FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.c
1 /*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
34 */
35
36 /*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 * - A page queue lock is required when adding or removing a page from a
67 * page queue regardless of other locks or the busy state of a page.
68 *
69 * * In general, no thread besides the page daemon can acquire or
70 * hold more than one page queue lock at a time.
71 *
72 * * The page daemon can acquire and hold any pair of page queue
73 * locks in any order.
74 *
75 * - The object lock is required when inserting or removing
76 * pages from an object (vm_page_insert() or vm_page_remove()).
77 *
78 */
79
80 /*
81 * Resident memory management module.
82 */
83
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86
87 #include "opt_vm.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/lock.h>
92 #include <sys/kernel.h>
93 #include <sys/limits.h>
94 #include <sys/linker.h>
95 #include <sys/malloc.h>
96 #include <sys/mman.h>
97 #include <sys/msgbuf.h>
98 #include <sys/mutex.h>
99 #include <sys/proc.h>
100 #include <sys/rwlock.h>
101 #include <sys/sbuf.h>
102 #include <sys/smp.h>
103 #include <sys/sysctl.h>
104 #include <sys/vmmeter.h>
105 #include <sys/vnode.h>
106
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_param.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pageout.h>
114 #include <vm/vm_pager.h>
115 #include <vm/vm_phys.h>
116 #include <vm/vm_radix.h>
117 #include <vm/vm_reserv.h>
118 #include <vm/vm_extern.h>
119 #include <vm/uma.h>
120 #include <vm/uma_int.h>
121
122 #include <machine/md_var.h>
123
124 /*
125 * Associated with page of user-allocatable memory is a
126 * page structure.
127 */
128
129 struct vm_domain vm_dom[MAXMEMDOM];
130 struct mtx_padalign __exclusive_cache_line vm_page_queue_free_mtx;
131
132 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
133
134 vm_page_t vm_page_array;
135 long vm_page_array_size;
136 long first_page;
137 int vm_page_zero_count;
138
139 static int boot_pages = UMA_BOOT_PAGES;
140 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
141 &boot_pages, 0,
142 "number of pages allocated for bootstrapping the VM system");
143
144 static int pa_tryrelock_restart;
145 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
146 &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
147
148 static TAILQ_HEAD(, vm_page) blacklist_head;
149 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
150 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
151 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
152
153 /* Is the page daemon waiting for free pages? */
154 static int vm_pageout_pages_needed;
155
156 static uma_zone_t fakepg_zone;
157
158 static void vm_page_alloc_check(vm_page_t m);
159 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
160 static void vm_page_enqueue(uint8_t queue, vm_page_t m);
161 static void vm_page_free_phys(vm_page_t m);
162 static void vm_page_free_wakeup(void);
163 static void vm_page_init_fakepg(void *dummy);
164 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
165 vm_pindex_t pindex, vm_page_t mpred);
166 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
167 vm_page_t mpred);
168 static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
169 vm_paddr_t high);
170 static int vm_page_alloc_fail(vm_object_t object, int req);
171
172 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
173
174 static void
175 vm_page_init_fakepg(void *dummy)
176 {
177
178 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
179 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
180 }
181
182 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
183 #if PAGE_SIZE == 32768
184 #ifdef CTASSERT
185 CTASSERT(sizeof(u_long) >= 8);
186 #endif
187 #endif
188
189 /*
190 * Try to acquire a physical address lock while a pmap is locked. If we
191 * fail to trylock we unlock and lock the pmap directly and cache the
192 * locked pa in *locked. The caller should then restart their loop in case
193 * the virtual to physical mapping has changed.
194 */
195 int
196 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
197 {
198 vm_paddr_t lockpa;
199
200 lockpa = *locked;
201 *locked = pa;
202 if (lockpa) {
203 PA_LOCK_ASSERT(lockpa, MA_OWNED);
204 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
205 return (0);
206 PA_UNLOCK(lockpa);
207 }
208 if (PA_TRYLOCK(pa))
209 return (0);
210 PMAP_UNLOCK(pmap);
211 atomic_add_int(&pa_tryrelock_restart, 1);
212 PA_LOCK(pa);
213 PMAP_LOCK(pmap);
214 return (EAGAIN);
215 }
216
217 /*
218 * vm_set_page_size:
219 *
220 * Sets the page size, perhaps based upon the memory
221 * size. Must be called before any use of page-size
222 * dependent functions.
223 */
224 void
225 vm_set_page_size(void)
226 {
227 if (vm_cnt.v_page_size == 0)
228 vm_cnt.v_page_size = PAGE_SIZE;
229 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
230 panic("vm_set_page_size: page size not a power of two");
231 }
232
233 /*
234 * vm_page_blacklist_next:
235 *
236 * Find the next entry in the provided string of blacklist
237 * addresses. Entries are separated by space, comma, or newline.
238 * If an invalid integer is encountered then the rest of the
239 * string is skipped. Updates the list pointer to the next
240 * character, or NULL if the string is exhausted or invalid.
241 */
242 static vm_paddr_t
243 vm_page_blacklist_next(char **list, char *end)
244 {
245 vm_paddr_t bad;
246 char *cp, *pos;
247
248 if (list == NULL || *list == NULL)
249 return (0);
250 if (**list =='\0') {
251 *list = NULL;
252 return (0);
253 }
254
255 /*
256 * If there's no end pointer then the buffer is coming from
257 * the kenv and we know it's null-terminated.
258 */
259 if (end == NULL)
260 end = *list + strlen(*list);
261
262 /* Ensure that strtoq() won't walk off the end */
263 if (*end != '\0') {
264 if (*end == '\n' || *end == ' ' || *end == ',')
265 *end = '\0';
266 else {
267 printf("Blacklist not terminated, skipping\n");
268 *list = NULL;
269 return (0);
270 }
271 }
272
273 for (pos = *list; *pos != '\0'; pos = cp) {
274 bad = strtoq(pos, &cp, 0);
275 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
276 if (bad == 0) {
277 if (++cp < end)
278 continue;
279 else
280 break;
281 }
282 } else
283 break;
284 if (*cp == '\0' || ++cp >= end)
285 *list = NULL;
286 else
287 *list = cp;
288 return (trunc_page(bad));
289 }
290 printf("Garbage in RAM blacklist, skipping\n");
291 *list = NULL;
292 return (0);
293 }
294
295 bool
296 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
297 {
298 vm_page_t m;
299 int ret;
300
301 m = vm_phys_paddr_to_vm_page(pa);
302 if (m == NULL)
303 return (true); /* page does not exist, no failure */
304
305 mtx_lock(&vm_page_queue_free_mtx);
306 ret = vm_phys_unfree_page(m);
307 if (ret != 0)
308 vm_phys_freecnt_adj(m, -1);
309 mtx_unlock(&vm_page_queue_free_mtx);
310 if (ret != 0) {
311 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
312 if (verbose)
313 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
314 }
315 return (ret);
316 }
317
318 /*
319 * vm_page_blacklist_check:
320 *
321 * Iterate through the provided string of blacklist addresses, pulling
322 * each entry out of the physical allocator free list and putting it
323 * onto a list for reporting via the vm.page_blacklist sysctl.
324 */
325 static void
326 vm_page_blacklist_check(char *list, char *end)
327 {
328 vm_paddr_t pa;
329 char *next;
330
331 next = list;
332 while (next != NULL) {
333 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
334 continue;
335 vm_page_blacklist_add(pa, bootverbose);
336 }
337 }
338
339 /*
340 * vm_page_blacklist_load:
341 *
342 * Search for a special module named "ram_blacklist". It'll be a
343 * plain text file provided by the user via the loader directive
344 * of the same name.
345 */
346 static void
347 vm_page_blacklist_load(char **list, char **end)
348 {
349 void *mod;
350 u_char *ptr;
351 u_int len;
352
353 mod = NULL;
354 ptr = NULL;
355
356 mod = preload_search_by_type("ram_blacklist");
357 if (mod != NULL) {
358 ptr = preload_fetch_addr(mod);
359 len = preload_fetch_size(mod);
360 }
361 *list = ptr;
362 if (ptr != NULL)
363 *end = ptr + len;
364 else
365 *end = NULL;
366 return;
367 }
368
369 static int
370 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
371 {
372 vm_page_t m;
373 struct sbuf sbuf;
374 int error, first;
375
376 first = 1;
377 error = sysctl_wire_old_buffer(req, 0);
378 if (error != 0)
379 return (error);
380 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
381 TAILQ_FOREACH(m, &blacklist_head, listq) {
382 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
383 (uintmax_t)m->phys_addr);
384 first = 0;
385 }
386 error = sbuf_finish(&sbuf);
387 sbuf_delete(&sbuf);
388 return (error);
389 }
390
391 static void
392 vm_page_domain_init(struct vm_domain *vmd)
393 {
394 struct vm_pagequeue *pq;
395 int i;
396
397 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
398 "vm inactive pagequeue";
399 *__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
400 &vm_cnt.v_inactive_count;
401 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
402 "vm active pagequeue";
403 *__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
404 &vm_cnt.v_active_count;
405 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
406 "vm laundry pagequeue";
407 *__DECONST(int **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_vcnt) =
408 &vm_cnt.v_laundry_count;
409 vmd->vmd_page_count = 0;
410 vmd->vmd_free_count = 0;
411 vmd->vmd_segs = 0;
412 vmd->vmd_oom = FALSE;
413 for (i = 0; i < PQ_COUNT; i++) {
414 pq = &vmd->vmd_pagequeues[i];
415 TAILQ_INIT(&pq->pq_pl);
416 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
417 MTX_DEF | MTX_DUPOK);
418 }
419 }
420
421 /*
422 * Initialize a physical page in preparation for adding it to the free
423 * lists.
424 */
425 static void
426 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
427 {
428
429 m->object = NULL;
430 m->wire_count = 0;
431 m->busy_lock = VPB_UNBUSIED;
432 m->hold_count = 0;
433 m->flags = 0;
434 m->phys_addr = pa;
435 m->queue = PQ_NONE;
436 m->psind = 0;
437 m->segind = segind;
438 m->order = VM_NFREEORDER;
439 m->pool = VM_FREEPOOL_DEFAULT;
440 m->valid = m->dirty = 0;
441 pmap_page_init(m);
442 }
443
444 /*
445 * vm_page_startup:
446 *
447 * Initializes the resident memory module. Allocates physical memory for
448 * bootstrapping UMA and some data structures that are used to manage
449 * physical pages. Initializes these structures, and populates the free
450 * page queues.
451 */
452 vm_offset_t
453 vm_page_startup(vm_offset_t vaddr)
454 {
455 struct vm_domain *vmd;
456 struct vm_phys_seg *seg;
457 vm_page_t m;
458 char *list, *listend;
459 vm_offset_t mapped;
460 vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
461 vm_paddr_t biggestsize, last_pa, pa;
462 u_long pagecount;
463 int biggestone, i, pages_per_zone, segind;
464
465 biggestsize = 0;
466 biggestone = 0;
467 vaddr = round_page(vaddr);
468
469 for (i = 0; phys_avail[i + 1]; i += 2) {
470 phys_avail[i] = round_page(phys_avail[i]);
471 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
472 }
473 for (i = 0; phys_avail[i + 1]; i += 2) {
474 size = phys_avail[i + 1] - phys_avail[i];
475 if (size > biggestsize) {
476 biggestone = i;
477 biggestsize = size;
478 }
479 }
480
481 end = phys_avail[biggestone+1];
482
483 /*
484 * Initialize the page and queue locks.
485 */
486 mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
487 for (i = 0; i < PA_LOCK_COUNT; i++)
488 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
489 for (i = 0; i < vm_ndomains; i++)
490 vm_page_domain_init(&vm_dom[i]);
491
492 /*
493 * Almost all of the pages needed for bootstrapping UMA are used
494 * for zone structures, so if the number of CPUs results in those
495 * structures taking more than one page each, we set aside more pages
496 * in proportion to the zone structure size.
497 */
498 pages_per_zone = howmany(sizeof(struct uma_zone) +
499 sizeof(struct uma_cache) * (mp_maxid + 1) +
500 roundup2(sizeof(struct uma_slab), sizeof(void *)), UMA_SLAB_SIZE);
501 if (pages_per_zone > 1) {
502 /* Reserve more pages so that we don't run out. */
503 boot_pages = UMA_BOOT_PAGES_ZONES * pages_per_zone;
504 }
505
506 /*
507 * Allocate memory for use when boot strapping the kernel memory
508 * allocator.
509 *
510 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
511 * manually fetch the value.
512 */
513 TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
514 new_end = end - (boot_pages * UMA_SLAB_SIZE);
515 new_end = trunc_page(new_end);
516 mapped = pmap_map(&vaddr, new_end, end,
517 VM_PROT_READ | VM_PROT_WRITE);
518 bzero((void *)mapped, end - new_end);
519 uma_startup((void *)mapped, boot_pages);
520
521 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
522 defined(__i386__) || defined(__mips__)
523 /*
524 * Allocate a bitmap to indicate that a random physical page
525 * needs to be included in a minidump.
526 *
527 * The amd64 port needs this to indicate which direct map pages
528 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
529 *
530 * However, i386 still needs this workspace internally within the
531 * minidump code. In theory, they are not needed on i386, but are
532 * included should the sf_buf code decide to use them.
533 */
534 last_pa = 0;
535 for (i = 0; dump_avail[i + 1] != 0; i += 2)
536 if (dump_avail[i + 1] > last_pa)
537 last_pa = dump_avail[i + 1];
538 page_range = last_pa / PAGE_SIZE;
539 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
540 new_end -= vm_page_dump_size;
541 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
542 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
543 bzero((void *)vm_page_dump, vm_page_dump_size);
544 #else
545 (void)last_pa;
546 #endif
547 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
548 /*
549 * Include the UMA bootstrap pages and vm_page_dump in a crash dump.
550 * When pmap_map() uses the direct map, they are not automatically
551 * included.
552 */
553 for (pa = new_end; pa < end; pa += PAGE_SIZE)
554 dump_add_page(pa);
555 #endif
556 phys_avail[biggestone + 1] = new_end;
557 #ifdef __amd64__
558 /*
559 * Request that the physical pages underlying the message buffer be
560 * included in a crash dump. Since the message buffer is accessed
561 * through the direct map, they are not automatically included.
562 */
563 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
564 last_pa = pa + round_page(msgbufsize);
565 while (pa < last_pa) {
566 dump_add_page(pa);
567 pa += PAGE_SIZE;
568 }
569 #endif
570 /*
571 * Compute the number of pages of memory that will be available for
572 * use, taking into account the overhead of a page structure per page.
573 * In other words, solve
574 * "available physical memory" - round_page(page_range *
575 * sizeof(struct vm_page)) = page_range * PAGE_SIZE
576 * for page_range.
