FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.c
1 /*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
34 */
35
36 /*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 * - A page queue lock is required when adding or removing a page from a
67 * page queue regardless of other locks or the busy state of a page.
68 *
69 * * In general, no thread besides the page daemon can acquire or
70 * hold more than one page queue lock at a time.
71 *
72 * * The page daemon can acquire and hold any pair of page queue
73 * locks in any order.
74 *
75 * - The object lock is required when inserting or removing
76 * pages from an object (vm_page_insert() or vm_page_remove()).
77 *
78 */
79
80 /*
81 * Resident memory management module.
82 */
83
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD: releng/10.0/sys/vm/vm_page.c 255626 2013-09-17 07:35:26Z kib $");
86
87 #include "opt_vm.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/lock.h>
92 #include <sys/kernel.h>
93 #include <sys/limits.h>
94 #include <sys/malloc.h>
95 #include <sys/mman.h>
96 #include <sys/msgbuf.h>
97 #include <sys/mutex.h>
98 #include <sys/proc.h>
99 #include <sys/rwlock.h>
100 #include <sys/sysctl.h>
101 #include <sys/vmmeter.h>
102 #include <sys/vnode.h>
103
104 #include <vm/vm.h>
105 #include <vm/pmap.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_kern.h>
108 #include <vm/vm_object.h>
109 #include <vm/vm_page.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_radix.h>
114 #include <vm/vm_reserv.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117 #include <vm/uma_int.h>
118
119 #include <machine/md_var.h>
120
121 /*
122 * Associated with page of user-allocatable memory is a
123 * page structure.
124 */
125
126 struct vm_domain vm_dom[MAXMEMDOM];
127 struct mtx_padalign vm_page_queue_free_mtx;
128
129 struct mtx_padalign pa_lock[PA_LOCK_COUNT];
130
131 vm_page_t vm_page_array;
132 long vm_page_array_size;
133 long first_page;
134 int vm_page_zero_count;
135
136 static int boot_pages = UMA_BOOT_PAGES;
137 TUNABLE_INT("vm.boot_pages", &boot_pages);
138 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
139 "number of pages allocated for bootstrapping the VM system");
140
141 static int pa_tryrelock_restart;
142 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
143 &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
144
145 static uma_zone_t fakepg_zone;
146
147 static struct vnode *vm_page_alloc_init(vm_page_t m);
148 static void vm_page_cache_turn_free(vm_page_t m);
149 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
150 static void vm_page_enqueue(int queue, vm_page_t m);
151 static void vm_page_init_fakepg(void *dummy);
152 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
153 vm_pindex_t pindex, vm_page_t mpred);
154 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
155 vm_page_t mpred);
156
157 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
158
159 static void
160 vm_page_init_fakepg(void *dummy)
161 {
162
163 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
164 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
165 }
166
167 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
168 #if PAGE_SIZE == 32768
169 #ifdef CTASSERT
170 CTASSERT(sizeof(u_long) >= 8);
171 #endif
172 #endif
173
174 /*
175 * Try to acquire a physical address lock while a pmap is locked. If we
176 * fail to trylock we unlock and lock the pmap directly and cache the
177 * locked pa in *locked. The caller should then restart their loop in case
178 * the virtual to physical mapping has changed.
179 */
180 int
181 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
182 {
183 vm_paddr_t lockpa;
184
185 lockpa = *locked;
186 *locked = pa;
187 if (lockpa) {
188 PA_LOCK_ASSERT(lockpa, MA_OWNED);
189 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
190 return (0);
191 PA_UNLOCK(lockpa);
192 }
193 if (PA_TRYLOCK(pa))
194 return (0);
195 PMAP_UNLOCK(pmap);
196 atomic_add_int(&pa_tryrelock_restart, 1);
197 PA_LOCK(pa);
198 PMAP_LOCK(pmap);
199 return (EAGAIN);
200 }
201
202 /*
203 * vm_set_page_size:
204 *
205 * Sets the page size, perhaps based upon the memory
206 * size. Must be called before any use of page-size
207 * dependent functions.
208 */
209 void
210 vm_set_page_size(void)
211 {
212 if (cnt.v_page_size == 0)
213 cnt.v_page_size = PAGE_SIZE;
214 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
215 panic("vm_set_page_size: page size not a power of two");
216 }
217
218 /*
219 * vm_page_blacklist_lookup:
220 *
221 * See if a physical address in this page has been listed
222 * in the blacklist tunable. Entries in the tunable are
223 * separated by spaces or commas. If an invalid integer is
224 * encountered then the rest of the string is skipped.
225 */
226 static int
227 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
228 {
229 vm_paddr_t bad;
230 char *cp, *pos;
231
232 for (pos = list; *pos != '\0'; pos = cp) {
233 bad = strtoq(pos, &cp, 0);
234 if (*cp != '\0') {
235 if (*cp == ' ' || *cp == ',') {
236 cp++;
237 if (cp == pos)
238 continue;
239 } else
240 break;
241 }
242 if (pa == trunc_page(bad))
243 return (1);
244 }
245 return (0);
246 }
247
248 static void
249 vm_page_domain_init(struct vm_domain *vmd)
250 {
251 struct vm_pagequeue *pq;
252 int i;
253
254 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
255 "vm inactive pagequeue";
256 *__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
257 &cnt.v_inactive_count;
258 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
259 "vm active pagequeue";
260 *__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
261 &cnt.v_active_count;
262 vmd->vmd_page_count = 0;
263 vmd->vmd_free_count = 0;
264 vmd->vmd_segs = 0;
265 vmd->vmd_oom = FALSE;
266 vmd->vmd_pass = 0;
267 for (i = 0; i < PQ_COUNT; i++) {
268 pq = &vmd->vmd_pagequeues[i];
269 TAILQ_INIT(&pq->pq_pl);
270 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
271 MTX_DEF | MTX_DUPOK);
272 }
273 }
274
275 /*
276 * vm_page_startup:
277 *
278 * Initializes the resident memory module.
279 *
280 * Allocates memory for the page cells, and
281 * for the object/offset-to-page hash table headers.
282 * Each page cell is initialized and placed on the free list.
283 */
284 vm_offset_t
285 vm_page_startup(vm_offset_t vaddr)
286 {
287 vm_offset_t mapped;
288 vm_paddr_t page_range;
289 vm_paddr_t new_end;
290 int i;
291 vm_paddr_t pa;
292 vm_paddr_t last_pa;
293 char *list;
294
295 /* the biggest memory array is the second group of pages */
296 vm_paddr_t end;
297 vm_paddr_t biggestsize;
298 vm_paddr_t low_water, high_water;
299 int biggestone;
300
301 biggestsize = 0;
302 biggestone = 0;
303 vaddr = round_page(vaddr);
304
305 for (i = 0; phys_avail[i + 1]; i += 2) {
306 phys_avail[i] = round_page(phys_avail[i]);
307 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
308 }
309
310 low_water = phys_avail[0];
311 high_water = phys_avail[1];
312
313 for (i = 0; phys_avail[i + 1]; i += 2) {
314 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
315
316 if (size > biggestsize) {
317 biggestone = i;
318 biggestsize = size;
319 }
320 if (phys_avail[i] < low_water)
321 low_water = phys_avail[i];
322 if (phys_avail[i + 1] > high_water)
323 high_water = phys_avail[i + 1];
324 }
325
326 #ifdef XEN
327 low_water = 0;
328 #endif
329
330 end = phys_avail[biggestone+1];
331
332 /*
333 * Initialize the page and queue locks.
334 */
335 mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
336 for (i = 0; i < PA_LOCK_COUNT; i++)
337 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
338 for (i = 0; i < vm_ndomains; i++)
339 vm_page_domain_init(&vm_dom[i]);
340
341 /*
342 * Allocate memory for use when boot strapping the kernel memory
343 * allocator.
344 */
345 new_end = end - (boot_pages * UMA_SLAB_SIZE);
346 new_end = trunc_page(new_end);
347 mapped = pmap_map(&vaddr, new_end, end,
348 VM_PROT_READ | VM_PROT_WRITE);
349 bzero((void *)mapped, end - new_end);
350 uma_startup((void *)mapped, boot_pages);
351
352 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
353 defined(__mips__)
354 /*
355 * Allocate a bitmap to indicate that a random physical page
356 * needs to be included in a minidump.
357 *
358 * The amd64 port needs this to indicate which direct map pages
359 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
360 *
361 * However, i386 still needs this workspace internally within the
362 * minidump code. In theory, they are not needed on i386, but are
363 * included should the sf_buf code decide to use them.
364 */
365 last_pa = 0;
366 for (i = 0; dump_avail[i + 1] != 0; i += 2)
367 if (dump_avail[i + 1] > last_pa)
368 last_pa = dump_avail[i + 1];
369 page_range = last_pa / PAGE_SIZE;
370 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
371 new_end -= vm_page_dump_size;
372 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
373 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
374 bzero((void *)vm_page_dump, vm_page_dump_size);
375 #endif
376 #ifdef __amd64__
377 /*
378 * Request that the physical pages underlying the message buffer be
379 * included in a crash dump. Since the message buffer is accessed
380 * through the direct map, they are not automatically included.
381 */
382 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
383 last_pa = pa + round_page(msgbufsize);
384 while (pa < last_pa) {
385 dump_add_page(pa);
386 pa += PAGE_SIZE;
387 }
388 #endif
389 /*
390 * Compute the number of pages of memory that will be available for
391 * use (taking into account the overhead of a page structure per
392 * page).
393 */
394 first_page = low_water / PAGE_SIZE;
395 #ifdef VM_PHYSSEG_SPARSE
396 page_range = 0;
397 for (i = 0; phys_avail[i + 1] != 0; i += 2)
398 page_range += atop(phys_avail[i + 1] - phys_avail[i]);
399 #elif defined(VM_PHYSSEG_DENSE)
400 page_range = high_water / PAGE_SIZE - first_page;
401 #else
402 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
403 #endif
404 end = new_end;
405
406 /*
407 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
408 */
409 vaddr += PAGE_SIZE;
410
411 /*
412 * Initialize the mem entry structures now, and put them in the free
413 * queue.
414 */
415 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
416 mapped = pmap_map(&vaddr, new_end, end,
417 VM_PROT_READ | VM_PROT_WRITE);
418 vm_page_array = (vm_page_t) mapped;
419 #if VM_NRESERVLEVEL > 0
420 /*
421 * Allocate memory for the reservation management system's data
422 * structures.
423 */
424 new_end = vm_reserv_startup(&vaddr, new_end, high_water);
425 #endif
426 #if defined(__amd64__) || defined(__mips__)
427 /*
428 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
429 * like i386, so the pages must be tracked for a crashdump to include
430 * this data. This includes the vm_page_array and the early UMA
431 * bootstrap pages.
432 */
433 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
434 dump_add_page(pa);
435 #endif
436 phys_avail[biggestone + 1] = new_end;
437
438 /*
439 * Clear all of the page structures
440 */
441 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
442 for (i = 0; i < page_range; i++)
443 vm_page_array[i].order = VM_NFREEORDER;
444 vm_page_array_size = page_range;
445
446 /*
447 * Initialize the physical memory allocator.
448 */
449 vm_phys_init();
450
451 /*
452 * Add every available physical page that is not blacklisted to
453 * the free lists.
454 */
455 cnt.v_page_count = 0;
456 cnt.v_free_count = 0;
457 list = getenv("vm.blacklist");
458 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
459 pa = phys_avail[i];
460 last_pa = phys_avail[i + 1];
461 while (pa < last_pa) {
462 if (list != NULL &&
463 vm_page_blacklist_lookup(list, pa))
464 printf("Skipping page with pa 0x%jx\n",
465 (uintmax_t)pa);
466 else
467 vm_phys_add_page(pa);
468 pa += PAGE_SIZE;
469 }
470 }
471 freeenv(list);
472 #if VM_NRESERVLEVEL > 0
473 /*
474 * Initialize the reservation management system.
475 */
476 vm_reserv_init();
477 #endif
478 return (vaddr);
479 }
480
481 void
482 vm_page_reference(vm_page_t m)
483 {
484
485 vm_page_aflag_set(m, PGA_REFERENCED);
486 }
487
488 /*
489 * vm_page_busy_downgrade:
490 *
491 * Downgrade an exclusive busy page into a single shared busy page.
