The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * The Mach Operating System project at Carnegie-Mellon University.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
   34  */
   35 
   36 /*-
   37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   38  * All rights reserved.
   39  *
   40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   41  *
   42  * Permission to use, copy, modify and distribute this software and
   43  * its documentation is hereby granted, provided that both the copyright
   44  * notice and this permission notice appear in all copies of the
   45  * software, derivative works or modified versions, and any portions
   46  * thereof, and that both notices appear in supporting documentation.
   47  *
   48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   51  *
   52  * Carnegie Mellon requests users of this software to return to
   53  *
   54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   55  *  School of Computer Science
   56  *  Carnegie Mellon University
   57  *  Pittsburgh PA 15213-3890
   58  *
   59  * any improvements or extensions that they make and grant Carnegie the
   60  * rights to redistribute these changes.
   61  */
   62 
   63 /*
   64  *                      GENERAL RULES ON VM_PAGE MANIPULATION
   65  *
   66  *      - A page queue lock is required when adding or removing a page from a
   67  *        page queue regardless of other locks or the busy state of a page.
   68  *
   69  *              * In general, no thread besides the page daemon can acquire or
   70  *                hold more than one page queue lock at a time.
   71  *
   72  *              * The page daemon can acquire and hold any pair of page queue
   73  *                locks in any order.
   74  *
   75  *      - The object lock is required when inserting or removing
   76  *        pages from an object (vm_page_insert() or vm_page_remove()).
   77  *
   78  */
   79 
   80 /*
   81  *      Resident memory management module.
   82  */
   83 
   84 #include <sys/cdefs.h>
   85 __FBSDID("$FreeBSD: releng/10.0/sys/vm/vm_page.c 255626 2013-09-17 07:35:26Z kib $");
   86 
   87 #include "opt_vm.h"
   88 
   89 #include <sys/param.h>
   90 #include <sys/systm.h>
   91 #include <sys/lock.h>
   92 #include <sys/kernel.h>
   93 #include <sys/limits.h>
   94 #include <sys/malloc.h>
   95 #include <sys/mman.h>
   96 #include <sys/msgbuf.h>
   97 #include <sys/mutex.h>
   98 #include <sys/proc.h>
   99 #include <sys/rwlock.h>
  100 #include <sys/sysctl.h>
  101 #include <sys/vmmeter.h>
  102 #include <sys/vnode.h>
  103 
  104 #include <vm/vm.h>
  105 #include <vm/pmap.h>
  106 #include <vm/vm_param.h>
  107 #include <vm/vm_kern.h>
  108 #include <vm/vm_object.h>
  109 #include <vm/vm_page.h>
  110 #include <vm/vm_pageout.h>
  111 #include <vm/vm_pager.h>
  112 #include <vm/vm_phys.h>
  113 #include <vm/vm_radix.h>
  114 #include <vm/vm_reserv.h>
  115 #include <vm/vm_extern.h>
  116 #include <vm/uma.h>
  117 #include <vm/uma_int.h>
  118 
  119 #include <machine/md_var.h>
  120 
  121 /*
  122  *      Associated with page of user-allocatable memory is a
  123  *      page structure.
  124  */
  125 
  126 struct vm_domain vm_dom[MAXMEMDOM];
  127 struct mtx_padalign vm_page_queue_free_mtx;
  128 
  129 struct mtx_padalign pa_lock[PA_LOCK_COUNT];
  130 
  131 vm_page_t vm_page_array;
  132 long vm_page_array_size;
  133 long first_page;
  134 int vm_page_zero_count;
  135 
  136 static int boot_pages = UMA_BOOT_PAGES;
  137 TUNABLE_INT("vm.boot_pages", &boot_pages);
  138 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
  139         "number of pages allocated for bootstrapping the VM system");
  140 
  141 static int pa_tryrelock_restart;
  142 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
  143     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
  144 
  145 static uma_zone_t fakepg_zone;
  146 
  147 static struct vnode *vm_page_alloc_init(vm_page_t m);
  148 static void vm_page_cache_turn_free(vm_page_t m);
  149 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
  150 static void vm_page_enqueue(int queue, vm_page_t m);
  151 static void vm_page_init_fakepg(void *dummy);
  152 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
  153     vm_pindex_t pindex, vm_page_t mpred);
  154 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
  155     vm_page_t mpred);
  156 
  157 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
  158 
  159 static void
  160 vm_page_init_fakepg(void *dummy)
  161 {
  162 
  163         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
  164             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 
  165 }
  166 
  167 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
  168 #if PAGE_SIZE == 32768
  169 #ifdef CTASSERT
  170 CTASSERT(sizeof(u_long) >= 8);
  171 #endif
  172 #endif
  173 
  174 /*
  175  * Try to acquire a physical address lock while a pmap is locked.  If we
  176  * fail to trylock we unlock and lock the pmap directly and cache the
  177  * locked pa in *locked.  The caller should then restart their loop in case
  178  * the virtual to physical mapping has changed.
  179  */
  180 int
  181 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
  182 {
  183         vm_paddr_t lockpa;
  184 
  185         lockpa = *locked;
  186         *locked = pa;
  187         if (lockpa) {
  188                 PA_LOCK_ASSERT(lockpa, MA_OWNED);
  189                 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
  190                         return (0);
  191                 PA_UNLOCK(lockpa);
  192         }
  193         if (PA_TRYLOCK(pa))
  194                 return (0);
  195         PMAP_UNLOCK(pmap);
  196         atomic_add_int(&pa_tryrelock_restart, 1);
  197         PA_LOCK(pa);
  198         PMAP_LOCK(pmap);
  199         return (EAGAIN);
  200 }
  201 
  202 /*
  203  *      vm_set_page_size:
  204  *
  205  *      Sets the page size, perhaps based upon the memory
  206  *      size.  Must be called before any use of page-size
  207  *      dependent functions.
  208  */
  209 void
  210 vm_set_page_size(void)
  211 {
  212         if (cnt.v_page_size == 0)
  213                 cnt.v_page_size = PAGE_SIZE;
  214         if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
  215                 panic("vm_set_page_size: page size not a power of two");
  216 }
  217 
  218 /*
  219  *      vm_page_blacklist_lookup:
  220  *
  221  *      See if a physical address in this page has been listed
  222  *      in the blacklist tunable.  Entries in the tunable are
  223  *      separated by spaces or commas.  If an invalid integer is
  224  *      encountered then the rest of the string is skipped.
  225  */
  226 static int
  227 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
  228 {
  229         vm_paddr_t bad;
  230         char *cp, *pos;
  231 
  232         for (pos = list; *pos != '\0'; pos = cp) {
  233                 bad = strtoq(pos, &cp, 0);
  234                 if (*cp != '\0') {
  235                         if (*cp == ' ' || *cp == ',') {
  236                                 cp++;
  237                                 if (cp == pos)
  238                                         continue;
  239                         } else
  240                                 break;
  241                 }
  242                 if (pa == trunc_page(bad))
  243                         return (1);
  244         }
  245         return (0);
  246 }
  247 
  248 static void
  249 vm_page_domain_init(struct vm_domain *vmd)
  250 {
  251         struct vm_pagequeue *pq;
  252         int i;
  253 
  254         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
  255             "vm inactive pagequeue";
  256         *__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
  257             &cnt.v_inactive_count;
  258         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
  259             "vm active pagequeue";
  260         *__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
  261             &cnt.v_active_count;
  262         vmd->vmd_page_count = 0;
  263         vmd->vmd_free_count = 0;
  264         vmd->vmd_segs = 0;
  265         vmd->vmd_oom = FALSE;
  266         vmd->vmd_pass = 0;
  267         for (i = 0; i < PQ_COUNT; i++) {
  268                 pq = &vmd->vmd_pagequeues[i];
  269                 TAILQ_INIT(&pq->pq_pl);
  270                 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
  271                     MTX_DEF | MTX_DUPOK);
  272         }
  273 }
  274 
  275 /*
  276  *      vm_page_startup:
  277  *
  278  *      Initializes the resident memory module.
  279  *
  280  *      Allocates memory for the page cells, and
  281  *      for the object/offset-to-page hash table headers.
  282  *      Each page cell is initialized and placed on the free list.
  283  */
  284 vm_offset_t
  285 vm_page_startup(vm_offset_t vaddr)
  286 {
  287         vm_offset_t mapped;
  288         vm_paddr_t page_range;
  289         vm_paddr_t new_end;
  290         int i;
  291         vm_paddr_t pa;
  292         vm_paddr_t last_pa;
  293         char *list;
  294 
  295         /* the biggest memory array is the second group of pages */
  296         vm_paddr_t end;
  297         vm_paddr_t biggestsize;
  298         vm_paddr_t low_water, high_water;
  299         int biggestone;
  300 
  301         biggestsize = 0;
  302         biggestone = 0;
  303         vaddr = round_page(vaddr);
  304 
  305         for (i = 0; phys_avail[i + 1]; i += 2) {
  306                 phys_avail[i] = round_page(phys_avail[i]);
  307                 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
  308         }
  309 
  310         low_water = phys_avail[0];
  311         high_water = phys_avail[1];
  312 
  313         for (i = 0; phys_avail[i + 1]; i += 2) {
  314                 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
  315 
  316                 if (size > biggestsize) {
  317                         biggestone = i;
  318                         biggestsize = size;
  319                 }
  320                 if (phys_avail[i] < low_water)
  321                         low_water = phys_avail[i];
  322                 if (phys_avail[i + 1] > high_water)
  323                         high_water = phys_avail[i + 1];
  324         }
  325 
  326 #ifdef XEN
  327         low_water = 0;
  328 #endif  
  329 
  330         end = phys_avail[biggestone+1];
  331 
  332         /*
  333          * Initialize the page and queue locks.
  334          */
  335         mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
  336         for (i = 0; i < PA_LOCK_COUNT; i++)
  337                 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
  338         for (i = 0; i < vm_ndomains; i++)
  339                 vm_page_domain_init(&vm_dom[i]);
  340 
  341         /*
  342          * Allocate memory for use when boot strapping the kernel memory
  343          * allocator.
  344          */
  345         new_end = end - (boot_pages * UMA_SLAB_SIZE);
  346         new_end = trunc_page(new_end);
  347         mapped = pmap_map(&vaddr, new_end, end,
  348             VM_PROT_READ | VM_PROT_WRITE);
  349         bzero((void *)mapped, end - new_end);
  350         uma_startup((void *)mapped, boot_pages);
  351 
  352 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
  353     defined(__mips__)
  354         /*
  355          * Allocate a bitmap to indicate that a random physical page
  356          * needs to be included in a minidump.
  357          *
  358          * The amd64 port needs this to indicate which direct map pages
  359          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
  360          *
  361          * However, i386 still needs this workspace internally within the
  362          * minidump code.  In theory, they are not needed on i386, but are
  363          * included should the sf_buf code decide to use them.
  364          */
  365         last_pa = 0;
  366         for (i = 0; dump_avail[i + 1] != 0; i += 2)
  367                 if (dump_avail[i + 1] > last_pa)
  368                         last_pa = dump_avail[i + 1];
  369         page_range = last_pa / PAGE_SIZE;
  370         vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
  371         new_end -= vm_page_dump_size;
  372         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
  373             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
  374         bzero((void *)vm_page_dump, vm_page_dump_size);
  375 #endif
  376 #ifdef __amd64__
  377         /*
  378          * Request that the physical pages underlying the message buffer be
  379          * included in a crash dump.  Since the message buffer is accessed
  380          * through the direct map, they are not automatically included.
  381          */
  382         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
  383         last_pa = pa + round_page(msgbufsize);
  384         while (pa < last_pa) {
  385                 dump_add_page(pa);
  386                 pa += PAGE_SIZE;
  387         }
  388 #endif
  389         /*
  390          * Compute the number of pages of memory that will be available for
  391          * use (taking into account the overhead of a page structure per
  392          * page).
  393          */
  394         first_page = low_water / PAGE_SIZE;
  395 #ifdef VM_PHYSSEG_SPARSE
  396         page_range = 0;
  397         for (i = 0; phys_avail[i + 1] != 0; i += 2)
  398                 page_range += atop(phys_avail[i + 1] - phys_avail[i]);
  399 #elif defined(VM_PHYSSEG_DENSE)
  400         page_range = high_water / PAGE_SIZE - first_page;
  401 #else
  402 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
  403 #endif
  404         end = new_end;
  405 
  406         /*
  407          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
  408          */
  409         vaddr += PAGE_SIZE;
  410 
  411         /*
  412          * Initialize the mem entry structures now, and put them in the free
  413          * queue.
  414          */
  415         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
  416         mapped = pmap_map(&vaddr, new_end, end,
  417             VM_PROT_READ | VM_PROT_WRITE);
  418         vm_page_array = (vm_page_t) mapped;
  419 #if VM_NRESERVLEVEL > 0
  420         /*
  421          * Allocate memory for the reservation management system's data
  422          * structures.
  423          */
  424         new_end = vm_reserv_startup(&vaddr, new_end, high_water);
  425 #endif
  426 #if defined(__amd64__) || defined(__mips__)
  427         /*
  428          * pmap_map on amd64 and mips can come out of the direct-map, not kvm
  429          * like i386, so the pages must be tracked for a crashdump to include
  430          * this data.  This includes the vm_page_array and the early UMA
  431          * bootstrap pages.
  432          */
  433         for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
  434                 dump_add_page(pa);
  435 #endif  
  436         phys_avail[biggestone + 1] = new_end;
  437 
  438         /*
  439          * Clear all of the page structures
  440          */
  441         bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
  442         for (i = 0; i < page_range; i++)
  443                 vm_page_array[i].order = VM_NFREEORDER;
  444         vm_page_array_size = page_range;
  445 
  446         /*
  447          * Initialize the physical memory allocator.
