The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
    3  *
    4  * Copyright (c) 1991 Regents of the University of California.
    5  * All rights reserved.
    6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
    7  *
    8  * This code is derived from software contributed to Berkeley by
    9  * The Mach Operating System project at Carnegie-Mellon University.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. Neither the name of the University nor the names of its contributors
   20  *    may be used to endorse or promote products derived from this software
   21  *    without specific prior written permission.
   22  *
   23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   33  * SUCH DAMAGE.
   34  *
   35  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
   36  */
   37 
   38 /*-
   39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   40  * All rights reserved.
   41  *
   42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   43  *
   44  * Permission to use, copy, modify and distribute this software and
   45  * its documentation is hereby granted, provided that both the copyright
   46  * notice and this permission notice appear in all copies of the
   47  * software, derivative works or modified versions, and any portions
   48  * thereof, and that both notices appear in supporting documentation.
   49  *
   50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   53  *
   54  * Carnegie Mellon requests users of this software to return to
   55  *
   56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   57  *  School of Computer Science
   58  *  Carnegie Mellon University
   59  *  Pittsburgh PA 15213-3890
   60  *
   61  * any improvements or extensions that they make and grant Carnegie the
   62  * rights to redistribute these changes.
   63  */
   64 
   65 /*
   66  *      Resident memory management module.
   67  */
   68 
   69 #include <sys/cdefs.h>
   70 __FBSDID("$FreeBSD$");
   71 
   72 #include "opt_vm.h"
   73 
   74 #include <sys/param.h>
   75 #include <sys/systm.h>
   76 #include <sys/counter.h>
   77 #include <sys/domainset.h>
   78 #include <sys/kernel.h>
   79 #include <sys/limits.h>
   80 #include <sys/linker.h>
   81 #include <sys/lock.h>
   82 #include <sys/malloc.h>
   83 #include <sys/mman.h>
   84 #include <sys/msgbuf.h>
   85 #include <sys/mutex.h>
   86 #include <sys/proc.h>
   87 #include <sys/rwlock.h>
   88 #include <sys/sleepqueue.h>
   89 #include <sys/sbuf.h>
   90 #include <sys/sched.h>
   91 #include <sys/smp.h>
   92 #include <sys/sysctl.h>
   93 #include <sys/vmmeter.h>
   94 #include <sys/vnode.h>
   95 
   96 #include <vm/vm.h>
   97 #include <vm/pmap.h>
   98 #include <vm/vm_param.h>
   99 #include <vm/vm_domainset.h>
  100 #include <vm/vm_kern.h>
  101 #include <vm/vm_map.h>
  102 #include <vm/vm_object.h>
  103 #include <vm/vm_page.h>
  104 #include <vm/vm_pageout.h>
  105 #include <vm/vm_phys.h>
  106 #include <vm/vm_pagequeue.h>
  107 #include <vm/vm_pager.h>
  108 #include <vm/vm_radix.h>
  109 #include <vm/vm_reserv.h>
  110 #include <vm/vm_extern.h>
  111 #include <vm/vm_dumpset.h>
  112 #include <vm/uma.h>
  113 #include <vm/uma_int.h>
  114 
  115 #include <machine/md_var.h>
  116 
  117 struct vm_domain vm_dom[MAXMEMDOM];
  118 
  119 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
  120 
  121 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
  122 
  123 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
  124 /* The following fields are protected by the domainset lock. */
  125 domainset_t __exclusive_cache_line vm_min_domains;
  126 domainset_t __exclusive_cache_line vm_severe_domains;
  127 static int vm_min_waiters;
  128 static int vm_severe_waiters;
  129 static int vm_pageproc_waiters;
  130 
  131 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  132     "VM page statistics");
  133 
  134 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
  135 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
  136     CTLFLAG_RD, &pqstate_commit_retries,
  137     "Number of failed per-page atomic queue state updates");
  138 
  139 static COUNTER_U64_DEFINE_EARLY(queue_ops);
  140 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
  141     CTLFLAG_RD, &queue_ops,
  142     "Number of batched queue operations");
  143 
  144 static COUNTER_U64_DEFINE_EARLY(queue_nops);
  145 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
  146     CTLFLAG_RD, &queue_nops,
  147     "Number of batched queue operations with no effects");
  148 
  149 /*
  150  * bogus page -- for I/O to/from partially complete buffers,
  151  * or for paging into sparsely invalid regions.
  152  */
  153 vm_page_t bogus_page;
  154 
  155 vm_page_t vm_page_array;
  156 long vm_page_array_size;
  157 long first_page;
  158 
  159 struct bitset *vm_page_dump;
  160 long vm_page_dump_pages;
  161 
  162 static TAILQ_HEAD(, vm_page) blacklist_head;
  163 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
  164 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
  165     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
  166 
  167 static uma_zone_t fakepg_zone;
  168 
  169 static void vm_page_alloc_check(vm_page_t m);
  170 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
  171     vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
  172 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
  173 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
  174 static bool vm_page_free_prep(vm_page_t m);
  175 static void vm_page_free_toq(vm_page_t m);
  176 static void vm_page_init(void *dummy);
  177 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
  178     vm_pindex_t pindex, vm_page_t mpred);
  179 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
  180     vm_page_t mpred);
  181 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
  182     const uint16_t nflag);
  183 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
  184     vm_page_t m_run, vm_paddr_t high);
  185 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
  186 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
  187     int req);
  188 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
  189     int flags);
  190 static void vm_page_zone_release(void *arg, void **store, int cnt);
  191 
  192 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
  193 
  194 static void
  195 vm_page_init(void *dummy)
  196 {
  197 
  198         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
  199             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  200         bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED);
  201 }
  202 
  203 /*
  204  * The cache page zone is initialized later since we need to be able to allocate
  205  * pages before UMA is fully initialized.
  206  */
  207 static void
  208 vm_page_init_cache_zones(void *dummy __unused)
  209 {
  210         struct vm_domain *vmd;
  211         struct vm_pgcache *pgcache;
  212         int cache, domain, maxcache, pool;
  213 
  214         maxcache = 0;
  215         TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache);
  216         maxcache *= mp_ncpus;
  217         for (domain = 0; domain < vm_ndomains; domain++) {
  218                 vmd = VM_DOMAIN(domain);
  219                 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
  220                         pgcache = &vmd->vmd_pgcache[pool];
  221                         pgcache->domain = domain;
  222                         pgcache->pool = pool;
  223                         pgcache->zone = uma_zcache_create("vm pgcache",
  224                             PAGE_SIZE, NULL, NULL, NULL, NULL,
  225                             vm_page_zone_import, vm_page_zone_release, pgcache,
  226                             UMA_ZONE_VM);
  227 
  228                         /*
  229                          * Limit each pool's zone to 0.1% of the pages in the
  230                          * domain.
  231                          */
  232                         cache = maxcache != 0 ? maxcache :
  233                             vmd->vmd_page_count / 1000;
  234                         uma_zone_set_maxcache(pgcache->zone, cache);
  235                 }
  236         }
  237 }
  238 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
  239 
  240 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
  241 #if PAGE_SIZE == 32768
  242 #ifdef CTASSERT
  243 CTASSERT(sizeof(u_long) >= 8);
  244 #endif
  245 #endif
  246 
  247 /*
  248  *      vm_set_page_size:
  249  *
  250  *      Sets the page size, perhaps based upon the memory
  251  *      size.  Must be called before any use of page-size
  252  *      dependent functions.
  253  */
  254 void
  255 vm_set_page_size(void)
  256 {
  257         if (vm_cnt.v_page_size == 0)
  258                 vm_cnt.v_page_size = PAGE_SIZE;
  259         if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
  260                 panic("vm_set_page_size: page size not a power of two");
  261 }
  262 
  263 /*
  264  *      vm_page_blacklist_next:
  265  *
  266  *      Find the next entry in the provided string of blacklist
  267  *      addresses.  Entries are separated by space, comma, or newline.
  268  *      If an invalid integer is encountered then the rest of the
  269  *      string is skipped.  Updates the list pointer to the next
  270  *      character, or NULL if the string is exhausted or invalid.
  271  */
  272 static vm_paddr_t
  273 vm_page_blacklist_next(char **list, char *end)
  274 {
  275         vm_paddr_t bad;
  276         char *cp, *pos;
  277 
  278         if (list == NULL || *list == NULL)
  279                 return (0);
  280         if (**list =='\0') {
  281                 *list = NULL;
  282                 return (0);
  283         }
  284 
  285         /*
  286          * If there's no end pointer then the buffer is coming from
  287          * the kenv and we know it's null-terminated.
  288          */
  289         if (end == NULL)
  290                 end = *list + strlen(*list);
  291 
  292         /* Ensure that strtoq() won't walk off the end */
  293         if (*end != '\0') {
  294                 if (*end == '\n' || *end == ' ' || *end  == ',')
  295                         *end = '\0';
  296                 else {
  297                         printf("Blacklist not terminated, skipping\n");
  298                         *list = NULL;
  299                         return (0);
  300                 }
  301         }
  302 
  303         for (pos = *list; *pos != '\0'; pos = cp) {
  304                 bad = strtoq(pos, &cp, 0);
  305                 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
  306                         if (bad == 0) {
  307                                 if (++cp < end)
  308                                         continue;
  309                                 else
  310                                         break;
  311                         }
  312                 } else
  313                         break;
  314                 if (*cp == '\0' || ++cp >= end)
  315                         *list = NULL;
  316                 else
  317                         *list = cp;
  318                 return (trunc_page(bad));
  319         }
  320         printf("Garbage in RAM blacklist, skipping\n");
  321         *list = NULL;
  322         return (0);
  323 }
  324 
  325 bool
  326 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
  327 {
  328         struct vm_domain *vmd;
  329         vm_page_t m;
  330         int ret;
  331 
  332         m = vm_phys_paddr_to_vm_page(pa);
  333         if (m == NULL)
  334                 return (true); /* page does not exist, no failure */
  335 
  336         vmd = vm_pagequeue_domain(m);
  337         vm_domain_free_lock(vmd);
  338         ret = vm_phys_unfree_page(m);
  339         vm_domain_free_unlock(vmd);
  340         if (ret != 0) {
  341                 vm_domain_freecnt_inc(vmd, -1);
  342                 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
  343                 if (verbose)
  344                         printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
  345         }
  346         return (ret);
  347 }
  348 
  349 /*
  350  *      vm_page_blacklist_check:
  351  *
  352  *      Iterate through the provided string of blacklist addresses, pulling
  353  *      each entry out of the physical allocator free list and putting it
  354  *      onto a list for reporting via the vm.page_blacklist sysctl.
  355  */
  356 static void
  357 vm_page_blacklist_check(char *list, char *end)
  358 {
  359         vm_paddr_t pa;
  360         char *next;
  361 
  362         next = list;
  363         while (next != NULL) {
  364                 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
  365                         continue;
  366                 vm_page_blacklist_add(pa, bootverbose);
  367         }
  368 }
  369 
  370 /*
  371  *      vm_page_blacklist_load:
  372  *
  373  *      Search for a special module named "ram_blacklist".  It'll be a
  374  *      plain text file provided by the user via the loader directive
  375  *      of the same name.
  376  */
  377 static void
  378 vm_page_blacklist_load(char **list, char **end)
  379 {
  380         void *mod;
  381         u_char *ptr;
  382         u_int len;
  383 
  384         mod = NULL;
  385         ptr = NULL;
  386 
  387         mod = preload_search_by_type("ram_blacklist");
  388         if (mod != NULL) {
  389                 ptr = preload_fetch_addr(mod);
  390                 len = preload_fetch_size(mod);
  391         }
  392         *list = ptr;
  393         if (ptr != NULL)
  394                 *end = ptr + len;
  395         else
  396                 *end = NULL;
  397         return;
  398 }
  399 
  400 static int
  401 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
  402 {
  403         vm_page_t m;
  404         struct sbuf sbuf;
  405         int error, first;
  406 
  407         first = 1;
  408         error = sysctl_wire_old_buffer(req, 0);
  409         if (error != 0)
  410                 return (error);
  411         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
  412         TAILQ_FOREACH(m, &blacklist_head, listq) {
  413                 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
  414                     (uintmax_t)m->phys_addr);
  415                 first = 0;
  416         }
  417         error = sbuf_finish(&sbuf);
  418         sbuf_delete(&sbuf);
  419         return (error);
  420 }
  421 
  422 /*
  423  * Initialize a dummy page for use in scans of the specified paging queue.
  424  * In principle, this function only needs to set the flag PG_MARKER.
  425  * Nonetheless, it write busies the page as a safety precaution.
  426  */
  427 void
  428 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
  429 {
  430 
  431         bzero(marker, sizeof(*marker));
  432         marker->flags = PG_MARKER;
  433         marker->a.flags = aflags;
  434         marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
  435         marker->a.queue = queue;
  436 }
  437 
  438 static void
  439 vm_page_domain_init(int domain)
  440 {
  441         struct vm_domain *vmd;
  442         struct vm_pagequeue *pq;
  443         int i;
  444 
  445         vmd = VM_DOMAIN(domain);
  446         bzero(vmd, sizeof(*vmd));
  447         *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
  448             "vm inactive pagequeue";
  449         *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
  450             "vm active pagequeue";
  451         *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
  452             "vm laundry pagequeue";
  453         *__DECONST(const char **,
  454             &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
  455             "vm unswappable pagequeue";
  456         vmd->vmd_domain = domain;
  457         vmd->vmd_page_count = 0;
  458         vmd->vmd_free_count = 0;
  459         vmd->vmd_segs = 0;
  460         vmd->vmd_oom = FALSE;
  461         for (i = 0; i < PQ_COUNT; i++) {
  462                 pq = &vmd->vmd_pagequeues[i];
  463                 TAILQ_INIT(&pq->pq_pl);
  464                 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
  465                     MTX_DEF | MTX_DUPOK);
  466                 pq->pq_pdpages = 0;
  467                 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
  468         }
  469         mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
  470         mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
  471         snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
  472 
  473         /*
  474          * inacthead is used to provide FIFO ordering for LRU-bypassing
  475          * insertions.
  476          */
  477         vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
  478         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
  479             &vmd->vmd_inacthead, plinks.q);
  480 
  481         /*
  482          * The clock pages are used to implement active queue scanning without
  483          * requeues.  Scans start at clock[0], which is advanced after the scan
  484          * ends.  When the two clock hands meet, they are reset and scanning
  485          * resumes from the head of the queue.
  486          */
  487         vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
  488         vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
  489         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
  490             &vmd->vmd_clock[0], plinks.q);
  491         TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
  492             &vmd->vmd_clock[1], plinks.q);
  493 }
  494 
  495 /*
  496  * Initialize a physical page in preparation for adding it to the free
  497  * lists.
  498  */
  499 void
  500 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
  501 {
  502 
  503         m->object = NULL;
  504         m->ref_count = 0;
  505         m->busy_lock = VPB_FREED;
  506         m->flags = m->a.flags = 0;
  507         m->phys_addr = pa;
  508         m->a.queue = PQ_NONE;
  509         m->psind = 0;
  510         m->segind = segind;
  511         m->order = VM_NFREEORDER;
  512         m->pool = VM_FREEPOOL_DEFAULT;
  513         m->valid = m->dirty = 0;
  514         pmap_page_init(m);
  515 }
  516 
  517 #ifndef PMAP_HAS_PAGE_ARRAY
  518 static vm_paddr_t
  519 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
  520 {
  521         vm_paddr_t new_end;
  522 
  523         /*
  524          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
  525          * However, because this page is allocated from KVM, out-of-bounds
  526          * accesses using the direct map will not be trapped.
  527          */
  528         *vaddr += PAGE_SIZE;
  529 
  530         /*
  531          * Allocate physical memory for the page structures, and map it.
  532          */
  533         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
  534         vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
  535             VM_PROT_READ | VM_PROT_WRITE);
  536         vm_page_array_size = page_range;
  537 
  538         return (new_end);
  539 }
  540 #endif
  541 
  542 /*
  543  *      vm_page_startup:
  544  *
  545  *      Initializes the resident memory module.  Allocates physical memory for
  546  *      bootstrapping UMA and some data structures that are used to manage
  547  *      physical pages.  Initializes these structures, and populates the free
  548  *      page queues.
  549  */
  550 vm_offset_t
  551 vm_page_startup(vm_offset_t vaddr)
  552 {
  553         struct vm_phys_seg *seg;
  554         struct vm_domain *vmd;
  555         vm_page_t m;
  556         char *list, *listend;
  557         vm_paddr_t end, high_avail, low_avail, new_end, size;
  558         vm_paddr_t page_range __unused;
  559         vm_paddr_t last_pa, pa, startp, endp;
  560         u_long pagecount;
  561 #if MINIDUMP_PAGE_TRACKING
  562         u_long vm_page_dump_size;
  563 #endif
  564         int biggestone, i, segind;
  565 #ifdef WITNESS
  566         vm_offset_t mapped;
  567         int witness_size;
  568 #endif
  569 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
  570         long ii;
  571 #endif
  572 
  573         vaddr = round_page(vaddr);
  574 
  575         vm_phys_early_startup();
  576         biggestone = vm_phys_avail_largest();
  577         end = phys_avail[biggestone+1];
  578 
  579         /*
  580          * Initialize the page and queue locks.
  581          */
  582         mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
  583         for (i = 0; i < PA_LOCK_COUNT; i++)
  584                 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
  585         for (i = 0; i < vm_ndomains; i++)
  586                 vm_page_domain_init(i);
  587 
  588         new_end = end;
  589 #ifdef WITNESS
  590         witness_size = round_page(witness_startup_count());
  591         new_end -= witness_size;
  592         mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
  593             VM_PROT_READ | VM_PROT_WRITE);
  594         bzero((void *)mapped, witness_size);
  595         witness_startup((void *)mapped);
  596 #endif
  597 
  598 #if MINIDUMP_PAGE_TRACKING
  599         /*
  600          * Allocate a bitmap to indicate that a random physical page
  601          * needs to be included in a minidump.
  602          *
  603          * The amd64 port needs this to indicate which direct map pages
  604          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
  605          *
  606          * However, i386 still needs this workspace internally within the
  607          * minidump code.  In theory, they are not needed on i386, but are
  608          * included should the sf_buf code decide to use them.
  609          */
  610         last_pa = 0;
  611         vm_page_dump_pages = 0;
  612         for (i = 0; dump_avail[i + 1] != 0; i += 2) {
  613                 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
  614                     dump_avail[i] / PAGE_SIZE;
  615                 if (dump_avail[i + 1] > last_pa)
  616                         last_pa = dump_avail[i + 1];
  617         }
  618         vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
  619         new_end -= vm_page_dump_size;
  620         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
  621             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
  622         bzero((void *)vm_page_dump, vm_page_dump_size);
  623 #else
  624         (void)last_pa;
  625 #endif
  626 #if defined(__aarch64__) || defined(__amd64__) || \
  627     defined(__riscv) || defined(__powerpc64__)
  628         /*
  629          * Include the UMA bootstrap pages, witness pages and vm_page_dump
  630          * in a crash dump.  When pmap_map() uses the direct map, they are
  631          * not automatically included.
  632          */
  633         for (pa = new_end; pa < end; pa += PAGE_SIZE)
  634                 dump_add_page(pa);
  635 #endif
  636         phys_avail[biggestone + 1] = new_end;
  637 #ifdef __amd64__
  638         /*
  639          * Request that the physical pages underlying the message buffer be
  640          * included in a crash dump.  Since the message buffer is accessed
  641          * through the direct map, they are not automatically included.
  642          */
  643         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
  644         last_pa = pa + round_page(msgbufsize);
  645         while (pa < last_pa) {
  646                 dump_add_page(pa);
  647                 pa += PAGE_SIZE;
  648         }
  649 #endif
  650         /*
  651          * Compute the number of pages of memory that will be available for
  652          * use, taking into account the overhead of a page structure per page.
  653          * In other words, solve
  654          *      "available physical memory" - round_page(page_range *
  655          *          sizeof(struct vm_page)) = page_range * PAGE_SIZE 
  656          * for page_range.  
  657          */
  658         low_avail = phys_avail[0];
  659         high_avail = phys_avail[1];
  660         for (i = 0; i < vm_phys_nsegs; i++) {
  661                 if (vm_phys_segs[i].start < low_avail)
  662                         low_avail = vm_phys_segs[i].start;
  663                 if (vm_phys_segs[i].end > high_avail)
  664                         high_avail = vm_phys_segs[i].end;
  665         }
  666         /* Skip the first chunk.  It is already accounted for. */
  667         for (i = 2; phys_avail[i + 1] != 0; i += 2) {
  668                 if (phys_avail[i] < low_avail)
  669                         low_avail = phys_avail[i];
  670                 if (phys_avail[i + 1] > high_avail)
  671                         high_avail = phys_avail[i + 1];
  672         }
  673         first_page = low_avail / PAGE_SIZE;
  674 #ifdef VM_PHYSSEG_SPARSE
  675         size = 0;
  676         for (i = 0; i < vm_phys_nsegs; i++)
  677                 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
  678         for (i = 0; phys_avail[i + 1] != 0; i += 2)
  679                 size += phys_avail[i + 1] - phys_avail[i];
  680 #elif defined(VM_PHYSSEG_DENSE)
  681         size = high_avail - low_avail;
  682 #else
  683 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
  684 #endif
  685 
  686 #ifdef PMAP_HAS_PAGE_ARRAY
  687         pmap_page_array_startup(size / PAGE_SIZE);
  688         biggestone = vm_phys_avail_largest();
  689         end = new_end = phys_avail[biggestone + 1];
  690 #else
  691 #ifdef VM_PHYSSEG_DENSE
  692         /*
  693          * In the VM_PHYSSEG_DENSE case, the number of pages can account for
  694          * the overhead of a page structure per page only if vm_page_array is
  695          * allocated from the last physical memory chunk.  Otherwise, we must
  696          * allocate page structures representing the physical memory
  697          * underlying vm_page_array, even though they will not be used.
  698          */
  699         if (new_end != high_avail)
  700                 page_range = size / PAGE_SIZE;
  701         else
  702 #endif
  703         {
  704                 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
  705 
  706                 /*
  707                  * If the partial bytes remaining are large enough for
  708                  * a page (PAGE_SIZE) without a corresponding
  709                  * 'struct vm_page', then new_end will contain an
  710                  * extra page after subtracting the length of the VM
  711                  * page array.  Compensate by subtracting an extra
  712                  * page from new_end.
  713                  */
  714                 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
  715                         if (new_end == high_avail)
  716                                 high_avail -= PAGE_SIZE;
  717                         new_end -= PAGE_SIZE;
  718                 }
  719         }
  720         end = new_end;
  721         new_end = vm_page_array_alloc(&vaddr, end, page_range);
  722 #endif
  723 
  724 #if VM_NRESERVLEVEL > 0
  725         /*
  726          * Allocate physical memory for the reservation management system's
  727          * data structures, and map it.
  728          */
  729         new_end = vm_reserv_startup(&vaddr, new_end);
  730 #endif
  731 #if defined(__aarch64__) || defined(__amd64__) || \
  732     defined(__riscv) || defined(__powerpc64__)
  733         /*
  734          * Include vm_page_array and vm_reserv_array in a crash dump.
  735          */
  736         for (pa = new_end; pa < end; pa += PAGE_SIZE)
  737                 dump_add_page(pa);
  738 #endif
  739         phys_avail[biggestone + 1] = new_end;
  740 
  741         /*
  742          * Add physical memory segments corresponding to the available
  743          * physical pages.
  744          */
  745         for (i = 0; phys_avail[i + 1] != 0; i += 2)
  746                 if (vm_phys_avail_size(i) != 0)
  747                         vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
  748 
  749         /*
  750          * Initialize the physical memory allocator.
  751          */
  752         vm_phys_init();
  753 
  754         /*
  755          * Initialize the page structures and add every available page to the
  756          * physical memory allocator's free lists.