492 */
493 void
494 vm_page_busy_downgrade(vm_page_t m)
495 {
496 u_int x;
497
498 vm_page_assert_xbusied(m);
499
500 for (;;) {
501 x = m->busy_lock;
502 x &= VPB_BIT_WAITERS;
503 if (atomic_cmpset_rel_int(&m->busy_lock,
504 VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
505 break;
506 }
507 }
508
509 /*
510 * vm_page_sbusied:
511 *
512 * Return a positive value if the page is shared busied, 0 otherwise.
513 */
514 int
515 vm_page_sbusied(vm_page_t m)
516 {
517 u_int x;
518
519 x = m->busy_lock;
520 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
521 }
522
523 /*
524 * vm_page_sunbusy:
525 *
526 * Shared unbusy a page.
527 */
528 void
529 vm_page_sunbusy(vm_page_t m)
530 {
531 u_int x;
532
533 vm_page_assert_sbusied(m);
534
535 for (;;) {
536 x = m->busy_lock;
537 if (VPB_SHARERS(x) > 1) {
538 if (atomic_cmpset_int(&m->busy_lock, x,
539 x - VPB_ONE_SHARER))
540 break;
541 continue;
542 }
543 if ((x & VPB_BIT_WAITERS) == 0) {
544 KASSERT(x == VPB_SHARERS_WORD(1),
545 ("vm_page_sunbusy: invalid lock state"));
546 if (atomic_cmpset_int(&m->busy_lock,
547 VPB_SHARERS_WORD(1), VPB_UNBUSIED))
548 break;
549 continue;
550 }
551 KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
552 ("vm_page_sunbusy: invalid lock state for waiters"));
553
554 vm_page_lock(m);
555 if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
556 vm_page_unlock(m);
557 continue;
558 }
559 wakeup(m);
560 vm_page_unlock(m);
561 break;
562 }
563 }
564
565 /*
566 * vm_page_busy_sleep:
567 *
568 * Sleep and release the page lock, using the page pointer as wchan.
569 * This is used to implement the hard-path of busying mechanism.
570 *
571 * The given page must be locked.
572 */
573 void
574 vm_page_busy_sleep(vm_page_t m, const char *wmesg)
575 {
576 u_int x;
577
578 vm_page_lock_assert(m, MA_OWNED);
579
580 x = m->busy_lock;
581 if (x == VPB_UNBUSIED) {
582 vm_page_unlock(m);
583 return;
584 }
585 if ((x & VPB_BIT_WAITERS) == 0 &&
586 !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
587 vm_page_unlock(m);
588 return;
589 }
590 msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
591 }
592
593 /*
594 * vm_page_trysbusy:
595 *
596 * Try to shared busy a page.
597 * If the operation succeeds 1 is returned otherwise 0.
598 * The operation never sleeps.
599 */
600 int
601 vm_page_trysbusy(vm_page_t m)
602 {
603 u_int x;
604
605 for (;;) {
606 x = m->busy_lock;
607 if ((x & VPB_BIT_SHARED) == 0)
608 return (0);
609 if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
610 return (1);
611 }
612 }
613
614 /*
615 * vm_page_xunbusy_hard:
616 *
617 * Called after the first try the exclusive unbusy of a page failed.
618 * It is assumed that the waiters bit is on.
619 */
620 void
621 vm_page_xunbusy_hard(vm_page_t m)
622 {
623
624 vm_page_assert_xbusied(m);
625
626 vm_page_lock(m);
627 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
628 wakeup(m);
629 vm_page_unlock(m);
630 }
631
632 /*
633 * vm_page_flash:
634 *
635 * Wakeup anyone waiting for the page.
636 * The ownership bits do not change.
637 *
638 * The given page must be locked.
639 */
640 void
641 vm_page_flash(vm_page_t m)
642 {
643 u_int x;
644
645 vm_page_lock_assert(m, MA_OWNED);
646
647 for (;;) {
648 x = m->busy_lock;
649 if ((x & VPB_BIT_WAITERS) == 0)
650 return;
651 if (atomic_cmpset_int(&m->busy_lock, x,
652 x & (~VPB_BIT_WAITERS)))
653 break;
654 }
655 wakeup(m);
656 }
657
658 /*
659 * Keep page from being freed by the page daemon
660 * much of the same effect as wiring, except much lower
661 * overhead and should be used only for *very* temporary
662 * holding ("wiring").
663 */
664 void
665 vm_page_hold(vm_page_t mem)
666 {
667
668 vm_page_lock_assert(mem, MA_OWNED);
669 mem->hold_count++;
670 }
671
672 void
673 vm_page_unhold(vm_page_t mem)
674 {
675
676 vm_page_lock_assert(mem, MA_OWNED);
677 KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
678 --mem->hold_count;
679 if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
680 vm_page_free_toq(mem);
681 }
682
683 /*
684 * vm_page_unhold_pages:
685 *
686 * Unhold each of the pages that is referenced by the given array.
687 */
688 void
689 vm_page_unhold_pages(vm_page_t *ma, int count)
690 {
691 struct mtx *mtx, *new_mtx;
692
693 mtx = NULL;
694 for (; count != 0; count--) {
695 /*
696 * Avoid releasing and reacquiring the same page lock.
697 */
698 new_mtx = vm_page_lockptr(*ma);
699 if (mtx != new_mtx) {
700 if (mtx != NULL)
701 mtx_unlock(mtx);
702 mtx = new_mtx;
703 mtx_lock(mtx);
704 }
705 vm_page_unhold(*ma);
706 ma++;
707 }
708 if (mtx != NULL)
709 mtx_unlock(mtx);
710 }
711
712 vm_page_t
713 PHYS_TO_VM_PAGE(vm_paddr_t pa)
714 {
715 vm_page_t m;
716
717 #ifdef VM_PHYSSEG_SPARSE
718 m = vm_phys_paddr_to_vm_page(pa);
719 if (m == NULL)
720 m = vm_phys_fictitious_to_vm_page(pa);
721 return (m);
722 #elif defined(VM_PHYSSEG_DENSE)
723 long pi;
724
725 pi = atop(pa);
726 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
727 m = &vm_page_array[pi - first_page];
728 return (m);
729 }
730 return (vm_phys_fictitious_to_vm_page(pa));
731 #else
732 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
733 #endif
734 }
735
736 /*
737 * vm_page_getfake:
738 *
739 * Create a fictitious page with the specified physical address and
740 * memory attribute. The memory attribute is the only the machine-
741 * dependent aspect of a fictitious page that must be initialized.
742 */
743 vm_page_t
744 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
745 {
746 vm_page_t m;
747
748 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
749 vm_page_initfake(m, paddr, memattr);
750 return (m);
751 }
752
753 void
754 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
755 {
756
757 if ((m->flags & PG_FICTITIOUS) != 0) {
758 /*
759 * The page's memattr might have changed since the
760 * previous initialization. Update the pmap to the
761 * new memattr.
762 */
763 goto memattr;
764 }
765 m->phys_addr = paddr;
766 m->queue = PQ_NONE;
767 /* Fictitious pages don't use "segind". */
768 m->flags = PG_FICTITIOUS;
769 /* Fictitious pages don't use "order" or "pool". */
770 m->oflags = VPO_UNMANAGED;
771 m->busy_lock = VPB_SINGLE_EXCLUSIVER;
772 m->wire_count = 1;
773 pmap_page_init(m);
774 memattr:
775 pmap_page_set_memattr(m, memattr);
776 }
777
778 /*
779 * vm_page_putfake:
780 *
781 * Release a fictitious page.
782 */
783 void
784 vm_page_putfake(vm_page_t m)
785 {
786
787 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
788 KASSERT((m->flags & PG_FICTITIOUS) != 0,
789 ("vm_page_putfake: bad page %p", m));
790 uma_zfree(fakepg_zone, m);
791 }
792
793 /*
794 * vm_page_updatefake:
795 *
796 * Update the given fictitious page to the specified physical address and
797 * memory attribute.
798 */
799 void
800 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
801 {
802
803 KASSERT((m->flags & PG_FICTITIOUS) != 0,
804 ("vm_page_updatefake: bad page %p", m));
805 m->phys_addr = paddr;
806 pmap_page_set_memattr(m, memattr);
807 }
808
809 /*
810 * vm_page_free:
811 *
812 * Free a page.
813 */
814 void
815 vm_page_free(vm_page_t m)
816 {
817
818 m->flags &= ~PG_ZERO;
819 vm_page_free_toq(m);
820 }
821
822 /*
823 * vm_page_free_zero:
824 *
825 * Free a page to the zerod-pages queue
826 */
827 void
828 vm_page_free_zero(vm_page_t m)
829 {
830
831 m->flags |= PG_ZERO;
832 vm_page_free_toq(m);
833 }
834
835 /*
836 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
837 * array which is not the request page.
838 */
839 void
840 vm_page_readahead_finish(vm_page_t m)
841 {
842
843 if (m->valid != 0) {
844 /*
845 * Since the page is not the requested page, whether
846 * it should be activated or deactivated is not
847 * obvious. Empirical results have shown that
848 * deactivating the page is usually the best choice,
849 * unless the page is wanted by another thread.
850 */
851 vm_page_lock(m);
852 if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
853 vm_page_activate(m);
854 else
855 vm_page_deactivate(m);
856 vm_page_unlock(m);
857 vm_page_xunbusy(m);
858 } else {
859 /*
860 * Free the completely invalid page. Such page state
861 * occurs due to the short read operation which did
862 * not covered our page at all, or in case when a read
863 * error happens.
864 */
865 vm_page_lock(m);
866 vm_page_free(m);
867 vm_page_unlock(m);
868 }
869 }
870
871 /*
872 * vm_page_sleep_if_busy:
873 *
874 * Sleep and release the page queues lock if the page is busied.
875 * Returns TRUE if the thread slept.
876 *
877 * The given page must be unlocked and object containing it must
878 * be locked.
879 */
880 int
881 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
882 {
883 vm_object_t obj;
884
885 vm_page_lock_assert(m, MA_NOTOWNED);
886 VM_OBJECT_ASSERT_WLOCKED(m->object);
887
888 if (vm_page_busied(m)) {
889 /*
890 * The page-specific object must be cached because page
891 * identity can change during the sleep, causing the
892 * re-lock of a different object.
893 * It is assumed that a reference to the object is already
894 * held by the callers.
895 */
896 obj = m->object;
897 vm_page_lock(m);
898 VM_OBJECT_WUNLOCK(obj);
899 vm_page_busy_sleep(m, msg);
900 VM_OBJECT_WLOCK(obj);
901 return (TRUE);
902 }
903 return (FALSE);
904 }
905
906 /*
907 * vm_page_dirty_KBI: [ internal use only ]
908 *
909 * Set all bits in the page's dirty field.
910 *
911 * The object containing the specified page must be locked if the
912 * call is made from the machine-independent layer.
913 *
914 * See vm_page_clear_dirty_mask().
915 *
916 * This function should only be called by vm_page_dirty().
917 */
918 void
919 vm_page_dirty_KBI(vm_page_t m)
920 {
921
922 /* These assertions refer to this operation by its public name. */
923 KASSERT((m->flags & PG_CACHED) == 0,
924 ("vm_page_dirty: page in cache!"));
925 KASSERT(!VM_PAGE_IS_FREE(m),
926 ("vm_page_dirty: page is free!"));
927 KASSERT(m->valid == VM_PAGE_BITS_ALL,
928 ("vm_page_dirty: page is invalid!"));
929 m->dirty = VM_PAGE_BITS_ALL;
930 }
931
932 /*
933 * vm_page_insert: [ internal use only ]
934 *
935 * Inserts the given mem entry into the object and object list.
936 *
937 * The object must be locked.
938 */
939 int
940 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
941 {
942 vm_page_t mpred;
943
944 VM_OBJECT_ASSERT_WLOCKED(object);
945 mpred = vm_radix_lookup_le(&object->rtree, pindex);
946 return (vm_page_insert_after(m, object, pindex, mpred));
947 }
948
949 /*
950 * vm_page_insert_after:
951 *
952 * Inserts the page "m" into the specified object at offset "pindex".