  448          */
  449         vm_phys_init();
  450 
  451         /*
  452          * Add every available physical page that is not blacklisted to
  453          * the free lists.
  454          */
  455         cnt.v_page_count = 0;
  456         cnt.v_free_count = 0;
  457         list = getenv("vm.blacklist");
  458         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  459                 pa = phys_avail[i];
  460                 last_pa = phys_avail[i + 1];
  461                 while (pa < last_pa) {
  462                         if (list != NULL &&
  463                             vm_page_blacklist_lookup(list, pa))
  464                                 printf("Skipping page with pa 0x%jx\n",
  465                                     (uintmax_t)pa);
  466                         else
  467                                 vm_phys_add_page(pa);
  468                         pa += PAGE_SIZE;
  469                 }
  470         }
  471         freeenv(list);
  472 #if VM_NRESERVLEVEL > 0
  473         /*
  474          * Initialize the reservation management system.
  475          */
  476         vm_reserv_init();
  477 #endif
  478         return (vaddr);
  479 }
  480 
  481 void
  482 vm_page_reference(vm_page_t m)
  483 {
  484 
  485         vm_page_aflag_set(m, PGA_REFERENCED);
  486 }
  487 
  488 /*
  489  *      vm_page_busy_downgrade:
  490  *
  491  *      Downgrade an exclusive busy page into a single shared busy page.
  492  */
  493 void
  494 vm_page_busy_downgrade(vm_page_t m)
  495 {
  496         u_int x;
  497 
  498         vm_page_assert_xbusied(m);
  499 
  500         for (;;) {
  501                 x = m->busy_lock;
  502                 x &= VPB_BIT_WAITERS;
  503                 if (atomic_cmpset_rel_int(&m->busy_lock,
  504                     VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
  505                         break;
  506         }
  507 }
  508 
  509 /*
  510  *      vm_page_sbusied:
  511  *
  512  *      Return a positive value if the page is shared busied, 0 otherwise.
  513  */
  514 int
  515 vm_page_sbusied(vm_page_t m)
  516 {
  517         u_int x;
  518 
  519         x = m->busy_lock;
  520         return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
  521 }
  522 
  523 /*
  524  *      vm_page_sunbusy:
  525  *
  526  *      Shared unbusy a page.
  527  */
  528 void
  529 vm_page_sunbusy(vm_page_t m)
  530 {
  531         u_int x;
  532 
  533         vm_page_assert_sbusied(m);
  534 
  535         for (;;) {
  536                 x = m->busy_lock;
  537                 if (VPB_SHARERS(x) > 1) {
  538                         if (atomic_cmpset_int(&m->busy_lock, x,
  539                             x - VPB_ONE_SHARER))
  540                                 break;
  541                         continue;
  542                 }
  543                 if ((x & VPB_BIT_WAITERS) == 0) {
  544                         KASSERT(x == VPB_SHARERS_WORD(1),
  545                             ("vm_page_sunbusy: invalid lock state"));
  546                         if (atomic_cmpset_int(&m->busy_lock,
  547                             VPB_SHARERS_WORD(1), VPB_UNBUSIED))
  548                                 break;
  549                         continue;
  550                 }
  551                 KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
  552                     ("vm_page_sunbusy: invalid lock state for waiters"));
  553 
  554                 vm_page_lock(m);
  555                 if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
  556                         vm_page_unlock(m);
  557                         continue;
  558                 }
  559                 wakeup(m);
  560                 vm_page_unlock(m);
  561                 break;
  562         }
  563 }
  564 
  565 /*
  566  *      vm_page_busy_sleep:
  567  *
  568  *      Sleep and release the page lock, using the page pointer as wchan.
  569  *      This is used to implement the hard-path of busying mechanism.
  570  *
  571  *      The given page must be locked.
  572  */
  573 void
  574 vm_page_busy_sleep(vm_page_t m, const char *wmesg)
  575 {
  576         u_int x;
  577 
  578         vm_page_lock_assert(m, MA_OWNED);
  579 
  580         x = m->busy_lock;
  581         if (x == VPB_UNBUSIED) {
  582                 vm_page_unlock(m);
  583                 return;
  584         }
  585         if ((x & VPB_BIT_WAITERS) == 0 &&
  586             !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
  587                 vm_page_unlock(m);
  588                 return;
  589         }
  590         msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
  591 }
  592 
  593 /*
  594  *      vm_page_trysbusy:
  595  *
  596  *      Try to shared busy a page.
  597  *      If the operation succeeds 1 is returned otherwise 0.
  598  *      The operation never sleeps.
  599  */
  600 int
  601 vm_page_trysbusy(vm_page_t m)
  602 {
  603         u_int x;
  604 
  605         for (;;) {
  606                 x = m->busy_lock;
  607                 if ((x & VPB_BIT_SHARED) == 0)
  608                         return (0);
  609                 if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
  610                         return (1);
  611         }
  612 }
  613 
  614 /*
  615  *      vm_page_xunbusy_hard:
  616  *
  617  *      Called after the first try the exclusive unbusy of a page failed.
  618  *      It is assumed that the waiters bit is on.
  619  */
  620 void
  621 vm_page_xunbusy_hard(vm_page_t m)
  622 {
  623 
  624         vm_page_assert_xbusied(m);
  625 
  626         vm_page_lock(m);
  627         atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
  628         wakeup(m);
  629         vm_page_unlock(m);
  630 }
  631 
  632 /*
  633  *      vm_page_flash:
  634  *
  635  *      Wakeup anyone waiting for the page.
  636  *      The ownership bits do not change.
  637  *
  638  *      The given page must be locked.
  639  */
  640 void
  641 vm_page_flash(vm_page_t m)
  642 {
  643         u_int x;
  644 
  645         vm_page_lock_assert(m, MA_OWNED);
  646 
  647         for (;;) {
  648                 x = m->busy_lock;
  649                 if ((x & VPB_BIT_WAITERS) == 0)
  650                         return;
  651                 if (atomic_cmpset_int(&m->busy_lock, x,
  652                     x & (~VPB_BIT_WAITERS)))
  653                         break;
  654         }
  655         wakeup(m);
  656 }
  657 
  658 /*
  659  * Keep page from being freed by the page daemon
  660  * much of the same effect as wiring, except much lower
  661  * overhead and should be used only for *very* temporary
  662  * holding ("wiring").
  663  */
  664 void
  665 vm_page_hold(vm_page_t mem)
  666 {
  667 
  668         vm_page_lock_assert(mem, MA_OWNED);
  669         mem->hold_count++;
  670 }
  671 
  672 void
  673 vm_page_unhold(vm_page_t mem)
  674 {
  675 
  676         vm_page_lock_assert(mem, MA_OWNED);
  677         KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
  678         --mem->hold_count;
  679         if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
  680                 vm_page_free_toq(mem);
  681 }
  682 
  683 /*
  684  *      vm_page_unhold_pages:
  685  *
  686  *      Unhold each of the pages that is referenced by the given array.
  687  */ 
  688 void
  689 vm_page_unhold_pages(vm_page_t *ma, int count)
  690 {
  691         struct mtx *mtx, *new_mtx;
  692 
  693         mtx = NULL;
  694         for (; count != 0; count--) {
  695                 /*
  696                  * Avoid releasing and reacquiring the same page lock.
  697                  */
  698                 new_mtx = vm_page_lockptr(*ma);
  699                 if (mtx != new_mtx) {
  700                         if (mtx != NULL)
  701                                 mtx_unlock(mtx);
  702                         mtx = new_mtx;
  703                         mtx_lock(mtx);
  704                 }
  705                 vm_page_unhold(*ma);
  706                 ma++;
  707         }
  708         if (mtx != NULL)
  709                 mtx_unlock(mtx);
  710 }
  711 
  712 vm_page_t
  713 PHYS_TO_VM_PAGE(vm_paddr_t pa)
  714 {
  715         vm_page_t m;
  716 
  717 #ifdef VM_PHYSSEG_SPARSE
  718         m = vm_phys_paddr_to_vm_page(pa);
  719         if (m == NULL)
  720                 m = vm_phys_fictitious_to_vm_page(pa);
  721         return (m);
  722 #elif defined(VM_PHYSSEG_DENSE)
  723         long pi;
  724 
  725         pi = atop(pa);
  726         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
  727                 m = &vm_page_array[pi - first_page];
  728                 return (m);
  729         }
  730         return (vm_phys_fictitious_to_vm_page(pa));
  731 #else
  732 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
  733 #endif
  734 }
  735 
  736 /*
  737  *      vm_page_getfake:
  738  *
  739  *      Create a fictitious page with the specified physical address and
  740  *      memory attribute.  The memory attribute is the only the machine-
  741  *      dependent aspect of a fictitious page that must be initialized.
  742  */
  743 vm_page_t
  744 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
  745 {
  746         vm_page_t m;
  747 
  748         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
  749         vm_page_initfake(m, paddr, memattr);
  750         return (m);
  751 }
  752 
  753 void
  754 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
  755 {
  756 
  757         if ((m->flags & PG_FICTITIOUS) != 0) {
  758                 /*
  759                  * The page's memattr might have changed since the
  760                  * previous initialization.  Update the pmap to the
  761                  * new memattr.
  762                  */
  763                 goto memattr;
  764         }
  765         m->phys_addr = paddr;
  766         m->queue = PQ_NONE;
  767         /* Fictitious pages don't use "segind". */
  768         m->flags = PG_FICTITIOUS;
  769         /* Fictitious pages don't use "order" or "pool". */
  770         m->oflags = VPO_UNMANAGED;
  771         m->busy_lock = VPB_SINGLE_EXCLUSIVER;
  772         m->wire_count = 1;
  773         pmap_page_init(m);
  774 memattr:
  775         pmap_page_set_memattr(m, memattr);
  776 }
  777 
  778 /*
  779  *      vm_page_putfake:
  780  *
  781  *      Release a fictitious page.
  782  */
  783 void
  784 vm_page_putfake(vm_page_t m)
  785 {
  786 
  787         KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
  788         KASSERT((m->flags & PG_FICTITIOUS) != 0,
  789             ("vm_page_putfake: bad page %p", m));
  790         uma_zfree(fakepg_zone, m);
  791 }
  792 
  793 /*
  794  *      vm_page_updatefake:
  795  *
  796  *      Update the given fictitious page to the specified physical address and
  797  *      memory attribute.
  798  */
  799 void
  800 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
  801 {
  802 
  803         KASSERT((m->flags & PG_FICTITIOUS) != 0,
  804             ("vm_page_updatefake: bad page %p", m));
  805         m->phys_addr = paddr;
  806         pmap_page_set_memattr(m, memattr);
  807 }
  808 
  809 /*
  810  *      vm_page_free:
  811  *
  812  *      Free a page.
  813  */
  814 void
  815 vm_page_free(vm_page_t m)
  816 {
  817 
  818         m->flags &= ~PG_ZERO;
  819         vm_page_free_toq(m);
  820 }
  821 
  822 /*
  823  *      vm_page_free_zero:
  824  *
  825  *      Free a page to the zerod-pages queue
  826  */
  827 void
  828 vm_page_free_zero(vm_page_t m)
  829 {
  830 
  831         m->flags |= PG_ZERO;
  832         vm_page_free_toq(m);
  833 }
  834 
  835 /*
  836  * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
  837  * array which is not the request page.
  838  */
  839 void
  840 vm_page_readahead_finish(vm_page_t m)
  841 {
  842 
  843         if (m->valid != 0) {
  844                 /*
  845                  * Since the page is not the requested page, whether
  846                  * it should be activated or deactivated is not
  847                  * obvious.  Empirical results have shown that
  848                  * deactivating the page is usually the best choice,
  849                  * unless the page is wanted by another thread.
  850                  */
  851                 vm_page_lock(m);
  852                 if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
  853                         vm_page_activate(m);
  854                 else
  855                         vm_page_deactivate(m);
  856                 vm_page_unlock(m);
  857                 vm_page_xunbusy(m);
  858         } else {
  859                 /*
  860                  * Free the completely invalid page.  Such page state
  861                  * occurs due to the short read operation which did
  862                  * not covered our page at all, or in case when a read
  863                  * error happens.
  864                  */
  865                 vm_page_lock(m);
  866                 vm_page_free(m);
  867                 vm_page_unlock(m);
  868         }
  869 }
  870 
  871 /*
  872  *      vm_page_sleep_if_busy:
  873  *
  874  *      Sleep and release the page queues lock if the page is busied.
  875  *      Returns TRUE if the thread slept.
  876  *
  877  *      The given page must be unlocked and object containing it must
  878  *      be locked.
  879  */
  880 int
  881 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
  882 {
  883         vm_object_t obj;
  884 
  885         vm_page_lock_assert(m, MA_NOTOWNED);
  886         VM_OBJECT_ASSERT_WLOCKED(m->object);
  887 
  888         if (vm_page_busied(m)) {
  889                 /*
  890                  * The page-specific object must be cached because page
  891                  * identity can change during the sleep, causing the
  892                  * re-lock of a different object.
  893                  * It is assumed that a reference to the object is already
  894                  * held by the callers.
  895                  */
  896                 obj = m->object;
  897                 vm_page_lock(m);
  898                 VM_OBJECT_WUNLOCK(obj);
  899                 vm_page_busy_sleep(m, msg);
  900                 VM_OBJECT_WLOCK(obj);
  901                 return (TRUE);
  902         }
  903         return (FALSE);
  904 }
  905 
  906 /*
  907  *      vm_page_dirty_KBI:              [ internal use only ]
  908  *
  909  *      Set all bits in the page's dirty field.
  910  *
  911  *      The object containing the specified page must be locked if the
  912  *      call is made from the machine-independent layer.
  913  *
  914  *      See vm_page_clear_dirty_mask().
  915  *
  916  *      This function should only be called by vm_page_dirty().
