FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.c
1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * The Mach Operating System project at Carnegie-Mellon University.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
36 */
37
38 /*-
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 */
64
65 /*
66 * Resident memory management module.
67 */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_vm.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/vm_dumpset.h>
112 #include <vm/uma.h>
113 #include <vm/uma_int.h>
114
115 #include <machine/md_var.h>
116
117 struct vm_domain vm_dom[MAXMEMDOM];
118
119 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
120
121 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
122
123 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
124 /* The following fields are protected by the domainset lock. */
125 domainset_t __exclusive_cache_line vm_min_domains;
126 domainset_t __exclusive_cache_line vm_severe_domains;
127 static int vm_min_waiters;
128 static int vm_severe_waiters;
129 static int vm_pageproc_waiters;
130
131 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
132 "VM page statistics");
133
134 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
135 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
136 CTLFLAG_RD, &pqstate_commit_retries,
137 "Number of failed per-page atomic queue state updates");
138
139 static COUNTER_U64_DEFINE_EARLY(queue_ops);
140 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
141 CTLFLAG_RD, &queue_ops,
142 "Number of batched queue operations");
143
144 static COUNTER_U64_DEFINE_EARLY(queue_nops);
145 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
146 CTLFLAG_RD, &queue_nops,
147 "Number of batched queue operations with no effects");
148
149 /*
150 * bogus page -- for I/O to/from partially complete buffers,
151 * or for paging into sparsely invalid regions.
152 */
153 vm_page_t bogus_page;
154
155 vm_page_t vm_page_array;
156 long vm_page_array_size;
157 long first_page;
158
159 struct bitset *vm_page_dump;
160 long vm_page_dump_pages;
161
162 static TAILQ_HEAD(, vm_page) blacklist_head;
163 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
164 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
165 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
166
167 static uma_zone_t fakepg_zone;
168
169 static void vm_page_alloc_check(vm_page_t m);
170 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
171 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
172 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
173 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
174 static bool vm_page_free_prep(vm_page_t m);
175 static void vm_page_free_toq(vm_page_t m);
176 static void vm_page_init(void *dummy);
177 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
178 vm_pindex_t pindex, vm_page_t mpred);
179 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
180 vm_page_t mpred);
181 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
182 const uint16_t nflag);
183 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
184 vm_page_t m_run, vm_paddr_t high);
185 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
186 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
187 int req);
188 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
189 int flags);
190 static void vm_page_zone_release(void *arg, void **store, int cnt);
191
192 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
193
194 static void
195 vm_page_init(void *dummy)
196 {
197
198 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
199 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
200 bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED);
201 }
202
203 /*
204 * The cache page zone is initialized later since we need to be able to allocate
205 * pages before UMA is fully initialized.
206 */
207 static void
208 vm_page_init_cache_zones(void *dummy __unused)
209 {
210 struct vm_domain *vmd;
211 struct vm_pgcache *pgcache;
212 int cache, domain, maxcache, pool;
213
214 maxcache = 0;
215 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache);
216 maxcache *= mp_ncpus;
217 for (domain = 0; domain < vm_ndomains; domain++) {
218 vmd = VM_DOMAIN(domain);
219 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
220 pgcache = &vmd->vmd_pgcache[pool];
221 pgcache->domain = domain;
222 pgcache->pool = pool;
223 pgcache->zone = uma_zcache_create("vm pgcache",
224 PAGE_SIZE, NULL, NULL, NULL, NULL,
225 vm_page_zone_import, vm_page_zone_release, pgcache,
226 UMA_ZONE_VM);
227
228 /*
229 * Limit each pool's zone to 0.1% of the pages in the
230 * domain.
231 */
232 cache = maxcache != 0 ? maxcache :
233 vmd->vmd_page_count / 1000;
234 uma_zone_set_maxcache(pgcache->zone, cache);
235 }
236 }
237 }
238 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
239
240 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
241 #if PAGE_SIZE == 32768
242 #ifdef CTASSERT
243 CTASSERT(sizeof(u_long) >= 8);
244 #endif
245 #endif
246
247 /*
248 * vm_set_page_size:
249 *
250 * Sets the page size, perhaps based upon the memory
251 * size. Must be called before any use of page-size
252 * dependent functions.
253 */
254 void
255 vm_set_page_size(void)
256 {
257 if (vm_cnt.v_page_size == 0)
258 vm_cnt.v_page_size = PAGE_SIZE;
259 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
260 panic("vm_set_page_size: page size not a power of two");
261 }
262
263 /*
264 * vm_page_blacklist_next:
265 *
266 * Find the next entry in the provided string of blacklist
267 * addresses. Entries are separated by space, comma, or newline.
268 * If an invalid integer is encountered then the rest of the
269 * string is skipped. Updates the list pointer to the next
270 * character, or NULL if the string is exhausted or invalid.
271 */
272 static vm_paddr_t
273 vm_page_blacklist_next(char **list, char *end)
274 {
275 vm_paddr_t bad;
276 char *cp, *pos;
277
278 if (list == NULL || *list == NULL)
279 return (0);
280 if (**list =='\0') {
281 *list = NULL;
282 return (0);
283 }
284
285 /*
286 * If there's no end pointer then the buffer is coming from
287 * the kenv and we know it's null-terminated.
288 */
289 if (end == NULL)
290 end = *list + strlen(*list);
291
292 /* Ensure that strtoq() won't walk off the end */
293 if (*end != '\0') {
294 if (*end == '\n' || *end == ' ' || *end == ',')
295 *end = '\0';
296 else {
297 printf("Blacklist not terminated, skipping\n");
298 *list = NULL;
299 return (0);
300 }
301 }
302
303 for (pos = *list; *pos != '\0'; pos = cp) {
304 bad = strtoq(pos, &cp, 0);
305 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
306 if (bad == 0) {
307 if (++cp < end)
308 continue;
309 else
310 break;
311 }
312 } else
313 break;
314 if (*cp == '\0' || ++cp >= end)
315 *list = NULL;
316 else
317 *list = cp;
318 return (trunc_page(bad));
319 }
320 printf("Garbage in RAM blacklist, skipping\n");
321 *list = NULL;
322 return (0);
323 }
324
325 bool
326 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
327 {
328 struct vm_domain *vmd;
329 vm_page_t m;
330 int ret;
331
332 m = vm_phys_paddr_to_vm_page(pa);
333 if (m == NULL)
334 return (true); /* page does not exist, no failure */
335
336 vmd = vm_pagequeue_domain(m);
337 vm_domain_free_lock(vmd);
338 ret = vm_phys_unfree_page(m);
339 vm_domain_free_unlock(vmd);
340 if (ret != 0) {
341 vm_domain_freecnt_inc(vmd, -1);
342 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
343 if (verbose)
344 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
345 }
346 return (ret);
347 }
348
349 /*
350 * vm_page_blacklist_check:
351 *
352 * Iterate through the provided string of blacklist addresses, pulling
353 * each entry out of the physical allocator free list and putting it
354 * onto a list for reporting via the vm.page_blacklist sysctl.
355 */
356 static void
357 vm_page_blacklist_check(char *list, char *end)
358 {
359 vm_paddr_t pa;
360 char *next;
361
362 next = list;
363 while (next != NULL) {
364 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
365 continue;
366 vm_page_blacklist_add(pa, bootverbose);
367 }
368 }
369
370 /*
371 * vm_page_blacklist_load:
372 *
373 * Search for a special module named "ram_blacklist". It'll be a
374 * plain text file provided by the user via the loader directive
375 * of the same name.
376 */
377 static void
378 vm_page_blacklist_load(char **list, char **end)
379 {
380 void *mod;
381 u_char *ptr;
382 u_int len;
383
384 mod = NULL;
385 ptr = NULL;
386
387 mod = preload_search_by_type("ram_blacklist");
388 if (mod != NULL) {
389 ptr = preload_fetch_addr(mod);
390 len = preload_fetch_size(mod);
391 }
392 *list = ptr;
393 if (ptr != NULL)
394 *end = ptr + len;
395 else
396 *end = NULL;
397 return;
398 }
399
400 static int
401 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
402 {
403 vm_page_t m;
404 struct sbuf sbuf;
405 int error, first;
406
407 first = 1;
408 error = sysctl_wire_old_buffer(req, 0);
409 if (error != 0)
410 return (error);
411 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
412 TAILQ_FOREACH(m, &blacklist_head, listq) {
413 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
414 (uintmax_t)m->phys_addr);
415 first = 0;
416 }
417 error = sbuf_finish(&sbuf);
418 sbuf_delete(&sbuf);
419 return (error);
420 }
421
422 /*
423 * Initialize a dummy page for use in scans of the specified paging queue.
424 * In principle, this function only needs to set the flag PG_MARKER.
425 * Nonetheless, it write busies the page as a safety precaution.
426 */
427 void
428 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
429 {
430
431 bzero(marker, sizeof(*marker));
432 marker->flags = PG_MARKER;
433 marker->a.flags = aflags;
434 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
435 marker->a.queue = queue;
436 }
437
438 static void
439 vm_page_domain_init(int domain)
440 {
441 struct vm_domain *vmd;
442 struct vm_pagequeue *pq;
443 int i;
444
445 vmd = VM_DOMAIN(domain);
446 bzero(vmd, sizeof(*vmd));
447 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
448 "vm inactive pagequeue";
449 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
450 "vm active pagequeue";
451 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
452 "vm laundry pagequeue";
453 *__DECONST(const char **,
454 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
455 "vm unswappable pagequeue";
456 vmd->vmd_domain = domain;
457 vmd->vmd_page_count = 0;
458 vmd->vmd_free_count = 0;
459 vmd->vmd_segs = 0;
460 vmd->vmd_oom = FALSE;
461 for (i = 0; i < PQ_COUNT; i++) {
462 pq = &vmd->vmd_pagequeues[i];
463 TAILQ_INIT(&pq->pq_pl);
464 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
465 MTX_DEF | MTX_DUPOK);
466 pq->pq_pdpages = 0;
467 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
468 }
469 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
470 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
471 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
472
473 /*
474 * inacthead is used to provide FIFO ordering for LRU-bypassing
475 * insertions.
476 */
477 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
478 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
479 &vmd->vmd_inacthead, plinks.q);
480
481 /*
482 * The clock pages are used to implement active queue scanning without
483 * requeues. Scans start at clock[0], which is advanced after the scan
484 * ends. When the two clock hands meet, they are reset and scanning
485 * resumes from the head of the queue.
486 */
487 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
488 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
489 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
490 &vmd->vmd_clock[0], plinks.q);
491 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
492 &vmd->vmd_clock[1], plinks.q);
493 }
494
495 /*
496 * Initialize a physical page in preparation for adding it to the free
497 * lists.
498 */
499 void
500 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
501 {
502
503 m->object = NULL;
504 m->ref_count = 0;
505 m->busy_lock = VPB_FREED;
506 m->flags = m->a.flags = 0;
507 m->phys_addr = pa;
508 m->a.queue = PQ_NONE;
509 m->psind = 0;
510 m->segind = segind;
511 m->order = VM_NFREEORDER;
512 m->pool = VM_FREEPOOL_DEFAULT;
513 m->valid = m->dirty = 0;
514 pmap_page_init(m);
515 }
516
517 #ifndef PMAP_HAS_PAGE_ARRAY
518 static vm_paddr_t
519 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
520 {
521 vm_paddr_t new_end;
522
523 /*
524 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
525 * However, because this page is allocated from KVM, out-of-bounds
526 * accesses using the direct map will not be trapped.
527 */
528 *vaddr += PAGE_SIZE;
529
530 /*
531 * Allocate physical memory for the page structures, and map it.
532 */
533 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
534 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
535 VM_PROT_READ | VM_PROT_WRITE);
536 vm_page_array_size = page_range;
537
538 return (new_end);
539 }
540 #endif
541
542 /*
543 * vm_page_startup:
544 *
545 * Initializes the resident memory module. Allocates physical memory for
546 * bootstrapping UMA and some data structures that are used to manage
547 * physical pages. Initializes these structures, and populates the free
548 * page queues.
549 */
550 vm_offset_t
551 vm_page_startup(vm_offset_t vaddr)
552 {
553 struct vm_phys_seg *seg;
554 struct vm_domain *vmd;
555 vm_page_t m;
556 char *list, *listend;
557 vm_paddr_t end, high_avail, low_avail, new_end, size;
558 vm_paddr_t page_range __unused;
559 vm_paddr_t last_pa, pa, startp, endp;
560 u_long pagecount;
561 #if MINIDUMP_PAGE_TRACKING
562 u_long vm_page_dump_size;
563 #endif
564 int biggestone, i, segind;
565 #ifdef WITNESS
566 vm_offset_t mapped;
567 int witness_size;
568 #endif
569 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
570 long ii;
571 #endif
572
573 vaddr = round_page(vaddr);
574
575 vm_phys_early_startup();
576 biggestone = vm_phys_avail_largest();
577 end = phys_avail[biggestone+1];
578
579 /*
580 * Initialize the page and queue locks.
581 */
582 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
583 for (i = 0; i < PA_LOCK_COUNT; i++)
584 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
585 for (i = 0; i < vm_ndomains; i++)
586 vm_page_domain_init(i);
587
588 new_end = end;
589 #ifdef WITNESS
590 witness_size = round_page(witness_startup_count());
591 new_end -= witness_size;
592 mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
593 VM_PROT_READ | VM_PROT_WRITE);
594 bzero((void *)mapped, witness_size);
595 witness_startup((void *)mapped);
596 #endif
597
598 #if MINIDUMP_PAGE_TRACKING
599 /*
600 * Allocate a bitmap to indicate that a random physical page
601 * needs to be included in a minidump.
602 *
603 * The amd64 port needs this to indicate which direct map pages
604 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
605 *
606 * However, i386 still needs this workspace internally within the
607 * minidump code. In theory, they are not needed on i386, but are
608 * included should the sf_buf code decide to use them.
609 */
610 last_pa = 0;
611 vm_page_dump_pages = 0;
612 for (i = 0; dump_avail[i + 1] != 0; i += 2) {
613 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
614 dump_avail[i] / PAGE_SIZE;
615 if (dump_avail[i + 1] > last_pa)
616 last_pa = dump_avail[i + 1];
617 }
618 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
619 new_end -= vm_page_dump_size;
620 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
621 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
622 bzero((void *)vm_page_dump, vm_page_dump_size);
623 #else
624 (void)last_pa;
625 #endif
626 #if defined(__aarch64__) || defined(__amd64__) || \
627 defined(__riscv) || defined(__powerpc64__)
628 /*
629 * Include the UMA bootstrap pages, witness pages and vm_page_dump
630 * in a crash dump. When pmap_map() uses the direct map, they are
631 * not automatically included.
632 */
633 for (pa = new_end; pa < end; pa += PAGE_SIZE)
634 dump_add_page(pa);
635 #endif
636 phys_avail[biggestone + 1] = new_end;
637 #ifdef __amd64__
638 /*
639 * Request that the physical pages underlying the message buffer be
640 * included in a crash dump. Since the message buffer is accessed
641 * through the direct map, they are not automatically included.
642 */
643 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
644 last_pa = pa + round_page(msgbufsize);
645 while (pa < last_pa) {
646 dump_add_page(pa);
647 pa += PAGE_SIZE;
648 }
649 #endif
650 /*
651 * Compute the number of pages of memory that will be available for
652 * use, taking into account the overhead of a page structure per page.
653 * In other words, solve
654 * "available physical memory" - round_page(page_range *
655 * sizeof(struct vm_page)) = page_range * PAGE_SIZE
656 * for page_range.
657 */
658 low_avail = phys_avail[0];
659 high_avail = phys_avail[1];
660 for (i = 0; i < vm_phys_nsegs; i++) {
661 if (vm_phys_segs[i].start < low_avail)
662 low_avail = vm_phys_segs[i].start;
663 if (vm_phys_segs[i].end > high_avail)
664 high_avail = vm_phys_segs[i].end;
665 }
666 /* Skip the first chunk. It is already accounted for. */
667 for (i = 2; phys_avail[i + 1] != 0; i += 2) {
668 if (phys_avail[i] < low_avail)
669 low_avail = phys_avail[i];
670 if (phys_avail[i + 1] > high_avail)
671 high_avail = phys_avail[i + 1];
672 }
673 first_page = low_avail / PAGE_SIZE;
674 #ifdef VM_PHYSSEG_SPARSE
675 size = 0;
676 for (i = 0; i < vm_phys_nsegs; i++)
677 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
678 for (i = 0; phys_avail[i + 1] != 0; i += 2)
679 size += phys_avail[i + 1] - phys_avail[i];
680 #elif defined(VM_PHYSSEG_DENSE)
681 size = high_avail - low_avail;
682 #else
683 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
684 #endif
685
686 #ifdef PMAP_HAS_PAGE_ARRAY
687 pmap_page_array_startup(size / PAGE_SIZE);
688 biggestone = vm_phys_avail_largest();
689 end = new_end = phys_avail[biggestone + 1];
690 #else
691 #ifdef VM_PHYSSEG_DENSE
692 /*
693 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
694 * the overhead of a page structure per page only if vm_page_array is
695 * allocated from the last physical memory chunk. Otherwise, we must
696 * allocate page structures representing the physical memory
697 * underlying vm_page_array, even though they will not be used.
698 */
699 if (new_end != high_avail)
700 page_range = size / PAGE_SIZE;
701 else
702 #endif
703 {
704 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
705
706 /*
707 * If the partial bytes remaining are large enough for
708 * a page (PAGE_SIZE) without a corresponding
709 * 'struct vm_page', then new_end will contain an
710 * extra page after subtracting the length of the VM
711 * page array. Compensate by subtracting an extra
712 * page from new_end.
713 */
714 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
715 if (new_end == high_avail)
716 high_avail -= PAGE_SIZE;
717 new_end -= PAGE_SIZE;
718 }
719 }
720 end = new_end;
721 new_end = vm_page_array_alloc(&vaddr, end, page_range);
722 #endif
723
724 #if VM_NRESERVLEVEL > 0
725 /*
726 * Allocate physical memory for the reservation management system's
727 * data structures, and map it.
728 */
729 new_end = vm_reserv_startup(&vaddr, new_end);
730 #endif
731 #if defined(__aarch64__) || defined(__amd64__) || \
732 defined(__riscv) || defined(__powerpc64__)
733 /*
734 * Include vm_page_array and vm_reserv_array in a crash dump.
735 */
736 for (pa = new_end; pa < end; pa += PAGE_SIZE)
737 dump_add_page(pa);
738 #endif
739 phys_avail[biggestone + 1] = new_end;
740
741 /*
742 * Add physical memory segments corresponding to the available
743 * physical pages.
744 */
745 for (i = 0; phys_avail[i + 1] != 0; i += 2)
746 if (vm_phys_avail_size(i) != 0)
747 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
748
749 /*
750 * Initialize the physical memory allocator.
751 */
752 vm_phys_init();
753
754 /*
755 * Initialize the page structures and add every available page to the
756 * physical memory allocator's free lists.
757 */
758 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
759 for (ii = 0; ii < vm_page_array_size; ii++) {
760 m = &vm_page_array[ii];
761 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
762 m->flags = PG_FICTITIOUS;
763 }
764 #endif
765 vm_cnt.v_page_count = 0;
766 for (segind = 0; segind < vm_phys_nsegs; segind++) {
767 seg = &vm_phys_segs[segind];
768 for (m = seg->first_page, pa = seg->start; pa < seg->end;
769 m++, pa += PAGE_SIZE)
770 vm_page_init_page(m, pa, segind);
771
772 /*
773 * Add the segment's pages that are covered by one of
774 * phys_avail's ranges to the free lists.
775 */
776 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
777 if (seg->end <= phys_avail[i] ||
778 seg->start >= phys_avail[i + 1])
779 continue;
780
781 startp = MAX(seg->start, phys_avail[i]);
782 endp = MIN(seg->end, phys_avail[i + 1]);
783 pagecount = (u_long)atop(endp - startp);
784 if (pagecount == 0)
785 continue;
786
787 m = seg->first_page + atop(startp - seg->start);
788 vmd = VM_DOMAIN(seg->domain);
789 vm_domain_free_lock(vmd);
790 vm_phys_enqueue_contig(m, pagecount);
791 vm_domain_free_unlock(vmd);
792 vm_domain_freecnt_inc(vmd, pagecount);
793 vm_cnt.v_page_count += (u_int)pagecount;
794 vmd->vmd_page_count += (u_int)pagecount;
795 vmd->vmd_segs |= 1UL << segind;
796 }
797 }
798
799 /*
800 * Remove blacklisted pages from the physical memory allocator.
801 */
802 TAILQ_INIT(&blacklist_head);
803 vm_page_blacklist_load(&list, &listend);
804 vm_page_blacklist_check(list, listend);
805
806 list = kern_getenv("vm.blacklist");
807 vm_page_blacklist_check(list, NULL);
808
809 freeenv(list);
810 #if VM_NRESERVLEVEL > 0
811 /*
812 * Initialize the reservation management system.