577 */
578 low_avail = phys_avail[0];
579 high_avail = phys_avail[1];
580 for (i = 0; i < vm_phys_nsegs; i++) {
581 if (vm_phys_segs[i].start < low_avail)
582 low_avail = vm_phys_segs[i].start;
583 if (vm_phys_segs[i].end > high_avail)
584 high_avail = vm_phys_segs[i].end;
585 }
586 /* Skip the first chunk. It is already accounted for. */
587 for (i = 2; phys_avail[i + 1] != 0; i += 2) {
588 if (phys_avail[i] < low_avail)
589 low_avail = phys_avail[i];
590 if (phys_avail[i + 1] > high_avail)
591 high_avail = phys_avail[i + 1];
592 }
593 first_page = low_avail / PAGE_SIZE;
594 #ifdef VM_PHYSSEG_SPARSE
595 size = 0;
596 for (i = 0; i < vm_phys_nsegs; i++)
597 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
598 for (i = 0; phys_avail[i + 1] != 0; i += 2)
599 size += phys_avail[i + 1] - phys_avail[i];
600 #elif defined(VM_PHYSSEG_DENSE)
601 size = high_avail - low_avail;
602 #else
603 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
604 #endif
605
606 #ifdef VM_PHYSSEG_DENSE
607 /*
608 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
609 * the overhead of a page structure per page only if vm_page_array is
610 * allocated from the last physical memory chunk. Otherwise, we must
611 * allocate page structures representing the physical memory
612 * underlying vm_page_array, even though they will not be used.
613 */
614 if (new_end != high_avail)
615 page_range = size / PAGE_SIZE;
616 else
617 #endif
618 {
619 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
620
621 /*
622 * If the partial bytes remaining are large enough for
623 * a page (PAGE_SIZE) without a corresponding
624 * 'struct vm_page', then new_end will contain an
625 * extra page after subtracting the length of the VM
626 * page array. Compensate by subtracting an extra
627 * page from new_end.
628 */
629 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
630 if (new_end == high_avail)
631 high_avail -= PAGE_SIZE;
632 new_end -= PAGE_SIZE;
633 }
634 }
635 end = new_end;
636
637 /*
638 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
639 * However, because this page is allocated from KVM, out-of-bounds
640 * accesses using the direct map will not be trapped.
641 */
642 vaddr += PAGE_SIZE;
643
644 /*
645 * Allocate physical memory for the page structures, and map it.
646 */
647 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
648 mapped = pmap_map(&vaddr, new_end, end,
649 VM_PROT_READ | VM_PROT_WRITE);
650 vm_page_array = (vm_page_t)mapped;
651 vm_page_array_size = page_range;
652
653 #if VM_NRESERVLEVEL > 0
654 /*
655 * Allocate physical memory for the reservation management system's
656 * data structures, and map it.
657 */
658 if (high_avail == end)
659 high_avail = new_end;
660 new_end = vm_reserv_startup(&vaddr, new_end, high_avail);
661 #endif
662 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
663 /*
664 * Include vm_page_array and vm_reserv_array in a crash dump.
665 */
666 for (pa = new_end; pa < end; pa += PAGE_SIZE)
667 dump_add_page(pa);
668 #endif
669 phys_avail[biggestone + 1] = new_end;
670
671 /*
672 * Add physical memory segments corresponding to the available
673 * physical pages.
674 */
675 for (i = 0; phys_avail[i + 1] != 0; i += 2)
676 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
677
678 /*
679 * Initialize the physical memory allocator.
680 */
681 vm_phys_init();
682
683 /*
684 * Initialize the page structures and add every available page to the
685 * physical memory allocator's free lists.
686 */
687 vm_cnt.v_page_count = 0;
688 vm_cnt.v_free_count = 0;
689 for (segind = 0; segind < vm_phys_nsegs; segind++) {
690 seg = &vm_phys_segs[segind];
691 for (m = seg->first_page, pa = seg->start; pa < seg->end;
692 m++, pa += PAGE_SIZE)
693 vm_page_init_page(m, pa, segind);
694
695 /*
696 * Add the segment to the free lists only if it is covered by
697 * one of the ranges in phys_avail. Because we've added the
698 * ranges to the vm_phys_segs array, we can assume that each
699 * segment is either entirely contained in one of the ranges,
700 * or doesn't overlap any of them.
701 */
702 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
703 if (seg->start < phys_avail[i] ||
704 seg->end > phys_avail[i + 1])
705 continue;
706
707 m = seg->first_page;
708 pagecount = (u_long)atop(seg->end - seg->start);
709
710 mtx_lock(&vm_page_queue_free_mtx);
711 vm_phys_free_contig(m, pagecount);
712 vm_phys_freecnt_adj(m, (int)pagecount);
713 mtx_unlock(&vm_page_queue_free_mtx);
714 vm_cnt.v_page_count += (u_int)pagecount;
715
716 vmd = &vm_dom[seg->domain];
717 vmd->vmd_page_count += (u_int)pagecount;
718 vmd->vmd_segs |= 1UL << m->segind;
719 break;
720 }
721 }
722
723 /*
724 * Remove blacklisted pages from the physical memory allocator.
725 */
726 TAILQ_INIT(&blacklist_head);
727 vm_page_blacklist_load(&list, &listend);
728 vm_page_blacklist_check(list, listend);
729
730 list = kern_getenv("vm.blacklist");
731 vm_page_blacklist_check(list, NULL);
732
733 freeenv(list);
734 #if VM_NRESERVLEVEL > 0
735 /*
736 * Initialize the reservation management system.
737 */
738 vm_reserv_init();
739 #endif
740 return (vaddr);
741 }
742
743 void
744 vm_page_reference(vm_page_t m)
745 {
746
747 vm_page_aflag_set(m, PGA_REFERENCED);
748 }
749
750 /*
751 * vm_page_busy_downgrade:
752 *
753 * Downgrade an exclusive busy page into a single shared busy page.
754 */
755 void
756 vm_page_busy_downgrade(vm_page_t m)
757 {
758 u_int x;
759 bool locked;
760
761 vm_page_assert_xbusied(m);
762 locked = mtx_owned(vm_page_lockptr(m));
763
764 for (;;) {
765 x = m->busy_lock;
766 x &= VPB_BIT_WAITERS;
767 if (x != 0 && !locked)
768 vm_page_lock(m);
769 if (atomic_cmpset_rel_int(&m->busy_lock,
770 VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1)))
771 break;
772 if (x != 0 && !locked)
773 vm_page_unlock(m);
774 }
775 if (x != 0) {
776 wakeup(m);
777 if (!locked)
778 vm_page_unlock(m);
779 }
780 }
781
782 /*
783 * vm_page_sbusied:
784 *
785 * Return a positive value if the page is shared busied, 0 otherwise.
786 */
787 int
788 vm_page_sbusied(vm_page_t m)
789 {
790 u_int x;
791
792 x = m->busy_lock;
793 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
794 }
795
796 /*
797 * vm_page_sunbusy:
798 *
799 * Shared unbusy a page.
800 */
801 void
802 vm_page_sunbusy(vm_page_t m)
803 {
804 u_int x;
805
806 vm_page_lock_assert(m, MA_NOTOWNED);
807 vm_page_assert_sbusied(m);
808
809 for (;;) {
810 x = m->busy_lock;
811 if (VPB_SHARERS(x) > 1) {
812 if (atomic_cmpset_int(&m->busy_lock, x,
813 x - VPB_ONE_SHARER))
814 break;
815 continue;
816 }
817 if ((x & VPB_BIT_WAITERS) == 0) {
818 KASSERT(x == VPB_SHARERS_WORD(1),
819 ("vm_page_sunbusy: invalid lock state"));
820 if (atomic_cmpset_int(&m->busy_lock,
821 VPB_SHARERS_WORD(1), VPB_UNBUSIED))
822 break;
823 continue;
824 }
825 KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
826 ("vm_page_sunbusy: invalid lock state for waiters"));
827
828 vm_page_lock(m);
829 if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
830 vm_page_unlock(m);
831 continue;
832 }
833 wakeup(m);
834 vm_page_unlock(m);
835 break;
836 }
837 }
838
839 /*
840 * vm_page_busy_sleep:
841 *
842 * Sleep and release the page lock, using the page pointer as wchan.
843 * This is used to implement the hard-path of busying mechanism.
844 *
845 * The given page must be locked.
846 *
847 * If nonshared is true, sleep only if the page is xbusy.
848 */
849 void
850 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
851 {
852 u_int x;
853
854 vm_page_assert_locked(m);
855
856 x = m->busy_lock;
857 if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
858 ((x & VPB_BIT_WAITERS) == 0 &&
859 !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
860 vm_page_unlock(m);
861 return;
862 }
863 msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
864 }
865
866 /*
867 * vm_page_trysbusy:
868 *
869 * Try to shared busy a page.
870 * If the operation succeeds 1 is returned otherwise 0.
871 * The operation never sleeps.
872 */
873 int
874 vm_page_trysbusy(vm_page_t m)
875 {
876 u_int x;
877
878 for (;;) {
879 x = m->busy_lock;
880 if ((x & VPB_BIT_SHARED) == 0)
881 return (0);
882 if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
883 return (1);
884 }
885 }
886
887 static void
888 vm_page_xunbusy_locked(vm_page_t m)
889 {
890
891 vm_page_assert_xbusied(m);
892 vm_page_assert_locked(m);
893
894 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
895 /* There is a waiter, do wakeup() instead of vm_page_flash(). */
896 wakeup(m);
897 }
898
899 void
900 vm_page_xunbusy_maybelocked(vm_page_t m)
901 {
902 bool lockacq;
903
904 vm_page_assert_xbusied(m);
905
906 /*
907 * Fast path for unbusy. If it succeeds, we know that there
908 * are no waiters, so we do not need a wakeup.
909 */
910 if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER,
911 VPB_UNBUSIED))
912 return;
913
914 lockacq = !mtx_owned(vm_page_lockptr(m));
915 if (lockacq)
916 vm_page_lock(m);
917 vm_page_xunbusy_locked(m);
918 if (lockacq)
919 vm_page_unlock(m);
920 }
921
922 /*
923 * vm_page_xunbusy_hard:
924 *
925 * Called after the first try the exclusive unbusy of a page failed.
926 * It is assumed that the waiters bit is on.
927 */
928 void
929 vm_page_xunbusy_hard(vm_page_t m)
930 {
931
932 vm_page_assert_xbusied(m);
933
934 vm_page_lock(m);
935 vm_page_xunbusy_locked(m);
936 vm_page_unlock(m);
937 }
938
939 /*
940 * vm_page_flash:
941 *
942 * Wakeup anyone waiting for the page.
943 * The ownership bits do not change.
944 *
945 * The given page must be locked.
946 */
947 void
948 vm_page_flash(vm_page_t m)
949 {
950 u_int x;
951
952 vm_page_lock_assert(m, MA_OWNED);
953
954 for (;;) {
955 x = m->busy_lock;
956 if ((x & VPB_BIT_WAITERS) == 0)
957 return;
958 if (atomic_cmpset_int(&m->busy_lock, x,
959 x & (~VPB_BIT_WAITERS)))
960 break;
961 }
962 wakeup(m);
963 }
964
965 /*
966 * Avoid releasing and reacquiring the same page lock.
967 */
968 void
969 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
970 {
971 struct mtx *mtx1;
972
973 mtx1 = vm_page_lockptr(m);
974 if (*mtx == mtx1)
975 return;
976 if (*mtx != NULL)
977 mtx_unlock(*mtx);
978 *mtx = mtx1;
979 mtx_lock(mtx1);
980 }
981
982 /*
983 * Keep page from being freed by the page daemon
984 * much of the same effect as wiring, except much lower
985 * overhead and should be used only for *very* temporary
986 * holding ("wiring").
987 */
988 void
989 vm_page_hold(vm_page_t mem)
990 {
991
992 vm_page_lock_assert(mem, MA_OWNED);
993 mem->hold_count++;
994 }
995
996 void
997 vm_page_unhold(vm_page_t mem)
998 {
999
1000 vm_page_lock_assert(mem, MA_OWNED);
1001 KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
1002 --mem->hold_count;
1003 if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
1004 vm_page_free_toq(mem);
1005 }
1006
1007 /*
1008 * vm_page_unhold_pages:
1009 *
1010 * Unhold each of the pages that is referenced by the given array.
1011 */
1012 void
1013 vm_page_unhold_pages(vm_page_t *ma, int count)
1014 {
1015 struct mtx *mtx;
1016
1017 mtx = NULL;
1018 for (; count != 0; count--) {
1019 vm_page_change_lock(*ma, &mtx);
1020 vm_page_unhold(*ma);
1021 ma++;
1022 }
1023 if (mtx != NULL)
1024 mtx_unlock(mtx);
1025 }
1026
1027 vm_page_t
1028 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1029 {
1030 vm_page_t m;
1031
1032 #ifdef VM_PHYSSEG_SPARSE
1033 m = vm_phys_paddr_to_vm_page(pa);
1034 if (m == NULL)
1035 m = vm_phys_fictitious_to_vm_page(pa);
1036 return (m);
1037 #elif defined(VM_PHYSSEG_DENSE)
1038 long pi;
1039
1040 pi = atop(pa);
1041 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1042 m = &vm_page_array[pi - first_page];
1043 return (m);
1044 }
1045 return (vm_phys_fictitious_to_vm_page(pa));
1046 #else
1047 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1048 #endif
1049 }
1050
1051 /*
1052 * vm_page_getfake:
1053 *
1054 * Create a fictitious page with the specified physical address and
1055 * memory attribute. The memory attribute is the only the machine-
1056 * dependent aspect of a fictitious page that must be initialized.
1057 */
1058 vm_page_t
1059 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1060 {
1061 vm_page_t m;
1062
1063 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1064 vm_page_initfake(m, paddr, memattr);
1065 return (m);
1066 }
1067
1068 void
1069 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1070 {
1071
1072 if ((m->flags & PG_FICTITIOUS) != 0) {
1073 /*
1074 * The page's memattr might have changed since the
1075 * previous initialization. Update the pmap to the
1076 * new memattr.
1077 */
1078 goto memattr;
1079 }
1080 m->phys_addr = paddr;
1081 m->queue = PQ_NONE;
1082 /* Fictitious pages don't use "segind". */
1083 m->flags = PG_FICTITIOUS;
1084 /* Fictitious pages don't use "order" or "pool". */
1085 m->oflags = VPO_UNMANAGED;
1086 m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1087 m->wire_count = 1;
1088 pmap_page_init(m);
1089 memattr:
1090 pmap_page_set_memattr(m, memattr);
1091 }
1092
1093 /*
1094 * vm_page_putfake:
1095 *
1096 * Release a fictitious page.
1097 */
1098 void
1099 vm_page_putfake(vm_page_t m)
1100 {
1101
1102 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1103 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1104 ("vm_page_putfake: bad page %p", m));
1105 uma_zfree(fakepg_zone, m);
1106 }
1107
1108 /*
1109 * vm_page_updatefake:
1110 *
1111 * Update the given fictitious page to the specified physical address and
1112 * memory attribute.
1113 */
1114 void
1115 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1116 {
1117
1118 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1119 ("vm_page_updatefake: bad page %p", m));
1120 m->phys_addr = paddr;
1121 pmap_page_set_memattr(m, memattr);
1122 }
1123
1124 /*
1125 * vm_page_free:
1126 *
1127 * Free a page.
