has the highest weighting.
1762 * By forcing some pages into other queues we eventually force the
1763 * system to balance the queues, potentially recovering other unrelated
1764 * space from active. The idea is to not force this to happen too
1765 * often.
1766 */
1767 void
1768 vm_page_dontneed(vm_page_t m)
1769 {
1770 static int dnweight;
1771 int dnw;
1772 int head;
1773
1774 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1775 dnw = ++dnweight;
1776
1777 /*
1778 * occassionally leave the page alone
1779 */
1780 if ((dnw & 0x01F0) == 0 ||
1781 VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) {
1782 if (m->act_count >= ACT_INIT)
1783 --m->act_count;
1784 return;
1785 }
1786
1787 /*
1788 * Clear any references to the page. Otherwise, the page daemon will
1789 * immediately reactivate the page.
1790 */
1791 vm_page_flag_clear(m, PG_REFERENCED);
1792 pmap_clear_reference(m);
1793
1794 if (m->dirty == 0 && pmap_is_modified(m))
1795 vm_page_dirty(m);
1796
1797 if (m->dirty || (dnw & 0x0070) == 0) {
1798 /*
1799 * Deactivate the page 3 times out of 32.
1800 */
1801 head = 0;
1802 } else {
1803 /*
1804 * Cache the page 28 times out of every 32. Note that
1805 * the page is deactivated instead of cached, but placed
1806 * at the head of the queue instead of the tail.
1807 */
1808 head = 1;
1809 }
1810 _vm_page_deactivate(m, head);
1811 }
1812
1813 /*
1814 * Grab a page, waiting until we are waken up due to the page
1815 * changing state. We keep on waiting, if the page continues
1816 * to be in the object. If the page doesn't exist, first allocate it
1817 * and then conditionally zero it.
1818 *
1819 * This routine may block.
1820 */
1821 vm_page_t
1822 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1823 {
1824 vm_page_t m;
1825
1826 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1827 retrylookup:
1828 if ((m = vm_page_lookup(object, pindex)) != NULL) {
1829 if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1830 if ((allocflags & VM_ALLOC_RETRY) == 0)
1831 return (NULL);
1832 goto retrylookup;
1833 } else {
1834 if ((allocflags & VM_ALLOC_WIRED) != 0) {
1835 vm_page_lock_queues();
1836 vm_page_wire(m);
1837 vm_page_unlock_queues();
1838 }
1839 if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1840 vm_page_busy(m);
1841 return (m);
1842 }
1843 }
1844 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1845 if (m == NULL) {
1846 VM_OBJECT_UNLOCK(object);
1847 VM_WAIT;
1848 VM_OBJECT_LOCK(object);
1849 if ((allocflags & VM_ALLOC_RETRY) == 0)
1850 return (NULL);
1851 goto retrylookup;
1852 } else if (m->valid != 0)
1853 return (m);
1854 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1855 pmap_zero_page(m);
1856 return (m);
1857 }
1858
1859 /*
1860 * Mapping function for valid bits or for dirty bits in
1861 * a page. May not block.
1862 *
1863 * Inputs are required to range within a page.
1864 */
1865 int
1866 vm_page_bits(int base, int size)
1867 {
1868 int first_bit;
1869 int last_bit;
1870
1871 KASSERT(
1872 base + size <= PAGE_SIZE,
1873 ("vm_page_bits: illegal base/size %d/%d", base, size)
1874 );
1875
1876 if (size == 0) /* handle degenerate case */
1877 return (0);
1878
1879 first_bit = base >> DEV_BSHIFT;
1880 last_bit = (base + size - 1) >> DEV_BSHIFT;
1881
1882 return ((2 << last_bit) - (1 << first_bit));
1883 }
1884
1885 /*
1886 * vm_page_set_valid:
1887 *
1888 * Sets portions of a page valid. The arguments are expected
1889 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1890 * of any partial chunks touched by the range. The invalid portion of
1891 * such chunks will be zeroed.
1892 *
1893 * (base + size) must be less then or equal to PAGE_SIZE.
1894 */
1895 void
1896 vm_page_set_valid(vm_page_t m, int base, int size)
1897 {
1898 int endoff, frag;
1899
1900 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1901 if (size == 0) /* handle degenerate case */
1902 return;
1903
1904 /*
1905 * If the base is not DEV_BSIZE aligned and the valid
1906 * bit is clear, we have to zero out a portion of the
1907 * first block.
1908 */
1909 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1910 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1911 pmap_zero_page_area(m, frag, base - frag);
1912
1913 /*
1914 * If the ending offset is not DEV_BSIZE aligned and the
1915 * valid bit is clear, we have to zero out a portion of
1916 * the last block.