813 */
814 vm_reserv_init();
815 #endif
816
817 return (vaddr);
818 }
819
820 void
821 vm_page_reference(vm_page_t m)
822 {
823
824 vm_page_aflag_set(m, PGA_REFERENCED);
825 }
826
827 /*
828 * vm_page_trybusy
829 *
830 * Helper routine for grab functions to trylock busy.
831 *
832 * Returns true on success and false on failure.
833 */
834 static bool
835 vm_page_trybusy(vm_page_t m, int allocflags)
836 {
837
838 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
839 return (vm_page_trysbusy(m));
840 else
841 return (vm_page_tryxbusy(m));
842 }
843
844 /*
845 * vm_page_tryacquire
846 *
847 * Helper routine for grab functions to trylock busy and wire.
848 *
849 * Returns true on success and false on failure.
850 */
851 static inline bool
852 vm_page_tryacquire(vm_page_t m, int allocflags)
853 {
854 bool locked;
855
856 locked = vm_page_trybusy(m, allocflags);
857 if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
858 vm_page_wire(m);
859 return (locked);
860 }
861
862 /*
863 * vm_page_busy_acquire:
864 *
865 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop
866 * and drop the object lock if necessary.
867 */
868 bool
869 vm_page_busy_acquire(vm_page_t m, int allocflags)
870 {
871 vm_object_t obj;
872 bool locked;
873
874 /*
875 * The page-specific object must be cached because page
876 * identity can change during the sleep, causing the
877 * re-lock of a different object.
878 * It is assumed that a reference to the object is already
879 * held by the callers.
880 */
881 obj = atomic_load_ptr(&m->object);
882 for (;;) {
883 if (vm_page_tryacquire(m, allocflags))
884 return (true);
885 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
886 return (false);
887 if (obj != NULL)
888 locked = VM_OBJECT_WOWNED(obj);
889 else
890 locked = false;
891 MPASS(locked || vm_page_wired(m));
892 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
893 locked) && locked)
894 VM_OBJECT_WLOCK(obj);
895 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
896 return (false);
897 KASSERT(m->object == obj || m->object == NULL,
898 ("vm_page_busy_acquire: page %p does not belong to %p",
899 m, obj));
900 }
901 }
902
903 /*
904 * vm_page_busy_downgrade:
905 *
906 * Downgrade an exclusive busy page into a single shared busy page.
907 */
908 void
909 vm_page_busy_downgrade(vm_page_t m)
910 {
911 u_int x;
912
913 vm_page_assert_xbusied(m);
914
915 x = vm_page_busy_fetch(m);
916 for (;;) {
917 if (atomic_fcmpset_rel_int(&m->busy_lock,
918 &x, VPB_SHARERS_WORD(1)))
919 break;
920 }
921 if ((x & VPB_BIT_WAITERS) != 0)
922 wakeup(m);
923 }
924
925 /*
926 *
927 * vm_page_busy_tryupgrade:
928 *
929 * Attempt to upgrade a single shared busy into an exclusive busy.
930 */
931 int
932 vm_page_busy_tryupgrade(vm_page_t m)
933 {
934 u_int ce, x;
935
936 vm_page_assert_sbusied(m);
937
938 x = vm_page_busy_fetch(m);
939 ce = VPB_CURTHREAD_EXCLUSIVE;
940 for (;;) {
941 if (VPB_SHARERS(x) > 1)
942 return (0);
943 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
944 ("vm_page_busy_tryupgrade: invalid lock state"));
945 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
946 ce | (x & VPB_BIT_WAITERS)))
947 continue;
948 return (1);
949 }
950 }
951
952 /*
953 * vm_page_sbusied:
954 *
955 * Return a positive value if the page is shared busied, 0 otherwise.
956 */
957 int
958 vm_page_sbusied(vm_page_t m)
959 {
960 u_int x;
961
962 x = vm_page_busy_fetch(m);
963 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
964 }
965
966 /*
967 * vm_page_sunbusy:
968 *
969 * Shared unbusy a page.
970 */
971 void
972 vm_page_sunbusy(vm_page_t m)
973 {
974 u_int x;
975
976 vm_page_assert_sbusied(m);
977
978 x = vm_page_busy_fetch(m);
979 for (;;) {
980 KASSERT(x != VPB_FREED,
981 ("vm_page_sunbusy: Unlocking freed page."));
982 if (VPB_SHARERS(x) > 1) {
983 if (atomic_fcmpset_int(&m->busy_lock, &x,
984 x - VPB_ONE_SHARER))
985 break;
986 continue;
987 }
988 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
989 ("vm_page_sunbusy: invalid lock state"));
990 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
991 continue;
992 if ((x & VPB_BIT_WAITERS) == 0)
993 break;
994 wakeup(m);
995 break;
996 }
997 }
998
999 /*
1000 * vm_page_busy_sleep:
1001 *
1002 * Sleep if the page is busy, using the page pointer as wchan.
1003 * This is used to implement the hard-path of the busying mechanism.
1004 *
1005 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1006 * will not sleep if the page is shared-busy.
1007 *
1008 * The object lock must be held on entry.
1009 *
1010 * Returns true if it slept and dropped the object lock, or false
1011 * if there was no sleep and the lock is still held.
1012 */
1013 bool
1014 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1015 {
1016 vm_object_t obj;
1017
1018 obj = m->object;
1019 VM_OBJECT_ASSERT_LOCKED(obj);
1020
1021 return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1022 true));
1023 }
1024
1025 /*
1026 * vm_page_busy_sleep_unlocked:
1027 *
1028 * Sleep if the page is busy, using the page pointer as wchan.
1029 * This is used to implement the hard-path of busying mechanism.
1030 *
1031 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1032 * will not sleep if the page is shared-busy.
1033 *
1034 * The object lock must not be held on entry. The operation will
1035 * return if the page changes identity.
1036 */
1037 void
1038 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1039 const char *wmesg, int allocflags)
1040 {
1041 VM_OBJECT_ASSERT_UNLOCKED(obj);
1042
1043 (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1044 }
1045
1046 /*
1047 * _vm_page_busy_sleep:
1048 *
1049 * Internal busy sleep function. Verifies the page identity and
1050 * lockstate against parameters. Returns true if it sleeps and
1051 * false otherwise.
1052 *
1053 * allocflags uses VM_ALLOC_* flags to specify the lock required.
1054 *
1055 * If locked is true the lock will be dropped for any true returns
1056 * and held for any false returns.
1057 */
1058 static bool
1059 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1060 const char *wmesg, int allocflags, bool locked)
1061 {
1062 bool xsleep;
1063 u_int x;
1064
1065 /*
1066 * If the object is busy we must wait for that to drain to zero
1067 * before trying the page again.
1068 */
1069 if (obj != NULL && vm_object_busied(obj)) {
1070 if (locked)
1071 VM_OBJECT_DROP(obj);
1072 vm_object_busy_wait(obj, wmesg);
1073 return (true);
1074 }
1075
1076 if (!vm_page_busied(m))
1077 return (false);
1078
1079 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1080 sleepq_lock(m);
1081 x = vm_page_busy_fetch(m);
1082 do {
1083 /*
1084 * If the page changes objects or becomes unlocked we can
1085 * simply return.
1086 */
1087 if (x == VPB_UNBUSIED ||
1088 (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1089 m->object != obj || m->pindex != pindex) {
1090 sleepq_release(m);
1091 return (false);
1092 }
1093 if ((x & VPB_BIT_WAITERS) != 0)
1094 break;
1095 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1096 if (locked)
1097 VM_OBJECT_DROP(obj);
1098 DROP_GIANT();
1099 sleepq_add(m, NULL, wmesg, 0, 0);
1100 sleepq_wait(m, PVM);
1101 PICKUP_GIANT();
1102 return (true);
1103 }
1104
1105 /*
1106 * vm_page_trysbusy:
1107 *
1108 * Try to shared busy a page.
1109 * If the operation succeeds 1 is returned otherwise 0.
1110 * The operation never sleeps.
1111 */
1112 int
1113 vm_page_trysbusy(vm_page_t m)
1114 {
1115 vm_object_t obj;
1116 u_int x;
1117
1118 obj = m->object;
1119 x = vm_page_busy_fetch(m);
1120 for (;;) {
1121 if ((x & VPB_BIT_SHARED) == 0)
1122 return (0);
1123 /*
1124 * Reduce the window for transient busies that will trigger
1125 * false negatives in vm_page_ps_test().
1126 */
1127 if (obj != NULL && vm_object_busied(obj))
1128 return (0);
1129 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1130 x + VPB_ONE_SHARER))
1131 break;
1132 }
1133
1134 /* Refetch the object now that we're guaranteed that it is stable. */
1135 obj = m->object;
1136 if (obj != NULL && vm_object_busied(obj)) {
1137 vm_page_sunbusy(m);
1138 return (0);
1139 }
1140 return (1);
1141 }
1142
1143 /*
1144 * vm_page_tryxbusy:
1145 *
1146 * Try to exclusive busy a page.
1147 * If the operation succeeds 1 is returned otherwise 0.
1148 * The operation never sleeps.
1149 */
1150 int
1151 vm_page_tryxbusy(vm_page_t m)
1152 {
1153 vm_object_t obj;
1154
1155 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1156 VPB_CURTHREAD_EXCLUSIVE) == 0)
1157 return (0);
1158
1159 obj = m->object;
1160 if (obj != NULL && vm_object_busied(obj)) {
1161 vm_page_xunbusy(m);
1162 return (0);
1163 }
1164 return (1);
1165 }
1166
1167 static void
1168 vm_page_xunbusy_hard_tail(vm_page_t m)
1169 {
1170 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1171 /* Wake the waiter. */
1172 wakeup(m);
1173 }
1174
1175 /*
1176 * vm_page_xunbusy_hard:
1177 *
1178 * Called when unbusy has failed because there is a waiter.
1179 */
1180 void
1181 vm_page_xunbusy_hard(vm_page_t m)
1182 {
1183 vm_page_assert_xbusied(m);
1184 vm_page_xunbusy_hard_tail(m);
1185 }
1186
1187 void
1188 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1189 {
1190 vm_page_assert_xbusied_unchecked(m);
1191 vm_page_xunbusy_hard_tail(m);
1192 }
1193
1194 static void
1195 vm_page_busy_free(vm_page_t m)
1196 {
1197 u_int x;
1198
1199 atomic_thread_fence_rel();
1200 x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1201 if ((x & VPB_BIT_WAITERS) != 0)
1202 wakeup(m);
1203 }
1204
1205 /*
1206 * vm_page_unhold_pages:
1207 *
1208 * Unhold each of the pages that is referenced by the given array.
1209 */
1210 void
1211 vm_page_unhold_pages(vm_page_t *ma, int count)
1212 {
1213
1214 for (; count != 0; count--) {
1215 vm_page_unwire(*ma, PQ_ACTIVE);
1216 ma++;
1217 }
1218 }
1219
1220 vm_page_t
1221 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1222 {
1223 vm_page_t m;
1224
1225 #ifdef VM_PHYSSEG_SPARSE
1226 m = vm_phys_paddr_to_vm_page(pa);
1227 if (m == NULL)
1228 m = vm_phys_fictitious_to_vm_page(pa);
1229 return (m);
1230 #elif defined(VM_PHYSSEG_DENSE)
1231 long pi;
1232
1233 pi = atop(pa);
1234 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1235 m = &vm_page_array[pi - first_page];
1236 return (m);
1237 }
1238 return (vm_phys_fictitious_to_vm_page(pa));
1239 #else
1240 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1241 #endif
1242 }
1243
1244 /*
1245 * vm_page_getfake:
1246 *
1247 * Create a fictitious page with the specified physical address and
1248 * memory attribute. The memory attribute is the only the machine-
1249 * dependent aspect of a fictitious page that must be initialized.
1250 */
1251 vm_page_t
1252 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1253 {
1254 vm_page_t m;
1255
1256 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1257 vm_page_initfake(m, paddr, memattr);
1258 return (m);
1259 }
1260
1261 void
1262 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1263 {
1264
1265 if ((m->flags & PG_FICTITIOUS) != 0) {
1266 /*
1267 * The page's memattr might have changed since the
1268 * previous initialization. Update the pmap to the
1269 * new memattr.
1270 */
1271 goto memattr;
1272 }
1273 m->phys_addr = paddr;
1274 m->a.queue = PQ_NONE;
1275 /* Fictitious pages don't use "segind". */
1276 m->flags = PG_FICTITIOUS;
1277 /* Fictitious pages don't use "order" or "pool". */
1278 m->oflags = VPO_UNMANAGED;
1279 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1280 /* Fictitious pages are unevictable. */
1281 m->ref_count = 1;
1282 pmap_page_init(m);
1283 memattr:
1284 pmap_page_set_memattr(m, memattr);
1285 }
1286
1287 /*
1288 * vm_page_putfake:
1289 *
1290 * Release a fictitious page.
1291 */
1292 void
1293 vm_page_putfake(vm_page_t m)
1294 {
1295
1296 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1297 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1298 ("vm_page_putfake: bad page %p", m));
1299 vm_page_assert_xbusied(m);
1300 vm_page_busy_free(m);
1301 uma_zfree(fakepg_zone, m);
1302 }
1303
1304 /*
1305 * vm_page_updatefake:
1306 *
1307 * Update the given fictitious page to the specified physical address and
1308 * memory attribute.
1309 */
1310 void
1311 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1312 {
1313
1314 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1315 ("vm_page_updatefake: bad page %p", m));
1316 m->phys_addr = paddr;
1317 pmap_page_set_memattr(m, memattr);
1318 }
1319
1320 /*
1321 * vm_page_free:
1322 *
1323 * Free a page.
1324 */
1325 void
1326 vm_page_free(vm_page_t m)
1327 {
1328
1329 m->flags &= ~PG_ZERO;
1330 vm_page_free_toq(m);
1331 }
1332
1333 /*
1334 * vm_page_free_zero:
1335 *
1336 * Free a page to the zerod-pages queue
1337 */
1338 void
1339 vm_page_free_zero(vm_page_t m)
1340 {
1341
1342 m->flags |= PG_ZERO;
1343 vm_page_free_toq(m);
1344 }
1345
1346 /*
1347 * Unbusy and handle the page queueing for a page from a getpages request that
1348 * was optionally read ahead or behind.
1349 */
1350 void
1351 vm_page_readahead_finish(vm_page_t m)
1352 {
1353
1354 /* We shouldn't put invalid pages on queues. */
1355 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1356
1357 /*
1358 * Since the page is not the actually needed one, whether it should
1359 * be activated or deactivated is not obvious. Empirical results
1360 * have shown that deactivating the page is usually the best choice,
1361 * unless the page is wanted by another thread.
1362 */
1363 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1364 vm_page_activate(m);
1365 else
1366 vm_page_deactivate(m);
1367 vm_page_xunbusy_unchecked(m);
1368 }
1369
1370 /*
1371 * Destroy the identity of an invalid page and free it if possible.
1372 * This is intended to be used when reading a page from backing store fails.
1373 */
1374 void
1375 vm_page_free_invalid(vm_page_t m)
1376 {
1377
1378 KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1379 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1380 KASSERT(m->object != NULL, ("page %p has no object", m));
1381 VM_OBJECT_ASSERT_WLOCKED(m->object);
1382
1383 /*
1384 * We may be attempting to free the page as part of the handling for an
1385 * I/O error, in which case the page was xbusied by a different thread.
1386 */
1387 vm_page_xbusy_claim(m);
1388
1389 /*
1390 * If someone has wired this page while the object lock
1391 * was not held, then the thread that unwires is responsible
1392 * for freeing the page. Otherwise just free the page now.
1393 * The wire count of this unmapped page cannot change while
1394 * we have the page xbusy and the page's object wlocked.
1395 */
1396 if (vm_page_remove(m))
1397 vm_page_free(m);
1398 }
1399
1400 /*
1401 * vm_page_dirty_KBI: [ internal use only ]
1402 *
1403 * Set all bits in the page's dirty field.
1404 *
1405 * The object containing the specified page must be locked if the
1406 * call is made from the machine-independent layer.
1407 *
1408 * See vm_page_clear_dirty_mask().
1409 *
1410 * This function should only be called by vm_page_dirty().
1411 */
1412 void
1413 vm_page_dirty_KBI(vm_page_t m)
1414 {
1415
1416 /* Refer to this operation by its public name. */
1417 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1418 m->dirty = VM_PAGE_BITS_ALL;
1419 }
1420
1421 /*
1422 * vm_page_insert: [ internal use only ]
1423 *
1424 * Inserts the given mem entry into the object and object list.
1425 *
1426 * The object must be locked.
1427 */
1428 int
1429 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1430 {
1431 vm_page_t mpred;
1432
1433 VM_OBJECT_ASSERT_WLOCKED(object);
1434 mpred = vm_radix_lookup_le(&object->rtree, pindex);
1435 return (vm_page_insert_after(m, object, pindex, mpred));
1436 }
1437
1438 /*
1439 * vm_page_insert_after:
1440 *
1441 * Inserts the page "m" into the specified object at offset "pindex".
1442 *
1443 * The page "mpred" must immediately precede the offset "pindex" within
1444 * the specified object.
1445 *
1446 * The object must be locked.
1447 */
1448 static int
1449 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1450 vm_page_t mpred)
1451 {
1452 vm_page_t msucc;
1453
1454 VM_OBJECT_ASSERT_WLOCKED(object);
1455 KASSERT(m->object == NULL,
1456 ("vm_page_insert_after: page already inserted"));
1457 if (mpred != NULL) {
1458 KASSERT(mpred->object == object,
1459 ("vm_page_insert_after: object doesn't contain mpred"));
1460 KASSERT(mpred->pindex < pindex,
1461 ("vm_page_insert_after: mpred doesn't precede pindex"));
1462 msucc = TAILQ_NEXT(mpred, listq);
1463 } else
1464 msucc = TAILQ_FIRST(&object->memq);
1465 if (msucc != NULL)
1466 KASSERT(msucc->pindex > pindex,
1467 ("vm_page_insert_after: msucc doesn't succeed pindex"));
1468
1469 /*
1470 * Record the object/offset pair in this page.
1471 */
1472 m->object = object;
1473 m->pindex = pindex;
1474 m->ref_count |= VPRC_OBJREF;
1475
1476 /*
1477 * Now link into the object's ordered list of backed pages.
1478 */
1479 if (vm_radix_insert(&object->rtree, m)) {
1480 m->object = NULL;
1481 m->pindex = 0;
1482 m->ref_count &= ~VPRC_OBJREF;
1483 return (1);
1484 }
1485 vm_page_insert_radixdone(m, object, mpred);
1486 vm_pager_page_inserted(object, m);
1487 return (0);
1488 }
1489
1490 /*
1491 * vm_page_insert_radixdone:
1492 *
1493 * Complete page "m" insertion into the specified object after the
1494 * radix trie hooking.
1495 *
1496 * The page "mpred" must precede the offset "m->pindex" within the
1497 * specified object.
1498 *
1499 * The object must be locked.
1500 */
1501 static void
1502 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1503 {
1504
1505 VM_OBJECT_ASSERT_WLOCKED(object);
1506 KASSERT(object != NULL && m->object == object,
1507 ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1508 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1509 ("vm_page_insert_radixdone: page %p is missing object ref", m));
1510 if (mpred != NULL) {
1511 KASSERT(mpred->object == object,
1512 ("vm_page_insert_radixdone: object doesn't contain mpred"));
1513 KASSERT(mpred->pindex < m->pindex,
1514 ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1515 }
1516
1517 if (mpred != NULL)
1518 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1519 else
1520 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1521
1522 /*
1523 * Show that the object has one more resident page.
1524 */
1525 object->resident_page_count++;
1526
1527 /*
1528 * Hold the vnode until the last page is released.
1529 */
1530 if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1531 vhold(object->handle);
1532
1533 /*
1534 * Since we are inserting a new and possibly dirty page,
1535 * update the object's generation count.
1536 */
1537 if (pmap_page_is_write_mapped(m))
1538 vm_object_set_writeable_dirty(object);
1539 }
1540
1541 /*
1542 * Do the work to remove a page from its object. The caller is responsible for
1543 * updating the page's fields to reflect this removal.
1544 */
1545 static void
1546 vm_page_object_remove(vm_page_t m)
1547 {
1548 vm_object_t object;
1549 vm_page_t mrem __diagused;
1550
1551 vm_page_assert_xbusied(m);
1552 object = m->object;
1553 VM_OBJECT_ASSERT_WLOCKED(object);
1554 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1555 ("page %p is missing its object ref", m));
1556
1557 /* Deferred free of swap space. */
1558 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1559 vm_pager_page_unswapped(m);
1560
1561 vm_pager_page_removed(object, m);
1562
1563 m->object = NULL;
1564 mrem = vm_radix_remove(&object->rtree, m->pindex);
1565 KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1566
1567 /*
1568 * Now remove from the object's list of backed pages.