1128 */
1129 void
1130 vm_page_free(vm_page_t m)
1131 {
1132
1133 m->flags &= ~PG_ZERO;
1134 vm_page_free_toq(m);
1135 }
1136
1137 /*
1138 * vm_page_free_zero:
1139 *
1140 * Free a page to the zerod-pages queue
1141 */
1142 void
1143 vm_page_free_zero(vm_page_t m)
1144 {
1145
1146 m->flags |= PG_ZERO;
1147 vm_page_free_toq(m);
1148 }
1149
1150 /*
1151 * Unbusy and handle the page queueing for a page from a getpages request that
1152 * was optionally read ahead or behind.
1153 */
1154 void
1155 vm_page_readahead_finish(vm_page_t m)
1156 {
1157
1158 /* We shouldn't put invalid pages on queues. */
1159 KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1160
1161 /*
1162 * Since the page is not the actually needed one, whether it should
1163 * be activated or deactivated is not obvious. Empirical results
1164 * have shown that deactivating the page is usually the best choice,
1165 * unless the page is wanted by another thread.
1166 */
1167 vm_page_lock(m);
1168 if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1169 vm_page_activate(m);
1170 else
1171 vm_page_deactivate(m);
1172 vm_page_unlock(m);
1173 vm_page_xunbusy(m);
1174 }
1175
1176 /*
1177 * vm_page_sleep_if_busy:
1178 *
1179 * Sleep and release the page queues lock if the page is busied.
1180 * Returns TRUE if the thread slept.
1181 *
1182 * The given page must be unlocked and object containing it must
1183 * be locked.
1184 */
1185 int
1186 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1187 {
1188 vm_object_t obj;
1189
1190 vm_page_lock_assert(m, MA_NOTOWNED);
1191 VM_OBJECT_ASSERT_WLOCKED(m->object);
1192
1193 if (vm_page_busied(m)) {
1194 /*
1195 * The page-specific object must be cached because page
1196 * identity can change during the sleep, causing the
1197 * re-lock of a different object.
1198 * It is assumed that a reference to the object is already
1199 * held by the callers.
1200 */
1201 obj = m->object;
1202 vm_page_lock(m);
1203 VM_OBJECT_WUNLOCK(obj);
1204 vm_page_busy_sleep(m, msg, false);
1205 VM_OBJECT_WLOCK(obj);
1206 return (TRUE);
1207 }
1208 return (FALSE);
1209 }
1210
1211 /*
1212 * vm_page_dirty_KBI: [ internal use only ]
1213 *
1214 * Set all bits in the page's dirty field.
1215 *
1216 * The object containing the specified page must be locked if the
1217 * call is made from the machine-independent layer.
1218 *
1219 * See vm_page_clear_dirty_mask().
1220 *
1221 * This function should only be called by vm_page_dirty().
1222 */
1223 void
1224 vm_page_dirty_KBI(vm_page_t m)
1225 {
1226
1227 /* Refer to this operation by its public name. */
1228 KASSERT(m->valid == VM_PAGE_BITS_ALL,
1229 ("vm_page_dirty: page is invalid!"));
1230 m->dirty = VM_PAGE_BITS_ALL;
1231 }
1232
1233 /*
1234 * vm_page_insert: [ internal use only ]
1235 *
1236 * Inserts the given mem entry into the object and object list.
1237 *
1238 * The object must be locked.
1239 */
1240 int
1241 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1242 {
1243 vm_page_t mpred;
1244
1245 VM_OBJECT_ASSERT_WLOCKED(object);
1246 mpred = vm_radix_lookup_le(&object->rtree, pindex);
1247 return (vm_page_insert_after(m, object, pindex, mpred));
1248 }
1249
1250 /*
1251 * vm_page_insert_after:
1252 *
1253 * Inserts the page "m" into the specified object at offset "pindex".
1254 *
1255 * The page "mpred" must immediately precede the offset "pindex" within
1256 * the specified object.
1257 *
1258 * The object must be locked.
1259 */
1260 static int
1261 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1262 vm_page_t mpred)
1263 {
1264 vm_page_t msucc;
1265
1266 VM_OBJECT_ASSERT_WLOCKED(object);
1267 KASSERT(m->object == NULL,
1268 ("vm_page_insert_after: page already inserted"));
1269 if (mpred != NULL) {
1270 KASSERT(mpred->object == object,
1271 ("vm_page_insert_after: object doesn't contain mpred"));
1272 KASSERT(mpred->pindex < pindex,
1273 ("vm_page_insert_after: mpred doesn't precede pindex"));
1274 msucc = TAILQ_NEXT(mpred, listq);
1275 } else
1276 msucc = TAILQ_FIRST(&object->memq);
1277 if (msucc != NULL)
1278 KASSERT(msucc->pindex > pindex,
1279 ("vm_page_insert_after: msucc doesn't succeed pindex"));
1280
1281 /*
1282 * Record the object/offset pair in this page
1283 */
1284 m->object = object;
1285 m->pindex = pindex;
1286
1287 /*
1288 * Now link into the object's ordered list of backed pages.
1289 */
1290 if (vm_radix_insert(&object->rtree, m)) {
1291 m->object = NULL;
1292 m->pindex = 0;
1293 return (1);
1294 }
1295 vm_page_insert_radixdone(m, object, mpred);
1296 return (0);
1297 }
1298
1299 /*
1300 * vm_page_insert_radixdone:
1301 *
1302 * Complete page "m" insertion into the specified object after the
1303 * radix trie hooking.
1304 *
1305 * The page "mpred" must precede the offset "m->pindex" within the
1306 * specified object.
1307 *
1308 * The object must be locked.
1309 */
1310 static void
1311 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1312 {
1313
1314 VM_OBJECT_ASSERT_WLOCKED(object);
1315 KASSERT(object != NULL && m->object == object,
1316 ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1317 if (mpred != NULL) {
1318 KASSERT(mpred->object == object,
1319 ("vm_page_insert_after: object doesn't contain mpred"));
1320 KASSERT(mpred->pindex < m->pindex,
1321 ("vm_page_insert_after: mpred doesn't precede pindex"));
1322 }
1323
1324 if (mpred != NULL)
1325 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1326 else
1327 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1328
1329 /*
1330 * Show that the object has one more resident page.
1331 */
1332 object->resident_page_count++;
1333
1334 /*
1335 * Hold the vnode until the last page is released.
1336 */
1337 if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1338 vhold(object->handle);
1339
1340 /*
1341 * Since we are inserting a new and possibly dirty page,
1342 * update the object's OBJ_MIGHTBEDIRTY flag.
1343 */
1344 if (pmap_page_is_write_mapped(m))
1345 vm_object_set_writeable_dirty(object);
1346 }
1347
1348 /*
1349 * vm_page_remove:
1350 *
1351 * Removes the specified page from its containing object, but does not
1352 * invalidate any backing storage.
1353 *
1354 * The object must be locked. The page must be locked if it is managed.
1355 */
1356 void
1357 vm_page_remove(vm_page_t m)
1358 {
1359 vm_object_t object;
1360 vm_page_t mrem;
1361
1362 if ((m->oflags & VPO_UNMANAGED) == 0)
1363 vm_page_assert_locked(m);
1364 if ((object = m->object) == NULL)
1365 return;
1366 VM_OBJECT_ASSERT_WLOCKED(object);
1367 if (vm_page_xbusied(m))
1368 vm_page_xunbusy_maybelocked(m);
1369 mrem = vm_radix_remove(&object->rtree, m->pindex);
1370 KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1371
1372 /*
1373 * Now remove from the object's list of backed pages.
1374 */
1375 TAILQ_REMOVE(&object->memq, m, listq);
1376
1377 /*
1378 * And show that the object has one fewer resident page.
1379 */
1380 object->resident_page_count--;
1381
1382 /*
1383 * The vnode may now be recycled.
1384 */
1385 if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1386 vdrop(object->handle);
1387
1388 m->object = NULL;
1389 }
1390
1391 /*
1392 * vm_page_lookup:
1393 *
1394 * Returns the page associated with the object/offset
1395 * pair specified; if none is found, NULL is returned.
1396 *
1397 * The object must be locked.
1398 */
1399 vm_page_t
1400 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1401 {
1402
1403 VM_OBJECT_ASSERT_LOCKED(object);
1404 return (vm_radix_lookup(&object->rtree, pindex));
1405 }
1406
1407 /*
1408 * vm_page_find_least:
1409 *
1410 * Returns the page associated with the object with least pindex
1411 * greater than or equal to the parameter pindex, or NULL.
1412 *
1413 * The object must be locked.
1414 */
1415 vm_page_t
1416 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1417 {
1418 vm_page_t m;
1419
1420 VM_OBJECT_ASSERT_LOCKED(object);
1421 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1422 m = vm_radix_lookup_ge(&object->rtree, pindex);
1423 return (m);
1424 }
1425
1426 /*
1427 * Returns the given page's successor (by pindex) within the object if it is
1428 * resident; if none is found, NULL is returned.
1429 *
1430 * The object must be locked.
1431 */
1432 vm_page_t
1433 vm_page_next(vm_page_t m)
1434 {
1435 vm_page_t next;
1436
1437 VM_OBJECT_ASSERT_LOCKED(m->object);
1438 if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1439 MPASS(next->object == m->object);
1440 if (next->pindex != m->pindex + 1)
1441 next = NULL;
1442 }
1443 return (next);
1444 }
1445
1446 /*
1447 * Returns the given page's predecessor (by pindex) within the object if it is
1448 * resident; if none is found, NULL is returned.
1449 *
1450 * The object must be locked.
1451 */
1452 vm_page_t
1453 vm_page_prev(vm_page_t m)
1454 {
1455 vm_page_t prev;
1456
1457 VM_OBJECT_ASSERT_LOCKED(m->object);
1458 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1459 MPASS(prev->object == m->object);
1460 if (prev->pindex != m->pindex - 1)
1461 prev = NULL;
1462 }
1463 return (prev);
1464 }
1465
1466 /*
1467 * Uses the page mnew as a replacement for an existing page at index
1468 * pindex which must be already present in the object.
1469 *
1470 * The existing page must not be on a paging queue.
1471 */
1472 vm_page_t
1473 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1474 {
1475 vm_page_t mold;
1476
1477 VM_OBJECT_ASSERT_WLOCKED(object);
1478 KASSERT(mnew->object == NULL,
1479 ("vm_page_replace: page %p already in object", mnew));
1480 KASSERT(mnew->queue == PQ_NONE,
1481 ("vm_page_replace: new page %p is on a paging queue", mnew));
1482
1483 /*
1484 * This function mostly follows vm_page_insert() and
1485 * vm_page_remove() without the radix, object count and vnode
1486 * dance. Double check such functions for more comments.
1487 */
1488
1489 mnew->object = object;
1490 mnew->pindex = pindex;
1491 mold = vm_radix_replace(&object->rtree, mnew);
1492 KASSERT(mold->queue == PQ_NONE,
1493 ("vm_page_replace: old page %p is on a paging queue", mold));
1494
1495 /* Keep the resident page list in sorted order. */
1496 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1497 TAILQ_REMOVE(&object->memq, mold, listq);
1498
1499 mold->object = NULL;
1500 vm_page_xunbusy_maybelocked(mold);
1501
1502 /*
1503 * The object's resident_page_count does not change because we have
1504 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1505 */
1506 if (pmap_page_is_write_mapped(mnew))
1507 vm_object_set_writeable_dirty(object);
1508 return (mold);
1509 }
1510
1511 /*
1512 * vm_page_rename:
1513 *
1514 * Move the given memory entry from its
1515 * current object to the specified target object/offset.
1516 *
1517 * Note: swap associated with the page must be invalidated by the move. We
1518 * have to do this for several reasons: (1) we aren't freeing the
1519 * page, (2) we are dirtying the page, (3) the VM system is probably
1520 * moving the page from object A to B, and will then later move
1521 * the backing store from A to B and we can't have a conflict.
1522 *
1523 * Note: we *always* dirty the page. It is necessary both for the
1524 * fact that we moved it, and because we may be invalidating
1525 * swap.
1526 *
1527 * The objects must be locked.
1528 */
1529 int
1530 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1531 {
1532 vm_page_t mpred;
1533 vm_pindex_t opidx;
1534
1535 VM_OBJECT_ASSERT_WLOCKED(new_object);
1536
1537 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1538 KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1539 ("vm_page_rename: pindex already renamed"));
1540
1541 /*
1542 * Create a custom version of vm_page_insert() which does not depend
1543 * by m_prev and can cheat on the implementation aspects of the
1544 * function.
1545 */
1546 opidx = m->pindex;
1547 m->pindex = new_pindex;
1548 if (vm_radix_insert(&new_object->rtree, m)) {
1549 m->pindex = opidx;
1550 return (1);
1551 }
1552
1553 /*
1554 * The operation cannot fail anymore. The removal must happen before
1555 * the listq iterator is tainted.
1556 */
1557 m->pindex = opidx;
1558 vm_page_lock(m);
1559 vm_page_remove(m);
1560
1561 /* Return back to the new pindex to complete vm_page_insert(). */
1562 m->pindex = new_pindex;
1563 m->object = new_object;
1564 vm_page_unlock(m);
1565 vm_page_insert_radixdone(m, new_object, mpred);
1566 vm_page_dirty(m);
1567 return (0);
1568 }
1569
1570 /*
1571 * vm_page_alloc:
1572 *
1573 * Allocate and return a page that is associated with the specified
1574 * object and offset pair. By default, this page is exclusive busied.
1575 *
1576 * The caller must always specify an allocation class.
1577 *
1578 * allocation classes:
1579 * VM_ALLOC_NORMAL normal process request
1580 * VM_ALLOC_SYSTEM system *really* needs a page
1581 * VM_ALLOC_INTERRUPT interrupt time request
1582 *
1583 * optional allocation flags:
1584 * VM_ALLOC_COUNT(number) the number of additional pages that the caller
1585 * intends to allocate
1586 * VM_ALLOC_NOBUSY do not exclusive busy the page
1587 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
1588 * VM_ALLOC_NOOBJ page is not associated with an object and
1589 * should not be exclusive busy
1590 * VM_ALLOC_SBUSY shared busy the allocated page
1591 * VM_ALLOC_WIRED wire the allocated page
1592 * VM_ALLOC_ZERO prefer a zeroed page
1593 *
1594 * This routine may not sleep.
1595 */
1596 vm_page_t
1597 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1598 {
1599
1600 return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1601 vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1602 }
1603
1604 /*
1605 * Allocate a page in the specified object with the given page index. To
1606 * optimize insertion of the page into the object, the caller must also specifiy
1607 * the resident page in the object with largest index smaller than the given
1608 * page index, or NULL if no such page exists.