1917 */
1918 endoff = base + size;
1919 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1920 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1921 pmap_zero_page_area(m, endoff,
1922 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1923
1924 /*
1925 * Assert that no previously invalid block that is now being validated
1926 * is already dirty.
1927 */
1928 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
1929 ("vm_page_set_valid: page %p is dirty", m));
1930
1931 /*
1932 * Set valid bits inclusive of any overlap.
1933 */
1934 m->valid |= vm_page_bits(base, size);
1935 }
1936
1937 /*
1938 * vm_page_set_validclean:
1939 *
1940 * Sets portions of a page valid and clean. The arguments are expected
1941 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1942 * of any partial chunks touched by the range. The invalid portion of
1943 * such chunks will be zero'd.
1944 *
1945 * This routine may not block.
1946 *
1947 * (base + size) must be less then or equal to PAGE_SIZE.
1948 */
1949 void
1950 vm_page_set_validclean(vm_page_t m, int base, int size)
1951 {
1952 int pagebits;
1953 int frag;
1954 int endoff;
1955
1956 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1957 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1958 if (size == 0) /* handle degenerate case */
1959 return;
1960
1961 /*
1962 * If the base is not DEV_BSIZE aligned and the valid
1963 * bit is clear, we have to zero out a portion of the
1964 * first block.
1965 */
1966 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1967 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1968 pmap_zero_page_area(m, frag, base - frag);
1969
1970 /*
1971 * If the ending offset is not DEV_BSIZE aligned and the
1972 * valid bit is clear, we have to zero out a portion of
1973 * the last block.
1974 */
1975 endoff = base + size;
1976 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1977 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1978 pmap_zero_page_area(m, endoff,
1979 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1980
1981 /*
1982 * Set valid, clear dirty bits. If validating the entire
1983 * page we can safely clear the pmap modify bit. We also
1984 * use this opportunity to clear the VPO_NOSYNC flag. If a process
1985 * takes a write fault on a MAP_NOSYNC memory area the flag will
1986 * be set again.
1987 *
1988 * We set valid bits inclusive of any overlap, but we can only
1989 * clear dirty bits for DEV_BSIZE chunks that are fully within
1990 * the range.
1991 */
1992 pagebits = vm_page_bits(base, size);
1993 m->valid |= pagebits;
1994 #if 0 /* NOT YET */
1995 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1996 frag = DEV_BSIZE - frag;
1997 base += frag;
1998 size -= frag;
1999 if (size < 0)
2000 size = 0;
2001 }
2002 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2003 #endif
2004 m->dirty &= ~pagebits;
2005 if (base == 0 && size == PAGE_SIZE) {
2006 pmap_clear_modify(m);
2007 m->oflags &= ~VPO_NOSYNC;
2008 }
2009 }
2010
2011 void
2012 vm_page_clear_dirty(vm_page_t m, int base, int size)
2013 {
2014
2015 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2016 m->dirty &= ~vm_page_bits(base, size);
2017 }
2018
2019 /*
2020 * vm_page_set_invalid:
2021 *
2022 * Invalidates DEV_BSIZE'd chunks within a page. Both the
2023 * valid and dirty bits for the effected areas are cleared.
2024 *
2025 * May not block.
2026 */
2027 void
2028 vm_page_set_invalid(vm_page_t m, int base, int size)
2029 {
2030 int bits;
2031
2032 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2033 bits = vm_page_bits(base, size);
2034 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2035 if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2036 pmap_remove_all(m);
2037 m->valid &= ~bits;
2038 m->dirty &= ~bits;
2039 m->object->generation++;
2040 }
2041
2042 /*
2043 * vm_page_zero_invalid()
2044 *
2045 * The kernel assumes that the invalid portions of a page contain
2046 * garbage, but such pages can be mapped into memory by user code.
2047 * When this occurs, we must zero out the non-valid portions of the
2048 * page so user code sees what it expects.
2049 *
2050 * Pages are most often semi-valid when the end of a file is mapped
2051 * into memory and the file's size is not page aligned.
2052 */
2053 void
2054 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2055 {
2056 int b;
2057 int i;
2058
2059 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2060 /*
2061 * Scan the valid bits looking for invalid sections that
2062 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
2063 * valid bit may be set ) have already been zerod by
2064 * vm_page_set_validclean().