  757          */
  758 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
  759         for (ii = 0; ii < vm_page_array_size; ii++) {
  760                 m = &vm_page_array[ii];
  761                 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
  762                 m->flags = PG_FICTITIOUS;
  763         }
  764 #endif
  765         vm_cnt.v_page_count = 0;
  766         for (segind = 0; segind < vm_phys_nsegs; segind++) {
  767                 seg = &vm_phys_segs[segind];
  768                 for (m = seg->first_page, pa = seg->start; pa < seg->end;
  769                     m++, pa += PAGE_SIZE)
  770                         vm_page_init_page(m, pa, segind);
  771 
  772                 /*
  773                  * Add the segment's pages that are covered by one of
  774                  * phys_avail's ranges to the free lists.
  775                  */
  776                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  777                         if (seg->end <= phys_avail[i] ||
  778                             seg->start >= phys_avail[i + 1])
  779                                 continue;
  780 
  781                         startp = MAX(seg->start, phys_avail[i]);
  782                         endp = MIN(seg->end, phys_avail[i + 1]);
  783                         pagecount = (u_long)atop(endp - startp);
  784                         if (pagecount == 0)
  785                                 continue;
  786 
  787                         m = seg->first_page + atop(startp - seg->start);
  788                         vmd = VM_DOMAIN(seg->domain);
  789                         vm_domain_free_lock(vmd);
  790                         vm_phys_enqueue_contig(m, pagecount);
  791                         vm_domain_free_unlock(vmd);
  792                         vm_domain_freecnt_inc(vmd, pagecount);
  793                         vm_cnt.v_page_count += (u_int)pagecount;
  794                         vmd->vmd_page_count += (u_int)pagecount;
  795                         vmd->vmd_segs |= 1UL << segind;
  796                 }
  797         }
  798 
  799         /*
  800          * Remove blacklisted pages from the physical memory allocator.
  801          */
  802         TAILQ_INIT(&blacklist_head);
  803         vm_page_blacklist_load(&list, &listend);
  804         vm_page_blacklist_check(list, listend);
  805 
  806         list = kern_getenv("vm.blacklist");
  807         vm_page_blacklist_check(list, NULL);
  808 
  809         freeenv(list);
  810 #if VM_NRESERVLEVEL > 0
  811         /*
  812          * Initialize the reservation management system.
  813          */
  814         vm_reserv_init();
  815 #endif
  816 
  817         return (vaddr);
  818 }
  819 
  820 void
  821 vm_page_reference(vm_page_t m)
  822 {
  823 
  824         vm_page_aflag_set(m, PGA_REFERENCED);
  825 }
  826 
  827 /*
  828  *      vm_page_trybusy
  829  *
  830  *      Helper routine for grab functions to trylock busy.
  831  *
  832  *      Returns true on success and false on failure.
  833  */
  834 static bool
  835 vm_page_trybusy(vm_page_t m, int allocflags)
  836 {
  837 
  838         if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
  839                 return (vm_page_trysbusy(m));
  840         else
  841                 return (vm_page_tryxbusy(m));
  842 }
  843 
  844 /*
  845  *      vm_page_tryacquire
  846  *
  847  *      Helper routine for grab functions to trylock busy and wire.
  848  *
  849  *      Returns true on success and false on failure.
  850  */
  851 static inline bool
  852 vm_page_tryacquire(vm_page_t m, int allocflags)
  853 {
  854         bool locked;
  855 
  856         locked = vm_page_trybusy(m, allocflags);
  857         if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
  858                 vm_page_wire(m);
  859         return (locked);
  860 }
  861 
  862 /*
  863  *      vm_page_busy_acquire:
  864  *
  865  *      Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
  866  *      and drop the object lock if necessary.
  867  */
  868 bool
  869 vm_page_busy_acquire(vm_page_t m, int allocflags)
  870 {
  871         vm_object_t obj;
  872         bool locked;
  873 
  874         /*
  875          * The page-specific object must be cached because page
  876          * identity can change during the sleep, causing the
  877          * re-lock of a different object.
  878          * It is assumed that a reference to the object is already
  879          * held by the callers.
  880          */
  881         obj = atomic_load_ptr(&m->object);
  882         for (;;) {
  883                 if (vm_page_tryacquire(m, allocflags))
  884                         return (true);
  885                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
  886                         return (false);
  887                 if (obj != NULL)
  888                         locked = VM_OBJECT_WOWNED(obj);
  889                 else
  890                         locked = false;
  891                 MPASS(locked || vm_page_wired(m));
  892                 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
  893                     locked) && locked)
  894                         VM_OBJECT_WLOCK(obj);
  895                 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
  896                         return (false);
  897                 KASSERT(m->object == obj || m->object == NULL,
  898                     ("vm_page_busy_acquire: page %p does not belong to %p",
  899                     m, obj));
  900         }
  901 }
  902 
  903 /*
  904  *      vm_page_busy_downgrade:
  905  *
  906  *      Downgrade an exclusive busy page into a single shared busy page.
  907  */
  908 void
  909 vm_page_busy_downgrade(vm_page_t m)
  910 {
  911         u_int x;
  912 
  913         vm_page_assert_xbusied(m);
  914 
  915         x = vm_page_busy_fetch(m);
  916         for (;;) {
  917                 if (atomic_fcmpset_rel_int(&m->busy_lock,
  918                     &x, VPB_SHARERS_WORD(1)))
  919                         break;
  920         }
  921         if ((x & VPB_BIT_WAITERS) != 0)
  922                 wakeup(m);
  923 }
  924 
  925 /*
  926  *
  927  *      vm_page_busy_tryupgrade:
  928  *
  929  *      Attempt to upgrade a single shared busy into an exclusive busy.
  930  */
  931 int
  932 vm_page_busy_tryupgrade(vm_page_t m)
  933 {
  934         u_int ce, x;
  935 
  936         vm_page_assert_sbusied(m);
  937 
  938         x = vm_page_busy_fetch(m);
  939         ce = VPB_CURTHREAD_EXCLUSIVE;
  940         for (;;) {
  941                 if (VPB_SHARERS(x) > 1)
  942                         return (0);
  943                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
  944                     ("vm_page_busy_tryupgrade: invalid lock state"));
  945                 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
  946                     ce | (x & VPB_BIT_WAITERS)))
  947                         continue;
  948                 return (1);
  949         }
  950 }
  951 
  952 /*
  953  *      vm_page_sbusied:
  954  *
  955  *      Return a positive value if the page is shared busied, 0 otherwise.
  956  */
  957 int
  958 vm_page_sbusied(vm_page_t m)
  959 {
  960         u_int x;
  961 
  962         x = vm_page_busy_fetch(m);
  963         return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
  964 }
  965 
  966 /*
  967  *      vm_page_sunbusy:
  968  *
  969  *      Shared unbusy a page.
  970  */
  971 void
  972 vm_page_sunbusy(vm_page_t m)
  973 {
  974         u_int x;
  975 
  976         vm_page_assert_sbusied(m);
  977 
  978         x = vm_page_busy_fetch(m);
  979         for (;;) {
  980                 KASSERT(x != VPB_FREED,
  981                     ("vm_page_sunbusy: Unlocking freed page."));
  982                 if (VPB_SHARERS(x) > 1) {
  983                         if (atomic_fcmpset_int(&m->busy_lock, &x,
  984                             x - VPB_ONE_SHARER))
  985                                 break;
  986                         continue;
  987                 }
  988                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
  989                     ("vm_page_sunbusy: invalid lock state"));
  990                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
  991                         continue;
  992                 if ((x & VPB_BIT_WAITERS) == 0)
  993                         break;
  994                 wakeup(m);
  995                 break;
  996         }
  997 }
  998 
  999 /*
 1000  *      vm_page_busy_sleep:
 1001  *
 1002  *      Sleep if the page is busy, using the page pointer as wchan.
 1003  *      This is used to implement the hard-path of the busying mechanism.
 1004  *
 1005  *      If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
 1006  *      will not sleep if the page is shared-busy.
 1007  *
 1008  *      The object lock must be held on entry.
 1009  *
 1010  *      Returns true if it slept and dropped the object lock, or false
 1011  *      if there was no sleep and the lock is still held.
 1012  */
 1013 bool
 1014 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
 1015 {
 1016         vm_object_t obj;
 1017 
 1018         obj = m->object;
 1019         VM_OBJECT_ASSERT_LOCKED(obj);
 1020 
 1021         return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
 1022             true));
 1023 }
 1024 
 1025 /*
 1026  *      vm_page_busy_sleep_unlocked:
 1027  *
 1028  *      Sleep if the page is busy, using the page pointer as wchan.
 1029  *      This is used to implement the hard-path of busying mechanism.
 1030  *
 1031  *      If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
 1032  *      will not sleep if the page is shared-busy.
 1033  *
 1034  *      The object lock must not be held on entry.  The operation will
 1035  *      return if the page changes identity.
 1036  */
 1037 void
 1038 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
 1039     const char *wmesg, int allocflags)
 1040 {
 1041         VM_OBJECT_ASSERT_UNLOCKED(obj);
 1042 
 1043         (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
 1044 }
 1045 
 1046 /*
 1047  *      _vm_page_busy_sleep:
 1048  *
 1049  *      Internal busy sleep function.  Verifies the page identity and
 1050  *      lockstate against parameters.  Returns true if it sleeps and
 1051  *      false otherwise.
 1052  *
 1053  *      allocflags uses VM_ALLOC_* flags to specify the lock required.
 1054  *
 1055  *      If locked is true the lock will be dropped for any true returns
 1056  *      and held for any false returns.
 1057  */
 1058 static bool
 1059 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
 1060     const char *wmesg, int allocflags, bool locked)
 1061 {
 1062         bool xsleep;
 1063         u_int x;
 1064 
 1065         /*
 1066          * If the object is busy we must wait for that to drain to zero
 1067          * before trying the page again.
 1068          */
 1069         if (obj != NULL && vm_object_busied(obj)) {
 1070                 if (locked)
 1071                         VM_OBJECT_DROP(obj);
 1072                 vm_object_busy_wait(obj, wmesg);
 1073                 return (true);
 1074         }
 1075 
 1076         if (!vm_page_busied(m))
 1077                 return (false);
 1078 
 1079         xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
 1080         sleepq_lock(m);
 1081         x = vm_page_busy_fetch(m);
 1082         do {
 1083                 /*
 1084                  * If the page changes objects or becomes unlocked we can
 1085                  * simply return.
 1086                  */
 1087                 if (x == VPB_UNBUSIED ||
 1088                     (xsleep && (x & VPB_BIT_SHARED) != 0) ||
 1089                     m->object != obj || m->pindex != pindex) {
 1090                         sleepq_release(m);
 1091                         return (false);
 1092                 }
 1093                 if ((x & VPB_BIT_WAITERS) != 0)
 1094                         break;
 1095         } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
 1096         if (locked)
 1097                 VM_OBJECT_DROP(obj);
 1098         DROP_GIANT();
 1099         sleepq_add(m, NULL, wmesg, 0, 0);
 1100         sleepq_wait(m, PVM);
 1101         PICKUP_GIANT();
 1102         return (true);
 1103 }
 1104 
 1105 /*
 1106  *      vm_page_trysbusy:
 1107  *
 1108  *      Try to shared busy a page.
 1109  *      If the operation succeeds 1 is returned otherwise 0.
 1110  *      The operation never sleeps.
 1111  */
 1112 int
 1113 vm_page_trysbusy(vm_page_t m)
 1114 {
 1115         vm_object_t obj;
 1116         u_int x;
 1117 
 1118         obj = m->object;
 1119         x = vm_page_busy_fetch(m);
 1120         for (;;) {
 1121                 if ((x & VPB_BIT_SHARED) == 0)
 1122                         return (0);
 1123                 /*
 1124                  * Reduce the window for transient busies that will trigger
 1125                  * false negatives in vm_page_ps_test().
 1126                  */
 1127                 if (obj != NULL && vm_object_busied(obj))
 1128                         return (0);
 1129                 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
 1130                     x + VPB_ONE_SHARER))
 1131                         break;
 1132         }
 1133 
 1134         /* Refetch the object now that we're guaranteed that it is stable. */
 1135         obj = m->object;
 1136         if (obj != NULL && vm_object_busied(obj)) {
 1137                 vm_page_sunbusy(m);
 1138                 return (0);
 1139         }
 1140         return (1);
 1141 }
 1142 
 1143 /*
 1144  *      vm_page_tryxbusy:
 1145  *
 1146  *      Try to exclusive busy a page.
 1147  *      If the operation succeeds 1 is returned otherwise 0.
 1148  *      The operation never sleeps.
 1149  */
 1150 int
 1151 vm_page_tryxbusy(vm_page_t m)
 1152 {
 1153         vm_object_t obj;
 1154 
 1155         if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
 1156             VPB_CURTHREAD_EXCLUSIVE) == 0)
 1157                 return (0);
 1158 
 1159         obj = m->object;
 1160         if (obj != NULL && vm_object_busied(obj)) {
 1161                 vm_page_xunbusy(m);
 1162                 return (0);
 1163         }
 1164         return (1);
 1165 }
 1166 
 1167 static void
 1168 vm_page_xunbusy_hard_tail(vm_page_t m)
 1169 {
 1170         atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
 1171         /* Wake the waiter. */
 1172         wakeup(m);
 1173 }
 1174 
 1175 /*
 1176  *      vm_page_xunbusy_hard:
 1177  *
 1178  *      Called when unbusy has failed because there is a waiter.
 1179  */
 1180 void
 1181 vm_page_xunbusy_hard(vm_page_t m)
 1182 {
 1183         vm_page_assert_xbusied(m);
 1184         vm_page_xunbusy_hard_tail(m);
 1185 }
 1186 
 1187 void
 1188 vm_page_xunbusy_hard_unchecked(vm_page_t m)
 1189 {
 1190         vm_page_assert_xbusied_unchecked(m);
 1191         vm_page_xunbusy_hard_tail(m);
 1192 }
 1193 
 1194 static void
 1195 vm_page_busy_free(vm_page_t m)
 1196 {
 1197         u_int x;
 1198 
 1199         atomic_thread_fence_rel();
 1200         x = atomic_swap_int(&m->busy_lock, VPB_FREED);
 1201         if ((x & VPB_BIT_WAITERS) != 0)
 1202                 wakeup(m);
 1203 }
 1204 
 1205 /*
 1206  *      vm_page_unhold_pages:
 1207  *
 1208  *      Unhold each of the pages that is referenced by the given array.
 1209  */
 1210 void
 1211 vm_page_unhold_pages(vm_page_t *ma, int count)
 1212 {
 1213 
 1214         for (; count != 0; count--) {
 1215                 vm_page_unwire(*ma, PQ_ACTIVE);
 1216                 ma++;
 1217         }
 1218 }
 1219 
 1220 vm_page_t
 1221 PHYS_TO_VM_PAGE(vm_paddr_t pa)
 1222 {
 1223         vm_page_t m;
 1224 
 1225 #ifdef VM_PHYSSEG_SPARSE
 1226         m = vm_phys_paddr_to_vm_page(pa);
 1227         if (m == NULL)
 1228                 m = vm_phys_fictitious_to_vm_page(pa);
 1229         return (m);
 1230 #elif defined(VM_PHYSSEG_DENSE)
 1231         long pi;
 1232 
 1233         pi = atop(pa);
 1234         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
 1235                 m = &vm_page_array[pi - first_page];
 1236                 return (m);
 1237         }
 1238         return (vm_phys_fictitious_to_vm_page(pa));
 1239 #else
 1240 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
 1241 #endif
 1242 }
 1243 
 1244 /*
 1245  *      vm_page_getfake:
 1246  *
 1247  *      Create a fictitious page with the specified physical address and
 1248  *      memory attribute.  The memory attribute is the only the machine-
 1249  *      dependent aspect of a fictitious page that must be initialized.
 1250  */
 1251 vm_page_t
 1252 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
 1253 {
 1254         vm_page_t m;
 1255 
 1256         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
 1257         vm_page_initfake(m, paddr, memattr);
 1258         return (m);
 1259 }
 1260 
 1261 void
 1262 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
 1263 {
 1264 
 1265         if ((m->flags & PG_FICTITIOUS) != 0) {
 1266                 /*
 1267                  * The page's memattr might have changed since the
 1268                  * previous initialization.  Update the pmap to the
 1269                  * new memattr.
 1270                  */
 1271                 goto memattr;
 1272         }
 1273         m->phys_addr = paddr;
 1274         m->a.queue = PQ_NONE;
 1275         /* Fictitious pages don't use "segind". */
 1276         m->flags = PG_FICTITIOUS;
 1277         /* Fictitious pages don't use "order" or "pool". */
 1278         m->oflags = VPO_UNMANAGED;
 1279         m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
 1280         /* Fictitious pages are unevictable. */
 1281         m->ref_count = 1;
 1282         pmap_page_init(m);
 1283 memattr:
 1284         pmap_page_set_memattr(m, memattr);
 1285 }
 1286 
 1287 /*
 1288  *      vm_page_putfake:
 1289  *
 1290  *      Release a fictitious page.
 1291  */
 1292 void
 1293 vm_page_putfake(vm_page_t m)
 1294 {
 1295 
 1296         KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
 1297         KASSERT((m->flags & PG_FICTITIOUS) != 0,
 1298             ("vm_page_putfake: bad page %p", m));
 1299         vm_page_assert_xbusied(m);
 1300         vm_page_busy_free(m);
 1301         uma_zfree(fakepg_zone, m);
 1302 }
 1303 
 1304 /*
 1305  *      vm_page_updatefake:
 1306  *
 1307  *      Update the given fictitious page to the specified physical address and
 1308  *      memory attribute.
 1309  */
 1310 void
 1311 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
 1312 {
 1313 
 1314         KASSERT((m->flags & PG_FICTITIOUS) != 0,
 1315             ("vm_page_updatefake: bad page %p", m));
 1316         m->phys_addr = paddr;
 1317         pmap_page_set_memattr(m, memattr);
 1318 }
 1319 
 1320 /*
 1321  *      vm_page_free:
 1322  *
 1323  *      Free a page.
 1324  */
 1325 void
 1326 vm_page_free(vm_page_t m)
 1327 {
 1328 
 1329         m->flags &= ~PG_ZERO;
 1330         vm_page_free_toq(m);
 1331 }
 1332 
 1333 /*
 1334  *      vm_page_free_zero:
 1335  *
 1336  *      Free a page to the zerod-pages queue
 1337  */
 1338 void
 1339 vm_page_free_zero(vm_page_t m)
 1340 {
 1341 
 1342         m->flags |= PG_ZERO;
 1343         vm_page_free_toq(m);
 1344 }
 1345 
 1346 /*
 1347  * Unbusy and handle the page queueing for a page from a getpages request that
 1348  * was optionally read ahead or behind.
 1349  */
 1350 void
 1351 vm_page_readahead_finish(vm_page_t m)
 1352 {
 1353 
 1354         /* We shouldn't put invalid pages on queues. */
 1355         KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
 1356 
 1357         /*
 1358          * Since the page is not the actually needed one, whether it should
 1359          * be activated or deactivated is not obvious.  Empirical results
 1360          * have shown that deactivating the page is usually the best choice,
 1361          * unless the page is wanted by another thread.
 1362          */
 1363         if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
 1364                 vm_page_activate(m);
 1365         else
 1366                 vm_page_deactivate(m);
 1367         vm_page_xunbusy_unchecked(m);
 1368 }
 1369 
 1370 /*
 1371  * Destroy the identity of an invalid page and free it if possible.
 1372  * This is intended to be used when reading a page from backing store fails.
 1373  */
 1374 void
 1375 vm_page_free_invalid(vm_page_t m)
 1376 {
 1377 
 1378         KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
 1379         KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
 1380         KASSERT(m->object != NULL, ("page %p has no object", m));
 1381         VM_OBJECT_ASSERT_WLOCKED(m->object);
 1382 
 1383         /*
 1384          * We may be attempting to free the page as part of the handling for an
 1385          * I/O error, in which case the page was xbusied by a different thread.
 1386          */
 1387         vm_page_xbusy_claim(m);
 1388 
 1389         /*
 1390          * If someone has wired this page while the object lock
 1391          * was not held, then the thread that unwires is responsible
 1392          * for freeing the page.  Otherwise just free the page now.
 1393          * The wire count of this unmapped page cannot change while
 1394          * we have the page xbusy and the page's object wlocked.
 1395          */
 1396         if (vm_page_remove(m))
 1397                 vm_page_free(m);
 1398 }
 1399 
 1400 /*
 1401  *      vm_page_dirty_KBI:              [ internal use only ]
 1402  *
 1403  *      Set all bits in the page's dirty field.
 1404  *
 1405  *      The object containing the specified page must be locked if the
 1406  *      call is made from the machine-independent layer.
 1407  *
 1408  *      See vm_page_clear_dirty_mask().
 1409  *
 1410  *      This function should only be called by vm_page_dirty().
 1411  */
 1412 void
 1413 vm_page_dirty_KBI(vm_page_t m)
 1414 {
 1415 
 1416         /* Refer to this operation by its public name. */
 1417         KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
 1418         m->dirty = VM_PAGE_BITS_ALL;
 1419 }
 1420 
 1421 /*
 1422  *      vm_page_insert:         [ internal use only ]
 1423  *
 1424  *      Inserts the given mem entry into the object and object list.
 1425  *
 1426  *      The object must be locked.
 1427  */
 1428 int
 1429 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
 1430 {
 1431         vm_page_t mpred;
 1432 
 1433         VM_OBJECT_ASSERT_WLOCKED(object);
 1434         mpred = vm_radix_lookup_le(&object->rtree, pindex);
 1435         return (vm_page_insert_after(m, object, pindex, mpred));
 1436 }
 1437 
 1438 /*
 1439  *      vm_page_insert_after:
 1440  *
 1441  *      Inserts the page "m" into the specified object at offset "pindex".
 1442  *
 1443  *      The page "mpred" must immediately precede the offset "pindex" within
 1444  *      the specified object.
 1445  *
 1446  *      The object must be locked.
 1447  */
 1448 static int
 1449 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
 1450     vm_page_t mpred)
 1451 {
 1452         vm_page_t msucc;
 1453 
 1454         VM_OBJECT_ASSERT_WLOCKED(object);
 1455         KASSERT(m->object == NULL,
 1456             ("vm_page_insert_after: page already inserted"));
 1457         if (mpred != NULL) {
 1458                 KASSERT(mpred->object == object,
 1459                     ("vm_page_insert_after: object doesn't contain mpred"));
 1460                 KASSERT(mpred->pindex < pindex,
 1461                     ("vm_page_insert_after: mpred doesn't precede pindex"));
 1462                 msucc = TAILQ_NEXT(mpred, listq);
 1463         } else
 1464                 msucc = TAILQ_FIRST(&object->memq);
 1465         if (msucc != NULL)
 1466                 KASSERT(msucc->pindex > pindex,
 1467                     ("vm_page_insert_after: msucc doesn't succeed pindex"));
 1468 
 1469         /*
 1470          * Record the object/offset pair in this page.
 1471          */
 1472         m->object = object;
 1473         m->pindex = pindex;
 1474         m->ref_count |= VPRC_OBJREF;
 1475 
 1476         /*
 1477          * Now link into the object's ordered list of backed pages.
 1478          */
 1479         if (vm_radix_insert(&object->rtree, m)) {
 1480                 m->object = NULL;
 1481                 m->pindex = 0;
 1482                 m->ref_count &= ~VPRC_OBJREF;
 1483                 return (1);
 1484         }
 1485         vm_page_insert_radixdone(m, object, mpred);
 1486         vm_pager_page_inserted(object, m);
 1487         return (0);
 1488 }
 1489 
 1490 /*
 1491  *      vm_page_insert_radixdone:
 1492  *
 1493  *      Complete page "m" insertion into the specified object after the
 1494  *      radix trie hooking.
 1495  *
 1496  *      The page "mpred" must precede the offset "m->pindex" within the
 1497  *      specified object.
 1498  *
 1499  *      The object must be locked.