  917  */
  918 void
  919 vm_page_dirty_KBI(vm_page_t m)
  920 {
  921 
  922         /* These assertions refer to this operation by its public name. */
  923         KASSERT((m->flags & PG_CACHED) == 0,
  924             ("vm_page_dirty: page in cache!"));
  925         KASSERT(!VM_PAGE_IS_FREE(m),
  926             ("vm_page_dirty: page is free!"));
  927         KASSERT(m->valid == VM_PAGE_BITS_ALL,
  928             ("vm_page_dirty: page is invalid!"));
  929         m->dirty = VM_PAGE_BITS_ALL;
  930 }
  931 
  932 /*
  933  *      vm_page_insert:         [ internal use only ]
  934  *
  935  *      Inserts the given mem entry into the object and object list.
  936  *
  937  *      The object must be locked.
  938  */
  939 int
  940 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
  941 {
  942         vm_page_t mpred;
  943 
  944         VM_OBJECT_ASSERT_WLOCKED(object);
  945         mpred = vm_radix_lookup_le(&object->rtree, pindex);
  946         return (vm_page_insert_after(m, object, pindex, mpred));
  947 }
  948 
  949 /*
  950  *      vm_page_insert_after:
  951  *
  952  *      Inserts the page "m" into the specified object at offset "pindex".
  953  *
  954  *      The page "mpred" must immediately precede the offset "pindex" within
  955  *      the specified object.
  956  *
  957  *      The object must be locked.
  958  */
  959 static int
  960 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
  961     vm_page_t mpred)
  962 {
  963         vm_pindex_t sidx;
  964         vm_object_t sobj;
  965         vm_page_t msucc;
  966 
  967         VM_OBJECT_ASSERT_WLOCKED(object);
  968         KASSERT(m->object == NULL,
  969             ("vm_page_insert_after: page already inserted"));
  970         if (mpred != NULL) {
  971                 KASSERT(mpred->object == object,
  972                     ("vm_page_insert_after: object doesn't contain mpred"));
  973                 KASSERT(mpred->pindex < pindex,
  974                     ("vm_page_insert_after: mpred doesn't precede pindex"));
  975                 msucc = TAILQ_NEXT(mpred, listq);
  976         } else
  977                 msucc = TAILQ_FIRST(&object->memq);
  978         if (msucc != NULL)
  979                 KASSERT(msucc->pindex > pindex,
  980                     ("vm_page_insert_after: msucc doesn't succeed pindex"));
  981 
  982         /*
  983          * Record the object/offset pair in this page
  984          */
  985         sobj = m->object;
  986         sidx = m->pindex;
  987         m->object = object;
  988         m->pindex = pindex;
  989 
  990         /*
  991          * Now link into the object's ordered list of backed pages.
  992          */
  993         if (vm_radix_insert(&object->rtree, m)) {
  994                 m->object = sobj;
  995                 m->pindex = sidx;
  996                 return (1);
  997         }
  998         vm_page_insert_radixdone(m, object, mpred);
  999         return (0);
 1000 }
 1001 
 1002 /*
 1003  *      vm_page_insert_radixdone:
 1004  *
 1005  *      Complete page "m" insertion into the specified object after the
 1006  *      radix trie hooking.
 1007  *
 1008  *      The page "mpred" must precede the offset "m->pindex" within the
 1009  *      specified object.
 1010  *
 1011  *      The object must be locked.
 1012  */
 1013 static void
 1014 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
 1015 {
 1016 
 1017         VM_OBJECT_ASSERT_WLOCKED(object);
 1018         KASSERT(object != NULL && m->object == object,
 1019             ("vm_page_insert_radixdone: page %p has inconsistent object", m));
 1020         if (mpred != NULL) {
 1021                 KASSERT(mpred->object == object,
 1022                     ("vm_page_insert_after: object doesn't contain mpred"));
 1023                 KASSERT(mpred->pindex < m->pindex,
 1024                     ("vm_page_insert_after: mpred doesn't precede pindex"));
 1025         }
 1026 
 1027         if (mpred != NULL)
 1028                 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
 1029         else
 1030                 TAILQ_INSERT_HEAD(&object->memq, m, listq);
 1031 
 1032         /*
 1033          * Show that the object has one more resident page.
 1034          */
 1035         object->resident_page_count++;
 1036 
 1037         /*
 1038          * Hold the vnode until the last page is released.
 1039          */
 1040         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
 1041                 vhold(object->handle);
 1042 
 1043         /*
 1044          * Since we are inserting a new and possibly dirty page,
 1045          * update the object's OBJ_MIGHTBEDIRTY flag.
 1046          */
 1047         if (pmap_page_is_write_mapped(m))
 1048                 vm_object_set_writeable_dirty(object);
 1049 }
 1050 
 1051 /*
 1052  *      vm_page_remove:
 1053  *
 1054  *      Removes the given mem entry from the object/offset-page
 1055  *      table and the object page list, but do not invalidate/terminate
 1056  *      the backing store.
 1057  *
 1058  *      The object must be locked.  The page must be locked if it is managed.
 1059  */
 1060 void
 1061 vm_page_remove(vm_page_t m)
 1062 {
 1063         vm_object_t object;
 1064         boolean_t lockacq;
 1065 
 1066         if ((m->oflags & VPO_UNMANAGED) == 0)
 1067                 vm_page_lock_assert(m, MA_OWNED);
 1068         if ((object = m->object) == NULL)
 1069                 return;
 1070         VM_OBJECT_ASSERT_WLOCKED(object);
 1071         if (vm_page_xbusied(m)) {
 1072                 lockacq = FALSE;
 1073                 if ((m->oflags & VPO_UNMANAGED) != 0 &&
 1074                     !mtx_owned(vm_page_lockptr(m))) {
 1075                         lockacq = TRUE;
 1076                         vm_page_lock(m);
 1077                 }
 1078                 vm_page_flash(m);
 1079                 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
 1080                 if (lockacq)
 1081                         vm_page_unlock(m);
 1082         }
 1083 
 1084         /*
 1085          * Now remove from the object's list of backed pages.
 1086          */
 1087         vm_radix_remove(&object->rtree, m->pindex);
 1088         TAILQ_REMOVE(&object->memq, m, listq);
 1089 
 1090         /*
 1091          * And show that the object has one fewer resident page.
 1092          */
 1093         object->resident_page_count--;
 1094 
 1095         /*
 1096          * The vnode may now be recycled.
 1097          */
 1098         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
 1099                 vdrop(object->handle);
 1100 
 1101         m->object = NULL;
 1102 }
 1103 
 1104 /*
 1105  *      vm_page_lookup:
 1106  *
 1107  *      Returns the page associated with the object/offset
 1108  *      pair specified; if none is found, NULL is returned.
 1109  *
 1110  *      The object must be locked.
 1111  */
 1112 vm_page_t
 1113 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
 1114 {
 1115 
 1116         VM_OBJECT_ASSERT_LOCKED(object);
 1117         return (vm_radix_lookup(&object->rtree, pindex));
 1118 }
 1119 
 1120 /*
 1121  *      vm_page_find_least:
 1122  *
 1123  *      Returns the page associated with the object with least pindex
 1124  *      greater than or equal to the parameter pindex, or NULL.
 1125  *
 1126  *      The object must be locked.
 1127  */
 1128 vm_page_t
 1129 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
 1130 {
 1131         vm_page_t m;
 1132 
 1133         VM_OBJECT_ASSERT_LOCKED(object);
 1134         if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
 1135                 m = vm_radix_lookup_ge(&object->rtree, pindex);
 1136         return (m);
 1137 }
 1138 
 1139 /*
 1140  * Returns the given page's successor (by pindex) within the object if it is
 1141  * resident; if none is found, NULL is returned.
 1142  *
 1143  * The object must be locked.
 1144  */
 1145 vm_page_t
 1146 vm_page_next(vm_page_t m)
 1147 {
 1148         vm_page_t next;
 1149 
 1150         VM_OBJECT_ASSERT_WLOCKED(m->object);
 1151         if ((next = TAILQ_NEXT(m, listq)) != NULL &&
 1152             next->pindex != m->pindex + 1)
 1153                 next = NULL;
 1154         return (next);
 1155 }
 1156 
 1157 /*
 1158  * Returns the given page's predecessor (by pindex) within the object if it is
 1159  * resident; if none is found, NULL is returned.
 1160  *
 1161  * The object must be locked.
 1162  */
 1163 vm_page_t
 1164 vm_page_prev(vm_page_t m)
 1165 {
 1166         vm_page_t prev;
 1167 
 1168         VM_OBJECT_ASSERT_WLOCKED(m->object);
 1169         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
 1170             prev->pindex != m->pindex - 1)
 1171                 prev = NULL;
 1172         return (prev);
 1173 }
 1174 
 1175 /*
 1176  * Uses the page mnew as a replacement for an existing page at index
 1177  * pindex which must be already present in the object.
 1178  *
 1179  * The existing page must not be on a paging queue.
 1180  */
 1181 vm_page_t
 1182 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
 1183 {
 1184         vm_page_t mold, mpred;
 1185 
 1186         VM_OBJECT_ASSERT_WLOCKED(object);
 1187 
 1188         /*
 1189          * This function mostly follows vm_page_insert() and
 1190          * vm_page_remove() without the radix, object count and vnode
 1191          * dance.  Double check such functions for more comments.
 1192          */
 1193         mpred = vm_radix_lookup(&object->rtree, pindex);
 1194         KASSERT(mpred != NULL,
 1195             ("vm_page_replace: replacing page not present with pindex"));
 1196         mpred = TAILQ_PREV(mpred, respgs, listq);
 1197         if (mpred != NULL)
 1198                 KASSERT(mpred->pindex < pindex,
 1199                     ("vm_page_insert_after: mpred doesn't precede pindex"));
 1200 
 1201         mnew->object = object;
 1202         mnew->pindex = pindex;
 1203         mold = vm_radix_replace(&object->rtree, mnew, pindex);
 1204         KASSERT(mold->queue == PQ_NONE,
 1205             ("vm_page_replace: mold is on a paging queue"));
 1206 
 1207         /* Detach the old page from the resident tailq. */
 1208         TAILQ_REMOVE(&object->memq, mold, listq);
 1209 
 1210         mold->object = NULL;
 1211         vm_page_xunbusy(mold);
 1212 
 1213         /* Insert the new page in the resident tailq. */
 1214         if (mpred != NULL)
 1215                 TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq);
 1216         else
 1217                 TAILQ_INSERT_HEAD(&object->memq, mnew, listq);
 1218         if (pmap_page_is_write_mapped(mnew))
 1219                 vm_object_set_writeable_dirty(object);
 1220         return (mold);
 1221 }
 1222 
 1223 /*
 1224  *      vm_page_rename:
 1225  *
 1226  *      Move the given memory entry from its
 1227  *      current object to the specified target object/offset.
 1228  *
 1229  *      Note: swap associated with the page must be invalidated by the move.  We
 1230  *            have to do this for several reasons:  (1) we aren't freeing the
 1231  *            page, (2) we are dirtying the page, (3) the VM system is probably
 1232  *            moving the page from object A to B, and will then later move
 1233  *            the backing store from A to B and we can't have a conflict.
 1234  *
 1235  *      Note: we *always* dirty the page.  It is necessary both for the
 1236  *            fact that we moved it, and because we may be invalidating
 1237  *            swap.  If the page is on the cache, we have to deactivate it
 1238  *            or vm_page_dirty() will panic.  Dirty pages are not allowed
 1239  *            on the cache.
 1240  *
 1241  *      The objects must be locked.
 1242  */
 1243 int
 1244 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
 1245 {
 1246         vm_page_t mpred;
 1247         vm_pindex_t opidx;
 1248 
 1249         VM_OBJECT_ASSERT_WLOCKED(new_object);
 1250 
 1251         mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
 1252         KASSERT(mpred == NULL || mpred->pindex != new_pindex,
 1253             ("vm_page_rename: pindex already renamed"));
 1254 
 1255         /*
 1256          * Create a custom version of vm_page_insert() which does not depend
 1257          * by m_prev and can cheat on the implementation aspects of the
 1258          * function.
 1259          */
 1260         opidx = m->pindex;
 1261         m->pindex = new_pindex;
 1262         if (vm_radix_insert(&new_object->rtree, m)) {
 1263                 m->pindex = opidx;
 1264                 return (1);
 1265         }
 1266 
 1267         /*
 1268          * The operation cannot fail anymore.  The removal must happen before
 1269          * the listq iterator is tainted.
 1270          */
 1271         m->pindex = opidx;
 1272         vm_page_lock(m);
 1273         vm_page_remove(m);
 1274 
 1275         /* Return back to the new pindex to complete vm_page_insert(). */
 1276         m->pindex = new_pindex;
 1277         m->object = new_object;
 1278         vm_page_unlock(m);
 1279         vm_page_insert_radixdone(m, new_object, mpred);
 1280         vm_page_dirty(m);
 1281         return (0);
 1282 }
 1283 
 1284 /*
 1285  *      Convert all of the given object's cached pages that have a
 1286  *      pindex within the given range into free pages.  If the value
 1287  *      zero is given for "end", then the range's upper bound is
 1288  *      infinity.  If the given object is backed by a vnode and it
 1289  *      transitions from having one or more cached pages to none, the
 1290  *      vnode's hold count is reduced. 
 1291  */
 1292 void
 1293 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1294 {
 1295         vm_page_t m;
 1296         boolean_t empty;
 1297 
 1298         mtx_lock(&vm_page_queue_free_mtx);
 1299         if (__predict_false(vm_radix_is_empty(&object->cache))) {
 1300                 mtx_unlock(&vm_page_queue_free_mtx);
 1301                 return;
 1302         }
 1303         while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
 1304                 if (end != 0 && m->pindex >= end)
 1305                         break;
 1306                 vm_radix_remove(&object->cache, m->pindex);
 1307                 vm_page_cache_turn_free(m);
 1308         }
 1309         empty = vm_radix_is_empty(&object->cache);
 1310         mtx_unlock(&vm_page_queue_free_mtx);
 1311         if (object->type == OBJT_VNODE && empty)
 1312                 vdrop(object->handle);
 1313 }
 1314 
 1315 /*
 1316  *      Returns the cached page that is associated with the given
 1317  *      object and offset.  If, however, none exists, returns NULL.
