The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * The Mach Operating System project at Carnegie-Mellon University.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
   34  */
   35 
   36 /*-
   37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   38  * All rights reserved.
   39  *
   40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   41  *
   42  * Permission to use, copy, modify and distribute this software and
   43  * its documentation is hereby granted, provided that both the copyright
   44  * notice and this permission notice appear in all copies of the
   45  * software, derivative works or modified versions, and any portions
   46  * thereof, and that both notices appear in supporting documentation.
   47  *
   48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   51  *
   52  * Carnegie Mellon requests users of this software to return to
   53  *
   54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   55  *  School of Computer Science
   56  *  Carnegie Mellon University
   57  *  Pittsburgh PA 15213-3890
   58  *
   59  * any improvements or extensions that they make and grant Carnegie the
   60  * rights to redistribute these changes.
   61  */
   62 
   63 /*
   64  *                      GENERAL RULES ON VM_PAGE MANIPULATION
   65  *
   66  *      - a pageq mutex is required when adding or removing a page from a
   67  *        page queue (vm_page_queue[]), regardless of other mutexes or the
   68  *        busy state of a page.
   69  *
   70  *      - a hash chain mutex is required when associating or disassociating
   71  *        a page from the VM PAGE CACHE hash table (vm_page_buckets),
   72  *        regardless of other mutexes or the busy state of a page.
   73  *
   74  *      - either a hash chain mutex OR a busied page is required in order
   75  *        to modify the page flags.  A hash chain mutex must be obtained in
   76  *        order to busy a page.  A page's flags cannot be modified by a
   77  *        hash chain mutex if the page is marked busy.
   78  *
   79  *      - The object memq mutex is held when inserting or removing
   80  *        pages from an object (vm_page_insert() or vm_page_remove()).  This
   81  *        is different from the object's main mutex.
   82  *
   83  *      Generally speaking, you have to be aware of side effects when running
   84  *      vm_page ops.  A vm_page_lookup() will return with the hash chain
   85  *      locked, whether it was able to lookup the page or not.  vm_page_free(),
   86  *      vm_page_cache(), vm_page_activate(), and a number of other routines
   87  *      will release the hash chain mutex for you.  Intermediate manipulation
   88  *      routines such as vm_page_flag_set() expect the hash chain to be held
   89  *      on entry and the hash chain will remain held on return.
   90  *
   91  *      pageq scanning can only occur with the pageq in question locked.
   92  *      We have a known bottleneck with the active queue, but the cache
   93  *      and free queues are actually arrays already. 
   94  */
   95 
   96 /*
   97  *      Resident memory management module.
   98  */
   99 
  100 #include <sys/cdefs.h>
  101 __FBSDID("$FreeBSD: releng/8.1/sys/vm/vm_page.c 206410 2010-04-09 06:40:30Z alc $");
  102 
  103 #include "opt_vm.h"
  104 
  105 #include <sys/param.h>
  106 #include <sys/systm.h>
  107 #include <sys/lock.h>
  108 #include <sys/kernel.h>
  109 #include <sys/limits.h>
  110 #include <sys/malloc.h>
  111 #include <sys/mutex.h>
  112 #include <sys/proc.h>
  113 #include <sys/sysctl.h>
  114 #include <sys/vmmeter.h>
  115 #include <sys/vnode.h>
  116 
  117 #include <vm/vm.h>
  118 #include <vm/vm_param.h>
  119 #include <vm/vm_kern.h>
  120 #include <vm/vm_object.h>
  121 #include <vm/vm_page.h>
  122 #include <vm/vm_pageout.h>
  123 #include <vm/vm_pager.h>
  124 #include <vm/vm_phys.h>
  125 #include <vm/vm_reserv.h>
  126 #include <vm/vm_extern.h>
  127 #include <vm/uma.h>
  128 #include <vm/uma_int.h>
  129 
  130 #include <machine/md_var.h>
  131 
  132 /*
  133  *      Associated with page of user-allocatable memory is a
  134  *      page structure.
  135  */
  136 
  137 struct vpgqueues vm_page_queues[PQ_COUNT];
  138 struct mtx vm_page_queue_mtx;
  139 struct mtx vm_page_queue_free_mtx;
  140 
  141 vm_page_t vm_page_array = 0;
  142 int vm_page_array_size = 0;
  143 long first_page = 0;
  144 int vm_page_zero_count = 0;
  145 
  146 static int boot_pages = UMA_BOOT_PAGES;
  147 TUNABLE_INT("vm.boot_pages", &boot_pages);
  148 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
  149         "number of pages allocated for bootstrapping the VM system");
  150 
  151 static void vm_page_enqueue(int queue, vm_page_t m);
  152 
  153 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
  154 #if PAGE_SIZE == 32768
  155 #ifdef CTASSERT
  156 CTASSERT(sizeof(u_long) >= 8);
  157 #endif
  158 #endif
  159 
  160 /*
  161  *      vm_set_page_size:
  162  *
  163  *      Sets the page size, perhaps based upon the memory
  164  *      size.  Must be called before any use of page-size
  165  *      dependent functions.
  166  */
  167 void
  168 vm_set_page_size(void)
  169 {
  170         if (cnt.v_page_size == 0)
  171                 cnt.v_page_size = PAGE_SIZE;
  172         if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
  173                 panic("vm_set_page_size: page size not a power of two");
  174 }
  175 
  176 /*
  177  *      vm_page_blacklist_lookup:
  178  *
  179  *      See if a physical address in this page has been listed
  180  *      in the blacklist tunable.  Entries in the tunable are
  181  *      separated by spaces or commas.  If an invalid integer is
  182  *      encountered then the rest of the string is skipped.
  183  */
  184 static int
  185 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
  186 {
  187         vm_paddr_t bad;
  188         char *cp, *pos;
  189 
  190         for (pos = list; *pos != '\0'; pos = cp) {
  191                 bad = strtoq(pos, &cp, 0);
  192                 if (*cp != '\0') {
  193                         if (*cp == ' ' || *cp == ',') {
  194                                 cp++;
  195                                 if (cp == pos)
  196                                         continue;
  197                         } else
  198                                 break;
  199                 }
  200                 if (pa == trunc_page(bad))
  201                         return (1);
  202         }
  203         return (0);
  204 }
  205 
  206 /*
  207  *      vm_page_startup:
  208  *
  209  *      Initializes the resident memory module.
  210  *
  211  *      Allocates memory for the page cells, and
  212  *      for the object/offset-to-page hash table headers.
  213  *      Each page cell is initialized and placed on the free list.
  214  */
  215 vm_offset_t
  216 vm_page_startup(vm_offset_t vaddr)
  217 {
  218         vm_offset_t mapped;
  219         vm_paddr_t page_range;
  220         vm_paddr_t new_end;
  221         int i;
  222         vm_paddr_t pa;
  223         int nblocks;
  224         vm_paddr_t last_pa;
  225         char *list;
  226 
  227         /* the biggest memory array is the second group of pages */
  228         vm_paddr_t end;
  229         vm_paddr_t biggestsize;
  230         vm_paddr_t low_water, high_water;
  231         int biggestone;
  232 
  233         biggestsize = 0;
  234         biggestone = 0;
  235         nblocks = 0;
  236         vaddr = round_page(vaddr);
  237 
  238         for (i = 0; phys_avail[i + 1]; i += 2) {
  239                 phys_avail[i] = round_page(phys_avail[i]);
  240                 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
  241         }
  242 
  243         low_water = phys_avail[0];
  244         high_water = phys_avail[1];
  245 
  246         for (i = 0; phys_avail[i + 1]; i += 2) {
  247                 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
  248 
  249                 if (size > biggestsize) {
  250                         biggestone = i;
  251                         biggestsize = size;
  252                 }
  253                 if (phys_avail[i] < low_water)
  254                         low_water = phys_avail[i];
  255                 if (phys_avail[i + 1] > high_water)
  256                         high_water = phys_avail[i + 1];
  257                 ++nblocks;
  258         }
  259 
  260 #ifdef XEN
  261         low_water = 0;
  262 #endif  
  263 
  264         end = phys_avail[biggestone+1];
  265 
  266         /*
  267          * Initialize the locks.
  268          */
  269         mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
  270             MTX_RECURSE);
  271         mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
  272             MTX_DEF);
  273 
  274         /*
  275          * Initialize the queue headers for the hold queue, the active queue,
  276          * and the inactive queue.
  277          */
  278         for (i = 0; i < PQ_COUNT; i++)
  279                 TAILQ_INIT(&vm_page_queues[i].pl);
  280         vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
  281         vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
  282         vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
  283 
  284         /*
  285          * Allocate memory for use when boot strapping the kernel memory
  286          * allocator.
  287          */
  288         new_end = end - (boot_pages * UMA_SLAB_SIZE);
  289         new_end = trunc_page(new_end);
  290         mapped = pmap_map(&vaddr, new_end, end,
  291             VM_PROT_READ | VM_PROT_WRITE);
  292         bzero((void *)mapped, end - new_end);
  293         uma_startup((void *)mapped, boot_pages);
  294 
  295 #if defined(__amd64__) || defined(__i386__) || defined(__arm__)
  296         /*
  297          * Allocate a bitmap to indicate that a random physical page
  298          * needs to be included in a minidump.