 1500  */
 1501 static void
 1502 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
 1503 {
 1504 
 1505         VM_OBJECT_ASSERT_WLOCKED(object);
 1506         KASSERT(object != NULL && m->object == object,
 1507             ("vm_page_insert_radixdone: page %p has inconsistent object", m));
 1508         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
 1509             ("vm_page_insert_radixdone: page %p is missing object ref", m));
 1510         if (mpred != NULL) {
 1511                 KASSERT(mpred->object == object,
 1512                     ("vm_page_insert_radixdone: object doesn't contain mpred"));
 1513                 KASSERT(mpred->pindex < m->pindex,
 1514                     ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
 1515         }
 1516 
 1517         if (mpred != NULL)
 1518                 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
 1519         else
 1520                 TAILQ_INSERT_HEAD(&object->memq, m, listq);
 1521 
 1522         /*
 1523          * Show that the object has one more resident page.
 1524          */
 1525         object->resident_page_count++;
 1526 
 1527         /*
 1528          * Hold the vnode until the last page is released.
 1529          */
 1530         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
 1531                 vhold(object->handle);
 1532 
 1533         /*
 1534          * Since we are inserting a new and possibly dirty page,
 1535          * update the object's generation count.
 1536          */
 1537         if (pmap_page_is_write_mapped(m))
 1538                 vm_object_set_writeable_dirty(object);
 1539 }
 1540 
 1541 /*
 1542  * Do the work to remove a page from its object.  The caller is responsible for
 1543  * updating the page's fields to reflect this removal.
 1544  */
 1545 static void
 1546 vm_page_object_remove(vm_page_t m)
 1547 {
 1548         vm_object_t object;
 1549         vm_page_t mrem __diagused;
 1550 
 1551         vm_page_assert_xbusied(m);
 1552         object = m->object;
 1553         VM_OBJECT_ASSERT_WLOCKED(object);
 1554         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
 1555             ("page %p is missing its object ref", m));
 1556 
 1557         /* Deferred free of swap space. */
 1558         if ((m->a.flags & PGA_SWAP_FREE) != 0)
 1559                 vm_pager_page_unswapped(m);
 1560 
 1561         vm_pager_page_removed(object, m);
 1562 
 1563         m->object = NULL;
 1564         mrem = vm_radix_remove(&object->rtree, m->pindex);
 1565         KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
 1566 
 1567         /*
 1568          * Now remove from the object's list of backed pages.
 1569          */
 1570         TAILQ_REMOVE(&object->memq, m, listq);
 1571 
 1572         /*
 1573          * And show that the object has one fewer resident page.
 1574          */
 1575         object->resident_page_count--;
 1576 
 1577         /*
 1578          * The vnode may now be recycled.
 1579          */
 1580         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
 1581                 vdrop(object->handle);
 1582 }
 1583 
 1584 /*
 1585  *      vm_page_remove:
 1586  *
 1587  *      Removes the specified page from its containing object, but does not
 1588  *      invalidate any backing storage.  Returns true if the object's reference
 1589  *      was the last reference to the page, and false otherwise.
 1590  *
 1591  *      The object must be locked and the page must be exclusively busied.
 1592  *      The exclusive busy will be released on return.  If this is not the
 1593  *      final ref and the caller does not hold a wire reference it may not
 1594  *      continue to access the page.
 1595  */
 1596 bool
 1597 vm_page_remove(vm_page_t m)
 1598 {
 1599         bool dropped;
 1600 
 1601         dropped = vm_page_remove_xbusy(m);
 1602         vm_page_xunbusy(m);
 1603 
 1604         return (dropped);
 1605 }
 1606 
 1607 /*
 1608  *      vm_page_remove_xbusy
 1609  *
 1610  *      Removes the page but leaves the xbusy held.  Returns true if this
 1611  *      removed the final ref and false otherwise.
 1612  */
 1613 bool
 1614 vm_page_remove_xbusy(vm_page_t m)
 1615 {
 1616 
 1617         vm_page_object_remove(m);
 1618         return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
 1619 }
 1620 
 1621 /*
 1622  *      vm_page_lookup:
 1623  *
 1624  *      Returns the page associated with the object/offset
 1625  *      pair specified; if none is found, NULL is returned.
 1626  *
 1627  *      The object must be locked.
 1628  */
 1629 vm_page_t
 1630 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
 1631 {
 1632 
 1633         VM_OBJECT_ASSERT_LOCKED(object);
 1634         return (vm_radix_lookup(&object->rtree, pindex));
 1635 }
 1636 
 1637 /*
 1638  *      vm_page_lookup_unlocked:
 1639  *
 1640  *      Returns the page associated with the object/offset pair specified;
 1641  *      if none is found, NULL is returned.  The page may be no longer be
 1642  *      present in the object at the time that this function returns.  Only
 1643  *      useful for opportunistic checks such as inmem().
 1644  */
 1645 vm_page_t
 1646 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
 1647 {
 1648 
 1649         return (vm_radix_lookup_unlocked(&object->rtree, pindex));
 1650 }
 1651 
 1652 /*
 1653  *      vm_page_relookup:
 1654  *
 1655  *      Returns a page that must already have been busied by
 1656  *      the caller.  Used for bogus page replacement.
 1657  */
 1658 vm_page_t
 1659 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
 1660 {
 1661         vm_page_t m;
 1662 
 1663         m = vm_radix_lookup_unlocked(&object->rtree, pindex);
 1664         KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
 1665             m->object == object && m->pindex == pindex,
 1666             ("vm_page_relookup: Invalid page %p", m));
 1667         return (m);
 1668 }
 1669 
 1670 /*
 1671  * This should only be used by lockless functions for releasing transient
 1672  * incorrect acquires.  The page may have been freed after we acquired a
 1673  * busy lock.  In this case busy_lock == VPB_FREED and we have nothing
 1674  * further to do.
 1675  */
 1676 static void
 1677 vm_page_busy_release(vm_page_t m)
 1678 {
 1679         u_int x;
 1680 
 1681         x = vm_page_busy_fetch(m);
 1682         for (;;) {
 1683                 if (x == VPB_FREED)
 1684                         break;
 1685                 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
 1686                         if (atomic_fcmpset_int(&m->busy_lock, &x,
 1687                             x - VPB_ONE_SHARER))
 1688                                 break;
 1689                         continue;
 1690                 }
 1691                 KASSERT((x & VPB_BIT_SHARED) != 0 ||
 1692                     (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
 1693                     ("vm_page_busy_release: %p xbusy not owned.", m));
 1694                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
 1695                         continue;
 1696                 if ((x & VPB_BIT_WAITERS) != 0)
 1697                         wakeup(m);
 1698                 break;
 1699         }
 1700 }
 1701 
 1702 /*
 1703  *      vm_page_find_least:
 1704  *
 1705  *      Returns the page associated with the object with least pindex
 1706  *      greater than or equal to the parameter pindex, or NULL.
 1707  *
 1708  *      The object must be locked.
 1709  */
 1710 vm_page_t
 1711 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
 1712 {
 1713         vm_page_t m;
 1714 
 1715         VM_OBJECT_ASSERT_LOCKED(object);
 1716         if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
 1717                 m = vm_radix_lookup_ge(&object->rtree, pindex);
 1718         return (m);
 1719 }
 1720 
 1721 /*
 1722  * Returns the given page's successor (by pindex) within the object if it is
 1723  * resident; if none is found, NULL is returned.
 1724  *
 1725  * The object must be locked.
 1726  */
 1727 vm_page_t
 1728 vm_page_next(vm_page_t m)
 1729 {
 1730         vm_page_t next;
 1731 
 1732         VM_OBJECT_ASSERT_LOCKED(m->object);
 1733         if ((next = TAILQ_NEXT(m, listq)) != NULL) {
 1734                 MPASS(next->object == m->object);
 1735                 if (next->pindex != m->pindex + 1)
 1736                         next = NULL;
 1737         }
 1738         return (next);
 1739 }
 1740 
 1741 /*
 1742  * Returns the given page's predecessor (by pindex) within the object if it is
 1743  * resident; if none is found, NULL is returned.
 1744  *
 1745  * The object must be locked.
 1746  */
 1747 vm_page_t
 1748 vm_page_prev(vm_page_t m)
 1749 {
 1750         vm_page_t prev;
 1751 
 1752         VM_OBJECT_ASSERT_LOCKED(m->object);
 1753         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
 1754                 MPASS(prev->object == m->object);
 1755                 if (prev->pindex != m->pindex - 1)
 1756                         prev = NULL;
 1757         }
 1758         return (prev);
 1759 }
 1760 
 1761 /*
 1762  * Uses the page mnew as a replacement for an existing page at index
 1763  * pindex which must be already present in the object.
 1764  *
 1765  * Both pages must be exclusively busied on enter.  The old page is
 1766  * unbusied on exit.
 1767  *
 1768  * A return value of true means mold is now free.  If this is not the
 1769  * final ref and the caller does not hold a wire reference it may not
 1770  * continue to access the page.
 1771  */
 1772 static bool
 1773 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
 1774     vm_page_t mold)
 1775 {
 1776         vm_page_t mret __diagused;
 1777         bool dropped;
 1778 
 1779         VM_OBJECT_ASSERT_WLOCKED(object);
 1780         vm_page_assert_xbusied(mold);
 1781         KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
 1782             ("vm_page_replace: page %p already in object", mnew));
 1783 
 1784         /*
 1785          * This function mostly follows vm_page_insert() and
 1786          * vm_page_remove() without the radix, object count and vnode
 1787          * dance.  Double check such functions for more comments.
 1788          */
 1789 
 1790         mnew->object = object;
 1791         mnew->pindex = pindex;
 1792         atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
 1793         mret = vm_radix_replace(&object->rtree, mnew);
 1794         KASSERT(mret == mold,
 1795             ("invalid page replacement, mold=%p, mret=%p", mold, mret));
 1796         KASSERT((mold->oflags & VPO_UNMANAGED) ==
 1797             (mnew->oflags & VPO_UNMANAGED),
 1798             ("vm_page_replace: mismatched VPO_UNMANAGED"));
 1799 
 1800         /* Keep the resident page list in sorted order. */
 1801         TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
 1802         TAILQ_REMOVE(&object->memq, mold, listq);
 1803         mold->object = NULL;
 1804 
 1805         /*
 1806          * The object's resident_page_count does not change because we have
 1807          * swapped one page for another, but the generation count should
 1808          * change if the page is dirty.
 1809          */
 1810         if (pmap_page_is_write_mapped(mnew))
 1811                 vm_object_set_writeable_dirty(object);
 1812         dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
 1813         vm_page_xunbusy(mold);
 1814 
 1815         return (dropped);
 1816 }
 1817 
 1818 void
 1819 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
 1820     vm_page_t mold)
 1821 {
 1822 
 1823         vm_page_assert_xbusied(mnew);
 1824 
 1825         if (vm_page_replace_hold(mnew, object, pindex, mold))
 1826                 vm_page_free(mold);
 1827 }
 1828 
 1829 /*
 1830  *      vm_page_rename:
 1831  *
 1832  *      Move the given memory entry from its
 1833  *      current object to the specified target object/offset.
 1834  *
 1835  *      Note: swap associated with the page must be invalidated by the move.  We
 1836  *            have to do this for several reasons:  (1) we aren't freeing the
 1837  *            page, (2) we are dirtying the page, (3) the VM system is probably
 1838  *            moving the page from object A to B, and will then later move
 1839  *            the backing store from A to B and we can't have a conflict.
 1840  *
 1841  *      Note: we *always* dirty the page.  It is necessary both for the
 1842  *            fact that we moved it, and because we may be invalidating
 1843  *            swap.
 1844  *
 1845  *      The objects must be locked.
 1846  */
 1847 int
 1848 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
 1849 {
 1850         vm_page_t mpred;
 1851         vm_pindex_t opidx;
 1852 
 1853         VM_OBJECT_ASSERT_WLOCKED(new_object);
 1854 
 1855         KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
 1856         mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
 1857         KASSERT(mpred == NULL || mpred->pindex != new_pindex,
 1858             ("vm_page_rename: pindex already renamed"));
 1859 
 1860         /*
 1861          * Create a custom version of vm_page_insert() which does not depend
 1862          * by m_prev and can cheat on the implementation aspects of the
 1863          * function.
 1864          */
 1865         opidx = m->pindex;
 1866         m->pindex = new_pindex;
 1867         if (vm_radix_insert(&new_object->rtree, m)) {
 1868                 m->pindex = opidx;
 1869                 return (1);
 1870         }
 1871 
 1872         /*
 1873          * The operation cannot fail anymore.  The removal must happen before
 1874          * the listq iterator is tainted.
 1875          */
 1876         m->pindex = opidx;
 1877         vm_page_object_remove(m);
 1878 
 1879         /* Return back to the new pindex to complete vm_page_insert(). */
 1880         m->pindex = new_pindex;
 1881         m->object = new_object;
 1882 
 1883         vm_page_insert_radixdone(m, new_object, mpred);
 1884         vm_page_dirty(m);
 1885         vm_pager_page_inserted(new_object, m);
 1886         return (0);
 1887 }
 1888 
 1889 /*
 1890  *      vm_page_alloc:
 1891  *
 1892  *      Allocate and return a page that is associated with the specified
 1893  *      object and offset pair.  By default, this page is exclusive busied.
 1894  *
 1895  *      The caller must always specify an allocation class.
 1896  *
 1897  *      allocation classes:
 1898  *      VM_ALLOC_NORMAL         normal process request
 1899  *      VM_ALLOC_SYSTEM         system *really* needs a page
 1900  *      VM_ALLOC_INTERRUPT      interrupt time request
 1901  *
 1902  *      optional allocation flags:
 1903  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
 1904  *                              intends to allocate
 1905  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
 1906  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
 1907  *      VM_ALLOC_SBUSY          shared busy the allocated page
 1908  *      VM_ALLOC_WIRED          wire the allocated page
 1909  *      VM_ALLOC_ZERO           prefer a zeroed page
 1910  */
 1911 vm_page_t
 1912 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
 1913 {
 1914 
 1915         return (vm_page_alloc_after(object, pindex, req,
 1916             vm_radix_lookup_le(&object->rtree, pindex)));
 1917 }
 1918 
 1919 vm_page_t
 1920 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
 1921     int req)
 1922 {
 1923 
 1924         return (vm_page_alloc_domain_after(object, pindex, domain, req,
 1925             vm_radix_lookup_le(&object->rtree, pindex)));
 1926 }
 1927 
 1928 /*
 1929  * Allocate a page in the specified object with the given page index.  To
 1930  * optimize insertion of the page into the object, the caller must also specifiy
 1931  * the resident page in the object with largest index smaller than the given
 1932  * page index, or NULL if no such page exists.
 1933  */
 1934 vm_page_t
 1935 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
 1936     int req, vm_page_t mpred)
 1937 {
 1938         struct vm_domainset_iter di;
 1939         vm_page_t m;
 1940         int domain;
 1941 
 1942         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
 1943         do {
 1944                 m = vm_page_alloc_domain_after(object, pindex, domain, req,
 1945                     mpred);
 1946                 if (m != NULL)
 1947                         break;
 1948         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
 1949 
 1950         return (m);
 1951 }
 1952 
 1953 /*
 1954  * Returns true if the number of free pages exceeds the minimum
 1955  * for the request class and false otherwise.
 1956  */
 1957 static int
 1958 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
 1959 {
 1960         u_int limit, old, new;
 1961 
 1962         if (req_class == VM_ALLOC_INTERRUPT)
 1963                 limit = 0;
 1964         else if (req_class == VM_ALLOC_SYSTEM)
 1965                 limit = vmd->vmd_interrupt_free_min;
 1966         else
 1967                 limit = vmd->vmd_free_reserved;
 1968 
 1969         /*
 1970          * Attempt to reserve the pages.  Fail if we're below the limit.
 1971          */
 1972         limit += npages;
 1973         old = vmd->vmd_free_count;
 1974         do {
 1975                 if (old < limit)
 1976                         return (0);
 1977                 new = old - npages;
 1978         } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
 1979 
 1980         /* Wake the page daemon if we've crossed the threshold. */
 1981         if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
 1982                 pagedaemon_wakeup(vmd->vmd_domain);
 1983 
 1984         /* Only update bitsets on transitions. */
 1985         if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
 1986             (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
 1987                 vm_domain_set(vmd);
 1988 
 1989         return (1);
 1990 }
 1991 
 1992 int
 1993 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
 1994 {
 1995         int req_class;
 1996 
 1997         /*
 1998          * The page daemon is allowed to dig deeper into the free page list.
 1999          */
 2000         req_class = req & VM_ALLOC_CLASS_MASK;
 2001         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
 2002                 req_class = VM_ALLOC_SYSTEM;
 2003         return (_vm_domain_allocate(vmd, req_class, npages));
 2004 }
 2005 
 2006 vm_page_t
 2007 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
 2008     int req, vm_page_t mpred)
 2009 {
 2010         struct vm_domain *vmd;
 2011         vm_page_t m;
 2012         int flags;
 2013 
 2014 #define VPA_FLAGS       (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL |      \
 2015                          VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY |            \
 2016                          VM_ALLOC_SBUSY | VM_ALLOC_WIRED |              \
 2017                          VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK)
 2018         KASSERT((req & ~VPA_FLAGS) == 0,
 2019             ("invalid request %#x", req));
 2020         KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
 2021             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
 2022             ("invalid request %#x", req));
 2023         KASSERT(mpred == NULL || mpred->pindex < pindex,
 2024             ("mpred %p doesn't precede pindex 0x%jx", mpred,
 2025             (uintmax_t)pindex));
 2026         VM_OBJECT_ASSERT_WLOCKED(object);
 2027 
 2028         flags = 0;
 2029         m = NULL;
 2030         if (!vm_pager_can_alloc_page(object, pindex))
 2031                 return (NULL);
 2032 again:
 2033 #if VM_NRESERVLEVEL > 0
 2034         /*
 2035          * Can we allocate the page from a reservation?
 2036          */
 2037         if (vm_object_reserv(object) &&
 2038             (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
 2039             NULL) {
 2040                 goto found;
 2041         }
 2042 #endif
 2043         vmd = VM_DOMAIN(domain);
 2044         if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
 2045                 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
 2046                     M_NOWAIT | M_NOVM);
 2047                 if (m != NULL) {
 2048                         flags |= PG_PCPU_CACHE;
 2049                         goto found;
 2050                 }
 2051         }
 2052         if (vm_domain_allocate(vmd, req, 1)) {
 2053                 /*
 2054                  * If not, allocate it from the free page queues.
 2055                  */
 2056                 vm_domain_free_lock(vmd);
 2057                 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
 2058                 vm_domain_free_unlock(vmd);
 2059                 if (m == NULL) {
 2060                         vm_domain_freecnt_inc(vmd, 1);
 2061 #if VM_NRESERVLEVEL > 0
 2062                         if (vm_reserv_reclaim_inactive(domain))
 2063                                 goto again;
 2064 #endif
 2065                 }
 2066         }
 2067         if (m == NULL) {
 2068                 /*
 2069                  * Not allocatable, give up.
 2070                  */
 2071                 if (vm_domain_alloc_fail(vmd, object, req))
 2072                         goto again;
 2073                 return (NULL);
 2074         }
 2075 
 2076         /*
 2077          * At this point we had better have found a good page.
 2078          */
 2079 found:
 2080         vm_page_dequeue(m);
 2081         vm_page_alloc_check(m);
 2082 
 2083         /*
 2084          * Initialize the page.  Only the PG_ZERO flag is inherited.
 2085          */
 2086         flags |= m->flags & PG_ZERO;
 2087         if ((req & VM_ALLOC_NODUMP) != 0)
 2088                 flags |= PG_NODUMP;
 2089         m->flags = flags;
 2090         m->a.flags = 0;
 2091         m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
 2092         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
 2093                 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
 2094         else if ((req & VM_ALLOC_SBUSY) != 0)
 2095                 m->busy_lock = VPB_SHARERS_WORD(1);
 2096         else
 2097                 m->busy_lock = VPB_UNBUSIED;
 2098         if (req & VM_ALLOC_WIRED) {
 2099                 vm_wire_add(1);
 2100                 m->ref_count = 1;
 2101         }
 2102         m->a.act_count = 0;
 2103 
 2104         if (vm_page_insert_after(m, object, pindex, mpred)) {
 2105                 if (req & VM_ALLOC_WIRED) {
 2106                         vm_wire_sub(1);
 2107                         m->ref_count = 0;
 2108                 }
 2109                 KASSERT(m->object == NULL, ("page %p has object", m));
 2110                 m->oflags = VPO_UNMANAGED;
 2111                 m->busy_lock = VPB_UNBUSIED;
 2112                 /* Don't change PG_ZERO. */
 2113                 vm_page_free_toq(m);
 2114                 if (req & VM_ALLOC_WAITFAIL) {
 2115                         VM_OBJECT_WUNLOCK(object);
 2116                         vm_radix_wait();
 2117                         VM_OBJECT_WLOCK(object);
 2118                 }
 2119                 return (NULL);
 2120         }
 2121 
 2122         /* Ignore device objects; the pager sets "memattr" for them. */
 2123         if (object->memattr != VM_MEMATTR_DEFAULT &&
 2124             (object->flags & OBJ_FICTITIOUS) == 0)
 2125                 pmap_page_set_memattr(m, object->memattr);
 2126 
 2127         return (m);
 2128 }
 2129 
 2130 /*
 2131  *      vm_page_alloc_contig:
 2132  *
 2133  *      Allocate a contiguous set of physical pages of the given size "npages"
 2134  *      from the free lists.  All of the physical pages must be at or above
 2135  *      the given physical address "low" and below the given physical address
 2136  *      "high".  The given value "alignment" determines the alignment of the
 2137  *      first physical page in the set.  If the given value "boundary" is
 2138  *      non-zero, then the set of physical pages cannot cross any physical
 2139  *      address boundary that is a multiple of that value.  Both "alignment"
 2140  *      and "boundary" must be a power of two.
 2141  *
 2142  *      If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
 2143  *      then the memory attribute setting for the physical pages is configured
 2144  *      to the object's memory attribute setting.  Otherwise, the memory
 2145  *      attribute setting for the physical pages is configured to "memattr",
 2146  *      overriding the object's memory attribute setting.  However, if the
 2147  *      object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
 2148  *      memory attribute setting for the physical pages cannot be configured
 2149  *      to VM_MEMATTR_DEFAULT.
 2150  *
 2151  *      The specified object may not contain fictitious pages.
 2152  *
 2153  *      The caller must always specify an allocation class.
 2154  *
 2155  *      allocation classes:
 2156  *      VM_ALLOC_NORMAL         normal process request
 2157  *      VM_ALLOC_SYSTEM         system *really* needs a page
 2158  *      VM_ALLOC_INTERRUPT      interrupt time request
 2159  *
 2160  *      optional allocation flags:
 2161  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
 2162  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
 2163  *      VM_ALLOC_SBUSY          shared busy the allocated page
 2164  *      VM_ALLOC_WIRED          wire the allocated page
 2165  *      VM_ALLOC_ZERO           prefer a zeroed page
 2166  */
 2167 vm_page_t
 2168 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
 2169     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
 2170     vm_paddr_t boundary, vm_memattr_t memattr)
 2171 {
 2172         struct vm_domainset_iter di;
 2173         vm_page_t m;
 2174         int domain;
 2175 
 2176         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
 2177         do {
 2178                 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
 2179                     npages, low, high, alignment, boundary, memattr);
 2180                 if (m != NULL)
 2181                         break;
 2182         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
 2183 
 2184         return (m);
 2185 }
 2186 
 2187 static vm_page_t
 2188 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
 2189     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
 2190 {
 2191         struct vm_domain *vmd;
 2192         vm_page_t m_ret;
 2193 
 2194         /*
 2195          * Can we allocate the pages without the number of free pages falling
 2196          * below the lower bound for the allocation class?
 2197          */
 2198         vmd = VM_DOMAIN(domain);
 2199         if (!vm_domain_allocate(vmd, req, npages))
 2200                 return (NULL);
 2201         /*
 2202          * Try to allocate the pages from the free page queues.
 2203          */
 2204         vm_domain_free_lock(vmd);
 2205         m_ret = vm_phys_alloc_contig(domain, npages, low, high,
 2206             alignment, boundary);
 2207         vm_domain_free_unlock(vmd);
 2208         if (m_ret != NULL)
 2209                 return (m_ret);
 2210 #if VM_NRESERVLEVEL > 0
 2211         /*
 2212          * Try to break a reservation to allocate the pages.