1569 */
1570 TAILQ_REMOVE(&object->memq, m, listq);
1571
1572 /*
1573 * And show that the object has one fewer resident page.
1574 */
1575 object->resident_page_count--;
1576
1577 /*
1578 * The vnode may now be recycled.
1579 */
1580 if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1581 vdrop(object->handle);
1582 }
1583
1584 /*
1585 * vm_page_remove:
1586 *
1587 * Removes the specified page from its containing object, but does not
1588 * invalidate any backing storage. Returns true if the object's reference
1589 * was the last reference to the page, and false otherwise.
1590 *
1591 * The object must be locked and the page must be exclusively busied.
1592 * The exclusive busy will be released on return. If this is not the
1593 * final ref and the caller does not hold a wire reference it may not
1594 * continue to access the page.
1595 */
1596 bool
1597 vm_page_remove(vm_page_t m)
1598 {
1599 bool dropped;
1600
1601 dropped = vm_page_remove_xbusy(m);
1602 vm_page_xunbusy(m);
1603
1604 return (dropped);
1605 }
1606
1607 /*
1608 * vm_page_remove_xbusy
1609 *
1610 * Removes the page but leaves the xbusy held. Returns true if this
1611 * removed the final ref and false otherwise.
1612 */
1613 bool
1614 vm_page_remove_xbusy(vm_page_t m)
1615 {
1616
1617 vm_page_object_remove(m);
1618 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1619 }
1620
1621 /*
1622 * vm_page_lookup:
1623 *
1624 * Returns the page associated with the object/offset
1625 * pair specified; if none is found, NULL is returned.
1626 *
1627 * The object must be locked.
1628 */
1629 vm_page_t
1630 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1631 {
1632
1633 VM_OBJECT_ASSERT_LOCKED(object);
1634 return (vm_radix_lookup(&object->rtree, pindex));
1635 }
1636
1637 /*
1638 * vm_page_lookup_unlocked:
1639 *
1640 * Returns the page associated with the object/offset pair specified;
1641 * if none is found, NULL is returned. The page may be no longer be
1642 * present in the object at the time that this function returns. Only
1643 * useful for opportunistic checks such as inmem().
1644 */
1645 vm_page_t
1646 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1647 {
1648
1649 return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1650 }
1651
1652 /*
1653 * vm_page_relookup:
1654 *
1655 * Returns a page that must already have been busied by
1656 * the caller. Used for bogus page replacement.
1657 */
1658 vm_page_t
1659 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1660 {
1661 vm_page_t m;
1662
1663 m = vm_radix_lookup_unlocked(&object->rtree, pindex);
1664 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1665 m->object == object && m->pindex == pindex,
1666 ("vm_page_relookup: Invalid page %p", m));
1667 return (m);
1668 }
1669
1670 /*
1671 * This should only be used by lockless functions for releasing transient
1672 * incorrect acquires. The page may have been freed after we acquired a
1673 * busy lock. In this case busy_lock == VPB_FREED and we have nothing
1674 * further to do.
1675 */
1676 static void
1677 vm_page_busy_release(vm_page_t m)
1678 {
1679 u_int x;
1680
1681 x = vm_page_busy_fetch(m);
1682 for (;;) {
1683 if (x == VPB_FREED)
1684 break;
1685 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1686 if (atomic_fcmpset_int(&m->busy_lock, &x,
1687 x - VPB_ONE_SHARER))
1688 break;
1689 continue;
1690 }
1691 KASSERT((x & VPB_BIT_SHARED) != 0 ||
1692 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1693 ("vm_page_busy_release: %p xbusy not owned.", m));
1694 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1695 continue;
1696 if ((x & VPB_BIT_WAITERS) != 0)
1697 wakeup(m);
1698 break;
1699 }
1700 }
1701
1702 /*
1703 * vm_page_find_least:
1704 *
1705 * Returns the page associated with the object with least pindex
1706 * greater than or equal to the parameter pindex, or NULL.
1707 *
1708 * The object must be locked.
1709 */
1710 vm_page_t
1711 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1712 {
1713 vm_page_t m;
1714
1715 VM_OBJECT_ASSERT_LOCKED(object);
1716 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1717 m = vm_radix_lookup_ge(&object->rtree, pindex);
1718 return (m);
1719 }
1720
1721 /*
1722 * Returns the given page's successor (by pindex) within the object if it is
1723 * resident; if none is found, NULL is returned.
1724 *
1725 * The object must be locked.
1726 */
1727 vm_page_t
1728 vm_page_next(vm_page_t m)
1729 {
1730 vm_page_t next;
1731
1732 VM_OBJECT_ASSERT_LOCKED(m->object);
1733 if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1734 MPASS(next->object == m->object);
1735 if (next->pindex != m->pindex + 1)
1736 next = NULL;
1737 }
1738 return (next);
1739 }
1740
1741 /*
1742 * Returns the given page's predecessor (by pindex) within the object if it is
1743 * resident; if none is found, NULL is returned.
1744 *
1745 * The object must be locked.
1746 */
1747 vm_page_t
1748 vm_page_prev(vm_page_t m)
1749 {
1750 vm_page_t prev;
1751
1752 VM_OBJECT_ASSERT_LOCKED(m->object);
1753 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1754 MPASS(prev->object == m->object);
1755 if (prev->pindex != m->pindex - 1)
1756 prev = NULL;
1757 }
1758 return (prev);
1759 }
1760
1761 /*
1762 * Uses the page mnew as a replacement for an existing page at index
1763 * pindex which must be already present in the object.
1764 *
1765 * Both pages must be exclusively busied on enter. The old page is
1766 * unbusied on exit.
1767 *
1768 * A return value of true means mold is now free. If this is not the
1769 * final ref and the caller does not hold a wire reference it may not
1770 * continue to access the page.
1771 */
1772 static bool
1773 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1774 vm_page_t mold)
1775 {
1776 vm_page_t mret __diagused;
1777 bool dropped;
1778
1779 VM_OBJECT_ASSERT_WLOCKED(object);
1780 vm_page_assert_xbusied(mold);
1781 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1782 ("vm_page_replace: page %p already in object", mnew));
1783
1784 /*
1785 * This function mostly follows vm_page_insert() and
1786 * vm_page_remove() without the radix, object count and vnode
1787 * dance. Double check such functions for more comments.
1788 */
1789
1790 mnew->object = object;
1791 mnew->pindex = pindex;
1792 atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1793 mret = vm_radix_replace(&object->rtree, mnew);
1794 KASSERT(mret == mold,
1795 ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1796 KASSERT((mold->oflags & VPO_UNMANAGED) ==
1797 (mnew->oflags & VPO_UNMANAGED),
1798 ("vm_page_replace: mismatched VPO_UNMANAGED"));
1799
1800 /* Keep the resident page list in sorted order. */
1801 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1802 TAILQ_REMOVE(&object->memq, mold, listq);
1803 mold->object = NULL;
1804
1805 /*
1806 * The object's resident_page_count does not change because we have
1807 * swapped one page for another, but the generation count should
1808 * change if the page is dirty.
1809 */
1810 if (pmap_page_is_write_mapped(mnew))
1811 vm_object_set_writeable_dirty(object);
1812 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1813 vm_page_xunbusy(mold);
1814
1815 return (dropped);
1816 }
1817
1818 void
1819 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1820 vm_page_t mold)
1821 {
1822
1823 vm_page_assert_xbusied(mnew);
1824
1825 if (vm_page_replace_hold(mnew, object, pindex, mold))
1826 vm_page_free(mold);
1827 }
1828
1829 /*
1830 * vm_page_rename:
1831 *
1832 * Move the given memory entry from its
1833 * current object to the specified target object/offset.
1834 *
1835 * Note: swap associated with the page must be invalidated by the move. We
1836 * have to do this for several reasons: (1) we aren't freeing the
1837 * page, (2) we are dirtying the page, (3) the VM system is probably
1838 * moving the page from object A to B, and will then later move
1839 * the backing store from A to B and we can't have a conflict.
1840 *
1841 * Note: we *always* dirty the page. It is necessary both for the
1842 * fact that we moved it, and because we may be invalidating
1843 * swap.
1844 *
1845 * The objects must be locked.
1846 */
1847 int
1848 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1849 {
1850 vm_page_t mpred;
1851 vm_pindex_t opidx;
1852
1853 VM_OBJECT_ASSERT_WLOCKED(new_object);
1854
1855 KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1856 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1857 KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1858 ("vm_page_rename: pindex already renamed"));
1859
1860 /*
1861 * Create a custom version of vm_page_insert() which does not depend
1862 * by m_prev and can cheat on the implementation aspects of the
1863 * function.
1864 */
1865 opidx = m->pindex;
1866 m->pindex = new_pindex;
1867 if (vm_radix_insert(&new_object->rtree, m)) {
1868 m->pindex = opidx;
1869 return (1);
1870 }
1871
1872 /*
1873 * The operation cannot fail anymore. The removal must happen before
1874 * the listq iterator is tainted.
1875 */
1876 m->pindex = opidx;
1877 vm_page_object_remove(m);
1878
1879 /* Return back to the new pindex to complete vm_page_insert(). */
1880 m->pindex = new_pindex;
1881 m->object = new_object;
1882
1883 vm_page_insert_radixdone(m, new_object, mpred);
1884 vm_page_dirty(m);
1885 vm_pager_page_inserted(new_object, m);
1886 return (0);
1887 }
1888
1889 /*
1890 * vm_page_alloc:
1891 *
1892 * Allocate and return a page that is associated with the specified
1893 * object and offset pair. By default, this page is exclusive busied.
1894 *
1895 * The caller must always specify an allocation class.
1896 *
1897 * allocation classes:
1898 * VM_ALLOC_NORMAL normal process request
1899 * VM_ALLOC_SYSTEM system *really* needs a page
1900 * VM_ALLOC_INTERRUPT interrupt time request
1901 *
1902 * optional allocation flags:
1903 * VM_ALLOC_COUNT(number) the number of additional pages that the caller
1904 * intends to allocate
1905 * VM_ALLOC_NOBUSY do not exclusive busy the page
1906 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
1907 * VM_ALLOC_SBUSY shared busy the allocated page
1908 * VM_ALLOC_WIRED wire the allocated page
1909 * VM_ALLOC_ZERO prefer a zeroed page
1910 */
1911 vm_page_t
1912 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1913 {
1914
1915 return (vm_page_alloc_after(object, pindex, req,
1916 vm_radix_lookup_le(&object->rtree, pindex)));
1917 }
1918
1919 vm_page_t
1920 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1921 int req)
1922 {
1923
1924 return (vm_page_alloc_domain_after(object, pindex, domain, req,
1925 vm_radix_lookup_le(&object->rtree, pindex)));
1926 }
1927
1928 /*
1929 * Allocate a page in the specified object with the given page index. To
1930 * optimize insertion of the page into the object, the caller must also specifiy
1931 * the resident page in the object with largest index smaller than the given
1932 * page index, or NULL if no such page exists.
1933 */
1934 vm_page_t
1935 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1936 int req, vm_page_t mpred)
1937 {
1938 struct vm_domainset_iter di;
1939 vm_page_t m;
1940 int domain;
1941
1942 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1943 do {
1944 m = vm_page_alloc_domain_after(object, pindex, domain, req,
1945 mpred);
1946 if (m != NULL)
1947 break;
1948 } while (vm_domainset_iter_page(&di, object, &domain) == 0);
1949
1950 return (m);
1951 }
1952
1953 /*
1954 * Returns true if the number of free pages exceeds the minimum
1955 * for the request class and false otherwise.
1956 */
1957 static int
1958 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
1959 {
1960 u_int limit, old, new;
1961
1962 if (req_class == VM_ALLOC_INTERRUPT)
1963 limit = 0;
1964 else if (req_class == VM_ALLOC_SYSTEM)
1965 limit = vmd->vmd_interrupt_free_min;
1966 else
1967 limit = vmd->vmd_free_reserved;
1968
1969 /*
1970 * Attempt to reserve the pages. Fail if we're below the limit.
1971 */
1972 limit += npages;
1973 old = vmd->vmd_free_count;
1974 do {
1975 if (old < limit)
1976 return (0);
1977 new = old - npages;
1978 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1979
1980 /* Wake the page daemon if we've crossed the threshold. */
1981 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1982 pagedaemon_wakeup(vmd->vmd_domain);
1983
1984 /* Only update bitsets on transitions. */
1985 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1986 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1987 vm_domain_set(vmd);
1988
1989 return (1);
1990 }
1991
1992 int
1993 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1994 {
1995 int req_class;
1996
1997 /*
1998 * The page daemon is allowed to dig deeper into the free page list.
1999 */
2000 req_class = req & VM_ALLOC_CLASS_MASK;
2001 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2002 req_class = VM_ALLOC_SYSTEM;
2003 return (_vm_domain_allocate(vmd, req_class, npages));
2004 }
2005
2006 vm_page_t
2007 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2008 int req, vm_page_t mpred)
2009 {
2010 struct vm_domain *vmd;
2011 vm_page_t m;
2012 int flags;
2013
2014 #define VPA_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \
2015 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY | \
2016 VM_ALLOC_SBUSY | VM_ALLOC_WIRED | \
2017 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK)
2018 KASSERT((req & ~VPA_FLAGS) == 0,
2019 ("invalid request %#x", req));
2020 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2021 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2022 ("invalid request %#x", req));
2023 KASSERT(mpred == NULL || mpred->pindex < pindex,
2024 ("mpred %p doesn't precede pindex 0x%jx", mpred,
2025 (uintmax_t)pindex));
2026 VM_OBJECT_ASSERT_WLOCKED(object);
2027
2028 flags = 0;
2029 m = NULL;
2030 if (!vm_pager_can_alloc_page(object, pindex))
2031 return (NULL);
2032 again:
2033 #if VM_NRESERVLEVEL > 0
2034 /*
2035 * Can we allocate the page from a reservation?
2036 */
2037 if (vm_object_reserv(object) &&
2038 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2039 NULL) {
2040 goto found;
2041 }
2042 #endif
2043 vmd = VM_DOMAIN(domain);
2044 if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2045 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2046 M_NOWAIT | M_NOVM);
2047 if (m != NULL) {
2048 flags |= PG_PCPU_CACHE;
2049 goto found;
2050 }
2051 }
2052 if (vm_domain_allocate(vmd, req, 1)) {
2053 /*
2054 * If not, allocate it from the free page queues.
2055 */
2056 vm_domain_free_lock(vmd);
2057 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2058 vm_domain_free_unlock(vmd);
2059 if (m == NULL) {
2060 vm_domain_freecnt_inc(vmd, 1);
2061 #if VM_NRESERVLEVEL > 0
2062 if (vm_reserv_reclaim_inactive(domain))
2063 goto again;
2064 #endif
2065 }
2066 }
2067 if (m == NULL) {
2068 /*
2069 * Not allocatable, give up.
2070 */
2071 if (vm_domain_alloc_fail(vmd, object, req))
2072 goto again;
2073 return (NULL);
2074 }
2075
2076 /*
2077 * At this point we had better have found a good page.
2078 */
2079 found:
2080 vm_page_dequeue(m);
2081 vm_page_alloc_check(m);
2082
2083 /*
2084 * Initialize the page. Only the PG_ZERO flag is inherited.
2085 */
2086 flags |= m->flags & PG_ZERO;
2087 if ((req & VM_ALLOC_NODUMP) != 0)
2088 flags |= PG_NODUMP;
2089 m->flags = flags;
2090 m->a.flags = 0;
2091 m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2092 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2093 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2094 else if ((req & VM_ALLOC_SBUSY) != 0)
2095 m->busy_lock = VPB_SHARERS_WORD(1);
2096 else
2097 m->busy_lock = VPB_UNBUSIED;
2098 if (req & VM_ALLOC_WIRED) {
2099 vm_wire_add(1);
2100 m->ref_count = 1;
2101 }
2102 m->a.act_count = 0;
2103
2104 if (vm_page_insert_after(m, object, pindex, mpred)) {
2105 if (req & VM_ALLOC_WIRED) {
2106 vm_wire_sub(1);
2107 m->ref_count = 0;
2108 }
2109 KASSERT(m->object == NULL, ("page %p has object", m));
2110 m->oflags = VPO_UNMANAGED;
2111 m->busy_lock = VPB_UNBUSIED;
2112 /* Don't change PG_ZERO. */
2113 vm_page_free_toq(m);
2114 if (req & VM_ALLOC_WAITFAIL) {
2115 VM_OBJECT_WUNLOCK(object);
2116 vm_radix_wait();
2117 VM_OBJECT_WLOCK(object);
2118 }
2119 return (NULL);
2120 }
2121
2122 /* Ignore device objects; the pager sets "memattr" for them. */
2123 if (object->memattr != VM_MEMATTR_DEFAULT &&
2124 (object->flags & OBJ_FICTITIOUS) == 0)
2125 pmap_page_set_memattr(m, object->memattr);
2126
2127 return (m);
2128 }
2129
2130 /*
2131 * vm_page_alloc_contig:
2132 *
2133 * Allocate a contiguous set of physical pages of the given size "npages"
2134 * from the free lists. All of the physical pages must be at or above
2135 * the given physical address "low" and below the given physical address
2136 * "high". The given value "alignment" determines the alignment of the
2137 * first physical page in the set. If the given value "boundary" is
2138 * non-zero, then the set of physical pages cannot cross any physical
2139 * address boundary that is a multiple of that value. Both "alignment"
2140 * and "boundary" must be a power of two.
2141 *
2142 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2143 * then the memory attribute setting for the physical pages is configured
2144 * to the object's memory attribute setting. Otherwise, the memory
2145 * attribute setting for the physical pages is configured to "memattr",
2146 * overriding the object's memory attribute setting. However, if the
2147 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2148 * memory attribute setting for the physical pages cannot be configured
2149 * to VM_MEMATTR_DEFAULT.
2150 *
2151 * The specified object may not contain fictitious pages.
2152 *
2153 * The caller must always specify an allocation class.
2154 *
2155 * allocation classes:
2156 * VM_ALLOC_NORMAL normal process request
2157 * VM_ALLOC_SYSTEM system *really* needs a page
2158 * VM_ALLOC_INTERRUPT interrupt time request
2159 *
2160 * optional allocation flags:
2161 * VM_ALLOC_NOBUSY do not exclusive busy the page
2162 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
2163 * VM_ALLOC_SBUSY shared busy the allocated page
2164 * VM_ALLOC_WIRED wire the allocated page
2165 * VM_ALLOC_ZERO prefer a zeroed page
2166 */
2167 vm_page_t
2168 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2169 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2170 vm_paddr_t boundary, vm_memattr_t memattr)
2171 {
2172 struct vm_domainset_iter di;
2173 vm_page_t m;
2174 int domain;
2175
2176 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2177 do {
2178 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2179 npages, low, high, alignment, boundary, memattr);
2180 if (m != NULL)
2181 break;
2182 } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2183
2184 return (m);
2185 }
2186
2187 static vm_page_t
2188 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2189 vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2190 {
2191 struct vm_domain *vmd;
2192 vm_page_t m_ret;
2193
2194 /*
2195 * Can we allocate the pages without the number of free pages falling
2196 * below the lower bound for the allocation class?
2197 */
2198 vmd = VM_DOMAIN(domain);
2199 if (!vm_domain_allocate(vmd, req, npages))
2200 return (NULL);
2201 /*
2202 * Try to allocate the pages from the free page queues.
2203 */
2204 vm_domain_free_lock(vmd);
2205 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2206 alignment, boundary);
2207 vm_domain_free_unlock(vmd);
2208 if (m_ret != NULL)
2209 return (m_ret);
2210 #if VM_NRESERVLEVEL > 0
2211 /*
2212 * Try to break a reservation to allocate the pages.
2213 */
2214 if ((req & VM_ALLOC_NORECLAIM) == 0) {
2215 m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2216 high, alignment, boundary);
2217 if (m_ret != NULL)
2218 return (m_ret);
2219 }
2220 #endif
2221 vm_domain_freecnt_inc(vmd, npages);
2222 return (NULL);
2223 }
2224
2225 vm_page_t
2226 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2227 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2228 vm_paddr_t boundary, vm_memattr_t memattr)
2229 {
2230 vm_page_t m, m_ret, mpred;
2231 u_int busy_lock, flags, oflags;
2232
2233 #define VPAC_FLAGS (VPA_FLAGS | VM_ALLOC_NORECLAIM)
2234 KASSERT((req & ~VPAC_FLAGS) == 0,
2235 ("invalid request %#x", req));
2236 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2237 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2238 ("invalid request %#x", req));
2239 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2240 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2241 ("invalid request %#x", req));
2242 VM_OBJECT_ASSERT_WLOCKED(object);
2243 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2244 ("vm_page_alloc_contig: object %p has fictitious pages",
2245 object));
2246 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2247
2248 mpred = vm_radix_lookup_le(&object->rtree, pindex);
2249 KASSERT(mpred == NULL || mpred->pindex != pindex,
2250 ("vm_page_alloc_contig: pindex already allocated"));
2251 for (;;) {
2252 #if VM_NRESERVLEVEL > 0
2253 /*
2254 * Can we allocate the pages from a reservation?