1609 */
1610 vm_page_t
1611 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, int req,
1612 vm_page_t mpred)
1613 {
1614 vm_page_t m;
1615 int flags, req_class;
1616 u_int free_count;
1617
1618 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1619 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1620 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1621 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1622 ("inconsistent object(%p)/req(%x)", object, req));
1623 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1624 ("Can't sleep and retry object insertion."));
1625 KASSERT(mpred == NULL || mpred->pindex < pindex,
1626 ("mpred %p doesn't precede pindex 0x%jx", mpred,
1627 (uintmax_t)pindex));
1628 if (object != NULL)
1629 VM_OBJECT_ASSERT_WLOCKED(object);
1630
1631 if (__predict_false((req & VM_ALLOC_IFCACHED) != 0))
1632 return (NULL);
1633
1634 req_class = req & VM_ALLOC_CLASS_MASK;
1635
1636 /*
1637 * The page daemon is allowed to dig deeper into the free page list.
1638 */
1639 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1640 req_class = VM_ALLOC_SYSTEM;
1641
1642 /*
1643 * Allocate a page if the number of free pages exceeds the minimum
1644 * for the request class.
1645 */
1646 again:
1647 mtx_lock(&vm_page_queue_free_mtx);
1648 if (vm_cnt.v_free_count > vm_cnt.v_free_reserved ||
1649 (req_class == VM_ALLOC_SYSTEM &&
1650 vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) ||
1651 (req_class == VM_ALLOC_INTERRUPT &&
1652 vm_cnt.v_free_count > 0)) {
1653 /*
1654 * Can we allocate the page from a reservation?
1655 */
1656 #if VM_NRESERVLEVEL > 0
1657 if (object == NULL || (object->flags & (OBJ_COLORED |
1658 OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1659 vm_reserv_alloc_page(object, pindex, mpred)) == NULL)
1660 #endif
1661 {
1662 /*
1663 * If not, allocate it from the free page queues.
1664 */
1665 m = vm_phys_alloc_pages(object != NULL ?
1666 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1667 #if VM_NRESERVLEVEL > 0
1668 if (m == NULL && vm_reserv_reclaim_inactive()) {
1669 m = vm_phys_alloc_pages(object != NULL ?
1670 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1671 0);
1672 }
1673 #endif
1674 }
1675 } else {
1676 /*
1677 * Not allocatable, give up.
1678 */
1679 if (vm_page_alloc_fail(object, req))
1680 goto again;
1681 return (NULL);
1682 }
1683
1684 /*
1685 * At this point we had better have found a good page.
1686 */
1687 KASSERT(m != NULL, ("missing page"));
1688 free_count = vm_phys_freecnt_adj(m, -1);
1689 if ((m->flags & PG_ZERO) != 0)
1690 vm_page_zero_count--;
1691 mtx_unlock(&vm_page_queue_free_mtx);
1692 vm_page_alloc_check(m);
1693
1694 /*
1695 * Initialize the page. Only the PG_ZERO flag is inherited.
1696 */
1697 flags = 0;
1698 if ((req & VM_ALLOC_ZERO) != 0)
1699 flags = PG_ZERO;
1700 flags &= m->flags;
1701 if ((req & VM_ALLOC_NODUMP) != 0)
1702 flags |= PG_NODUMP;
1703 m->flags = flags;
1704 m->aflags = 0;
1705 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1706 VPO_UNMANAGED : 0;
1707 m->busy_lock = VPB_UNBUSIED;
1708 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1709 m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1710 if ((req & VM_ALLOC_SBUSY) != 0)
1711 m->busy_lock = VPB_SHARERS_WORD(1);
1712 if (req & VM_ALLOC_WIRED) {
1713 /*
1714 * The page lock is not required for wiring a page until that
1715 * page is inserted into the object.
1716 */
1717 atomic_add_int(&vm_cnt.v_wire_count, 1);
1718 m->wire_count = 1;
1719 }
1720 m->act_count = 0;
1721
1722 if (object != NULL) {
1723 if (vm_page_insert_after(m, object, pindex, mpred)) {
1724 pagedaemon_wakeup();
1725 if (req & VM_ALLOC_WIRED) {
1726 atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1727 m->wire_count = 0;
1728 }
1729 KASSERT(m->object == NULL, ("page %p has object", m));
1730 m->oflags = VPO_UNMANAGED;
1731 m->busy_lock = VPB_UNBUSIED;
1732 /* Don't change PG_ZERO. */
1733 vm_page_free_toq(m);
1734 if (req & VM_ALLOC_WAITFAIL) {
1735 VM_OBJECT_WUNLOCK(object);
1736 vm_radix_wait();
1737 VM_OBJECT_WLOCK(object);
1738 }
1739 return (NULL);
1740 }
1741
1742 /* Ignore device objects; the pager sets "memattr" for them. */
1743 if (object->memattr != VM_MEMATTR_DEFAULT &&
1744 (object->flags & OBJ_FICTITIOUS) == 0)
1745 pmap_page_set_memattr(m, object->memattr);
1746 } else
1747 m->pindex = pindex;
1748
1749 /*
1750 * Don't wakeup too often - wakeup the pageout daemon when
1751 * we would be nearly out of memory.
1752 */
1753 if (vm_paging_needed(free_count))
1754 pagedaemon_wakeup();
1755
1756 return (m);
1757 }
1758
1759 /*
1760 * vm_page_alloc_contig:
1761 *
1762 * Allocate a contiguous set of physical pages of the given size "npages"
1763 * from the free lists. All of the physical pages must be at or above
1764 * the given physical address "low" and below the given physical address
1765 * "high". The given value "alignment" determines the alignment of the
1766 * first physical page in the set. If the given value "boundary" is
1767 * non-zero, then the set of physical pages cannot cross any physical
1768 * address boundary that is a multiple of that value. Both "alignment"
1769 * and "boundary" must be a power of two.
1770 *
1771 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1772 * then the memory attribute setting for the physical pages is configured
1773 * to the object's memory attribute setting. Otherwise, the memory
1774 * attribute setting for the physical pages is configured to "memattr",
1775 * overriding the object's memory attribute setting. However, if the
1776 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1777 * memory attribute setting for the physical pages cannot be configured
1778 * to VM_MEMATTR_DEFAULT.
1779 *
1780 * The specified object may not contain fictitious pages.
1781 *
1782 * The caller must always specify an allocation class.
1783 *
1784 * allocation classes:
1785 * VM_ALLOC_NORMAL normal process request
1786 * VM_ALLOC_SYSTEM system *really* needs a page
1787 * VM_ALLOC_INTERRUPT interrupt time request
1788 *
1789 * optional allocation flags:
1790 * VM_ALLOC_NOBUSY do not exclusive busy the page
1791 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
1792 * VM_ALLOC_NOOBJ page is not associated with an object and
1793 * should not be exclusive busy
1794 * VM_ALLOC_SBUSY shared busy the allocated page
1795 * VM_ALLOC_WIRED wire the allocated page
1796 * VM_ALLOC_ZERO prefer a zeroed page
1797 *
1798 * This routine may not sleep.
1799 */
1800 vm_page_t
1801 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1802 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1803 vm_paddr_t boundary, vm_memattr_t memattr)
1804 {
1805 vm_page_t m, m_ret, mpred;
1806 u_int busy_lock, flags, oflags;
1807 int req_class;
1808
1809 mpred = NULL; /* XXX: pacify gcc */
1810 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1811 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1812 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1813 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1814 ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
1815 req));
1816 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1817 ("Can't sleep and retry object insertion."));
1818 if (object != NULL) {
1819 VM_OBJECT_ASSERT_WLOCKED(object);
1820 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
1821 ("vm_page_alloc_contig: object %p has fictitious pages",
1822 object));
1823 }
1824 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1825 req_class = req & VM_ALLOC_CLASS_MASK;
1826
1827 /*
1828 * The page daemon is allowed to dig deeper into the free page list.
1829 */
1830 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1831 req_class = VM_ALLOC_SYSTEM;
1832
1833 if (object != NULL) {
1834 mpred = vm_radix_lookup_le(&object->rtree, pindex);
1835 KASSERT(mpred == NULL || mpred->pindex != pindex,
1836 ("vm_page_alloc_contig: pindex already allocated"));
1837 }
1838
1839 /*
1840 * Can we allocate the pages without the number of free pages falling
1841 * below the lower bound for the allocation class?
1842 */
1843 again:
1844 mtx_lock(&vm_page_queue_free_mtx);
1845 if (vm_cnt.v_free_count >= npages + vm_cnt.v_free_reserved ||
1846 (req_class == VM_ALLOC_SYSTEM &&
1847 vm_cnt.v_free_count >= npages + vm_cnt.v_interrupt_free_min) ||
1848 (req_class == VM_ALLOC_INTERRUPT &&
1849 vm_cnt.v_free_count >= npages)) {
1850 /*
1851 * Can we allocate the pages from a reservation?
1852 */
1853 #if VM_NRESERVLEVEL > 0
1854 retry:
1855 if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1856 (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1857 low, high, alignment, boundary, mpred)) == NULL)
1858 #endif
1859 /*
1860 * If not, allocate them from the free page queues.
1861 */
1862 m_ret = vm_phys_alloc_contig(npages, low, high,
1863 alignment, boundary);
1864 } else {
1865 if (vm_page_alloc_fail(object, req))
1866 goto again;
1867 return (NULL);
1868 }
1869 if (m_ret != NULL) {
1870 vm_phys_freecnt_adj(m_ret, -npages);
1871 for (m = m_ret; m < &m_ret[npages]; m++)
1872 if ((m->flags & PG_ZERO) != 0)
1873 vm_page_zero_count--;
1874 } else {
1875 #if VM_NRESERVLEVEL > 0
1876 if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1877 boundary))
1878 goto retry;
1879 #endif
1880 }
1881 mtx_unlock(&vm_page_queue_free_mtx);
1882 if (m_ret == NULL)
1883 return (NULL);
1884 for (m = m_ret; m < &m_ret[npages]; m++)
1885 vm_page_alloc_check(m);
1886
1887 /*
1888 * Initialize the pages. Only the PG_ZERO flag is inherited.
1889 */
1890 flags = 0;
1891 if ((req & VM_ALLOC_ZERO) != 0)
1892 flags = PG_ZERO;
1893 if ((req & VM_ALLOC_NODUMP) != 0)
1894 flags |= PG_NODUMP;
1895 oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1896 VPO_UNMANAGED : 0;
1897 busy_lock = VPB_UNBUSIED;
1898 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1899 busy_lock = VPB_SINGLE_EXCLUSIVER;
1900 if ((req & VM_ALLOC_SBUSY) != 0)
1901 busy_lock = VPB_SHARERS_WORD(1);
1902 if ((req & VM_ALLOC_WIRED) != 0)
1903 atomic_add_int(&vm_cnt.v_wire_count, npages);
1904 if (object != NULL) {
1905 if (object->memattr != VM_MEMATTR_DEFAULT &&
1906 memattr == VM_MEMATTR_DEFAULT)
1907 memattr = object->memattr;
1908 }
1909 for (m = m_ret; m < &m_ret[npages]; m++) {
1910 m->aflags = 0;
1911 m->flags = (m->flags | PG_NODUMP) & flags;
1912 m->busy_lock = busy_lock;
1913 if ((req & VM_ALLOC_WIRED) != 0)
1914 m->wire_count = 1;
1915 m->act_count = 0;
1916 m->oflags = oflags;
1917 if (object != NULL) {
1918 if (vm_page_insert_after(m, object, pindex, mpred)) {
1919 pagedaemon_wakeup();
1920 if ((req & VM_ALLOC_WIRED) != 0)
1921 atomic_subtract_int(
1922 &vm_cnt.v_wire_count, npages);
1923 KASSERT(m->object == NULL,
1924 ("page %p has object", m));
1925 mpred = m;
1926 for (m = m_ret; m < &m_ret[npages]; m++) {
1927 if (m <= mpred &&
1928 (req & VM_ALLOC_WIRED) != 0)
1929 m->wire_count = 0;
1930 m->oflags = VPO_UNMANAGED;
1931 m->busy_lock = VPB_UNBUSIED;
1932 /* Don't change PG_ZERO. */
1933 vm_page_free_toq(m);
1934 }
1935 if (req & VM_ALLOC_WAITFAIL) {
1936 VM_OBJECT_WUNLOCK(object);
1937 vm_radix_wait();
1938 VM_OBJECT_WLOCK(object);
1939 }
1940 return (NULL);
1941 }
1942 mpred = m;
1943 } else
1944 m->pindex = pindex;
1945 if (memattr != VM_MEMATTR_DEFAULT)
1946 pmap_page_set_memattr(m, memattr);
1947 pindex++;
1948 }
1949 if (vm_paging_needed(vm_cnt.v_free_count))
1950 pagedaemon_wakeup();
1951 return (m_ret);
1952 }
1953
1954 /*
1955 * Check a page that has been freshly dequeued from a freelist.
1956 */
1957 static void
1958 vm_page_alloc_check(vm_page_t m)
1959 {
1960
1961 KASSERT(m->object == NULL, ("page %p has object", m));
1962 KASSERT(m->queue == PQ_NONE,
1963 ("page %p has unexpected queue %d", m, m->queue));
1964 KASSERT(m->wire_count == 0, ("page %p is wired", m));
1965 KASSERT(m->hold_count == 0, ("page %p is held", m));
1966 KASSERT(!vm_page_busied(m), ("page %p is busy", m));
1967 KASSERT(m->dirty == 0, ("page %p is dirty", m));
1968 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1969 ("page %p has unexpected memattr %d",
1970 m, pmap_page_get_memattr(m)));
1971 KASSERT(m->valid == 0, ("free page %p is valid", m));
1972 }
1973
1974 /*
1975 * vm_page_alloc_freelist:
1976 *
1977 * Allocate a physical page from the specified free page list.
1978 *
1979 * The caller must always specify an allocation class.
1980 *
1981 * allocation classes:
1982 * VM_ALLOC_NORMAL normal process request
1983 * VM_ALLOC_SYSTEM system *really* needs a page
1984 * VM_ALLOC_INTERRUPT interrupt time request
1985 *
1986 * optional allocation flags:
1987 * VM_ALLOC_COUNT(number) the number of additional pages that the caller
1988 * intends to allocate
1989 * VM_ALLOC_WIRED wire the allocated page
1990 * VM_ALLOC_ZERO prefer a zeroed page
1991 *
1992 * This routine may not sleep.
1993 */
1994 vm_page_t
1995 vm_page_alloc_freelist(int flind, int req)
1996 {
1997 vm_page_t m;
1998 u_int flags, free_count;
1999 int req_class;
2000
2001 req_class = req & VM_ALLOC_CLASS_MASK;
2002
2003 /*
2004 * The page daemon is allowed to dig deeper into the free page list.
2005 */
2006 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2007 req_class = VM_ALLOC_SYSTEM;
2008
2009 /*
2010 * Do not allocate reserved pages unless the req has asked for it.