953 *
954 * The page "mpred" must immediately precede the offset "pindex" within
955 * the specified object.
956 *
957 * The object must be locked.
958 */
959 static int
960 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
961 vm_page_t mpred)
962 {
963 vm_pindex_t sidx;
964 vm_object_t sobj;
965 vm_page_t msucc;
966
967 VM_OBJECT_ASSERT_WLOCKED(object);
968 KASSERT(m->object == NULL,
969 ("vm_page_insert_after: page already inserted"));
970 if (mpred != NULL) {
971 KASSERT(mpred->object == object,
972 ("vm_page_insert_after: object doesn't contain mpred"));
973 KASSERT(mpred->pindex < pindex,
974 ("vm_page_insert_after: mpred doesn't precede pindex"));
975 msucc = TAILQ_NEXT(mpred, listq);
976 } else
977 msucc = TAILQ_FIRST(&object->memq);
978 if (msucc != NULL)
979 KASSERT(msucc->pindex > pindex,
980 ("vm_page_insert_after: msucc doesn't succeed pindex"));
981
982 /*
983 * Record the object/offset pair in this page
984 */
985 sobj = m->object;
986 sidx = m->pindex;
987 m->object = object;
988 m->pindex = pindex;
989
990 /*
991 * Now link into the object's ordered list of backed pages.
992 */
993 if (vm_radix_insert(&object->rtree, m)) {
994 m->object = sobj;
995 m->pindex = sidx;
996 return (1);
997 }
998 vm_page_insert_radixdone(m, object, mpred);
999 return (0);
1000 }
1001
1002 /*
1003 * vm_page_insert_radixdone:
1004 *
1005 * Complete page "m" insertion into the specified object after the
1006 * radix trie hooking.
1007 *
1008 * The page "mpred" must precede the offset "m->pindex" within the
1009 * specified object.
1010 *
1011 * The object must be locked.
1012 */
1013 static void
1014 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1015 {
1016
1017 VM_OBJECT_ASSERT_WLOCKED(object);
1018 KASSERT(object != NULL && m->object == object,
1019 ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1020 if (mpred != NULL) {
1021 KASSERT(mpred->object == object,
1022 ("vm_page_insert_after: object doesn't contain mpred"));
1023 KASSERT(mpred->pindex < m->pindex,
1024 ("vm_page_insert_after: mpred doesn't precede pindex"));
1025 }
1026
1027 if (mpred != NULL)
1028 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1029 else
1030 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1031
1032 /*
1033 * Show that the object has one more resident page.
1034 */
1035 object->resident_page_count++;
1036
1037 /*
1038 * Hold the vnode until the last page is released.
1039 */
1040 if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1041 vhold(object->handle);
1042
1043 /*
1044 * Since we are inserting a new and possibly dirty page,
1045 * update the object's OBJ_MIGHTBEDIRTY flag.
1046 */
1047 if (pmap_page_is_write_mapped(m))
1048 vm_object_set_writeable_dirty(object);
1049 }
1050
1051 /*
1052 * vm_page_remove:
1053 *
1054 * Removes the given mem entry from the object/offset-page
1055 * table and the object page list, but do not invalidate/terminate
1056 * the backing store.
1057 *
1058 * The object must be locked. The page must be locked if it is managed.
1059 */
1060 void
1061 vm_page_remove(vm_page_t m)
1062 {
1063 vm_object_t object;
1064 boolean_t lockacq;
1065
1066 if ((m->oflags & VPO_UNMANAGED) == 0)
1067 vm_page_lock_assert(m, MA_OWNED);
1068 if ((object = m->object) == NULL)
1069 return;
1070 VM_OBJECT_ASSERT_WLOCKED(object);
1071 if (vm_page_xbusied(m)) {
1072 lockacq = FALSE;
1073 if ((m->oflags & VPO_UNMANAGED) != 0 &&
1074 !mtx_owned(vm_page_lockptr(m))) {
1075 lockacq = TRUE;
1076 vm_page_lock(m);
1077 }
1078 vm_page_flash(m);
1079 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1080 if (lockacq)
1081 vm_page_unlock(m);
1082 }
1083
1084 /*
1085 * Now remove from the object's list of backed pages.
1086 */
1087 vm_radix_remove(&object->rtree, m->pindex);
1088 TAILQ_REMOVE(&object->memq, m, listq);
1089
1090 /*
1091 * And show that the object has one fewer resident page.
1092 */
1093 object->resident_page_count--;
1094
1095 /*
1096 * The vnode may now be recycled.
1097 */
1098 if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1099 vdrop(object->handle);
1100
1101 m->object = NULL;
1102 }
1103
1104 /*
1105 * vm_page_lookup:
1106 *
1107 * Returns the page associated with the object/offset
1108 * pair specified; if none is found, NULL is returned.
1109 *
1110 * The object must be locked.
1111 */
1112 vm_page_t
1113 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1114 {
1115
1116 VM_OBJECT_ASSERT_LOCKED(object);
1117 return (vm_radix_lookup(&object->rtree, pindex));
1118 }
1119
1120 /*
1121 * vm_page_find_least:
1122 *
1123 * Returns the page associated with the object with least pindex
1124 * greater than or equal to the parameter pindex, or NULL.
1125 *
1126 * The object must be locked.
1127 */
1128 vm_page_t
1129 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1130 {
1131 vm_page_t m;
1132
1133 VM_OBJECT_ASSERT_LOCKED(object);
1134 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1135 m = vm_radix_lookup_ge(&object->rtree, pindex);
1136 return (m);
1137 }
1138
1139 /*
1140 * Returns the given page's successor (by pindex) within the object if it is
1141 * resident; if none is found, NULL is returned.
1142 *
1143 * The object must be locked.
1144 */
1145 vm_page_t
1146 vm_page_next(vm_page_t m)
1147 {
1148 vm_page_t next;
1149
1150 VM_OBJECT_ASSERT_WLOCKED(m->object);
1151 if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1152 next->pindex != m->pindex + 1)
1153 next = NULL;
1154 return (next);
1155 }
1156
1157 /*
1158 * Returns the given page's predecessor (by pindex) within the object if it is
1159 * resident; if none is found, NULL is returned.
1160 *
1161 * The object must be locked.
1162 */
1163 vm_page_t
1164 vm_page_prev(vm_page_t m)
1165 {
1166 vm_page_t prev;
1167
1168 VM_OBJECT_ASSERT_WLOCKED(m->object);
1169 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1170 prev->pindex != m->pindex - 1)
1171 prev = NULL;
1172 return (prev);
1173 }
1174
1175 /*
1176 * Uses the page mnew as a replacement for an existing page at index
1177 * pindex which must be already present in the object.
1178 *
1179 * The existing page must not be on a paging queue.
1180 */
1181 vm_page_t
1182 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1183 {
1184 vm_page_t mold, mpred;
1185
1186 VM_OBJECT_ASSERT_WLOCKED(object);
1187
1188 /*
1189 * This function mostly follows vm_page_insert() and
1190 * vm_page_remove() without the radix, object count and vnode
1191 * dance. Double check such functions for more comments.
1192 */
1193 mpred = vm_radix_lookup(&object->rtree, pindex);
1194 KASSERT(mpred != NULL,
1195 ("vm_page_replace: replacing page not present with pindex"));
1196 mpred = TAILQ_PREV(mpred, respgs, listq);
1197 if (mpred != NULL)
1198 KASSERT(mpred->pindex < pindex,
1199 ("vm_page_insert_after: mpred doesn't precede pindex"));
1200
1201 mnew->object = object;
1202 mnew->pindex = pindex;
1203 mold = vm_radix_replace(&object->rtree, mnew, pindex);
1204 KASSERT(mold->queue == PQ_NONE,
1205 ("vm_page_replace: mold is on a paging queue"));
1206
1207 /* Detach the old page from the resident tailq. */
1208 TAILQ_REMOVE(&object->memq, mold, listq);
1209
1210 mold->object = NULL;
1211 vm_page_xunbusy(mold);
1212
1213 /* Insert the new page in the resident tailq. */
1214 if (mpred != NULL)
1215 TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq);
1216 else
1217 TAILQ_INSERT_HEAD(&object->memq, mnew, listq);
1218 if (pmap_page_is_write_mapped(mnew))
1219 vm_object_set_writeable_dirty(object);
1220 return (mold);
1221 }
1222
1223 /*
1224 * vm_page_rename:
1225 *
1226 * Move the given memory entry from its
1227 * current object to the specified target object/offset.
1228 *
1229 * Note: swap associated with the page must be invalidated by the move. We
1230 * have to do this for several reasons: (1) we aren't freeing the
1231 * page, (2) we are dirtying the page, (3) the VM system is probably
1232 * moving the page from object A to B, and will then later move
1233 * the backing store from A to B and we can't have a conflict.
1234 *
1235 * Note: we *always* dirty the page. It is necessary both for the
1236 * fact that we moved it, and because we may be invalidating
1237 * swap. If the page is on the cache, we have to deactivate it
1238 * or vm_page_dirty() will panic. Dirty pages are not allowed
1239 * on the cache.
1240 *
1241 * The objects must be locked.
1242 */
1243 int
1244 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1245 {
1246 vm_page_t mpred;
1247 vm_pindex_t opidx;
1248
1249 VM_OBJECT_ASSERT_WLOCKED(new_object);
1250
1251 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1252 KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1253 ("vm_page_rename: pindex already renamed"));
1254
1255 /*
1256 * Create a custom version of vm_page_insert() which does not depend
1257 * by m_prev and can cheat on the implementation aspects of the
1258 * function.
1259 */
1260 opidx = m->pindex;
1261 m->pindex = new_pindex;
1262 if (vm_radix_insert(&new_object->rtree, m)) {
1263 m->pindex = opidx;
1264 return (1);
1265 }
1266
1267 /*
1268 * The operation cannot fail anymore. The removal must happen before
1269 * the listq iterator is tainted.
1270 */
1271 m->pindex = opidx;
1272 vm_page_lock(m);
1273 vm_page_remove(m);
1274
1275 /* Return back to the new pindex to complete vm_page_insert(). */
1276 m->pindex = new_pindex;
1277 m->object = new_object;
1278 vm_page_unlock(m);
1279 vm_page_insert_radixdone(m, new_object, mpred);
1280 vm_page_dirty(m);
1281 return (0);
1282 }
1283
1284 /*
1285 * Convert all of the given object's cached pages that have a
1286 * pindex within the given range into free pages. If the value
1287 * zero is given for "end", then the range's upper bound is
1288 * infinity. If the given object is backed by a vnode and it
1289 * transitions from having one or more cached pages to none, the
1290 * vnode's hold count is reduced.
1291 */
1292 void
1293 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1294 {
1295 vm_page_t m;
1296 boolean_t empty;
1297
1298 mtx_lock(&vm_page_queue_free_mtx);
1299 if (__predict_false(vm_radix_is_empty(&object->cache))) {
1300 mtx_unlock(&vm_page_queue_free_mtx);
1301 return;
1302 }
1303 while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1304 if (end != 0 && m->pindex >= end)
1305 break;
1306 vm_radix_remove(&object->cache, m->pindex);
1307 vm_page_cache_turn_free(m);
1308 }
1309 empty = vm_radix_is_empty(&object->cache);
1310 mtx_unlock(&vm_page_queue_free_mtx);
1311 if (object->type == OBJT_VNODE && empty)
1312 vdrop(object->handle);
1313 }
1314
1315 /*
1316 * Returns the cached page that is associated with the given
1317 * object and offset. If, however, none exists, returns NULL.
1318 *
1319 * The free page queue must be locked.
1320 */
1321 static inline vm_page_t
1322 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1323 {
1324
1325 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1326 return (vm_radix_lookup(&object->cache, pindex));
1327 }
1328
1329 /*
1330 * Remove the given cached page from its containing object's
1331 * collection of cached pages.
1332 *
1333 * The free page queue must be locked.