  299          *
  300          * The amd64 port needs this to indicate which direct map pages
  301          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
  302          *
  303          * However, i386 still needs this workspace internally within the
  304          * minidump code.  In theory, they are not needed on i386, but are
  305          * included should the sf_buf code decide to use them.
  306          */
  307         page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
  308         vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
  309         new_end -= vm_page_dump_size;
  310         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
  311             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
  312         bzero((void *)vm_page_dump, vm_page_dump_size);
  313 #endif
  314         /*
  315          * Compute the number of pages of memory that will be available for
  316          * use (taking into account the overhead of a page structure per
  317          * page).
  318          */
  319         first_page = low_water / PAGE_SIZE;
  320 #ifdef VM_PHYSSEG_SPARSE
  321         page_range = 0;
  322         for (i = 0; phys_avail[i + 1] != 0; i += 2)
  323                 page_range += atop(phys_avail[i + 1] - phys_avail[i]);
  324 #elif defined(VM_PHYSSEG_DENSE)
  325         page_range = high_water / PAGE_SIZE - first_page;
  326 #else
  327 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
  328 #endif
  329         end = new_end;
  330 
  331         /*
  332          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
  333          */
  334         vaddr += PAGE_SIZE;
  335 
  336         /*
  337          * Initialize the mem entry structures now, and put them in the free
  338          * queue.
  339          */
  340         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
  341         mapped = pmap_map(&vaddr, new_end, end,
  342             VM_PROT_READ | VM_PROT_WRITE);
  343         vm_page_array = (vm_page_t) mapped;
  344 #if VM_NRESERVLEVEL > 0
  345         /*
  346          * Allocate memory for the reservation management system's data
  347          * structures.
  348          */
  349         new_end = vm_reserv_startup(&vaddr, new_end, high_water);
  350 #endif
  351 #ifdef __amd64__
  352         /*
  353          * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
  354          * so the pages must be tracked for a crashdump to include this data.
  355          * This includes the vm_page_array and the early UMA bootstrap pages.
  356          */
  357         for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
  358                 dump_add_page(pa);
  359 #endif  
  360         phys_avail[biggestone + 1] = new_end;
  361 
  362         /*
  363          * Clear all of the page structures
  364          */
  365         bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
  366         for (i = 0; i < page_range; i++)
  367                 vm_page_array[i].order = VM_NFREEORDER;
  368         vm_page_array_size = page_range;
  369 
  370         /*
  371          * Initialize the physical memory allocator.
  372          */
  373         vm_phys_init();
  374 
  375         /*
  376          * Add every available physical page that is not blacklisted to
  377          * the free lists.
  378          */
  379         cnt.v_page_count = 0;
  380         cnt.v_free_count = 0;
  381         list = getenv("vm.blacklist");
  382         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  383                 pa = phys_avail[i];
  384                 last_pa = phys_avail[i + 1];
  385                 while (pa < last_pa) {
  386                         if (list != NULL &&
  387                             vm_page_blacklist_lookup(list, pa))
  388                                 printf("Skipping page with pa 0x%jx\n",
  389                                     (uintmax_t)pa);
  390                         else
  391                                 vm_phys_add_page(pa);
  392                         pa += PAGE_SIZE;
  393                 }
  394         }
  395         freeenv(list);
  396 #if VM_NRESERVLEVEL > 0
  397         /*
  398          * Initialize the reservation management system.
  399          */
  400         vm_reserv_init();
  401 #endif
  402         return (vaddr);
  403 }
  404 
  405 void
  406 vm_page_flag_set(vm_page_t m, unsigned short bits)
  407 {
  408 
  409         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  410         m->flags |= bits;
  411 } 
  412 
  413 void
  414 vm_page_flag_clear(vm_page_t m, unsigned short bits)
  415 {
  416 
  417         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  418         m->flags &= ~bits;
  419 }
  420 
  421 void
  422 vm_page_busy(vm_page_t m)
  423 {
  424 
  425         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  426         KASSERT((m->oflags & VPO_BUSY) == 0,
  427             ("vm_page_busy: page already busy!!!"));
  428         m->oflags |= VPO_BUSY;
  429 }
  430 
  431 /*
  432  *      vm_page_flash:
  433  *
  434  *      wakeup anyone waiting for the page.
  435  */
  436 void
  437 vm_page_flash(vm_page_t m)
  438 {
  439 
  440         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  441         if (m->oflags & VPO_WANTED) {
  442                 m->oflags &= ~VPO_WANTED;
  443                 wakeup(m);
  444         }
  445 }
  446 
  447 /*
  448  *      vm_page_wakeup:
  449  *
  450  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
  451  *      page.
  452  *
  453  */
  454 void
  455 vm_page_wakeup(vm_page_t m)
  456 {
  457 
  458         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  459         KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
  460         m->oflags &= ~VPO_BUSY;
  461         vm_page_flash(m);
  462 }
  463 
  464 void
  465 vm_page_io_start(vm_page_t m)
  466 {
  467 
  468         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  469         m->busy++;
  470 }
  471 
  472 void
  473 vm_page_io_finish(vm_page_t m)
  474 {
  475 
  476         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  477         m->busy--;
  478         if (m->busy == 0)
  479                 vm_page_flash(m);
  480 }
  481 
  482 /*
  483  * Keep page from being freed by the page daemon
  484  * much of the same effect as wiring, except much lower
  485  * overhead and should be used only for *very* temporary
  486  * holding ("wiring").
  487  */
  488 void
  489 vm_page_hold(vm_page_t mem)
  490 {
  491 
  492         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  493         mem->hold_count++;
  494 }
  495 
  496 void
  497 vm_page_unhold(vm_page_t mem)
  498 {
  499 
  500         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  501         --mem->hold_count;
  502         KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
  503         if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
  504                 vm_page_free_toq(mem);
  505 }
  506 
  507 /*
  508  *      vm_page_free:
  509  *
  510  *      Free a page.
  511  */
  512 void
  513 vm_page_free(vm_page_t m)
  514 {
  515 
  516         m->flags &= ~PG_ZERO;
  517         vm_page_free_toq(m);
  518 }
  519 
  520 /*
  521  *      vm_page_free_zero:
  522  *
  523  *      Free a page to the zerod-pages queue
  524  */
  525 void
  526 vm_page_free_zero(vm_page_t m)
  527 {
  528 
  529         m->flags |= PG_ZERO;
  530         vm_page_free_toq(m);
  531 }
  532 
  533 /*
  534  *      vm_page_sleep:
  535  *
  536  *      Sleep and release the page queues lock.
  537  *
  538  *      The object containing the given page must be locked.
  539  */
  540 void
  541 vm_page_sleep(vm_page_t m, const char *msg)
  542 {
  543 
  544         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  545         if (!mtx_owned(&vm_page_queue_mtx))
  546                 vm_page_lock_queues();
  547         vm_page_flag_set(m, PG_REFERENCED);
  548         vm_page_unlock_queues();
  549 
  550         /*
  551          * It's possible that while we sleep, the page will get
  552          * unbusied and freed.  If we are holding the object
  553          * lock, we will assume we hold a reference to the object
  554          * such that even if m->object changes, we can re-lock
  555          * it.
  556          */
  557         m->oflags |= VPO_WANTED;
  558         msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
  559 }
  560 
  561 /*
  562  *      vm_page_dirty:
  563  *
  564  *      make page all dirty
  565  */
  566 void
  567 vm_page_dirty(vm_page_t m)
  568 {
  569 
  570         KASSERT((m->flags & PG_CACHED) == 0,
  571             ("vm_page_dirty: page in cache!"));
  572         KASSERT(!VM_PAGE_IS_FREE(m),
  573             ("vm_page_dirty: page is free!"));
  574         KASSERT(m->valid == VM_PAGE_BITS_ALL,
  575             ("vm_page_dirty: page is invalid!"));
  576         m->dirty = VM_PAGE_BITS_ALL;
  577 }
  578 
  579 /*
  580  *      vm_page_splay:
  581  *
  582  *      Implements Sleator and Tarjan's top-down splay algorithm.  Returns
  583  *      the vm_page containing the given pindex.  If, however, that
  584  *      pindex is not found in the vm_object, returns a vm_page that is
  585  *      adjacent to the pindex, coming before or after it.
  586  */
  587 vm_page_t
  588 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
  589 {
  590         struct vm_page dummy;
  591         vm_page_t lefttreemax, righttreemin, y;
  592 
  593         if (root == NULL)
  594                 return (root);
  595         lefttreemax = righttreemin = &dummy;
  596         for (;; root = y) {
  597                 if (pindex < root->pindex) {
  598                         if ((y = root->left) == NULL)
  599                                 break;
  600                         if (pindex < y->pindex) {
  601                                 /* Rotate right. */
  602                                 root->left = y->right;
  603                                 y->right = root;
  604                                 root = y;
  605                                 if ((y = root->left) == NULL)
  606                                         break;
  607                         }
  608                         /* Link into the new root's right tree. */
  609                         righttreemin->left = root;
  610                         righttreemin = root;
  611                 } else if (pindex > root->pindex) {
  612                         if ((y = root->right) == NULL)
  613                                 break;
  614                         if (pindex > y->pindex) {
  615                                 /* Rotate left. */
  616                                 root->right = y->left;
  617                                 y->left = root;
  618                                 root = y;
  619                                 if ((y = root->right) == NULL)
  620                                         break;
  621                         }
  622                         /* Link into the new root's left tree. */
  623                         lefttreemax->right = root;
  624                         lefttreemax = root;
  625                 } else
  626                         break;
  627         }
  628         /* Assemble the new root. */
  629         lefttreemax->right = root->left;
  630         righttreemin->left = root->right;
  631         root->left = dummy.right;
  632         root->right = dummy.left;
  633         return (root);
  634 }
  635 
  636 /*
  637  *      vm_page_insert:         [ internal use only ]
  638  *
  639  *      Inserts the given mem entry into the object and object list.