2011 */
2012 again:
2013 mtx_lock(&vm_page_queue_free_mtx);
2014 if (vm_cnt.v_free_count > vm_cnt.v_free_reserved ||
2015 (req_class == VM_ALLOC_SYSTEM &&
2016 vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) ||
2017 (req_class == VM_ALLOC_INTERRUPT &&
2018 vm_cnt.v_free_count > 0)) {
2019 m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
2020 } else {
2021 if (vm_page_alloc_fail(NULL, req))
2022 goto again;
2023 return (NULL);
2024 }
2025 if (m == NULL) {
2026 mtx_unlock(&vm_page_queue_free_mtx);
2027 return (NULL);
2028 }
2029 free_count = vm_phys_freecnt_adj(m, -1);
2030 if ((m->flags & PG_ZERO) != 0)
2031 vm_page_zero_count--;
2032 mtx_unlock(&vm_page_queue_free_mtx);
2033 vm_page_alloc_check(m);
2034
2035 /*
2036 * Initialize the page. Only the PG_ZERO flag is inherited.
2037 */
2038 m->aflags = 0;
2039 flags = 0;
2040 if ((req & VM_ALLOC_ZERO) != 0)
2041 flags = PG_ZERO;
2042 m->flags &= flags;
2043 if ((req & VM_ALLOC_WIRED) != 0) {
2044 /*
2045 * The page lock is not required for wiring a page that does
2046 * not belong to an object.
2047 */
2048 atomic_add_int(&vm_cnt.v_wire_count, 1);
2049 m->wire_count = 1;
2050 }
2051 /* Unmanaged pages don't use "act_count". */
2052 m->oflags = VPO_UNMANAGED;
2053 if (vm_paging_needed(free_count))
2054 pagedaemon_wakeup();
2055 return (m);
2056 }
2057
2058 #define VPSC_ANY 0 /* No restrictions. */
2059 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */
2060 #define VPSC_NOSUPER 2 /* Skip superpages. */
2061
2062 /*
2063 * vm_page_scan_contig:
2064 *
2065 * Scan vm_page_array[] between the specified entries "m_start" and
2066 * "m_end" for a run of contiguous physical pages that satisfy the
2067 * specified conditions, and return the lowest page in the run. The
2068 * specified "alignment" determines the alignment of the lowest physical
2069 * page in the run. If the specified "boundary" is non-zero, then the
2070 * run of physical pages cannot span a physical address that is a
2071 * multiple of "boundary".
2072 *
2073 * "m_end" is never dereferenced, so it need not point to a vm_page
2074 * structure within vm_page_array[].
2075 *
2076 * "npages" must be greater than zero. "m_start" and "m_end" must not
2077 * span a hole (or discontiguity) in the physical address space. Both
2078 * "alignment" and "boundary" must be a power of two.
2079 */
2080 vm_page_t
2081 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2082 u_long alignment, vm_paddr_t boundary, int options)
2083 {
2084 struct mtx *m_mtx;
2085 vm_object_t object;
2086 vm_paddr_t pa;
2087 vm_page_t m, m_run;
2088 #if VM_NRESERVLEVEL > 0
2089 int level;
2090 #endif
2091 int m_inc, order, run_ext, run_len;
2092
2093 KASSERT(npages > 0, ("npages is 0"));
2094 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2095 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2096 m_run = NULL;
2097 run_len = 0;
2098 m_mtx = NULL;
2099 for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2100 KASSERT((m->flags & PG_MARKER) == 0,
2101 ("page %p is PG_MARKER", m));
2102 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->wire_count == 1,
2103 ("fictitious page %p has invalid wire count", m));
2104
2105 /*
2106 * If the current page would be the start of a run, check its
2107 * physical address against the end, alignment, and boundary
2108 * conditions. If it doesn't satisfy these conditions, either
2109 * terminate the scan or advance to the next page that
2110 * satisfies the failed condition.
2111 */
2112 if (run_len == 0) {
2113 KASSERT(m_run == NULL, ("m_run != NULL"));
2114 if (m + npages > m_end)
2115 break;
2116 pa = VM_PAGE_TO_PHYS(m);
2117 if ((pa & (alignment - 1)) != 0) {
2118 m_inc = atop(roundup2(pa, alignment) - pa);
2119 continue;
2120 }
2121 if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2122 boundary) != 0) {
2123 m_inc = atop(roundup2(pa, boundary) - pa);
2124 continue;
2125 }
2126 } else
2127 KASSERT(m_run != NULL, ("m_run == NULL"));
2128
2129 vm_page_change_lock(m, &m_mtx);
2130 m_inc = 1;
2131 retry:
2132 if (m->wire_count != 0 || m->hold_count != 0)
2133 run_ext = 0;
2134 #if VM_NRESERVLEVEL > 0
2135 else if ((level = vm_reserv_level(m)) >= 0 &&
2136 (options & VPSC_NORESERV) != 0) {
2137 run_ext = 0;
2138 /* Advance to the end of the reservation. */
2139 pa = VM_PAGE_TO_PHYS(m);
2140 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2141 pa);
2142 }
2143 #endif
2144 else if ((object = m->object) != NULL) {
2145 /*
2146 * The page is considered eligible for relocation if
2147 * and only if it could be laundered or reclaimed by
2148 * the page daemon.
2149 */
2150 if (!VM_OBJECT_TRYRLOCK(object)) {
2151 mtx_unlock(m_mtx);
2152 VM_OBJECT_RLOCK(object);
2153 mtx_lock(m_mtx);
2154 if (m->object != object) {
2155 /*
2156 * The page may have been freed.
2157 */
2158 VM_OBJECT_RUNLOCK(object);
2159 goto retry;
2160 } else if (m->wire_count != 0 ||
2161 m->hold_count != 0) {
2162 run_ext = 0;
2163 goto unlock;
2164 }
2165 }
2166 KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2167 ("page %p is PG_UNHOLDFREE", m));
2168 /* Don't care: PG_NODUMP, PG_ZERO. */
2169 if (object->type != OBJT_DEFAULT &&
2170 object->type != OBJT_SWAP &&
2171 object->type != OBJT_VNODE) {
2172 run_ext = 0;
2173 #if VM_NRESERVLEVEL > 0
2174 } else if ((options & VPSC_NOSUPER) != 0 &&
2175 (level = vm_reserv_level_iffullpop(m)) >= 0) {
2176 run_ext = 0;
2177 /* Advance to the end of the superpage. */
2178 pa = VM_PAGE_TO_PHYS(m);
2179 m_inc = atop(roundup2(pa + 1,
2180 vm_reserv_size(level)) - pa);
2181 #endif
2182 } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2183 m->queue != PQ_NONE && !vm_page_busied(m)) {
2184 /*
2185 * The page is allocated but eligible for
2186 * relocation. Extend the current run by one
2187 * page.
2188 */
2189 KASSERT(pmap_page_get_memattr(m) ==
2190 VM_MEMATTR_DEFAULT,
2191 ("page %p has an unexpected memattr", m));
2192 KASSERT((m->oflags & (VPO_SWAPINPROG |
2193 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2194 ("page %p has unexpected oflags", m));
2195 /* Don't care: VPO_NOSYNC. */
2196 run_ext = 1;
2197 } else
2198 run_ext = 0;
2199 unlock:
2200 VM_OBJECT_RUNLOCK(object);
2201 #if VM_NRESERVLEVEL > 0
2202 } else if (level >= 0) {
2203 /*
2204 * The page is reserved but not yet allocated. In
2205 * other words, it is still free. Extend the current
2206 * run by one page.
2207 */
2208 run_ext = 1;
2209 #endif
2210 } else if ((order = m->order) < VM_NFREEORDER) {
2211 /*
2212 * The page is enqueued in the physical memory
2213 * allocator's free page queues. Moreover, it is the
2214 * first page in a power-of-two-sized run of
2215 * contiguous free pages. Add these pages to the end
2216 * of the current run, and jump ahead.
2217 */
2218 run_ext = 1 << order;
2219 m_inc = 1 << order;
2220 } else {
2221 /*
2222 * Skip the page for one of the following reasons: (1)
2223 * It is enqueued in the physical memory allocator's
2224 * free page queues. However, it is not the first
2225 * page in a run of contiguous free pages. (This case
2226 * rarely occurs because the scan is performed in
2227 * ascending order.) (2) It is not reserved, and it is
2228 * transitioning from free to allocated. (Conversely,
2229 * the transition from allocated to free for managed
2230 * pages is blocked by the page lock.) (3) It is
2231 * allocated but not contained by an object and not
2232 * wired, e.g., allocated by Xen's balloon driver.
2233 */
2234 run_ext = 0;
2235 }
2236
2237 /*
2238 * Extend or reset the current run of pages.
2239 */
2240 if (run_ext > 0) {
2241 if (run_len == 0)
2242 m_run = m;
2243 run_len += run_ext;
2244 } else {
2245 if (run_len > 0) {
2246 m_run = NULL;
2247 run_len = 0;
2248 }
2249 }
2250 }
2251 if (m_mtx != NULL)
2252 mtx_unlock(m_mtx);
2253 if (run_len >= npages)
2254 return (m_run);
2255 return (NULL);
2256 }
2257
2258 /*
2259 * vm_page_reclaim_run:
2260 *
2261 * Try to relocate each of the allocated virtual pages within the
2262 * specified run of physical pages to a new physical address. Free the
2263 * physical pages underlying the relocated virtual pages. A virtual page
2264 * is relocatable if and only if it could be laundered or reclaimed by
2265 * the page daemon. Whenever possible, a virtual page is relocated to a
2266 * physical address above "high".
2267 *
2268 * Returns 0 if every physical page within the run was already free or
2269 * just freed by a successful relocation. Otherwise, returns a non-zero
2270 * value indicating why the last attempt to relocate a virtual page was
2271 * unsuccessful.
2272 *
2273 * "req_class" must be an allocation class.
2274 */
2275 static int
2276 vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
2277 vm_paddr_t high)
2278 {
2279 struct mtx *m_mtx;
2280 struct spglist free;
2281 vm_object_t object;
2282 vm_paddr_t pa;
2283 vm_page_t m, m_end, m_new;
2284 int error, order, req;
2285
2286 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2287 ("req_class is not an allocation class"));
2288 SLIST_INIT(&free);
2289 error = 0;
2290 m = m_run;
2291 m_end = m_run + npages;
2292 m_mtx = NULL;
2293 for (; error == 0 && m < m_end; m++) {
2294 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2295 ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2296
2297 /*
2298 * Avoid releasing and reacquiring the same page lock.
2299 */
2300 vm_page_change_lock(m, &m_mtx);
2301 retry:
2302 if (m->wire_count != 0 || m->hold_count != 0)
2303 error = EBUSY;
2304 else if ((object = m->object) != NULL) {
2305 /*
2306 * The page is relocated if and only if it could be
2307 * laundered or reclaimed by the page daemon.
2308 */
2309 if (!VM_OBJECT_TRYWLOCK(object)) {
2310 mtx_unlock(m_mtx);
2311 VM_OBJECT_WLOCK(object);
2312 mtx_lock(m_mtx);
2313 if (m->object != object) {
2314 /*
2315 * The page may have been freed.
2316 */
2317 VM_OBJECT_WUNLOCK(object);
2318 goto retry;
2319 } else if (m->wire_count != 0 ||
2320 m->hold_count != 0) {
2321 error = EBUSY;
2322 goto unlock;
2323 }
2324 }
2325 KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2326 ("page %p is PG_UNHOLDFREE", m));
2327 /* Don't care: PG_NODUMP, PG_ZERO. */
2328 if (object->type != OBJT_DEFAULT &&
2329 object->type != OBJT_SWAP &&
2330 object->type != OBJT_VNODE)
2331 error = EINVAL;
2332 else if (object->memattr != VM_MEMATTR_DEFAULT)
2333 error = EINVAL;
2334 else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
2335 KASSERT(pmap_page_get_memattr(m) ==
2336 VM_MEMATTR_DEFAULT,
2337 ("page %p has an unexpected memattr", m));
2338 KASSERT((m->oflags & (VPO_SWAPINPROG |
2339 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2340 ("page %p has unexpected oflags", m));
2341 /* Don't care: VPO_NOSYNC. */
2342 if (m->valid != 0) {
2343 /*
2344 * First, try to allocate a new page
2345 * that is above "high". Failing
2346 * that, try to allocate a new page
2347 * that is below "m_run". Allocate
2348 * the new page between the end of
2349 * "m_run" and "high" only as a last
2350 * resort.
2351 */
2352 req = req_class | VM_ALLOC_NOOBJ;
2353 if ((m->flags & PG_NODUMP) != 0)
2354 req |= VM_ALLOC_NODUMP;
2355 if (trunc_page(high) !=
2356 ~(vm_paddr_t)PAGE_MASK) {
2357 m_new = vm_page_alloc_contig(
2358 NULL, 0, req, 1,
2359 round_page(high),
2360 ~(vm_paddr_t)0,
2361 PAGE_SIZE, 0,
2362 VM_MEMATTR_DEFAULT);
2363 } else
2364 m_new = NULL;
2365 if (m_new == NULL) {
2366 pa = VM_PAGE_TO_PHYS(m_run);
2367 m_new = vm_page_alloc_contig(
2368 NULL, 0, req, 1,
2369 0, pa - 1, PAGE_SIZE, 0,
2370 VM_MEMATTR_DEFAULT);
2371 }
2372 if (m_new == NULL) {
2373 pa += ptoa(npages);
2374 m_new = vm_page_alloc_contig(
2375 NULL, 0, req, 1,
2376 pa, high, PAGE_SIZE, 0,
2377 VM_MEMATTR_DEFAULT);
2378 }
2379 if (m_new == NULL) {
2380 error = ENOMEM;
2381 goto unlock;
2382 }
2383 KASSERT(m_new->wire_count == 0,
2384 ("page %p is wired", m_new));
2385
2386 /*
2387 * Replace "m" with the new page. For
2388 * vm_page_replace(), "m" must be busy
2389 * and dequeued. Finally, change "m"
2390 * as if vm_page_free() was called.
2391 */
2392 if (object->ref_count != 0)
2393 pmap_remove_all(m);
2394 m_new->aflags = m->aflags;
2395 KASSERT(m_new->oflags == VPO_UNMANAGED,
2396 ("page %p is managed", m_new));
2397 m_new->oflags = m->oflags & VPO_NOSYNC;
2398 pmap_copy_page(m, m_new);
2399 m_new->valid = m->valid;
2400 m_new->dirty = m->dirty;
2401 m->flags &= ~PG_ZERO;
2402 vm_page_xbusy(m);
2403 vm_page_remque(m);
2404 vm_page_replace_checked(m_new, object,
2405 m->pindex, m);
2406 m->valid = 0;
2407 vm_page_undirty(m);
2408
2409 /*
2410 * The new page must be deactivated
2411 * before the object is unlocked.
2412 */
2413 vm_page_change_lock(m_new, &m_mtx);
2414 vm_page_deactivate(m_new);
2415 } else {
2416 m->flags &= ~PG_ZERO;
2417 vm_page_remque(m);
2418 vm_page_remove(m);
2419 KASSERT(m->dirty == 0,
2420 ("page %p is dirty", m));
2421 }
2422 SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
2423 } else
2424 error = EBUSY;
2425 unlock:
2426 VM_OBJECT_WUNLOCK(object);
2427 } else {
2428 mtx_lock(&vm_page_queue_free_mtx);
2429 order = m->order;
2430 if (order < VM_NFREEORDER) {
2431 /*
2432 * The page is enqueued in the physical memory
2433 * allocator's free page queues. Moreover, it
2434 * is the first page in a power-of-two-sized
2435 * run of contiguous free pages. Jump ahead
2436 * to the last page within that run, and
2437 * continue from there.