2255 */
2256 if (vm_object_reserv(object) &&
2257 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2258 mpred, npages, low, high, alignment, boundary)) != NULL) {
2259 break;
2260 }
2261 #endif
2262 if ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2263 low, high, alignment, boundary)) != NULL)
2264 break;
2265 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req))
2266 return (NULL);
2267 }
2268 for (m = m_ret; m < &m_ret[npages]; m++) {
2269 vm_page_dequeue(m);
2270 vm_page_alloc_check(m);
2271 }
2272
2273 /*
2274 * Initialize the pages. Only the PG_ZERO flag is inherited.
2275 */
2276 flags = PG_ZERO;
2277 if ((req & VM_ALLOC_NODUMP) != 0)
2278 flags |= PG_NODUMP;
2279 oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2280 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2281 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2282 else if ((req & VM_ALLOC_SBUSY) != 0)
2283 busy_lock = VPB_SHARERS_WORD(1);
2284 else
2285 busy_lock = VPB_UNBUSIED;
2286 if ((req & VM_ALLOC_WIRED) != 0)
2287 vm_wire_add(npages);
2288 if (object->memattr != VM_MEMATTR_DEFAULT &&
2289 memattr == VM_MEMATTR_DEFAULT)
2290 memattr = object->memattr;
2291 for (m = m_ret; m < &m_ret[npages]; m++) {
2292 m->a.flags = 0;
2293 m->flags = (m->flags | PG_NODUMP) & flags;
2294 m->busy_lock = busy_lock;
2295 if ((req & VM_ALLOC_WIRED) != 0)
2296 m->ref_count = 1;
2297 m->a.act_count = 0;
2298 m->oflags = oflags;
2299 if (vm_page_insert_after(m, object, pindex, mpred)) {
2300 if ((req & VM_ALLOC_WIRED) != 0)
2301 vm_wire_sub(npages);
2302 KASSERT(m->object == NULL,
2303 ("page %p has object", m));
2304 mpred = m;
2305 for (m = m_ret; m < &m_ret[npages]; m++) {
2306 if (m <= mpred &&
2307 (req & VM_ALLOC_WIRED) != 0)
2308 m->ref_count = 0;
2309 m->oflags = VPO_UNMANAGED;
2310 m->busy_lock = VPB_UNBUSIED;
2311 /* Don't change PG_ZERO. */
2312 vm_page_free_toq(m);
2313 }
2314 if (req & VM_ALLOC_WAITFAIL) {
2315 VM_OBJECT_WUNLOCK(object);
2316 vm_radix_wait();
2317 VM_OBJECT_WLOCK(object);
2318 }
2319 return (NULL);
2320 }
2321 mpred = m;
2322 if (memattr != VM_MEMATTR_DEFAULT)
2323 pmap_page_set_memattr(m, memattr);
2324 pindex++;
2325 }
2326 return (m_ret);
2327 }
2328
2329 /*
2330 * Allocate a physical page that is not intended to be inserted into a VM
2331 * object. If the "freelist" parameter is not equal to VM_NFREELIST, then only
2332 * pages from the specified vm_phys freelist will be returned.
2333 */
2334 static __always_inline vm_page_t
2335 _vm_page_alloc_noobj_domain(int domain, const int freelist, int req)
2336 {
2337 struct vm_domain *vmd;
2338 vm_page_t m;
2339 int flags;
2340
2341 #define VPAN_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \
2342 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | \
2343 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED | \
2344 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK)
2345 KASSERT((req & ~VPAN_FLAGS) == 0,
2346 ("invalid request %#x", req));
2347
2348 flags = (req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0;
2349 vmd = VM_DOMAIN(domain);
2350 again:
2351 if (freelist == VM_NFREELIST &&
2352 vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2353 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2354 M_NOWAIT | M_NOVM);
2355 if (m != NULL) {
2356 flags |= PG_PCPU_CACHE;
2357 goto found;
2358 }
2359 }
2360
2361 if (vm_domain_allocate(vmd, req, 1)) {
2362 vm_domain_free_lock(vmd);
2363 if (freelist == VM_NFREELIST)
2364 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2365 else
2366 m = vm_phys_alloc_freelist_pages(domain, freelist,
2367 VM_FREEPOOL_DIRECT, 0);
2368 vm_domain_free_unlock(vmd);
2369 if (m == NULL) {
2370 vm_domain_freecnt_inc(vmd, 1);
2371 #if VM_NRESERVLEVEL > 0
2372 if (freelist == VM_NFREELIST &&
2373 vm_reserv_reclaim_inactive(domain))
2374 goto again;
2375 #endif
2376 }
2377 }
2378 if (m == NULL) {
2379 if (vm_domain_alloc_fail(vmd, NULL, req))
2380 goto again;
2381 return (NULL);
2382 }
2383
2384 found:
2385 vm_page_dequeue(m);
2386 vm_page_alloc_check(m);
2387
2388 /*
2389 * Consumers should not rely on a useful default pindex value.
2390 */
2391 m->pindex = 0xdeadc0dedeadc0de;
2392 m->flags = (m->flags & PG_ZERO) | flags;
2393 m->a.flags = 0;
2394 m->oflags = VPO_UNMANAGED;
2395 m->busy_lock = VPB_UNBUSIED;
2396 if ((req & VM_ALLOC_WIRED) != 0) {
2397 vm_wire_add(1);
2398 m->ref_count = 1;
2399 }
2400
2401 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2402 pmap_zero_page(m);
2403
2404 return (m);
2405 }
2406
2407 vm_page_t
2408 vm_page_alloc_freelist(int freelist, int req)
2409 {
2410 struct vm_domainset_iter di;
2411 vm_page_t m;
2412 int domain;
2413
2414 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2415 do {
2416 m = vm_page_alloc_freelist_domain(domain, freelist, req);
2417 if (m != NULL)
2418 break;
2419 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2420
2421 return (m);
2422 }
2423
2424 vm_page_t
2425 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2426 {
2427 KASSERT(freelist >= 0 && freelist < VM_NFREELIST,
2428 ("%s: invalid freelist %d", __func__, freelist));
2429
2430 return (_vm_page_alloc_noobj_domain(domain, freelist, req));
2431 }
2432
2433 vm_page_t
2434 vm_page_alloc_noobj(int req)
2435 {
2436 struct vm_domainset_iter di;
2437 vm_page_t m;
2438 int domain;
2439
2440 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2441 do {
2442 m = vm_page_alloc_noobj_domain(domain, req);
2443 if (m != NULL)
2444 break;
2445 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2446
2447 return (m);
2448 }
2449
2450 vm_page_t
2451 vm_page_alloc_noobj_domain(int domain, int req)
2452 {
2453 return (_vm_page_alloc_noobj_domain(domain, VM_NFREELIST, req));
2454 }
2455
2456 vm_page_t
2457 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2458 vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2459 vm_memattr_t memattr)
2460 {
2461 struct vm_domainset_iter di;
2462 vm_page_t m;
2463 int domain;
2464
2465 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2466 do {
2467 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2468 high, alignment, boundary, memattr);
2469 if (m != NULL)
2470 break;
2471 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2472
2473 return (m);
2474 }
2475
2476 vm_page_t
2477 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2478 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2479 vm_memattr_t memattr)
2480 {
2481 vm_page_t m, m_ret;
2482 u_int flags;
2483
2484 #define VPANC_FLAGS (VPAN_FLAGS | VM_ALLOC_NORECLAIM)
2485 KASSERT((req & ~VPANC_FLAGS) == 0,
2486 ("invalid request %#x", req));
2487 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2488 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2489 ("invalid request %#x", req));
2490 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2491 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2492 ("invalid request %#x", req));
2493 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2494
2495 while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2496 low, high, alignment, boundary)) == NULL) {
2497 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2498 return (NULL);
2499 }
2500
2501 /*
2502 * Initialize the pages. Only the PG_ZERO flag is inherited.
2503 */
2504 flags = PG_ZERO;
2505 if ((req & VM_ALLOC_NODUMP) != 0)
2506 flags |= PG_NODUMP;
2507 if ((req & VM_ALLOC_WIRED) != 0)
2508 vm_wire_add(npages);
2509 for (m = m_ret; m < &m_ret[npages]; m++) {
2510 vm_page_dequeue(m);
2511 vm_page_alloc_check(m);
2512
2513 /*
2514 * Consumers should not rely on a useful default pindex value.
2515 */
2516 m->pindex = 0xdeadc0dedeadc0de;
2517 m->a.flags = 0;
2518 m->flags = (m->flags | PG_NODUMP) & flags;
2519 m->busy_lock = VPB_UNBUSIED;
2520 if ((req & VM_ALLOC_WIRED) != 0)
2521 m->ref_count = 1;
2522 m->a.act_count = 0;
2523 m->oflags = VPO_UNMANAGED;
2524
2525 /*
2526 * Zero the page before updating any mappings since the page is
2527 * not yet shared with any devices which might require the
2528 * non-default memory attribute. pmap_page_set_memattr()
2529 * flushes data caches before returning.
2530 */
2531 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2532 pmap_zero_page(m);
2533 if (memattr != VM_MEMATTR_DEFAULT)
2534 pmap_page_set_memattr(m, memattr);
2535 }
2536 return (m_ret);
2537 }
2538
2539 /*
2540 * Check a page that has been freshly dequeued from a freelist.
2541 */
2542 static void
2543 vm_page_alloc_check(vm_page_t m)
2544 {
2545
2546 KASSERT(m->object == NULL, ("page %p has object", m));
2547 KASSERT(m->a.queue == PQ_NONE &&
2548 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2549 ("page %p has unexpected queue %d, flags %#x",
2550 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2551 KASSERT(m->ref_count == 0, ("page %p has references", m));
2552 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2553 KASSERT(m->dirty == 0, ("page %p is dirty", m));
2554 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2555 ("page %p has unexpected memattr %d",
2556 m, pmap_page_get_memattr(m)));
2557 KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2558 pmap_vm_page_alloc_check(m);
2559 }
2560
2561 static int
2562 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2563 {
2564 struct vm_domain *vmd;
2565 struct vm_pgcache *pgcache;
2566 int i;
2567
2568 pgcache = arg;
2569 vmd = VM_DOMAIN(pgcache->domain);
2570
2571 /*
2572 * The page daemon should avoid creating extra memory pressure since its
2573 * main purpose is to replenish the store of free pages.
2574 */
2575 if (vmd->vmd_severeset || curproc == pageproc ||
2576 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2577 return (0);
2578 domain = vmd->vmd_domain;
2579 vm_domain_free_lock(vmd);
2580 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2581 (vm_page_t *)store);
2582 vm_domain_free_unlock(vmd);
2583 if (cnt != i)
2584 vm_domain_freecnt_inc(vmd, cnt - i);
2585
2586 return (i);
2587 }
2588
2589 static void
2590 vm_page_zone_release(void *arg, void **store, int cnt)
2591 {
2592 struct vm_domain *vmd;
2593 struct vm_pgcache *pgcache;
2594 vm_page_t m;
2595 int i;
2596
2597 pgcache = arg;
2598 vmd = VM_DOMAIN(pgcache->domain);
2599 vm_domain_free_lock(vmd);
2600 for (i = 0; i < cnt; i++) {
2601 m = (vm_page_t)store[i];
2602 vm_phys_free_pages(m, 0);
2603 }
2604 vm_domain_free_unlock(vmd);
2605 vm_domain_freecnt_inc(vmd, cnt);
2606 }
2607
2608 #define VPSC_ANY 0 /* No restrictions. */
2609 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */
2610 #define VPSC_NOSUPER 2 /* Skip superpages. */
2611
2612 /*
2613 * vm_page_scan_contig:
2614 *
2615 * Scan vm_page_array[] between the specified entries "m_start" and
2616 * "m_end" for a run of contiguous physical pages that satisfy the
2617 * specified conditions, and return the lowest page in the run. The
2618 * specified "alignment" determines the alignment of the lowest physical
2619 * page in the run. If the specified "boundary" is non-zero, then the
2620 * run of physical pages cannot span a physical address that is a
2621 * multiple of "boundary".
2622 *
2623 * "m_end" is never dereferenced, so it need not point to a vm_page
2624 * structure within vm_page_array[].
2625 *
2626 * "npages" must be greater than zero. "m_start" and "m_end" must not
2627 * span a hole (or discontiguity) in the physical address space. Both
2628 * "alignment" and "boundary" must be a power of two.
2629 */
2630 vm_page_t
2631 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2632 u_long alignment, vm_paddr_t boundary, int options)
2633 {
2634 vm_object_t object;
2635 vm_paddr_t pa;
2636 vm_page_t m, m_run;
2637 #if VM_NRESERVLEVEL > 0
2638 int level;
2639 #endif
2640 int m_inc, order, run_ext, run_len;
2641
2642 KASSERT(npages > 0, ("npages is 0"));
2643 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2644 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2645 m_run = NULL;
2646 run_len = 0;
2647 for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2648 KASSERT((m->flags & PG_MARKER) == 0,
2649 ("page %p is PG_MARKER", m));
2650 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2651 ("fictitious page %p has invalid ref count", m));
2652
2653 /*
2654 * If the current page would be the start of a run, check its
2655 * physical address against the end, alignment, and boundary
2656 * conditions. If it doesn't satisfy these conditions, either
2657 * terminate the scan or advance to the next page that
2658 * satisfies the failed condition.
2659 */
2660 if (run_len == 0) {
2661 KASSERT(m_run == NULL, ("m_run != NULL"));
2662 if (m + npages > m_end)
2663 break;
2664 pa = VM_PAGE_TO_PHYS(m);
2665 if (!vm_addr_align_ok(pa, alignment)) {
2666 m_inc = atop(roundup2(pa, alignment) - pa);
2667 continue;
2668 }
2669 if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2670 m_inc = atop(roundup2(pa, boundary) - pa);
2671 continue;
2672 }
2673 } else
2674 KASSERT(m_run != NULL, ("m_run == NULL"));
2675
2676 retry:
2677 m_inc = 1;
2678 if (vm_page_wired(m))
2679 run_ext = 0;
2680 #if VM_NRESERVLEVEL > 0
2681 else if ((level = vm_reserv_level(m)) >= 0 &&
2682 (options & VPSC_NORESERV) != 0) {
2683 run_ext = 0;
2684 /* Advance to the end of the reservation. */
2685 pa = VM_PAGE_TO_PHYS(m);
2686 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2687 pa);
2688 }
2689 #endif
2690 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2691 /*
2692 * The page is considered eligible for relocation if
2693 * and only if it could be laundered or reclaimed by
2694 * the page daemon.
2695 */
2696 VM_OBJECT_RLOCK(object);
2697 if (object != m->object) {
2698 VM_OBJECT_RUNLOCK(object);
2699 goto retry;
2700 }
2701 /* Don't care: PG_NODUMP, PG_ZERO. */
2702 if ((object->flags & OBJ_SWAP) == 0 &&
2703 object->type != OBJT_VNODE) {
2704 run_ext = 0;
2705 #if VM_NRESERVLEVEL > 0
2706 } else if ((options & VPSC_NOSUPER) != 0 &&
2707 (level = vm_reserv_level_iffullpop(m)) >= 0) {
2708 run_ext = 0;
2709 /* Advance to the end of the superpage. */
2710 pa = VM_PAGE_TO_PHYS(m);
2711 m_inc = atop(roundup2(pa + 1,
2712 vm_reserv_size(level)) - pa);
2713 #endif
2714 } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2715 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2716 /*
2717 * The page is allocated but eligible for
2718 * relocation. Extend the current run by one
2719 * page.
2720 */
2721 KASSERT(pmap_page_get_memattr(m) ==
2722 VM_MEMATTR_DEFAULT,
2723 ("page %p has an unexpected memattr", m));
2724 KASSERT((m->oflags & (VPO_SWAPINPROG |
2725 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2726 ("page %p has unexpected oflags", m));
2727 /* Don't care: PGA_NOSYNC. */
2728 run_ext = 1;
2729 } else
2730 run_ext = 0;
2731 VM_OBJECT_RUNLOCK(object);
2732 #if VM_NRESERVLEVEL > 0
2733 } else if (level >= 0) {
2734 /*
2735 * The page is reserved but not yet allocated. In
2736 * other words, it is still free. Extend the current
2737 * run by one page.
2738 */
2739 run_ext = 1;
2740 #endif
2741 } else if ((order = m->order) < VM_NFREEORDER) {
2742 /*
2743 * The page is enqueued in the physical memory
2744 * allocator's free page queues. Moreover, it is the
2745 * first page in a power-of-two-sized run of
2746 * contiguous free pages. Add these pages to the end
2747 * of the current run, and jump ahead.
2748 */
2749 run_ext = 1 << order;
2750 m_inc = 1 << order;
2751 } else {
2752 /*
2753 * Skip the page for one of the following reasons: (1)
2754 * It is enqueued in the physical memory allocator's
2755 * free page queues. However, it is not the first
2756 * page in a run of contiguous free pages. (This case
2757 * rarely occurs because the scan is performed in
2758 * ascending order.) (2) It is not reserved, and it is
2759 * transitioning from free to allocated. (Conversely,
2760 * the transition from allocated to free for managed
2761 * pages is blocked by the page busy lock.) (3) It is
2762 * allocated but not contained by an object and not
2763 * wired, e.g., allocated by Xen's balloon driver.
2764 */
2765 run_ext = 0;
2766 }
2767
2768 /*
2769 * Extend or reset the current run of pages.
2770 */
2771 if (run_ext > 0) {
2772 if (run_len == 0)
2773 m_run = m;
2774 run_len += run_ext;
2775 } else {
2776 if (run_len > 0) {
2777 m_run = NULL;
2778 run_len = 0;
2779 }
2780 }
2781 }
2782 if (run_len >= npages)
2783 return (m_run);
2784 return (NULL);
2785 }
2786
2787 /*
2788 * vm_page_reclaim_run:
2789 *
2790 * Try to relocate each of the allocated virtual pages within the
2791 * specified run of physical pages to a new physical address. Free the
2792 * physical pages underlying the relocated virtual pages. A virtual page
2793 * is relocatable if and only if it could be laundered or reclaimed by
2794 * the page daemon. Whenever possible, a virtual page is relocated to a
2795 * physical address above "high".
2796 *
2797 * Returns 0 if every physical page within the run was already free or
2798 * just freed by a successful relocation. Otherwise, returns a non-zero
2799 * value indicating why the last attempt to relocate a virtual page was
2800 * unsuccessful.
2801 *
2802 * "req_class" must be an allocation class.
2803 */
2804 static int
2805 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2806 vm_paddr_t high)
2807 {
2808 struct vm_domain *vmd;
2809 struct spglist free;
2810 vm_object_t object;
2811 vm_paddr_t pa;
2812 vm_page_t m, m_end, m_new;
2813 int error, order, req;
2814
2815 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2816 ("req_class is not an allocation class"));
2817 SLIST_INIT(&free);
2818 error = 0;
2819 m = m_run;
2820 m_end = m_run + npages;
2821 for (; error == 0 && m < m_end; m++) {
2822 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2823 ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2824
2825 /*
2826 * Racily check for wirings. Races are handled once the object
2827 * lock is held and the page is unmapped.
2828 */
2829 if (vm_page_wired(m))
2830 error = EBUSY;
2831 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2832 /*
2833 * The page is relocated if and only if it could be
2834 * laundered or reclaimed by the page daemon.
2835 */
2836 VM_OBJECT_WLOCK(object);
2837 /* Don't care: PG_NODUMP, PG_ZERO. */
2838 if (m->object != object ||
2839 ((object->flags & OBJ_SWAP) == 0 &&
2840 object->type != OBJT_VNODE))
2841 error = EINVAL;
2842 else if (object->memattr != VM_MEMATTR_DEFAULT)
2843 error = EINVAL;
2844 else if (vm_page_queue(m) != PQ_NONE &&
2845 vm_page_tryxbusy(m) != 0) {
2846 if (vm_page_wired(m)) {
2847 vm_page_xunbusy(m);
2848 error = EBUSY;
2849 goto unlock;
2850 }
2851 KASSERT(pmap_page_get_memattr(m) ==
2852 VM_MEMATTR_DEFAULT,
2853 ("page %p has an unexpected memattr", m));
2854 KASSERT(m->oflags == 0,
2855 ("page %p has unexpected oflags", m));
2856 /* Don't care: PGA_NOSYNC. */
2857 if (!vm_page_none_valid(m)) {
2858 /*
2859 * First, try to allocate a new page
2860 * that is above "high". Failing
2861 * that, try to allocate a new page
2862 * that is below "m_run". Allocate
2863 * the new page between the end of
2864 * "m_run" and "high" only as a last
2865 * resort.