1334 */
1335 static void
1336 vm_page_cache_remove(vm_page_t m)
1337 {
1338
1339 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1340 KASSERT((m->flags & PG_CACHED) != 0,
1341 ("vm_page_cache_remove: page %p is not cached", m));
1342 vm_radix_remove(&m->object->cache, m->pindex);
1343 m->object = NULL;
1344 cnt.v_cache_count--;
1345 }
1346
1347 /*
1348 * Transfer all of the cached pages with offset greater than or
1349 * equal to 'offidxstart' from the original object's cache to the
1350 * new object's cache. However, any cached pages with offset
1351 * greater than or equal to the new object's size are kept in the
1352 * original object. Initially, the new object's cache must be
1353 * empty. Offset 'offidxstart' in the original object must
1354 * correspond to offset zero in the new object.
1355 *
1356 * The new object must be locked.
1357 */
1358 void
1359 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1360 vm_object_t new_object)
1361 {
1362 vm_page_t m;
1363
1364 /*
1365 * Insertion into an object's collection of cached pages
1366 * requires the object to be locked. In contrast, removal does
1367 * not.
1368 */
1369 VM_OBJECT_ASSERT_WLOCKED(new_object);
1370 KASSERT(vm_radix_is_empty(&new_object->cache),
1371 ("vm_page_cache_transfer: object %p has cached pages",
1372 new_object));
1373 mtx_lock(&vm_page_queue_free_mtx);
1374 while ((m = vm_radix_lookup_ge(&orig_object->cache,
1375 offidxstart)) != NULL) {
1376 /*
1377 * Transfer all of the pages with offset greater than or
1378 * equal to 'offidxstart' from the original object's
1379 * cache to the new object's cache.
1380 */
1381 if ((m->pindex - offidxstart) >= new_object->size)
1382 break;
1383 vm_radix_remove(&orig_object->cache, m->pindex);
1384 /* Update the page's object and offset. */
1385 m->object = new_object;
1386 m->pindex -= offidxstart;
1387 if (vm_radix_insert(&new_object->cache, m))
1388 vm_page_cache_turn_free(m);
1389 }
1390 mtx_unlock(&vm_page_queue_free_mtx);
1391 }
1392
1393 /*
1394 * Returns TRUE if a cached page is associated with the given object and
1395 * offset, and FALSE otherwise.
1396 *
1397 * The object must be locked.
1398 */
1399 boolean_t
1400 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1401 {
1402 vm_page_t m;
1403
1404 /*
1405 * Insertion into an object's collection of cached pages requires the
1406 * object to be locked. Therefore, if the object is locked and the
1407 * object's collection is empty, there is no need to acquire the free
1408 * page queues lock in order to prove that the specified page doesn't
1409 * exist.
1410 */
1411 VM_OBJECT_ASSERT_WLOCKED(object);
1412 if (__predict_true(vm_object_cache_is_empty(object)))
1413 return (FALSE);
1414 mtx_lock(&vm_page_queue_free_mtx);
1415 m = vm_page_cache_lookup(object, pindex);
1416 mtx_unlock(&vm_page_queue_free_mtx);
1417 return (m != NULL);
1418 }
1419
1420 /*
1421 * vm_page_alloc:
1422 *
1423 * Allocate and return a page that is associated with the specified
1424 * object and offset pair. By default, this page is exclusive busied.
1425 *
1426 * The caller must always specify an allocation class.
1427 *
1428 * allocation classes:
1429 * VM_ALLOC_NORMAL normal process request
1430 * VM_ALLOC_SYSTEM system *really* needs a page
1431 * VM_ALLOC_INTERRUPT interrupt time request
1432 *
1433 * optional allocation flags:
1434 * VM_ALLOC_COUNT(number) the number of additional pages that the caller
1435 * intends to allocate
1436 * VM_ALLOC_IFCACHED return page only if it is cached
1437 * VM_ALLOC_IFNOTCACHED return NULL, do not reactivate if the page
1438 * is cached
1439 * VM_ALLOC_NOBUSY do not exclusive busy the page
1440 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
1441 * VM_ALLOC_NOOBJ page is not associated with an object and
1442 * should not be exclusive busy
1443 * VM_ALLOC_SBUSY shared busy the allocated page
1444 * VM_ALLOC_WIRED wire the allocated page
1445 * VM_ALLOC_ZERO prefer a zeroed page
1446 *
1447 * This routine may not sleep.
1448 */
1449 vm_page_t
1450 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1451 {
1452 struct vnode *vp = NULL;
1453 vm_object_t m_object;
1454 vm_page_t m, mpred;
1455 int flags, req_class;
1456
1457 mpred = 0; /* XXX: pacify gcc */
1458 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1459 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1460 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1461 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1462 ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1463 req));
1464 if (object != NULL)
1465 VM_OBJECT_ASSERT_WLOCKED(object);
1466
1467 req_class = req & VM_ALLOC_CLASS_MASK;
1468
1469 /*
1470 * The page daemon is allowed to dig deeper into the free page list.
1471 */
1472 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1473 req_class = VM_ALLOC_SYSTEM;
1474
1475 if (object != NULL) {
1476 mpred = vm_radix_lookup_le(&object->rtree, pindex);
1477 KASSERT(mpred == NULL || mpred->pindex != pindex,
1478 ("vm_page_alloc: pindex already allocated"));
1479 }
1480
1481 /*
1482 * The page allocation request can came from consumers which already
1483 * hold the free page queue mutex, like vm_page_insert() in
1484 * vm_page_cache().
1485 */
1486 mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1487 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1488 (req_class == VM_ALLOC_SYSTEM &&
1489 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1490 (req_class == VM_ALLOC_INTERRUPT &&
1491 cnt.v_free_count + cnt.v_cache_count > 0)) {
1492 /*
1493 * Allocate from the free queue if the number of free pages
1494 * exceeds the minimum for the request class.
1495 */
1496 if (object != NULL &&
1497 (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1498 if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1499 mtx_unlock(&vm_page_queue_free_mtx);
1500 return (NULL);
1501 }
1502 if (vm_phys_unfree_page(m))
1503 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1504 #if VM_NRESERVLEVEL > 0
1505 else if (!vm_reserv_reactivate_page(m))
1506 #else
1507 else
1508 #endif
1509 panic("vm_page_alloc: cache page %p is missing"
1510 " from the free queue", m);
1511 } else if ((req & VM_ALLOC_IFCACHED) != 0) {
1512 mtx_unlock(&vm_page_queue_free_mtx);
1513 return (NULL);
1514 #if VM_NRESERVLEVEL > 0
1515 } else if (object == NULL || (object->flags & (OBJ_COLORED |
1516 OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1517 vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1518 #else
1519 } else {
1520 #endif
1521 m = vm_phys_alloc_pages(object != NULL ?
1522 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1523 #if VM_NRESERVLEVEL > 0
1524 if (m == NULL && vm_reserv_reclaim_inactive()) {
1525 m = vm_phys_alloc_pages(object != NULL ?
1526 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1527 0);
1528 }
1529 #endif
1530 }
1531 } else {
1532 /*
1533 * Not allocatable, give up.
1534 */
1535 mtx_unlock(&vm_page_queue_free_mtx);
1536 atomic_add_int(&vm_pageout_deficit,
1537 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1538 pagedaemon_wakeup();
1539 return (NULL);
1540 }
1541
1542 /*
1543 * At this point we had better have found a good page.
1544 */
1545 KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1546 KASSERT(m->queue == PQ_NONE,
1547 ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1548 KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1549 KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1550 KASSERT(!vm_page_sbusied(m),
1551 ("vm_page_alloc: page %p is busy", m));
1552 KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1553 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1554 ("vm_page_alloc: page %p has unexpected memattr %d", m,
1555 pmap_page_get_memattr(m)));
1556 if ((m->flags & PG_CACHED) != 0) {
1557 KASSERT((m->flags & PG_ZERO) == 0,
1558 ("vm_page_alloc: cached page %p is PG_ZERO", m));
1559 KASSERT(m->valid != 0,
1560 ("vm_page_alloc: cached page %p is invalid", m));
1561 if (m->object == object && m->pindex == pindex)
1562 cnt.v_reactivated++;
1563 else
1564 m->valid = 0;
1565 m_object = m->object;
1566 vm_page_cache_remove(m);
1567 if (m_object->type == OBJT_VNODE &&
1568 vm_object_cache_is_empty(m_object))
1569 vp = m_object->handle;
1570 } else {
1571 KASSERT(VM_PAGE_IS_FREE(m),
1572 ("vm_page_alloc: page %p is not free", m));
1573 KASSERT(m->valid == 0,
1574 ("vm_page_alloc: free page %p is valid", m));
1575 vm_phys_freecnt_adj(m, -1);
1576 }
1577
1578 /*
1579 * Only the PG_ZERO flag is inherited. The PG_CACHED or PG_FREE flag
1580 * must be cleared before the free page queues lock is released.
1581 */
1582 flags = 0;
1583 if (m->flags & PG_ZERO) {
1584 vm_page_zero_count--;
1585 if (req & VM_ALLOC_ZERO)
1586 flags = PG_ZERO;
1587 }
1588 if (req & VM_ALLOC_NODUMP)
1589 flags |= PG_NODUMP;
1590 m->flags = flags;
1591 mtx_unlock(&vm_page_queue_free_mtx);
1592 m->aflags = 0;
1593 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1594 VPO_UNMANAGED : 0;
1595 m->busy_lock = VPB_UNBUSIED;
1596 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1597 m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1598 if ((req & VM_ALLOC_SBUSY) != 0)
1599 m->busy_lock = VPB_SHARERS_WORD(1);
1600 if (req & VM_ALLOC_WIRED) {
1601 /*
1602 * The page lock is not required for wiring a page until that
1603 * page is inserted into the object.
1604 */
1605 atomic_add_int(&cnt.v_wire_count, 1);
1606 m->wire_count = 1;
1607 }
1608 m->act_count = 0;
1609
1610 if (object != NULL) {
1611 if (vm_page_insert_after(m, object, pindex, mpred)) {
1612 /* See the comment below about hold count. */
1613 if (vp != NULL)
1614 vdrop(vp);
1615 pagedaemon_wakeup();
1616 if (req & VM_ALLOC_WIRED) {
1617 atomic_subtract_int(&cnt.v_wire_count, 1);
1618 m->wire_count = 0;
1619 }
1620 m->object = NULL;
1621 vm_page_free(m);
1622 return (NULL);
1623 }
1624
1625 /* Ignore device objects; the pager sets "memattr" for them. */
1626 if (object->memattr != VM_MEMATTR_DEFAULT &&
1627 (object->flags & OBJ_FICTITIOUS) == 0)
1628 pmap_page_set_memattr(m, object->memattr);
1629 } else
1630 m->pindex = pindex;
1631
1632 /*
1633 * The following call to vdrop() must come after the above call
1634 * to vm_page_insert() in case both affect the same object and
1635 * vnode. Otherwise, the affected vnode's hold count could
1636 * temporarily become zero.
1637 */
1638 if (vp != NULL)
1639 vdrop(vp);
1640
1641 /*
1642 * Don't wakeup too often - wakeup the pageout daemon when
1643 * we would be nearly out of memory.
1644 */
1645 if (vm_paging_needed())
1646 pagedaemon_wakeup();
1647
1648 return (m);
1649 }
1650
1651 static void
1652 vm_page_alloc_contig_vdrop(struct spglist *lst)
1653 {
1654
1655 while (!SLIST_EMPTY(lst)) {
1656 vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1657 SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1658 }
1659 }
1660
1661 /*
1662 * vm_page_alloc_contig:
1663 *
1664 * Allocate a contiguous set of physical pages of the given size "npages"
1665 * from the free lists. All of the physical pages must be at or above
1666 * the given physical address "low" and below the given physical address
1667 * "high". The given value "alignment" determines the alignment of the
1668 * first physical page in the set. If the given value "boundary" is
1669 * non-zero, then the set of physical pages cannot cross any physical
1670 * address boundary that is a multiple of that value. Both "alignment"
1671 * and "boundary" must be a power of two.
1672 *
1673 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1674 * then the memory attribute setting for the physical pages is configured
1675 * to the object's memory attribute setting. Otherwise, the memory
1676 * attribute setting for the physical pages is configured to "memattr",
1677 * overriding the object's memory attribute setting. However, if the
1678 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1679 * memory attribute setting for the physical pages cannot be configured
1680 * to VM_MEMATTR_DEFAULT.