  640  *
  641  *      The pagetables are not updated but will presumably fault the page
  642  *      in if necessary, or if a kernel page the caller will at some point
  643  *      enter the page into the kernel's pmap.  We are not allowed to block
  644  *      here so we *can't* do this anyway.
  645  *
  646  *      The object and page must be locked.
  647  *      This routine may not block.
  648  */
  649 void
  650 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
  651 {
  652         vm_page_t root;
  653 
  654         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  655         if (m->object != NULL)
  656                 panic("vm_page_insert: page already inserted");
  657 
  658         /*
  659          * Record the object/offset pair in this page
  660          */
  661         m->object = object;
  662         m->pindex = pindex;
  663 
  664         /*
  665          * Now link into the object's ordered list of backed pages.
  666          */
  667         root = object->root;
  668         if (root == NULL) {
  669                 m->left = NULL;
  670                 m->right = NULL;
  671                 TAILQ_INSERT_TAIL(&object->memq, m, listq);
  672         } else {
  673                 root = vm_page_splay(pindex, root);
  674                 if (pindex < root->pindex) {
  675                         m->left = root->left;
  676                         m->right = root;
  677                         root->left = NULL;
  678                         TAILQ_INSERT_BEFORE(root, m, listq);
  679                 } else if (pindex == root->pindex)
  680                         panic("vm_page_insert: offset already allocated");
  681                 else {
  682                         m->right = root->right;
  683                         m->left = root;
  684                         root->right = NULL;
  685                         TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
  686                 }
  687         }
  688         object->root = m;
  689         object->generation++;
  690 
  691         /*
  692          * show that the object has one more resident page.
  693          */
  694         object->resident_page_count++;
  695         /*
  696          * Hold the vnode until the last page is released.
  697          */
  698         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
  699                 vhold((struct vnode *)object->handle);
  700 
  701         /*
  702          * Since we are inserting a new and possibly dirty page,
  703          * update the object's OBJ_MIGHTBEDIRTY flag.
  704          */
  705         if (m->flags & PG_WRITEABLE)
  706                 vm_object_set_writeable_dirty(object);
  707 }
  708 
  709 /*
  710  *      vm_page_remove:
  711  *                              NOTE: used by device pager as well -wfj
  712  *
  713  *      Removes the given mem entry from the object/offset-page
  714  *      table and the object page list, but do not invalidate/terminate
  715  *      the backing store.
  716  *
  717  *      The object and page must be locked.
  718  *      The underlying pmap entry (if any) is NOT removed here.
  719  *      This routine may not block.
  720  */
  721 void
  722 vm_page_remove(vm_page_t m)
  723 {
  724         vm_object_t object;
  725         vm_page_t root;
  726 
  727         if ((object = m->object) == NULL)
  728                 return;
  729         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  730         if (m->oflags & VPO_BUSY) {
  731                 m->oflags &= ~VPO_BUSY;
  732                 vm_page_flash(m);
  733         }
  734         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  735 
  736         /*
  737          * Now remove from the object's list of backed pages.
  738          */
  739         if (m != object->root)
  740                 vm_page_splay(m->pindex, object->root);
  741         if (m->left == NULL)
  742                 root = m->right;
  743         else {
  744                 root = vm_page_splay(m->pindex, m->left);
  745                 root->right = m->right;
  746         }
  747         object->root = root;
  748         TAILQ_REMOVE(&object->memq, m, listq);
  749 
  750         /*
  751          * And show that the object has one fewer resident page.
  752          */
  753         object->resident_page_count--;
  754         object->generation++;
  755         /*
  756          * The vnode may now be recycled.
  757          */
  758         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
  759                 vdrop((struct vnode *)object->handle);
  760 
  761         m->object = NULL;
  762 }
  763 
  764 /*
  765  *      vm_page_lookup:
  766  *
  767  *      Returns the page associated with the object/offset
  768  *      pair specified; if none is found, NULL is returned.
  769  *
  770  *      The object must be locked.
  771  *      This routine may not block.
  772  *      This is a critical path routine
  773  */
  774 vm_page_t
  775 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
  776 {
  777         vm_page_t m;
  778 
  779         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  780         if ((m = object->root) != NULL && m->pindex != pindex) {
  781                 m = vm_page_splay(pindex, m);
  782                 if ((object->root = m)->pindex != pindex)
  783                         m = NULL;
  784         }
  785         return (m);
  786 }
  787 
  788 /*
  789  *      vm_page_rename:
  790  *
  791  *      Move the given memory entry from its
  792  *      current object to the specified target object/offset.
  793  *
  794  *      The object must be locked.
  795  *      This routine may not block.
  796  *
  797  *      Note: swap associated with the page must be invalidated by the move.  We
  798  *            have to do this for several reasons:  (1) we aren't freeing the
  799  *            page, (2) we are dirtying the page, (3) the VM system is probably
  800  *            moving the page from object A to B, and will then later move
  801  *            the backing store from A to B and we can't have a conflict.
  802  *
  803  *      Note: we *always* dirty the page.  It is necessary both for the
  804  *            fact that we moved it, and because we may be invalidating
  805  *            swap.  If the page is on the cache, we have to deactivate it
  806  *            or vm_page_dirty() will panic.  Dirty pages are not allowed
  807  *            on the cache.
  808  */
  809 void
  810 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
  811 {
  812 
  813         vm_page_remove(m);
  814         vm_page_insert(m, new_object, new_pindex);
  815         vm_page_dirty(m);
  816 }
  817 
  818 /*
  819  *      Convert all of the given object's cached pages that have a
  820  *      pindex within the given range into free pages.  If the value
  821  *      zero is given for "end", then the range's upper bound is
  822  *      infinity.  If the given object is backed by a vnode and it
  823  *      transitions from having one or more cached pages to none, the
  824  *      vnode's hold count is reduced. 
  825  */
  826 void
  827 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
  828 {
  829         vm_page_t m, m_next;
  830         boolean_t empty;
  831 
  832         mtx_lock(&vm_page_queue_free_mtx);
  833         if (__predict_false(object->cache == NULL)) {
  834                 mtx_unlock(&vm_page_queue_free_mtx);
  835                 return;
  836         }
  837         m = object->cache = vm_page_splay(start, object->cache);
  838         if (m->pindex < start) {
  839                 if (m->right == NULL)
  840                         m = NULL;
  841                 else {
  842                         m_next = vm_page_splay(start, m->right);
  843                         m_next->left = m;
  844                         m->right = NULL;
  845                         m = object->cache = m_next;
  846                 }
  847         }
  848 
  849         /*
  850          * At this point, "m" is either (1) a reference to the page
  851          * with the least pindex that is greater than or equal to
  852          * "start" or (2) NULL.
  853          */
  854         for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
  855                 /*
  856                  * Find "m"'s successor and remove "m" from the
  857                  * object's cache.
  858                  */
  859                 if (m->right == NULL) {
  860                         object->cache = m->left;
  861                         m_next = NULL;
  862                 } else {
  863                         m_next = vm_page_splay(start, m->right);
  864                         m_next->left = m->left;
  865                         object->cache = m_next;
  866                 }
  867                 /* Convert "m" to a free page. */
  868                 m->object = NULL;
  869                 m->valid = 0;
  870                 /* Clear PG_CACHED and set PG_FREE. */
  871                 m->flags ^= PG_CACHED | PG_FREE;
  872                 KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
  873                     ("vm_page_cache_free: page %p has inconsistent flags", m));
  874                 cnt.v_cache_count--;
  875                 cnt.v_free_count++;
  876         }
  877         empty = object->cache == NULL;
  878         mtx_unlock(&vm_page_queue_free_mtx);
  879         if (object->type == OBJT_VNODE && empty)
  880                 vdrop(object->handle);
  881 }
  882 
  883 /*
  884  *      Returns the cached page that is associated with the given
  885  *      object and offset.  If, however, none exists, returns NULL.
  886  *
  887  *      The free page queue must be locked.
  888  */
  889 static inline vm_page_t
  890 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
  891 {
  892         vm_page_t m;
  893 
  894         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  895         if ((m = object->cache) != NULL && m->pindex != pindex) {
  896                 m = vm_page_splay(pindex, m);
  897                 if ((object->cache = m)->pindex != pindex)
  898                         m = NULL;
  899         }
  900         return (m);
  901 }
  902 
  903 /*
  904  *      Remove the given cached page from its containing object's
  905  *      collection of cached pages.
  906  *
  907  *      The free page queue must be locked.