2438 */
2439 m += (1 << order) - 1;
2440 }
2441 #if VM_NRESERVLEVEL > 0
2442 else if (vm_reserv_is_page_free(m))
2443 order = 0;
2444 #endif
2445 mtx_unlock(&vm_page_queue_free_mtx);
2446 if (order == VM_NFREEORDER)
2447 error = EINVAL;
2448 }
2449 }
2450 if (m_mtx != NULL)
2451 mtx_unlock(m_mtx);
2452 if ((m = SLIST_FIRST(&free)) != NULL) {
2453 mtx_lock(&vm_page_queue_free_mtx);
2454 do {
2455 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2456 vm_page_free_phys(m);
2457 } while ((m = SLIST_FIRST(&free)) != NULL);
2458 vm_page_zero_idle_wakeup();
2459 vm_page_free_wakeup();
2460 mtx_unlock(&vm_page_queue_free_mtx);
2461 }
2462 return (error);
2463 }
2464
2465 #define NRUNS 16
2466
2467 CTASSERT(powerof2(NRUNS));
2468
2469 #define RUN_INDEX(count) ((count) & (NRUNS - 1))
2470
2471 #define MIN_RECLAIM 8
2472
2473 /*
2474 * vm_page_reclaim_contig:
2475 *
2476 * Reclaim allocated, contiguous physical memory satisfying the specified
2477 * conditions by relocating the virtual pages using that physical memory.
2478 * Returns true if reclamation is successful and false otherwise. Since
2479 * relocation requires the allocation of physical pages, reclamation may
2480 * fail due to a shortage of free pages. When reclamation fails, callers
2481 * are expected to perform VM_WAIT before retrying a failed allocation
2482 * operation, e.g., vm_page_alloc_contig().
2483 *
2484 * The caller must always specify an allocation class through "req".
2485 *
2486 * allocation classes:
2487 * VM_ALLOC_NORMAL normal process request
2488 * VM_ALLOC_SYSTEM system *really* needs a page
2489 * VM_ALLOC_INTERRUPT interrupt time request
2490 *
2491 * The optional allocation flags are ignored.
2492 *
2493 * "npages" must be greater than zero. Both "alignment" and "boundary"
2494 * must be a power of two.
2495 */
2496 bool
2497 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2498 u_long alignment, vm_paddr_t boundary)
2499 {
2500 vm_paddr_t curr_low;
2501 vm_page_t m_run, m_runs[NRUNS];
2502 u_long count, reclaimed;
2503 int error, i, options, req_class;
2504
2505 KASSERT(npages > 0, ("npages is 0"));
2506 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2507 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2508 req_class = req & VM_ALLOC_CLASS_MASK;
2509
2510 /*
2511 * The page daemon is allowed to dig deeper into the free page list.
2512 */
2513 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2514 req_class = VM_ALLOC_SYSTEM;
2515
2516 /*
2517 * Return if the number of free pages cannot satisfy the requested
2518 * allocation.
2519 */
2520 count = vm_cnt.v_free_count;
2521 if (count < npages + vm_cnt.v_free_reserved || (count < npages +
2522 vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2523 (count < npages && req_class == VM_ALLOC_INTERRUPT))
2524 return (false);
2525
2526 /*
2527 * Scan up to three times, relaxing the restrictions ("options") on
2528 * the reclamation of reservations and superpages each time.
2529 */
2530 for (options = VPSC_NORESERV;;) {
2531 /*
2532 * Find the highest runs that satisfy the given constraints
2533 * and restrictions, and record them in "m_runs".
2534 */
2535 curr_low = low;
2536 count = 0;
2537 for (;;) {
2538 m_run = vm_phys_scan_contig(npages, curr_low, high,
2539 alignment, boundary, options);
2540 if (m_run == NULL)
2541 break;
2542 curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2543 m_runs[RUN_INDEX(count)] = m_run;
2544 count++;
2545 }
2546
2547 /*
2548 * Reclaim the highest runs in LIFO (descending) order until
2549 * the number of reclaimed pages, "reclaimed", is at least
2550 * MIN_RECLAIM. Reset "reclaimed" each time because each
2551 * reclamation is idempotent, and runs will (likely) recur
2552 * from one scan to the next as restrictions are relaxed.
2553 */
2554 reclaimed = 0;
2555 for (i = 0; count > 0 && i < NRUNS; i++) {
2556 count--;
2557 m_run = m_runs[RUN_INDEX(count)];
2558 error = vm_page_reclaim_run(req_class, npages, m_run,
2559 high);
2560 if (error == 0) {
2561 reclaimed += npages;
2562 if (reclaimed >= MIN_RECLAIM)
2563 return (true);
2564 }
2565 }
2566
2567 /*
2568 * Either relax the restrictions on the next scan or return if
2569 * the last scan had no restrictions.
2570 */
2571 if (options == VPSC_NORESERV)
2572 options = VPSC_NOSUPER;
2573 else if (options == VPSC_NOSUPER)
2574 options = VPSC_ANY;
2575 else if (options == VPSC_ANY)
2576 return (reclaimed != 0);
2577 }
2578 }
2579
2580 /*
2581 * vm_wait: (also see VM_WAIT macro)
2582 *
2583 * Sleep until free pages are available for allocation.
2584 * - Called in various places before memory allocations.
2585 */
2586 static void
2587 _vm_wait(void)
2588 {
2589
2590 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2591 if (curproc == pageproc) {
2592 vm_pageout_pages_needed = 1;
2593 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2594 PDROP | PSWP, "VMWait", 0);
2595 } else {
2596 if (pageproc == NULL)
2597 panic("vm_wait in early boot");
2598 pagedaemon_wait(PVM, "vmwait");
2599 }
2600 }
2601
2602 void
2603 vm_wait(void)
2604 {
2605
2606 mtx_lock(&vm_page_queue_free_mtx);
2607 _vm_wait();
2608 }
2609
2610 /*
2611 * vm_page_alloc_fail:
2612 *
2613 * Called when a page allocation function fails. Informs the
2614 * pagedaemon and performs the requested wait. Requires the
2615 * page_queue_free and object lock on entry. Returns with the
2616 * object lock held and free lock released. Returns an error when
2617 * retry is necessary.
2618 *
2619 */
2620 static int
2621 vm_page_alloc_fail(vm_object_t object, int req)
2622 {
2623
2624 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2625
2626 atomic_add_int(&vm_pageout_deficit,
2627 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
2628 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
2629 if (object != NULL)
2630 VM_OBJECT_WUNLOCK(object);
2631 _vm_wait();
2632 if (object != NULL)
2633 VM_OBJECT_WLOCK(object);
2634 if (req & VM_ALLOC_WAITOK)
2635 return (EAGAIN);
2636 } else {
2637 mtx_unlock(&vm_page_queue_free_mtx);
2638 pagedaemon_wakeup();
2639 }
2640 return (0);
2641 }
2642
2643 /*
2644 * vm_waitpfault: (also see VM_WAITPFAULT macro)
2645 *
2646 * Sleep until free pages are available for allocation.
2647 * - Called only in vm_fault so that processes page faulting
2648 * can be easily tracked.
2649 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2650 * processes will be able to grab memory first. Do not change
2651 * this balance without careful testing first.
2652 */
2653 void
2654 vm_waitpfault(void)
2655 {
2656
2657 mtx_lock(&vm_page_queue_free_mtx);
2658 pagedaemon_wait(PUSER, "pfault");
2659 }
2660
2661 struct vm_pagequeue *
2662 vm_page_pagequeue(vm_page_t m)
2663 {
2664
2665 if (vm_page_in_laundry(m))
2666 return (&vm_dom[0].vmd_pagequeues[m->queue]);
2667 else
2668 return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2669 }
2670
2671 /*
2672 * vm_page_dequeue:
2673 *
2674 * Remove the given page from its current page queue.
2675 *
2676 * The page must be locked.
2677 */
2678 void
2679 vm_page_dequeue(vm_page_t m)
2680 {
2681 struct vm_pagequeue *pq;
2682
2683 vm_page_assert_locked(m);
2684 KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2685 m));
2686 pq = vm_page_pagequeue(m);
2687 vm_pagequeue_lock(pq);
2688 m->queue = PQ_NONE;
2689 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2690 vm_pagequeue_cnt_dec(pq);
2691 vm_pagequeue_unlock(pq);
2692 }
2693
2694 /*
2695 * vm_page_dequeue_locked:
2696 *
2697 * Remove the given page from its current page queue.
2698 *
2699 * The page and page queue must be locked.
2700 */
2701 void
2702 vm_page_dequeue_locked(vm_page_t m)
2703 {
2704 struct vm_pagequeue *pq;
2705
2706 vm_page_lock_assert(m, MA_OWNED);
2707 pq = vm_page_pagequeue(m);
2708 vm_pagequeue_assert_locked(pq);
2709 m->queue = PQ_NONE;
2710 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2711 vm_pagequeue_cnt_dec(pq);
2712 }
2713
2714 /*
2715 * vm_page_enqueue:
2716 *
2717 * Add the given page to the specified page queue.
2718 *
2719 * The page must be locked.
2720 */
2721 static void
2722 vm_page_enqueue(uint8_t queue, vm_page_t m)
2723 {
2724 struct vm_pagequeue *pq;
2725
2726 vm_page_lock_assert(m, MA_OWNED);
2727 KASSERT(queue < PQ_COUNT,
2728 ("vm_page_enqueue: invalid queue %u request for page %p",
2729 queue, m));
2730 if (queue == PQ_LAUNDRY)
2731 pq = &vm_dom[0].vmd_pagequeues[queue];
2732 else
2733 pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2734 vm_pagequeue_lock(pq);
2735 m->queue = queue;
2736 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2737 vm_pagequeue_cnt_inc(pq);
2738 vm_pagequeue_unlock(pq);
2739 }
2740
2741 /*
2742 * vm_page_requeue:
2743 *
2744 * Move the given page to the tail of its current page queue.
2745 *
2746 * The page must be locked.
2747 */
2748 void
2749 vm_page_requeue(vm_page_t m)
2750 {
2751 struct vm_pagequeue *pq;
2752
2753 vm_page_lock_assert(m, MA_OWNED);
2754 KASSERT(m->queue != PQ_NONE,
2755 ("vm_page_requeue: page %p is not queued", m));
2756 pq = vm_page_pagequeue(m);
2757 vm_pagequeue_lock(pq);
2758 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2759 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2760 vm_pagequeue_unlock(pq);
2761 }
2762
2763 /*
2764 * vm_page_requeue_locked:
2765 *
2766 * Move the given page to the tail of its current page queue.
2767 *
2768 * The page queue must be locked.
2769 */
2770 void
2771 vm_page_requeue_locked(vm_page_t m)
2772 {
2773 struct vm_pagequeue *pq;
2774
2775 KASSERT(m->queue != PQ_NONE,
2776 ("vm_page_requeue_locked: page %p is not queued", m));
2777 pq = vm_page_pagequeue(m);
2778 vm_pagequeue_assert_locked(pq);
2779 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2780 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2781 }
2782
2783 /*
2784 * vm_page_activate:
2785 *
2786 * Put the specified page on the active list (if appropriate).
2787 * Ensure that act_count is at least ACT_INIT but do not otherwise
2788 * mess with it.
2789 *
2790 * The page must be locked.
2791 */
2792 void
2793 vm_page_activate(vm_page_t m)
2794 {
2795 int queue;
2796
2797 vm_page_lock_assert(m, MA_OWNED);
2798 if ((queue = m->queue) != PQ_ACTIVE) {
2799 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2800 if (m->act_count < ACT_INIT)
2801 m->act_count = ACT_INIT;
2802 if (queue != PQ_NONE)
2803 vm_page_dequeue(m);
2804 vm_page_enqueue(PQ_ACTIVE, m);
2805 } else
2806 KASSERT(queue == PQ_NONE,
2807 ("vm_page_activate: wired page %p is queued", m));
2808 } else {
2809 if (m->act_count < ACT_INIT)
2810 m->act_count = ACT_INIT;
2811 }
2812 }
2813
2814 /*
2815 * vm_page_free_wakeup:
2816 *
2817 * Helper routine for vm_page_free_toq(). This routine is called
2818 * when a page is added to the free queues.
2819 *
2820 * The page queues must be locked.
2821 */
2822 static void
2823 vm_page_free_wakeup(void)
2824 {
2825
2826 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2827 /*
2828 * if pageout daemon needs pages, then tell it that there are
2829 * some free.
2830 */
2831 if (vm_pageout_pages_needed &&
2832 vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2833 wakeup(&vm_pageout_pages_needed);
2834 vm_pageout_pages_needed = 0;
2835 }
2836 /*
2837 * wakeup processes that are waiting on memory if we hit a
2838 * high water mark. And wakeup scheduler process if we have
2839 * lots of memory. this process will swapin processes.
2840 */
2841 if (vm_pages_needed && !vm_page_count_min()) {
2842 vm_pages_needed = false;
2843 wakeup(&vm_cnt.v_free_count);
2844 }
2845 }
2846
2847 /*
2848 * vm_page_free_prep:
2849 *
2850 * Prepares the given page to be put on the free list,
2851 * disassociating it from any VM object. The caller may return
2852 * the page to the free list only if this function returns true.
2853 *
2854 * The object must be locked. The page must be locked if it is
2855 * managed. For a queued managed page, the pagequeue_locked
2856 * argument specifies whether the page queue is already locked.
2857 */
2858 bool
2859 vm_page_free_prep(vm_page_t m, bool pagequeue_locked)
2860 {
2861
2862 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
2863 if ((m->flags & PG_ZERO) != 0) {
2864 uint64_t *p;
2865 int i;
2866 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2867 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
2868 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
2869 m, i, (uintmax_t)*p));
2870 }
2871 #endif
2872 if ((m->oflags & VPO_UNMANAGED) == 0) {
2873 vm_page_lock_assert(m, MA_OWNED);
2874 KASSERT(!pmap_page_is_mapped(m),
2875 ("vm_page_free_toq: freeing mapped page %p", m));
2876 } else
2877 KASSERT(m->queue == PQ_NONE,
2878 ("vm_page_free_toq: unmanaged page %p is queued", m));
2879 PCPU_INC(cnt.v_tfree);
2880
2881 if (vm_page_sbusied(m))
2882 panic("vm_page_free: freeing busy page %p", m);
2883
2884 /*
2885 * Unqueue, then remove page. Note that we cannot destroy
2886 * the page here because we do not want to call the pager's
2887 * callback routine until after we've put the page on the
2888 * appropriate free queue.
2889 */
2890 if (m->queue != PQ_NONE) {
2891 if (pagequeue_locked)
2892 vm_page_dequeue_locked(m);
2893 else
2894 vm_page_dequeue(m);
2895 }
2896 vm_page_remove(m);
2897
2898 /*
2899 * If fictitious remove object association and
2900 * return, otherwise delay object association removal.