2866 */
2867 req = req_class;
2868 if ((m->flags & PG_NODUMP) != 0)
2869 req |= VM_ALLOC_NODUMP;
2870 if (trunc_page(high) !=
2871 ~(vm_paddr_t)PAGE_MASK) {
2872 m_new =
2873 vm_page_alloc_noobj_contig(
2874 req, 1, round_page(high),
2875 ~(vm_paddr_t)0, PAGE_SIZE,
2876 0, VM_MEMATTR_DEFAULT);
2877 } else
2878 m_new = NULL;
2879 if (m_new == NULL) {
2880 pa = VM_PAGE_TO_PHYS(m_run);
2881 m_new =
2882 vm_page_alloc_noobj_contig(
2883 req, 1, 0, pa - 1,
2884 PAGE_SIZE, 0,
2885 VM_MEMATTR_DEFAULT);
2886 }
2887 if (m_new == NULL) {
2888 pa += ptoa(npages);
2889 m_new =
2890 vm_page_alloc_noobj_contig(
2891 req, 1, pa, high, PAGE_SIZE,
2892 0, VM_MEMATTR_DEFAULT);
2893 }
2894 if (m_new == NULL) {
2895 vm_page_xunbusy(m);
2896 error = ENOMEM;
2897 goto unlock;
2898 }
2899
2900 /*
2901 * Unmap the page and check for new
2902 * wirings that may have been acquired
2903 * through a pmap lookup.
2904 */
2905 if (object->ref_count != 0 &&
2906 !vm_page_try_remove_all(m)) {
2907 vm_page_xunbusy(m);
2908 vm_page_free(m_new);
2909 error = EBUSY;
2910 goto unlock;
2911 }
2912
2913 /*
2914 * Replace "m" with the new page. For
2915 * vm_page_replace(), "m" must be busy
2916 * and dequeued. Finally, change "m"
2917 * as if vm_page_free() was called.
2918 */
2919 m_new->a.flags = m->a.flags &
2920 ~PGA_QUEUE_STATE_MASK;
2921 KASSERT(m_new->oflags == VPO_UNMANAGED,
2922 ("page %p is managed", m_new));
2923 m_new->oflags = 0;
2924 pmap_copy_page(m, m_new);
2925 m_new->valid = m->valid;
2926 m_new->dirty = m->dirty;
2927 m->flags &= ~PG_ZERO;
2928 vm_page_dequeue(m);
2929 if (vm_page_replace_hold(m_new, object,
2930 m->pindex, m) &&
2931 vm_page_free_prep(m))
2932 SLIST_INSERT_HEAD(&free, m,
2933 plinks.s.ss);
2934
2935 /*
2936 * The new page must be deactivated
2937 * before the object is unlocked.
2938 */
2939 vm_page_deactivate(m_new);
2940 } else {
2941 m->flags &= ~PG_ZERO;
2942 vm_page_dequeue(m);
2943 if (vm_page_free_prep(m))
2944 SLIST_INSERT_HEAD(&free, m,
2945 plinks.s.ss);
2946 KASSERT(m->dirty == 0,
2947 ("page %p is dirty", m));
2948 }
2949 } else
2950 error = EBUSY;
2951 unlock:
2952 VM_OBJECT_WUNLOCK(object);
2953 } else {
2954 MPASS(vm_page_domain(m) == domain);
2955 vmd = VM_DOMAIN(domain);
2956 vm_domain_free_lock(vmd);
2957 order = m->order;
2958 if (order < VM_NFREEORDER) {
2959 /*
2960 * The page is enqueued in the physical memory
2961 * allocator's free page queues. Moreover, it
2962 * is the first page in a power-of-two-sized
2963 * run of contiguous free pages. Jump ahead
2964 * to the last page within that run, and
2965 * continue from there.
2966 */
2967 m += (1 << order) - 1;
2968 }
2969 #if VM_NRESERVLEVEL > 0
2970 else if (vm_reserv_is_page_free(m))
2971 order = 0;
2972 #endif
2973 vm_domain_free_unlock(vmd);
2974 if (order == VM_NFREEORDER)
2975 error = EINVAL;
2976 }
2977 }
2978 if ((m = SLIST_FIRST(&free)) != NULL) {
2979 int cnt;
2980
2981 vmd = VM_DOMAIN(domain);
2982 cnt = 0;
2983 vm_domain_free_lock(vmd);
2984 do {
2985 MPASS(vm_page_domain(m) == domain);
2986 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2987 vm_phys_free_pages(m, 0);
2988 cnt++;
2989 } while ((m = SLIST_FIRST(&free)) != NULL);
2990 vm_domain_free_unlock(vmd);
2991 vm_domain_freecnt_inc(vmd, cnt);
2992 }
2993 return (error);
2994 }
2995
2996 #define NRUNS 16
2997
2998 CTASSERT(powerof2(NRUNS));
2999
3000 #define RUN_INDEX(count) ((count) & (NRUNS - 1))
3001
3002 #define MIN_RECLAIM 8
3003
3004 /*
3005 * vm_page_reclaim_contig:
3006 *
3007 * Reclaim allocated, contiguous physical memory satisfying the specified
3008 * conditions by relocating the virtual pages using that physical memory.
3009 * Returns true if reclamation is successful and false otherwise. Since
3010 * relocation requires the allocation of physical pages, reclamation may
3011 * fail due to a shortage of free pages. When reclamation fails, callers
3012 * are expected to perform vm_wait() before retrying a failed allocation
3013 * operation, e.g., vm_page_alloc_contig().
3014 *
3015 * The caller must always specify an allocation class through "req".
3016 *
3017 * allocation classes:
3018 * VM_ALLOC_NORMAL normal process request
3019 * VM_ALLOC_SYSTEM system *really* needs a page
3020 * VM_ALLOC_INTERRUPT interrupt time request
3021 *
3022 * The optional allocation flags are ignored.
3023 *
3024 * "npages" must be greater than zero. Both "alignment" and "boundary"
3025 * must be a power of two.
3026 */
3027 bool
3028 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3029 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3030 {
3031 struct vm_domain *vmd;
3032 vm_paddr_t curr_low;
3033 vm_page_t m_run, m_runs[NRUNS];
3034 u_long count, minalign, reclaimed;
3035 int error, i, options, req_class;
3036
3037 KASSERT(npages > 0, ("npages is 0"));
3038 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3039 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3040
3041 /*
3042 * The caller will attempt an allocation after some runs have been
3043 * reclaimed and added to the vm_phys buddy lists. Due to limitations
3044 * of vm_phys_alloc_contig(), round up the requested length to the next
3045 * power of two or maximum chunk size, and ensure that each run is
3046 * suitably aligned.
3047 */
3048 minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3049 npages = roundup2(npages, minalign);
3050 if (alignment < ptoa(minalign))
3051 alignment = ptoa(minalign);
3052
3053 /*
3054 * The page daemon is allowed to dig deeper into the free page list.
3055 */
3056 req_class = req & VM_ALLOC_CLASS_MASK;
3057 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3058 req_class = VM_ALLOC_SYSTEM;
3059
3060 /*
3061 * Return if the number of free pages cannot satisfy the requested
3062 * allocation.
3063 */
3064 vmd = VM_DOMAIN(domain);
3065 count = vmd->vmd_free_count;
3066 if (count < npages + vmd->vmd_free_reserved || (count < npages +
3067 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3068 (count < npages && req_class == VM_ALLOC_INTERRUPT))
3069 return (false);
3070
3071 /*
3072 * Scan up to three times, relaxing the restrictions ("options") on
3073 * the reclamation of reservations and superpages each time.
3074 */
3075 for (options = VPSC_NORESERV;;) {
3076 /*
3077 * Find the highest runs that satisfy the given constraints
3078 * and restrictions, and record them in "m_runs".
3079 */
3080 curr_low = low;
3081 count = 0;
3082 for (;;) {
3083 m_run = vm_phys_scan_contig(domain, npages, curr_low,
3084 high, alignment, boundary, options);
3085 if (m_run == NULL)
3086 break;
3087 curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
3088 m_runs[RUN_INDEX(count)] = m_run;
3089 count++;
3090 }
3091
3092 /*
3093 * Reclaim the highest runs in LIFO (descending) order until
3094 * the number of reclaimed pages, "reclaimed", is at least
3095 * MIN_RECLAIM. Reset "reclaimed" each time because each
3096 * reclamation is idempotent, and runs will (likely) recur
3097 * from one scan to the next as restrictions are relaxed.
3098 */
3099 reclaimed = 0;
3100 for (i = 0; count > 0 && i < NRUNS; i++) {
3101 count--;
3102 m_run = m_runs[RUN_INDEX(count)];
3103 error = vm_page_reclaim_run(req_class, domain, npages,
3104 m_run, high);
3105 if (error == 0) {
3106 reclaimed += npages;
3107 if (reclaimed >= MIN_RECLAIM)
3108 return (true);
3109 }
3110 }
3111
3112 /*
3113 * Either relax the restrictions on the next scan or return if
3114 * the last scan had no restrictions.
3115 */
3116 if (options == VPSC_NORESERV)
3117 options = VPSC_NOSUPER;
3118 else if (options == VPSC_NOSUPER)
3119 options = VPSC_ANY;
3120 else if (options == VPSC_ANY)
3121 return (reclaimed != 0);
3122 }
3123 }
3124
3125 bool
3126 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3127 u_long alignment, vm_paddr_t boundary)
3128 {
3129 struct vm_domainset_iter di;
3130 int domain;
3131 bool ret;
3132
3133 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3134 do {
3135 ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
3136 high, alignment, boundary);
3137 if (ret)
3138 break;
3139 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3140
3141 return (ret);
3142 }
3143
3144 /*
3145 * Set the domain in the appropriate page level domainset.
3146 */
3147 void
3148 vm_domain_set(struct vm_domain *vmd)
3149 {
3150
3151 mtx_lock(&vm_domainset_lock);
3152 if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3153 vmd->vmd_minset = 1;
3154 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3155 }
3156 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3157 vmd->vmd_severeset = 1;
3158 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3159 }
3160 mtx_unlock(&vm_domainset_lock);
3161 }
3162
3163 /*
3164 * Clear the domain from the appropriate page level domainset.
3165 */
3166 void
3167 vm_domain_clear(struct vm_domain *vmd)
3168 {
3169
3170 mtx_lock(&vm_domainset_lock);
3171 if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3172 vmd->vmd_minset = 0;
3173 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3174 if (vm_min_waiters != 0) {
3175 vm_min_waiters = 0;
3176 wakeup(&vm_min_domains);
3177 }
3178 }
3179 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3180 vmd->vmd_severeset = 0;
3181 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3182 if (vm_severe_waiters != 0) {
3183 vm_severe_waiters = 0;
3184 wakeup(&vm_severe_domains);
3185 }
3186 }
3187
3188 /*
3189 * If pageout daemon needs pages, then tell it that there are
3190 * some free.
3191 */
3192 if (vmd->vmd_pageout_pages_needed &&
3193 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3194 wakeup(&vmd->vmd_pageout_pages_needed);
3195 vmd->vmd_pageout_pages_needed = 0;
3196 }
3197
3198 /* See comments in vm_wait_doms(). */
3199 if (vm_pageproc_waiters) {
3200 vm_pageproc_waiters = 0;
3201 wakeup(&vm_pageproc_waiters);
3202 }
3203 mtx_unlock(&vm_domainset_lock);
3204 }
3205
3206 /*
3207 * Wait for free pages to exceed the min threshold globally.
3208 */
3209 void
3210 vm_wait_min(void)
3211 {
3212
3213 mtx_lock(&vm_domainset_lock);
3214 while (vm_page_count_min()) {
3215 vm_min_waiters++;
3216 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3217 }
3218 mtx_unlock(&vm_domainset_lock);
3219 }
3220
3221 /*
3222 * Wait for free pages to exceed the severe threshold globally.
3223 */
3224 void
3225 vm_wait_severe(void)
3226 {
3227
3228 mtx_lock(&vm_domainset_lock);
3229 while (vm_page_count_severe()) {
3230 vm_severe_waiters++;
3231 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3232 "vmwait", 0);
3233 }
3234 mtx_unlock(&vm_domainset_lock);
3235 }
3236
3237 u_int
3238 vm_wait_count(void)
3239 {
3240
3241 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3242 }
3243
3244 int
3245 vm_wait_doms(const domainset_t *wdoms, int mflags)
3246 {
3247 int error;
3248
3249 error = 0;
3250
3251 /*
3252 * We use racey wakeup synchronization to avoid expensive global
3253 * locking for the pageproc when sleeping with a non-specific vm_wait.
3254 * To handle this, we only sleep for one tick in this instance. It
3255 * is expected that most allocations for the pageproc will come from
3256 * kmem or vm_page_grab* which will use the more specific and
3257 * race-free vm_wait_domain().
3258 */
3259 if (curproc == pageproc) {
3260 mtx_lock(&vm_domainset_lock);
3261 vm_pageproc_waiters++;
3262 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3263 PVM | PDROP | mflags, "pageprocwait", 1);
3264 } else {
3265 /*
3266 * XXX Ideally we would wait only until the allocation could
3267 * be satisfied. This condition can cause new allocators to
3268 * consume all freed pages while old allocators wait.
3269 */
3270 mtx_lock(&vm_domainset_lock);
3271 if (vm_page_count_min_set(wdoms)) {
3272 if (pageproc == NULL)
3273 panic("vm_wait in early boot");
3274 vm_min_waiters++;
3275 error = msleep(&vm_min_domains, &vm_domainset_lock,
3276 PVM | PDROP | mflags, "vmwait", 0);
3277 } else
3278 mtx_unlock(&vm_domainset_lock);
3279 }
3280 return (error);
3281 }
3282
3283 /*
3284 * vm_wait_domain:
3285 *
3286 * Sleep until free pages are available for allocation.
3287 * - Called in various places after failed memory allocations.
3288 */
3289 void
3290 vm_wait_domain(int domain)
3291 {
3292 struct vm_domain *vmd;
3293 domainset_t wdom;
3294
3295 vmd = VM_DOMAIN(domain);
3296 vm_domain_free_assert_unlocked(vmd);
3297
3298 if (curproc == pageproc) {
3299 mtx_lock(&vm_domainset_lock);
3300 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3301 vmd->vmd_pageout_pages_needed = 1;
3302 msleep(&vmd->vmd_pageout_pages_needed,
3303 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3304 } else
3305 mtx_unlock(&vm_domainset_lock);
3306 } else {
3307 DOMAINSET_ZERO(&wdom);
3308 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3309 vm_wait_doms(&wdom, 0);
3310 }
3311 }
3312
3313 static int
3314 vm_wait_flags(vm_object_t obj, int mflags)
3315 {
3316 struct domainset *d;
3317
3318 d = NULL;
3319
3320 /*
3321 * Carefully fetch pointers only once: the struct domainset
3322 * itself is ummutable but the pointer might change.
3323 */
3324 if (obj != NULL)
3325 d = obj->domain.dr_policy;
3326 if (d == NULL)
3327 d = curthread->td_domain.dr_policy;
3328
3329 return (vm_wait_doms(&d->ds_mask, mflags));
3330 }
3331
3332 /*
3333 * vm_wait:
3334 *
3335 * Sleep until free pages are available for allocation in the
3336 * affinity domains of the obj. If obj is NULL, the domain set
3337 * for the calling thread is used.
3338 * Called in various places after failed memory allocations.
3339 */
3340 void
3341 vm_wait(vm_object_t obj)
3342 {
3343 (void)vm_wait_flags(obj, 0);
3344 }
3345
3346 int
3347 vm_wait_intr(vm_object_t obj)
3348 {
3349 return (vm_wait_flags(obj, PCATCH));
3350 }
3351
3352 /*
3353 * vm_domain_alloc_fail:
3354 *
3355 * Called when a page allocation function fails. Informs the
3356 * pagedaemon and performs the requested wait. Requires the
3357 * domain_free and object lock on entry. Returns with the
3358 * object lock held and free lock released. Returns an error when
3359 * retry is necessary.
3360 *
3361 */
3362 static int
3363 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3364 {
3365
3366 vm_domain_free_assert_unlocked(vmd);
3367
3368 atomic_add_int(&vmd->vmd_pageout_deficit,
3369 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3370 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3371 if (object != NULL)
3372 VM_OBJECT_WUNLOCK(object);
3373 vm_wait_domain(vmd->vmd_domain);
3374 if (object != NULL)
3375 VM_OBJECT_WLOCK(object);
3376 if (req & VM_ALLOC_WAITOK)
3377 return (EAGAIN);
3378 }
3379
3380 return (0);
3381 }
3382
3383 /*
3384 * vm_waitpfault:
3385 *
3386 * Sleep until free pages are available for allocation.
3387 * - Called only in vm_fault so that processes page faulting
3388 * can be easily tracked.
3389 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3390 * processes will be able to grab memory first. Do not change
3391 * this balance without careful testing first.
3392 */
3393 void
3394 vm_waitpfault(struct domainset *dset, int timo)
3395 {
3396
3397 /*
3398 * XXX Ideally we would wait only until the allocation could
3399 * be satisfied. This condition can cause new allocators to
3400 * consume all freed pages while old allocators wait.
3401 */
3402 mtx_lock(&vm_domainset_lock);
3403 if (vm_page_count_min_set(&dset->ds_mask)) {
3404 vm_min_waiters++;
3405 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3406 "pfault", timo);
3407 } else
3408 mtx_unlock(&vm_domainset_lock);
3409 }
3410
3411 static struct vm_pagequeue *
3412 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3413 {
3414
3415 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3416 }
3417
3418 #ifdef INVARIANTS
3419 static struct vm_pagequeue *
3420 vm_page_pagequeue(vm_page_t m)
3421 {
3422
3423 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3424 }
3425 #endif
3426
3427 static __always_inline bool
3428 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3429 {
3430 vm_page_astate_t tmp;
3431
3432 tmp = *old;
3433 do {
3434 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3435 return (true);
3436 counter_u64_add(pqstate_commit_retries, 1);
3437 } while (old->_bits == tmp._bits);
3438
3439 return (false);
3440 }
3441
3442 /*
3443 * Do the work of committing a queue state update that moves the page out of
3444 * its current queue.
3445 */
3446 static bool
3447 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3448 vm_page_astate_t *old, vm_page_astate_t new)
3449 {
3450 vm_page_t next;
3451
3452 vm_pagequeue_assert_locked(pq);
3453 KASSERT(vm_page_pagequeue(m) == pq,
3454 ("%s: queue %p does not match page %p", __func__, pq, m));
3455 KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3456 ("%s: invalid queue indices %d %d",
3457 __func__, old->queue, new.queue));
3458
3459 /*
3460 * Once the queue index of the page changes there is nothing
3461 * synchronizing with further updates to the page's physical
3462 * queue state. Therefore we must speculatively remove the page
3463 * from the queue now and be prepared to roll back if the queue
3464 * state update fails. If the page is not physically enqueued then
3465 * we just update its queue index.
3466 */
3467 if ((old->flags & PGA_ENQUEUED) != 0) {
3468 new.flags &= ~PGA_ENQUEUED;
3469 next = TAILQ_NEXT(m, plinks.q);
3470 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3471 vm_pagequeue_cnt_dec(pq);
3472 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3473 if (next == NULL)
3474 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3475 else
3476 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3477 vm_pagequeue_cnt_inc(pq);
3478 return (false);
3479 } else {
3480 return (true);
3481 }
3482 } else {
3483 return (vm_page_pqstate_fcmpset(m, old, new));
3484 }
3485 }
3486
3487 static bool
3488 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3489 vm_page_astate_t new)
3490 {
3491 struct vm_pagequeue *pq;
3492 vm_page_astate_t as;
3493 bool ret;
3494
3495 pq = _vm_page_pagequeue(m, old->queue);
3496
3497 /*
3498 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3499 * corresponding page queue lock is held.
3500 */
3501 vm_pagequeue_lock(pq);
3502 as = vm_page_astate_load(m);
3503 if (__predict_false(as._bits != old->_bits)) {
3504 *old = as;
3505 ret = false;
3506 } else {
3507 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3508 }
3509 vm_pagequeue_unlock(pq);
3510 return (ret);
3511 }
3512
3513 /*
3514 * Commit a queue state update that enqueues or requeues a page.
3515 */
3516 static bool
3517 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3518 vm_page_astate_t *old, vm_page_astate_t new)
3519 {
3520 struct vm_domain *vmd;
3521
3522 vm_pagequeue_assert_locked(pq);
3523 KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3524 ("%s: invalid queue indices %d %d",
3525 __func__, old->queue, new.queue));
3526
3527 new.flags |= PGA_ENQUEUED;
3528 if (!vm_page_pqstate_fcmpset(m, old, new))
3529 return (false);
3530
3531 if ((old->flags & PGA_ENQUEUED) != 0)
3532 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3533 else
3534 vm_pagequeue_cnt_inc(pq);
3535
3536 /*
3537 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if
3538 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3539 * applied, even if it was set first.