  908  */
  909 void
  910 vm_page_cache_remove(vm_page_t m)
  911 {
  912         vm_object_t object;
  913         vm_page_t root;
  914 
  915         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  916         KASSERT((m->flags & PG_CACHED) != 0,
  917             ("vm_page_cache_remove: page %p is not cached", m));
  918         object = m->object;
  919         if (m != object->cache) {
  920                 root = vm_page_splay(m->pindex, object->cache);
  921                 KASSERT(root == m,
  922                     ("vm_page_cache_remove: page %p is not cached in object %p",
  923                     m, object));
  924         }
  925         if (m->left == NULL)
  926                 root = m->right;
  927         else if (m->right == NULL)
  928                 root = m->left;
  929         else {
  930                 root = vm_page_splay(m->pindex, m->left);
  931                 root->right = m->right;
  932         }
  933         object->cache = root;
  934         m->object = NULL;
  935         cnt.v_cache_count--;
  936 }
  937 
  938 /*
  939  *      Transfer all of the cached pages with offset greater than or
  940  *      equal to 'offidxstart' from the original object's cache to the
  941  *      new object's cache.  However, any cached pages with offset
  942  *      greater than or equal to the new object's size are kept in the
  943  *      original object.  Initially, the new object's cache must be
  944  *      empty.  Offset 'offidxstart' in the original object must
  945  *      correspond to offset zero in the new object.
  946  *
  947  *      The new object must be locked.
  948  */
  949 void
  950 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
  951     vm_object_t new_object)
  952 {
  953         vm_page_t m, m_next;
  954 
  955         /*
  956          * Insertion into an object's collection of cached pages
  957          * requires the object to be locked.  In contrast, removal does
  958          * not.
  959          */
  960         VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
  961         KASSERT(new_object->cache == NULL,
  962             ("vm_page_cache_transfer: object %p has cached pages",
  963             new_object));
  964         mtx_lock(&vm_page_queue_free_mtx);
  965         if ((m = orig_object->cache) != NULL) {
  966                 /*
  967                  * Transfer all of the pages with offset greater than or
  968                  * equal to 'offidxstart' from the original object's
  969                  * cache to the new object's cache.
  970                  */
  971                 m = vm_page_splay(offidxstart, m);
  972                 if (m->pindex < offidxstart) {
  973                         orig_object->cache = m;
  974                         new_object->cache = m->right;
  975                         m->right = NULL;
  976                 } else {
  977                         orig_object->cache = m->left;
  978                         new_object->cache = m;
  979                         m->left = NULL;
  980                 }
  981                 while ((m = new_object->cache) != NULL) {
  982                         if ((m->pindex - offidxstart) >= new_object->size) {
  983                                 /*
  984                                  * Return all of the cached pages with
  985                                  * offset greater than or equal to the
  986                                  * new object's size to the original
  987                                  * object's cache. 
  988                                  */
  989                                 new_object->cache = m->left;
  990                                 m->left = orig_object->cache;
  991                                 orig_object->cache = m;
  992                                 break;
  993                         }
  994                         m_next = vm_page_splay(m->pindex, m->right);
  995                         /* Update the page's object and offset. */
  996                         m->object = new_object;
  997                         m->pindex -= offidxstart;
  998                         if (m_next == NULL)
  999                                 break;
 1000                         m->right = NULL;
 1001                         m_next->left = m;
 1002                         new_object->cache = m_next;
 1003                 }
 1004                 KASSERT(new_object->cache == NULL ||
 1005                     new_object->type == OBJT_SWAP,
 1006                     ("vm_page_cache_transfer: object %p's type is incompatible"
 1007                     " with cached pages", new_object));
 1008         }
 1009         mtx_unlock(&vm_page_queue_free_mtx);
 1010 }
 1011 
 1012 /*
 1013  *      vm_page_alloc:
 1014  *
 1015  *      Allocate and return a memory cell associated
 1016  *      with this VM object/offset pair.
 1017  *
 1018  *      page_req classes:
 1019  *      VM_ALLOC_NORMAL         normal process request
 1020  *      VM_ALLOC_SYSTEM         system *really* needs a page
 1021  *      VM_ALLOC_INTERRUPT      interrupt time request
 1022  *      VM_ALLOC_ZERO           zero page
 1023  *      VM_ALLOC_WIRED          wire the allocated page
 1024  *      VM_ALLOC_NOOBJ          page is not associated with a vm object
 1025  *      VM_ALLOC_NOBUSY         do not set the page busy
 1026  *      VM_ALLOC_IFNOTCACHED    return NULL, do not reactivate if the page
 1027  *                              is cached
 1028  *
 1029  *      This routine may not sleep.
 1030  */
 1031 vm_page_t
 1032 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
 1033 {
 1034         struct vnode *vp = NULL;
 1035         vm_object_t m_object;
 1036         vm_page_t m;
 1037         int flags, page_req;
 1038 
 1039         page_req = req & VM_ALLOC_CLASS_MASK;
 1040         KASSERT(curthread->td_intr_nesting_level == 0 ||
 1041             page_req == VM_ALLOC_INTERRUPT,
 1042             ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
 1043 
 1044         if ((req & VM_ALLOC_NOOBJ) == 0) {
 1045                 KASSERT(object != NULL,
 1046                     ("vm_page_alloc: NULL object."));
 1047                 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1048         }
 1049 
 1050         /*
 1051          * The pager is allowed to eat deeper into the free page list.
 1052          */
 1053         if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
 1054                 page_req = VM_ALLOC_SYSTEM;
 1055         };
 1056 
 1057         mtx_lock(&vm_page_queue_free_mtx);
 1058         if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
 1059             (page_req == VM_ALLOC_SYSTEM && 
 1060             cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
 1061             (page_req == VM_ALLOC_INTERRUPT &&
 1062             cnt.v_free_count + cnt.v_cache_count > 0)) {
 1063                 /*
 1064                  * Allocate from the free queue if the number of free pages
 1065                  * exceeds the minimum for the request class.
 1066                  */
 1067                 if (object != NULL &&
 1068                     (m = vm_page_cache_lookup(object, pindex)) != NULL) {
 1069                         if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
 1070                                 mtx_unlock(&vm_page_queue_free_mtx);
 1071                                 return (NULL);
 1072                         }
 1073                         if (vm_phys_unfree_page(m))
 1074                                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
 1075 #if VM_NRESERVLEVEL > 0
 1076                         else if (!vm_reserv_reactivate_page(m))
 1077 #else
 1078                         else
 1079 #endif
 1080                                 panic("vm_page_alloc: cache page %p is missing"
 1081                                     " from the free queue", m);
 1082                 } else if ((req & VM_ALLOC_IFCACHED) != 0) {
 1083                         mtx_unlock(&vm_page_queue_free_mtx);
 1084                         return (NULL);
 1085 #if VM_NRESERVLEVEL > 0
 1086                 } else if (object == NULL || object->type == OBJT_DEVICE ||
 1087                     object->type == OBJT_SG ||
 1088                     (object->flags & OBJ_COLORED) == 0 ||
 1089                     (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
 1090 #else
 1091                 } else {
 1092 #endif
 1093                         m = vm_phys_alloc_pages(object != NULL ?
 1094                             VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
 1095 #if VM_NRESERVLEVEL > 0
 1096                         if (m == NULL && vm_reserv_reclaim_inactive()) {
 1097                                 m = vm_phys_alloc_pages(object != NULL ?
 1098                                     VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
 1099                                     0);
 1100                         }
 1101 #endif
 1102                 }
 1103         } else {
 1104                 /*
 1105                  * Not allocatable, give up.
 1106                  */
 1107                 mtx_unlock(&vm_page_queue_free_mtx);
 1108                 atomic_add_int(&vm_pageout_deficit, 1);
 1109                 pagedaemon_wakeup();
 1110                 return (NULL);
 1111         }
 1112 
 1113         /*
 1114          *  At this point we had better have found a good page.
 1115          */
 1116 
 1117         KASSERT(m != NULL, ("vm_page_alloc: missing page"));
 1118         KASSERT(m->queue == PQ_NONE,
 1119             ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
 1120         KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
 1121         KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
 1122         KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
 1123         KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
 1124         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
 1125             ("vm_page_alloc: page %p has unexpected memattr %d", m,
 1126             pmap_page_get_memattr(m)));
 1127         if ((m->flags & PG_CACHED) != 0) {
 1128                 KASSERT(m->valid != 0,
 1129                     ("vm_page_alloc: cached page %p is invalid", m));
 1130                 if (m->object == object && m->pindex == pindex)
 1131                         cnt.v_reactivated++;
 1132                 else
 1133                         m->valid = 0;
 1134                 m_object = m->object;
 1135                 vm_page_cache_remove(m);
 1136                 if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
 1137                         vp = m_object->handle;
 1138         } else {
 1139                 KASSERT(VM_PAGE_IS_FREE(m),
 1140                     ("vm_page_alloc: page %p is not free", m));
 1141                 KASSERT(m->valid == 0,
 1142                     ("vm_page_alloc: free page %p is valid", m));
 1143                 cnt.v_free_count--;
 1144         }
 1145 
 1146         /*
 1147          * Initialize structure.  Only the PG_ZERO flag is inherited.