 1318  *
 1319  *      The free page queue must be locked.
 1320  */
 1321 static inline vm_page_t
 1322 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
 1323 {
 1324 
 1325         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1326         return (vm_radix_lookup(&object->cache, pindex));
 1327 }
 1328 
 1329 /*
 1330  *      Remove the given cached page from its containing object's
 1331  *      collection of cached pages.
 1332  *
 1333  *      The free page queue must be locked.
 1334  */
 1335 static void
 1336 vm_page_cache_remove(vm_page_t m)
 1337 {
 1338 
 1339         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1340         KASSERT((m->flags & PG_CACHED) != 0,
 1341             ("vm_page_cache_remove: page %p is not cached", m));
 1342         vm_radix_remove(&m->object->cache, m->pindex);
 1343         m->object = NULL;
 1344         cnt.v_cache_count--;
 1345 }
 1346 
 1347 /*
 1348  *      Transfer all of the cached pages with offset greater than or
 1349  *      equal to 'offidxstart' from the original object's cache to the
 1350  *      new object's cache.  However, any cached pages with offset
 1351  *      greater than or equal to the new object's size are kept in the
 1352  *      original object.  Initially, the new object's cache must be
 1353  *      empty.  Offset 'offidxstart' in the original object must
 1354  *      correspond to offset zero in the new object.
 1355  *
 1356  *      The new object must be locked.
 1357  */
 1358 void
 1359 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
 1360     vm_object_t new_object)
 1361 {
 1362         vm_page_t m;
 1363 
 1364         /*
 1365          * Insertion into an object's collection of cached pages
 1366          * requires the object to be locked.  In contrast, removal does
 1367          * not.
 1368          */
 1369         VM_OBJECT_ASSERT_WLOCKED(new_object);
 1370         KASSERT(vm_radix_is_empty(&new_object->cache),
 1371             ("vm_page_cache_transfer: object %p has cached pages",
 1372             new_object));
 1373         mtx_lock(&vm_page_queue_free_mtx);
 1374         while ((m = vm_radix_lookup_ge(&orig_object->cache,
 1375             offidxstart)) != NULL) {
 1376                 /*
 1377                  * Transfer all of the pages with offset greater than or
 1378                  * equal to 'offidxstart' from the original object's
 1379                  * cache to the new object's cache.
 1380                  */
 1381                 if ((m->pindex - offidxstart) >= new_object->size)
 1382                         break;
 1383                 vm_radix_remove(&orig_object->cache, m->pindex);
 1384                 /* Update the page's object and offset. */
 1385                 m->object = new_object;
 1386                 m->pindex -= offidxstart;
 1387                 if (vm_radix_insert(&new_object->cache, m))
 1388                         vm_page_cache_turn_free(m);
 1389         }
 1390         mtx_unlock(&vm_page_queue_free_mtx);
 1391 }
 1392 
 1393 /*
 1394  *      Returns TRUE if a cached page is associated with the given object and
 1395  *      offset, and FALSE otherwise.
 1396  *
 1397  *      The object must be locked.
 1398  */
 1399 boolean_t
 1400 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
 1401 {
 1402         vm_page_t m;
 1403 
 1404         /*
 1405          * Insertion into an object's collection of cached pages requires the
 1406          * object to be locked.  Therefore, if the object is locked and the
 1407          * object's collection is empty, there is no need to acquire the free
 1408          * page queues lock in order to prove that the specified page doesn't
 1409          * exist.
 1410          */
 1411         VM_OBJECT_ASSERT_WLOCKED(object);
 1412         if (__predict_true(vm_object_cache_is_empty(object)))
 1413                 return (FALSE);
 1414         mtx_lock(&vm_page_queue_free_mtx);
 1415         m = vm_page_cache_lookup(object, pindex);
 1416         mtx_unlock(&vm_page_queue_free_mtx);
 1417         return (m != NULL);
 1418 }
 1419 
 1420 /*
 1421  *      vm_page_alloc:
 1422  *
 1423  *      Allocate and return a page that is associated with the specified
 1424  *      object and offset pair.  By default, this page is exclusive busied.
 1425  *
 1426  *      The caller must always specify an allocation class.
 1427  *
 1428  *      allocation classes:
 1429  *      VM_ALLOC_NORMAL         normal process request
 1430  *      VM_ALLOC_SYSTEM         system *really* needs a page
 1431  *      VM_ALLOC_INTERRUPT      interrupt time request
 1432  *
 1433  *      optional allocation flags:
 1434  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
 1435  *                              intends to allocate
 1436  *      VM_ALLOC_IFCACHED       return page only if it is cached
 1437  *      VM_ALLOC_IFNOTCACHED    return NULL, do not reactivate if the page
 1438  *                              is cached
 1439  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
 1440  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
 1441  *      VM_ALLOC_NOOBJ          page is not associated with an object and
 1442  *                              should not be exclusive busy 
 1443  *      VM_ALLOC_SBUSY          shared busy the allocated page
 1444  *      VM_ALLOC_WIRED          wire the allocated page
 1445  *      VM_ALLOC_ZERO           prefer a zeroed page
 1446  *
 1447  *      This routine may not sleep.
 1448  */
 1449 vm_page_t
 1450 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
 1451 {
 1452         struct vnode *vp = NULL;
 1453         vm_object_t m_object;
 1454         vm_page_t m, mpred;
 1455         int flags, req_class;
 1456 
 1457         mpred = 0;      /* XXX: pacify gcc */
 1458         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
 1459             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
 1460             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
 1461             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
 1462             ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
 1463             req));
 1464         if (object != NULL)
 1465                 VM_OBJECT_ASSERT_WLOCKED(object);
 1466 
 1467         req_class = req & VM_ALLOC_CLASS_MASK;
 1468 
 1469         /*
 1470          * The page daemon is allowed to dig deeper into the free page list.
 1471          */
 1472         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
 1473                 req_class = VM_ALLOC_SYSTEM;
 1474 
 1475         if (object != NULL) {
 1476                 mpred = vm_radix_lookup_le(&object->rtree, pindex);
 1477                 KASSERT(mpred == NULL || mpred->pindex != pindex,
 1478                    ("vm_page_alloc: pindex already allocated"));
 1479         }
 1480 
 1481         /*
 1482          * The page allocation request can came from consumers which already
 1483          * hold the free page queue mutex, like vm_page_insert() in
 1484          * vm_page_cache().
 1485          */
 1486         mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
 1487         if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
 1488             (req_class == VM_ALLOC_SYSTEM &&
 1489             cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
 1490             (req_class == VM_ALLOC_INTERRUPT &&
 1491             cnt.v_free_count + cnt.v_cache_count > 0)) {
 1492                 /*
 1493                  * Allocate from the free queue if the number of free pages
 1494                  * exceeds the minimum for the request class.
 1495                  */
 1496                 if (object != NULL &&
 1497                     (m = vm_page_cache_lookup(object, pindex)) != NULL) {
 1498                         if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
 1499                                 mtx_unlock(&vm_page_queue_free_mtx);
 1500                                 return (NULL);
 1501                         }
 1502                         if (vm_phys_unfree_page(m))
 1503                                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
 1504 #if VM_NRESERVLEVEL > 0
 1505                         else if (!vm_reserv_reactivate_page(m))
 1506 #else
 1507                         else
 1508 #endif
 1509                                 panic("vm_page_alloc: cache page %p is missing"
 1510                                     " from the free queue", m);
 1511                 } else if ((req & VM_ALLOC_IFCACHED) != 0) {
 1512                         mtx_unlock(&vm_page_queue_free_mtx);
 1513                         return (NULL);
 1514 #if VM_NRESERVLEVEL > 0
 1515                 } else if (object == NULL || (object->flags & (OBJ_COLORED |
 1516                     OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
 1517                     vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
 1518 #else
 1519                 } else {
 1520 #endif
 1521                         m = vm_phys_alloc_pages(object != NULL ?
 1522                             VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
 1523 #if VM_NRESERVLEVEL > 0
 1524                         if (m == NULL && vm_reserv_reclaim_inactive()) {
 1525                                 m = vm_phys_alloc_pages(object != NULL ?
 1526                                     VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
 1527                                     0);
 1528                         }
 1529 #endif
 1530                 }
 1531         } else {
 1532                 /*
 1533                  * Not allocatable, give up.
 1534                  */
 1535                 mtx_unlock(&vm_page_queue_free_mtx);
 1536                 atomic_add_int(&vm_pageout_deficit,
 1537                     max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
 1538                 pagedaemon_wakeup();
 1539                 return (NULL);
 1540         }
 1541 
 1542         /*
 1543          *  At this point we had better have found a good page.
 1544          */
 1545         KASSERT(m != NULL, ("vm_page_alloc: missing page"));
 1546         KASSERT(m->queue == PQ_NONE,
 1547             ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
 1548         KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
 1549         KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
 1550         KASSERT(!vm_page_sbusied(m), 
 1551             ("vm_page_alloc: page %p is busy", m));
 1552         KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
 1553         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
 1554             ("vm_page_alloc: page %p has unexpected memattr %d", m,
 1555             pmap_page_get_memattr(m)));
 1556         if ((m->flags & PG_CACHED) != 0) {
 1557                 KASSERT((m->flags & PG_ZERO) == 0,
 1558                     ("vm_page_alloc: cached page %p is PG_ZERO", m));
 1559                 KASSERT(m->valid != 0,
 1560                     ("vm_page_alloc: cached page %p is invalid", m));
 1561                 if (m->object == object && m->pindex == pindex)
 1562                         cnt.v_reactivated++;
 1563                 else
 1564                         m->valid = 0;
 1565                 m_object = m->object;
 1566                 vm_page_cache_remove(m);
 1567                 if (m_object->type == OBJT_VNODE &&
 1568                     vm_object_cache_is_empty(m_object))
 1569                         vp = m_object->handle;
 1570         } else {
 1571                 KASSERT(VM_PAGE_IS_FREE(m),
 1572                     ("vm_page_alloc: page %p is not free", m));
 1573                 KASSERT(m->valid == 0,
 1574                     ("vm_page_alloc: free page %p is valid", m));
 1575                 vm_phys_freecnt_adj(m, -1);
 1576         }
 1577 
 1578         /*
 1579          * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
 1580          * must be cleared before the free page queues lock is released.
 1581          */
 1582         flags = 0;
 1583         if (m->flags & PG_ZERO) {
 1584                 vm_page_zero_count--;
 1585                 if (req & VM_ALLOC_ZERO)
 1586                         flags = PG_ZERO;
 1587         }
 1588         if (req & VM_ALLOC_NODUMP)
 1589                 flags |= PG_NODUMP;
 1590         m->flags = flags;
 1591         mtx_unlock(&vm_page_queue_free_mtx);
 1592         m->aflags = 0;
 1593         m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
 1594             VPO_UNMANAGED : 0;
 1595         m->busy_lock = VPB_UNBUSIED;
 1596         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
 1597                 m->busy_lock = VPB_SINGLE_EXCLUSIVER;
 1598         if ((req & VM_ALLOC_SBUSY) != 0)
 1599                 m->busy_lock = VPB_SHARERS_WORD(1);
 1600         if (req & VM_ALLOC_WIRED) {
 1601                 /*
 1602                  * The page lock is not required for wiring a page until that
 1603                  * page is inserted into the object.
 1604                  */
 1605                 atomic_add_int(&cnt.v_wire_count, 1);
 1606                 m->wire_count = 1;
 1607         }
 1608         m->act_count = 0;
 1609 
 1610         if (object != NULL) {
 1611                 if (vm_page_insert_after(m, object, pindex, mpred)) {
 1612                         /* See the comment below about hold count. */
 1613                         if (vp != NULL)
 1614                                 vdrop(vp);
 1615                         pagedaemon_wakeup();
 1616                         if (req & VM_ALLOC_WIRED) {
 1617                                 atomic_subtract_int(&cnt.v_wire_count, 1);
 1618                                 m->wire_count = 0;
 1619                         }
 1620                         m->object = NULL;
 1621                         vm_page_free(m);
 1622                         return (NULL);
 1623                 }
 1624 
 1625                 /* Ignore device objects; the pager sets "memattr" for them. */
 1626                 if (object->memattr != VM_MEMATTR_DEFAULT &&
 1627                     (object->flags & OBJ_FICTITIOUS) == 0)
 1628                         pmap_page_set_memattr(m, object->memattr);
 1629         } else
 1630                 m->pindex = pindex;
 1631 
 1632         /*
 1633          * The following call to vdrop() must come after the above call
 1634          * to vm_page_insert() in case both affect the same object and
 1635          * vnode.  Otherwise, the affected vnode's hold count could
 1636          * temporarily become zero.
 1637          */
 1638         if (vp != NULL)
 1639                 vdrop(vp);
 1640 
 1641         /*
 1642          * Don't wakeup too often - wakeup the pageout daemon when
 1643          * we would be nearly out of memory.
 1644          */
 1645         if (vm_paging_needed())
 1646                 pagedaemon_wakeup();
 1647 
 1648         return (m);
 1649 }
 1650 
 1651 static void
 1652 vm_page_alloc_contig_vdrop(struct spglist *lst)
 1653 {
 1654 
 1655         while (!SLIST_EMPTY(lst)) {
 1656                 vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
 1657                 SLIST_REMOVE_HEAD(lst, plinks.s.ss);
 1658         }
 1659 }
 1660 
 1661 /*
 1662  *      vm_page_alloc_contig:
 1663  *
 1664  *      Allocate a contiguous set of physical pages of the given size "npages"
 1665  *      from the free lists.  All of the physical pages must be at or above
 1666  *      the given physical address "low" and below the given physical address
 1667  *      "high".  The given value "alignment" determines the alignment of the
 1668  *      first physical page in the set.  If the given value "boundary" is
 1669  *      non-zero, then the set of physical pages cannot cross any physical
 1670  *      address boundary that is a multiple of that value.  Both "alignment"
 1671  *      and "boundary" must be a power of two.