1681 *
1682 * The caller must always specify an allocation class.
1683 *
1684 * allocation classes:
1685 * VM_ALLOC_NORMAL normal process request
1686 * VM_ALLOC_SYSTEM system *really* needs a page
1687 * VM_ALLOC_INTERRUPT interrupt time request
1688 *
1689 * optional allocation flags:
1690 * VM_ALLOC_NOBUSY do not exclusive busy the page
1691 * VM_ALLOC_NOOBJ page is not associated with an object and
1692 * should not be exclusive busy
1693 * VM_ALLOC_SBUSY shared busy the allocated page
1694 * VM_ALLOC_WIRED wire the allocated page
1695 * VM_ALLOC_ZERO prefer a zeroed page
1696 *
1697 * This routine may not sleep.
1698 */
1699 vm_page_t
1700 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1701 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1702 vm_paddr_t boundary, vm_memattr_t memattr)
1703 {
1704 struct vnode *drop;
1705 struct spglist deferred_vdrop_list;
1706 vm_page_t m, m_tmp, m_ret;
1707 u_int flags, oflags;
1708 int req_class;
1709
1710 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1711 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1712 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1713 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1714 ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1715 req));
1716 if (object != NULL) {
1717 VM_OBJECT_ASSERT_WLOCKED(object);
1718 KASSERT(object->type == OBJT_PHYS,
1719 ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1720 object));
1721 }
1722 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1723 req_class = req & VM_ALLOC_CLASS_MASK;
1724
1725 /*
1726 * The page daemon is allowed to dig deeper into the free page list.
1727 */
1728 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1729 req_class = VM_ALLOC_SYSTEM;
1730
1731 SLIST_INIT(&deferred_vdrop_list);
1732 mtx_lock(&vm_page_queue_free_mtx);
1733 if (cnt.v_free_count + cnt.v_cache_count >= npages +
1734 cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1735 cnt.v_free_count + cnt.v_cache_count >= npages +
1736 cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1737 cnt.v_free_count + cnt.v_cache_count >= npages)) {
1738 #if VM_NRESERVLEVEL > 0
1739 retry:
1740 if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1741 (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1742 low, high, alignment, boundary)) == NULL)
1743 #endif
1744 m_ret = vm_phys_alloc_contig(npages, low, high,
1745 alignment, boundary);
1746 } else {
1747 mtx_unlock(&vm_page_queue_free_mtx);
1748 atomic_add_int(&vm_pageout_deficit, npages);
1749 pagedaemon_wakeup();
1750 return (NULL);
1751 }
1752 if (m_ret != NULL)
1753 for (m = m_ret; m < &m_ret[npages]; m++) {
1754 drop = vm_page_alloc_init(m);
1755 if (drop != NULL) {
1756 /*
1757 * Enqueue the vnode for deferred vdrop().
1758 */
1759 m->plinks.s.pv = drop;
1760 SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1761 plinks.s.ss);
1762 }
1763 }
1764 else {
1765 #if VM_NRESERVLEVEL > 0
1766 if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1767 boundary))
1768 goto retry;
1769 #endif
1770 }
1771 mtx_unlock(&vm_page_queue_free_mtx);
1772 if (m_ret == NULL)
1773 return (NULL);
1774
1775 /*
1776 * Initialize the pages. Only the PG_ZERO flag is inherited.
1777 */
1778 flags = 0;
1779 if ((req & VM_ALLOC_ZERO) != 0)
1780 flags = PG_ZERO;
1781 if ((req & VM_ALLOC_NODUMP) != 0)
1782 flags |= PG_NODUMP;
1783 if ((req & VM_ALLOC_WIRED) != 0)
1784 atomic_add_int(&cnt.v_wire_count, npages);
1785 oflags = VPO_UNMANAGED;
1786 if (object != NULL) {
1787 if (object->memattr != VM_MEMATTR_DEFAULT &&
1788 memattr == VM_MEMATTR_DEFAULT)
1789 memattr = object->memattr;
1790 }
1791 for (m = m_ret; m < &m_ret[npages]; m++) {
1792 m->aflags = 0;
1793 m->flags = (m->flags | PG_NODUMP) & flags;
1794 m->busy_lock = VPB_UNBUSIED;
1795 if (object != NULL) {
1796 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1797 m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1798 if ((req & VM_ALLOC_SBUSY) != 0)
1799 m->busy_lock = VPB_SHARERS_WORD(1);
1800 }
1801 if ((req & VM_ALLOC_WIRED) != 0)
1802 m->wire_count = 1;
1803 /* Unmanaged pages don't use "act_count". */
1804 m->oflags = oflags;
1805 if (object != NULL) {
1806 if (vm_page_insert(m, object, pindex)) {
1807 vm_page_alloc_contig_vdrop(
1808 &deferred_vdrop_list);
1809 if (vm_paging_needed())
1810 pagedaemon_wakeup();
1811 if ((req & VM_ALLOC_WIRED) != 0)
1812 atomic_subtract_int(&cnt.v_wire_count,
1813 npages);
1814 for (m_tmp = m, m = m_ret;
1815 m < &m_ret[npages]; m++) {
1816 if ((req & VM_ALLOC_WIRED) != 0)
1817 m->wire_count = 0;
1818 if (m >= m_tmp)
1819 m->object = NULL;
1820 vm_page_free(m);
1821 }
1822 return (NULL);
1823 }
1824 } else
1825 m->pindex = pindex;
1826 if (memattr != VM_MEMATTR_DEFAULT)
1827 pmap_page_set_memattr(m, memattr);
1828 pindex++;
1829 }
1830 vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1831 if (vm_paging_needed())
1832 pagedaemon_wakeup();
1833 return (m_ret);
1834 }
1835
1836 /*
1837 * Initialize a page that has been freshly dequeued from a freelist.
1838 * The caller has to drop the vnode returned, if it is not NULL.
1839 *
1840 * This function may only be used to initialize unmanaged pages.
1841 *
1842 * To be called with vm_page_queue_free_mtx held.
1843 */
1844 static struct vnode *
1845 vm_page_alloc_init(vm_page_t m)
1846 {
1847 struct vnode *drop;
1848 vm_object_t m_object;
1849
1850 KASSERT(m->queue == PQ_NONE,
1851 ("vm_page_alloc_init: page %p has unexpected queue %d",
1852 m, m->queue));
1853 KASSERT(m->wire_count == 0,
1854 ("vm_page_alloc_init: page %p is wired", m));
1855 KASSERT(m->hold_count == 0,
1856 ("vm_page_alloc_init: page %p is held", m));
1857 KASSERT(!vm_page_sbusied(m),
1858 ("vm_page_alloc_init: page %p is busy", m));
1859 KASSERT(m->dirty == 0,
1860 ("vm_page_alloc_init: page %p is dirty", m));
1861 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1862 ("vm_page_alloc_init: page %p has unexpected memattr %d",
1863 m, pmap_page_get_memattr(m)));
1864 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1865 drop = NULL;
1866 if ((m->flags & PG_CACHED) != 0) {
1867 KASSERT((m->flags & PG_ZERO) == 0,
1868 ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1869 m->valid = 0;
1870 m_object = m->object;
1871 vm_page_cache_remove(m);
1872 if (m_object->type == OBJT_VNODE &&
1873 vm_object_cache_is_empty(m_object))
1874 drop = m_object->handle;
1875 } else {
1876 KASSERT(VM_PAGE_IS_FREE(m),
1877 ("vm_page_alloc_init: page %p is not free", m));
1878 KASSERT(m->valid == 0,
1879 ("vm_page_alloc_init: free page %p is valid", m));
1880 vm_phys_freecnt_adj(m, -1);
1881 if ((m->flags & PG_ZERO) != 0)
1882 vm_page_zero_count--;
1883 }
1884 /* Don't clear the PG_ZERO flag; we'll need it later. */
1885 m->flags &= PG_ZERO;
1886 return (drop);
1887 }
1888
1889 /*
1890 * vm_page_alloc_freelist:
1891 *
1892 * Allocate a physical page from the specified free page list.
1893 *
1894 * The caller must always specify an allocation class.
1895 *
1896 * allocation classes:
1897 * VM_ALLOC_NORMAL normal process request
1898 * VM_ALLOC_SYSTEM system *really* needs a page
1899 * VM_ALLOC_INTERRUPT interrupt time request
1900 *
1901 * optional allocation flags:
1902 * VM_ALLOC_COUNT(number) the number of additional pages that the caller
1903 * intends to allocate
1904 * VM_ALLOC_WIRED wire the allocated page
1905 * VM_ALLOC_ZERO prefer a zeroed page
1906 *
1907 * This routine may not sleep.
1908 */
1909 vm_page_t
1910 vm_page_alloc_freelist(int flind, int req)
1911 {
1912 struct vnode *drop;
1913 vm_page_t m;
1914 u_int flags;
1915 int req_class;
1916
1917 req_class = req & VM_ALLOC_CLASS_MASK;
1918
1919 /*
1920 * The page daemon is allowed to dig deeper into the free page list.
1921 */
1922 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1923 req_class = VM_ALLOC_SYSTEM;
1924
1925 /*
1926 * Do not allocate reserved pages unless the req has asked for it.
1927 */
1928 mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1929 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1930 (req_class == VM_ALLOC_SYSTEM &&
1931 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1932 (req_class == VM_ALLOC_INTERRUPT &&
1933 cnt.v_free_count + cnt.v_cache_count > 0))
1934 m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1935 else {
1936 mtx_unlock(&vm_page_queue_free_mtx);
1937 atomic_add_int(&vm_pageout_deficit,
1938 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1939 pagedaemon_wakeup();
1940 return (NULL);
1941 }
1942 if (m == NULL) {
1943 mtx_unlock(&vm_page_queue_free_mtx);
1944 return (NULL);
1945 }
1946 drop = vm_page_alloc_init(m);
1947 mtx_unlock(&vm_page_queue_free_mtx);
1948
1949 /*
1950 * Initialize the page. Only the PG_ZERO flag is inherited.
1951 */
1952 m->aflags = 0;
1953 flags = 0;
1954 if ((req & VM_ALLOC_ZERO) != 0)
1955 flags = PG_ZERO;
1956 m->flags &= flags;
1957 if ((req & VM_ALLOC_WIRED) != 0) {
1958 /*
1959 * The page lock is not required for wiring a page that does
1960 * not belong to an object.
1961 */
1962 atomic_add_int(&cnt.v_wire_count, 1);
1963 m->wire_count = 1;
1964 }
1965 /* Unmanaged pages don't use "act_count". */
1966 m->oflags = VPO_UNMANAGED;
1967 if (drop != NULL)
1968 vdrop(drop);
1969 if (vm_paging_needed())
1970 pagedaemon_wakeup();
1971 return (m);
1972 }
1973
1974 /*
1975 * vm_wait: (also see VM_WAIT macro)
1976 *
1977 * Sleep until free pages are available for allocation.
1978 * - Called in various places before memory allocations.
1979 */
1980 void
1981 vm_wait(void)
1982 {
1983
1984 mtx_lock(&vm_page_queue_free_mtx);
1985 if (curproc == pageproc) {
1986 vm_pageout_pages_needed = 1;
1987 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1988 PDROP | PSWP, "VMWait", 0);
1989 } else {
1990 if (!vm_pages_needed) {
1991 vm_pages_needed = 1;
1992 wakeup(&vm_pages_needed);
1993 }
1994 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1995 "vmwait", 0);
1996 }
1997 }
1998
1999 /*
2000 * vm_waitpfault: (also see VM_WAITPFAULT macro)
2001 *
2002 * Sleep until free pages are available for allocation.
2003 * - Called only in vm_fault so that processes page faulting
2004 * can be easily tracked.
2005 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2006 * processes will be able to grab memory first. Do not change
2007 * this balance without careful testing first.