3540 */
3541 if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3542 vmd = vm_pagequeue_domain(m);
3543 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3544 ("%s: invalid page queue for page %p", __func__, m));
3545 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3546 } else {
3547 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3548 }
3549 return (true);
3550 }
3551
3552 /*
3553 * Commit a queue state update that encodes a request for a deferred queue
3554 * operation.
3555 */
3556 static bool
3557 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3558 vm_page_astate_t new)
3559 {
3560
3561 KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3562 ("%s: invalid state, queue %d flags %x",
3563 __func__, new.queue, new.flags));
3564
3565 if (old->_bits != new._bits &&
3566 !vm_page_pqstate_fcmpset(m, old, new))
3567 return (false);
3568 vm_page_pqbatch_submit(m, new.queue);
3569 return (true);
3570 }
3571
3572 /*
3573 * A generic queue state update function. This handles more cases than the
3574 * specialized functions above.
3575 */
3576 bool
3577 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3578 {
3579
3580 if (old->_bits == new._bits)
3581 return (true);
3582
3583 if (old->queue != PQ_NONE && new.queue != old->queue) {
3584 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3585 return (false);
3586 if (new.queue != PQ_NONE)
3587 vm_page_pqbatch_submit(m, new.queue);
3588 } else {
3589 if (!vm_page_pqstate_fcmpset(m, old, new))
3590 return (false);
3591 if (new.queue != PQ_NONE &&
3592 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3593 vm_page_pqbatch_submit(m, new.queue);
3594 }
3595 return (true);
3596 }
3597
3598 /*
3599 * Apply deferred queue state updates to a page.
3600 */
3601 static inline void
3602 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3603 {
3604 vm_page_astate_t new, old;
3605
3606 CRITICAL_ASSERT(curthread);
3607 vm_pagequeue_assert_locked(pq);
3608 KASSERT(queue < PQ_COUNT,
3609 ("%s: invalid queue index %d", __func__, queue));
3610 KASSERT(pq == _vm_page_pagequeue(m, queue),
3611 ("%s: page %p does not belong to queue %p", __func__, m, pq));
3612
3613 for (old = vm_page_astate_load(m);;) {
3614 if (__predict_false(old.queue != queue ||
3615 (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3616 counter_u64_add(queue_nops, 1);
3617 break;
3618 }
3619 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3620 ("%s: page %p is unmanaged", __func__, m));
3621
3622 new = old;
3623 if ((old.flags & PGA_DEQUEUE) != 0) {
3624 new.flags &= ~PGA_QUEUE_OP_MASK;
3625 new.queue = PQ_NONE;
3626 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3627 m, &old, new))) {
3628 counter_u64_add(queue_ops, 1);
3629 break;
3630 }
3631 } else {
3632 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3633 if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3634 m, &old, new))) {
3635 counter_u64_add(queue_ops, 1);
3636 break;
3637 }
3638 }
3639 }
3640 }
3641
3642 static void
3643 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3644 uint8_t queue)
3645 {
3646 int i;
3647
3648 for (i = 0; i < bq->bq_cnt; i++)
3649 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3650 vm_batchqueue_init(bq);
3651 }
3652
3653 /*
3654 * vm_page_pqbatch_submit: [ internal use only ]
3655 *
3656 * Enqueue a page in the specified page queue's batched work queue.
3657 * The caller must have encoded the requested operation in the page
3658 * structure's a.flags field.
3659 */
3660 void
3661 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3662 {
3663 struct vm_batchqueue *bq;
3664 struct vm_pagequeue *pq;
3665 int domain, slots_remaining;
3666
3667 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3668
3669 domain = vm_page_domain(m);
3670 critical_enter();
3671 bq = DPCPU_PTR(pqbatch[domain][queue]);
3672 slots_remaining = vm_batchqueue_insert(bq, m);
3673 if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
3674 /* keep building the bq */
3675 critical_exit();
3676 return;
3677 } else if (slots_remaining > 0 ) {
3678 /* Try to process the bq if we can get the lock */
3679 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3680 if (vm_pagequeue_trylock(pq)) {
3681 vm_pqbatch_process(pq, bq, queue);
3682 vm_pagequeue_unlock(pq);
3683 }
3684 critical_exit();
3685 return;
3686 }
3687 critical_exit();
3688
3689 /* if we make it here, the bq is full so wait for the lock */
3690
3691 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3692 vm_pagequeue_lock(pq);
3693 critical_enter();
3694 bq = DPCPU_PTR(pqbatch[domain][queue]);
3695 vm_pqbatch_process(pq, bq, queue);
3696 vm_pqbatch_process_page(pq, m, queue);
3697 vm_pagequeue_unlock(pq);
3698 critical_exit();
3699 }
3700
3701 /*
3702 * vm_page_pqbatch_drain: [ internal use only ]
3703 *
3704 * Force all per-CPU page queue batch queues to be drained. This is
3705 * intended for use in severe memory shortages, to ensure that pages
3706 * do not remain stuck in the batch queues.
3707 */
3708 void
3709 vm_page_pqbatch_drain(void)
3710 {
3711 struct thread *td;
3712 struct vm_domain *vmd;
3713 struct vm_pagequeue *pq;
3714 int cpu, domain, queue;
3715
3716 td = curthread;
3717 CPU_FOREACH(cpu) {
3718 thread_lock(td);
3719 sched_bind(td, cpu);
3720 thread_unlock(td);
3721
3722 for (domain = 0; domain < vm_ndomains; domain++) {
3723 vmd = VM_DOMAIN(domain);
3724 for (queue = 0; queue < PQ_COUNT; queue++) {
3725 pq = &vmd->vmd_pagequeues[queue];
3726 vm_pagequeue_lock(pq);
3727 critical_enter();
3728 vm_pqbatch_process(pq,
3729 DPCPU_PTR(pqbatch[domain][queue]), queue);
3730 critical_exit();
3731 vm_pagequeue_unlock(pq);
3732 }
3733 }
3734 }
3735 thread_lock(td);
3736 sched_unbind(td);
3737 thread_unlock(td);
3738 }
3739
3740 /*
3741 * vm_page_dequeue_deferred: [ internal use only ]
3742 *
3743 * Request removal of the given page from its current page
3744 * queue. Physical removal from the queue may be deferred
3745 * indefinitely.
3746 */
3747 void
3748 vm_page_dequeue_deferred(vm_page_t m)
3749 {
3750 vm_page_astate_t new, old;
3751
3752 old = vm_page_astate_load(m);
3753 do {
3754 if (old.queue == PQ_NONE) {
3755 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3756 ("%s: page %p has unexpected queue state",
3757 __func__, m));
3758 break;
3759 }
3760 new = old;
3761 new.flags |= PGA_DEQUEUE;
3762 } while (!vm_page_pqstate_commit_request(m, &old, new));
3763 }
3764
3765 /*
3766 * vm_page_dequeue:
3767 *
3768 * Remove the page from whichever page queue it's in, if any, before
3769 * returning.
3770 */
3771 void
3772 vm_page_dequeue(vm_page_t m)
3773 {
3774 vm_page_astate_t new, old;
3775
3776 old = vm_page_astate_load(m);
3777 do {
3778 if (old.queue == PQ_NONE) {
3779 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3780 ("%s: page %p has unexpected queue state",
3781 __func__, m));
3782 break;
3783 }
3784 new = old;
3785 new.flags &= ~PGA_QUEUE_OP_MASK;
3786 new.queue = PQ_NONE;
3787 } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3788
3789 }
3790
3791 /*
3792 * Schedule the given page for insertion into the specified page queue.
3793 * Physical insertion of the page may be deferred indefinitely.
3794 */
3795 static void
3796 vm_page_enqueue(vm_page_t m, uint8_t queue)
3797 {
3798
3799 KASSERT(m->a.queue == PQ_NONE &&
3800 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3801 ("%s: page %p is already enqueued", __func__, m));
3802 KASSERT(m->ref_count > 0,
3803 ("%s: page %p does not carry any references", __func__, m));
3804
3805 m->a.queue = queue;
3806 if ((m->a.flags & PGA_REQUEUE) == 0)
3807 vm_page_aflag_set(m, PGA_REQUEUE);
3808 vm_page_pqbatch_submit(m, queue);
3809 }
3810
3811 /*
3812 * vm_page_free_prep:
3813 *
3814 * Prepares the given page to be put on the free list,
3815 * disassociating it from any VM object. The caller may return
3816 * the page to the free list only if this function returns true.
3817 *
3818 * The object, if it exists, must be locked, and then the page must
3819 * be xbusy. Otherwise the page must be not busied. A managed
3820 * page must be unmapped.
3821 */
3822 static bool
3823 vm_page_free_prep(vm_page_t m)
3824 {
3825
3826 /*
3827 * Synchronize with threads that have dropped a reference to this
3828 * page.
3829 */
3830 atomic_thread_fence_acq();
3831
3832 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3833 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3834 uint64_t *p;
3835 int i;
3836 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3837 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3838 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3839 m, i, (uintmax_t)*p));
3840 }
3841 #endif
3842 if ((m->oflags & VPO_UNMANAGED) == 0) {
3843 KASSERT(!pmap_page_is_mapped(m),
3844 ("vm_page_free_prep: freeing mapped page %p", m));
3845 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3846 ("vm_page_free_prep: mapping flags set in page %p", m));
3847 } else {
3848 KASSERT(m->a.queue == PQ_NONE,
3849 ("vm_page_free_prep: unmanaged page %p is queued", m));
3850 }
3851 VM_CNT_INC(v_tfree);
3852
3853 if (m->object != NULL) {
3854 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3855 ((m->object->flags & OBJ_UNMANAGED) != 0),
3856 ("vm_page_free_prep: managed flag mismatch for page %p",
3857 m));
3858 vm_page_assert_xbusied(m);
3859
3860 /*
3861 * The object reference can be released without an atomic
3862 * operation.
3863 */
3864 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3865 m->ref_count == VPRC_OBJREF,
3866 ("vm_page_free_prep: page %p has unexpected ref_count %u",
3867 m, m->ref_count));
3868 vm_page_object_remove(m);
3869 m->ref_count -= VPRC_OBJREF;
3870 } else
3871 vm_page_assert_unbusied(m);
3872
3873 vm_page_busy_free(m);
3874
3875 /*
3876 * If fictitious remove object association and
3877 * return.
3878 */
3879 if ((m->flags & PG_FICTITIOUS) != 0) {
3880 KASSERT(m->ref_count == 1,
3881 ("fictitious page %p is referenced", m));
3882 KASSERT(m->a.queue == PQ_NONE,
3883 ("fictitious page %p is queued", m));
3884 return (false);
3885 }
3886
3887 /*
3888 * Pages need not be dequeued before they are returned to the physical
3889 * memory allocator, but they must at least be marked for a deferred
3890 * dequeue.
3891 */
3892 if ((m->oflags & VPO_UNMANAGED) == 0)
3893 vm_page_dequeue_deferred(m);
3894
3895 m->valid = 0;
3896 vm_page_undirty(m);
3897
3898 if (m->ref_count != 0)
3899 panic("vm_page_free_prep: page %p has references", m);
3900
3901 /*
3902 * Restore the default memory attribute to the page.
3903 */
3904 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3905 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3906
3907 #if VM_NRESERVLEVEL > 0
3908 /*
3909 * Determine whether the page belongs to a reservation. If the page was
3910 * allocated from a per-CPU cache, it cannot belong to a reservation, so
3911 * as an optimization, we avoid the check in that case.
3912 */
3913 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3914 return (false);
3915 #endif
3916
3917 return (true);
3918 }
3919
3920 /*
3921 * vm_page_free_toq:
3922 *
3923 * Returns the given page to the free list, disassociating it
3924 * from any VM object.
3925 *
3926 * The object must be locked. The page must be exclusively busied if it
3927 * belongs to an object.
3928 */
3929 static void
3930 vm_page_free_toq(vm_page_t m)
3931 {
3932 struct vm_domain *vmd;
3933 uma_zone_t zone;
3934
3935 if (!vm_page_free_prep(m))
3936 return;
3937
3938 vmd = vm_pagequeue_domain(m);
3939 zone = vmd->vmd_pgcache[m->pool].zone;
3940 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3941 uma_zfree(zone, m);
3942 return;
3943 }
3944 vm_domain_free_lock(vmd);
3945 vm_phys_free_pages(m, 0);
3946 vm_domain_free_unlock(vmd);
3947 vm_domain_freecnt_inc(vmd, 1);
3948 }
3949
3950 /*
3951 * vm_page_free_pages_toq:
3952 *
3953 * Returns a list of pages to the free list, disassociating it
3954 * from any VM object. In other words, this is equivalent to
3955 * calling vm_page_free_toq() for each page of a list of VM objects.
3956 */
3957 void
3958 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3959 {
3960 vm_page_t m;
3961 int count;
3962
3963 if (SLIST_EMPTY(free))
3964 return;
3965
3966 count = 0;
3967 while ((m = SLIST_FIRST(free)) != NULL) {
3968 count++;
3969 SLIST_REMOVE_HEAD(free, plinks.s.ss);
3970 vm_page_free_toq(m);
3971 }
3972
3973 if (update_wire_count)
3974 vm_wire_sub(count);
3975 }
3976
3977 /*
3978 * Mark this page as wired down. For managed pages, this prevents reclamation
3979 * by the page daemon, or when the containing object, if any, is destroyed.
3980 */
3981 void
3982 vm_page_wire(vm_page_t m)
3983 {
3984 u_int old;
3985
3986 #ifdef INVARIANTS
3987 if (m->object != NULL && !vm_page_busied(m) &&
3988 !vm_object_busied(m->object))
3989 VM_OBJECT_ASSERT_LOCKED(m->object);
3990 #endif
3991 KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3992 VPRC_WIRE_COUNT(m->ref_count) >= 1,
3993 ("vm_page_wire: fictitious page %p has zero wirings", m));
3994
3995 old = atomic_fetchadd_int(&m->ref_count, 1);
3996 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3997 ("vm_page_wire: counter overflow for page %p", m));
3998 if (VPRC_WIRE_COUNT(old) == 0) {
3999 if ((m->oflags & VPO_UNMANAGED) == 0)
4000 vm_page_aflag_set(m, PGA_DEQUEUE);
4001 vm_wire_add(1);
4002 }
4003 }
4004
4005 /*
4006 * Attempt to wire a mapped page following a pmap lookup of that page.
4007 * This may fail if a thread is concurrently tearing down mappings of the page.
4008 * The transient failure is acceptable because it translates to the
4009 * failure of the caller pmap_extract_and_hold(), which should be then
4010 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4011 */
4012 bool
4013 vm_page_wire_mapped(vm_page_t m)
4014 {
4015 u_int old;
4016
4017 old = m->ref_count;
4018 do {
4019 KASSERT(old > 0,
4020 ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4021 if ((old & VPRC_BLOCKED) != 0)
4022 return (false);
4023 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4024
4025 if (VPRC_WIRE_COUNT(old) == 0) {
4026 if ((m->oflags & VPO_UNMANAGED) == 0)
4027 vm_page_aflag_set(m, PGA_DEQUEUE);
4028 vm_wire_add(1);
4029 }
4030 return (true);
4031 }
4032
4033 /*
4034 * Release a wiring reference to a managed page. If the page still belongs to
4035 * an object, update its position in the page queues to reflect the reference.
4036 * If the wiring was the last reference to the page, free the page.
4037 */
4038 static void
4039 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4040 {
4041 u_int old;
4042
4043 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4044 ("%s: page %p is unmanaged", __func__, m));
4045
4046 /*
4047 * Update LRU state before releasing the wiring reference.
4048 * Use a release store when updating the reference count to
4049 * synchronize with vm_page_free_prep().
4050 */
4051 old = m->ref_count;
4052 do {
4053 KASSERT(VPRC_WIRE_COUNT(old) > 0,
4054 ("vm_page_unwire: wire count underflow for page %p", m));
4055
4056 if (old > VPRC_OBJREF + 1) {
4057 /*
4058 * The page has at least one other wiring reference. An
4059 * earlier iteration of this loop may have called
4060 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4061 * re-set it if necessary.
4062 */
4063 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4064 vm_page_aflag_set(m, PGA_DEQUEUE);
4065 } else if (old == VPRC_OBJREF + 1) {
4066 /*
4067 * This is the last wiring. Clear PGA_DEQUEUE and
4068 * update the page's queue state to reflect the
4069 * reference. If the page does not belong to an object
4070 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4071 * clear leftover queue state.
4072 */
4073 vm_page_release_toq(m, nqueue, noreuse);
4074 } else if (old == 1) {
4075 vm_page_aflag_clear(m, PGA_DEQUEUE);
4076 }
4077 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4078
4079 if (VPRC_WIRE_COUNT(old) == 1) {
4080 vm_wire_sub(1);
4081 if (old == 1)
4082 vm_page_free(m);
4083 }
4084 }
4085
4086 /*
4087 * Release one wiring of the specified page, potentially allowing it to be
4088 * paged out.
4089 *
4090 * Only managed pages belonging to an object can be paged out. If the number
4091 * of wirings transitions to zero and the page is eligible for page out, then
4092 * the page is added to the specified paging queue. If the released wiring
4093 * represented the last reference to the page, the page is freed.
4094 */
4095 void
4096 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4097 {
4098
4099 KASSERT(nqueue < PQ_COUNT,
4100 ("vm_page_unwire: invalid queue %u request for page %p",
4101 nqueue, m));
4102
4103 if ((m->oflags & VPO_UNMANAGED) != 0) {
4104 if (vm_page_unwire_noq(m) && m->ref_count == 0)
4105 vm_page_free(m);
4106 return;
4107 }
4108 vm_page_unwire_managed(m, nqueue, false);
4109 }
4110
4111 /*
4112 * Unwire a page without (re-)inserting it into a page queue. It is up
4113 * to the caller to enqueue, requeue, or free the page as appropriate.
4114 * In most cases involving managed pages, vm_page_unwire() should be used
4115 * instead.
4116 */
4117 bool
4118 vm_page_unwire_noq(vm_page_t m)
4119 {
4120 u_int old;
4121
4122 old = vm_page_drop(m, 1);
4123 KASSERT(VPRC_WIRE_COUNT(old) != 0,
4124 ("%s: counter underflow for page %p", __func__, m));
4125 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4126 ("%s: missing ref on fictitious page %p", __func__, m));
4127
4128 if (VPRC_WIRE_COUNT(old) > 1)
4129 return (false);
4130 if ((m->oflags & VPO_UNMANAGED) == 0)
4131 vm_page_aflag_clear(m, PGA_DEQUEUE);
4132 vm_wire_sub(1);
4133 return (true);
4134 }
4135
4136 /*
4137 * Ensure that the page ends up in the specified page queue. If the page is
4138 * active or being moved to the active queue, ensure that its act_count is
4139 * at least ACT_INIT but do not otherwise mess with it.
4140 */
4141 static __always_inline void
4142 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4143 {
4144 vm_page_astate_t old, new;
4145
4146 KASSERT(m->ref_count > 0,
4147 ("%s: page %p does not carry any references", __func__, m));
4148 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4149 ("%s: invalid flags %x", __func__, nflag));
4150
4151 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4152 return;
4153
4154 old = vm_page_astate_load(m);
4155 do {
4156 if ((old.flags & PGA_DEQUEUE) != 0)
4157 break;
4158 new = old;
4159 new.flags &= ~PGA_QUEUE_OP_MASK;
4160 if (nqueue == PQ_ACTIVE)
4161 new.act_count = max(old.act_count, ACT_INIT);
4162 if (old.queue == nqueue) {
4163 /*
4164 * There is no need to requeue pages already in the
4165 * active queue.
4166 */
4167 if (nqueue != PQ_ACTIVE ||
4168 (old.flags & PGA_ENQUEUED) == 0)
4169 new.flags |= nflag;
4170 } else {
4171 new.flags |= nflag;
4172 new.queue = nqueue;
4173 }
4174 } while (!vm_page_pqstate_commit(m, &old, new));
4175 }
4176
4177 /*
4178 * Put the specified page on the active list (if appropriate).
4179 */
4180 void
4181 vm_page_activate(vm_page_t m)
4182 {
4183
4184 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4185 }
4186
4187 /*
4188 * Move the specified page to the tail of the inactive queue, or requeue
4189 * the page if it is already in the inactive queue.
4190 */
4191 void
4192 vm_page_deactivate(vm_page_t m)
4193 {
4194
4195 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4196 }
4197
4198 void
4199 vm_page_deactivate_noreuse(vm_page_t m)
4200 {
4201
4202 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4203 }
4204
4205 /*
4206 * Put a page in the laundry, or requeue it if it is already there.