 2213          */
 2214         if ((req & VM_ALLOC_NORECLAIM) == 0) {
 2215                 m_ret = vm_reserv_reclaim_contig(domain, npages, low,
 2216                     high, alignment, boundary);
 2217                 if (m_ret != NULL)
 2218                         return (m_ret);
 2219         }
 2220 #endif
 2221         vm_domain_freecnt_inc(vmd, npages);
 2222         return (NULL);
 2223 }
 2224 
 2225 vm_page_t
 2226 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
 2227     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
 2228     vm_paddr_t boundary, vm_memattr_t memattr)
 2229 {
 2230         vm_page_t m, m_ret, mpred;
 2231         u_int busy_lock, flags, oflags;
 2232 
 2233 #define VPAC_FLAGS      (VPA_FLAGS | VM_ALLOC_NORECLAIM)
 2234         KASSERT((req & ~VPAC_FLAGS) == 0,
 2235             ("invalid request %#x", req));
 2236         KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
 2237             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
 2238             ("invalid request %#x", req));
 2239         KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
 2240             (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
 2241             ("invalid request %#x", req));
 2242         VM_OBJECT_ASSERT_WLOCKED(object);
 2243         KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
 2244             ("vm_page_alloc_contig: object %p has fictitious pages",
 2245             object));
 2246         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
 2247 
 2248         mpred = vm_radix_lookup_le(&object->rtree, pindex);
 2249         KASSERT(mpred == NULL || mpred->pindex != pindex,
 2250             ("vm_page_alloc_contig: pindex already allocated"));
 2251         for (;;) {
 2252 #if VM_NRESERVLEVEL > 0
 2253                 /*
 2254                  * Can we allocate the pages from a reservation?
 2255                  */
 2256                 if (vm_object_reserv(object) &&
 2257                     (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
 2258                     mpred, npages, low, high, alignment, boundary)) != NULL) {
 2259                         break;
 2260                 }
 2261 #endif
 2262                 if ((m_ret = vm_page_find_contig_domain(domain, req, npages,
 2263                     low, high, alignment, boundary)) != NULL)
 2264                         break;
 2265                 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req))
 2266                         return (NULL);
 2267         }
 2268         for (m = m_ret; m < &m_ret[npages]; m++) {
 2269                 vm_page_dequeue(m);
 2270                 vm_page_alloc_check(m);
 2271         }
 2272 
 2273         /*
 2274          * Initialize the pages.  Only the PG_ZERO flag is inherited.
 2275          */
 2276         flags = PG_ZERO;
 2277         if ((req & VM_ALLOC_NODUMP) != 0)
 2278                 flags |= PG_NODUMP;
 2279         oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
 2280         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
 2281                 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
 2282         else if ((req & VM_ALLOC_SBUSY) != 0)
 2283                 busy_lock = VPB_SHARERS_WORD(1);
 2284         else
 2285                 busy_lock = VPB_UNBUSIED;
 2286         if ((req & VM_ALLOC_WIRED) != 0)
 2287                 vm_wire_add(npages);
 2288         if (object->memattr != VM_MEMATTR_DEFAULT &&
 2289             memattr == VM_MEMATTR_DEFAULT)
 2290                 memattr = object->memattr;
 2291         for (m = m_ret; m < &m_ret[npages]; m++) {
 2292                 m->a.flags = 0;
 2293                 m->flags = (m->flags | PG_NODUMP) & flags;
 2294                 m->busy_lock = busy_lock;
 2295                 if ((req & VM_ALLOC_WIRED) != 0)
 2296                         m->ref_count = 1;
 2297                 m->a.act_count = 0;
 2298                 m->oflags = oflags;
 2299                 if (vm_page_insert_after(m, object, pindex, mpred)) {
 2300                         if ((req & VM_ALLOC_WIRED) != 0)
 2301                                 vm_wire_sub(npages);
 2302                         KASSERT(m->object == NULL,
 2303                             ("page %p has object", m));
 2304                         mpred = m;
 2305                         for (m = m_ret; m < &m_ret[npages]; m++) {
 2306                                 if (m <= mpred &&
 2307                                     (req & VM_ALLOC_WIRED) != 0)
 2308                                         m->ref_count = 0;
 2309                                 m->oflags = VPO_UNMANAGED;
 2310                                 m->busy_lock = VPB_UNBUSIED;
 2311                                 /* Don't change PG_ZERO. */
 2312                                 vm_page_free_toq(m);
 2313                         }
 2314                         if (req & VM_ALLOC_WAITFAIL) {
 2315                                 VM_OBJECT_WUNLOCK(object);
 2316                                 vm_radix_wait();
 2317                                 VM_OBJECT_WLOCK(object);
 2318                         }
 2319                         return (NULL);
 2320                 }
 2321                 mpred = m;
 2322                 if (memattr != VM_MEMATTR_DEFAULT)
 2323                         pmap_page_set_memattr(m, memattr);
 2324                 pindex++;
 2325         }
 2326         return (m_ret);
 2327 }
 2328 
 2329 /*
 2330  * Allocate a physical page that is not intended to be inserted into a VM
 2331  * object.  If the "freelist" parameter is not equal to VM_NFREELIST, then only
 2332  * pages from the specified vm_phys freelist will be returned.
 2333  */
 2334 static __always_inline vm_page_t
 2335 _vm_page_alloc_noobj_domain(int domain, const int freelist, int req)
 2336 {
 2337         struct vm_domain *vmd;
 2338         vm_page_t m;
 2339         int flags;
 2340 
 2341 #define VPAN_FLAGS      (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL |      \
 2342                          VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK |            \
 2343                          VM_ALLOC_NOBUSY | VM_ALLOC_WIRED |             \
 2344                          VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK)
 2345         KASSERT((req & ~VPAN_FLAGS) == 0,
 2346             ("invalid request %#x", req));
 2347 
 2348         flags = (req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0;
 2349         vmd = VM_DOMAIN(domain);
 2350 again:
 2351         if (freelist == VM_NFREELIST &&
 2352             vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
 2353                 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
 2354                     M_NOWAIT | M_NOVM);
 2355                 if (m != NULL) {
 2356                         flags |= PG_PCPU_CACHE;
 2357                         goto found;
 2358                 }
 2359         }
 2360 
 2361         if (vm_domain_allocate(vmd, req, 1)) {
 2362                 vm_domain_free_lock(vmd);
 2363                 if (freelist == VM_NFREELIST)
 2364                         m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
 2365                 else
 2366                         m = vm_phys_alloc_freelist_pages(domain, freelist,
 2367                             VM_FREEPOOL_DIRECT, 0);
 2368                 vm_domain_free_unlock(vmd);
 2369                 if (m == NULL) {
 2370                         vm_domain_freecnt_inc(vmd, 1);
 2371 #if VM_NRESERVLEVEL > 0
 2372                         if (freelist == VM_NFREELIST &&
 2373                             vm_reserv_reclaim_inactive(domain))
 2374                                 goto again;
 2375 #endif
 2376                 }
 2377         }
 2378         if (m == NULL) {
 2379                 if (vm_domain_alloc_fail(vmd, NULL, req))
 2380                         goto again;
 2381                 return (NULL);
 2382         }
 2383 
 2384 found:
 2385         vm_page_dequeue(m);
 2386         vm_page_alloc_check(m);
 2387 
 2388         /*
 2389          * Consumers should not rely on a useful default pindex value.
 2390          */
 2391         m->pindex = 0xdeadc0dedeadc0de;
 2392         m->flags = (m->flags & PG_ZERO) | flags;
 2393         m->a.flags = 0;
 2394         m->oflags = VPO_UNMANAGED;
 2395         m->busy_lock = VPB_UNBUSIED;
 2396         if ((req & VM_ALLOC_WIRED) != 0) {
 2397                 vm_wire_add(1);
 2398                 m->ref_count = 1;
 2399         }
 2400 
 2401         if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
 2402                 pmap_zero_page(m);
 2403 
 2404         return (m);
 2405 }
 2406 
 2407 vm_page_t
 2408 vm_page_alloc_freelist(int freelist, int req)
 2409 {
 2410         struct vm_domainset_iter di;
 2411         vm_page_t m;
 2412         int domain;
 2413 
 2414         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
 2415         do {
 2416                 m = vm_page_alloc_freelist_domain(domain, freelist, req);
 2417                 if (m != NULL)
 2418                         break;
 2419         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
 2420 
 2421         return (m);
 2422 }
 2423 
 2424 vm_page_t
 2425 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
 2426 {
 2427         KASSERT(freelist >= 0 && freelist < VM_NFREELIST,
 2428             ("%s: invalid freelist %d", __func__, freelist));
 2429 
 2430         return (_vm_page_alloc_noobj_domain(domain, freelist, req));
 2431 }
 2432 
 2433 vm_page_t
 2434 vm_page_alloc_noobj(int req)
 2435 {
 2436         struct vm_domainset_iter di;
 2437         vm_page_t m;
 2438         int domain;
 2439 
 2440         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
 2441         do {
 2442                 m = vm_page_alloc_noobj_domain(domain, req);
 2443                 if (m != NULL)
 2444                         break;
 2445         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
 2446 
 2447         return (m);
 2448 }
 2449 
 2450 vm_page_t
 2451 vm_page_alloc_noobj_domain(int domain, int req)
 2452 {
 2453         return (_vm_page_alloc_noobj_domain(domain, VM_NFREELIST, req));
 2454 }
 2455 
 2456 vm_page_t
 2457 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
 2458     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
 2459     vm_memattr_t memattr)
 2460 {
 2461         struct vm_domainset_iter di;
 2462         vm_page_t m;
 2463         int domain;
 2464 
 2465         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
 2466         do {
 2467                 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
 2468                     high, alignment, boundary, memattr);
 2469                 if (m != NULL)
 2470                         break;
 2471         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
 2472 
 2473         return (m);
 2474 }
 2475 
 2476 vm_page_t
 2477 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
 2478     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
 2479     vm_memattr_t memattr)
 2480 {
 2481         vm_page_t m, m_ret;
 2482         u_int flags;
 2483 
 2484 #define VPANC_FLAGS     (VPAN_FLAGS | VM_ALLOC_NORECLAIM)
 2485         KASSERT((req & ~VPANC_FLAGS) == 0,
 2486             ("invalid request %#x", req));
 2487         KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
 2488             (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
 2489             ("invalid request %#x", req));
 2490         KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
 2491             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
 2492             ("invalid request %#x", req));
 2493         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
 2494 
 2495         while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
 2496             low, high, alignment, boundary)) == NULL) {
 2497                 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
 2498                         return (NULL);
 2499         }
 2500 
 2501         /*
 2502          * Initialize the pages.  Only the PG_ZERO flag is inherited.
 2503          */
 2504         flags = PG_ZERO;
 2505         if ((req & VM_ALLOC_NODUMP) != 0)
 2506                 flags |= PG_NODUMP;
 2507         if ((req & VM_ALLOC_WIRED) != 0)
 2508                 vm_wire_add(npages);
 2509         for (m = m_ret; m < &m_ret[npages]; m++) {
 2510                 vm_page_dequeue(m);
 2511                 vm_page_alloc_check(m);
 2512 
 2513                 /*
 2514                  * Consumers should not rely on a useful default pindex value.
 2515                  */
 2516                 m->pindex = 0xdeadc0dedeadc0de;
 2517                 m->a.flags = 0;
 2518                 m->flags = (m->flags | PG_NODUMP) & flags;
 2519                 m->busy_lock = VPB_UNBUSIED;
 2520                 if ((req & VM_ALLOC_WIRED) != 0)
 2521                         m->ref_count = 1;
 2522                 m->a.act_count = 0;
 2523                 m->oflags = VPO_UNMANAGED;
 2524 
 2525                 /*
 2526                  * Zero the page before updating any mappings since the page is
 2527                  * not yet shared with any devices which might require the
 2528                  * non-default memory attribute.  pmap_page_set_memattr()
 2529                  * flushes data caches before returning.
 2530                  */
 2531                 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
 2532                         pmap_zero_page(m);
 2533                 if (memattr != VM_MEMATTR_DEFAULT)
 2534                         pmap_page_set_memattr(m, memattr);
 2535         }
 2536         return (m_ret);
 2537 }
 2538 
 2539 /*
 2540  * Check a page that has been freshly dequeued from a freelist.
 2541  */
 2542 static void
 2543 vm_page_alloc_check(vm_page_t m)
 2544 {
 2545 
 2546         KASSERT(m->object == NULL, ("page %p has object", m));
 2547         KASSERT(m->a.queue == PQ_NONE &&
 2548             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
 2549             ("page %p has unexpected queue %d, flags %#x",
 2550             m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
 2551         KASSERT(m->ref_count == 0, ("page %p has references", m));
 2552         KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
 2553         KASSERT(m->dirty == 0, ("page %p is dirty", m));
 2554         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
 2555             ("page %p has unexpected memattr %d",
 2556             m, pmap_page_get_memattr(m)));
 2557         KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
 2558         pmap_vm_page_alloc_check(m);
 2559 }
 2560 
 2561 static int
 2562 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
 2563 {
 2564         struct vm_domain *vmd;
 2565         struct vm_pgcache *pgcache;
 2566         int i;
 2567 
 2568         pgcache = arg;
 2569         vmd = VM_DOMAIN(pgcache->domain);
 2570 
 2571         /*
 2572          * The page daemon should avoid creating extra memory pressure since its
 2573          * main purpose is to replenish the store of free pages.
 2574          */
 2575         if (vmd->vmd_severeset || curproc == pageproc ||
 2576             !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
 2577                 return (0);
 2578         domain = vmd->vmd_domain;
 2579         vm_domain_free_lock(vmd);
 2580         i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
 2581             (vm_page_t *)store);
 2582         vm_domain_free_unlock(vmd);
 2583         if (cnt != i)
 2584                 vm_domain_freecnt_inc(vmd, cnt - i);
 2585 
 2586         return (i);
 2587 }
 2588 
 2589 static void
 2590 vm_page_zone_release(void *arg, void **store, int cnt)
 2591 {
 2592         struct vm_domain *vmd;
 2593         struct vm_pgcache *pgcache;
 2594         vm_page_t m;
 2595         int i;
 2596 
 2597         pgcache = arg;
 2598         vmd = VM_DOMAIN(pgcache->domain);
 2599         vm_domain_free_lock(vmd);
 2600         for (i = 0; i < cnt; i++) {
 2601                 m = (vm_page_t)store[i];
 2602                 vm_phys_free_pages(m, 0);
 2603         }
 2604         vm_domain_free_unlock(vmd);
 2605         vm_domain_freecnt_inc(vmd, cnt);
 2606 }
 2607 
 2608 #define VPSC_ANY        0       /* No restrictions. */
 2609 #define VPSC_NORESERV   1       /* Skip reservations; implies VPSC_NOSUPER. */
 2610 #define VPSC_NOSUPER    2       /* Skip superpages. */
 2611 
 2612 /*
 2613  *      vm_page_scan_contig:
 2614  *
 2615  *      Scan vm_page_array[] between the specified entries "m_start" and
 2616  *      "m_end" for a run of contiguous physical pages that satisfy the
 2617  *      specified conditions, and return the lowest page in the run.  The
 2618  *      specified "alignment" determines the alignment of the lowest physical
 2619  *      page in the run.  If the specified "boundary" is non-zero, then the
 2620  *      run of physical pages cannot span a physical address that is a
 2621  *      multiple of "boundary".
 2622  *
 2623  *      "m_end" is never dereferenced, so it need not point to a vm_page
 2624  *      structure within vm_page_array[].
 2625  *
 2626  *      "npages" must be greater than zero.  "m_start" and "m_end" must not
 2627  *      span a hole (or discontiguity) in the physical address space.  Both
 2628  *      "alignment" and "boundary" must be a power of two.
 2629  */
 2630 vm_page_t
 2631 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
 2632     u_long alignment, vm_paddr_t boundary, int options)
 2633 {
 2634         vm_object_t object;
 2635         vm_paddr_t pa;
 2636         vm_page_t m, m_run;
 2637 #if VM_NRESERVLEVEL > 0
 2638         int level;
 2639 #endif
 2640         int m_inc, order, run_ext, run_len;
 2641 
 2642         KASSERT(npages > 0, ("npages is 0"));
 2643         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
 2644         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
 2645         m_run = NULL;
 2646         run_len = 0;
 2647         for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
 2648                 KASSERT((m->flags & PG_MARKER) == 0,
 2649                     ("page %p is PG_MARKER", m));
 2650                 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
 2651                     ("fictitious page %p has invalid ref count", m));
 2652 
 2653                 /*
 2654                  * If the current page would be the start of a run, check its
 2655                  * physical address against the end, alignment, and boundary
 2656                  * conditions.  If it doesn't satisfy these conditions, either
 2657                  * terminate the scan or advance to the next page that
 2658                  * satisfies the failed condition.
 2659                  */
 2660                 if (run_len == 0) {
 2661                         KASSERT(m_run == NULL, ("m_run != NULL"));
 2662                         if (m + npages > m_end)
 2663                                 break;
 2664                         pa = VM_PAGE_TO_PHYS(m);
 2665                         if (!vm_addr_align_ok(pa, alignment)) {
 2666                                 m_inc = atop(roundup2(pa, alignment) - pa);
 2667                                 continue;
 2668                         }
 2669                         if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
 2670                                 m_inc = atop(roundup2(pa, boundary) - pa);
 2671                                 continue;
 2672                         }
 2673                 } else
 2674                         KASSERT(m_run != NULL, ("m_run == NULL"));
 2675 
 2676 retry:
 2677                 m_inc = 1;
 2678                 if (vm_page_wired(m))
 2679                         run_ext = 0;
 2680 #if VM_NRESERVLEVEL > 0
 2681                 else if ((level = vm_reserv_level(m)) >= 0 &&
 2682                     (options & VPSC_NORESERV) != 0) {
 2683                         run_ext = 0;
 2684                         /* Advance to the end of the reservation. */
 2685                         pa = VM_PAGE_TO_PHYS(m);
 2686                         m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
 2687                             pa);
 2688                 }
 2689 #endif
 2690                 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
 2691                         /*
 2692                          * The page is considered eligible for relocation if
 2693                          * and only if it could be laundered or reclaimed by
 2694                          * the page daemon.
 2695                          */
 2696                         VM_OBJECT_RLOCK(object);
 2697                         if (object != m->object) {
 2698                                 VM_OBJECT_RUNLOCK(object);
 2699                                 goto retry;
 2700                         }
 2701                         /* Don't care: PG_NODUMP, PG_ZERO. */
 2702                         if ((object->flags & OBJ_SWAP) == 0 &&
 2703                             object->type != OBJT_VNODE) {
 2704                                 run_ext = 0;
 2705 #if VM_NRESERVLEVEL > 0
 2706                         } else if ((options & VPSC_NOSUPER) != 0 &&
 2707                             (level = vm_reserv_level_iffullpop(m)) >= 0) {
 2708                                 run_ext = 0;
 2709                                 /* Advance to the end of the superpage. */
 2710                                 pa = VM_PAGE_TO_PHYS(m);
 2711                                 m_inc = atop(roundup2(pa + 1,
 2712                                     vm_reserv_size(level)) - pa);
 2713 #endif
 2714                         } else if (object->memattr == VM_MEMATTR_DEFAULT &&
 2715                             vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
 2716                                 /*
 2717                                  * The page is allocated but eligible for
 2718                                  * relocation.  Extend the current run by one
 2719                                  * page.
 2720                                  */
 2721                                 KASSERT(pmap_page_get_memattr(m) ==
 2722                                     VM_MEMATTR_DEFAULT,
 2723                                     ("page %p has an unexpected memattr", m));
 2724                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
 2725                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
 2726                                     ("page %p has unexpected oflags", m));
 2727                                 /* Don't care: PGA_NOSYNC. */
 2728                                 run_ext = 1;
 2729                         } else
 2730                                 run_ext = 0;
 2731                         VM_OBJECT_RUNLOCK(object);
 2732 #if VM_NRESERVLEVEL > 0
 2733                 } else if (level >= 0) {
 2734                         /*
 2735                          * The page is reserved but not yet allocated.  In
 2736                          * other words, it is still free.  Extend the current
 2737                          * run by one page.
 2738                          */
 2739                         run_ext = 1;
 2740 #endif
 2741                 } else if ((order = m->order) < VM_NFREEORDER) {
 2742                         /*
 2743                          * The page is enqueued in the physical memory
 2744                          * allocator's free page queues.  Moreover, it is the
 2745                          * first page in a power-of-two-sized run of
 2746                          * contiguous free pages.  Add these pages to the end
 2747                          * of the current run, and jump ahead.
 2748                          */
 2749                         run_ext = 1 << order;
 2750                         m_inc = 1 << order;
 2751                 } else {
 2752                         /*
 2753                          * Skip the page for one of the following reasons: (1)
 2754                          * It is enqueued in the physical memory allocator's
 2755                          * free page queues.  However, it is not the first
 2756                          * page in a run of contiguous free pages.  (This case
 2757                          * rarely occurs because the scan is performed in
 2758                          * ascending order.) (2) It is not reserved, and it is
 2759                          * transitioning from free to allocated.  (Conversely,
 2760                          * the transition from allocated to free for managed
 2761                          * pages is blocked by the page busy lock.) (3) It is
 2762                          * allocated but not contained by an object and not
 2763                          * wired, e.g., allocated by Xen's balloon driver.
 2764                          */
 2765                         run_ext = 0;
 2766                 }
 2767 
 2768                 /*
 2769                  * Extend or reset the current run of pages.
 2770                  */
 2771                 if (run_ext > 0) {
 2772                         if (run_len == 0)
 2773                                 m_run = m;
 2774                         run_len += run_ext;
 2775                 } else {
 2776                         if (run_len > 0) {
 2777                                 m_run = NULL;
 2778                                 run_len = 0;
 2779                         }
 2780                 }
 2781         }
 2782         if (run_len >= npages)
 2783                 return (m_run);
 2784         return (NULL);
 2785 }
 2786 
 2787 /*
 2788  *      vm_page_reclaim_run:
 2789  *
 2790  *      Try to relocate each of the allocated virtual pages within the
 2791  *      specified run of physical pages to a new physical address.  Free the
 2792  *      physical pages underlying the relocated virtual pages.  A virtual page
 2793  *      is relocatable if and only if it could be laundered or reclaimed by
 2794  *      the page daemon.  Whenever possible, a virtual page is relocated to a
 2795  *      physical address above "high".
 2796  *
 2797  *      Returns 0 if every physical page within the run was already free or
 2798  *      just freed by a successful relocation.  Otherwise, returns a non-zero
 2799  *      value indicating why the last attempt to relocate a virtual page was
 2800  *      unsuccessful.
 2801  *
 2802  *      "req_class" must be an allocation class.
 2803  */
 2804 static int
 2805 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
 2806     vm_paddr_t high)
 2807 {
 2808         struct vm_domain *vmd;
 2809         struct spglist free;
 2810         vm_object_t object;
 2811         vm_paddr_t pa;
 2812         vm_page_t m, m_end, m_new;
 2813         int error, order, req;
 2814 
 2815         KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
 2816             ("req_class is not an allocation class"));
 2817         SLIST_INIT(&free);
 2818         error = 0;
 2819         m = m_run;
 2820         m_end = m_run + npages;
 2821         for (; error == 0 && m < m_end; m++) {
 2822                 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
 2823                     ("page %p is PG_FICTITIOUS or PG_MARKER", m));
 2824 
 2825                 /*
 2826                  * Racily check for wirings.  Races are handled once the object
 2827                  * lock is held and the page is unmapped.
 2828                  */
 2829                 if (vm_page_wired(m))
 2830                         error = EBUSY;
 2831                 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
 2832                         /*
 2833                          * The page is relocated if and only if it could be
 2834                          * laundered or reclaimed by the page daemon.