 1148          */
 1149         flags = 0;
 1150         if (m->flags & PG_ZERO) {
 1151                 vm_page_zero_count--;
 1152                 if (req & VM_ALLOC_ZERO)
 1153                         flags = PG_ZERO;
 1154         }
 1155         if (object == NULL || object->type == OBJT_PHYS)
 1156                 flags |= PG_UNMANAGED;
 1157         m->flags = flags;
 1158         if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
 1159                 m->oflags = 0;
 1160         else
 1161                 m->oflags = VPO_BUSY;
 1162         if (req & VM_ALLOC_WIRED) {
 1163                 atomic_add_int(&cnt.v_wire_count, 1);
 1164                 m->wire_count = 1;
 1165         }
 1166         m->act_count = 0;
 1167         mtx_unlock(&vm_page_queue_free_mtx);
 1168 
 1169         if (object != NULL) {
 1170                 /* Ignore device objects; the pager sets "memattr" for them. */
 1171                 if (object->memattr != VM_MEMATTR_DEFAULT &&
 1172                     object->type != OBJT_DEVICE && object->type != OBJT_SG)
 1173                         pmap_page_set_memattr(m, object->memattr);
 1174                 vm_page_insert(m, object, pindex);
 1175         } else
 1176                 m->pindex = pindex;
 1177 
 1178         /*
 1179          * The following call to vdrop() must come after the above call
 1180          * to vm_page_insert() in case both affect the same object and
 1181          * vnode.  Otherwise, the affected vnode's hold count could
 1182          * temporarily become zero.
 1183          */
 1184         if (vp != NULL)
 1185                 vdrop(vp);
 1186 
 1187         /*
 1188          * Don't wakeup too often - wakeup the pageout daemon when
 1189          * we would be nearly out of memory.
 1190          */
 1191         if (vm_paging_needed())
 1192                 pagedaemon_wakeup();
 1193 
 1194         return (m);
 1195 }
 1196 
 1197 /*
 1198  *      vm_wait:        (also see VM_WAIT macro)
 1199  *
 1200  *      Block until free pages are available for allocation
 1201  *      - Called in various places before memory allocations.
 1202  */
 1203 void
 1204 vm_wait(void)
 1205 {
 1206 
 1207         mtx_lock(&vm_page_queue_free_mtx);
 1208         if (curproc == pageproc) {
 1209                 vm_pageout_pages_needed = 1;
 1210                 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
 1211                     PDROP | PSWP, "VMWait", 0);
 1212         } else {
 1213                 if (!vm_pages_needed) {
 1214                         vm_pages_needed = 1;
 1215                         wakeup(&vm_pages_needed);
 1216                 }
 1217                 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
 1218                     "vmwait", 0);
 1219         }
 1220 }
 1221 
 1222 /*
 1223  *      vm_waitpfault:  (also see VM_WAITPFAULT macro)
 1224  *
 1225  *      Block until free pages are available for allocation
 1226  *      - Called only in vm_fault so that processes page faulting
 1227  *        can be easily tracked.
 1228  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
 1229  *        processes will be able to grab memory first.  Do not change
 1230  *        this balance without careful testing first.
 1231  */
 1232 void
 1233 vm_waitpfault(void)
 1234 {
 1235 
 1236         mtx_lock(&vm_page_queue_free_mtx);
 1237         if (!vm_pages_needed) {
 1238                 vm_pages_needed = 1;
 1239                 wakeup(&vm_pages_needed);
 1240         }
 1241         msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
 1242             "pfault", 0);
 1243 }
 1244 
 1245 /*
 1246  *      vm_page_requeue:
 1247  *
 1248  *      If the given page is contained within a page queue, move it to the tail
 1249  *      of that queue.
 1250  *
 1251  *      The page queues must be locked.
 1252  */
 1253 void
 1254 vm_page_requeue(vm_page_t m)
 1255 {
 1256         int queue = VM_PAGE_GETQUEUE(m);
 1257         struct vpgqueues *vpq;
 1258 
 1259         if (queue != PQ_NONE) {
 1260                 vpq = &vm_page_queues[queue];
 1261                 TAILQ_REMOVE(&vpq->pl, m, pageq);
 1262                 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
 1263         }
 1264 }
 1265 
 1266 /*
 1267  *      vm_pageq_remove:
 1268  *
 1269  *      Remove a page from its queue.
 1270  *
 1271  *      The queue containing the given page must be locked.
 1272  *      This routine may not block.
 1273  */
 1274 void
 1275 vm_pageq_remove(vm_page_t m)
 1276 {
 1277         int queue = VM_PAGE_GETQUEUE(m);
 1278         struct vpgqueues *pq;
 1279 
 1280         if (queue != PQ_NONE) {
 1281                 VM_PAGE_SETQUEUE2(m, PQ_NONE);
 1282                 pq = &vm_page_queues[queue];
 1283                 TAILQ_REMOVE(&pq->pl, m, pageq);
 1284                 (*pq->cnt)--;
 1285         }
 1286 }
 1287 
 1288 /*
 1289  *      vm_page_enqueue:
 1290  *
 1291  *      Add the given page to the specified queue.
 1292  *
 1293  *      The page queues must be locked.
 1294  */
 1295 static void
 1296 vm_page_enqueue(int queue, vm_page_t m)
 1297 {
 1298         struct vpgqueues *vpq;
 1299 
 1300         vpq = &vm_page_queues[queue];
 1301         VM_PAGE_SETQUEUE2(m, queue);
 1302         TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
 1303         ++*vpq->cnt;
 1304 }
 1305 
 1306 /*
 1307  *      vm_page_activate:
 1308  *
 1309  *      Put the specified page on the active list (if appropriate).
 1310  *      Ensure that act_count is at least ACT_INIT but do not otherwise
 1311  *      mess with it.
 1312  *
 1313  *      The page queues must be locked.
 1314  *      This routine may not block.
 1315  */
 1316 void
 1317 vm_page_activate(vm_page_t m)
 1318 {
 1319 
 1320         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1321         if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
 1322                 vm_pageq_remove(m);
 1323                 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
 1324                         if (m->act_count < ACT_INIT)
 1325                                 m->act_count = ACT_INIT;
 1326                         vm_page_enqueue(PQ_ACTIVE, m);
 1327                 }
 1328         } else {
 1329                 if (m->act_count < ACT_INIT)
 1330                         m->act_count = ACT_INIT;
 1331         }
 1332 }
 1333 
 1334 /*
 1335  *      vm_page_free_wakeup:
 1336  *
 1337  *      Helper routine for vm_page_free_toq() and vm_page_cache().  This
 1338  *      routine is called when a page has been added to the cache or free
 1339  *      queues.
 1340  *
 1341  *      The page queues must be locked.
 1342  *      This routine may not block.
 1343  */
 1344 static inline void
 1345 vm_page_free_wakeup(void)
 1346 {
 1347 
 1348         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1349         /*
 1350          * if pageout daemon needs pages, then tell it that there are
 1351          * some free.
 1352          */
 1353         if (vm_pageout_pages_needed &&
 1354             cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
 1355                 wakeup(&vm_pageout_pages_needed);
 1356                 vm_pageout_pages_needed = 0;
 1357         }
 1358         /*
 1359          * wakeup processes that are waiting on memory if we hit a
 1360          * high water mark. And wakeup scheduler process if we have
 1361          * lots of memory. this process will swapin processes.
 1362          */
 1363         if (vm_pages_needed && !vm_page_count_min()) {
 1364                 vm_pages_needed = 0;
 1365                 wakeup(&cnt.v_free_count);
 1366         }
 1367 }
 1368 
 1369 /*
 1370  *      vm_page_free_toq:
 1371  *
 1372  *      Returns the given page to the free list,
 1373  *      disassociating it with any VM object.
 1374  *
 1375  *      Object and page must be locked prior to entry.
 1376  *      This routine may not block.
 1377  */
 1378 
 1379 void
 1380 vm_page_free_toq(vm_page_t m)
 1381 {
 1382 
 1383         if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
 1384                 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1385         KASSERT(!pmap_page_is_mapped(m),
 1386             ("vm_page_free_toq: freeing mapped page %p", m));
 1387         PCPU_INC(cnt.v_tfree);
 1388 
 1389         if (m->busy || VM_PAGE_IS_FREE(m)) {
 1390                 printf(
 1391                 "vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
 1392                     (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
 1393                     m->hold_count);
 1394                 if (VM_PAGE_IS_FREE(m))
 1395                         panic("vm_page_free: freeing free page");
 1396                 else
 1397                         panic("vm_page_free: freeing busy page");
 1398         }
 1399 
 1400         /*
 1401          * unqueue, then remove page.  Note that we cannot destroy
 1402          * the page here because we do not want to call the pager's
 1403          * callback routine until after we've put the page on the
 1404          * appropriate free queue.
 1405          */
 1406         vm_pageq_remove(m);
 1407         vm_page_remove(m);
 1408 
 1409         /*
 1410          * If fictitious remove object association and
 1411          * return, otherwise delay object association removal.