4207 */
4208 void
4209 vm_page_launder(vm_page_t m)
4210 {
4211
4212 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4213 }
4214
4215 /*
4216 * Put a page in the PQ_UNSWAPPABLE holding queue.
4217 */
4218 void
4219 vm_page_unswappable(vm_page_t m)
4220 {
4221
4222 VM_OBJECT_ASSERT_LOCKED(m->object);
4223 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4224 ("page %p already unswappable", m));
4225
4226 vm_page_dequeue(m);
4227 vm_page_enqueue(m, PQ_UNSWAPPABLE);
4228 }
4229
4230 /*
4231 * Release a page back to the page queues in preparation for unwiring.
4232 */
4233 static void
4234 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4235 {
4236 vm_page_astate_t old, new;
4237 uint16_t nflag;
4238
4239 /*
4240 * Use a check of the valid bits to determine whether we should
4241 * accelerate reclamation of the page. The object lock might not be
4242 * held here, in which case the check is racy. At worst we will either
4243 * accelerate reclamation of a valid page and violate LRU, or
4244 * unnecessarily defer reclamation of an invalid page.
4245 *
4246 * If we were asked to not cache the page, place it near the head of the
4247 * inactive queue so that is reclaimed sooner.
4248 */
4249 if (noreuse || vm_page_none_valid(m)) {
4250 nqueue = PQ_INACTIVE;
4251 nflag = PGA_REQUEUE_HEAD;
4252 } else {
4253 nflag = PGA_REQUEUE;
4254 }
4255
4256 old = vm_page_astate_load(m);
4257 do {
4258 new = old;
4259
4260 /*
4261 * If the page is already in the active queue and we are not
4262 * trying to accelerate reclamation, simply mark it as
4263 * referenced and avoid any queue operations.
4264 */
4265 new.flags &= ~PGA_QUEUE_OP_MASK;
4266 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4267 (old.flags & PGA_ENQUEUED) != 0)
4268 new.flags |= PGA_REFERENCED;
4269 else {
4270 new.flags |= nflag;
4271 new.queue = nqueue;
4272 }
4273 } while (!vm_page_pqstate_commit(m, &old, new));
4274 }
4275
4276 /*
4277 * Unwire a page and either attempt to free it or re-add it to the page queues.
4278 */
4279 void
4280 vm_page_release(vm_page_t m, int flags)
4281 {
4282 vm_object_t object;
4283
4284 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4285 ("vm_page_release: page %p is unmanaged", m));
4286
4287 if ((flags & VPR_TRYFREE) != 0) {
4288 for (;;) {
4289 object = atomic_load_ptr(&m->object);
4290 if (object == NULL)
4291 break;
4292 /* Depends on type-stability. */
4293 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4294 break;
4295 if (object == m->object) {
4296 vm_page_release_locked(m, flags);
4297 VM_OBJECT_WUNLOCK(object);
4298 return;
4299 }
4300 VM_OBJECT_WUNLOCK(object);
4301 }
4302 }
4303 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4304 }
4305
4306 /* See vm_page_release(). */
4307 void
4308 vm_page_release_locked(vm_page_t m, int flags)
4309 {
4310
4311 VM_OBJECT_ASSERT_WLOCKED(m->object);
4312 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4313 ("vm_page_release_locked: page %p is unmanaged", m));
4314
4315 if (vm_page_unwire_noq(m)) {
4316 if ((flags & VPR_TRYFREE) != 0 &&
4317 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4318 m->dirty == 0 && vm_page_tryxbusy(m)) {
4319 /*
4320 * An unlocked lookup may have wired the page before the
4321 * busy lock was acquired, in which case the page must
4322 * not be freed.
4323 */
4324 if (__predict_true(!vm_page_wired(m))) {
4325 vm_page_free(m);
4326 return;
4327 }
4328 vm_page_xunbusy(m);
4329 } else {
4330 vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4331 }
4332 }
4333 }
4334
4335 static bool
4336 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4337 {
4338 u_int old;
4339
4340 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4341 ("vm_page_try_blocked_op: page %p has no object", m));
4342 KASSERT(vm_page_busied(m),
4343 ("vm_page_try_blocked_op: page %p is not busy", m));
4344 VM_OBJECT_ASSERT_LOCKED(m->object);
4345
4346 old = m->ref_count;
4347 do {
4348 KASSERT(old != 0,
4349 ("vm_page_try_blocked_op: page %p has no references", m));
4350 if (VPRC_WIRE_COUNT(old) != 0)
4351 return (false);
4352 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4353
4354 (op)(m);
4355
4356 /*
4357 * If the object is read-locked, new wirings may be created via an
4358 * object lookup.
4359 */
4360 old = vm_page_drop(m, VPRC_BLOCKED);
4361 KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4362 old == (VPRC_BLOCKED | VPRC_OBJREF),
4363 ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4364 old, m));
4365 return (true);
4366 }
4367
4368 /*
4369 * Atomically check for wirings and remove all mappings of the page.
4370 */
4371 bool
4372 vm_page_try_remove_all(vm_page_t m)
4373 {
4374
4375 return (vm_page_try_blocked_op(m, pmap_remove_all));
4376 }
4377
4378 /*
4379 * Atomically check for wirings and remove all writeable mappings of the page.
4380 */
4381 bool
4382 vm_page_try_remove_write(vm_page_t m)
4383 {
4384
4385 return (vm_page_try_blocked_op(m, pmap_remove_write));
4386 }
4387
4388 /*
4389 * vm_page_advise
4390 *
4391 * Apply the specified advice to the given page.
4392 */
4393 void
4394 vm_page_advise(vm_page_t m, int advice)
4395 {
4396
4397 VM_OBJECT_ASSERT_WLOCKED(m->object);
4398 vm_page_assert_xbusied(m);
4399
4400 if (advice == MADV_FREE)
4401 /*
4402 * Mark the page clean. This will allow the page to be freed
4403 * without first paging it out. MADV_FREE pages are often
4404 * quickly reused by malloc(3), so we do not do anything that
4405 * would result in a page fault on a later access.
4406 */
4407 vm_page_undirty(m);
4408 else if (advice != MADV_DONTNEED) {
4409 if (advice == MADV_WILLNEED)
4410 vm_page_activate(m);
4411 return;
4412 }
4413
4414 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4415 vm_page_dirty(m);
4416
4417 /*
4418 * Clear any references to the page. Otherwise, the page daemon will
4419 * immediately reactivate the page.
4420 */
4421 vm_page_aflag_clear(m, PGA_REFERENCED);
4422
4423 /*
4424 * Place clean pages near the head of the inactive queue rather than
4425 * the tail, thus defeating the queue's LRU operation and ensuring that
4426 * the page will be reused quickly. Dirty pages not already in the
4427 * laundry are moved there.
4428 */
4429 if (m->dirty == 0)
4430 vm_page_deactivate_noreuse(m);
4431 else if (!vm_page_in_laundry(m))
4432 vm_page_launder(m);
4433 }
4434
4435 /*
4436 * vm_page_grab_release
4437 *
4438 * Helper routine for grab functions to release busy on return.
4439 */
4440 static inline void
4441 vm_page_grab_release(vm_page_t m, int allocflags)
4442 {
4443
4444 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4445 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4446 vm_page_sunbusy(m);
4447 else
4448 vm_page_xunbusy(m);
4449 }
4450 }
4451
4452 /*
4453 * vm_page_grab_sleep
4454 *
4455 * Sleep for busy according to VM_ALLOC_ parameters. Returns true
4456 * if the caller should retry and false otherwise.
4457 *
4458 * If the object is locked on entry the object will be unlocked with
4459 * false returns and still locked but possibly having been dropped
4460 * with true returns.
4461 */
4462 static bool
4463 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4464 const char *wmesg, int allocflags, bool locked)
4465 {
4466
4467 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4468 return (false);
4469
4470 /*
4471 * Reference the page before unlocking and sleeping so that
4472 * the page daemon is less likely to reclaim it.
4473 */
4474 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4475 vm_page_reference(m);
4476
4477 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4478 locked)
4479 VM_OBJECT_WLOCK(object);
4480 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4481 return (false);
4482
4483 return (true);
4484 }
4485
4486 /*
4487 * Assert that the grab flags are valid.
4488 */
4489 static inline void
4490 vm_page_grab_check(int allocflags)
4491 {
4492
4493 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4494 (allocflags & VM_ALLOC_WIRED) != 0,
4495 ("vm_page_grab*: the pages must be busied or wired"));
4496
4497 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4498 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4499 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4500 }
4501
4502 /*
4503 * Calculate the page allocation flags for grab.
4504 */
4505 static inline int
4506 vm_page_grab_pflags(int allocflags)
4507 {
4508 int pflags;
4509
4510 pflags = allocflags &
4511 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4512 VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
4513 if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4514 pflags |= VM_ALLOC_WAITFAIL;
4515 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4516 pflags |= VM_ALLOC_SBUSY;
4517
4518 return (pflags);
4519 }
4520
4521 /*
4522 * Grab a page, waiting until we are waken up due to the page
4523 * changing state. We keep on waiting, if the page continues
4524 * to be in the object. If the page doesn't exist, first allocate it
4525 * and then conditionally zero it.
4526 *
4527 * This routine may sleep.
4528 *
4529 * The object must be locked on entry. The lock will, however, be released
4530 * and reacquired if the routine sleeps.
4531 */
4532 vm_page_t
4533 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4534 {
4535 vm_page_t m;
4536
4537 VM_OBJECT_ASSERT_WLOCKED(object);
4538 vm_page_grab_check(allocflags);
4539
4540 retrylookup:
4541 if ((m = vm_page_lookup(object, pindex)) != NULL) {
4542 if (!vm_page_tryacquire(m, allocflags)) {
4543 if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4544 allocflags, true))
4545 goto retrylookup;
4546 return (NULL);
4547 }
4548 goto out;
4549 }
4550 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4551 return (NULL);
4552 m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4553 if (m == NULL) {
4554 if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4555 return (NULL);
4556 goto retrylookup;
4557 }
4558 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4559 pmap_zero_page(m);
4560
4561 out:
4562 vm_page_grab_release(m, allocflags);
4563
4564 return (m);
4565 }
4566
4567 /*
4568 * Locklessly attempt to acquire a page given a (object, pindex) tuple
4569 * and an optional previous page to avoid the radix lookup. The resulting
4570 * page will be validated against the identity tuple and busied or wired
4571 * as requested. A NULL *mp return guarantees that the page was not in
4572 * radix at the time of the call but callers must perform higher level
4573 * synchronization or retry the operation under a lock if they require
4574 * an atomic answer. This is the only lock free validation routine,
4575 * other routines can depend on the resulting page state.
4576 *
4577 * The return value indicates whether the operation failed due to caller
4578 * flags. The return is tri-state with mp:
4579 *
4580 * (true, *mp != NULL) - The operation was successful.
4581 * (true, *mp == NULL) - The page was not found in tree.
4582 * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition.
4583 */
4584 static bool
4585 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex,
4586 vm_page_t prev, vm_page_t *mp, int allocflags)
4587 {
4588 vm_page_t m;
4589
4590 vm_page_grab_check(allocflags);
4591 MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev));
4592
4593 *mp = NULL;
4594 for (;;) {
4595 /*
4596 * We may see a false NULL here because the previous page
4597 * has been removed or just inserted and the list is loaded
4598 * without barriers. Switch to radix to verify.
4599 */
4600 if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL ||
4601 QMD_IS_TRASHED(m) || m->pindex != pindex ||
4602 atomic_load_ptr(&m->object) != object) {
4603 prev = NULL;
4604 /*
4605 * This guarantees the result is instantaneously
4606 * correct.
4607 */
4608 m = vm_radix_lookup_unlocked(&object->rtree, pindex);
4609 }
4610 if (m == NULL)
4611 return (true);
4612 if (vm_page_trybusy(m, allocflags)) {
4613 if (m->object == object && m->pindex == pindex)
4614 break;
4615 /* relookup. */
4616 vm_page_busy_release(m);
4617 cpu_spinwait();
4618 continue;
4619 }
4620 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4621 allocflags, false))
4622 return (false);
4623 }
4624 if ((allocflags & VM_ALLOC_WIRED) != 0)
4625 vm_page_wire(m);
4626 vm_page_grab_release(m, allocflags);
4627 *mp = m;
4628 return (true);
4629 }
4630
4631 /*
4632 * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4633 * is not set.
4634 */
4635 vm_page_t
4636 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4637 {
4638 vm_page_t m;
4639
4640 vm_page_grab_check(allocflags);
4641
4642 if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags))
4643 return (NULL);
4644 if (m != NULL)
4645 return (m);
4646
4647 /*
4648 * The radix lockless lookup should never return a false negative
4649 * errors. If the user specifies NOCREAT they are guaranteed there
4650 * was no page present at the instant of the call. A NOCREAT caller
4651 * must handle create races gracefully.
4652 */
4653 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4654 return (NULL);
4655
4656 VM_OBJECT_WLOCK(object);
4657 m = vm_page_grab(object, pindex, allocflags);
4658 VM_OBJECT_WUNLOCK(object);
4659
4660 return (m);
4661 }
4662
4663 /*
4664 * Grab a page and make it valid, paging in if necessary. Pages missing from
4665 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied
4666 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4667 * in simultaneously. Additional pages will be left on a paging queue but
4668 * will neither be wired nor busy regardless of allocflags.
4669 */
4670 int
4671 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4672 {
4673 vm_page_t m;
4674 vm_page_t ma[VM_INITIAL_PAGEIN];
4675 int after, i, pflags, rv;
4676
4677 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4678 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4679 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4680 KASSERT((allocflags &
4681 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4682 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4683 VM_OBJECT_ASSERT_WLOCKED(object);
4684 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4685 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4686 pflags |= VM_ALLOC_WAITFAIL;
4687
4688 retrylookup:
4689 if ((m = vm_page_lookup(object, pindex)) != NULL) {
4690 /*
4691 * If the page is fully valid it can only become invalid
4692 * with the object lock held. If it is not valid it can
4693 * become valid with the busy lock held. Therefore, we
4694 * may unnecessarily lock the exclusive busy here if we
4695 * race with I/O completion not using the object lock.
4696 * However, we will not end up with an invalid page and a
4697 * shared lock.
4698 */
4699 if (!vm_page_trybusy(m,
4700 vm_page_all_valid(m) ? allocflags : 0)) {
4701 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4702 allocflags, true);
4703 goto retrylookup;
4704 }
4705 if (vm_page_all_valid(m))
4706 goto out;
4707 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4708 vm_page_busy_release(m);
4709 *mp = NULL;
4710 return (VM_PAGER_FAIL);
4711 }
4712 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4713 *mp = NULL;
4714 return (VM_PAGER_FAIL);
4715 } else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
4716 if (!vm_pager_can_alloc_page(object, pindex)) {
4717 *mp = NULL;
4718 return (VM_PAGER_AGAIN);
4719 }
4720 goto retrylookup;
4721 }
4722
4723 vm_page_assert_xbusied(m);
4724 if (vm_pager_has_page(object, pindex, NULL, &after)) {
4725 after = MIN(after, VM_INITIAL_PAGEIN);
4726 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4727 after = MAX(after, 1);
4728 ma[0] = m;
4729 for (i = 1; i < after; i++) {
4730 if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4731 if (vm_page_any_valid(ma[i]) ||
4732 !vm_page_tryxbusy(ma[i]))
4733 break;
4734 } else {
4735 ma[i] = vm_page_alloc(object, m->pindex + i,
4736 VM_ALLOC_NORMAL);
4737 if (ma[i] == NULL)
4738 break;
4739 }
4740 }
4741 after = i;
4742 vm_object_pip_add(object, after);
4743 VM_OBJECT_WUNLOCK(object);
4744 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4745 VM_OBJECT_WLOCK(object);
4746 vm_object_pip_wakeupn(object, after);
4747 /* Pager may have replaced a page. */
4748 m = ma[0];
4749 if (rv != VM_PAGER_OK) {
4750 for (i = 0; i < after; i++) {
4751 if (!vm_page_wired(ma[i]))
4752 vm_page_free(ma[i]);
4753 else
4754 vm_page_xunbusy(ma[i]);
4755 }
4756 *mp = NULL;
4757 return (rv);
4758 }
4759 for (i = 1; i < after; i++)
4760 vm_page_readahead_finish(ma[i]);
4761 MPASS(vm_page_all_valid(m));
4762 } else {
4763 vm_page_zero_invalid(m, TRUE);
4764 }
4765 out:
4766 if ((allocflags & VM_ALLOC_WIRED) != 0)
4767 vm_page_wire(m);
4768 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
4769 vm_page_busy_downgrade(m);
4770 else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
4771 vm_page_busy_release(m);
4772 *mp = m;
4773 return (VM_PAGER_OK);
4774 }
4775
4776 /*
4777 * Locklessly grab a valid page. If the page is not valid or not yet
4778 * allocated this will fall back to the object lock method.
4779 */
4780 int
4781 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
4782 vm_pindex_t pindex, int allocflags)
4783 {
4784 vm_page_t m;
4785 int flags;
4786 int error;
4787
4788 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4789 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4790 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4791 "mismatch"));
4792 KASSERT((allocflags &
4793 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4794 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
4795
4796 /*
4797 * Attempt a lockless lookup and busy. We need at least an sbusy
4798 * before we can inspect the valid field and return a wired page.
4799 */
4800 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
4801 if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags))
4802 return (VM_PAGER_FAIL);
4803 if ((m = *mp) != NULL) {
4804 if (vm_page_all_valid(m)) {
4805 if ((allocflags & VM_ALLOC_WIRED) != 0)
4806 vm_page_wire(m);
4807 vm_page_grab_release(m, allocflags);
4808 return (VM_PAGER_OK);
4809 }
4810 vm_page_busy_release(m);
4811 }
4812 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4813 *mp = NULL;
4814 return (VM_PAGER_FAIL);
4815 }
4816 VM_OBJECT_WLOCK(object);
4817 error = vm_page_grab_valid(mp, object, pindex, allocflags);
4818 VM_OBJECT_WUNLOCK(object);
4819
4820 return (error);
4821 }
4822
4823 /*
4824 * Return the specified range of pages from the given object. For each
4825 * page offset within the range, if a page already exists within the object
4826 * at that offset and it is busy, then wait for it to change state. If,
4827 * instead, the page doesn't exist, then allocate it.
4828 *
4829 * The caller must always specify an allocation class.
4830 *
4831 * allocation classes:
4832 * VM_ALLOC_NORMAL normal process request
4833 * VM_ALLOC_SYSTEM system *really* needs the pages
4834 *
4835 * The caller must always specify that the pages are to be busied and/or
4836 * wired.
4837 *
4838 * optional allocation flags:
4839 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages
4840 * VM_ALLOC_NOBUSY do not exclusive busy the page
4841 * VM_ALLOC_NOWAIT do not sleep
4842 * VM_ALLOC_SBUSY set page to sbusy state
4843 * VM_ALLOC_WIRED wire the pages
4844 * VM_ALLOC_ZERO zero and validate any invalid pages
4845 *
4846 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it
4847 * may return a partial prefix of the requested range.
4848 */
4849 int
4850 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4851 vm_page_t *ma, int count)
4852 {
4853 vm_page_t m, mpred;
4854 int pflags;
4855 int i;
4856
4857 VM_OBJECT_ASSERT_WLOCKED(object);
4858 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4859 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4860 KASSERT(count > 0,
4861 ("vm_page_grab_pages: invalid page count %d", count));
4862 vm_page_grab_check(allocflags);
4863
4864 pflags = vm_page_grab_pflags(allocflags);
4865 i = 0;
4866 retrylookup:
4867 m = vm_radix_lookup_le(&object->rtree, pindex + i);
4868 if (m == NULL || m->pindex != pindex + i) {
4869 mpred = m;
4870 m = NULL;
4871 } else
4872 mpred = TAILQ_PREV(m, pglist, listq);
4873 for (; i < count; i++) {
4874 if (m != NULL) {
4875 if (!vm_page_tryacquire(m, allocflags)) {
4876 if (vm_page_grab_sleep(object, m, pindex + i,
4877 "grbmaw", allocflags, true))
4878 goto retrylookup;
4879 break;
4880 }
4881 } else {
4882 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4883 break;
4884 m = vm_page_alloc_after(object, pindex + i,
4885 pflags | VM_ALLOC_COUNT(count - i), mpred);
4886 if (m == NULL) {
4887 if ((allocflags & (VM_ALLOC_NOWAIT |
4888 VM_ALLOC_WAITFAIL)) != 0)
4889 break;
4890 goto retrylookup;
4891 }
4892 }
4893 if (vm_page_none_valid(m) &&
4894 (allocflags & VM_ALLOC_ZERO) != 0) {
4895 if ((m->flags & PG_ZERO) == 0)
4896 pmap_zero_page(m);
4897 vm_page_valid(m);
4898 }
4899 vm_page_grab_release(m, allocflags);
4900 ma[i] = mpred = m;
4901 m = vm_page_next(m);
4902 }
4903 return (i);
4904 }
4905
4906 /*
4907 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags
4908 * and will fall back to the locked variant to handle allocation.