 2835                          */
 2836                         VM_OBJECT_WLOCK(object);
 2837                         /* Don't care: PG_NODUMP, PG_ZERO. */
 2838                         if (m->object != object ||
 2839                             ((object->flags & OBJ_SWAP) == 0 &&
 2840                             object->type != OBJT_VNODE))
 2841                                 error = EINVAL;
 2842                         else if (object->memattr != VM_MEMATTR_DEFAULT)
 2843                                 error = EINVAL;
 2844                         else if (vm_page_queue(m) != PQ_NONE &&
 2845                             vm_page_tryxbusy(m) != 0) {
 2846                                 if (vm_page_wired(m)) {
 2847                                         vm_page_xunbusy(m);
 2848                                         error = EBUSY;
 2849                                         goto unlock;
 2850                                 }
 2851                                 KASSERT(pmap_page_get_memattr(m) ==
 2852                                     VM_MEMATTR_DEFAULT,
 2853                                     ("page %p has an unexpected memattr", m));
 2854                                 KASSERT(m->oflags == 0,
 2855                                     ("page %p has unexpected oflags", m));
 2856                                 /* Don't care: PGA_NOSYNC. */
 2857                                 if (!vm_page_none_valid(m)) {
 2858                                         /*
 2859                                          * First, try to allocate a new page
 2860                                          * that is above "high".  Failing
 2861                                          * that, try to allocate a new page
 2862                                          * that is below "m_run".  Allocate
 2863                                          * the new page between the end of
 2864                                          * "m_run" and "high" only as a last
 2865                                          * resort.
 2866                                          */
 2867                                         req = req_class;
 2868                                         if ((m->flags & PG_NODUMP) != 0)
 2869                                                 req |= VM_ALLOC_NODUMP;
 2870                                         if (trunc_page(high) !=
 2871                                             ~(vm_paddr_t)PAGE_MASK) {
 2872                                                 m_new =
 2873                                                     vm_page_alloc_noobj_contig(
 2874                                                     req, 1, round_page(high),
 2875                                                     ~(vm_paddr_t)0, PAGE_SIZE,
 2876                                                     0, VM_MEMATTR_DEFAULT);
 2877                                         } else
 2878                                                 m_new = NULL;
 2879                                         if (m_new == NULL) {
 2880                                                 pa = VM_PAGE_TO_PHYS(m_run);
 2881                                                 m_new =
 2882                                                     vm_page_alloc_noobj_contig(
 2883                                                     req, 1, 0, pa - 1,
 2884                                                     PAGE_SIZE, 0,
 2885                                                     VM_MEMATTR_DEFAULT);
 2886                                         }
 2887                                         if (m_new == NULL) {
 2888                                                 pa += ptoa(npages);
 2889                                                 m_new =
 2890                                                     vm_page_alloc_noobj_contig(
 2891                                                     req, 1, pa, high, PAGE_SIZE,
 2892                                                     0, VM_MEMATTR_DEFAULT);
 2893                                         }
 2894                                         if (m_new == NULL) {
 2895                                                 vm_page_xunbusy(m);
 2896                                                 error = ENOMEM;
 2897                                                 goto unlock;
 2898                                         }
 2899 
 2900                                         /*
 2901                                          * Unmap the page and check for new
 2902                                          * wirings that may have been acquired
 2903                                          * through a pmap lookup.
 2904                                          */
 2905                                         if (object->ref_count != 0 &&
 2906                                             !vm_page_try_remove_all(m)) {
 2907                                                 vm_page_xunbusy(m);
 2908                                                 vm_page_free(m_new);
 2909                                                 error = EBUSY;
 2910                                                 goto unlock;
 2911                                         }
 2912 
 2913                                         /*
 2914                                          * Replace "m" with the new page.  For
 2915                                          * vm_page_replace(), "m" must be busy
 2916                                          * and dequeued.  Finally, change "m"
 2917                                          * as if vm_page_free() was called.
 2918                                          */
 2919                                         m_new->a.flags = m->a.flags &
 2920                                             ~PGA_QUEUE_STATE_MASK;
 2921                                         KASSERT(m_new->oflags == VPO_UNMANAGED,
 2922                                             ("page %p is managed", m_new));
 2923                                         m_new->oflags = 0;
 2924                                         pmap_copy_page(m, m_new);
 2925                                         m_new->valid = m->valid;
 2926                                         m_new->dirty = m->dirty;
 2927                                         m->flags &= ~PG_ZERO;
 2928                                         vm_page_dequeue(m);
 2929                                         if (vm_page_replace_hold(m_new, object,
 2930                                             m->pindex, m) &&
 2931                                             vm_page_free_prep(m))
 2932                                                 SLIST_INSERT_HEAD(&free, m,
 2933                                                     plinks.s.ss);
 2934 
 2935                                         /*
 2936                                          * The new page must be deactivated
 2937                                          * before the object is unlocked.
 2938                                          */
 2939                                         vm_page_deactivate(m_new);
 2940                                 } else {
 2941                                         m->flags &= ~PG_ZERO;
 2942                                         vm_page_dequeue(m);
 2943                                         if (vm_page_free_prep(m))
 2944                                                 SLIST_INSERT_HEAD(&free, m,
 2945                                                     plinks.s.ss);
 2946                                         KASSERT(m->dirty == 0,
 2947                                             ("page %p is dirty", m));
 2948                                 }
 2949                         } else
 2950                                 error = EBUSY;
 2951 unlock:
 2952                         VM_OBJECT_WUNLOCK(object);
 2953                 } else {
 2954                         MPASS(vm_page_domain(m) == domain);
 2955                         vmd = VM_DOMAIN(domain);
 2956                         vm_domain_free_lock(vmd);
 2957                         order = m->order;
 2958                         if (order < VM_NFREEORDER) {
 2959                                 /*
 2960                                  * The page is enqueued in the physical memory
 2961                                  * allocator's free page queues.  Moreover, it
 2962                                  * is the first page in a power-of-two-sized
 2963                                  * run of contiguous free pages.  Jump ahead
 2964                                  * to the last page within that run, and
 2965                                  * continue from there.
 2966                                  */
 2967                                 m += (1 << order) - 1;
 2968                         }
 2969 #if VM_NRESERVLEVEL > 0
 2970                         else if (vm_reserv_is_page_free(m))
 2971                                 order = 0;
 2972 #endif
 2973                         vm_domain_free_unlock(vmd);
 2974                         if (order == VM_NFREEORDER)
 2975                                 error = EINVAL;
 2976                 }
 2977         }
 2978         if ((m = SLIST_FIRST(&free)) != NULL) {
 2979                 int cnt;
 2980 
 2981                 vmd = VM_DOMAIN(domain);
 2982                 cnt = 0;
 2983                 vm_domain_free_lock(vmd);
 2984                 do {
 2985                         MPASS(vm_page_domain(m) == domain);
 2986                         SLIST_REMOVE_HEAD(&free, plinks.s.ss);
 2987                         vm_phys_free_pages(m, 0);
 2988                         cnt++;
 2989                 } while ((m = SLIST_FIRST(&free)) != NULL);
 2990                 vm_domain_free_unlock(vmd);
 2991                 vm_domain_freecnt_inc(vmd, cnt);
 2992         }
 2993         return (error);
 2994 }
 2995 
 2996 #define NRUNS   16
 2997 
 2998 CTASSERT(powerof2(NRUNS));
 2999 
 3000 #define RUN_INDEX(count)        ((count) & (NRUNS - 1))
 3001 
 3002 #define MIN_RECLAIM     8
 3003 
 3004 /*
 3005  *      vm_page_reclaim_contig:
 3006  *
 3007  *      Reclaim allocated, contiguous physical memory satisfying the specified
 3008  *      conditions by relocating the virtual pages using that physical memory.
 3009  *      Returns true if reclamation is successful and false otherwise.  Since
 3010  *      relocation requires the allocation of physical pages, reclamation may
 3011  *      fail due to a shortage of free pages.  When reclamation fails, callers
 3012  *      are expected to perform vm_wait() before retrying a failed allocation
 3013  *      operation, e.g., vm_page_alloc_contig().
 3014  *
 3015  *      The caller must always specify an allocation class through "req".
 3016  *
 3017  *      allocation classes:
 3018  *      VM_ALLOC_NORMAL         normal process request
 3019  *      VM_ALLOC_SYSTEM         system *really* needs a page
 3020  *      VM_ALLOC_INTERRUPT      interrupt time request
 3021  *
 3022  *      The optional allocation flags are ignored.
 3023  *
 3024  *      "npages" must be greater than zero.  Both "alignment" and "boundary"
 3025  *      must be a power of two.
 3026  */
 3027 bool
 3028 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
 3029     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
 3030 {
 3031         struct vm_domain *vmd;
 3032         vm_paddr_t curr_low;
 3033         vm_page_t m_run, m_runs[NRUNS];
 3034         u_long count, minalign, reclaimed;
 3035         int error, i, options, req_class;
 3036 
 3037         KASSERT(npages > 0, ("npages is 0"));
 3038         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
 3039         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
 3040 
 3041         /*
 3042          * The caller will attempt an allocation after some runs have been
 3043          * reclaimed and added to the vm_phys buddy lists.  Due to limitations
 3044          * of vm_phys_alloc_contig(), round up the requested length to the next
 3045          * power of two or maximum chunk size, and ensure that each run is
 3046          * suitably aligned.
 3047          */
 3048         minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
 3049         npages = roundup2(npages, minalign);
 3050         if (alignment < ptoa(minalign))
 3051                 alignment = ptoa(minalign);
 3052 
 3053         /*
 3054          * The page daemon is allowed to dig deeper into the free page list.
 3055          */
 3056         req_class = req & VM_ALLOC_CLASS_MASK;
 3057         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
 3058                 req_class = VM_ALLOC_SYSTEM;
 3059 
 3060         /*
 3061          * Return if the number of free pages cannot satisfy the requested
 3062          * allocation.
 3063          */
 3064         vmd = VM_DOMAIN(domain);
 3065         count = vmd->vmd_free_count;
 3066         if (count < npages + vmd->vmd_free_reserved || (count < npages +
 3067             vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
 3068             (count < npages && req_class == VM_ALLOC_INTERRUPT))
 3069                 return (false);
 3070 
 3071         /*
 3072          * Scan up to three times, relaxing the restrictions ("options") on
 3073          * the reclamation of reservations and superpages each time.
 3074          */
 3075         for (options = VPSC_NORESERV;;) {
 3076                 /*
 3077                  * Find the highest runs that satisfy the given constraints
 3078                  * and restrictions, and record them in "m_runs".
 3079                  */
 3080                 curr_low = low;
 3081                 count = 0;
 3082                 for (;;) {
 3083                         m_run = vm_phys_scan_contig(domain, npages, curr_low,
 3084                             high, alignment, boundary, options);
 3085                         if (m_run == NULL)
 3086                                 break;
 3087                         curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
 3088                         m_runs[RUN_INDEX(count)] = m_run;
 3089                         count++;
 3090                 }
 3091 
 3092                 /*
 3093                  * Reclaim the highest runs in LIFO (descending) order until
 3094                  * the number of reclaimed pages, "reclaimed", is at least
 3095                  * MIN_RECLAIM.  Reset "reclaimed" each time because each
 3096                  * reclamation is idempotent, and runs will (likely) recur
 3097                  * from one scan to the next as restrictions are relaxed.
 3098                  */
 3099                 reclaimed = 0;
 3100                 for (i = 0; count > 0 && i < NRUNS; i++) {
 3101                         count--;
 3102                         m_run = m_runs[RUN_INDEX(count)];
 3103                         error = vm_page_reclaim_run(req_class, domain, npages,
 3104                             m_run, high);
 3105                         if (error == 0) {
 3106                                 reclaimed += npages;
 3107                                 if (reclaimed >= MIN_RECLAIM)
 3108                                         return (true);
 3109                         }
 3110                 }
 3111 
 3112                 /*
 3113                  * Either relax the restrictions on the next scan or return if
 3114                  * the last scan had no restrictions.
 3115                  */
 3116                 if (options == VPSC_NORESERV)
 3117                         options = VPSC_NOSUPER;
 3118                 else if (options == VPSC_NOSUPER)
 3119                         options = VPSC_ANY;
 3120                 else if (options == VPSC_ANY)
 3121                         return (reclaimed != 0);
 3122         }
 3123 }
 3124 
 3125 bool
 3126 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
 3127     u_long alignment, vm_paddr_t boundary)
 3128 {
 3129         struct vm_domainset_iter di;
 3130         int domain;
 3131         bool ret;
 3132 
 3133         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
 3134         do {
 3135                 ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
 3136                     high, alignment, boundary);
 3137                 if (ret)
 3138                         break;
 3139         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
 3140 
 3141         return (ret);
 3142 }
 3143 
 3144 /*
 3145  * Set the domain in the appropriate page level domainset.
 3146  */
 3147 void
 3148 vm_domain_set(struct vm_domain *vmd)
 3149 {
 3150 
 3151         mtx_lock(&vm_domainset_lock);
 3152         if (!vmd->vmd_minset && vm_paging_min(vmd)) {
 3153                 vmd->vmd_minset = 1;
 3154                 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
 3155         }
 3156         if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
 3157                 vmd->vmd_severeset = 1;
 3158                 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
 3159         }
 3160         mtx_unlock(&vm_domainset_lock);
 3161 }
 3162 
 3163 /*
 3164  * Clear the domain from the appropriate page level domainset.
 3165  */
 3166 void
 3167 vm_domain_clear(struct vm_domain *vmd)
 3168 {
 3169 
 3170         mtx_lock(&vm_domainset_lock);
 3171         if (vmd->vmd_minset && !vm_paging_min(vmd)) {
 3172                 vmd->vmd_minset = 0;
 3173                 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
 3174                 if (vm_min_waiters != 0) {
 3175                         vm_min_waiters = 0;
 3176                         wakeup(&vm_min_domains);
 3177                 }
 3178         }
 3179         if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
 3180                 vmd->vmd_severeset = 0;
 3181                 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
 3182                 if (vm_severe_waiters != 0) {
 3183                         vm_severe_waiters = 0;
 3184                         wakeup(&vm_severe_domains);
 3185                 }
 3186         }
 3187 
 3188         /*
 3189          * If pageout daemon needs pages, then tell it that there are
 3190          * some free.
 3191          */
 3192         if (vmd->vmd_pageout_pages_needed &&
 3193             vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
 3194                 wakeup(&vmd->vmd_pageout_pages_needed);
 3195                 vmd->vmd_pageout_pages_needed = 0;
 3196         }
 3197 
 3198         /* See comments in vm_wait_doms(). */
 3199         if (vm_pageproc_waiters) {
 3200                 vm_pageproc_waiters = 0;
 3201                 wakeup(&vm_pageproc_waiters);
 3202         }
 3203         mtx_unlock(&vm_domainset_lock);
 3204 }
 3205 
 3206 /*
 3207  * Wait for free pages to exceed the min threshold globally.
 3208  */
 3209 void
 3210 vm_wait_min(void)
 3211 {
 3212 
 3213         mtx_lock(&vm_domainset_lock);
 3214         while (vm_page_count_min()) {
 3215                 vm_min_waiters++;
 3216                 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
 3217         }
 3218         mtx_unlock(&vm_domainset_lock);
 3219 }
 3220 
 3221 /*
 3222  * Wait for free pages to exceed the severe threshold globally.
 3223  */
 3224 void
 3225 vm_wait_severe(void)
 3226 {
 3227 
 3228         mtx_lock(&vm_domainset_lock);
 3229         while (vm_page_count_severe()) {
 3230                 vm_severe_waiters++;
 3231                 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
 3232                     "vmwait", 0);
 3233         }
 3234         mtx_unlock(&vm_domainset_lock);
 3235 }
 3236 
 3237 u_int
 3238 vm_wait_count(void)
 3239 {
 3240 
 3241         return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
 3242 }
 3243 
 3244 int
 3245 vm_wait_doms(const domainset_t *wdoms, int mflags)
 3246 {
 3247         int error;
 3248 
 3249         error = 0;
 3250 
 3251         /*
 3252          * We use racey wakeup synchronization to avoid expensive global
 3253          * locking for the pageproc when sleeping with a non-specific vm_wait.
 3254          * To handle this, we only sleep for one tick in this instance.  It
 3255          * is expected that most allocations for the pageproc will come from
 3256          * kmem or vm_page_grab* which will use the more specific and
 3257          * race-free vm_wait_domain().
 3258          */
 3259         if (curproc == pageproc) {
 3260                 mtx_lock(&vm_domainset_lock);
 3261                 vm_pageproc_waiters++;
 3262                 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
 3263                     PVM | PDROP | mflags, "pageprocwait", 1);
 3264         } else {
 3265                 /*
 3266                  * XXX Ideally we would wait only until the allocation could
 3267                  * be satisfied.  This condition can cause new allocators to
 3268                  * consume all freed pages while old allocators wait.
 3269                  */
 3270                 mtx_lock(&vm_domainset_lock);
 3271                 if (vm_page_count_min_set(wdoms)) {
 3272                         if (pageproc == NULL)
 3273                                 panic("vm_wait in early boot");
 3274                         vm_min_waiters++;
 3275                         error = msleep(&vm_min_domains, &vm_domainset_lock,
 3276                             PVM | PDROP | mflags, "vmwait", 0);
 3277                 } else
 3278                         mtx_unlock(&vm_domainset_lock);
 3279         }
 3280         return (error);
 3281 }
 3282 
 3283 /*
 3284  *      vm_wait_domain:
 3285  *
 3286  *      Sleep until free pages are available for allocation.
 3287  *      - Called in various places after failed memory allocations.
 3288  */
 3289 void
 3290 vm_wait_domain(int domain)
 3291 {
 3292         struct vm_domain *vmd;
 3293         domainset_t wdom;
 3294 
 3295         vmd = VM_DOMAIN(domain);
 3296         vm_domain_free_assert_unlocked(vmd);
 3297 
 3298         if (curproc == pageproc) {
 3299                 mtx_lock(&vm_domainset_lock);
 3300                 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
 3301                         vmd->vmd_pageout_pages_needed = 1;
 3302                         msleep(&vmd->vmd_pageout_pages_needed,
 3303                             &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
 3304                 } else
 3305                         mtx_unlock(&vm_domainset_lock);
 3306         } else {
 3307                 DOMAINSET_ZERO(&wdom);
 3308                 DOMAINSET_SET(vmd->vmd_domain, &wdom);
 3309                 vm_wait_doms(&wdom, 0);
 3310         }
 3311 }
 3312 
 3313 static int
 3314 vm_wait_flags(vm_object_t obj, int mflags)
 3315 {
 3316         struct domainset *d;
 3317 
 3318         d = NULL;
 3319 
 3320         /*
 3321          * Carefully fetch pointers only once: the struct domainset
 3322          * itself is ummutable but the pointer might change.
 3323          */
 3324         if (obj != NULL)
 3325                 d = obj->domain.dr_policy;
 3326         if (d == NULL)
 3327                 d = curthread->td_domain.dr_policy;
 3328 
 3329         return (vm_wait_doms(&d->ds_mask, mflags));
 3330 }
 3331 
 3332 /*
 3333  *      vm_wait:
 3334  *
 3335  *      Sleep until free pages are available for allocation in the
 3336  *      affinity domains of the obj.  If obj is NULL, the domain set
 3337  *      for the calling thread is used.
 3338  *      Called in various places after failed memory allocations.
 3339  */
 3340 void
 3341 vm_wait(vm_object_t obj)
 3342 {
 3343         (void)vm_wait_flags(obj, 0);
 3344 }
 3345 
 3346 int
 3347 vm_wait_intr(vm_object_t obj)
 3348 {
 3349         return (vm_wait_flags(obj, PCATCH));
 3350 }
 3351 
 3352 /*
 3353  *      vm_domain_alloc_fail:
 3354  *
 3355  *      Called when a page allocation function fails.  Informs the
 3356  *      pagedaemon and performs the requested wait.  Requires the
 3357  *      domain_free and object lock on entry.  Returns with the
 3358  *      object lock held and free lock released.  Returns an error when
 3359  *      retry is necessary.
 3360  *
 3361  */
 3362 static int
 3363 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
 3364 {
 3365 
 3366         vm_domain_free_assert_unlocked(vmd);
 3367 
 3368         atomic_add_int(&vmd->vmd_pageout_deficit,
 3369             max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
 3370         if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
 3371                 if (object != NULL) 
 3372                         VM_OBJECT_WUNLOCK(object);
 3373                 vm_wait_domain(vmd->vmd_domain);
 3374                 if (object != NULL) 
 3375                         VM_OBJECT_WLOCK(object);
 3376                 if (req & VM_ALLOC_WAITOK)
 3377                         return (EAGAIN);
 3378         }
 3379 
 3380         return (0);
 3381 }
 3382 
 3383 /*
 3384  *      vm_waitpfault:
 3385  *
 3386  *      Sleep until free pages are available for allocation.
 3387  *      - Called only in vm_fault so that processes page faulting
 3388  *        can be easily tracked.
 3389  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
 3390  *        processes will be able to grab memory first.  Do not change
 3391  *        this balance without careful testing first.
 3392  */
 3393 void
 3394 vm_waitpfault(struct domainset *dset, int timo)
 3395 {
 3396 
 3397         /*
 3398          * XXX Ideally we would wait only until the allocation could
 3399          * be satisfied.  This condition can cause new allocators to
 3400          * consume all freed pages while old allocators wait.
 3401          */
 3402         mtx_lock(&vm_domainset_lock);
 3403         if (vm_page_count_min_set(&dset->ds_mask)) {
 3404                 vm_min_waiters++;
 3405                 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
 3406                     "pfault", timo);
 3407         } else
 3408                 mtx_unlock(&vm_domainset_lock);
 3409 }
 3410 
 3411 static struct vm_pagequeue *
 3412 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
 3413 {
 3414 
 3415         return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
 3416 }
 3417 
 3418 #ifdef INVARIANTS
 3419 static struct vm_pagequeue *
 3420 vm_page_pagequeue(vm_page_t m)
 3421 {
 3422 
 3423         return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
 3424 }
 3425 #endif
 3426 
 3427 static __always_inline bool
 3428 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
 3429 {
 3430         vm_page_astate_t tmp;
 3431 
 3432         tmp = *old;
 3433         do {
 3434                 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
 3435                         return (true);
 3436                 counter_u64_add(pqstate_commit_retries, 1);
 3437         } while (old->_bits == tmp._bits);
 3438 
 3439         return (false);
 3440 }
 3441 
 3442 /*
 3443  * Do the work of committing a queue state update that moves the page out of
 3444  * its current queue.
 3445  */
 3446 static bool
 3447 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
 3448     vm_page_astate_t *old, vm_page_astate_t new)
 3449 {
 3450         vm_page_t next;
 3451 
 3452         vm_pagequeue_assert_locked(pq);
 3453         KASSERT(vm_page_pagequeue(m) == pq,
 3454             ("%s: queue %p does not match page %p", __func__, pq, m));
 3455         KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
 3456             ("%s: invalid queue indices %d %d",
 3457             __func__, old->queue, new.queue));
 3458 
 3459         /*
 3460          * Once the queue index of the page changes there is nothing
 3461          * synchronizing with further updates to the page's physical
 3462          * queue state.  Therefore we must speculatively remove the page
 3463          * from the queue now and be prepared to roll back if the queue
 3464          * state update fails.  If the page is not physically enqueued then
 3465          * we just update its queue index.
 3466          */
 3467         if ((old->flags & PGA_ENQUEUED) != 0) {
 3468                 new.flags &= ~PGA_ENQUEUED;
 3469                 next = TAILQ_NEXT(m, plinks.q);
 3470                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
 3471                 vm_pagequeue_cnt_dec(pq);
 3472                 if (!vm_page_pqstate_fcmpset(m, old, new)) {
 3473                         if (next == NULL)
 3474                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
 3475                         else
 3476                                 TAILQ_INSERT_BEFORE(next, m, plinks.q);
 3477                         vm_pagequeue_cnt_inc(pq);
 3478                         return (false);
 3479                 } else {
 3480                         return (true);
 3481                 }
 3482         } else {
 3483                 return (vm_page_pqstate_fcmpset(m, old, new));
 3484         }
 3485 }
 3486 
 3487 static bool
 3488 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
 3489     vm_page_astate_t new)
 3490 {
 3491         struct vm_pagequeue *pq;
 3492         vm_page_astate_t as;
 3493         bool ret;
 3494 
 3495         pq = _vm_page_pagequeue(m, old->queue);
 3496 
 3497         /*
 3498          * The queue field and PGA_ENQUEUED flag are stable only so long as the
 3499          * corresponding page queue lock is held.