2901 */
2902 if ((m->flags & PG_FICTITIOUS) != 0)
2903 return (false);
2904
2905 m->valid = 0;
2906 vm_page_undirty(m);
2907
2908 if (m->wire_count != 0)
2909 panic("vm_page_free: freeing wired page %p", m);
2910 if (m->hold_count != 0) {
2911 m->flags &= ~PG_ZERO;
2912 KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2913 ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2914 m->flags |= PG_UNHOLDFREE;
2915 return (false);
2916 }
2917
2918 /*
2919 * Restore the default memory attribute to the page.
2920 */
2921 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2922 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2923
2924 return (true);
2925 }
2926
2927 /*
2928 * Insert the page into the physical memory allocator's free page
2929 * queues. This is the last step to free a page.
2930 */
2931 static void
2932 vm_page_free_phys(vm_page_t m)
2933 {
2934
2935 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2936
2937 vm_phys_freecnt_adj(m, 1);
2938 #if VM_NRESERVLEVEL > 0
2939 if (!vm_reserv_free_page(m))
2940 #endif
2941 vm_phys_free_pages(m, 0);
2942 if ((m->flags & PG_ZERO) != 0)
2943 ++vm_page_zero_count;
2944 else
2945 vm_page_zero_idle_wakeup();
2946 }
2947
2948 void
2949 vm_page_free_phys_pglist(struct pglist *tq)
2950 {
2951 vm_page_t m;
2952
2953 if (TAILQ_EMPTY(tq))
2954 return;
2955 mtx_lock(&vm_page_queue_free_mtx);
2956 TAILQ_FOREACH(m, tq, listq)
2957 vm_page_free_phys(m);
2958 vm_page_free_wakeup();
2959 mtx_unlock(&vm_page_queue_free_mtx);
2960 }
2961
2962 /*
2963 * vm_page_free_toq:
2964 *
2965 * Returns the given page to the free list, disassociating it
2966 * from any VM object.
2967 *
2968 * The object must be locked. The page must be locked if it is
2969 * managed.
2970 */
2971 void
2972 vm_page_free_toq(vm_page_t m)
2973 {
2974
2975 if (!vm_page_free_prep(m, false))
2976 return;
2977 mtx_lock(&vm_page_queue_free_mtx);
2978 vm_page_free_phys(m);
2979 vm_page_free_wakeup();
2980 mtx_unlock(&vm_page_queue_free_mtx);
2981 }
2982
2983 /*
2984 * vm_page_wire:
2985 *
2986 * Mark this page as wired down by yet
2987 * another map, removing it from paging queues
2988 * as necessary.
2989 *
2990 * If the page is fictitious, then its wire count must remain one.
2991 *
2992 * The page must be locked.
2993 */
2994 void
2995 vm_page_wire(vm_page_t m)
2996 {
2997
2998 /*
2999 * Only bump the wire statistics if the page is not already wired,
3000 * and only unqueue the page if it is on some queue (if it is unmanaged
3001 * it is already off the queues).
3002 */
3003 vm_page_lock_assert(m, MA_OWNED);
3004 if ((m->flags & PG_FICTITIOUS) != 0) {
3005 KASSERT(m->wire_count == 1,
3006 ("vm_page_wire: fictitious page %p's wire count isn't one",
3007 m));
3008 return;
3009 }
3010 if (m->wire_count == 0) {
3011 KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
3012 m->queue == PQ_NONE,
3013 ("vm_page_wire: unmanaged page %p is queued", m));
3014 vm_page_remque(m);
3015 atomic_add_int(&vm_cnt.v_wire_count, 1);
3016 }
3017 m->wire_count++;
3018 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
3019 }
3020
3021 /*
3022 * vm_page_unwire:
3023 *
3024 * Release one wiring of the specified page, potentially allowing it to be
3025 * paged out. Returns TRUE if the number of wirings transitions to zero and
3026 * FALSE otherwise.
3027 *
3028 * Only managed pages belonging to an object can be paged out. If the number
3029 * of wirings transitions to zero and the page is eligible for page out, then
3030 * the page is added to the specified paging queue (unless PQ_NONE is
3031 * specified).
3032 *
3033 * If a page is fictitious, then its wire count must always be one.
3034 *
3035 * A managed page must be locked.
3036 */
3037 boolean_t
3038 vm_page_unwire(vm_page_t m, uint8_t queue)
3039 {
3040
3041 KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
3042 ("vm_page_unwire: invalid queue %u request for page %p",
3043 queue, m));
3044 if ((m->oflags & VPO_UNMANAGED) == 0)
3045 vm_page_assert_locked(m);
3046 if ((m->flags & PG_FICTITIOUS) != 0) {
3047 KASSERT(m->wire_count == 1,
3048 ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
3049 return (FALSE);
3050 }
3051 if (m->wire_count > 0) {
3052 m->wire_count--;
3053 if (m->wire_count == 0) {
3054 atomic_subtract_int(&vm_cnt.v_wire_count, 1);
3055 if ((m->oflags & VPO_UNMANAGED) == 0 &&
3056 m->object != NULL && queue != PQ_NONE)
3057 vm_page_enqueue(queue, m);
3058 return (TRUE);
3059 } else
3060 return (FALSE);
3061 } else
3062 panic("vm_page_unwire: page %p's wire count is zero", m);
3063 }
3064
3065 /*
3066 * Move the specified page to the inactive queue.
3067 *
3068 * Normally, "noreuse" is FALSE, resulting in LRU ordering of the inactive
3069 * queue. However, setting "noreuse" to TRUE will accelerate the specified
3070 * page's reclamation, but it will not unmap the page from any address space.
3071 * This is implemented by inserting the page near the head of the inactive
3072 * queue, using a marker page to guide FIFO insertion ordering.
3073 *
3074 * The page must be locked.
3075 */
3076 static inline void
3077 _vm_page_deactivate(vm_page_t m, boolean_t noreuse)
3078 {
3079 struct vm_pagequeue *pq;
3080 int queue;
3081
3082 vm_page_assert_locked(m);
3083
3084 /*
3085 * Ignore if the page is already inactive, unless it is unlikely to be
3086 * reactivated.
3087 */
3088 if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
3089 return;
3090 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3091 pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
3092 /* Avoid multiple acquisitions of the inactive queue lock. */
3093 if (queue == PQ_INACTIVE) {
3094 vm_pagequeue_lock(pq);
3095 vm_page_dequeue_locked(m);
3096 } else {
3097 if (queue != PQ_NONE)
3098 vm_page_dequeue(m);
3099 vm_pagequeue_lock(pq);
3100 }
3101 m->queue = PQ_INACTIVE;
3102 if (noreuse)
3103 TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
3104 m, plinks.q);
3105 else
3106 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3107 vm_pagequeue_cnt_inc(pq);
3108 vm_pagequeue_unlock(pq);
3109 }
3110 }
3111
3112 /*
3113 * Move the specified page to the inactive queue.
3114 *
3115 * The page must be locked.
3116 */
3117 void
3118 vm_page_deactivate(vm_page_t m)
3119 {
3120
3121 _vm_page_deactivate(m, FALSE);
3122 }
3123
3124 /*
3125 * Move the specified page to the inactive queue with the expectation
3126 * that it is unlikely to be reused.
3127 *
3128 * The page must be locked.
3129 */
3130 void
3131 vm_page_deactivate_noreuse(vm_page_t m)
3132 {
3133
3134 _vm_page_deactivate(m, TRUE);
3135 }
3136
3137 /*
3138 * vm_page_launder
3139 *
3140 * Put a page in the laundry.
3141 */
3142 void
3143 vm_page_launder(vm_page_t m)
3144 {
3145 int queue;
3146
3147 vm_page_assert_locked(m);
3148 if ((queue = m->queue) != PQ_LAUNDRY) {
3149 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3150 if (queue != PQ_NONE)
3151 vm_page_dequeue(m);
3152 vm_page_enqueue(PQ_LAUNDRY, m);
3153 } else
3154 KASSERT(queue == PQ_NONE,
3155 ("wired page %p is queued", m));
3156 }
3157 }
3158
3159 /*
3160 * vm_page_try_to_free()
3161 *
3162 * Attempt to free the page. If we cannot free it, we do nothing.
3163 * true is returned on success, false on failure.
3164 */
3165 bool
3166 vm_page_try_to_free(vm_page_t m)
3167 {
3168
3169 vm_page_assert_locked(m);
3170 if (m->object != NULL)
3171 VM_OBJECT_ASSERT_WLOCKED(m->object);
3172 if (m->dirty != 0 || m->hold_count != 0 || m->wire_count != 0 ||
3173 (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3174 return (false);
3175 if (m->object != NULL && m->object->ref_count != 0) {
3176 pmap_remove_all(m);
3177 if (m->dirty != 0)
3178 return (false);
3179 }
3180 vm_page_free(m);
3181 return (true);
3182 }
3183
3184 /*
3185 * vm_page_advise
3186 *
3187 * Apply the specified advice to the given page.
3188 *
3189 * The object and page must be locked.
3190 */
3191 void
3192 vm_page_advise(vm_page_t m, int advice)
3193 {
3194
3195 vm_page_assert_locked(m);
3196 VM_OBJECT_ASSERT_WLOCKED(m->object);
3197 if (advice == MADV_FREE)
3198 /*
3199 * Mark the page clean. This will allow the page to be freed
3200 * without first paging it out. MADV_FREE pages are often
3201 * quickly reused by malloc(3), so we do not do anything that
3202 * would result in a page fault on a later access.
3203 */
3204 vm_page_undirty(m);
3205 else if (advice != MADV_DONTNEED) {
3206 if (advice == MADV_WILLNEED)
3207 vm_page_activate(m);
3208 return;
3209 }
3210
3211 /*
3212 * Clear any references to the page. Otherwise, the page daemon will
3213 * immediately reactivate the page.
3214 */
3215 vm_page_aflag_clear(m, PGA_REFERENCED);
3216
3217 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3218 vm_page_dirty(m);
3219
3220 /*
3221 * Place clean pages near the head of the inactive queue rather than
3222 * the tail, thus defeating the queue's LRU operation and ensuring that
3223 * the page will be reused quickly. Dirty pages not already in the
3224 * laundry are moved there.
3225 */
3226 if (m->dirty == 0)
3227 vm_page_deactivate_noreuse(m);
3228 else
3229 vm_page_launder(m);
3230 }
3231
3232 /*
3233 * Grab a page, waiting until we are waken up due to the page
3234 * changing state. We keep on waiting, if the page continues
3235 * to be in the object. If the page doesn't exist, first allocate it
3236 * and then conditionally zero it.
3237 *
3238 * This routine may sleep.
3239 *
3240 * The object must be locked on entry. The lock will, however, be released
3241 * and reacquired if the routine sleeps.
3242 */
3243 vm_page_t
3244 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3245 {
3246 vm_page_t m;
3247 int sleep;
3248 int pflags;
3249
3250 VM_OBJECT_ASSERT_WLOCKED(object);
3251 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3252 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3253 ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3254 pflags = allocflags &
3255 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
3256 if ((allocflags & VM_ALLOC_NOWAIT) == 0)
3257 pflags |= VM_ALLOC_WAITFAIL;
3258 retrylookup:
3259 if ((m = vm_page_lookup(object, pindex)) != NULL) {
3260 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3261 vm_page_xbusied(m) : vm_page_busied(m);
3262 if (sleep) {
3263 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3264 return (NULL);
3265 /*
3266 * Reference the page before unlocking and
3267 * sleeping so that the page daemon is less
3268 * likely to reclaim it.
3269 */
3270 vm_page_aflag_set(m, PGA_REFERENCED);
3271 vm_page_lock(m);
3272 VM_OBJECT_WUNLOCK(object);
3273 vm_page_busy_sleep(m, "pgrbwt", (allocflags &
3274 VM_ALLOC_IGN_SBUSY) != 0);
3275 VM_OBJECT_WLOCK(object);
3276 goto retrylookup;
3277 } else {
3278 if ((allocflags & VM_ALLOC_WIRED) != 0) {
3279 vm_page_lock(m);
3280 vm_page_wire(m);
3281 vm_page_unlock(m);
3282 }
3283 if ((allocflags &
3284 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3285 vm_page_xbusy(m);
3286 if ((allocflags & VM_ALLOC_SBUSY) != 0)
3287 vm_page_sbusy(m);
3288 return (m);
3289 }
3290 }
3291 m = vm_page_alloc(object, pindex, pflags);
3292 if (m == NULL) {
3293 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3294 return (NULL);
3295 goto retrylookup;
3296 }
3297 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3298 pmap_zero_page(m);
3299 return (m);
3300 }
3301
3302 /*
3303 * Return the specified range of pages from the given object. For each
3304 * page offset within the range, if a page already exists within the object
3305 * at that offset and it is busy, then wait for it to change state. If,
3306 * instead, the page doesn't exist, then allocate it.
3307 *
3308 * The caller must always specify an allocation class.
3309 *
3310 * allocation classes:
3311 * VM_ALLOC_NORMAL normal process request
3312 * VM_ALLOC_SYSTEM system *really* needs the pages
3313 *
3314 * The caller must always specify that the pages are to be busied and/or
3315 * wired.
3316 *
3317 * optional allocation flags:
3318 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages
3319 * VM_ALLOC_NOBUSY do not exclusive busy the page
3320 * VM_ALLOC_NOWAIT do not sleep
3321 * VM_ALLOC_SBUSY set page to sbusy state
3322 * VM_ALLOC_WIRED wire the pages
3323 * VM_ALLOC_ZERO zero and validate any invalid pages
3324 *
3325 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it
3326 * may return a partial prefix of the requested range.
3327 */
3328 int
3329 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
3330 vm_page_t *ma, int count)
3331 {
3332 vm_page_t m, mpred;
3333 int pflags;
3334 int i;
3335 bool sleep;
3336
3337 VM_OBJECT_ASSERT_WLOCKED(object);
3338 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
3339 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
3340 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
3341 (allocflags & VM_ALLOC_WIRED) != 0,
3342 ("vm_page_grab_pages: the pages must be busied or wired"));
3343 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3344 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3345 ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
3346 if (count == 0)
3347 return (0);
3348 pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK |
3349 VM_ALLOC_WAITFAIL | VM_ALLOC_IGN_SBUSY);
3350 if ((allocflags & VM_ALLOC_NOWAIT) == 0)
3351 pflags |= VM_ALLOC_WAITFAIL;
3352 i = 0;
3353 retrylookup:
3354 m = vm_radix_lookup_le(&object->rtree, pindex + i);
3355 if (m == NULL || m->pindex != pindex + i) {
3356 mpred = m;
3357 m = NULL;
3358 } else
3359 mpred = TAILQ_PREV(m, pglist, listq);
3360 for (; i < count; i++) {
3361 if (m != NULL) {
3362 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3363 vm_page_xbusied(m) : vm_page_busied(m);
3364 if (sleep) {
3365 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3366 break;
3367 /*
3368 * Reference the page before unlocking and
3369 * sleeping so that the page daemon is less
3370 * likely to reclaim it.