4909 */
4910 int
4911 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
4912 int allocflags, vm_page_t *ma, int count)
4913 {
4914 vm_page_t m, pred;
4915 int flags;
4916 int i;
4917
4918 KASSERT(count > 0,
4919 ("vm_page_grab_pages_unlocked: invalid page count %d", count));
4920 vm_page_grab_check(allocflags);
4921
4922 /*
4923 * Modify flags for lockless acquire to hold the page until we
4924 * set it valid if necessary.
4925 */
4926 flags = allocflags & ~VM_ALLOC_NOBUSY;
4927 pred = NULL;
4928 for (i = 0; i < count; i++, pindex++) {
4929 if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags))
4930 return (i);
4931 if (m == NULL)
4932 break;
4933 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
4934 if ((m->flags & PG_ZERO) == 0)
4935 pmap_zero_page(m);
4936 vm_page_valid(m);
4937 }
4938 /* m will still be wired or busy according to flags. */
4939 vm_page_grab_release(m, allocflags);
4940 pred = ma[i] = m;
4941 }
4942 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
4943 return (i);
4944 count -= i;
4945 VM_OBJECT_WLOCK(object);
4946 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
4947 VM_OBJECT_WUNLOCK(object);
4948
4949 return (i);
4950 }
4951
4952 /*
4953 * Mapping function for valid or dirty bits in a page.
4954 *
4955 * Inputs are required to range within a page.
4956 */
4957 vm_page_bits_t
4958 vm_page_bits(int base, int size)
4959 {
4960 int first_bit;
4961 int last_bit;
4962
4963 KASSERT(
4964 base + size <= PAGE_SIZE,
4965 ("vm_page_bits: illegal base/size %d/%d", base, size)
4966 );
4967
4968 if (size == 0) /* handle degenerate case */
4969 return (0);
4970
4971 first_bit = base >> DEV_BSHIFT;
4972 last_bit = (base + size - 1) >> DEV_BSHIFT;
4973
4974 return (((vm_page_bits_t)2 << last_bit) -
4975 ((vm_page_bits_t)1 << first_bit));
4976 }
4977
4978 void
4979 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4980 {
4981
4982 #if PAGE_SIZE == 32768
4983 atomic_set_64((uint64_t *)bits, set);
4984 #elif PAGE_SIZE == 16384
4985 atomic_set_32((uint32_t *)bits, set);
4986 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4987 atomic_set_16((uint16_t *)bits, set);
4988 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4989 atomic_set_8((uint8_t *)bits, set);
4990 #else /* PAGE_SIZE <= 8192 */
4991 uintptr_t addr;
4992 int shift;
4993
4994 addr = (uintptr_t)bits;
4995 /*
4996 * Use a trick to perform a 32-bit atomic on the
4997 * containing aligned word, to not depend on the existence
4998 * of atomic_{set, clear}_{8, 16}.
4999 */
5000 shift = addr & (sizeof(uint32_t) - 1);
5001 #if BYTE_ORDER == BIG_ENDIAN
5002 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5003 #else
5004 shift *= NBBY;
5005 #endif
5006 addr &= ~(sizeof(uint32_t) - 1);
5007 atomic_set_32((uint32_t *)addr, set << shift);
5008 #endif /* PAGE_SIZE */
5009 }
5010
5011 static inline void
5012 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5013 {
5014
5015 #if PAGE_SIZE == 32768
5016 atomic_clear_64((uint64_t *)bits, clear);
5017 #elif PAGE_SIZE == 16384
5018 atomic_clear_32((uint32_t *)bits, clear);
5019 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5020 atomic_clear_16((uint16_t *)bits, clear);
5021 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5022 atomic_clear_8((uint8_t *)bits, clear);
5023 #else /* PAGE_SIZE <= 8192 */
5024 uintptr_t addr;
5025 int shift;
5026
5027 addr = (uintptr_t)bits;
5028 /*
5029 * Use a trick to perform a 32-bit atomic on the
5030 * containing aligned word, to not depend on the existence
5031 * of atomic_{set, clear}_{8, 16}.
5032 */
5033 shift = addr & (sizeof(uint32_t) - 1);
5034 #if BYTE_ORDER == BIG_ENDIAN
5035 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5036 #else
5037 shift *= NBBY;
5038 #endif
5039 addr &= ~(sizeof(uint32_t) - 1);
5040 atomic_clear_32((uint32_t *)addr, clear << shift);
5041 #endif /* PAGE_SIZE */
5042 }
5043
5044 static inline vm_page_bits_t
5045 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5046 {
5047 #if PAGE_SIZE == 32768
5048 uint64_t old;
5049
5050 old = *bits;
5051 while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5052 return (old);
5053 #elif PAGE_SIZE == 16384
5054 uint32_t old;
5055
5056 old = *bits;
5057 while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5058 return (old);
5059 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5060 uint16_t old;
5061
5062 old = *bits;
5063 while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5064 return (old);
5065 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5066 uint8_t old;
5067
5068 old = *bits;
5069 while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5070 return (old);
5071 #else /* PAGE_SIZE <= 4096*/
5072 uintptr_t addr;
5073 uint32_t old, new, mask;
5074 int shift;
5075
5076 addr = (uintptr_t)bits;
5077 /*
5078 * Use a trick to perform a 32-bit atomic on the
5079 * containing aligned word, to not depend on the existence
5080 * of atomic_{set, swap, clear}_{8, 16}.
5081 */
5082 shift = addr & (sizeof(uint32_t) - 1);
5083 #if BYTE_ORDER == BIG_ENDIAN
5084 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5085 #else
5086 shift *= NBBY;
5087 #endif
5088 addr &= ~(sizeof(uint32_t) - 1);
5089 mask = VM_PAGE_BITS_ALL << shift;
5090
5091 old = *bits;
5092 do {
5093 new = old & ~mask;
5094 new |= newbits << shift;
5095 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5096 return (old >> shift);
5097 #endif /* PAGE_SIZE */
5098 }
5099
5100 /*
5101 * vm_page_set_valid_range:
5102 *
5103 * Sets portions of a page valid. The arguments are expected
5104 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5105 * of any partial chunks touched by the range. The invalid portion of
5106 * such chunks will be zeroed.
5107 *
5108 * (base + size) must be less then or equal to PAGE_SIZE.
5109 */
5110 void
5111 vm_page_set_valid_range(vm_page_t m, int base, int size)
5112 {
5113 int endoff, frag;
5114 vm_page_bits_t pagebits;
5115
5116 vm_page_assert_busied(m);
5117 if (size == 0) /* handle degenerate case */
5118 return;
5119
5120 /*
5121 * If the base is not DEV_BSIZE aligned and the valid
5122 * bit is clear, we have to zero out a portion of the
5123 * first block.
5124 */
5125 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5126 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5127 pmap_zero_page_area(m, frag, base - frag);
5128
5129 /*
5130 * If the ending offset is not DEV_BSIZE aligned and the
5131 * valid bit is clear, we have to zero out a portion of
5132 * the last block.
5133 */
5134 endoff = base + size;
5135 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5136 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5137 pmap_zero_page_area(m, endoff,
5138 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5139
5140 /*
5141 * Assert that no previously invalid block that is now being validated
5142 * is already dirty.
5143 */
5144 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5145 ("vm_page_set_valid_range: page %p is dirty", m));
5146
5147 /*
5148 * Set valid bits inclusive of any overlap.
5149 */
5150 pagebits = vm_page_bits(base, size);
5151 if (vm_page_xbusied(m))
5152 m->valid |= pagebits;
5153 else
5154 vm_page_bits_set(m, &m->valid, pagebits);
5155 }
5156
5157 /*
5158 * Set the page dirty bits and free the invalid swap space if
5159 * present. Returns the previous dirty bits.
5160 */
5161 vm_page_bits_t
5162 vm_page_set_dirty(vm_page_t m)
5163 {
5164 vm_page_bits_t old;
5165
5166 VM_PAGE_OBJECT_BUSY_ASSERT(m);
5167
5168 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5169 old = m->dirty;
5170 m->dirty = VM_PAGE_BITS_ALL;
5171 } else
5172 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5173 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5174 vm_pager_page_unswapped(m);
5175
5176 return (old);
5177 }
5178
5179 /*
5180 * Clear the given bits from the specified page's dirty field.
5181 */
5182 static __inline void
5183 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5184 {
5185
5186 vm_page_assert_busied(m);
5187
5188 /*
5189 * If the page is xbusied and not write mapped we are the
5190 * only thread that can modify dirty bits. Otherwise, The pmap
5191 * layer can call vm_page_dirty() without holding a distinguished
5192 * lock. The combination of page busy and atomic operations
5193 * suffice to guarantee consistency of the page dirty field.
5194 */
5195 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5196 m->dirty &= ~pagebits;
5197 else
5198 vm_page_bits_clear(m, &m->dirty, pagebits);
5199 }
5200
5201 /*
5202 * vm_page_set_validclean:
5203 *
5204 * Sets portions of a page valid and clean. The arguments are expected
5205 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5206 * of any partial chunks touched by the range. The invalid portion of
5207 * such chunks will be zero'd.
5208 *
5209 * (base + size) must be less then or equal to PAGE_SIZE.
5210 */
5211 void
5212 vm_page_set_validclean(vm_page_t m, int base, int size)
5213 {
5214 vm_page_bits_t oldvalid, pagebits;
5215 int endoff, frag;
5216
5217 vm_page_assert_busied(m);
5218 if (size == 0) /* handle degenerate case */
5219 return;
5220
5221 /*
5222 * If the base is not DEV_BSIZE aligned and the valid
5223 * bit is clear, we have to zero out a portion of the
5224 * first block.
5225 */
5226 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5227 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5228 pmap_zero_page_area(m, frag, base - frag);
5229
5230 /*
5231 * If the ending offset is not DEV_BSIZE aligned and the
5232 * valid bit is clear, we have to zero out a portion of
5233 * the last block.
5234 */
5235 endoff = base + size;
5236 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5237 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5238 pmap_zero_page_area(m, endoff,
5239 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5240
5241 /*
5242 * Set valid, clear dirty bits. If validating the entire
5243 * page we can safely clear the pmap modify bit. We also
5244 * use this opportunity to clear the PGA_NOSYNC flag. If a process
5245 * takes a write fault on a MAP_NOSYNC memory area the flag will
5246 * be set again.
5247 *
5248 * We set valid bits inclusive of any overlap, but we can only
5249 * clear dirty bits for DEV_BSIZE chunks that are fully within
5250 * the range.
5251 */
5252 oldvalid = m->valid;
5253 pagebits = vm_page_bits(base, size);
5254 if (vm_page_xbusied(m))
5255 m->valid |= pagebits;
5256 else
5257 vm_page_bits_set(m, &m->valid, pagebits);
5258 #if 0 /* NOT YET */
5259 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5260 frag = DEV_BSIZE - frag;
5261 base += frag;
5262 size -= frag;
5263 if (size < 0)
5264 size = 0;
5265 }
5266 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5267 #endif
5268 if (base == 0 && size == PAGE_SIZE) {
5269 /*
5270 * The page can only be modified within the pmap if it is
5271 * mapped, and it can only be mapped if it was previously
5272 * fully valid.
5273 */
5274 if (oldvalid == VM_PAGE_BITS_ALL)
5275 /*
5276 * Perform the pmap_clear_modify() first. Otherwise,
5277 * a concurrent pmap operation, such as
5278 * pmap_protect(), could clear a modification in the
5279 * pmap and set the dirty field on the page before
5280 * pmap_clear_modify() had begun and after the dirty
5281 * field was cleared here.
5282 */
5283 pmap_clear_modify(m);
5284 m->dirty = 0;
5285 vm_page_aflag_clear(m, PGA_NOSYNC);
5286 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5287 m->dirty &= ~pagebits;
5288 else
5289 vm_page_clear_dirty_mask(m, pagebits);
5290 }
5291
5292 void
5293 vm_page_clear_dirty(vm_page_t m, int base, int size)
5294 {
5295
5296 vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5297 }
5298
5299 /*
5300 * vm_page_set_invalid:
5301 *
5302 * Invalidates DEV_BSIZE'd chunks within a page. Both the
5303 * valid and dirty bits for the effected areas are cleared.
5304 */
5305 void
5306 vm_page_set_invalid(vm_page_t m, int base, int size)
5307 {
5308 vm_page_bits_t bits;
5309 vm_object_t object;
5310
5311 /*
5312 * The object lock is required so that pages can't be mapped
5313 * read-only while we're in the process of invalidating them.
5314 */
5315 object = m->object;
5316 VM_OBJECT_ASSERT_WLOCKED(object);
5317 vm_page_assert_busied(m);
5318
5319 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5320 size >= object->un_pager.vnp.vnp_size)
5321 bits = VM_PAGE_BITS_ALL;
5322 else
5323 bits = vm_page_bits(base, size);
5324 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5325 pmap_remove_all(m);
5326 KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5327 !pmap_page_is_mapped(m),
5328 ("vm_page_set_invalid: page %p is mapped", m));
5329 if (vm_page_xbusied(m)) {
5330 m->valid &= ~bits;
5331 m->dirty &= ~bits;
5332 } else {
5333 vm_page_bits_clear(m, &m->valid, bits);
5334 vm_page_bits_clear(m, &m->dirty, bits);
5335 }
5336 }
5337
5338 /*
5339 * vm_page_invalid:
5340 *
5341 * Invalidates the entire page. The page must be busy, unmapped, and
5342 * the enclosing object must be locked. The object locks protects
5343 * against concurrent read-only pmap enter which is done without
5344 * busy.
5345 */
5346 void
5347 vm_page_invalid(vm_page_t m)
5348 {
5349
5350 vm_page_assert_busied(m);
5351 VM_OBJECT_ASSERT_WLOCKED(m->object);
5352 MPASS(!pmap_page_is_mapped(m));
5353
5354 if (vm_page_xbusied(m))
5355 m->valid = 0;
5356 else
5357 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5358 }
5359
5360 /*
5361 * vm_page_zero_invalid()
5362 *
5363 * The kernel assumes that the invalid portions of a page contain
5364 * garbage, but such pages can be mapped into memory by user code.
5365 * When this occurs, we must zero out the non-valid portions of the
5366 * page so user code sees what it expects.
5367 *
5368 * Pages are most often semi-valid when the end of a file is mapped
5369 * into memory and the file's size is not page aligned.
5370 */
5371 void
5372 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5373 {
5374 int b;
5375 int i;
5376
5377 /*
5378 * Scan the valid bits looking for invalid sections that
5379 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the
5380 * valid bit may be set ) have already been zeroed by
5381 * vm_page_set_validclean().
5382 */
5383 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5384 if (i == (PAGE_SIZE / DEV_BSIZE) ||
5385 (m->valid & ((vm_page_bits_t)1 << i))) {
5386 if (i > b) {
5387 pmap_zero_page_area(m,
5388 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5389 }
5390 b = i + 1;
5391 }
5392 }
5393
5394 /*
5395 * setvalid is TRUE when we can safely set the zero'd areas
5396 * as being valid. We can do this if there are no cache consistency
5397 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
5398 */
5399 if (setvalid)
5400 vm_page_valid(m);
5401 }
5402
5403 /*
5404 * vm_page_is_valid:
5405 *
5406 * Is (partial) page valid? Note that the case where size == 0
5407 * will return FALSE in the degenerate case where the page is
5408 * entirely invalid, and TRUE otherwise.
5409 *
5410 * Some callers envoke this routine without the busy lock held and
5411 * handle races via higher level locks. Typical callers should
5412 * hold a busy lock to prevent invalidation.
5413 */
5414 int
5415 vm_page_is_valid(vm_page_t m, int base, int size)
5416 {
5417 vm_page_bits_t bits;
5418
5419 bits = vm_page_bits(base, size);
5420 return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5421 }
5422
5423 /*
5424 * Returns true if all of the specified predicates are true for the entire
5425 * (super)page and false otherwise.
5426 */
5427 bool
5428 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5429 {
5430 vm_object_t object;
5431 int i, npages;
5432
5433 object = m->object;
5434 if (skip_m != NULL && skip_m->object != object)
5435 return (false);
5436 VM_OBJECT_ASSERT_LOCKED(object);
5437 npages = atop(pagesizes[m->psind]);
5438
5439 /*
5440 * The physically contiguous pages that make up a superpage, i.e., a
5441 * page with a page size index ("psind") greater than zero, will
5442 * occupy adjacent entries in vm_page_array[].
5443 */
5444 for (i = 0; i < npages; i++) {
5445 /* Always test object consistency, including "skip_m". */
5446 if (m[i].object != object)
5447 return (false);
5448 if (&m[i] == skip_m)
5449 continue;
5450 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5451 return (false);
5452 if ((flags & PS_ALL_DIRTY) != 0) {
5453 /*
5454 * Calling vm_page_test_dirty() or pmap_is_modified()
5455 * might stop this case from spuriously returning
5456 * "false". However, that would require a write lock
5457 * on the object containing "m[i]".
5458 */
5459 if (m[i].dirty != VM_PAGE_BITS_ALL)
5460 return (false);
5461 }
5462 if ((flags & PS_ALL_VALID) != 0 &&
5463 m[i].valid != VM_PAGE_BITS_ALL)
5464 return (false);
5465 }
5466 return (true);
5467 }
5468
5469 /*
5470 * Set the page's dirty bits if the page is modified.
5471 */
5472 void
5473 vm_page_test_dirty(vm_page_t m)
5474 {
5475
5476 vm_page_assert_busied(m);
5477 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5478 vm_page_dirty(m);
5479 }
5480
5481 void
5482 vm_page_valid(vm_page_t m)
5483 {
5484
5485 vm_page_assert_busied(m);
5486 if (vm_page_xbusied(m))
5487 m->valid = VM_PAGE_BITS_ALL;
5488 else
5489 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5490 }
5491
5492 void
5493 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5494 {
5495
5496 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5497 }
5498
5499 void
5500 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5501 {
5502
5503 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5504 }
5505
5506 int
5507 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5508 {
5509
5510 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5511 }
5512
5513 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5514 void
5515 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5516 {
5517
5518 vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5519 }
5520
5521 void
5522 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5523 {
5524
5525 mtx_assert_(vm_page_lockptr(m), a, file, line);
5526 }
5527 #endif
5528
5529 #ifdef INVARIANTS
5530 void
5531 vm_page_object_busy_assert(vm_page_t m)
5532 {
5533
5534 /*
5535 * Certain of the page's fields may only be modified by the
5536 * holder of a page or object busy.
5537 */
5538 if (m->object != NULL && !vm_page_busied(m))
5539 VM_OBJECT_ASSERT_BUSY(m->object);
5540 }
5541
5542 void
5543 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5544 {
5545
5546 if ((bits & PGA_WRITEABLE) == 0)
5547 return;
5548
5549 /*
5550 * The PGA_WRITEABLE flag can only be set if the page is
5551 * managed, is exclusively busied or the object is locked.
5552 * Currently, this flag is only set by pmap_enter().
5553 */
5554 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5555 ("PGA_WRITEABLE on unmanaged page"));
5556 if (!vm_page_xbusied(m))
5557 VM_OBJECT_ASSERT_BUSY(m->object);
5558 }
5559 #endif
5560
5561 #include "opt_ddb.h"
5562 #ifdef DDB
5563 #include <sys/kernel.h>
5564
5565 #include <ddb/ddb.h>
5566
5567 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5568 {
5569
5570 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5571 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5572 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5573 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5574 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5575 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5576 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5577 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5578 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5579 }
5580
5581 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5582 {
5583 int dom;
5584
5585 db_printf("pq_free %d\n", vm_free_count());
5586 for (dom = 0; dom < vm_ndomains; dom++) {
5587 db_printf(
5588 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5589 dom,
5590 vm_dom[dom].vmd_page_count,
5591 vm_dom[dom].vmd_free_count,
5592 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5593 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5594 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5595 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5596 }
5597 }
5598
5599 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5600 {
5601 vm_page_t m;
5602 boolean_t phys, virt;
5603
5604 if (!have_addr) {
5605 db_printf("show pginfo addr\n");
5606 return;
5607 }
5608
5609 phys = strchr(modif, 'p') != NULL;
5610 virt = strchr(modif, 'v') != NULL;
5611 if (virt)
5612 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5613 else if (phys)
5614 m = PHYS_TO_VM_PAGE(addr);
5615 else
5616 m = (vm_page_t)addr;
5617 db_printf(
5618 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5619 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5620 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5621 m->a.queue, m->ref_count, m->a.flags, m->oflags,
5622 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5623 }
5624 #endif /* DDB */
Cache object: d255bda4d86bb347913700291f3d3cd9
|