 3500          */
 3501         vm_pagequeue_lock(pq);
 3502         as = vm_page_astate_load(m);
 3503         if (__predict_false(as._bits != old->_bits)) {
 3504                 *old = as;
 3505                 ret = false;
 3506         } else {
 3507                 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
 3508         }
 3509         vm_pagequeue_unlock(pq);
 3510         return (ret);
 3511 }
 3512 
 3513 /*
 3514  * Commit a queue state update that enqueues or requeues a page.
 3515  */
 3516 static bool
 3517 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
 3518     vm_page_astate_t *old, vm_page_astate_t new)
 3519 {
 3520         struct vm_domain *vmd;
 3521 
 3522         vm_pagequeue_assert_locked(pq);
 3523         KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
 3524             ("%s: invalid queue indices %d %d",
 3525             __func__, old->queue, new.queue));
 3526 
 3527         new.flags |= PGA_ENQUEUED;
 3528         if (!vm_page_pqstate_fcmpset(m, old, new))
 3529                 return (false);
 3530 
 3531         if ((old->flags & PGA_ENQUEUED) != 0)
 3532                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
 3533         else
 3534                 vm_pagequeue_cnt_inc(pq);
 3535 
 3536         /*
 3537          * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
 3538          * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
 3539          * applied, even if it was set first.
 3540          */
 3541         if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
 3542                 vmd = vm_pagequeue_domain(m);
 3543                 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
 3544                     ("%s: invalid page queue for page %p", __func__, m));
 3545                 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
 3546         } else {
 3547                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
 3548         }
 3549         return (true);
 3550 }
 3551 
 3552 /*
 3553  * Commit a queue state update that encodes a request for a deferred queue
 3554  * operation.
 3555  */
 3556 static bool
 3557 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
 3558     vm_page_astate_t new)
 3559 {
 3560 
 3561         KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
 3562             ("%s: invalid state, queue %d flags %x",
 3563             __func__, new.queue, new.flags));
 3564 
 3565         if (old->_bits != new._bits &&
 3566             !vm_page_pqstate_fcmpset(m, old, new))
 3567                 return (false);
 3568         vm_page_pqbatch_submit(m, new.queue);
 3569         return (true);
 3570 }
 3571 
 3572 /*
 3573  * A generic queue state update function.  This handles more cases than the
 3574  * specialized functions above.
 3575  */
 3576 bool
 3577 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
 3578 {
 3579 
 3580         if (old->_bits == new._bits)
 3581                 return (true);
 3582 
 3583         if (old->queue != PQ_NONE && new.queue != old->queue) {
 3584                 if (!vm_page_pqstate_commit_dequeue(m, old, new))
 3585                         return (false);
 3586                 if (new.queue != PQ_NONE)
 3587                         vm_page_pqbatch_submit(m, new.queue);
 3588         } else {
 3589                 if (!vm_page_pqstate_fcmpset(m, old, new))
 3590                         return (false);
 3591                 if (new.queue != PQ_NONE &&
 3592                     ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
 3593                         vm_page_pqbatch_submit(m, new.queue);
 3594         }
 3595         return (true);
 3596 }
 3597 
 3598 /*
 3599  * Apply deferred queue state updates to a page.
 3600  */
 3601 static inline void
 3602 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
 3603 {
 3604         vm_page_astate_t new, old;
 3605 
 3606         CRITICAL_ASSERT(curthread);
 3607         vm_pagequeue_assert_locked(pq);
 3608         KASSERT(queue < PQ_COUNT,
 3609             ("%s: invalid queue index %d", __func__, queue));
 3610         KASSERT(pq == _vm_page_pagequeue(m, queue),
 3611             ("%s: page %p does not belong to queue %p", __func__, m, pq));
 3612 
 3613         for (old = vm_page_astate_load(m);;) {
 3614                 if (__predict_false(old.queue != queue ||
 3615                     (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
 3616                         counter_u64_add(queue_nops, 1);
 3617                         break;
 3618                 }
 3619                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3620                     ("%s: page %p is unmanaged", __func__, m));
 3621 
 3622                 new = old;
 3623                 if ((old.flags & PGA_DEQUEUE) != 0) {
 3624                         new.flags &= ~PGA_QUEUE_OP_MASK;
 3625                         new.queue = PQ_NONE;
 3626                         if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
 3627                             m, &old, new))) {
 3628                                 counter_u64_add(queue_ops, 1);
 3629                                 break;
 3630                         }
 3631                 } else {
 3632                         new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
 3633                         if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
 3634                             m, &old, new))) {
 3635                                 counter_u64_add(queue_ops, 1);
 3636                                 break;
 3637                         }
 3638                 }
 3639         }
 3640 }
 3641 
 3642 static void
 3643 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
 3644     uint8_t queue)
 3645 {
 3646         int i;
 3647 
 3648         for (i = 0; i < bq->bq_cnt; i++)
 3649                 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
 3650         vm_batchqueue_init(bq);
 3651 }
 3652 
 3653 /*
 3654  *      vm_page_pqbatch_submit:         [ internal use only ]
 3655  *
 3656  *      Enqueue a page in the specified page queue's batched work queue.
 3657  *      The caller must have encoded the requested operation in the page
 3658  *      structure's a.flags field.
 3659  */
 3660 void
 3661 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
 3662 {
 3663         struct vm_batchqueue *bq;
 3664         struct vm_pagequeue *pq;
 3665         int domain, slots_remaining;
 3666 
 3667         KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
 3668 
 3669         domain = vm_page_domain(m);
 3670         critical_enter();
 3671         bq = DPCPU_PTR(pqbatch[domain][queue]);
 3672         slots_remaining = vm_batchqueue_insert(bq, m);
 3673         if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
 3674                 /* keep building the bq */
 3675                 critical_exit();
 3676                 return;
 3677         } else if (slots_remaining > 0 ) {
 3678                 /* Try to process the bq if we can get the lock */
 3679                 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
 3680                 if (vm_pagequeue_trylock(pq)) {
 3681                         vm_pqbatch_process(pq, bq, queue);
 3682                         vm_pagequeue_unlock(pq);
 3683                 }
 3684                 critical_exit();
 3685                 return;
 3686         }
 3687         critical_exit();
 3688 
 3689         /* if we make it here, the bq is full so wait for the lock */
 3690 
 3691         pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
 3692         vm_pagequeue_lock(pq);
 3693         critical_enter();
 3694         bq = DPCPU_PTR(pqbatch[domain][queue]);
 3695         vm_pqbatch_process(pq, bq, queue);
 3696         vm_pqbatch_process_page(pq, m, queue);
 3697         vm_pagequeue_unlock(pq);
 3698         critical_exit();
 3699 }
 3700 
 3701 /*
 3702  *      vm_page_pqbatch_drain:          [ internal use only ]
 3703  *
 3704  *      Force all per-CPU page queue batch queues to be drained.  This is
 3705  *      intended for use in severe memory shortages, to ensure that pages
 3706  *      do not remain stuck in the batch queues.
 3707  */
 3708 void
 3709 vm_page_pqbatch_drain(void)
 3710 {
 3711         struct thread *td;
 3712         struct vm_domain *vmd;
 3713         struct vm_pagequeue *pq;
 3714         int cpu, domain, queue;
 3715 
 3716         td = curthread;
 3717         CPU_FOREACH(cpu) {
 3718                 thread_lock(td);
 3719                 sched_bind(td, cpu);
 3720                 thread_unlock(td);
 3721 
 3722                 for (domain = 0; domain < vm_ndomains; domain++) {
 3723                         vmd = VM_DOMAIN(domain);
 3724                         for (queue = 0; queue < PQ_COUNT; queue++) {
 3725                                 pq = &vmd->vmd_pagequeues[queue];
 3726                                 vm_pagequeue_lock(pq);
 3727                                 critical_enter();
 3728                                 vm_pqbatch_process(pq,
 3729                                     DPCPU_PTR(pqbatch[domain][queue]), queue);
 3730                                 critical_exit();
 3731                                 vm_pagequeue_unlock(pq);
 3732                         }
 3733                 }
 3734         }
 3735         thread_lock(td);
 3736         sched_unbind(td);
 3737         thread_unlock(td);
 3738 }
 3739 
 3740 /*
 3741  *      vm_page_dequeue_deferred:       [ internal use only ]
 3742  *
 3743  *      Request removal of the given page from its current page
 3744  *      queue.  Physical removal from the queue may be deferred
 3745  *      indefinitely.
 3746  */
 3747 void
 3748 vm_page_dequeue_deferred(vm_page_t m)
 3749 {
 3750         vm_page_astate_t new, old;
 3751 
 3752         old = vm_page_astate_load(m);
 3753         do {
 3754                 if (old.queue == PQ_NONE) {
 3755                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
 3756                             ("%s: page %p has unexpected queue state",
 3757                             __func__, m));
 3758                         break;
 3759                 }
 3760                 new = old;
 3761                 new.flags |= PGA_DEQUEUE;
 3762         } while (!vm_page_pqstate_commit_request(m, &old, new));
 3763 }
 3764 
 3765 /*
 3766  *      vm_page_dequeue:
 3767  *
 3768  *      Remove the page from whichever page queue it's in, if any, before
 3769  *      returning.
 3770  */
 3771 void
 3772 vm_page_dequeue(vm_page_t m)
 3773 {
 3774         vm_page_astate_t new, old;
 3775 
 3776         old = vm_page_astate_load(m);
 3777         do {
 3778                 if (old.queue == PQ_NONE) {
 3779                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
 3780                             ("%s: page %p has unexpected queue state",
 3781                             __func__, m));
 3782                         break;
 3783                 }
 3784                 new = old;
 3785                 new.flags &= ~PGA_QUEUE_OP_MASK;
 3786                 new.queue = PQ_NONE;
 3787         } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
 3788 
 3789 }
 3790 
 3791 /*
 3792  * Schedule the given page for insertion into the specified page queue.
 3793  * Physical insertion of the page may be deferred indefinitely.
 3794  */
 3795 static void
 3796 vm_page_enqueue(vm_page_t m, uint8_t queue)
 3797 {
 3798 
 3799         KASSERT(m->a.queue == PQ_NONE &&
 3800             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
 3801             ("%s: page %p is already enqueued", __func__, m));
 3802         KASSERT(m->ref_count > 0,
 3803             ("%s: page %p does not carry any references", __func__, m));
 3804 
 3805         m->a.queue = queue;
 3806         if ((m->a.flags & PGA_REQUEUE) == 0)
 3807                 vm_page_aflag_set(m, PGA_REQUEUE);
 3808         vm_page_pqbatch_submit(m, queue);
 3809 }
 3810 
 3811 /*
 3812  *      vm_page_free_prep:
 3813  *
 3814  *      Prepares the given page to be put on the free list,
 3815  *      disassociating it from any VM object. The caller may return
 3816  *      the page to the free list only if this function returns true.
 3817  *
 3818  *      The object, if it exists, must be locked, and then the page must
 3819  *      be xbusy.  Otherwise the page must be not busied.  A managed
 3820  *      page must be unmapped.
 3821  */
 3822 static bool
 3823 vm_page_free_prep(vm_page_t m)
 3824 {
 3825 
 3826         /*
 3827          * Synchronize with threads that have dropped a reference to this
 3828          * page.
 3829          */
 3830         atomic_thread_fence_acq();
 3831 
 3832 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
 3833         if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
 3834                 uint64_t *p;
 3835                 int i;
 3836                 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
 3837                 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
 3838                         KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
 3839                             m, i, (uintmax_t)*p));
 3840         }
 3841 #endif
 3842         if ((m->oflags & VPO_UNMANAGED) == 0) {
 3843                 KASSERT(!pmap_page_is_mapped(m),
 3844                     ("vm_page_free_prep: freeing mapped page %p", m));
 3845                 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
 3846                     ("vm_page_free_prep: mapping flags set in page %p", m));
 3847         } else {
 3848                 KASSERT(m->a.queue == PQ_NONE,
 3849                     ("vm_page_free_prep: unmanaged page %p is queued", m));
 3850         }
 3851         VM_CNT_INC(v_tfree);
 3852 
 3853         if (m->object != NULL) {
 3854                 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
 3855                     ((m->object->flags & OBJ_UNMANAGED) != 0),
 3856                     ("vm_page_free_prep: managed flag mismatch for page %p",
 3857                     m));
 3858                 vm_page_assert_xbusied(m);
 3859 
 3860                 /*
 3861                  * The object reference can be released without an atomic
 3862                  * operation.
 3863                  */
 3864                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
 3865                     m->ref_count == VPRC_OBJREF,
 3866                     ("vm_page_free_prep: page %p has unexpected ref_count %u",
 3867                     m, m->ref_count));
 3868                 vm_page_object_remove(m);
 3869                 m->ref_count -= VPRC_OBJREF;
 3870         } else
 3871                 vm_page_assert_unbusied(m);
 3872 
 3873         vm_page_busy_free(m);
 3874 
 3875         /*
 3876          * If fictitious remove object association and
 3877          * return.
 3878          */
 3879         if ((m->flags & PG_FICTITIOUS) != 0) {
 3880                 KASSERT(m->ref_count == 1,
 3881                     ("fictitious page %p is referenced", m));
 3882                 KASSERT(m->a.queue == PQ_NONE,
 3883                     ("fictitious page %p is queued", m));
 3884                 return (false);
 3885         }
 3886 
 3887         /*
 3888          * Pages need not be dequeued before they are returned to the physical
 3889          * memory allocator, but they must at least be marked for a deferred
 3890          * dequeue.
 3891          */
 3892         if ((m->oflags & VPO_UNMANAGED) == 0)
 3893                 vm_page_dequeue_deferred(m);
 3894 
 3895         m->valid = 0;
 3896         vm_page_undirty(m);
 3897 
 3898         if (m->ref_count != 0)
 3899                 panic("vm_page_free_prep: page %p has references", m);
 3900 
 3901         /*
 3902          * Restore the default memory attribute to the page.
 3903          */
 3904         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
 3905                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
 3906 
 3907 #if VM_NRESERVLEVEL > 0
 3908         /*
 3909          * Determine whether the page belongs to a reservation.  If the page was
 3910          * allocated from a per-CPU cache, it cannot belong to a reservation, so
 3911          * as an optimization, we avoid the check in that case.
 3912          */
 3913         if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
 3914                 return (false);
 3915 #endif
 3916 
 3917         return (true);
 3918 }
 3919 
 3920 /*
 3921  *      vm_page_free_toq:
 3922  *
 3923  *      Returns the given page to the free list, disassociating it
 3924  *      from any VM object.
 3925  *
 3926  *      The object must be locked.  The page must be exclusively busied if it
 3927  *      belongs to an object.
 3928  */
 3929 static void
 3930 vm_page_free_toq(vm_page_t m)
 3931 {
 3932         struct vm_domain *vmd;
 3933         uma_zone_t zone;
 3934 
 3935         if (!vm_page_free_prep(m))
 3936                 return;
 3937 
 3938         vmd = vm_pagequeue_domain(m);
 3939         zone = vmd->vmd_pgcache[m->pool].zone;
 3940         if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
 3941                 uma_zfree(zone, m);
 3942                 return;
 3943         }
 3944         vm_domain_free_lock(vmd);
 3945         vm_phys_free_pages(m, 0);
 3946         vm_domain_free_unlock(vmd);
 3947         vm_domain_freecnt_inc(vmd, 1);
 3948 }
 3949 
 3950 /*
 3951  *      vm_page_free_pages_toq:
 3952  *
 3953  *      Returns a list of pages to the free list, disassociating it
 3954  *      from any VM object.  In other words, this is equivalent to
 3955  *      calling vm_page_free_toq() for each page of a list of VM objects.
 3956  */
 3957 void
 3958 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
 3959 {
 3960         vm_page_t m;
 3961         int count;
 3962 
 3963         if (SLIST_EMPTY(free))
 3964                 return;
 3965 
 3966         count = 0;
 3967         while ((m = SLIST_FIRST(free)) != NULL) {
 3968                 count++;
 3969                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
 3970                 vm_page_free_toq(m);
 3971         }
 3972 
 3973         if (update_wire_count)
 3974                 vm_wire_sub(count);
 3975 }
 3976 
 3977 /*
 3978  * Mark this page as wired down.  For managed pages, this prevents reclamation
 3979  * by the page daemon, or when the containing object, if any, is destroyed.
 3980  */
 3981 void
 3982 vm_page_wire(vm_page_t m)
 3983 {
 3984         u_int old;
 3985 
 3986 #ifdef INVARIANTS
 3987         if (m->object != NULL && !vm_page_busied(m) &&
 3988             !vm_object_busied(m->object))
 3989                 VM_OBJECT_ASSERT_LOCKED(m->object);
 3990 #endif
 3991         KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
 3992             VPRC_WIRE_COUNT(m->ref_count) >= 1,
 3993             ("vm_page_wire: fictitious page %p has zero wirings", m));
 3994 
 3995         old = atomic_fetchadd_int(&m->ref_count, 1);
 3996         KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
 3997             ("vm_page_wire: counter overflow for page %p", m));
 3998         if (VPRC_WIRE_COUNT(old) == 0) {
 3999                 if ((m->oflags & VPO_UNMANAGED) == 0)
 4000                         vm_page_aflag_set(m, PGA_DEQUEUE);
 4001                 vm_wire_add(1);
 4002         }
 4003 }
 4004 
 4005 /*
 4006  * Attempt to wire a mapped page following a pmap lookup of that page.
 4007  * This may fail if a thread is concurrently tearing down mappings of the page.
 4008  * The transient failure is acceptable because it translates to the
 4009  * failure of the caller pmap_extract_and_hold(), which should be then
 4010  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
 4011  */
 4012 bool
 4013 vm_page_wire_mapped(vm_page_t m)
 4014 {
 4015         u_int old;
 4016 
 4017         old = m->ref_count;
 4018         do {
 4019                 KASSERT(old > 0,
 4020                     ("vm_page_wire_mapped: wiring unreferenced page %p", m));
 4021                 if ((old & VPRC_BLOCKED) != 0)
 4022                         return (false);
 4023         } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
 4024 
 4025         if (VPRC_WIRE_COUNT(old) == 0) {
 4026                 if ((m->oflags & VPO_UNMANAGED) == 0)
 4027                         vm_page_aflag_set(m, PGA_DEQUEUE);
 4028                 vm_wire_add(1);
 4029         }
 4030         return (true);
 4031 }
 4032 
 4033 /*
 4034  * Release a wiring reference to a managed page.  If the page still belongs to
 4035  * an object, update its position in the page queues to reflect the reference.
 4036  * If the wiring was the last reference to the page, free the page.
 4037  */
 4038 static void
 4039 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
 4040 {
 4041         u_int old;
 4042 
 4043         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4044             ("%s: page %p is unmanaged", __func__, m));
 4045 
 4046         /*
 4047          * Update LRU state before releasing the wiring reference.
 4048          * Use a release store when updating the reference count to
 4049          * synchronize with vm_page_free_prep().
 4050          */
 4051         old = m->ref_count;
 4052         do {
 4053                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
 4054                     ("vm_page_unwire: wire count underflow for page %p", m));
 4055 
 4056                 if (old > VPRC_OBJREF + 1) {
 4057                         /*
 4058                          * The page has at least one other wiring reference.  An
 4059                          * earlier iteration of this loop may have called
 4060                          * vm_page_release_toq() and cleared PGA_DEQUEUE, so
 4061                          * re-set it if necessary.
 4062                          */
 4063                         if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
 4064                                 vm_page_aflag_set(m, PGA_DEQUEUE);
 4065                 } else if (old == VPRC_OBJREF + 1) {
 4066                         /*
 4067                          * This is the last wiring.  Clear PGA_DEQUEUE and
 4068                          * update the page's queue state to reflect the
 4069                          * reference.  If the page does not belong to an object
 4070                          * (i.e., the VPRC_OBJREF bit is clear), we only need to
 4071                          * clear leftover queue state.
 4072                          */
 4073                         vm_page_release_toq(m, nqueue, noreuse);
 4074                 } else if (old == 1) {
 4075                         vm_page_aflag_clear(m, PGA_DEQUEUE);
 4076                 }
 4077         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
 4078 
 4079         if (VPRC_WIRE_COUNT(old) == 1) {
 4080                 vm_wire_sub(1);
 4081                 if (old == 1)
 4082                         vm_page_free(m);
 4083         }
 4084 }
 4085 
 4086 /*
 4087  * Release one wiring of the specified page, potentially allowing it to be
 4088  * paged out.
 4089  *
 4090  * Only managed pages belonging to an object can be paged out.  If the number
 4091  * of wirings transitions to zero and the page is eligible for page out, then
 4092  * the page is added to the specified paging queue.  If the released wiring
 4093  * represented the last reference to the page, the page is freed.
 4094  */
 4095 void
 4096 vm_page_unwire(vm_page_t m, uint8_t nqueue)
 4097 {
 4098 
 4099         KASSERT(nqueue < PQ_COUNT,
 4100             ("vm_page_unwire: invalid queue %u request for page %p",
 4101             nqueue, m));
 4102 
 4103         if ((m->oflags & VPO_UNMANAGED) != 0) {
 4104                 if (vm_page_unwire_noq(m) && m->ref_count == 0)
 4105                         vm_page_free(m);
 4106                 return;
 4107         }
 4108         vm_page_unwire_managed(m, nqueue, false);
 4109 }
 4110 
 4111 /*
 4112  * Unwire a page without (re-)inserting it into a page queue.  It is up
 4113  * to the caller to enqueue, requeue, or free the page as appropriate.
 4114  * In most cases involving managed pages, vm_page_unwire() should be used
 4115  * instead.
 4116  */
 4117 bool
 4118 vm_page_unwire_noq(vm_page_t m)
 4119 {
 4120         u_int old;
 4121 
 4122         old = vm_page_drop(m, 1);
 4123         KASSERT(VPRC_WIRE_COUNT(old) != 0,
 4124             ("%s: counter underflow for page %p", __func__,  m));
 4125         KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
 4126             ("%s: missing ref on fictitious page %p", __func__, m));
 4127 
 4128         if (VPRC_WIRE_COUNT(old) > 1)
 4129                 return (false);
 4130         if ((m->oflags & VPO_UNMANAGED) == 0)
 4131                 vm_page_aflag_clear(m, PGA_DEQUEUE);
 4132         vm_wire_sub(1);
 4133         return (true);
 4134 }
 4135 
 4136 /*
 4137  * Ensure that the page ends up in the specified page queue.  If the page is
 4138  * active or being moved to the active queue, ensure that its act_count is
 4139  * at least ACT_INIT but do not otherwise mess with it.
 4140  */
 4141 static __always_inline void
 4142 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
 4143 {
 4144         vm_page_astate_t old, new;
 4145 
 4146         KASSERT(m->ref_count > 0,
 4147             ("%s: page %p does not carry any references", __func__, m));
 4148         KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
 4149             ("%s: invalid flags %x", __func__, nflag));
 4150 
 4151         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
 4152                 return;
 4153 
 4154         old = vm_page_astate_load(m);
 4155         do {
 4156                 if ((old.flags & PGA_DEQUEUE) != 0)
 4157                         break;
 4158                 new = old;
 4159                 new.flags &= ~PGA_QUEUE_OP_MASK;
 4160                 if (nqueue == PQ_ACTIVE)
 4161                         new.act_count = max(old.act_count, ACT_INIT);
 4162                 if (old.queue == nqueue) {
 4163                         /*
 4164                          * There is no need to requeue pages already in the
 4165                          * active queue.
 4166                          */
 4167                         if (nqueue != PQ_ACTIVE ||
 4168                             (old.flags & PGA_ENQUEUED) == 0)
 4169                                 new.flags |= nflag;
 4170                 } else {
 4171                         new.flags |= nflag;
 4172                         new.queue = nqueue;
 4173                 }
 4174         } while (!vm_page_pqstate_commit(m, &old, new));
 4175 }
 4176 
 4177 /*
 4178  * Put the specified page on the active list (if appropriate).