 1412          */
 1413         if ((m->flags & PG_FICTITIOUS) != 0) {
 1414                 return;
 1415         }
 1416 
 1417         m->valid = 0;
 1418         vm_page_undirty(m);
 1419 
 1420         if (m->wire_count != 0) {
 1421                 if (m->wire_count > 1) {
 1422                         panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
 1423                                 m->wire_count, (long)m->pindex);
 1424                 }
 1425                 panic("vm_page_free: freeing wired page");
 1426         }
 1427         if (m->hold_count != 0) {
 1428                 m->flags &= ~PG_ZERO;
 1429                 vm_page_enqueue(PQ_HOLD, m);
 1430         } else {
 1431                 /*
 1432                  * Restore the default memory attribute to the page.
 1433                  */
 1434                 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
 1435                         pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
 1436 
 1437                 /*
 1438                  * Insert the page into the physical memory allocator's
 1439                  * cache/free page queues.
 1440                  */
 1441                 mtx_lock(&vm_page_queue_free_mtx);
 1442                 m->flags |= PG_FREE;
 1443                 cnt.v_free_count++;
 1444 #if VM_NRESERVLEVEL > 0
 1445                 if (!vm_reserv_free_page(m))
 1446 #else
 1447                 if (TRUE)
 1448 #endif
 1449                         vm_phys_free_pages(m, 0);
 1450                 if ((m->flags & PG_ZERO) != 0)
 1451                         ++vm_page_zero_count;
 1452                 else
 1453                         vm_page_zero_idle_wakeup();
 1454                 vm_page_free_wakeup();
 1455                 mtx_unlock(&vm_page_queue_free_mtx);
 1456         }
 1457 }
 1458 
 1459 /*
 1460  *      vm_page_wire:
 1461  *
 1462  *      Mark this page as wired down by yet
 1463  *      another map, removing it from paging queues
 1464  *      as necessary.
 1465  *
 1466  *      The page queues must be locked.
 1467  *      This routine may not block.
 1468  */
 1469 void
 1470 vm_page_wire(vm_page_t m)
 1471 {
 1472 
 1473         /*
 1474          * Only bump the wire statistics if the page is not already wired,
 1475          * and only unqueue the page if it is on some queue (if it is unmanaged
 1476          * it is already off the queues).
 1477          */
 1478         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1479         if (m->flags & PG_FICTITIOUS)
 1480                 return;
 1481         if (m->wire_count == 0) {
 1482                 if ((m->flags & PG_UNMANAGED) == 0)
 1483                         vm_pageq_remove(m);
 1484                 atomic_add_int(&cnt.v_wire_count, 1);
 1485         }
 1486         m->wire_count++;
 1487         KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
 1488 }
 1489 
 1490 /*
 1491  *      vm_page_unwire:
 1492  *
 1493  *      Release one wiring of this page, potentially
 1494  *      enabling it to be paged again.
 1495  *
 1496  *      Many pages placed on the inactive queue should actually go
 1497  *      into the cache, but it is difficult to figure out which.  What
 1498  *      we do instead, if the inactive target is well met, is to put
 1499  *      clean pages at the head of the inactive queue instead of the tail.
 1500  *      This will cause them to be moved to the cache more quickly and
 1501  *      if not actively re-referenced, freed more quickly.  If we just
 1502  *      stick these pages at the end of the inactive queue, heavy filesystem
 1503  *      meta-data accesses can cause an unnecessary paging load on memory bound 
 1504  *      processes.  This optimization causes one-time-use metadata to be
 1505  *      reused more quickly.
 1506  *
 1507  *      BUT, if we are in a low-memory situation we have no choice but to
 1508  *      put clean pages on the cache queue.
 1509  *
 1510  *      A number of routines use vm_page_unwire() to guarantee that the page
 1511  *      will go into either the inactive or active queues, and will NEVER
 1512  *      be placed in the cache - for example, just after dirtying a page.
 1513  *      dirty pages in the cache are not allowed.
 1514  *
 1515  *      The page queues must be locked.
 1516  *      This routine may not block.
 1517  */
 1518 void
 1519 vm_page_unwire(vm_page_t m, int activate)
 1520 {
 1521 
 1522         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1523         if (m->flags & PG_FICTITIOUS)
 1524                 return;
 1525         if (m->wire_count > 0) {
 1526                 m->wire_count--;
 1527                 if (m->wire_count == 0) {
 1528                         atomic_subtract_int(&cnt.v_wire_count, 1);
 1529                         if (m->flags & PG_UNMANAGED) {
 1530                                 ;
 1531                         } else if (activate)
 1532                                 vm_page_enqueue(PQ_ACTIVE, m);
 1533                         else {
 1534                                 vm_page_flag_clear(m, PG_WINATCFLS);
 1535                                 vm_page_enqueue(PQ_INACTIVE, m);
 1536                         }
 1537                 }
 1538         } else {
 1539                 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
 1540         }
 1541 }
 1542 
 1543 
 1544 /*
 1545  * Move the specified page to the inactive queue.  If the page has
 1546  * any associated swap, the swap is deallocated.
 1547  *
 1548  * Normally athead is 0 resulting in LRU operation.  athead is set
 1549  * to 1 if we want this page to be 'as if it were placed in the cache',
 1550  * except without unmapping it from the process address space.
 1551  *
 1552  * This routine may not block.
 1553  */
 1554 static inline void
 1555 _vm_page_deactivate(vm_page_t m, int athead)
 1556 {
 1557 
 1558         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1559 
 1560         /*
 1561          * Ignore if already inactive.
 1562          */
 1563         if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
 1564                 return;
 1565         if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
 1566                 vm_page_flag_clear(m, PG_WINATCFLS);
 1567                 vm_pageq_remove(m);
 1568                 if (athead)
 1569                         TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
 1570                 else
 1571                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
 1572                 VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
 1573                 cnt.v_inactive_count++;
 1574         }
 1575 }
 1576 
 1577 void
 1578 vm_page_deactivate(vm_page_t m)
 1579 {
 1580     _vm_page_deactivate(m, 0);
 1581 }
 1582 
 1583 /*
 1584  * vm_page_try_to_cache:
 1585  *
 1586  * Returns 0 on failure, 1 on success
 1587  */
 1588 int
 1589 vm_page_try_to_cache(vm_page_t m)
 1590 {
 1591 
 1592         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1593         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1594         if (m->dirty || m->hold_count || m->busy || m->wire_count ||
 1595             (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
 1596                 return (0);
 1597         }
 1598         pmap_remove_all(m);
 1599         if (m->dirty)
 1600                 return (0);
 1601         vm_page_cache(m);
 1602         return (1);
 1603 }
 1604 
 1605 /*
 1606  * vm_page_try_to_free()
 1607  *
 1608  *      Attempt to free the page.  If we cannot free it, we do nothing.
 1609  *      1 is returned on success, 0 on failure.
 1610  */
 1611 int
 1612 vm_page_try_to_free(vm_page_t m)
 1613 {
 1614 
 1615         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1616         if (m->object != NULL)
 1617                 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1618         if (m->dirty || m->hold_count || m->busy || m->wire_count ||
 1619             (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
 1620                 return (0);
 1621         }
 1622         pmap_remove_all(m);
 1623         if (m->dirty)
 1624                 return (0);
 1625         vm_page_free(m);
 1626         return (1);
 1627 }
 1628 
 1629 /*
 1630  * vm_page_cache
 1631  *
 1632  * Put the specified page onto the page cache queue (if appropriate).
 1633  *
 1634  * This routine may not block.
 1635  */
 1636 void
 1637 vm_page_cache(vm_page_t m)
 1638 {
 1639         vm_object_t object;
 1640         vm_page_t root;
 1641 
 1642         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1643         object = m->object;
 1644         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1645         if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
 1646             m->hold_count || m->wire_count) {
 1647                 panic("vm_page_cache: attempting to cache busy page");
 1648         }
 1649         pmap_remove_all(m);
 1650         if (m->dirty != 0)
 1651                 panic("vm_page_cache: page %p is dirty", m);
 1652         if (m->valid == 0 || object->type == OBJT_DEFAULT ||
 1653             (object->type == OBJT_SWAP &&
 1654             !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
 1655                 /*
 1656                  * Hypothesis: A cache-elgible page belonging to a
 1657                  * default object or swap object but without a backing
 1658                  * store must be zero filled.
 1659                  */
 1660                 vm_page_free(m);
 1661                 return;
 1662         }
 1663         KASSERT((m->flags & PG_CACHED) == 0,
 1664             ("vm_page_cache: page %p is already cached", m));
 1665         cnt.v_tcached++;
 1666 
 1667         /*
 1668          * Remove the page from the paging queues.
 1669          */
 1670         vm_pageq_remove(m);
 1671 
 1672         /*
 1673          * Remove the page from the object's collection of resident
 1674          * pages. 
 1675          */
 1676         if (m != object->root)
 1677                 vm_page_splay(m->pindex, object->root);
 1678         if (m->left == NULL)
 1679                 root = m->right;
 1680         else {
 1681                 root = vm_page_splay(m->pindex, m->left);
 1682                 root->right = m->right;
 1683         }
 1684         object->root = root;
 1685         TAILQ_REMOVE(&object->memq, m, listq);
 1686         object->resident_page_count--;
 1687         object->generation++;
 1688 
 1689         /*
 1690          * Restore the default memory attribute to the page.
 1691          */
 1692         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
 1693                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
 1694 
 1695         /*
 1696          * Insert the page into the object's collection of cached pages
 1697          * and the physical memory allocator's cache/free page queues.