2008 */
2009 void
2010 vm_waitpfault(void)
2011 {
2012
2013 mtx_lock(&vm_page_queue_free_mtx);
2014 if (!vm_pages_needed) {
2015 vm_pages_needed = 1;
2016 wakeup(&vm_pages_needed);
2017 }
2018 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2019 "pfault", 0);
2020 }
2021
2022 struct vm_pagequeue *
2023 vm_page_pagequeue(vm_page_t m)
2024 {
2025
2026 return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2027 }
2028
2029 /*
2030 * vm_page_dequeue:
2031 *
2032 * Remove the given page from its current page queue.
2033 *
2034 * The page must be locked.
2035 */
2036 void
2037 vm_page_dequeue(vm_page_t m)
2038 {
2039 struct vm_pagequeue *pq;
2040
2041 vm_page_lock_assert(m, MA_OWNED);
2042 KASSERT(m->queue != PQ_NONE,
2043 ("vm_page_dequeue: page %p is not queued", m));
2044 pq = vm_page_pagequeue(m);
2045 vm_pagequeue_lock(pq);
2046 m->queue = PQ_NONE;
2047 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2048 vm_pagequeue_cnt_dec(pq);
2049 vm_pagequeue_unlock(pq);
2050 }
2051
2052 /*
2053 * vm_page_dequeue_locked:
2054 *
2055 * Remove the given page from its current page queue.
2056 *
2057 * The page and page queue must be locked.
2058 */
2059 void
2060 vm_page_dequeue_locked(vm_page_t m)
2061 {
2062 struct vm_pagequeue *pq;
2063
2064 vm_page_lock_assert(m, MA_OWNED);
2065 pq = vm_page_pagequeue(m);
2066 vm_pagequeue_assert_locked(pq);
2067 m->queue = PQ_NONE;
2068 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2069 vm_pagequeue_cnt_dec(pq);
2070 }
2071
2072 /*
2073 * vm_page_enqueue:
2074 *
2075 * Add the given page to the specified page queue.
2076 *
2077 * The page must be locked.
2078 */
2079 static void
2080 vm_page_enqueue(int queue, vm_page_t m)
2081 {
2082 struct vm_pagequeue *pq;
2083
2084 vm_page_lock_assert(m, MA_OWNED);
2085 pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2086 vm_pagequeue_lock(pq);
2087 m->queue = queue;
2088 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2089 vm_pagequeue_cnt_inc(pq);
2090 vm_pagequeue_unlock(pq);
2091 }
2092
2093 /*
2094 * vm_page_requeue:
2095 *
2096 * Move the given page to the tail of its current page queue.
2097 *
2098 * The page must be locked.
2099 */
2100 void
2101 vm_page_requeue(vm_page_t m)
2102 {
2103 struct vm_pagequeue *pq;
2104
2105 vm_page_lock_assert(m, MA_OWNED);
2106 KASSERT(m->queue != PQ_NONE,
2107 ("vm_page_requeue: page %p is not queued", m));
2108 pq = vm_page_pagequeue(m);
2109 vm_pagequeue_lock(pq);
2110 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2111 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2112 vm_pagequeue_unlock(pq);
2113 }
2114
2115 /*
2116 * vm_page_requeue_locked:
2117 *
2118 * Move the given page to the tail of its current page queue.
2119 *
2120 * The page queue must be locked.
2121 */
2122 void
2123 vm_page_requeue_locked(vm_page_t m)
2124 {
2125 struct vm_pagequeue *pq;
2126
2127 KASSERT(m->queue != PQ_NONE,
2128 ("vm_page_requeue_locked: page %p is not queued", m));
2129 pq = vm_page_pagequeue(m);
2130 vm_pagequeue_assert_locked(pq);
2131 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2132 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2133 }
2134
2135 /*
2136 * vm_page_activate:
2137 *
2138 * Put the specified page on the active list (if appropriate).
2139 * Ensure that act_count is at least ACT_INIT but do not otherwise
2140 * mess with it.
2141 *
2142 * The page must be locked.
2143 */
2144 void
2145 vm_page_activate(vm_page_t m)
2146 {
2147 int queue;
2148
2149 vm_page_lock_assert(m, MA_OWNED);
2150 if ((queue = m->queue) != PQ_ACTIVE) {
2151 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2152 if (m->act_count < ACT_INIT)
2153 m->act_count = ACT_INIT;
2154 if (queue != PQ_NONE)
2155 vm_page_dequeue(m);
2156 vm_page_enqueue(PQ_ACTIVE, m);
2157 } else
2158 KASSERT(queue == PQ_NONE,
2159 ("vm_page_activate: wired page %p is queued", m));
2160 } else {
2161 if (m->act_count < ACT_INIT)
2162 m->act_count = ACT_INIT;
2163 }
2164 }
2165
2166 /*
2167 * vm_page_free_wakeup:
2168 *
2169 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
2170 * routine is called when a page has been added to the cache or free
2171 * queues.
2172 *
2173 * The page queues must be locked.
2174 */
2175 static inline void
2176 vm_page_free_wakeup(void)
2177 {
2178
2179 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2180 /*
2181 * if pageout daemon needs pages, then tell it that there are
2182 * some free.
2183 */
2184 if (vm_pageout_pages_needed &&
2185 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
2186 wakeup(&vm_pageout_pages_needed);
2187 vm_pageout_pages_needed = 0;
2188 }
2189 /*
2190 * wakeup processes that are waiting on memory if we hit a
2191 * high water mark. And wakeup scheduler process if we have
2192 * lots of memory. this process will swapin processes.
2193 */
2194 if (vm_pages_needed && !vm_page_count_min()) {
2195 vm_pages_needed = 0;
2196 wakeup(&cnt.v_free_count);
2197 }
2198 }
2199
2200 /*
2201 * Turn a cached page into a free page, by changing its attributes.
2202 * Keep the statistics up-to-date.
2203 *
2204 * The free page queue must be locked.
2205 */
2206 static void
2207 vm_page_cache_turn_free(vm_page_t m)
2208 {
2209
2210 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2211
2212 m->object = NULL;
2213 m->valid = 0;
2214 /* Clear PG_CACHED and set PG_FREE. */
2215 m->flags ^= PG_CACHED | PG_FREE;
2216 KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
2217 ("vm_page_cache_free: page %p has inconsistent flags", m));
2218 cnt.v_cache_count--;
2219 vm_phys_freecnt_adj(m, 1);
2220 }
2221
2222 /*
2223 * vm_page_free_toq:
2224 *
2225 * Returns the given page to the free list,
2226 * disassociating it with any VM object.
2227 *
2228 * The object must be locked. The page must be locked if it is managed.
2229 */
2230 void
2231 vm_page_free_toq(vm_page_t m)
2232 {
2233
2234 if ((m->oflags & VPO_UNMANAGED) == 0) {
2235 vm_page_lock_assert(m, MA_OWNED);
2236 KASSERT(!pmap_page_is_mapped(m),
2237 ("vm_page_free_toq: freeing mapped page %p", m));
2238 } else
2239 KASSERT(m->queue == PQ_NONE,
2240 ("vm_page_free_toq: unmanaged page %p is queued", m));
2241 PCPU_INC(cnt.v_tfree);
2242
2243 if (VM_PAGE_IS_FREE(m))
2244 panic("vm_page_free: freeing free page %p", m);
2245 else if (vm_page_sbusied(m))
2246 panic("vm_page_free: freeing busy page %p", m);
2247
2248 /*
2249 * Unqueue, then remove page. Note that we cannot destroy
2250 * the page here because we do not want to call the pager's
2251 * callback routine until after we've put the page on the
2252 * appropriate free queue.
2253 */
2254 vm_page_remque(m);
2255 vm_page_remove(m);
2256
2257 /*
2258 * If fictitious remove object association and
2259 * return, otherwise delay object association removal.
2260 */
2261 if ((m->flags & PG_FICTITIOUS) != 0) {
2262 return;
2263 }
2264
2265 m->valid = 0;
2266 vm_page_undirty(m);
2267
2268 if (m->wire_count != 0)
2269 panic("vm_page_free: freeing wired page %p", m);
2270 if (m->hold_count != 0) {
2271 m->flags &= ~PG_ZERO;
2272 KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2273 ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2274 m->flags |= PG_UNHOLDFREE;
2275 } else {
2276 /*
2277 * Restore the default memory attribute to the page.
2278 */
2279 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2280 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2281
2282 /*
2283 * Insert the page into the physical memory allocator's
2284 * cache/free page queues.
2285 */
2286 mtx_lock(&vm_page_queue_free_mtx);
2287 m->flags |= PG_FREE;
2288 vm_phys_freecnt_adj(m, 1);
2289 #if VM_NRESERVLEVEL > 0
2290 if (!vm_reserv_free_page(m))
2291 #else
2292 if (TRUE)
2293 #endif
2294 vm_phys_free_pages(m, 0);
2295 if ((m->flags & PG_ZERO) != 0)
2296 ++vm_page_zero_count;
2297 else
2298 vm_page_zero_idle_wakeup();
2299 vm_page_free_wakeup();
2300 mtx_unlock(&vm_page_queue_free_mtx);
2301 }
2302 }
2303
2304 /*
2305 * vm_page_wire:
2306 *
2307 * Mark this page as wired down by yet
2308 * another map, removing it from paging queues
2309 * as necessary.
2310 *
2311 * If the page is fictitious, then its wire count must remain one.
2312 *
2313 * The page must be locked.
2314 */
2315 void
2316 vm_page_wire(vm_page_t m)
2317 {
2318
2319 /*
2320 * Only bump the wire statistics if the page is not already wired,
2321 * and only unqueue the page if it is on some queue (if it is unmanaged
2322 * it is already off the queues).
2323 */
2324 vm_page_lock_assert(m, MA_OWNED);
2325 if ((m->flags & PG_FICTITIOUS) != 0) {
2326 KASSERT(m->wire_count == 1,
2327 ("vm_page_wire: fictitious page %p's wire count isn't one",
2328 m));
2329 return;
2330 }
2331 if (m->wire_count == 0) {
2332 KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2333 m->queue == PQ_NONE,
2334 ("vm_page_wire: unmanaged page %p is queued", m));
2335 vm_page_remque(m);
2336 atomic_add_int(&cnt.v_wire_count, 1);
2337 }
2338 m->wire_count++;
2339 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2340 }
2341
2342 /*
2343 * vm_page_unwire:
2344 *
2345 * Release one wiring of the specified page, potentially enabling it to be
2346 * paged again. If paging is enabled, then the value of the parameter
2347 * "activate" determines to which queue the page is added. If "activate" is
2348 * non-zero, then the page is added to the active queue. Otherwise, it is
2349 * added to the inactive queue.
2350 *
2351 * However, unless the page belongs to an object, it is not enqueued because
2352 * it cannot be paged out.
2353 *
2354 * If a page is fictitious, then its wire count must always be one.
2355 *
2356 * A managed page must be locked.
2357 */
2358 void
2359 vm_page_unwire(vm_page_t m, int activate)
2360 {
2361
2362 if ((m->oflags & VPO_UNMANAGED) == 0)
2363 vm_page_lock_assert(m, MA_OWNED);
2364 if ((m->flags & PG_FICTITIOUS) != 0) {
2365 KASSERT(m->wire_count == 1,
2366 ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2367 return;
2368 }
2369 if (m->wire_count > 0) {
2370 m->wire_count--;
2371 if (m->wire_count == 0) {
2372 atomic_subtract_int(&cnt.v_wire_count, 1);
2373 if ((m->oflags & VPO_UNMANAGED) != 0 ||
2374 m->object == NULL)
2375 return;
2376 if (!activate)
2377 m->flags &= ~PG_WINATCFLS;
2378 vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
2379 }
2380 } else
2381 panic("vm_page_unwire: page %p's wire count is zero", m);
2382 }
2383
2384 /*
2385 * Move the specified page to the inactive queue.
2386 *
2387 * Many pages placed on the inactive queue should actually go
2388 * into the cache, but it is difficult to figure out which. What
2389 * we do instead, if the inactive target is well met, is to put
2390 * clean pages at the head of the inactive queue instead of the tail.
2391 * This will cause them to be moved to the cache more quickly and
2392 * if not actively re-referenced, reclaimed more quickly. If we just
2393 * stick these pages at the end of the inactive queue, heavy filesystem
2394 * meta-data accesses can cause an unnecessary paging load on memory bound
2395 * processes. This optimization causes one-time-use metadata to be
2396 * reused more quickly.