 1672  *
 1673  *      If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
 1674  *      then the memory attribute setting for the physical pages is configured
 1675  *      to the object's memory attribute setting.  Otherwise, the memory
 1676  *      attribute setting for the physical pages is configured to "memattr",
 1677  *      overriding the object's memory attribute setting.  However, if the
 1678  *      object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
 1679  *      memory attribute setting for the physical pages cannot be configured
 1680  *      to VM_MEMATTR_DEFAULT.
 1681  *
 1682  *      The caller must always specify an allocation class.
 1683  *
 1684  *      allocation classes:
 1685  *      VM_ALLOC_NORMAL         normal process request
 1686  *      VM_ALLOC_SYSTEM         system *really* needs a page
 1687  *      VM_ALLOC_INTERRUPT      interrupt time request
 1688  *
 1689  *      optional allocation flags:
 1690  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
 1691  *      VM_ALLOC_NOOBJ          page is not associated with an object and
 1692  *                              should not be exclusive busy 
 1693  *      VM_ALLOC_SBUSY          shared busy the allocated page
 1694  *      VM_ALLOC_WIRED          wire the allocated page
 1695  *      VM_ALLOC_ZERO           prefer a zeroed page
 1696  *
 1697  *      This routine may not sleep.
 1698  */
 1699 vm_page_t
 1700 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
 1701     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
 1702     vm_paddr_t boundary, vm_memattr_t memattr)
 1703 {
 1704         struct vnode *drop;
 1705         struct spglist deferred_vdrop_list;
 1706         vm_page_t m, m_tmp, m_ret;
 1707         u_int flags, oflags;
 1708         int req_class;
 1709 
 1710         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
 1711             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
 1712             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
 1713             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
 1714             ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
 1715             req));
 1716         if (object != NULL) {
 1717                 VM_OBJECT_ASSERT_WLOCKED(object);
 1718                 KASSERT(object->type == OBJT_PHYS,
 1719                     ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
 1720                     object));
 1721         }
 1722         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
 1723         req_class = req & VM_ALLOC_CLASS_MASK;
 1724 
 1725         /*
 1726          * The page daemon is allowed to dig deeper into the free page list.
 1727          */
 1728         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
 1729                 req_class = VM_ALLOC_SYSTEM;
 1730 
 1731         SLIST_INIT(&deferred_vdrop_list);
 1732         mtx_lock(&vm_page_queue_free_mtx);
 1733         if (cnt.v_free_count + cnt.v_cache_count >= npages +
 1734             cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
 1735             cnt.v_free_count + cnt.v_cache_count >= npages +
 1736             cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
 1737             cnt.v_free_count + cnt.v_cache_count >= npages)) {
 1738 #if VM_NRESERVLEVEL > 0
 1739 retry:
 1740                 if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
 1741                     (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
 1742                     low, high, alignment, boundary)) == NULL)
 1743 #endif
 1744                         m_ret = vm_phys_alloc_contig(npages, low, high,
 1745                             alignment, boundary);
 1746         } else {
 1747                 mtx_unlock(&vm_page_queue_free_mtx);
 1748                 atomic_add_int(&vm_pageout_deficit, npages);
 1749                 pagedaemon_wakeup();
 1750                 return (NULL);
 1751         }
 1752         if (m_ret != NULL)
 1753                 for (m = m_ret; m < &m_ret[npages]; m++) {
 1754                         drop = vm_page_alloc_init(m);
 1755                         if (drop != NULL) {
 1756                                 /*
 1757                                  * Enqueue the vnode for deferred vdrop().
 1758                                  */
 1759                                 m->plinks.s.pv = drop;
 1760                                 SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
 1761                                     plinks.s.ss);
 1762                         }
 1763                 }
 1764         else {
 1765 #if VM_NRESERVLEVEL > 0
 1766                 if (vm_reserv_reclaim_contig(npages, low, high, alignment,
 1767                     boundary))
 1768                         goto retry;
 1769 #endif
 1770         }
 1771         mtx_unlock(&vm_page_queue_free_mtx);
 1772         if (m_ret == NULL)
 1773                 return (NULL);
 1774 
 1775         /*
 1776          * Initialize the pages.  Only the PG_ZERO flag is inherited.
 1777          */
 1778         flags = 0;
 1779         if ((req & VM_ALLOC_ZERO) != 0)
 1780                 flags = PG_ZERO;
 1781         if ((req & VM_ALLOC_NODUMP) != 0)
 1782                 flags |= PG_NODUMP;
 1783         if ((req & VM_ALLOC_WIRED) != 0)
 1784                 atomic_add_int(&cnt.v_wire_count, npages);
 1785         oflags = VPO_UNMANAGED;
 1786         if (object != NULL) {
 1787                 if (object->memattr != VM_MEMATTR_DEFAULT &&
 1788                     memattr == VM_MEMATTR_DEFAULT)
 1789                         memattr = object->memattr;
 1790         }
 1791         for (m = m_ret; m < &m_ret[npages]; m++) {
 1792                 m->aflags = 0;
 1793                 m->flags = (m->flags | PG_NODUMP) & flags;
 1794                 m->busy_lock = VPB_UNBUSIED;
 1795                 if (object != NULL) {
 1796                         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
 1797                                 m->busy_lock = VPB_SINGLE_EXCLUSIVER;
 1798                         if ((req & VM_ALLOC_SBUSY) != 0)
 1799                                 m->busy_lock = VPB_SHARERS_WORD(1);
 1800                 }
 1801                 if ((req & VM_ALLOC_WIRED) != 0)
 1802                         m->wire_count = 1;
 1803                 /* Unmanaged pages don't use "act_count". */
 1804                 m->oflags = oflags;
 1805                 if (object != NULL) {
 1806                         if (vm_page_insert(m, object, pindex)) {
 1807                                 vm_page_alloc_contig_vdrop(
 1808                                     &deferred_vdrop_list);
 1809                                 if (vm_paging_needed())
 1810                                         pagedaemon_wakeup();
 1811                                 if ((req & VM_ALLOC_WIRED) != 0)
 1812                                         atomic_subtract_int(&cnt.v_wire_count,
 1813                                             npages);
 1814                                 for (m_tmp = m, m = m_ret;
 1815                                     m < &m_ret[npages]; m++) {
 1816                                         if ((req & VM_ALLOC_WIRED) != 0)
 1817                                                 m->wire_count = 0;
 1818                                         if (m >= m_tmp)
 1819                                                 m->object = NULL;
 1820                                         vm_page_free(m);
 1821                                 }
 1822                                 return (NULL);
 1823                         }
 1824                 } else
 1825                         m->pindex = pindex;
 1826                 if (memattr != VM_MEMATTR_DEFAULT)
 1827                         pmap_page_set_memattr(m, memattr);
 1828                 pindex++;
 1829         }
 1830         vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
 1831         if (vm_paging_needed())
 1832                 pagedaemon_wakeup();
 1833         return (m_ret);
 1834 }
 1835 
 1836 /*
 1837  * Initialize a page that has been freshly dequeued from a freelist.
 1838  * The caller has to drop the vnode returned, if it is not NULL.
 1839  *
 1840  * This function may only be used to initialize unmanaged pages.
 1841  *
 1842  * To be called with vm_page_queue_free_mtx held.
 1843  */
 1844 static struct vnode *
 1845 vm_page_alloc_init(vm_page_t m)
 1846 {
 1847         struct vnode *drop;
 1848         vm_object_t m_object;
 1849 
 1850         KASSERT(m->queue == PQ_NONE,
 1851             ("vm_page_alloc_init: page %p has unexpected queue %d",
 1852             m, m->queue));
 1853         KASSERT(m->wire_count == 0,
 1854             ("vm_page_alloc_init: page %p is wired", m));
 1855         KASSERT(m->hold_count == 0,
 1856             ("vm_page_alloc_init: page %p is held", m));
 1857         KASSERT(!vm_page_sbusied(m),
 1858             ("vm_page_alloc_init: page %p is busy", m));
 1859         KASSERT(m->dirty == 0,
 1860             ("vm_page_alloc_init: page %p is dirty", m));
 1861         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
 1862             ("vm_page_alloc_init: page %p has unexpected memattr %d",
 1863             m, pmap_page_get_memattr(m)));
 1864         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1865         drop = NULL;
 1866         if ((m->flags & PG_CACHED) != 0) {
 1867                 KASSERT((m->flags & PG_ZERO) == 0,
 1868                     ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
 1869                 m->valid = 0;
 1870                 m_object = m->object;
 1871                 vm_page_cache_remove(m);
 1872                 if (m_object->type == OBJT_VNODE &&
 1873                     vm_object_cache_is_empty(m_object))
 1874                         drop = m_object->handle;
 1875         } else {
 1876                 KASSERT(VM_PAGE_IS_FREE(m),
 1877                     ("vm_page_alloc_init: page %p is not free", m));
 1878                 KASSERT(m->valid == 0,
 1879                     ("vm_page_alloc_init: free page %p is valid", m));
 1880                 vm_phys_freecnt_adj(m, -1);
 1881                 if ((m->flags & PG_ZERO) != 0)
 1882                         vm_page_zero_count--;
 1883         }
 1884         /* Don't clear the PG_ZERO flag; we'll need it later. */
 1885         m->flags &= PG_ZERO;
 1886         return (drop);
 1887 }
 1888 
 1889 /*
 1890  *      vm_page_alloc_freelist:
 1891  *
 1892  *      Allocate a physical page from the specified free page list.
 1893  *
 1894  *      The caller must always specify an allocation class.
 1895  *
 1896  *      allocation classes:
 1897  *      VM_ALLOC_NORMAL         normal process request
 1898  *      VM_ALLOC_SYSTEM         system *really* needs a page
 1899  *      VM_ALLOC_INTERRUPT      interrupt time request
 1900  *
 1901  *      optional allocation flags:
 1902  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
 1903  *                              intends to allocate
 1904  *      VM_ALLOC_WIRED          wire the allocated page
 1905  *      VM_ALLOC_ZERO           prefer a zeroed page
 1906  *
 1907  *      This routine may not sleep.
 1908  */
 1909 vm_page_t
 1910 vm_page_alloc_freelist(int flind, int req)
 1911 {
 1912         struct vnode *drop;
 1913         vm_page_t m;
 1914         u_int flags;
 1915         int req_class;
 1916 
 1917         req_class = req & VM_ALLOC_CLASS_MASK;
 1918 
 1919         /*
 1920          * The page daemon is allowed to dig deeper into the free page list.
 1921          */
 1922         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
 1923                 req_class = VM_ALLOC_SYSTEM;
 1924 
 1925         /*
 1926          * Do not allocate reserved pages unless the req has asked for it.
 1927          */
 1928         mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
 1929         if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
 1930             (req_class == VM_ALLOC_SYSTEM &&
 1931             cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
 1932             (req_class == VM_ALLOC_INTERRUPT &&
 1933             cnt.v_free_count + cnt.v_cache_count > 0))
 1934                 m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
 1935         else {
 1936                 mtx_unlock(&vm_page_queue_free_mtx);
 1937                 atomic_add_int(&vm_pageout_deficit,
 1938                     max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
 1939                 pagedaemon_wakeup();
 1940                 return (NULL);
 1941         }
 1942         if (m == NULL) {
 1943                 mtx_unlock(&vm_page_queue_free_mtx);
 1944                 return (NULL);
 1945         }
 1946         drop = vm_page_alloc_init(m);
 1947         mtx_unlock(&vm_page_queue_free_mtx);
 1948 
 1949         /*
 1950          * Initialize the page.  Only the PG_ZERO flag is inherited.
 1951          */
 1952         m->aflags = 0;
 1953         flags = 0;
 1954         if ((req & VM_ALLOC_ZERO) != 0)
 1955                 flags = PG_ZERO;
 1956         m->flags &= flags;
 1957         if ((req & VM_ALLOC_WIRED) != 0) {
 1958                 /*
 1959                  * The page lock is not required for wiring a page that does
 1960                  * not belong to an object.
 1961                  */
 1962                 atomic_add_int(&cnt.v_wire_count, 1);
 1963                 m->wire_count = 1;
 1964         }
 1965         /* Unmanaged pages don't use "act_count". */
 1966         m->oflags = VPO_UNMANAGED;
 1967         if (drop != NULL)
 1968                 vdrop(drop);
 1969         if (vm_paging_needed())
 1970                 pagedaemon_wakeup();
 1971         return (m);
 1972 }
 1973 
 1974 /*
 1975  *      vm_wait:        (also see VM_WAIT macro)
 1976  *
 1977  *      Sleep until free pages are available for allocation.
 1978  *      - Called in various places before memory allocations.
 1979  */
 1980 void
 1981 vm_wait(void)
 1982 {
 1983 
 1984         mtx_lock(&vm_page_queue_free_mtx);
 1985         if (curproc == pageproc) {
 1986                 vm_pageout_pages_needed = 1;
 1987                 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
 1988                     PDROP | PSWP, "VMWait", 0);
 1989         } else {
 1990                 if (!vm_pages_needed) {
 1991                         vm_pages_needed = 1;
 1992                         wakeup(&vm_pages_needed);
 1993                 }
 1994                 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
 1995                     "vmwait", 0);
 1996         }
 1997 }
 1998 
 1999 /*
 2000  *      vm_waitpfault:  (also see VM_WAITPFAULT macro)
 2001  *
 2002  *      Sleep until free pages are available for allocation.