 1698          */
 1699         vm_page_flag_clear(m, PG_ZERO);
 1700         mtx_lock(&vm_page_queue_free_mtx);
 1701         m->flags |= PG_CACHED;
 1702         cnt.v_cache_count++;
 1703         root = object->cache;
 1704         if (root == NULL) {
 1705                 m->left = NULL;
 1706                 m->right = NULL;
 1707         } else {
 1708                 root = vm_page_splay(m->pindex, root);
 1709                 if (m->pindex < root->pindex) {
 1710                         m->left = root->left;
 1711                         m->right = root;
 1712                         root->left = NULL;
 1713                 } else if (__predict_false(m->pindex == root->pindex))
 1714                         panic("vm_page_cache: offset already cached");
 1715                 else {
 1716                         m->right = root->right;
 1717                         m->left = root;
 1718                         root->right = NULL;
 1719                 }
 1720         }
 1721         object->cache = m;
 1722 #if VM_NRESERVLEVEL > 0
 1723         if (!vm_reserv_free_page(m)) {
 1724 #else
 1725         if (TRUE) {
 1726 #endif
 1727                 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
 1728                 vm_phys_free_pages(m, 0);
 1729         }
 1730         vm_page_free_wakeup();
 1731         mtx_unlock(&vm_page_queue_free_mtx);
 1732 
 1733         /*
 1734          * Increment the vnode's hold count if this is the object's only
 1735          * cached page.  Decrement the vnode's hold count if this was
 1736          * the object's only resident page.
 1737          */
 1738         if (object->type == OBJT_VNODE) {
 1739                 if (root == NULL && object->resident_page_count != 0)
 1740                         vhold(object->handle);
 1741                 else if (root != NULL && object->resident_page_count == 0)
 1742                         vdrop(object->handle);
 1743         }
 1744 }
 1745 
 1746 /*
 1747  * vm_page_dontneed
 1748  *
 1749  *      Cache, deactivate, or do nothing as appropriate.  This routine
 1750  *      is typically used by madvise() MADV_DONTNEED.
 1751  *
 1752  *      Generally speaking we want to move the page into the cache so
 1753  *      it gets reused quickly.  However, this can result in a silly syndrome
 1754  *      due to the page recycling too quickly.  Small objects will not be
 1755  *      fully cached.  On the otherhand, if we move the page to the inactive
 1756  *      queue we wind up with a problem whereby very large objects 
 1757  *      unnecessarily blow away our inactive and cache queues.
 1758  *
 1759  *      The solution is to move the pages based on a fixed weighting.  We
 1760  *      either leave them alone, deactivate them, or move them to the cache,
 1761  *      where moving them to the cache has the highest weighting.
 1762  *      By forcing some pages into other queues we eventually force the
 1763  *      system to balance the queues, potentially recovering other unrelated
 1764  *      space from active.  The idea is to not force this to happen too
 1765  *      often.
 1766  */
 1767 void
 1768 vm_page_dontneed(vm_page_t m)
 1769 {
 1770         static int dnweight;
 1771         int dnw;
 1772         int head;
 1773 
 1774         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1775         dnw = ++dnweight;
 1776 
 1777         /*
 1778          * occassionally leave the page alone
 1779          */
 1780         if ((dnw & 0x01F0) == 0 ||
 1781             VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) {
 1782                 if (m->act_count >= ACT_INIT)
 1783                         --m->act_count;
 1784                 return;
 1785         }
 1786 
 1787         /*
 1788          * Clear any references to the page.  Otherwise, the page daemon will
 1789          * immediately reactivate the page.
 1790          */
 1791         vm_page_flag_clear(m, PG_REFERENCED);
 1792         pmap_clear_reference(m);
 1793 
 1794         if (m->dirty == 0 && pmap_is_modified(m))
 1795                 vm_page_dirty(m);
 1796 
 1797         if (m->dirty || (dnw & 0x0070) == 0) {
 1798                 /*
 1799                  * Deactivate the page 3 times out of 32.
 1800                  */
 1801                 head = 0;
 1802         } else {
 1803                 /*
 1804                  * Cache the page 28 times out of every 32.  Note that
 1805                  * the page is deactivated instead of cached, but placed
 1806                  * at the head of the queue instead of the tail.
 1807                  */
 1808                 head = 1;
 1809         }
 1810         _vm_page_deactivate(m, head);
 1811 }
 1812 
 1813 /*
 1814  * Grab a page, waiting until we are waken up due to the page
 1815  * changing state.  We keep on waiting, if the page continues
 1816  * to be in the object.  If the page doesn't exist, first allocate it
 1817  * and then conditionally zero it.
 1818  *
 1819  * This routine may block.
 1820  */
 1821 vm_page_t
 1822 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
 1823 {
 1824         vm_page_t m;
 1825 
 1826         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1827 retrylookup:
 1828         if ((m = vm_page_lookup(object, pindex)) != NULL) {
 1829                 if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
 1830                         if ((allocflags & VM_ALLOC_RETRY) == 0)
 1831                                 return (NULL);
 1832                         goto retrylookup;
 1833                 } else {
 1834                         if ((allocflags & VM_ALLOC_WIRED) != 0) {
 1835                                 vm_page_lock_queues();
 1836                                 vm_page_wire(m);
 1837                                 vm_page_unlock_queues();
 1838                         }
 1839                         if ((allocflags & VM_ALLOC_NOBUSY) == 0)
 1840                                 vm_page_busy(m);
 1841                         return (m);
 1842                 }
 1843         }
 1844         m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
 1845         if (m == NULL) {
 1846                 VM_OBJECT_UNLOCK(object);
 1847                 VM_WAIT;
 1848                 VM_OBJECT_LOCK(object);
 1849                 if ((allocflags & VM_ALLOC_RETRY) == 0)
 1850                         return (NULL);
 1851                 goto retrylookup;
 1852         } else if (m->valid != 0)
 1853                 return (m);
 1854         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
 1855                 pmap_zero_page(m);
 1856         return (m);
 1857 }
 1858 
 1859 /*
 1860  * Mapping function for valid bits or for dirty bits in
 1861  * a page.  May not block.
 1862  *
 1863  * Inputs are required to range within a page.
 1864  */
 1865 int
 1866 vm_page_bits(int base, int size)
 1867 {
 1868         int first_bit;
 1869         int last_bit;
 1870 
 1871         KASSERT(
 1872             base + size <= PAGE_SIZE,
 1873             ("vm_page_bits: illegal base/size %d/%d", base, size)
 1874         );
 1875 
 1876         if (size == 0)          /* handle degenerate case */
 1877                 return (0);
 1878 
 1879         first_bit = base >> DEV_BSHIFT;
 1880         last_bit = (base + size - 1) >> DEV_BSHIFT;
 1881 
 1882         return ((2 << last_bit) - (1 << first_bit));
 1883 }
 1884 
 1885 /*
 1886  *      vm_page_set_valid:
 1887  *
 1888  *      Sets portions of a page valid.  The arguments are expected
 1889  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
 1890  *      of any partial chunks touched by the range.  The invalid portion of
 1891  *      such chunks will be zeroed.
 1892  *
 1893  *      (base + size) must be less then or equal to PAGE_SIZE.
 1894  */
 1895 void
 1896 vm_page_set_valid(vm_page_t m, int base, int size)
 1897 {
 1898         int endoff, frag;
 1899 
 1900         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1901         if (size == 0)  /* handle degenerate case */
 1902                 return;
 1903 
 1904         /*
 1905          * If the base is not DEV_BSIZE aligned and the valid
 1906          * bit is clear, we have to zero out a portion of the
 1907          * first block.
 1908          */
 1909         if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
 1910             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
 1911                 pmap_zero_page_area(m, frag, base - frag);
 1912 
 1913         /*
 1914          * If the ending offset is not DEV_BSIZE aligned and the 
 1915          * valid bit is clear, we have to zero out a portion of
 1916          * the last block.
 1917          */
 1918         endoff = base + size;
 1919         if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
 1920             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
 1921                 pmap_zero_page_area(m, endoff,
 1922                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
 1923 
 1924         /*
 1925          * Assert that no previously invalid block that is now being validated
 1926          * is already dirty. 
 1927          */
 1928         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
 1929             ("vm_page_set_valid: page %p is dirty", m)); 
 1930 
 1931         /*
 1932          * Set valid bits inclusive of any overlap.
 1933          */
 1934         m->valid |= vm_page_bits(base, size);
 1935 }
 1936 
 1937 /*
 1938  *      vm_page_set_validclean:
 1939  *
 1940  *      Sets portions of a page valid and clean.  The arguments are expected
 1941  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
 1942  *      of any partial chunks touched by the range.  The invalid portion of
 1943  *      such chunks will be zero'd.
 1944  *
 1945  *      This routine may not block.
 1946  *
 1947  *      (base + size) must be less then or equal to PAGE_SIZE.
 1948  */
 1949 void
 1950 vm_page_set_validclean(vm_page_t m, int base, int size)
 1951 {
 1952         int pagebits;
 1953         int frag;
 1954         int endoff;
 1955 
 1956         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1957         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1958         if (size == 0)  /* handle degenerate case */
 1959                 return;
 1960 
 1961         /*
 1962          * If the base is not DEV_BSIZE aligned and the valid
 1963          * bit is clear, we have to zero out a portion of the
 1964          * first block.