2397 *
2398 * Normally athead is 0 resulting in LRU operation. athead is set
2399 * to 1 if we want this page to be 'as if it were placed in the cache',
2400 * except without unmapping it from the process address space.
2401 *
2402 * The page must be locked.
2403 */
2404 static inline void
2405 _vm_page_deactivate(vm_page_t m, int athead)
2406 {
2407 struct vm_pagequeue *pq;
2408 int queue;
2409
2410 vm_page_lock_assert(m, MA_OWNED);
2411
2412 /*
2413 * Ignore if already inactive.
2414 */
2415 if ((queue = m->queue) == PQ_INACTIVE)
2416 return;
2417 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2418 if (queue != PQ_NONE)
2419 vm_page_dequeue(m);
2420 m->flags &= ~PG_WINATCFLS;
2421 pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2422 vm_pagequeue_lock(pq);
2423 m->queue = PQ_INACTIVE;
2424 if (athead)
2425 TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q);
2426 else
2427 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2428 vm_pagequeue_cnt_inc(pq);
2429 vm_pagequeue_unlock(pq);
2430 }
2431 }
2432
2433 /*
2434 * Move the specified page to the inactive queue.
2435 *
2436 * The page must be locked.
2437 */
2438 void
2439 vm_page_deactivate(vm_page_t m)
2440 {
2441
2442 _vm_page_deactivate(m, 0);
2443 }
2444
2445 /*
2446 * vm_page_try_to_cache:
2447 *
2448 * Returns 0 on failure, 1 on success
2449 */
2450 int
2451 vm_page_try_to_cache(vm_page_t m)
2452 {
2453
2454 vm_page_lock_assert(m, MA_OWNED);
2455 VM_OBJECT_ASSERT_WLOCKED(m->object);
2456 if (m->dirty || m->hold_count || m->wire_count ||
2457 (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2458 return (0);
2459 pmap_remove_all(m);
2460 if (m->dirty)
2461 return (0);
2462 vm_page_cache(m);
2463 return (1);
2464 }
2465
2466 /*
2467 * vm_page_try_to_free()
2468 *
2469 * Attempt to free the page. If we cannot free it, we do nothing.
2470 * 1 is returned on success, 0 on failure.
2471 */
2472 int
2473 vm_page_try_to_free(vm_page_t m)
2474 {
2475
2476 vm_page_lock_assert(m, MA_OWNED);
2477 if (m->object != NULL)
2478 VM_OBJECT_ASSERT_WLOCKED(m->object);
2479 if (m->dirty || m->hold_count || m->wire_count ||
2480 (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2481 return (0);
2482 pmap_remove_all(m);
2483 if (m->dirty)
2484 return (0);
2485 vm_page_free(m);
2486 return (1);
2487 }
2488
2489 /*
2490 * vm_page_cache
2491 *
2492 * Put the specified page onto the page cache queue (if appropriate).
2493 *
2494 * The object and page must be locked.
2495 */
2496 void
2497 vm_page_cache(vm_page_t m)
2498 {
2499 vm_object_t object;
2500 boolean_t cache_was_empty;
2501
2502 vm_page_lock_assert(m, MA_OWNED);
2503 object = m->object;
2504 VM_OBJECT_ASSERT_WLOCKED(object);
2505 if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
2506 m->hold_count || m->wire_count)
2507 panic("vm_page_cache: attempting to cache busy page");
2508 KASSERT(!pmap_page_is_mapped(m),
2509 ("vm_page_cache: page %p is mapped", m));
2510 KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2511 if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2512 (object->type == OBJT_SWAP &&
2513 !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2514 /*
2515 * Hypothesis: A cache-elgible page belonging to a
2516 * default object or swap object but without a backing
2517 * store must be zero filled.
2518 */
2519 vm_page_free(m);
2520 return;
2521 }
2522 KASSERT((m->flags & PG_CACHED) == 0,
2523 ("vm_page_cache: page %p is already cached", m));
2524
2525 /*
2526 * Remove the page from the paging queues.
2527 */
2528 vm_page_remque(m);
2529
2530 /*
2531 * Remove the page from the object's collection of resident
2532 * pages.
2533 */
2534 vm_radix_remove(&object->rtree, m->pindex);
2535 TAILQ_REMOVE(&object->memq, m, listq);
2536 object->resident_page_count--;
2537
2538 /*
2539 * Restore the default memory attribute to the page.
2540 */
2541 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2542 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2543
2544 /*
2545 * Insert the page into the object's collection of cached pages
2546 * and the physical memory allocator's cache/free page queues.
2547 */
2548 m->flags &= ~PG_ZERO;
2549 mtx_lock(&vm_page_queue_free_mtx);
2550 cache_was_empty = vm_radix_is_empty(&object->cache);
2551 if (vm_radix_insert(&object->cache, m)) {
2552 mtx_unlock(&vm_page_queue_free_mtx);
2553 if (object->resident_page_count == 0)
2554 vdrop(object->handle);
2555 m->object = NULL;
2556 vm_page_free(m);
2557 return;
2558 }
2559
2560 /*
2561 * The above call to vm_radix_insert() could reclaim the one pre-
2562 * existing cached page from this object, resulting in a call to
2563 * vdrop().
2564 */
2565 if (!cache_was_empty)
2566 cache_was_empty = vm_radix_is_singleton(&object->cache);
2567
2568 m->flags |= PG_CACHED;
2569 cnt.v_cache_count++;
2570 PCPU_INC(cnt.v_tcached);
2571 #if VM_NRESERVLEVEL > 0
2572 if (!vm_reserv_free_page(m)) {
2573 #else
2574 if (TRUE) {
2575 #endif
2576 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2577 vm_phys_free_pages(m, 0);
2578 }
2579 vm_page_free_wakeup();
2580 mtx_unlock(&vm_page_queue_free_mtx);
2581
2582 /*
2583 * Increment the vnode's hold count if this is the object's only
2584 * cached page. Decrement the vnode's hold count if this was
2585 * the object's only resident page.
2586 */
2587 if (object->type == OBJT_VNODE) {
2588 if (cache_was_empty && object->resident_page_count != 0)
2589 vhold(object->handle);
2590 else if (!cache_was_empty && object->resident_page_count == 0)
2591 vdrop(object->handle);
2592 }
2593 }
2594
2595 /*
2596 * vm_page_advise
2597 *
2598 * Cache, deactivate, or do nothing as appropriate. This routine
2599 * is used by madvise().
2600 *
2601 * Generally speaking we want to move the page into the cache so
2602 * it gets reused quickly. However, this can result in a silly syndrome
2603 * due to the page recycling too quickly. Small objects will not be
2604 * fully cached. On the other hand, if we move the page to the inactive
2605 * queue we wind up with a problem whereby very large objects
2606 * unnecessarily blow away our inactive and cache queues.
2607 *
2608 * The solution is to move the pages based on a fixed weighting. We
2609 * either leave them alone, deactivate them, or move them to the cache,
2610 * where moving them to the cache has the highest weighting.
2611 * By forcing some pages into other queues we eventually force the
2612 * system to balance the queues, potentially recovering other unrelated
2613 * space from active. The idea is to not force this to happen too
2614 * often.
2615 *
2616 * The object and page must be locked.
2617 */
2618 void
2619 vm_page_advise(vm_page_t m, int advice)
2620 {
2621 int dnw, head;
2622
2623 vm_page_assert_locked(m);
2624 VM_OBJECT_ASSERT_WLOCKED(m->object);
2625 if (advice == MADV_FREE) {
2626 /*
2627 * Mark the page clean. This will allow the page to be freed
2628 * up by the system. However, such pages are often reused
2629 * quickly by malloc() so we do not do anything that would
2630 * cause a page fault if we can help it.
2631 *
2632 * Specifically, we do not try to actually free the page now
2633 * nor do we try to put it in the cache (which would cause a
2634 * page fault on reuse).
2635 *
2636 * But we do make the page is freeable as we can without
2637 * actually taking the step of unmapping it.
2638 */
2639 m->dirty = 0;
2640 m->act_count = 0;
2641 } else if (advice != MADV_DONTNEED)
2642 return;
2643 dnw = PCPU_GET(dnweight);
2644 PCPU_INC(dnweight);
2645
2646 /*
2647 * Occasionally leave the page alone.
2648 */
2649 if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2650 if (m->act_count >= ACT_INIT)
2651 --m->act_count;
2652 return;
2653 }
2654
2655 /*
2656 * Clear any references to the page. Otherwise, the page daemon will
2657 * immediately reactivate the page.
2658 */
2659 vm_page_aflag_clear(m, PGA_REFERENCED);
2660
2661 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2662 vm_page_dirty(m);
2663
2664 if (m->dirty || (dnw & 0x0070) == 0) {
2665 /*
2666 * Deactivate the page 3 times out of 32.
2667 */
2668 head = 0;
2669 } else {
2670 /*
2671 * Cache the page 28 times out of every 32. Note that
2672 * the page is deactivated instead of cached, but placed
2673 * at the head of the queue instead of the tail.
2674 */
2675 head = 1;
2676 }
2677 _vm_page_deactivate(m, head);
2678 }
2679
2680 /*
2681 * Grab a page, waiting until we are waken up due to the page
2682 * changing state. We keep on waiting, if the page continues
2683 * to be in the object. If the page doesn't exist, first allocate it
2684 * and then conditionally zero it.
2685 *
2686 * This routine may sleep.
2687 *
2688 * The object must be locked on entry. The lock will, however, be released
2689 * and reacquired if the routine sleeps.
2690 */
2691 vm_page_t
2692 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2693 {
2694 vm_page_t m;
2695 int sleep;
2696
2697 VM_OBJECT_ASSERT_WLOCKED(object);
2698 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
2699 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
2700 ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
2701 retrylookup:
2702 if ((m = vm_page_lookup(object, pindex)) != NULL) {
2703 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
2704 vm_page_xbusied(m) : vm_page_busied(m);
2705 if (sleep) {
2706 /*
2707 * Reference the page before unlocking and
2708 * sleeping so that the page daemon is less
2709 * likely to reclaim it.
2710 */
2711 vm_page_aflag_set(m, PGA_REFERENCED);
2712 vm_page_lock(m);
2713 VM_OBJECT_WUNLOCK(object);
2714 vm_page_busy_sleep(m, "pgrbwt");
2715 VM_OBJECT_WLOCK(object);
2716 goto retrylookup;
2717 } else {
2718 if ((allocflags & VM_ALLOC_WIRED) != 0) {
2719 vm_page_lock(m);
2720 vm_page_wire(m);
2721 vm_page_unlock(m);
2722 }
2723 if ((allocflags &
2724 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2725 vm_page_xbusy(m);
2726 if ((allocflags & VM_ALLOC_SBUSY) != 0)
2727 vm_page_sbusy(m);
2728 return (m);
2729 }
2730 }
2731 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_IGN_SBUSY);
2732 if (m == NULL) {
2733 VM_OBJECT_WUNLOCK(object);
2734 VM_WAIT;
2735 VM_OBJECT_WLOCK(object);
2736 goto retrylookup;
2737 } else if (m->valid != 0)
2738 return (m);
2739 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2740 pmap_zero_page(m);
2741 return (m);
2742 }
2743
2744 /*
2745 * Mapping function for valid or dirty bits in a page.
2746 *
2747 * Inputs are required to range within a page.
2748 */
2749 vm_page_bits_t
2750 vm_page_bits(int base, int size)
2751 {
2752 int first_bit;
2753 int last_bit;
2754
2755 KASSERT(
2756 base + size <= PAGE_SIZE,
2757 ("vm_page_bits: illegal base/size %d/%d", base, size)
2758 );
2759
2760 if (size == 0) /* handle degenerate case */
2761 return (0);
2762
2763 first_bit = base >> DEV_BSHIFT;
2764 last_bit = (base + size - 1) >> DEV_BSHIFT;
2765
2766 return (((vm_page_bits_t)2 << last_bit) -
2767 ((vm_page_bits_t)1 << first_bit));
2768 }
2769
2770 /*
2771 * vm_page_set_valid_range:
2772 *
2773 * Sets portions of a page valid. The arguments are expected
2774 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2775 * of any partial chunks touched by the range. The invalid portion of
2776 * such chunks will be zeroed.