 2003  *      - Called only in vm_fault so that processes page faulting
 2004  *        can be easily tracked.
 2005  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
 2006  *        processes will be able to grab memory first.  Do not change
 2007  *        this balance without careful testing first.
 2008  */
 2009 void
 2010 vm_waitpfault(void)
 2011 {
 2012 
 2013         mtx_lock(&vm_page_queue_free_mtx);
 2014         if (!vm_pages_needed) {
 2015                 vm_pages_needed = 1;
 2016                 wakeup(&vm_pages_needed);
 2017         }
 2018         msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
 2019             "pfault", 0);
 2020 }
 2021 
 2022 struct vm_pagequeue *
 2023 vm_page_pagequeue(vm_page_t m)
 2024 {
 2025 
 2026         return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
 2027 }
 2028 
 2029 /*
 2030  *      vm_page_dequeue:
 2031  *
 2032  *      Remove the given page from its current page queue.
 2033  *
 2034  *      The page must be locked.
 2035  */
 2036 void
 2037 vm_page_dequeue(vm_page_t m)
 2038 {
 2039         struct vm_pagequeue *pq;
 2040 
 2041         vm_page_lock_assert(m, MA_OWNED);
 2042         KASSERT(m->queue != PQ_NONE,
 2043             ("vm_page_dequeue: page %p is not queued", m));
 2044         pq = vm_page_pagequeue(m);
 2045         vm_pagequeue_lock(pq);
 2046         m->queue = PQ_NONE;
 2047         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
 2048         vm_pagequeue_cnt_dec(pq);
 2049         vm_pagequeue_unlock(pq);
 2050 }
 2051 
 2052 /*
 2053  *      vm_page_dequeue_locked:
 2054  *
 2055  *      Remove the given page from its current page queue.
 2056  *
 2057  *      The page and page queue must be locked.
 2058  */
 2059 void
 2060 vm_page_dequeue_locked(vm_page_t m)
 2061 {
 2062         struct vm_pagequeue *pq;
 2063 
 2064         vm_page_lock_assert(m, MA_OWNED);
 2065         pq = vm_page_pagequeue(m);
 2066         vm_pagequeue_assert_locked(pq);
 2067         m->queue = PQ_NONE;
 2068         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
 2069         vm_pagequeue_cnt_dec(pq);
 2070 }
 2071 
 2072 /*
 2073  *      vm_page_enqueue:
 2074  *
 2075  *      Add the given page to the specified page queue.
 2076  *
 2077  *      The page must be locked.
 2078  */
 2079 static void
 2080 vm_page_enqueue(int queue, vm_page_t m)
 2081 {
 2082         struct vm_pagequeue *pq;
 2083 
 2084         vm_page_lock_assert(m, MA_OWNED);
 2085         pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
 2086         vm_pagequeue_lock(pq);
 2087         m->queue = queue;
 2088         TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
 2089         vm_pagequeue_cnt_inc(pq);
 2090         vm_pagequeue_unlock(pq);
 2091 }
 2092 
 2093 /*
 2094  *      vm_page_requeue:
 2095  *
 2096  *      Move the given page to the tail of its current page queue.
 2097  *
 2098  *      The page must be locked.
 2099  */
 2100 void
 2101 vm_page_requeue(vm_page_t m)
 2102 {
 2103         struct vm_pagequeue *pq;
 2104 
 2105         vm_page_lock_assert(m, MA_OWNED);
 2106         KASSERT(m->queue != PQ_NONE,
 2107             ("vm_page_requeue: page %p is not queued", m));
 2108         pq = vm_page_pagequeue(m);
 2109         vm_pagequeue_lock(pq);
 2110         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
 2111         TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
 2112         vm_pagequeue_unlock(pq);
 2113 }
 2114 
 2115 /*
 2116  *      vm_page_requeue_locked:
 2117  *
 2118  *      Move the given page to the tail of its current page queue.
 2119  *
 2120  *      The page queue must be locked.
 2121  */
 2122 void
 2123 vm_page_requeue_locked(vm_page_t m)
 2124 {
 2125         struct vm_pagequeue *pq;
 2126 
 2127         KASSERT(m->queue != PQ_NONE,
 2128             ("vm_page_requeue_locked: page %p is not queued", m));
 2129         pq = vm_page_pagequeue(m);
 2130         vm_pagequeue_assert_locked(pq);
 2131         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
 2132         TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
 2133 }
 2134 
 2135 /*
 2136  *      vm_page_activate:
 2137  *
 2138  *      Put the specified page on the active list (if appropriate).
 2139  *      Ensure that act_count is at least ACT_INIT but do not otherwise
 2140  *      mess with it.
 2141  *
 2142  *      The page must be locked.
 2143  */
 2144 void
 2145 vm_page_activate(vm_page_t m)
 2146 {
 2147         int queue;
 2148 
 2149         vm_page_lock_assert(m, MA_OWNED);
 2150         if ((queue = m->queue) != PQ_ACTIVE) {
 2151                 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
 2152                         if (m->act_count < ACT_INIT)
 2153                                 m->act_count = ACT_INIT;
 2154                         if (queue != PQ_NONE)
 2155                                 vm_page_dequeue(m);
 2156                         vm_page_enqueue(PQ_ACTIVE, m);
 2157                 } else
 2158                         KASSERT(queue == PQ_NONE,
 2159                             ("vm_page_activate: wired page %p is queued", m));
 2160         } else {
 2161                 if (m->act_count < ACT_INIT)
 2162                         m->act_count = ACT_INIT;
 2163         }
 2164 }
 2165 
 2166 /*
 2167  *      vm_page_free_wakeup:
 2168  *
 2169  *      Helper routine for vm_page_free_toq() and vm_page_cache().  This
 2170  *      routine is called when a page has been added to the cache or free
 2171  *      queues.
 2172  *
 2173  *      The page queues must be locked.
 2174  */
 2175 static inline void
 2176 vm_page_free_wakeup(void)
 2177 {
 2178 
 2179         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 2180         /*
 2181          * if pageout daemon needs pages, then tell it that there are
 2182          * some free.
 2183          */
 2184         if (vm_pageout_pages_needed &&
 2185             cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
 2186                 wakeup(&vm_pageout_pages_needed);
 2187                 vm_pageout_pages_needed = 0;
 2188         }
 2189         /*
 2190          * wakeup processes that are waiting on memory if we hit a
 2191          * high water mark. And wakeup scheduler process if we have
 2192          * lots of memory. this process will swapin processes.
 2193          */
 2194         if (vm_pages_needed && !vm_page_count_min()) {
 2195                 vm_pages_needed = 0;
 2196                 wakeup(&cnt.v_free_count);
 2197         }
 2198 }
 2199 
 2200 /*
 2201  *      Turn a cached page into a free page, by changing its attributes.
 2202  *      Keep the statistics up-to-date.
 2203  *
 2204  *      The free page queue must be locked.
 2205  */
 2206 static void
 2207 vm_page_cache_turn_free(vm_page_t m)
 2208 {
 2209 
 2210         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 2211 
 2212         m->object = NULL;
 2213         m->valid = 0;
 2214         /* Clear PG_CACHED and set PG_FREE. */
 2215         m->flags ^= PG_CACHED | PG_FREE;
 2216         KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
 2217             ("vm_page_cache_free: page %p has inconsistent flags", m));
 2218         cnt.v_cache_count--;
 2219         vm_phys_freecnt_adj(m, 1);
 2220 }
 2221 
 2222 /*
 2223  *      vm_page_free_toq:
 2224  *
 2225  *      Returns the given page to the free list,
 2226  *      disassociating it with any VM object.
 2227  *
 2228  *      The object must be locked.  The page must be locked if it is managed.
 2229  */
 2230 void
 2231 vm_page_free_toq(vm_page_t m)
 2232 {
 2233 
 2234         if ((m->oflags & VPO_UNMANAGED) == 0) {
 2235                 vm_page_lock_assert(m, MA_OWNED);
 2236                 KASSERT(!pmap_page_is_mapped(m),
 2237                     ("vm_page_free_toq: freeing mapped page %p", m));
 2238         } else
 2239                 KASSERT(m->queue == PQ_NONE,
 2240                     ("vm_page_free_toq: unmanaged page %p is queued", m));
 2241         PCPU_INC(cnt.v_tfree);
 2242 
 2243         if (VM_PAGE_IS_FREE(m))
 2244                 panic("vm_page_free: freeing free page %p", m);
 2245         else if (vm_page_sbusied(m))
 2246                 panic("vm_page_free: freeing busy page %p", m);
 2247 
 2248         /*
 2249          * Unqueue, then remove page.  Note that we cannot destroy
 2250          * the page here because we do not want to call the pager's
 2251          * callback routine until after we've put the page on the
 2252          * appropriate free queue.
 2253          */
 2254         vm_page_remque(m);
 2255         vm_page_remove(m);
 2256 
 2257         /*
 2258          * If fictitious remove object association and
 2259          * return, otherwise delay object association removal.
 2260          */
 2261         if ((m->flags & PG_FICTITIOUS) != 0) {
 2262                 return;
 2263         }
 2264 
 2265         m->valid = 0;
 2266         vm_page_undirty(m);
 2267 
 2268         if (m->wire_count != 0)
 2269                 panic("vm_page_free: freeing wired page %p", m);
 2270         if (m->hold_count != 0) {
 2271                 m->flags &= ~PG_ZERO;
 2272                 KASSERT((m->flags & PG_UNHOLDFREE) == 0,
 2273                     ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
 2274                 m->flags |= PG_UNHOLDFREE;
 2275         } else {
 2276                 /*
 2277                  * Restore the default memory attribute to the page.
 2278                  */
 2279                 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
 2280                         pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
 2281 
 2282                 /*
 2283                  * Insert the page into the physical memory allocator's
 2284                  * cache/free page queues.
 2285                  */
 2286                 mtx_lock(&vm_page_queue_free_mtx);
 2287                 m->flags |= PG_FREE;
 2288                 vm_phys_freecnt_adj(m, 1);
 2289 #if VM_NRESERVLEVEL > 0
 2290                 if (!vm_reserv_free_page(m))
 2291 #else
 2292                 if (TRUE)
 2293 #endif
 2294                         vm_phys_free_pages(m, 0);
 2295                 if ((m->flags & PG_ZERO) != 0)
 2296                         ++vm_page_zero_count;
 2297                 else
 2298                         vm_page_zero_idle_wakeup();
 2299                 vm_page_free_wakeup();
 2300                 mtx_unlock(&vm_page_queue_free_mtx);
 2301         }
 2302 }
 2303 
 2304 /*
 2305  *      vm_page_wire:
 2306  *
 2307  *      Mark this page as wired down by yet
 2308  *      another map, removing it from paging queues
 2309  *      as necessary.
 2310  *
 2311  *      If the page is fictitious, then its wire count must remain one.
 2312  *
 2313  *      The page must be locked.
 2314  */
 2315 void
 2316 vm_page_wire(vm_page_t m)
 2317 {
 2318 
 2319         /*
 2320          * Only bump the wire statistics if the page is not already wired,
 2321          * and only unqueue the page if it is on some queue (if it is unmanaged
 2322          * it is already off the queues).
 2323          */
 2324         vm_page_lock_assert(m, MA_OWNED);
 2325         if ((m->flags & PG_FICTITIOUS) != 0) {
 2326                 KASSERT(m->wire_count == 1,
 2327                     ("vm_page_wire: fictitious page %p's wire count isn't one",
 2328                     m));
 2329                 return;
 2330         }
 2331         if (m->wire_count == 0) {
 2332                 KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
 2333                     m->queue == PQ_NONE,
 2334                     ("vm_page_wire: unmanaged page %p is queued", m));
 2335                 vm_page_remque(m);
 2336                 atomic_add_int(&cnt.v_wire_count, 1);
 2337         }
 2338         m->wire_count++;
 2339         KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
 2340 }
 2341 
 2342 /*
 2343  * vm_page_unwire:
 2344  *
 2345  * Release one wiring of the specified page, potentially enabling it to be
 2346  * paged again.  If paging is enabled, then the value of the parameter
 2347  * "activate" determines to which queue the page is added.  If "activate" is
 2348  * non-zero, then the page is added to the active queue.  Otherwise, it is
 2349  * added to the inactive queue.
 2350  *
 2351  * However, unless the page belongs to an object, it is not enqueued because
 2352  * it cannot be paged out.
 2353  *
 2354  * If a page is fictitious, then its wire count must always be one.
 2355  *
 2356  * A managed page must be locked.
 2357  */
 2358 void
 2359 vm_page_unwire(vm_page_t m, int activate)
 2360 {
 2361 
 2362         if ((m->oflags & VPO_UNMANAGED) == 0)
 2363                 vm_page_lock_assert(m, MA_OWNED);
 2364         if ((m->flags & PG_FICTITIOUS) != 0) {
 2365                 KASSERT(m->wire_count == 1,
 2366             ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
 2367                 return;
 2368         }
 2369         if (m->wire_count > 0) {
 2370                 m->wire_count--;
 2371                 if (m->wire_count == 0) {
 2372                         atomic_subtract_int(&cnt.v_wire_count, 1);
 2373                         if ((m->oflags & VPO_UNMANAGED) != 0 ||
 2374                             m->object == NULL)
 2375                                 return;
 2376                         if (!activate)
 2377                                 m->flags &= ~PG_WINATCFLS;
 2378                         vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
 2379                 }
 2380         } else
 2381                 panic("vm_page_unwire: page %p's wire count is zero", m);
 2382 }
 2383 
 2384 /*
 2385  * Move the specified page to the inactive queue.
 2386  *
 2387  * Many pages placed on the inactive queue should actually go
 2388  * into the cache, but it is difficult to figure out which.  What
 2389  * we do instead, if the inactive target is well met, is to put
 2390  * clean pages at the head of the inactive queue instead of the tail.