 4179  */
 4180 void
 4181 vm_page_activate(vm_page_t m)
 4182 {
 4183 
 4184         vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
 4185 }
 4186 
 4187 /*
 4188  * Move the specified page to the tail of the inactive queue, or requeue
 4189  * the page if it is already in the inactive queue.
 4190  */
 4191 void
 4192 vm_page_deactivate(vm_page_t m)
 4193 {
 4194 
 4195         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
 4196 }
 4197 
 4198 void
 4199 vm_page_deactivate_noreuse(vm_page_t m)
 4200 {
 4201 
 4202         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
 4203 }
 4204 
 4205 /*
 4206  * Put a page in the laundry, or requeue it if it is already there.
 4207  */
 4208 void
 4209 vm_page_launder(vm_page_t m)
 4210 {
 4211 
 4212         vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
 4213 }
 4214 
 4215 /*
 4216  * Put a page in the PQ_UNSWAPPABLE holding queue.
 4217  */
 4218 void
 4219 vm_page_unswappable(vm_page_t m)
 4220 {
 4221 
 4222         VM_OBJECT_ASSERT_LOCKED(m->object);
 4223         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4224             ("page %p already unswappable", m));
 4225 
 4226         vm_page_dequeue(m);
 4227         vm_page_enqueue(m, PQ_UNSWAPPABLE);
 4228 }
 4229 
 4230 /*
 4231  * Release a page back to the page queues in preparation for unwiring.
 4232  */
 4233 static void
 4234 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
 4235 {
 4236         vm_page_astate_t old, new;
 4237         uint16_t nflag;
 4238 
 4239         /*
 4240          * Use a check of the valid bits to determine whether we should
 4241          * accelerate reclamation of the page.  The object lock might not be
 4242          * held here, in which case the check is racy.  At worst we will either
 4243          * accelerate reclamation of a valid page and violate LRU, or
 4244          * unnecessarily defer reclamation of an invalid page.
 4245          *
 4246          * If we were asked to not cache the page, place it near the head of the
 4247          * inactive queue so that is reclaimed sooner.
 4248          */
 4249         if (noreuse || vm_page_none_valid(m)) {
 4250                 nqueue = PQ_INACTIVE;
 4251                 nflag = PGA_REQUEUE_HEAD;
 4252         } else {
 4253                 nflag = PGA_REQUEUE;
 4254         }
 4255 
 4256         old = vm_page_astate_load(m);
 4257         do {
 4258                 new = old;
 4259 
 4260                 /*
 4261                  * If the page is already in the active queue and we are not
 4262                  * trying to accelerate reclamation, simply mark it as
 4263                  * referenced and avoid any queue operations.
 4264                  */
 4265                 new.flags &= ~PGA_QUEUE_OP_MASK;
 4266                 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
 4267                     (old.flags & PGA_ENQUEUED) != 0)
 4268                         new.flags |= PGA_REFERENCED;
 4269                 else {
 4270                         new.flags |= nflag;
 4271                         new.queue = nqueue;
 4272                 }
 4273         } while (!vm_page_pqstate_commit(m, &old, new));
 4274 }
 4275 
 4276 /*
 4277  * Unwire a page and either attempt to free it or re-add it to the page queues.
 4278  */
 4279 void
 4280 vm_page_release(vm_page_t m, int flags)
 4281 {
 4282         vm_object_t object;
 4283 
 4284         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4285             ("vm_page_release: page %p is unmanaged", m));
 4286 
 4287         if ((flags & VPR_TRYFREE) != 0) {
 4288                 for (;;) {
 4289                         object = atomic_load_ptr(&m->object);
 4290                         if (object == NULL)
 4291                                 break;
 4292                         /* Depends on type-stability. */
 4293                         if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
 4294                                 break;
 4295                         if (object == m->object) {
 4296                                 vm_page_release_locked(m, flags);
 4297                                 VM_OBJECT_WUNLOCK(object);
 4298                                 return;
 4299                         }
 4300                         VM_OBJECT_WUNLOCK(object);
 4301                 }
 4302         }
 4303         vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
 4304 }
 4305 
 4306 /* See vm_page_release(). */
 4307 void
 4308 vm_page_release_locked(vm_page_t m, int flags)
 4309 {
 4310 
 4311         VM_OBJECT_ASSERT_WLOCKED(m->object);
 4312         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4313             ("vm_page_release_locked: page %p is unmanaged", m));
 4314 
 4315         if (vm_page_unwire_noq(m)) {
 4316                 if ((flags & VPR_TRYFREE) != 0 &&
 4317                     (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
 4318                     m->dirty == 0 && vm_page_tryxbusy(m)) {
 4319                         /*
 4320                          * An unlocked lookup may have wired the page before the
 4321                          * busy lock was acquired, in which case the page must
 4322                          * not be freed.
 4323                          */
 4324                         if (__predict_true(!vm_page_wired(m))) {
 4325                                 vm_page_free(m);
 4326                                 return;
 4327                         }
 4328                         vm_page_xunbusy(m);
 4329                 } else {
 4330                         vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
 4331                 }
 4332         }
 4333 }
 4334 
 4335 static bool
 4336 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
 4337 {
 4338         u_int old;
 4339 
 4340         KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
 4341             ("vm_page_try_blocked_op: page %p has no object", m));
 4342         KASSERT(vm_page_busied(m),
 4343             ("vm_page_try_blocked_op: page %p is not busy", m));
 4344         VM_OBJECT_ASSERT_LOCKED(m->object);
 4345 
 4346         old = m->ref_count;
 4347         do {
 4348                 KASSERT(old != 0,
 4349                     ("vm_page_try_blocked_op: page %p has no references", m));
 4350                 if (VPRC_WIRE_COUNT(old) != 0)
 4351                         return (false);
 4352         } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
 4353 
 4354         (op)(m);
 4355 
 4356         /*
 4357          * If the object is read-locked, new wirings may be created via an
 4358          * object lookup.
 4359          */
 4360         old = vm_page_drop(m, VPRC_BLOCKED);
 4361         KASSERT(!VM_OBJECT_WOWNED(m->object) ||
 4362             old == (VPRC_BLOCKED | VPRC_OBJREF),
 4363             ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
 4364             old, m));
 4365         return (true);
 4366 }
 4367 
 4368 /*
 4369  * Atomically check for wirings and remove all mappings of the page.
 4370  */
 4371 bool
 4372 vm_page_try_remove_all(vm_page_t m)
 4373 {
 4374 
 4375         return (vm_page_try_blocked_op(m, pmap_remove_all));
 4376 }
 4377 
 4378 /*
 4379  * Atomically check for wirings and remove all writeable mappings of the page.
 4380  */
 4381 bool
 4382 vm_page_try_remove_write(vm_page_t m)
 4383 {
 4384 
 4385         return (vm_page_try_blocked_op(m, pmap_remove_write));
 4386 }
 4387 
 4388 /*
 4389  * vm_page_advise
 4390  *
 4391  *      Apply the specified advice to the given page.
 4392  */
 4393 void
 4394 vm_page_advise(vm_page_t m, int advice)
 4395 {
 4396 
 4397         VM_OBJECT_ASSERT_WLOCKED(m->object);
 4398         vm_page_assert_xbusied(m);
 4399 
 4400         if (advice == MADV_FREE)
 4401                 /*
 4402                  * Mark the page clean.  This will allow the page to be freed
 4403                  * without first paging it out.  MADV_FREE pages are often
 4404                  * quickly reused by malloc(3), so we do not do anything that
 4405                  * would result in a page fault on a later access.
 4406                  */
 4407                 vm_page_undirty(m);
 4408         else if (advice != MADV_DONTNEED) {
 4409                 if (advice == MADV_WILLNEED)
 4410                         vm_page_activate(m);
 4411                 return;
 4412         }
 4413 
 4414         if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
 4415                 vm_page_dirty(m);
 4416 
 4417         /*
 4418          * Clear any references to the page.  Otherwise, the page daemon will
 4419          * immediately reactivate the page.
 4420          */
 4421         vm_page_aflag_clear(m, PGA_REFERENCED);
 4422 
 4423         /*
 4424          * Place clean pages near the head of the inactive queue rather than
 4425          * the tail, thus defeating the queue's LRU operation and ensuring that
 4426          * the page will be reused quickly.  Dirty pages not already in the
 4427          * laundry are moved there.
 4428          */
 4429         if (m->dirty == 0)
 4430                 vm_page_deactivate_noreuse(m);
 4431         else if (!vm_page_in_laundry(m))
 4432                 vm_page_launder(m);
 4433 }
 4434 
 4435 /*
 4436  *      vm_page_grab_release
 4437  *
 4438  *      Helper routine for grab functions to release busy on return.
 4439  */
 4440 static inline void
 4441 vm_page_grab_release(vm_page_t m, int allocflags)
 4442 {
 4443 
 4444         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
 4445                 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
 4446                         vm_page_sunbusy(m);
 4447                 else
 4448                         vm_page_xunbusy(m);
 4449         }
 4450 }
 4451 
 4452 /*
 4453  *      vm_page_grab_sleep
 4454  *
 4455  *      Sleep for busy according to VM_ALLOC_ parameters.  Returns true
 4456  *      if the caller should retry and false otherwise.
 4457  *
 4458  *      If the object is locked on entry the object will be unlocked with
 4459  *      false returns and still locked but possibly having been dropped
 4460  *      with true returns.
 4461  */
 4462 static bool
 4463 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
 4464     const char *wmesg, int allocflags, bool locked)
 4465 {
 4466 
 4467         if ((allocflags & VM_ALLOC_NOWAIT) != 0)
 4468                 return (false);
 4469 
 4470         /*
 4471          * Reference the page before unlocking and sleeping so that
 4472          * the page daemon is less likely to reclaim it.
 4473          */
 4474         if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
 4475                 vm_page_reference(m);
 4476 
 4477         if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
 4478             locked)
 4479                 VM_OBJECT_WLOCK(object);
 4480         if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
 4481                 return (false);
 4482 
 4483         return (true);
 4484 }
 4485 
 4486 /*
 4487  * Assert that the grab flags are valid.
 4488  */
 4489 static inline void
 4490 vm_page_grab_check(int allocflags)
 4491 {
 4492 
 4493         KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
 4494             (allocflags & VM_ALLOC_WIRED) != 0,
 4495             ("vm_page_grab*: the pages must be busied or wired"));
 4496 
 4497         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
 4498             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
 4499             ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
 4500 }
 4501 
 4502 /*
 4503  * Calculate the page allocation flags for grab.
 4504  */
 4505 static inline int
 4506 vm_page_grab_pflags(int allocflags)
 4507 {
 4508         int pflags;
 4509 
 4510         pflags = allocflags &
 4511             ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
 4512             VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
 4513         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
 4514                 pflags |= VM_ALLOC_WAITFAIL;
 4515         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
 4516                 pflags |= VM_ALLOC_SBUSY;
 4517 
 4518         return (pflags);
 4519 }
 4520 
 4521 /*
 4522  * Grab a page, waiting until we are waken up due to the page
 4523  * changing state.  We keep on waiting, if the page continues
 4524  * to be in the object.  If the page doesn't exist, first allocate it
 4525  * and then conditionally zero it.
 4526  *
 4527  * This routine may sleep.
 4528  *
 4529  * The object must be locked on entry.  The lock will, however, be released
 4530  * and reacquired if the routine sleeps.
 4531  */
 4532 vm_page_t
 4533 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
 4534 {
 4535         vm_page_t m;
 4536 
 4537         VM_OBJECT_ASSERT_WLOCKED(object);
 4538         vm_page_grab_check(allocflags);
 4539 
 4540 retrylookup:
 4541         if ((m = vm_page_lookup(object, pindex)) != NULL) {
 4542                 if (!vm_page_tryacquire(m, allocflags)) {
 4543                         if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
 4544                             allocflags, true))
 4545                                 goto retrylookup;
 4546                         return (NULL);
 4547                 }
 4548                 goto out;
 4549         }
 4550         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
 4551                 return (NULL);
 4552         m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
 4553         if (m == NULL) {
 4554                 if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
 4555                         return (NULL);
 4556                 goto retrylookup;
 4557         }
 4558         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
 4559                 pmap_zero_page(m);
 4560 
 4561 out:
 4562         vm_page_grab_release(m, allocflags);
 4563 
 4564         return (m);
 4565 }
 4566 
 4567 /*
 4568  * Locklessly attempt to acquire a page given a (object, pindex) tuple
 4569  * and an optional previous page to avoid the radix lookup.  The resulting
 4570  * page will be validated against the identity tuple and busied or wired
 4571  * as requested.  A NULL *mp return guarantees that the page was not in
 4572  * radix at the time of the call but callers must perform higher level
 4573  * synchronization or retry the operation under a lock if they require
 4574  * an atomic answer.  This is the only lock free validation routine,
 4575  * other routines can depend on the resulting page state.
 4576  *
 4577  * The return value indicates whether the operation failed due to caller
 4578  * flags.  The return is tri-state with mp:
 4579  *
 4580  * (true, *mp != NULL) - The operation was successful.
 4581  * (true, *mp == NULL) - The page was not found in tree.
 4582  * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition.
 4583  */
 4584 static bool
 4585 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex,
 4586     vm_page_t prev, vm_page_t *mp, int allocflags)
 4587 {
 4588         vm_page_t m;
 4589 
 4590         vm_page_grab_check(allocflags);
 4591         MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev));
 4592 
 4593         *mp = NULL;
 4594         for (;;) {
 4595                 /*
 4596                  * We may see a false NULL here because the previous page
 4597                  * has been removed or just inserted and the list is loaded
 4598                  * without barriers.  Switch to radix to verify.
 4599                  */
 4600                 if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL ||
 4601                     QMD_IS_TRASHED(m) || m->pindex != pindex ||
 4602                     atomic_load_ptr(&m->object) != object) {
 4603                         prev = NULL;
 4604                         /*
 4605                          * This guarantees the result is instantaneously
 4606                          * correct.
 4607                          */
 4608                         m = vm_radix_lookup_unlocked(&object->rtree, pindex);
 4609                 }
 4610                 if (m == NULL)
 4611                         return (true);
 4612                 if (vm_page_trybusy(m, allocflags)) {
 4613                         if (m->object == object && m->pindex == pindex)
 4614                                 break;
 4615                         /* relookup. */
 4616                         vm_page_busy_release(m);
 4617                         cpu_spinwait();
 4618                         continue;
 4619                 }
 4620                 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
 4621                     allocflags, false))
 4622                         return (false);
 4623         }
 4624         if ((allocflags & VM_ALLOC_WIRED) != 0)
 4625                 vm_page_wire(m);
 4626         vm_page_grab_release(m, allocflags);
 4627         *mp = m;
 4628         return (true);
 4629 }
 4630 
 4631 /*
 4632  * Try to locklessly grab a page and fall back to the object lock if NOCREAT
 4633  * is not set.
 4634  */
 4635 vm_page_t
 4636 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
 4637 {
 4638         vm_page_t m;
 4639 
 4640         vm_page_grab_check(allocflags);
 4641 
 4642         if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags))
 4643                 return (NULL);
 4644         if (m != NULL)
 4645                 return (m);
 4646 
 4647         /*
 4648          * The radix lockless lookup should never return a false negative
 4649          * errors.  If the user specifies NOCREAT they are guaranteed there
 4650          * was no page present at the instant of the call.  A NOCREAT caller
 4651          * must handle create races gracefully.
 4652          */
 4653         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
 4654                 return (NULL);
 4655 
 4656         VM_OBJECT_WLOCK(object);
 4657         m = vm_page_grab(object, pindex, allocflags);
 4658         VM_OBJECT_WUNLOCK(object);
 4659 
 4660         return (m);
 4661 }
 4662 
 4663 /*
 4664  * Grab a page and make it valid, paging in if necessary.  Pages missing from
 4665  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
 4666  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
 4667  * in simultaneously.  Additional pages will be left on a paging queue but
 4668  * will neither be wired nor busy regardless of allocflags.
 4669  */
 4670 int
 4671 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
 4672 {
 4673         vm_page_t m;
 4674         vm_page_t ma[VM_INITIAL_PAGEIN];
 4675         int after, i, pflags, rv;
 4676 
 4677         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
 4678             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
 4679             ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
 4680         KASSERT((allocflags &
 4681             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
 4682             ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
 4683         VM_OBJECT_ASSERT_WLOCKED(object);
 4684         pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
 4685             VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
 4686         pflags |= VM_ALLOC_WAITFAIL;
 4687 
 4688 retrylookup:
 4689         if ((m = vm_page_lookup(object, pindex)) != NULL) {
 4690                 /*
 4691                  * If the page is fully valid it can only become invalid
 4692                  * with the object lock held.  If it is not valid it can
 4693                  * become valid with the busy lock held.  Therefore, we
 4694                  * may unnecessarily lock the exclusive busy here if we
 4695                  * race with I/O completion not using the object lock.
 4696                  * However, we will not end up with an invalid page and a
 4697                  * shared lock.
 4698                  */
 4699                 if (!vm_page_trybusy(m,
 4700                     vm_page_all_valid(m) ? allocflags : 0)) {
 4701                         (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
 4702                             allocflags, true);
 4703                         goto retrylookup;
 4704                 }
 4705                 if (vm_page_all_valid(m))
 4706                         goto out;
 4707                 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
 4708                         vm_page_busy_release(m);
 4709                         *mp = NULL;
 4710                         return (VM_PAGER_FAIL);
 4711                 }
 4712         } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
 4713                 *mp = NULL;
 4714                 return (VM_PAGER_FAIL);
 4715         } else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
 4716                 if (!vm_pager_can_alloc_page(object, pindex)) {
 4717                         *mp = NULL;
 4718                         return (VM_PAGER_AGAIN);
 4719                 }
 4720                 goto retrylookup;
 4721         }
 4722 
 4723         vm_page_assert_xbusied(m);
 4724         if (vm_pager_has_page(object, pindex, NULL, &after)) {
 4725                 after = MIN(after, VM_INITIAL_PAGEIN);
 4726                 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
 4727                 after = MAX(after, 1);
 4728                 ma[0] = m;
 4729                 for (i = 1; i < after; i++) {
 4730                         if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
 4731                                 if (vm_page_any_valid(ma[i]) ||
 4732                                     !vm_page_tryxbusy(ma[i]))
 4733                                         break;
 4734                         } else {
 4735                                 ma[i] = vm_page_alloc(object, m->pindex + i,
 4736                                     VM_ALLOC_NORMAL);
 4737                                 if (ma[i] == NULL)
 4738                                         break;
 4739                         }
 4740                 }
 4741                 after = i;
 4742                 vm_object_pip_add(object, after);
 4743                 VM_OBJECT_WUNLOCK(object);
 4744                 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
 4745                 VM_OBJECT_WLOCK(object);
 4746                 vm_object_pip_wakeupn(object, after);
 4747                 /* Pager may have replaced a page. */
 4748                 m = ma[0];
 4749                 if (rv != VM_PAGER_OK) {
 4750                         for (i = 0; i < after; i++) {
 4751                                 if (!vm_page_wired(ma[i]))
 4752                                         vm_page_free(ma[i]);
 4753                                 else
 4754                                         vm_page_xunbusy(ma[i]);
 4755                         }
 4756                         *mp = NULL;
 4757                         return (rv);
 4758                 }
 4759                 for (i = 1; i < after; i++)
 4760                         vm_page_readahead_finish(ma[i]);
 4761                 MPASS(vm_page_all_valid(m));
 4762         } else {
 4763                 vm_page_zero_invalid(m, TRUE);
 4764         }
 4765 out:
 4766         if ((allocflags & VM_ALLOC_WIRED) != 0)
 4767                 vm_page_wire(m);
 4768         if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
 4769                 vm_page_busy_downgrade(m);
 4770         else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
 4771                 vm_page_busy_release(m);
 4772         *mp = m;
 4773         return (VM_PAGER_OK);
 4774 }
 4775 
 4776 /*
 4777  * Locklessly grab a valid page.  If the page is not valid or not yet
 4778  * allocated this will fall back to the object lock method.
 4779  */
 4780 int
 4781 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
 4782     vm_pindex_t pindex, int allocflags)
 4783 {
 4784         vm_page_t m;
 4785         int flags;
 4786         int error;
 4787 
 4788         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
 4789             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
 4790             ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
 4791             "mismatch"));
 4792         KASSERT((allocflags &
 4793             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
 4794             ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
 4795 
 4796         /*
 4797          * Attempt a lockless lookup and busy.  We need at least an sbusy
 4798          * before we can inspect the valid field and return a wired page.
 4799          */
 4800         flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
 4801         if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags))
 4802                 return (VM_PAGER_FAIL);
 4803         if ((m = *mp) != NULL) {
 4804                 if (vm_page_all_valid(m)) {
 4805                         if ((allocflags & VM_ALLOC_WIRED) != 0)
 4806                                 vm_page_wire(m);
 4807                         vm_page_grab_release(m, allocflags);
 4808                         return (VM_PAGER_OK);
 4809                 }
 4810                 vm_page_busy_release(m);
 4811         }
 4812         if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
 4813                 *mp = NULL;
 4814                 return (VM_PAGER_FAIL);
 4815         }
 4816         VM_OBJECT_WLOCK(object);
 4817         error = vm_page_grab_valid(mp, object, pindex, allocflags);
 4818         VM_OBJECT_WUNLOCK(object);
 4819 
 4820         return (error);
 4821 }
 4822 
 4823 /*
 4824  * Return the specified range of pages from the given object.  For each
 4825  * page offset within the range, if a page already exists within the object
 4826  * at that offset and it is busy, then wait for it to change state.  If,
 4827  * instead, the page doesn't exist, then allocate it.
 4828  *
 4829  * The caller must always specify an allocation class.
 4830  *
 4831  * allocation classes:
 4832  *      VM_ALLOC_NORMAL         normal process request
 4833  *      VM_ALLOC_SYSTEM         system *really* needs the pages
 4834  *
 4835  * The caller must always specify that the pages are to be busied and/or
 4836  * wired.
 4837  *
 4838  * optional allocation flags:
 4839  *      VM_ALLOC_IGN_SBUSY      do not sleep on soft busy pages
 4840  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
 4841  *      VM_ALLOC_NOWAIT         do not sleep
 4842  *      VM_ALLOC_SBUSY          set page to sbusy state
 4843  *      VM_ALLOC_WIRED          wire the pages
 4844  *      VM_ALLOC_ZERO           zero and validate any invalid pages
 4845  *
 4846  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
 4847  * may return a partial prefix of the requested range.
 4848  */
 4849 int
 4850 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
 4851     vm_page_t *ma, int count)
 4852 {
 4853         vm_page_t m, mpred;
 4854         int pflags;
 4855         int i;
 4856 
 4857         VM_OBJECT_ASSERT_WLOCKED(object);
 4858         KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
 4859             ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
 4860         KASSERT(count > 0,
 4861             ("vm_page_grab_pages: invalid page count %d", count));
 4862         vm_page_grab_check(allocflags);
 4863 
 4864         pflags = vm_page_grab_pflags(allocflags);
 4865         i = 0;
 4866 retrylookup:
 4867         m = vm_radix_lookup_le(&object->rtree, pindex + i);
 4868         if (m == NULL || m->pindex != pindex + i) {
 4869                 mpred = m;
 4870                 m = NULL;
 4871         } else
 4872                 mpred = TAILQ_PREV(m, pglist, listq);
 4873         for (; i < count; i++) {
 4874                 if (m != NULL) {
 4875                         if (!vm_page_tryacquire(m, allocflags)) {
 4876                                 if (vm_page_grab_sleep(object, m, pindex + i,
 4877                                     "grbmaw", allocflags, true))
 4878                                         goto retrylookup;
 4879                                 break;
 4880                         }
 4881                 } else {
 4882                         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
 4883                                 break;
 4884                         m = vm_page_alloc_after(object, pindex + i,
 4885                             pflags | VM_ALLOC_COUNT(count - i), mpred);
 4886                         if (m == NULL) {
 4887                                 if ((allocflags & (VM_ALLOC_NOWAIT |
 4888                                     VM_ALLOC_WAITFAIL)) != 0)
 4889                                         break;
 4890                                 goto retrylookup;
 4891                         }
 4892                 }
 4893                 if (vm_page_none_valid(m) &&
 4894                     (allocflags & VM_ALLOC_ZERO) != 0) {
 4895                         if ((m->flags & PG_ZERO) == 0)
 4896                                 pmap_zero_page(m);
 4897                         vm_page_valid(m);
 4898                 }
 4899                 vm_page_grab_release(m, allocflags);
 4900                 ma[i] = mpred = m;
 4901                 m = vm_page_next(m);
 4902         }
 4903         return (i);
 4904 }
 4905 
 4906 /*
 4907  * Unlocked variant of vm_page_grab_pages().  This accepts the same flags
 4908  * and will fall back to the locked variant to handle allocation.