 1965          */
 1966         if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
 1967             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
 1968                 pmap_zero_page_area(m, frag, base - frag);
 1969 
 1970         /*
 1971          * If the ending offset is not DEV_BSIZE aligned and the 
 1972          * valid bit is clear, we have to zero out a portion of
 1973          * the last block.
 1974          */
 1975         endoff = base + size;
 1976         if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
 1977             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
 1978                 pmap_zero_page_area(m, endoff,
 1979                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
 1980 
 1981         /*
 1982          * Set valid, clear dirty bits.  If validating the entire
 1983          * page we can safely clear the pmap modify bit.  We also
 1984          * use this opportunity to clear the VPO_NOSYNC flag.  If a process
 1985          * takes a write fault on a MAP_NOSYNC memory area the flag will
 1986          * be set again.
 1987          *
 1988          * We set valid bits inclusive of any overlap, but we can only
 1989          * clear dirty bits for DEV_BSIZE chunks that are fully within
 1990          * the range.
 1991          */
 1992         pagebits = vm_page_bits(base, size);
 1993         m->valid |= pagebits;
 1994 #if 0   /* NOT YET */
 1995         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
 1996                 frag = DEV_BSIZE - frag;
 1997                 base += frag;
 1998                 size -= frag;
 1999                 if (size < 0)
 2000                         size = 0;
 2001         }
 2002         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
 2003 #endif
 2004         m->dirty &= ~pagebits;
 2005         if (base == 0 && size == PAGE_SIZE) {
 2006                 pmap_clear_modify(m);
 2007                 m->oflags &= ~VPO_NOSYNC;
 2008         }
 2009 }
 2010 
 2011 void
 2012 vm_page_clear_dirty(vm_page_t m, int base, int size)
 2013 {
 2014 
 2015         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2016         m->dirty &= ~vm_page_bits(base, size);
 2017 }
 2018 
 2019 /*
 2020  *      vm_page_set_invalid:
 2021  *
 2022  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
 2023  *      valid and dirty bits for the effected areas are cleared.
 2024  *
 2025  *      May not block.
 2026  */
 2027 void
 2028 vm_page_set_invalid(vm_page_t m, int base, int size)
 2029 {
 2030         int bits;
 2031 
 2032         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2033         bits = vm_page_bits(base, size);
 2034         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2035         if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
 2036                 pmap_remove_all(m);
 2037         m->valid &= ~bits;
 2038         m->dirty &= ~bits;
 2039         m->object->generation++;
 2040 }
 2041 
 2042 /*
 2043  * vm_page_zero_invalid()
 2044  *
 2045  *      The kernel assumes that the invalid portions of a page contain 
 2046  *      garbage, but such pages can be mapped into memory by user code.
 2047  *      When this occurs, we must zero out the non-valid portions of the
 2048  *      page so user code sees what it expects.
 2049  *
 2050  *      Pages are most often semi-valid when the end of a file is mapped 
 2051  *      into memory and the file's size is not page aligned.
 2052  */
 2053 void
 2054 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
 2055 {
 2056         int b;
 2057         int i;
 2058 
 2059         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2060         /*
 2061          * Scan the valid bits looking for invalid sections that
 2062          * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
 2063          * valid bit may be set ) have already been zerod by
 2064          * vm_page_set_validclean().
 2065          */
 2066         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
 2067                 if (i == (PAGE_SIZE / DEV_BSIZE) || 
 2068                     (m->valid & (1 << i))
 2069                 ) {
 2070                         if (i > b) {
 2071                                 pmap_zero_page_area(m, 
 2072                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
 2073                         }
 2074                         b = i + 1;
 2075                 }
 2076         }
 2077 
 2078         /*
 2079          * setvalid is TRUE when we can safely set the zero'd areas
 2080          * as being valid.  We can do this if there are no cache consistancy
 2081          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
 2082          */
 2083         if (setvalid)
 2084                 m->valid = VM_PAGE_BITS_ALL;
 2085 }
 2086 
 2087 /*
 2088  *      vm_page_is_valid:
 2089  *
 2090  *      Is (partial) page valid?  Note that the case where size == 0
 2091  *      will return FALSE in the degenerate case where the page is
 2092  *      entirely invalid, and TRUE otherwise.
 2093  *
 2094  *      May not block.
 2095  */
 2096 int
 2097 vm_page_is_valid(vm_page_t m, int base, int size)
 2098 {
 2099         int bits = vm_page_bits(base, size);
 2100 
 2101         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2102         if (m->valid && ((m->valid & bits) == bits))
 2103                 return 1;
 2104         else
 2105                 return 0;
 2106 }
 2107 
 2108 /*
 2109  * update dirty bits from pmap/mmu.  May not block.
 2110  */
 2111 void
 2112 vm_page_test_dirty(vm_page_t m)
 2113 {
 2114         if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
 2115                 vm_page_dirty(m);
 2116         }
 2117 }
 2118 
 2119 int so_zerocp_fullpage = 0;
 2120 
 2121 /*
 2122  *      Replace the given page with a copy.  The copied page assumes
 2123  *      the portion of the given page's "wire_count" that is not the
 2124  *      responsibility of this copy-on-write mechanism.
 2125  *
 2126  *      The object containing the given page must have a non-zero
 2127  *      paging-in-progress count and be locked.
 2128  */
 2129 void
 2130 vm_page_cowfault(vm_page_t m)
 2131 {
 2132         vm_page_t mnew;
 2133         vm_object_t object;
 2134         vm_pindex_t pindex;
 2135 
 2136         object = m->object;
 2137         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2138         KASSERT(object->paging_in_progress != 0,
 2139             ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
 2140             object)); 
 2141         pindex = m->pindex;
 2142 
 2143  retry_alloc:
 2144         pmap_remove_all(m);
 2145         vm_page_remove(m);
 2146         mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
 2147         if (mnew == NULL) {
 2148                 vm_page_insert(m, object, pindex);
 2149                 vm_page_unlock_queues();
 2150                 VM_OBJECT_UNLOCK(object);
 2151                 VM_WAIT;
 2152                 VM_OBJECT_LOCK(object);
 2153                 if (m == vm_page_lookup(object, pindex)) {
 2154                         vm_page_lock_queues();
 2155                         goto retry_alloc;
 2156                 } else {
 2157                         /*
 2158                          * Page disappeared during the wait.
 2159                          */
 2160                         vm_page_lock_queues();
 2161                         return;
 2162                 }
 2163         }
 2164 
 2165         if (m->cow == 0) {
 2166                 /* 
 2167                  * check to see if we raced with an xmit complete when 
 2168                  * waiting to allocate a page.  If so, put things back 
 2169                  * the way they were 
 2170                  */
 2171                 vm_page_free(mnew);
 2172                 vm_page_insert(m, object, pindex);
 2173         } else { /* clear COW & copy page */
 2174                 if (!so_zerocp_fullpage)
 2175                         pmap_copy_page(m, mnew);
 2176                 mnew->valid = VM_PAGE_BITS_ALL;
 2177                 vm_page_dirty(mnew);
 2178                 mnew->wire_count = m->wire_count - m->cow;
 2179                 m->wire_count = m->cow;
 2180         }
 2181 }
 2182 
 2183 void 
 2184 vm_page_cowclear(vm_page_t m)
 2185 {
 2186 
 2187         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2188         if (m->cow) {
 2189                 m->cow--;
 2190                 /* 
 2191                  * let vm_fault add back write permission  lazily
 2192                  */
 2193         } 
 2194         /*
 2195          *  sf_buf_free() will free the page, so we needn't do it here
 2196          */ 
 2197 }
 2198 
 2199 int
 2200 vm_page_cowsetup(vm_page_t m)
 2201 {
 2202 
 2203         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2204         if (m->cow == USHRT_MAX - 1)
 2205                 return (EBUSY);
 2206         m->cow++;
 2207         pmap_remove_write(m);
 2208         return (0);
 2209 }
 2210 
 2211 #include "opt_ddb.h"
 2212 #ifdef DDB
 2213 #include <sys/kernel.h>
 2214 
 2215 #include <ddb/ddb.h>
 2216 
 2217 DB_SHOW_COMMAND(page, vm_page_print_page_info)
 2218 {
 2219         db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
 2220         db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
 2221         db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
 2222         db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
 2223         db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
 2224         db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
 2225         db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
 2226         db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
 2227         db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
 2228         db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
 2229 }
 2230 
 2231 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
 2232 {
 2233                 
 2234         db_printf("PQ_FREE:");
 2235         db_printf(" %d", cnt.v_free_count);
 2236         db_printf("\n");
 2237                 
 2238         db_printf("PQ_CACHE:");
 2239         db_printf(" %d", cnt.v_cache_count);
 2240         db_printf("\n");
 2241 
 2242         db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
 2243                 *vm_page_queues[PQ_ACTIVE].cnt,
 2244                 *vm_page_queues[PQ_INACTIVE].cnt);
 2245 }
 2246 #endif /* DDB */

Cache object: 8704c0120eff4319eef5997c37ed7c1b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.