 2391  * This will cause them to be moved to the cache more quickly and
 2392  * if not actively re-referenced, reclaimed more quickly.  If we just
 2393  * stick these pages at the end of the inactive queue, heavy filesystem
 2394  * meta-data accesses can cause an unnecessary paging load on memory bound 
 2395  * processes.  This optimization causes one-time-use metadata to be
 2396  * reused more quickly.
 2397  *
 2398  * Normally athead is 0 resulting in LRU operation.  athead is set
 2399  * to 1 if we want this page to be 'as if it were placed in the cache',
 2400  * except without unmapping it from the process address space.
 2401  *
 2402  * The page must be locked.
 2403  */
 2404 static inline void
 2405 _vm_page_deactivate(vm_page_t m, int athead)
 2406 {
 2407         struct vm_pagequeue *pq;
 2408         int queue;
 2409 
 2410         vm_page_lock_assert(m, MA_OWNED);
 2411 
 2412         /*
 2413          * Ignore if already inactive.
 2414          */
 2415         if ((queue = m->queue) == PQ_INACTIVE)
 2416                 return;
 2417         if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
 2418                 if (queue != PQ_NONE)
 2419                         vm_page_dequeue(m);
 2420                 m->flags &= ~PG_WINATCFLS;
 2421                 pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
 2422                 vm_pagequeue_lock(pq);
 2423                 m->queue = PQ_INACTIVE;
 2424                 if (athead)
 2425                         TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q);
 2426                 else
 2427                         TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
 2428                 vm_pagequeue_cnt_inc(pq);
 2429                 vm_pagequeue_unlock(pq);
 2430         }
 2431 }
 2432 
 2433 /*
 2434  * Move the specified page to the inactive queue.
 2435  *
 2436  * The page must be locked.
 2437  */
 2438 void
 2439 vm_page_deactivate(vm_page_t m)
 2440 {
 2441 
 2442         _vm_page_deactivate(m, 0);
 2443 }
 2444 
 2445 /*
 2446  * vm_page_try_to_cache:
 2447  *
 2448  * Returns 0 on failure, 1 on success
 2449  */
 2450 int
 2451 vm_page_try_to_cache(vm_page_t m)
 2452 {
 2453 
 2454         vm_page_lock_assert(m, MA_OWNED);
 2455         VM_OBJECT_ASSERT_WLOCKED(m->object);
 2456         if (m->dirty || m->hold_count || m->wire_count ||
 2457             (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
 2458                 return (0);
 2459         pmap_remove_all(m);
 2460         if (m->dirty)
 2461                 return (0);
 2462         vm_page_cache(m);
 2463         return (1);
 2464 }
 2465 
 2466 /*
 2467  * vm_page_try_to_free()
 2468  *
 2469  *      Attempt to free the page.  If we cannot free it, we do nothing.
 2470  *      1 is returned on success, 0 on failure.
 2471  */
 2472 int
 2473 vm_page_try_to_free(vm_page_t m)
 2474 {
 2475 
 2476         vm_page_lock_assert(m, MA_OWNED);
 2477         if (m->object != NULL)
 2478                 VM_OBJECT_ASSERT_WLOCKED(m->object);
 2479         if (m->dirty || m->hold_count || m->wire_count ||
 2480             (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
 2481                 return (0);
 2482         pmap_remove_all(m);
 2483         if (m->dirty)
 2484                 return (0);
 2485         vm_page_free(m);
 2486         return (1);
 2487 }
 2488 
 2489 /*
 2490  * vm_page_cache
 2491  *
 2492  * Put the specified page onto the page cache queue (if appropriate).
 2493  *
 2494  * The object and page must be locked.
 2495  */
 2496 void
 2497 vm_page_cache(vm_page_t m)
 2498 {
 2499         vm_object_t object;
 2500         boolean_t cache_was_empty;
 2501 
 2502         vm_page_lock_assert(m, MA_OWNED);
 2503         object = m->object;
 2504         VM_OBJECT_ASSERT_WLOCKED(object);
 2505         if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
 2506             m->hold_count || m->wire_count)
 2507                 panic("vm_page_cache: attempting to cache busy page");
 2508         KASSERT(!pmap_page_is_mapped(m),
 2509             ("vm_page_cache: page %p is mapped", m));
 2510         KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
 2511         if (m->valid == 0 || object->type == OBJT_DEFAULT ||
 2512             (object->type == OBJT_SWAP &&
 2513             !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
 2514                 /*
 2515                  * Hypothesis: A cache-elgible page belonging to a
 2516                  * default object or swap object but without a backing
 2517                  * store must be zero filled.
 2518                  */
 2519                 vm_page_free(m);
 2520                 return;
 2521         }
 2522         KASSERT((m->flags & PG_CACHED) == 0,
 2523             ("vm_page_cache: page %p is already cached", m));
 2524 
 2525         /*
 2526          * Remove the page from the paging queues.
 2527          */
 2528         vm_page_remque(m);
 2529 
 2530         /*
 2531          * Remove the page from the object's collection of resident
 2532          * pages. 
 2533          */
 2534         vm_radix_remove(&object->rtree, m->pindex);
 2535         TAILQ_REMOVE(&object->memq, m, listq);
 2536         object->resident_page_count--;
 2537 
 2538         /*
 2539          * Restore the default memory attribute to the page.
 2540          */
 2541         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
 2542                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
 2543 
 2544         /*
 2545          * Insert the page into the object's collection of cached pages
 2546          * and the physical memory allocator's cache/free page queues.
 2547          */
 2548         m->flags &= ~PG_ZERO;
 2549         mtx_lock(&vm_page_queue_free_mtx);
 2550         cache_was_empty = vm_radix_is_empty(&object->cache);
 2551         if (vm_radix_insert(&object->cache, m)) {
 2552                 mtx_unlock(&vm_page_queue_free_mtx);
 2553                 if (object->resident_page_count == 0)
 2554                         vdrop(object->handle);
 2555                 m->object = NULL;
 2556                 vm_page_free(m);
 2557                 return;
 2558         }
 2559 
 2560         /*
 2561          * The above call to vm_radix_insert() could reclaim the one pre-
 2562          * existing cached page from this object, resulting in a call to
 2563          * vdrop().
 2564          */
 2565         if (!cache_was_empty)
 2566                 cache_was_empty = vm_radix_is_singleton(&object->cache);
 2567 
 2568         m->flags |= PG_CACHED;
 2569         cnt.v_cache_count++;
 2570         PCPU_INC(cnt.v_tcached);
 2571 #if VM_NRESERVLEVEL > 0
 2572         if (!vm_reserv_free_page(m)) {
 2573 #else
 2574         if (TRUE) {
 2575 #endif
 2576                 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
 2577                 vm_phys_free_pages(m, 0);
 2578         }
 2579         vm_page_free_wakeup();
 2580         mtx_unlock(&vm_page_queue_free_mtx);
 2581 
 2582         /*
 2583          * Increment the vnode's hold count if this is the object's only
 2584          * cached page.  Decrement the vnode's hold count if this was
 2585          * the object's only resident page.
 2586          */
 2587         if (object->type == OBJT_VNODE) {
 2588                 if (cache_was_empty && object->resident_page_count != 0)
 2589                         vhold(object->handle);
 2590                 else if (!cache_was_empty && object->resident_page_count == 0)
 2591                         vdrop(object->handle);
 2592         }
 2593 }
 2594 
 2595 /*
 2596  * vm_page_advise
 2597  *
 2598  *      Cache, deactivate, or do nothing as appropriate.  This routine
 2599  *      is used by madvise().
 2600  *
 2601  *      Generally speaking we want to move the page into the cache so
 2602  *      it gets reused quickly.  However, this can result in a silly syndrome
 2603  *      due to the page recycling too quickly.  Small objects will not be
 2604  *      fully cached.  On the other hand, if we move the page to the inactive
 2605  *      queue we wind up with a problem whereby very large objects 
 2606  *      unnecessarily blow away our inactive and cache queues.
 2607  *
 2608  *      The solution is to move the pages based on a fixed weighting.  We
 2609  *      either leave them alone, deactivate them, or move them to the cache,
 2610  *      where moving them to the cache has the highest weighting.
 2611  *      By forcing some pages into other queues we eventually force the
 2612  *      system to balance the queues, potentially recovering other unrelated
 2613  *      space from active.  The idea is to not force this to happen too
 2614  *      often.
 2615  *
 2616  *      The object and page must be locked.
 2617  */
 2618 void
 2619 vm_page_advise(vm_page_t m, int advice)
 2620 {
 2621         int dnw, head;
 2622 
 2623         vm_page_assert_locked(m);
 2624         VM_OBJECT_ASSERT_WLOCKED(m->object);
 2625         if (advice == MADV_FREE) {
 2626                 /*
 2627                  * Mark the page clean.  This will allow the page to be freed
 2628                  * up by the system.  However, such pages are often reused
 2629                  * quickly by malloc() so we do not do anything that would
 2630                  * cause a page fault if we can help it.
 2631                  *
 2632                  * Specifically, we do not try to actually free the page now
 2633                  * nor do we try to put it in the cache (which would cause a
 2634                  * page fault on reuse).
 2635                  *
 2636                  * But we do make the page is freeable as we can without
 2637                  * actually taking the step of unmapping it.
 2638                  */
 2639                 m->dirty = 0;
 2640                 m->act_count = 0;
 2641         } else if (advice != MADV_DONTNEED)
 2642                 return;
 2643         dnw = PCPU_GET(dnweight);
 2644         PCPU_INC(dnweight);
 2645 
 2646         /*
 2647          * Occasionally leave the page alone.
 2648          */
 2649         if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
 2650                 if (m->act_count >= ACT_INIT)
 2651                         --m->act_count;
 2652                 return;
 2653         }
 2654 
 2655         /*
 2656          * Clear any references to the page.  Otherwise, the page daemon will
 2657          * immediately reactivate the page.
 2658          */
 2659         vm_page_aflag_clear(m, PGA_REFERENCED);
 2660 
 2661         if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
 2662                 vm_page_dirty(m);
 2663 
 2664         if (m->dirty || (dnw & 0x0070) == 0) {
 2665                 /*
 2666                  * Deactivate the page 3 times out of 32.
 2667                  */
 2668                 head = 0;
 2669         } else {
 2670                 /*
 2671                  * Cache the page 28 times out of every 32.  Note that
 2672                  * the page is deactivated instead of cached, but placed
 2673                  * at the head of the queue instead of the tail.
 2674                  */
 2675                 head = 1;
 2676         }
 2677         _vm_page_deactivate(m, head);
 2678 }
 2679 
 2680 /*
 2681  * Grab a page, waiting until we are waken up due to the page
 2682  * changing state.  We keep on waiting, if the page continues
 2683  * to be in the object.  If the page doesn't exist, first allocate it
 2684  * and then conditionally zero it.
 2685  *
 2686  * This routine may sleep.
 2687  *
 2688  * The object must be locked on entry.  The lock will, however, be released
 2689  * and reacquired if the routine sleeps.
 2690  */
 2691 vm_page_t
 2692 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
 2693 {
 2694         vm_page_t m;
 2695         int sleep;
 2696 
 2697         VM_OBJECT_ASSERT_WLOCKED(object);
 2698         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
 2699             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
 2700             ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
 2701 retrylookup:
 2702         if ((m = vm_page_lookup(object, pindex)) != NULL) {
 2703                 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
 2704                     vm_page_xbusied(m) : vm_page_busied(m);
 2705                 if (sleep) {
 2706                         /*
 2707                          * Reference the page before unlocking and
 2708                          * sleeping so that the page daemon is less
 2709                          * likely to reclaim it.
 2710                          */
 2711                         vm_page_aflag_set(m, PGA_REFERENCED);
 2712                         vm_page_lock(m);
 2713                         VM_OBJECT_WUNLOCK(object);
 2714                         vm_page_busy_sleep(m, "pgrbwt");
 2715                         VM_OBJECT_WLOCK(object);
 2716                         goto retrylookup;
 2717                 } else {
 2718                         if ((allocflags & VM_ALLOC_WIRED) != 0) {
 2719                                 vm_page_lock(m);
 2720                                 vm_page_wire(m);
 2721                                 vm_page_unlock(m);
 2722                         }
 2723                         if ((allocflags &
 2724                             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
 2725                                 vm_page_xbusy(m);
 2726                         if ((allocflags & VM_ALLOC_SBUSY) != 0)
 2727                                 vm_page_sbusy(m);
 2728                         return (m);
 2729                 }
 2730         }
 2731         m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_IGN_SBUSY);
 2732         if (m == NULL) {
 2733                 VM_OBJECT_WUNLOCK(object);
 2734                 VM_WAIT;
 2735                 VM_OBJECT_WLOCK(object);
 2736                 goto retrylookup;
 2737         } else if (m->valid != 0)
 2738                 return (m);
 2739         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
 2740                 pmap_zero_page(m);
 2741         return (m);
 2742 }
 2743 
 2744 /*
 2745  * Mapping function for valid or dirty bits in a page.
 2746  *
 2747  * Inputs are required to range within a page.
 2748  */
 2749 vm_page_bits_t
 2750 vm_page_bits(int base, int size)
 2751 {
 2752         int first_bit;
 2753         int last_bit;
 2754 
 2755         KASSERT(
 2756             base + size <= PAGE_SIZE,
 2757             ("vm_page_bits: illegal base/size %d/%d", base, size)
 2758         );
 2759 
 2760         if (size == 0)          /* handle degenerate case */
 2761                 return (0);
 2762 
 2763         first_bit = base >> DEV_BSHIFT;
 2764         last_bit = (base + size - 1) >> DEV_BSHIFT;
 2765 
 2766         return (((vm_page_bits_t)2 << last_bit) -
 2767             ((vm_page_bits_t)1 << first_bit));
 2768 }
 2769 
 2770 /*
 2771  *      vm_page_set_valid_range:
 2772  *
 2773  *      Sets portions of a page valid.  The arguments are expected
 2774  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
 2775  *      of any partial chunks touched by the range.  The invalid portion of
 2776  *      such chunks will be zeroed.