2065 */
2066 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2067 if (i == (PAGE_SIZE / DEV_BSIZE) ||
2068 (m->valid & (1 << i))
2069 ) {
2070 if (i > b) {
2071 pmap_zero_page_area(m,
2072 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2073 }
2074 b = i + 1;
2075 }
2076 }
2077
2078 /*
2079 * setvalid is TRUE when we can safely set the zero'd areas
2080 * as being valid. We can do this if there are no cache consistancy
2081 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
2082 */
2083 if (setvalid)
2084 m->valid = VM_PAGE_BITS_ALL;
2085 }
2086
2087 /*
2088 * vm_page_is_valid:
2089 *
2090 * Is (partial) page valid? Note that the case where size == 0
2091 * will return FALSE in the degenerate case where the page is
2092 * entirely invalid, and TRUE otherwise.
2093 *
2094 * May not block.
2095 */
2096 int
2097 vm_page_is_valid(vm_page_t m, int base, int size)
2098 {
2099 int bits = vm_page_bits(base, size);
2100
2101 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2102 if (m->valid && ((m->valid & bits) == bits))
2103 return 1;
2104 else
2105 return 0;
2106 }
2107
2108 /*
2109 * update dirty bits from pmap/mmu. May not block.
2110 */
2111 void
2112 vm_page_test_dirty(vm_page_t m)
2113 {
2114 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
2115 vm_page_dirty(m);
2116 }
2117 }
2118
2119 int so_zerocp_fullpage = 0;
2120
2121 /*
2122 * Replace the given page with a copy. The copied page assumes
2123 * the portion of the given page's "wire_count" that is not the
2124 * responsibility of this copy-on-write mechanism.
2125 *
2126 * The object containing the given page must have a non-zero
2127 * paging-in-progress count and be locked.
2128 */
2129 void
2130 vm_page_cowfault(vm_page_t m)
2131 {
2132 vm_page_t mnew;
2133 vm_object_t object;
2134 vm_pindex_t pindex;
2135
2136 object = m->object;
2137 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2138 KASSERT(object->paging_in_progress != 0,
2139 ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2140 object));
2141 pindex = m->pindex;
2142
2143 retry_alloc:
2144 pmap_remove_all(m);
2145 vm_page_remove(m);
2146 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2147 if (mnew == NULL) {
2148 vm_page_insert(m, object, pindex);
2149 vm_page_unlock_queues();
2150 VM_OBJECT_UNLOCK(object);
2151 VM_WAIT;
2152 VM_OBJECT_LOCK(object);
2153 if (m == vm_page_lookup(object, pindex)) {
2154 vm_page_lock_queues();
2155 goto retry_alloc;
2156 } else {
2157 /*
2158 * Page disappeared during the wait.
2159 */
2160 vm_page_lock_queues();
2161 return;
2162 }
2163 }
2164
2165 if (m->cow == 0) {
2166 /*
2167 * check to see if we raced with an xmit complete when
2168 * waiting to allocate a page. If so, put things back
2169 * the way they were
2170 */
2171 vm_page_free(mnew);
2172 vm_page_insert(m, object, pindex);
2173 } else { /* clear COW & copy page */
2174 if (!so_zerocp_fullpage)
2175 pmap_copy_page(m, mnew);
2176 mnew->valid = VM_PAGE_BITS_ALL;
2177 vm_page_dirty(mnew);
2178 mnew->wire_count = m->wire_count - m->cow;
2179 m->wire_count = m->cow;
2180 }
2181 }
2182
2183 void
2184 vm_page_cowclear(vm_page_t m)
2185 {
2186
2187 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2188 if (m->cow) {
2189 m->cow--;
2190 /*
2191 * let vm_fault add back write permission lazily
2192 */
2193 }
2194 /*
2195 * sf_buf_free() will free the page, so we needn't do it here
2196 */
2197 }
2198
2199 int
2200 vm_page_cowsetup(vm_page_t m)
2201 {
2202
2203 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2204 if (m->cow == USHRT_MAX - 1)
2205 return (EBUSY);
2206 m->cow++;
2207 pmap_remove_write(m);
2208 return (0);
2209 }
2210
2211 #include "opt_ddb.h"
2212 #ifdef DDB
2213 #include <sys/kernel.h>
2214
2215 #include <ddb/ddb.h>
2216
2217 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2218 {
2219 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2220 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2221 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2222 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2223 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2224 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2225 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2226 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2227 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2228 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2229 }
2230
2231 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2232 {
2233
2234 db_printf("PQ_FREE:");
2235 db_printf(" %d", cnt.v_free_count);
2236 db_printf("\n");
2237
2238 db_printf("PQ_CACHE:");
2239 db_printf(" %d", cnt.v_cache_count);
2240 db_printf("\n");
2241
2242 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2243 *vm_page_queues[PQ_ACTIVE].cnt,
2244 *vm_page_queues[PQ_INACTIVE].cnt);
2245 }
2246 #endif /* DDB */
Cache object: 8704c0120eff4319eef5997c37ed7c1b
|