2777 *
2778 * (base + size) must be less then or equal to PAGE_SIZE.
2779 */
2780 void
2781 vm_page_set_valid_range(vm_page_t m, int base, int size)
2782 {
2783 int endoff, frag;
2784
2785 VM_OBJECT_ASSERT_WLOCKED(m->object);
2786 if (size == 0) /* handle degenerate case */
2787 return;
2788
2789 /*
2790 * If the base is not DEV_BSIZE aligned and the valid
2791 * bit is clear, we have to zero out a portion of the
2792 * first block.
2793 */
2794 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2795 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2796 pmap_zero_page_area(m, frag, base - frag);
2797
2798 /*
2799 * If the ending offset is not DEV_BSIZE aligned and the
2800 * valid bit is clear, we have to zero out a portion of
2801 * the last block.
2802 */
2803 endoff = base + size;
2804 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2805 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2806 pmap_zero_page_area(m, endoff,
2807 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2808
2809 /*
2810 * Assert that no previously invalid block that is now being validated
2811 * is already dirty.
2812 */
2813 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2814 ("vm_page_set_valid_range: page %p is dirty", m));
2815
2816 /*
2817 * Set valid bits inclusive of any overlap.
2818 */
2819 m->valid |= vm_page_bits(base, size);
2820 }
2821
2822 /*
2823 * Clear the given bits from the specified page's dirty field.
2824 */
2825 static __inline void
2826 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2827 {
2828 uintptr_t addr;
2829 #if PAGE_SIZE < 16384
2830 int shift;
2831 #endif
2832
2833 /*
2834 * If the object is locked and the page is neither exclusive busy nor
2835 * write mapped, then the page's dirty field cannot possibly be
2836 * set by a concurrent pmap operation.
2837 */
2838 VM_OBJECT_ASSERT_WLOCKED(m->object);
2839 if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
2840 m->dirty &= ~pagebits;
2841 else {
2842 /*
2843 * The pmap layer can call vm_page_dirty() without
2844 * holding a distinguished lock. The combination of
2845 * the object's lock and an atomic operation suffice
2846 * to guarantee consistency of the page dirty field.
2847 *
2848 * For PAGE_SIZE == 32768 case, compiler already
2849 * properly aligns the dirty field, so no forcible
2850 * alignment is needed. Only require existence of
2851 * atomic_clear_64 when page size is 32768.
2852 */
2853 addr = (uintptr_t)&m->dirty;
2854 #if PAGE_SIZE == 32768
2855 atomic_clear_64((uint64_t *)addr, pagebits);
2856 #elif PAGE_SIZE == 16384
2857 atomic_clear_32((uint32_t *)addr, pagebits);
2858 #else /* PAGE_SIZE <= 8192 */
2859 /*
2860 * Use a trick to perform a 32-bit atomic on the
2861 * containing aligned word, to not depend on the existence
2862 * of atomic_clear_{8, 16}.
2863 */
2864 shift = addr & (sizeof(uint32_t) - 1);
2865 #if BYTE_ORDER == BIG_ENDIAN
2866 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2867 #else
2868 shift *= NBBY;
2869 #endif
2870 addr &= ~(sizeof(uint32_t) - 1);
2871 atomic_clear_32((uint32_t *)addr, pagebits << shift);
2872 #endif /* PAGE_SIZE */
2873 }
2874 }
2875
2876 /*
2877 * vm_page_set_validclean:
2878 *
2879 * Sets portions of a page valid and clean. The arguments are expected
2880 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2881 * of any partial chunks touched by the range. The invalid portion of
2882 * such chunks will be zero'd.
2883 *
2884 * (base + size) must be less then or equal to PAGE_SIZE.
2885 */
2886 void
2887 vm_page_set_validclean(vm_page_t m, int base, int size)
2888 {
2889 vm_page_bits_t oldvalid, pagebits;
2890 int endoff, frag;
2891
2892 VM_OBJECT_ASSERT_WLOCKED(m->object);
2893 if (size == 0) /* handle degenerate case */
2894 return;
2895
2896 /*
2897 * If the base is not DEV_BSIZE aligned and the valid
2898 * bit is clear, we have to zero out a portion of the
2899 * first block.
2900 */
2901 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2902 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2903 pmap_zero_page_area(m, frag, base - frag);
2904
2905 /*
2906 * If the ending offset is not DEV_BSIZE aligned and the
2907 * valid bit is clear, we have to zero out a portion of
2908 * the last block.
2909 */
2910 endoff = base + size;
2911 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2912 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2913 pmap_zero_page_area(m, endoff,
2914 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2915
2916 /*
2917 * Set valid, clear dirty bits. If validating the entire
2918 * page we can safely clear the pmap modify bit. We also
2919 * use this opportunity to clear the VPO_NOSYNC flag. If a process
2920 * takes a write fault on a MAP_NOSYNC memory area the flag will
2921 * be set again.
2922 *
2923 * We set valid bits inclusive of any overlap, but we can only
2924 * clear dirty bits for DEV_BSIZE chunks that are fully within
2925 * the range.
2926 */
2927 oldvalid = m->valid;
2928 pagebits = vm_page_bits(base, size);
2929 m->valid |= pagebits;
2930 #if 0 /* NOT YET */
2931 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2932 frag = DEV_BSIZE - frag;
2933 base += frag;
2934 size -= frag;
2935 if (size < 0)
2936 size = 0;
2937 }
2938 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2939 #endif
2940 if (base == 0 && size == PAGE_SIZE) {
2941 /*
2942 * The page can only be modified within the pmap if it is
2943 * mapped, and it can only be mapped if it was previously
2944 * fully valid.
2945 */
2946 if (oldvalid == VM_PAGE_BITS_ALL)
2947 /*
2948 * Perform the pmap_clear_modify() first. Otherwise,
2949 * a concurrent pmap operation, such as
2950 * pmap_protect(), could clear a modification in the
2951 * pmap and set the dirty field on the page before
2952 * pmap_clear_modify() had begun and after the dirty
2953 * field was cleared here.
2954 */
2955 pmap_clear_modify(m);
2956 m->dirty = 0;
2957 m->oflags &= ~VPO_NOSYNC;
2958 } else if (oldvalid != VM_PAGE_BITS_ALL)
2959 m->dirty &= ~pagebits;
2960 else
2961 vm_page_clear_dirty_mask(m, pagebits);
2962 }
2963
2964 void
2965 vm_page_clear_dirty(vm_page_t m, int base, int size)
2966 {
2967
2968 vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2969 }
2970
2971 /*
2972 * vm_page_set_invalid:
2973 *
2974 * Invalidates DEV_BSIZE'd chunks within a page. Both the
2975 * valid and dirty bits for the effected areas are cleared.
2976 */
2977 void
2978 vm_page_set_invalid(vm_page_t m, int base, int size)
2979 {
2980 vm_page_bits_t bits;
2981 vm_object_t object;
2982
2983 object = m->object;
2984 VM_OBJECT_ASSERT_WLOCKED(object);
2985 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
2986 size >= object->un_pager.vnp.vnp_size)
2987 bits = VM_PAGE_BITS_ALL;
2988 else
2989 bits = vm_page_bits(base, size);
2990 if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2991 pmap_remove_all(m);
2992 KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
2993 !pmap_page_is_mapped(m),
2994 ("vm_page_set_invalid: page %p is mapped", m));
2995 m->valid &= ~bits;
2996 m->dirty &= ~bits;
2997 }
2998
2999 /*
3000 * vm_page_zero_invalid()
3001 *
3002 * The kernel assumes that the invalid portions of a page contain
3003 * garbage, but such pages can be mapped into memory by user code.
3004 * When this occurs, we must zero out the non-valid portions of the
3005 * page so user code sees what it expects.
3006 *
3007 * Pages are most often semi-valid when the end of a file is mapped
3008 * into memory and the file's size is not page aligned.
3009 */
3010 void
3011 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3012 {
3013 int b;
3014 int i;
3015
3016 VM_OBJECT_ASSERT_WLOCKED(m->object);
3017 /*
3018 * Scan the valid bits looking for invalid sections that
3019 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
3020 * valid bit may be set ) have already been zerod by
3021 * vm_page_set_validclean().
3022 */
3023 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3024 if (i == (PAGE_SIZE / DEV_BSIZE) ||
3025 (m->valid & ((vm_page_bits_t)1 << i))) {
3026 if (i > b) {
3027 pmap_zero_page_area(m,
3028 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3029 }
3030 b = i + 1;
3031 }
3032 }
3033
3034 /*
3035 * setvalid is TRUE when we can safely set the zero'd areas
3036 * as being valid. We can do this if there are no cache consistancy
3037 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
3038 */
3039 if (setvalid)
3040 m->valid = VM_PAGE_BITS_ALL;
3041 }
3042
3043 /*
3044 * vm_page_is_valid:
3045 *
3046 * Is (partial) page valid? Note that the case where size == 0
3047 * will return FALSE in the degenerate case where the page is
3048 * entirely invalid, and TRUE otherwise.
3049 */
3050 int
3051 vm_page_is_valid(vm_page_t m, int base, int size)
3052 {
3053 vm_page_bits_t bits;
3054
3055 VM_OBJECT_ASSERT_LOCKED(m->object);
3056 bits = vm_page_bits(base, size);
3057 return (m->valid != 0 && (m->valid & bits) == bits);
3058 }
3059
3060 /*
3061 * Set the page's dirty bits if the page is modified.
3062 */
3063 void
3064 vm_page_test_dirty(vm_page_t m)
3065 {
3066
3067 VM_OBJECT_ASSERT_WLOCKED(m->object);
3068 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3069 vm_page_dirty(m);
3070 }
3071
3072 void
3073 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3074 {
3075
3076 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3077 }
3078
3079 void
3080 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3081 {
3082
3083 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3084 }
3085
3086 int
3087 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3088 {
3089
3090 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3091 }
3092
3093 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3094 void
3095 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3096 {
3097
3098 vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3099 }
3100
3101 void
3102 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3103 {
3104
3105 mtx_assert_(vm_page_lockptr(m), a, file, line);
3106 }
3107 #endif
3108
3109 #ifdef INVARIANTS
3110 void
3111 vm_page_object_lock_assert(vm_page_t m)
3112 {
3113
3114 /*
3115 * Certain of the page's fields may only be modified by the
3116 * holder of the containing object's lock or the exclusive busy.
3117 * holder. Unfortunately, the holder of the write busy is
3118 * not recorded, and thus cannot be checked here.
3119 */
3120 if (m->object != NULL && !vm_page_xbusied(m))
3121 VM_OBJECT_ASSERT_WLOCKED(m->object);
3122 }
3123 #endif
3124
3125 #include "opt_ddb.h"
3126 #ifdef DDB
3127 #include <sys/kernel.h>
3128
3129 #include <ddb/ddb.h>
3130
3131 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3132 {
3133 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
3134 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
3135 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
3136 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
3137 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
3138 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
3139 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
3140 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
3141 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
3142 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
3143 }
3144
3145 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3146 {
3147 int dom;
3148
3149 db_printf("pq_free %d pq_cache %d\n",
3150 cnt.v_free_count, cnt.v_cache_count);
3151 for (dom = 0; dom < vm_ndomains; dom++) {
3152 db_printf(
3153 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3154 dom,
3155 vm_dom[dom].vmd_page_count,
3156 vm_dom[dom].vmd_free_count,
3157 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3158 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3159 vm_dom[dom].vmd_pass);
3160 }
3161 }
3162
3163 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3164 {
3165 vm_page_t m;
3166 boolean_t phys;
3167
3168 if (!have_addr) {
3169 db_printf("show pginfo addr\n");
3170 return;
3171 }
3172
3173 phys = strchr(modif, 'p') != NULL;
3174 if (phys)
3175 m = PHYS_TO_VM_PAGE(addr);
3176 else
3177 m = (vm_page_t)addr;
3178 db_printf(
3179 "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3180 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3181 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3182 m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3183 m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3184 }
3185 #endif /* DDB */
Cache object: 8f52435a14c0d777a4f0d97badfc2853
|