 2777  *
 2778  *      (base + size) must be less then or equal to PAGE_SIZE.
 2779  */
 2780 void
 2781 vm_page_set_valid_range(vm_page_t m, int base, int size)
 2782 {
 2783         int endoff, frag;
 2784 
 2785         VM_OBJECT_ASSERT_WLOCKED(m->object);
 2786         if (size == 0)  /* handle degenerate case */
 2787                 return;
 2788 
 2789         /*
 2790          * If the base is not DEV_BSIZE aligned and the valid
 2791          * bit is clear, we have to zero out a portion of the
 2792          * first block.
 2793          */
 2794         if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
 2795             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
 2796                 pmap_zero_page_area(m, frag, base - frag);
 2797 
 2798         /*
 2799          * If the ending offset is not DEV_BSIZE aligned and the 
 2800          * valid bit is clear, we have to zero out a portion of
 2801          * the last block.
 2802          */
 2803         endoff = base + size;
 2804         if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
 2805             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
 2806                 pmap_zero_page_area(m, endoff,
 2807                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
 2808 
 2809         /*
 2810          * Assert that no previously invalid block that is now being validated
 2811          * is already dirty. 
 2812          */
 2813         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
 2814             ("vm_page_set_valid_range: page %p is dirty", m));
 2815 
 2816         /*
 2817          * Set valid bits inclusive of any overlap.
 2818          */
 2819         m->valid |= vm_page_bits(base, size);
 2820 }
 2821 
 2822 /*
 2823  * Clear the given bits from the specified page's dirty field.
 2824  */
 2825 static __inline void
 2826 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
 2827 {
 2828         uintptr_t addr;
 2829 #if PAGE_SIZE < 16384
 2830         int shift;
 2831 #endif
 2832 
 2833         /*
 2834          * If the object is locked and the page is neither exclusive busy nor
 2835          * write mapped, then the page's dirty field cannot possibly be
 2836          * set by a concurrent pmap operation.
 2837          */
 2838         VM_OBJECT_ASSERT_WLOCKED(m->object);
 2839         if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
 2840                 m->dirty &= ~pagebits;
 2841         else {
 2842                 /*
 2843                  * The pmap layer can call vm_page_dirty() without
 2844                  * holding a distinguished lock.  The combination of
 2845                  * the object's lock and an atomic operation suffice
 2846                  * to guarantee consistency of the page dirty field.
 2847                  *
 2848                  * For PAGE_SIZE == 32768 case, compiler already
 2849                  * properly aligns the dirty field, so no forcible
 2850                  * alignment is needed. Only require existence of
 2851                  * atomic_clear_64 when page size is 32768.
 2852                  */
 2853                 addr = (uintptr_t)&m->dirty;
 2854 #if PAGE_SIZE == 32768
 2855                 atomic_clear_64((uint64_t *)addr, pagebits);
 2856 #elif PAGE_SIZE == 16384
 2857                 atomic_clear_32((uint32_t *)addr, pagebits);
 2858 #else           /* PAGE_SIZE <= 8192 */
 2859                 /*
 2860                  * Use a trick to perform a 32-bit atomic on the
 2861                  * containing aligned word, to not depend on the existence
 2862                  * of atomic_clear_{8, 16}.
 2863                  */
 2864                 shift = addr & (sizeof(uint32_t) - 1);
 2865 #if BYTE_ORDER == BIG_ENDIAN
 2866                 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
 2867 #else
 2868                 shift *= NBBY;
 2869 #endif
 2870                 addr &= ~(sizeof(uint32_t) - 1);
 2871                 atomic_clear_32((uint32_t *)addr, pagebits << shift);
 2872 #endif          /* PAGE_SIZE */
 2873         }
 2874 }
 2875 
 2876 /*
 2877  *      vm_page_set_validclean:
 2878  *
 2879  *      Sets portions of a page valid and clean.  The arguments are expected
 2880  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
 2881  *      of any partial chunks touched by the range.  The invalid portion of
 2882  *      such chunks will be zero'd.
 2883  *
 2884  *      (base + size) must be less then or equal to PAGE_SIZE.
 2885  */
 2886 void
 2887 vm_page_set_validclean(vm_page_t m, int base, int size)
 2888 {
 2889         vm_page_bits_t oldvalid, pagebits;
 2890         int endoff, frag;
 2891 
 2892         VM_OBJECT_ASSERT_WLOCKED(m->object);
 2893         if (size == 0)  /* handle degenerate case */
 2894                 return;
 2895 
 2896         /*
 2897          * If the base is not DEV_BSIZE aligned and the valid
 2898          * bit is clear, we have to zero out a portion of the
 2899          * first block.
 2900          */
 2901         if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
 2902             (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
 2903                 pmap_zero_page_area(m, frag, base - frag);
 2904 
 2905         /*
 2906          * If the ending offset is not DEV_BSIZE aligned and the 
 2907          * valid bit is clear, we have to zero out a portion of
 2908          * the last block.
 2909          */
 2910         endoff = base + size;
 2911         if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
 2912             (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
 2913                 pmap_zero_page_area(m, endoff,
 2914                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
 2915 
 2916         /*
 2917          * Set valid, clear dirty bits.  If validating the entire
 2918          * page we can safely clear the pmap modify bit.  We also
 2919          * use this opportunity to clear the VPO_NOSYNC flag.  If a process
 2920          * takes a write fault on a MAP_NOSYNC memory area the flag will
 2921          * be set again.
 2922          *
 2923          * We set valid bits inclusive of any overlap, but we can only
 2924          * clear dirty bits for DEV_BSIZE chunks that are fully within
 2925          * the range.
 2926          */
 2927         oldvalid = m->valid;
 2928         pagebits = vm_page_bits(base, size);
 2929         m->valid |= pagebits;
 2930 #if 0   /* NOT YET */
 2931         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
 2932                 frag = DEV_BSIZE - frag;
 2933                 base += frag;
 2934                 size -= frag;
 2935                 if (size < 0)
 2936                         size = 0;
 2937         }
 2938         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
 2939 #endif
 2940         if (base == 0 && size == PAGE_SIZE) {
 2941                 /*
 2942                  * The page can only be modified within the pmap if it is
 2943                  * mapped, and it can only be mapped if it was previously
 2944                  * fully valid.
 2945                  */
 2946                 if (oldvalid == VM_PAGE_BITS_ALL)
 2947                         /*
 2948                          * Perform the pmap_clear_modify() first.  Otherwise,
 2949                          * a concurrent pmap operation, such as
 2950                          * pmap_protect(), could clear a modification in the
 2951                          * pmap and set the dirty field on the page before
 2952                          * pmap_clear_modify() had begun and after the dirty
 2953                          * field was cleared here.
 2954                          */
 2955                         pmap_clear_modify(m);
 2956                 m->dirty = 0;
 2957                 m->oflags &= ~VPO_NOSYNC;
 2958         } else if (oldvalid != VM_PAGE_BITS_ALL)
 2959                 m->dirty &= ~pagebits;
 2960         else
 2961                 vm_page_clear_dirty_mask(m, pagebits);
 2962 }
 2963 
 2964 void
 2965 vm_page_clear_dirty(vm_page_t m, int base, int size)
 2966 {
 2967 
 2968         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
 2969 }
 2970 
 2971 /*
 2972  *      vm_page_set_invalid:
 2973  *
 2974  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
 2975  *      valid and dirty bits for the effected areas are cleared.
 2976  */
 2977 void
 2978 vm_page_set_invalid(vm_page_t m, int base, int size)
 2979 {
 2980         vm_page_bits_t bits;
 2981         vm_object_t object;
 2982 
 2983         object = m->object;
 2984         VM_OBJECT_ASSERT_WLOCKED(object);
 2985         if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
 2986             size >= object->un_pager.vnp.vnp_size)
 2987                 bits = VM_PAGE_BITS_ALL;
 2988         else
 2989                 bits = vm_page_bits(base, size);
 2990         if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
 2991                 pmap_remove_all(m);
 2992         KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
 2993             !pmap_page_is_mapped(m),
 2994             ("vm_page_set_invalid: page %p is mapped", m));
 2995         m->valid &= ~bits;
 2996         m->dirty &= ~bits;
 2997 }
 2998 
 2999 /*
 3000  * vm_page_zero_invalid()
 3001  *
 3002  *      The kernel assumes that the invalid portions of a page contain 
 3003  *      garbage, but such pages can be mapped into memory by user code.
 3004  *      When this occurs, we must zero out the non-valid portions of the
 3005  *      page so user code sees what it expects.
 3006  *
 3007  *      Pages are most often semi-valid when the end of a file is mapped 
 3008  *      into memory and the file's size is not page aligned.
 3009  */
 3010 void
 3011 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
 3012 {
 3013         int b;
 3014         int i;
 3015 
 3016         VM_OBJECT_ASSERT_WLOCKED(m->object);
 3017         /*
 3018          * Scan the valid bits looking for invalid sections that
 3019          * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
 3020          * valid bit may be set ) have already been zerod by
 3021          * vm_page_set_validclean().
 3022          */
 3023         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
 3024                 if (i == (PAGE_SIZE / DEV_BSIZE) || 
 3025                     (m->valid & ((vm_page_bits_t)1 << i))) {
 3026                         if (i > b) {
 3027                                 pmap_zero_page_area(m, 
 3028                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
 3029                         }
 3030                         b = i + 1;
 3031                 }
 3032         }
 3033 
 3034         /*
 3035          * setvalid is TRUE when we can safely set the zero'd areas
 3036          * as being valid.  We can do this if there are no cache consistancy
 3037          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
 3038          */
 3039         if (setvalid)
 3040                 m->valid = VM_PAGE_BITS_ALL;
 3041 }
 3042 
 3043 /*
 3044  *      vm_page_is_valid:
 3045  *
 3046  *      Is (partial) page valid?  Note that the case where size == 0
 3047  *      will return FALSE in the degenerate case where the page is
 3048  *      entirely invalid, and TRUE otherwise.
 3049  */
 3050 int
 3051 vm_page_is_valid(vm_page_t m, int base, int size)
 3052 {
 3053         vm_page_bits_t bits;
 3054 
 3055         VM_OBJECT_ASSERT_LOCKED(m->object);
 3056         bits = vm_page_bits(base, size);
 3057         return (m->valid != 0 && (m->valid & bits) == bits);
 3058 }
 3059 
 3060 /*
 3061  * Set the page's dirty bits if the page is modified.
 3062  */
 3063 void
 3064 vm_page_test_dirty(vm_page_t m)
 3065 {
 3066 
 3067         VM_OBJECT_ASSERT_WLOCKED(m->object);
 3068         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
 3069                 vm_page_dirty(m);
 3070 }
 3071 
 3072 void
 3073 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
 3074 {
 3075 
 3076         mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
 3077 }
 3078 
 3079 void
 3080 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
 3081 {
 3082 
 3083         mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
 3084 }
 3085 
 3086 int
 3087 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
 3088 {
 3089 
 3090         return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
 3091 }
 3092 
 3093 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
 3094 void
 3095 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
 3096 {
 3097 
 3098         vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
 3099 }
 3100 
 3101 void
 3102 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
 3103 {
 3104 
 3105         mtx_assert_(vm_page_lockptr(m), a, file, line);
 3106 }
 3107 #endif
 3108 
 3109 #ifdef INVARIANTS
 3110 void
 3111 vm_page_object_lock_assert(vm_page_t m)
 3112 {
 3113 
 3114         /*
 3115          * Certain of the page's fields may only be modified by the
 3116          * holder of the containing object's lock or the exclusive busy.
 3117          * holder.  Unfortunately, the holder of the write busy is
 3118          * not recorded, and thus cannot be checked here.
 3119          */
 3120         if (m->object != NULL && !vm_page_xbusied(m))
 3121                 VM_OBJECT_ASSERT_WLOCKED(m->object);
 3122 }
 3123 #endif
 3124 
 3125 #include "opt_ddb.h"
 3126 #ifdef DDB
 3127 #include <sys/kernel.h>
 3128 
 3129 #include <ddb/ddb.h>
 3130 
 3131 DB_SHOW_COMMAND(page, vm_page_print_page_info)
 3132 {
 3133         db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
 3134         db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
 3135         db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
 3136         db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
 3137         db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
 3138         db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
 3139         db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
 3140         db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
 3141         db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
 3142         db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
 3143 }
 3144 
 3145 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
 3146 {
 3147         int dom;
 3148 
 3149         db_printf("pq_free %d pq_cache %d\n",
 3150             cnt.v_free_count, cnt.v_cache_count);
 3151         for (dom = 0; dom < vm_ndomains; dom++) {
 3152                 db_printf(
 3153         "dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
 3154                     dom,
 3155                     vm_dom[dom].vmd_page_count,
 3156                     vm_dom[dom].vmd_free_count,
 3157                     vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
 3158                     vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
 3159                     vm_dom[dom].vmd_pass);
 3160         }
 3161 }
 3162 
 3163 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
 3164 {
 3165         vm_page_t m;
 3166         boolean_t phys;
 3167 
 3168         if (!have_addr) {
 3169                 db_printf("show pginfo addr\n");
 3170                 return;
 3171         }
 3172 
 3173         phys = strchr(modif, 'p') != NULL;
 3174         if (phys)
 3175                 m = PHYS_TO_VM_PAGE(addr);
 3176         else
 3177                 m = (vm_page_t)addr;
 3178         db_printf(
 3179     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
 3180     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
 3181             m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
 3182             m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
 3183             m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
 3184 }
 3185 #endif /* DDB */

Cache object: 8f52435a14c0d777a4f0d97badfc2853


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.