 4909  */
 4910 int
 4911 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
 4912     int allocflags, vm_page_t *ma, int count)
 4913 {
 4914         vm_page_t m, pred;
 4915         int flags;
 4916         int i;
 4917 
 4918         KASSERT(count > 0,
 4919             ("vm_page_grab_pages_unlocked: invalid page count %d", count));
 4920         vm_page_grab_check(allocflags);
 4921 
 4922         /*
 4923          * Modify flags for lockless acquire to hold the page until we
 4924          * set it valid if necessary.
 4925          */
 4926         flags = allocflags & ~VM_ALLOC_NOBUSY;
 4927         pred = NULL;
 4928         for (i = 0; i < count; i++, pindex++) {
 4929                 if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags))
 4930                         return (i);
 4931                 if (m == NULL)
 4932                         break;
 4933                 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
 4934                         if ((m->flags & PG_ZERO) == 0)
 4935                                 pmap_zero_page(m);
 4936                         vm_page_valid(m);
 4937                 }
 4938                 /* m will still be wired or busy according to flags. */
 4939                 vm_page_grab_release(m, allocflags);
 4940                 pred = ma[i] = m;
 4941         }
 4942         if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
 4943                 return (i);
 4944         count -= i;
 4945         VM_OBJECT_WLOCK(object);
 4946         i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
 4947         VM_OBJECT_WUNLOCK(object);
 4948 
 4949         return (i);
 4950 }
 4951 
 4952 /*
 4953  * Mapping function for valid or dirty bits in a page.
 4954  *
 4955  * Inputs are required to range within a page.
 4956  */
 4957 vm_page_bits_t
 4958 vm_page_bits(int base, int size)
 4959 {
 4960         int first_bit;
 4961         int last_bit;
 4962 
 4963         KASSERT(
 4964             base + size <= PAGE_SIZE,
 4965             ("vm_page_bits: illegal base/size %d/%d", base, size)
 4966         );
 4967 
 4968         if (size == 0)          /* handle degenerate case */
 4969                 return (0);
 4970 
 4971         first_bit = base >> DEV_BSHIFT;
 4972         last_bit = (base + size - 1) >> DEV_BSHIFT;
 4973 
 4974         return (((vm_page_bits_t)2 << last_bit) -
 4975             ((vm_page_bits_t)1 << first_bit));
 4976 }
 4977 
 4978 void
 4979 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
 4980 {
 4981 
 4982 #if PAGE_SIZE == 32768
 4983         atomic_set_64((uint64_t *)bits, set);
 4984 #elif PAGE_SIZE == 16384
 4985         atomic_set_32((uint32_t *)bits, set);
 4986 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
 4987         atomic_set_16((uint16_t *)bits, set);
 4988 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
 4989         atomic_set_8((uint8_t *)bits, set);
 4990 #else           /* PAGE_SIZE <= 8192 */
 4991         uintptr_t addr;
 4992         int shift;
 4993 
 4994         addr = (uintptr_t)bits;
 4995         /*
 4996          * Use a trick to perform a 32-bit atomic on the
 4997          * containing aligned word, to not depend on the existence
 4998          * of atomic_{set, clear}_{8, 16}.
 4999          */
 5000         shift = addr & (sizeof(uint32_t) - 1);
 5001 #if BYTE_ORDER == BIG_ENDIAN
 5002         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
 5003 #else
 5004         shift *= NBBY;
 5005 #endif
 5006         addr &= ~(sizeof(uint32_t) - 1);
 5007         atomic_set_32((uint32_t *)addr, set << shift);
 5008 #endif          /* PAGE_SIZE */
 5009 }
 5010 
 5011 static inline void
 5012 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
 5013 {
 5014 
 5015 #if PAGE_SIZE == 32768
 5016         atomic_clear_64((uint64_t *)bits, clear);
 5017 #elif PAGE_SIZE == 16384
 5018         atomic_clear_32((uint32_t *)bits, clear);
 5019 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
 5020         atomic_clear_16((uint16_t *)bits, clear);
 5021 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
 5022         atomic_clear_8((uint8_t *)bits, clear);
 5023 #else           /* PAGE_SIZE <= 8192 */
 5024         uintptr_t addr;
 5025         int shift;
 5026 
 5027         addr = (uintptr_t)bits;
 5028         /*
 5029          * Use a trick to perform a 32-bit atomic on the
 5030          * containing aligned word, to not depend on the existence
 5031          * of atomic_{set, clear}_{8, 16}.
 5032          */
 5033         shift = addr & (sizeof(uint32_t) - 1);
 5034 #if BYTE_ORDER == BIG_ENDIAN
 5035         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
 5036 #else
 5037         shift *= NBBY;
 5038 #endif
 5039         addr &= ~(sizeof(uint32_t) - 1);
 5040         atomic_clear_32((uint32_t *)addr, clear << shift);
 5041 #endif          /* PAGE_SIZE */
 5042 }
 5043 
 5044 static inline vm_page_bits_t
 5045 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
 5046 {
 5047 #if PAGE_SIZE == 32768
 5048         uint64_t old;
 5049 
 5050         old = *bits;
 5051         while (atomic_fcmpset_64(bits, &old, newbits) == 0);
 5052         return (old);
 5053 #elif PAGE_SIZE == 16384
 5054         uint32_t old;
 5055 
 5056         old = *bits;
 5057         while (atomic_fcmpset_32(bits, &old, newbits) == 0);
 5058         return (old);
 5059 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
 5060         uint16_t old;
 5061 
 5062         old = *bits;
 5063         while (atomic_fcmpset_16(bits, &old, newbits) == 0);
 5064         return (old);
 5065 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
 5066         uint8_t old;
 5067 
 5068         old = *bits;
 5069         while (atomic_fcmpset_8(bits, &old, newbits) == 0);
 5070         return (old);
 5071 #else           /* PAGE_SIZE <= 4096*/
 5072         uintptr_t addr;
 5073         uint32_t old, new, mask;
 5074         int shift;
 5075 
 5076         addr = (uintptr_t)bits;
 5077         /*
 5078          * Use a trick to perform a 32-bit atomic on the
 5079          * containing aligned word, to not depend on the existence
 5080          * of atomic_{set, swap, clear}_{8, 16}.
 5081          */
 5082         shift = addr & (sizeof(uint32_t) - 1);
 5083 #if BYTE_ORDER == BIG_ENDIAN
 5084         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
 5085 #else
 5086         shift *= NBBY;
 5087 #endif
 5088         addr &= ~(sizeof(uint32_t) - 1);
 5089         mask = VM_PAGE_BITS_ALL << shift;
 5090 
 5091         old = *bits;
 5092         do {
 5093                 new = old & ~mask;
 5094                 new |= newbits << shift;
 5095         } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
 5096         return (old >> shift);
 5097 #endif          /* PAGE_SIZE */
 5098 }
 5099 
 5100 /*
 5101  *      vm_page_set_valid_range:
 5102  *
 5103  *      Sets portions of a page valid.  The arguments are expected
 5104  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
 5105  *      of any partial chunks touched by the range.  The invalid portion of
 5106  *      such chunks will be zeroed.
 5107  *
 5108  *      (base + size) must be less then or equal to PAGE_SIZE.
 5109  */
 5110 void
 5111 vm_page_set_valid_range(vm_page_t m, int base, int size)
 5112 {
 5113         int endoff, frag;
 5114         vm_page_bits_t pagebits;
 5115 
 5116         vm_page_assert_busied(m);
 5117         if (size == 0)  /* handle degenerate case */
 5118                 return;
 5119 
 5120         /*
 5121          * If the base is not DEV_BSIZE aligned and the valid
 5122          * bit is clear, we have to zero out a portion of the
 5123          * first block.
 5124          */
 5125         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
 5126             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
 5127                 pmap_zero_page_area(m, frag, base - frag);
 5128 
 5129         /*
 5130          * If the ending offset is not DEV_BSIZE aligned and the
 5131          * valid bit is clear, we have to zero out a portion of
 5132          * the last block.
 5133          */
 5134         endoff = base + size;
 5135         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
 5136             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
 5137                 pmap_zero_page_area(m, endoff,
 5138                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
 5139 
 5140         /*
 5141          * Assert that no previously invalid block that is now being validated
 5142          * is already dirty.
 5143          */
 5144         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
 5145             ("vm_page_set_valid_range: page %p is dirty", m));
 5146 
 5147         /*
 5148          * Set valid bits inclusive of any overlap.
 5149          */
 5150         pagebits = vm_page_bits(base, size);
 5151         if (vm_page_xbusied(m))
 5152                 m->valid |= pagebits;
 5153         else
 5154                 vm_page_bits_set(m, &m->valid, pagebits);
 5155 }
 5156 
 5157 /*
 5158  * Set the page dirty bits and free the invalid swap space if
 5159  * present.  Returns the previous dirty bits.
 5160  */
 5161 vm_page_bits_t
 5162 vm_page_set_dirty(vm_page_t m)
 5163 {
 5164         vm_page_bits_t old;
 5165 
 5166         VM_PAGE_OBJECT_BUSY_ASSERT(m);
 5167 
 5168         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
 5169                 old = m->dirty;
 5170                 m->dirty = VM_PAGE_BITS_ALL;
 5171         } else
 5172                 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
 5173         if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
 5174                 vm_pager_page_unswapped(m);
 5175 
 5176         return (old);
 5177 }
 5178 
 5179 /*
 5180  * Clear the given bits from the specified page's dirty field.
 5181  */
 5182 static __inline void
 5183 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
 5184 {
 5185 
 5186         vm_page_assert_busied(m);
 5187 
 5188         /*
 5189          * If the page is xbusied and not write mapped we are the
 5190          * only thread that can modify dirty bits.  Otherwise, The pmap
 5191          * layer can call vm_page_dirty() without holding a distinguished
 5192          * lock.  The combination of page busy and atomic operations
 5193          * suffice to guarantee consistency of the page dirty field.
 5194          */
 5195         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
 5196                 m->dirty &= ~pagebits;
 5197         else
 5198                 vm_page_bits_clear(m, &m->dirty, pagebits);
 5199 }
 5200 
 5201 /*
 5202  *      vm_page_set_validclean:
 5203  *
 5204  *      Sets portions of a page valid and clean.  The arguments are expected
 5205  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
 5206  *      of any partial chunks touched by the range.  The invalid portion of
 5207  *      such chunks will be zero'd.
 5208  *
 5209  *      (base + size) must be less then or equal to PAGE_SIZE.
 5210  */
 5211 void
 5212 vm_page_set_validclean(vm_page_t m, int base, int size)
 5213 {
 5214         vm_page_bits_t oldvalid, pagebits;
 5215         int endoff, frag;
 5216 
 5217         vm_page_assert_busied(m);
 5218         if (size == 0)  /* handle degenerate case */
 5219                 return;
 5220 
 5221         /*
 5222          * If the base is not DEV_BSIZE aligned and the valid
 5223          * bit is clear, we have to zero out a portion of the
 5224          * first block.
 5225          */
 5226         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
 5227             (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
 5228                 pmap_zero_page_area(m, frag, base - frag);
 5229 
 5230         /*
 5231          * If the ending offset is not DEV_BSIZE aligned and the
 5232          * valid bit is clear, we have to zero out a portion of
 5233          * the last block.
 5234          */
 5235         endoff = base + size;
 5236         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
 5237             (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
 5238                 pmap_zero_page_area(m, endoff,
 5239                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
 5240 
 5241         /*
 5242          * Set valid, clear dirty bits.  If validating the entire
 5243          * page we can safely clear the pmap modify bit.  We also
 5244          * use this opportunity to clear the PGA_NOSYNC flag.  If a process
 5245          * takes a write fault on a MAP_NOSYNC memory area the flag will
 5246          * be set again.
 5247          *
 5248          * We set valid bits inclusive of any overlap, but we can only
 5249          * clear dirty bits for DEV_BSIZE chunks that are fully within
 5250          * the range.
 5251          */
 5252         oldvalid = m->valid;
 5253         pagebits = vm_page_bits(base, size);
 5254         if (vm_page_xbusied(m))
 5255                 m->valid |= pagebits;
 5256         else
 5257                 vm_page_bits_set(m, &m->valid, pagebits);
 5258 #if 0   /* NOT YET */
 5259         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
 5260                 frag = DEV_BSIZE - frag;
 5261                 base += frag;
 5262                 size -= frag;
 5263                 if (size < 0)
 5264                         size = 0;
 5265         }
 5266         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
 5267 #endif
 5268         if (base == 0 && size == PAGE_SIZE) {
 5269                 /*
 5270                  * The page can only be modified within the pmap if it is
 5271                  * mapped, and it can only be mapped if it was previously
 5272                  * fully valid.
 5273                  */
 5274                 if (oldvalid == VM_PAGE_BITS_ALL)
 5275                         /*
 5276                          * Perform the pmap_clear_modify() first.  Otherwise,
 5277                          * a concurrent pmap operation, such as
 5278                          * pmap_protect(), could clear a modification in the
 5279                          * pmap and set the dirty field on the page before
 5280                          * pmap_clear_modify() had begun and after the dirty
 5281                          * field was cleared here.
 5282                          */
 5283                         pmap_clear_modify(m);
 5284                 m->dirty = 0;
 5285                 vm_page_aflag_clear(m, PGA_NOSYNC);
 5286         } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
 5287                 m->dirty &= ~pagebits;
 5288         else
 5289                 vm_page_clear_dirty_mask(m, pagebits);
 5290 }
 5291 
 5292 void
 5293 vm_page_clear_dirty(vm_page_t m, int base, int size)
 5294 {
 5295 
 5296         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
 5297 }
 5298 
 5299 /*
 5300  *      vm_page_set_invalid:
 5301  *
 5302  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
 5303  *      valid and dirty bits for the effected areas are cleared.
 5304  */
 5305 void
 5306 vm_page_set_invalid(vm_page_t m, int base, int size)
 5307 {
 5308         vm_page_bits_t bits;
 5309         vm_object_t object;
 5310 
 5311         /*
 5312          * The object lock is required so that pages can't be mapped
 5313          * read-only while we're in the process of invalidating them.
 5314          */
 5315         object = m->object;
 5316         VM_OBJECT_ASSERT_WLOCKED(object);
 5317         vm_page_assert_busied(m);
 5318 
 5319         if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
 5320             size >= object->un_pager.vnp.vnp_size)
 5321                 bits = VM_PAGE_BITS_ALL;
 5322         else
 5323                 bits = vm_page_bits(base, size);
 5324         if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
 5325                 pmap_remove_all(m);
 5326         KASSERT((bits == 0 && vm_page_all_valid(m)) ||
 5327             !pmap_page_is_mapped(m),
 5328             ("vm_page_set_invalid: page %p is mapped", m));
 5329         if (vm_page_xbusied(m)) {
 5330                 m->valid &= ~bits;
 5331                 m->dirty &= ~bits;
 5332         } else {
 5333                 vm_page_bits_clear(m, &m->valid, bits);
 5334                 vm_page_bits_clear(m, &m->dirty, bits);
 5335         }
 5336 }
 5337 
 5338 /*
 5339  *      vm_page_invalid:
 5340  *
 5341  *      Invalidates the entire page.  The page must be busy, unmapped, and
 5342  *      the enclosing object must be locked.  The object locks protects
 5343  *      against concurrent read-only pmap enter which is done without
 5344  *      busy.
 5345  */
 5346 void
 5347 vm_page_invalid(vm_page_t m)
 5348 {
 5349 
 5350         vm_page_assert_busied(m);
 5351         VM_OBJECT_ASSERT_WLOCKED(m->object);
 5352         MPASS(!pmap_page_is_mapped(m));
 5353 
 5354         if (vm_page_xbusied(m))
 5355                 m->valid = 0;
 5356         else
 5357                 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
 5358 }
 5359 
 5360 /*
 5361  * vm_page_zero_invalid()
 5362  *
 5363  *      The kernel assumes that the invalid portions of a page contain
 5364  *      garbage, but such pages can be mapped into memory by user code.
 5365  *      When this occurs, we must zero out the non-valid portions of the
 5366  *      page so user code sees what it expects.
 5367  *
 5368  *      Pages are most often semi-valid when the end of a file is mapped
 5369  *      into memory and the file's size is not page aligned.
 5370  */
 5371 void
 5372 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
 5373 {
 5374         int b;
 5375         int i;
 5376 
 5377         /*
 5378          * Scan the valid bits looking for invalid sections that
 5379          * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
 5380          * valid bit may be set ) have already been zeroed by
 5381          * vm_page_set_validclean().
 5382          */
 5383         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
 5384                 if (i == (PAGE_SIZE / DEV_BSIZE) ||
 5385                     (m->valid & ((vm_page_bits_t)1 << i))) {
 5386                         if (i > b) {
 5387                                 pmap_zero_page_area(m,
 5388                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
 5389                         }
 5390                         b = i + 1;
 5391                 }
 5392         }
 5393 
 5394         /*
 5395          * setvalid is TRUE when we can safely set the zero'd areas
 5396          * as being valid.  We can do this if there are no cache consistency
 5397          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
 5398          */
 5399         if (setvalid)
 5400                 vm_page_valid(m);
 5401 }
 5402 
 5403 /*
 5404  *      vm_page_is_valid:
 5405  *
 5406  *      Is (partial) page valid?  Note that the case where size == 0
 5407  *      will return FALSE in the degenerate case where the page is
 5408  *      entirely invalid, and TRUE otherwise.
 5409  *
 5410  *      Some callers envoke this routine without the busy lock held and
 5411  *      handle races via higher level locks.  Typical callers should
 5412  *      hold a busy lock to prevent invalidation.
 5413  */
 5414 int
 5415 vm_page_is_valid(vm_page_t m, int base, int size)
 5416 {
 5417         vm_page_bits_t bits;
 5418 
 5419         bits = vm_page_bits(base, size);
 5420         return (vm_page_any_valid(m) && (m->valid & bits) == bits);
 5421 }
 5422 
 5423 /*
 5424  * Returns true if all of the specified predicates are true for the entire
 5425  * (super)page and false otherwise.
 5426  */
 5427 bool
 5428 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
 5429 {
 5430         vm_object_t object;
 5431         int i, npages;
 5432 
 5433         object = m->object;
 5434         if (skip_m != NULL && skip_m->object != object)
 5435                 return (false);
 5436         VM_OBJECT_ASSERT_LOCKED(object);
 5437         npages = atop(pagesizes[m->psind]);
 5438 
 5439         /*
 5440          * The physically contiguous pages that make up a superpage, i.e., a
 5441          * page with a page size index ("psind") greater than zero, will
 5442          * occupy adjacent entries in vm_page_array[].
 5443          */
 5444         for (i = 0; i < npages; i++) {
 5445                 /* Always test object consistency, including "skip_m". */
 5446                 if (m[i].object != object)
 5447                         return (false);
 5448                 if (&m[i] == skip_m)
 5449                         continue;
 5450                 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
 5451                         return (false);
 5452                 if ((flags & PS_ALL_DIRTY) != 0) {
 5453                         /*
 5454                          * Calling vm_page_test_dirty() or pmap_is_modified()
 5455                          * might stop this case from spuriously returning
 5456                          * "false".  However, that would require a write lock
 5457                          * on the object containing "m[i]".
 5458                          */
 5459                         if (m[i].dirty != VM_PAGE_BITS_ALL)
 5460                                 return (false);
 5461                 }
 5462                 if ((flags & PS_ALL_VALID) != 0 &&
 5463                     m[i].valid != VM_PAGE_BITS_ALL)
 5464                         return (false);
 5465         }
 5466         return (true);
 5467 }
 5468 
 5469 /*
 5470  * Set the page's dirty bits if the page is modified.
 5471  */
 5472 void
 5473 vm_page_test_dirty(vm_page_t m)
 5474 {
 5475 
 5476         vm_page_assert_busied(m);
 5477         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
 5478                 vm_page_dirty(m);
 5479 }
 5480 
 5481 void
 5482 vm_page_valid(vm_page_t m)
 5483 {
 5484 
 5485         vm_page_assert_busied(m);
 5486         if (vm_page_xbusied(m))
 5487                 m->valid = VM_PAGE_BITS_ALL;
 5488         else
 5489                 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
 5490 }
 5491 
 5492 void
 5493 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
 5494 {
 5495 
 5496         mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
 5497 }
 5498 
 5499 void
 5500 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
 5501 {
 5502 
 5503         mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
 5504 }
 5505 
 5506 int
 5507 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
 5508 {
 5509 
 5510         return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
 5511 }
 5512 
 5513 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
 5514 void
 5515 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
 5516 {
 5517 
 5518         vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
 5519 }
 5520 
 5521 void
 5522 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
 5523 {
 5524 
 5525         mtx_assert_(vm_page_lockptr(m), a, file, line);
 5526 }
 5527 #endif
 5528 
 5529 #ifdef INVARIANTS
 5530 void
 5531 vm_page_object_busy_assert(vm_page_t m)
 5532 {
 5533 
 5534         /*
 5535          * Certain of the page's fields may only be modified by the
 5536          * holder of a page or object busy.
 5537          */
 5538         if (m->object != NULL && !vm_page_busied(m))
 5539                 VM_OBJECT_ASSERT_BUSY(m->object);
 5540 }
 5541 
 5542 void
 5543 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
 5544 {
 5545 
 5546         if ((bits & PGA_WRITEABLE) == 0)
 5547                 return;
 5548 
 5549         /*
 5550          * The PGA_WRITEABLE flag can only be set if the page is
 5551          * managed, is exclusively busied or the object is locked.
 5552          * Currently, this flag is only set by pmap_enter().
 5553          */
 5554         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 5555             ("PGA_WRITEABLE on unmanaged page"));
 5556         if (!vm_page_xbusied(m))
 5557                 VM_OBJECT_ASSERT_BUSY(m->object);
 5558 }
 5559 #endif
 5560 
 5561 #include "opt_ddb.h"
 5562 #ifdef DDB
 5563 #include <sys/kernel.h>
 5564 
 5565 #include <ddb/ddb.h>
 5566 
 5567 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
 5568 {
 5569 
 5570         db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
 5571         db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
 5572         db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
 5573         db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
 5574         db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
 5575         db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
 5576         db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
 5577         db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
 5578         db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
 5579 }
 5580 
 5581 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
 5582 {
 5583         int dom;
 5584 
 5585         db_printf("pq_free %d\n", vm_free_count());
 5586         for (dom = 0; dom < vm_ndomains; dom++) {
 5587                 db_printf(
 5588     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
 5589                     dom,
 5590                     vm_dom[dom].vmd_page_count,
 5591                     vm_dom[dom].vmd_free_count,
 5592                     vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
 5593                     vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
 5594                     vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
 5595                     vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
 5596         }
 5597 }
 5598 
 5599 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
 5600 {
 5601         vm_page_t m;
 5602         boolean_t phys, virt;
 5603 
 5604         if (!have_addr) {
 5605                 db_printf("show pginfo addr\n");
 5606                 return;
 5607         }
 5608 
 5609         phys = strchr(modif, 'p') != NULL;
 5610         virt = strchr(modif, 'v') != NULL;
 5611         if (virt)
 5612                 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
 5613         else if (phys)
 5614                 m = PHYS_TO_VM_PAGE(addr);
 5615         else
 5616                 m = (vm_page_t)addr;
 5617         db_printf(
 5618     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
 5619     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
 5620             m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
 5621             m->a.queue, m->ref_count, m->a.flags, m->oflags,
 5622             m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
 5623 }
 5624 #endif /* DDB */

Cache object: d255bda4d86bb347913700291f3d3cd9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.