3371 */
3372 vm_page_aflag_set(m, PGA_REFERENCED);
3373 vm_page_lock(m);
3374 VM_OBJECT_WUNLOCK(object);
3375 vm_page_busy_sleep(m, "grbmaw", (allocflags &
3376 VM_ALLOC_IGN_SBUSY) != 0);
3377 VM_OBJECT_WLOCK(object);
3378 goto retrylookup;
3379 }
3380 if ((allocflags & VM_ALLOC_WIRED) != 0) {
3381 vm_page_lock(m);
3382 vm_page_wire(m);
3383 vm_page_unlock(m);
3384 }
3385 if ((allocflags & (VM_ALLOC_NOBUSY |
3386 VM_ALLOC_SBUSY)) == 0)
3387 vm_page_xbusy(m);
3388 if ((allocflags & VM_ALLOC_SBUSY) != 0)
3389 vm_page_sbusy(m);
3390 } else {
3391 m = vm_page_alloc_after(object, pindex + i,
3392 pflags | VM_ALLOC_COUNT(count - i), mpred);
3393 if (m == NULL) {
3394 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3395 break;
3396 goto retrylookup;
3397 }
3398 }
3399 if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) {
3400 if ((m->flags & PG_ZERO) == 0)
3401 pmap_zero_page(m);
3402 m->valid = VM_PAGE_BITS_ALL;
3403 }
3404 ma[i] = mpred = m;
3405 m = vm_page_next(m);
3406 }
3407 return (i);
3408 }
3409
3410 /*
3411 * Mapping function for valid or dirty bits in a page.
3412 *
3413 * Inputs are required to range within a page.
3414 */
3415 vm_page_bits_t
3416 vm_page_bits(int base, int size)
3417 {
3418 int first_bit;
3419 int last_bit;
3420
3421 KASSERT(
3422 base + size <= PAGE_SIZE,
3423 ("vm_page_bits: illegal base/size %d/%d", base, size)
3424 );
3425
3426 if (size == 0) /* handle degenerate case */
3427 return (0);
3428
3429 first_bit = base >> DEV_BSHIFT;
3430 last_bit = (base + size - 1) >> DEV_BSHIFT;
3431
3432 return (((vm_page_bits_t)2 << last_bit) -
3433 ((vm_page_bits_t)1 << first_bit));
3434 }
3435
3436 /*
3437 * vm_page_set_valid_range:
3438 *
3439 * Sets portions of a page valid. The arguments are expected
3440 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3441 * of any partial chunks touched by the range. The invalid portion of
3442 * such chunks will be zeroed.
3443 *
3444 * (base + size) must be less then or equal to PAGE_SIZE.
3445 */
3446 void
3447 vm_page_set_valid_range(vm_page_t m, int base, int size)
3448 {
3449 int endoff, frag;
3450
3451 VM_OBJECT_ASSERT_WLOCKED(m->object);
3452 if (size == 0) /* handle degenerate case */
3453 return;
3454
3455 /*
3456 * If the base is not DEV_BSIZE aligned and the valid
3457 * bit is clear, we have to zero out a portion of the
3458 * first block.
3459 */
3460 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3461 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
3462 pmap_zero_page_area(m, frag, base - frag);
3463
3464 /*
3465 * If the ending offset is not DEV_BSIZE aligned and the
3466 * valid bit is clear, we have to zero out a portion of
3467 * the last block.
3468 */
3469 endoff = base + size;
3470 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3471 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
3472 pmap_zero_page_area(m, endoff,
3473 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3474
3475 /*
3476 * Assert that no previously invalid block that is now being validated
3477 * is already dirty.
3478 */
3479 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
3480 ("vm_page_set_valid_range: page %p is dirty", m));
3481
3482 /*
3483 * Set valid bits inclusive of any overlap.
3484 */
3485 m->valid |= vm_page_bits(base, size);
3486 }
3487
3488 /*
3489 * Clear the given bits from the specified page's dirty field.
3490 */
3491 static __inline void
3492 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
3493 {
3494 uintptr_t addr;
3495 #if PAGE_SIZE < 16384
3496 int shift;
3497 #endif
3498
3499 /*
3500 * If the object is locked and the page is neither exclusive busy nor
3501 * write mapped, then the page's dirty field cannot possibly be
3502 * set by a concurrent pmap operation.
3503 */
3504 VM_OBJECT_ASSERT_WLOCKED(m->object);
3505 if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
3506 m->dirty &= ~pagebits;
3507 else {
3508 /*
3509 * The pmap layer can call vm_page_dirty() without
3510 * holding a distinguished lock. The combination of
3511 * the object's lock and an atomic operation suffice
3512 * to guarantee consistency of the page dirty field.
3513 *
3514 * For PAGE_SIZE == 32768 case, compiler already
3515 * properly aligns the dirty field, so no forcible
3516 * alignment is needed. Only require existence of
3517 * atomic_clear_64 when page size is 32768.
3518 */
3519 addr = (uintptr_t)&m->dirty;
3520 #if PAGE_SIZE == 32768
3521 atomic_clear_64((uint64_t *)addr, pagebits);
3522 #elif PAGE_SIZE == 16384
3523 atomic_clear_32((uint32_t *)addr, pagebits);
3524 #else /* PAGE_SIZE <= 8192 */
3525 /*
3526 * Use a trick to perform a 32-bit atomic on the
3527 * containing aligned word, to not depend on the existence
3528 * of atomic_clear_{8, 16}.
3529 */
3530 shift = addr & (sizeof(uint32_t) - 1);
3531 #if BYTE_ORDER == BIG_ENDIAN
3532 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
3533 #else
3534 shift *= NBBY;
3535 #endif
3536 addr &= ~(sizeof(uint32_t) - 1);
3537 atomic_clear_32((uint32_t *)addr, pagebits << shift);
3538 #endif /* PAGE_SIZE */
3539 }
3540 }
3541
3542 /*
3543 * vm_page_set_validclean:
3544 *
3545 * Sets portions of a page valid and clean. The arguments are expected
3546 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3547 * of any partial chunks touched by the range. The invalid portion of
3548 * such chunks will be zero'd.
3549 *
3550 * (base + size) must be less then or equal to PAGE_SIZE.
3551 */
3552 void
3553 vm_page_set_validclean(vm_page_t m, int base, int size)
3554 {
3555 vm_page_bits_t oldvalid, pagebits;
3556 int endoff, frag;
3557
3558 VM_OBJECT_ASSERT_WLOCKED(m->object);
3559 if (size == 0) /* handle degenerate case */
3560 return;
3561
3562 /*
3563 * If the base is not DEV_BSIZE aligned and the valid
3564 * bit is clear, we have to zero out a portion of the
3565 * first block.
3566 */
3567 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3568 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3569 pmap_zero_page_area(m, frag, base - frag);
3570
3571 /*
3572 * If the ending offset is not DEV_BSIZE aligned and the
3573 * valid bit is clear, we have to zero out a portion of
3574 * the last block.
3575 */
3576 endoff = base + size;
3577 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3578 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3579 pmap_zero_page_area(m, endoff,
3580 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3581
3582 /*
3583 * Set valid, clear dirty bits. If validating the entire
3584 * page we can safely clear the pmap modify bit. We also
3585 * use this opportunity to clear the VPO_NOSYNC flag. If a process
3586 * takes a write fault on a MAP_NOSYNC memory area the flag will
3587 * be set again.
3588 *
3589 * We set valid bits inclusive of any overlap, but we can only
3590 * clear dirty bits for DEV_BSIZE chunks that are fully within
3591 * the range.
3592 */
3593 oldvalid = m->valid;
3594 pagebits = vm_page_bits(base, size);
3595 m->valid |= pagebits;
3596 #if 0 /* NOT YET */
3597 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3598 frag = DEV_BSIZE - frag;
3599 base += frag;
3600 size -= frag;
3601 if (size < 0)
3602 size = 0;
3603 }
3604 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3605 #endif
3606 if (base == 0 && size == PAGE_SIZE) {
3607 /*
3608 * The page can only be modified within the pmap if it is
3609 * mapped, and it can only be mapped if it was previously
3610 * fully valid.
3611 */
3612 if (oldvalid == VM_PAGE_BITS_ALL)
3613 /*
3614 * Perform the pmap_clear_modify() first. Otherwise,
3615 * a concurrent pmap operation, such as
3616 * pmap_protect(), could clear a modification in the
3617 * pmap and set the dirty field on the page before
3618 * pmap_clear_modify() had begun and after the dirty
3619 * field was cleared here.
3620 */
3621 pmap_clear_modify(m);
3622 m->dirty = 0;
3623 m->oflags &= ~VPO_NOSYNC;
3624 } else if (oldvalid != VM_PAGE_BITS_ALL)
3625 m->dirty &= ~pagebits;
3626 else
3627 vm_page_clear_dirty_mask(m, pagebits);
3628 }
3629
3630 void
3631 vm_page_clear_dirty(vm_page_t m, int base, int size)
3632 {
3633
3634 vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3635 }
3636
3637 /*
3638 * vm_page_set_invalid:
3639 *
3640 * Invalidates DEV_BSIZE'd chunks within a page. Both the
3641 * valid and dirty bits for the effected areas are cleared.
3642 */
3643 void
3644 vm_page_set_invalid(vm_page_t m, int base, int size)
3645 {
3646 vm_page_bits_t bits;
3647 vm_object_t object;
3648
3649 object = m->object;
3650 VM_OBJECT_ASSERT_WLOCKED(object);
3651 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3652 size >= object->un_pager.vnp.vnp_size)
3653 bits = VM_PAGE_BITS_ALL;
3654 else
3655 bits = vm_page_bits(base, size);
3656 if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3657 bits != 0)
3658 pmap_remove_all(m);
3659 KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3660 !pmap_page_is_mapped(m),
3661 ("vm_page_set_invalid: page %p is mapped", m));
3662 m->valid &= ~bits;
3663 m->dirty &= ~bits;
3664 }
3665
3666 /*
3667 * vm_page_zero_invalid()
3668 *
3669 * The kernel assumes that the invalid portions of a page contain
3670 * garbage, but such pages can be mapped into memory by user code.
3671 * When this occurs, we must zero out the non-valid portions of the
3672 * page so user code sees what it expects.
3673 *
3674 * Pages are most often semi-valid when the end of a file is mapped
3675 * into memory and the file's size is not page aligned.
3676 */
3677 void
3678 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3679 {
3680 int b;
3681 int i;
3682
3683 VM_OBJECT_ASSERT_WLOCKED(m->object);
3684 /*
3685 * Scan the valid bits looking for invalid sections that
3686 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the
3687 * valid bit may be set ) have already been zeroed by
3688 * vm_page_set_validclean().
3689 */
3690 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3691 if (i == (PAGE_SIZE / DEV_BSIZE) ||
3692 (m->valid & ((vm_page_bits_t)1 << i))) {
3693 if (i > b) {
3694 pmap_zero_page_area(m,
3695 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3696 }
3697 b = i + 1;
3698 }
3699 }
3700
3701 /*
3702 * setvalid is TRUE when we can safely set the zero'd areas
3703 * as being valid. We can do this if there are no cache consistancy
3704 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
3705 */
3706 if (setvalid)
3707 m->valid = VM_PAGE_BITS_ALL;
3708 }
3709
3710 /*
3711 * vm_page_is_valid:
3712 *
3713 * Is (partial) page valid? Note that the case where size == 0
3714 * will return FALSE in the degenerate case where the page is
3715 * entirely invalid, and TRUE otherwise.
3716 */
3717 int
3718 vm_page_is_valid(vm_page_t m, int base, int size)
3719 {
3720 vm_page_bits_t bits;
3721
3722 VM_OBJECT_ASSERT_LOCKED(m->object);
3723 bits = vm_page_bits(base, size);
3724 return (m->valid != 0 && (m->valid & bits) == bits);
3725 }
3726
3727 /*
3728 * Returns true if all of the specified predicates are true for the entire
3729 * (super)page and false otherwise.
3730 */
3731 bool
3732 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
3733 {
3734 vm_object_t object;
3735 int i, npages;
3736
3737 object = m->object;
3738 if (skip_m != NULL && skip_m->object != object)
3739 return (false);
3740 VM_OBJECT_ASSERT_LOCKED(object);
3741 npages = atop(pagesizes[m->psind]);
3742
3743 /*
3744 * The physically contiguous pages that make up a superpage, i.e., a
3745 * page with a page size index ("psind") greater than zero, will
3746 * occupy adjacent entries in vm_page_array[].
3747 */
3748 for (i = 0; i < npages; i++) {
3749 /* Always test object consistency, including "skip_m". */
3750 if (m[i].object != object)
3751 return (false);
3752 if (&m[i] == skip_m)
3753 continue;
3754 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
3755 return (false);
3756 if ((flags & PS_ALL_DIRTY) != 0) {
3757 /*
3758 * Calling vm_page_test_dirty() or pmap_is_modified()
3759 * might stop this case from spuriously returning
3760 * "false". However, that would require a write lock
3761 * on the object containing "m[i]".
3762 */
3763 if (m[i].dirty != VM_PAGE_BITS_ALL)
3764 return (false);
3765 }
3766 if ((flags & PS_ALL_VALID) != 0 &&
3767 m[i].valid != VM_PAGE_BITS_ALL)
3768 return (false);
3769 }
3770 return (true);
3771 }
3772
3773 /*
3774 * Set the page's dirty bits if the page is modified.
3775 */
3776 void
3777 vm_page_test_dirty(vm_page_t m)
3778 {
3779
3780 VM_OBJECT_ASSERT_WLOCKED(m->object);
3781 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3782 vm_page_dirty(m);
3783 }
3784
3785 void
3786 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3787 {
3788
3789 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3790 }
3791
3792 void
3793 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3794 {
3795
3796 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3797 }
3798
3799 int
3800 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3801 {
3802
3803 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3804 }
3805
3806 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3807 void
3808 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3809 {
3810
3811 vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3812 }
3813
3814 void
3815 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3816 {
3817
3818 mtx_assert_(vm_page_lockptr(m), a, file, line);
3819 }
3820 #endif
3821
3822 #ifdef INVARIANTS
3823 void
3824 vm_page_object_lock_assert(vm_page_t m)
3825 {
3826
3827 /*
3828 * Certain of the page's fields may only be modified by the
3829 * holder of the containing object's lock or the exclusive busy.
3830 * holder. Unfortunately, the holder of the write busy is
3831 * not recorded, and thus cannot be checked here.
3832 */
3833 if (m->object != NULL && !vm_page_xbusied(m))
3834 VM_OBJECT_ASSERT_WLOCKED(m->object);
3835 }
3836
3837 void
3838 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3839 {
3840
3841 if ((bits & PGA_WRITEABLE) == 0)
3842 return;
3843
3844 /*
3845 * The PGA_WRITEABLE flag can only be set if the page is
3846 * managed, is exclusively busied or the object is locked.
3847 * Currently, this flag is only set by pmap_enter().
3848 */
3849 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3850 ("PGA_WRITEABLE on unmanaged page"));
3851 if (!vm_page_xbusied(m))
3852 VM_OBJECT_ASSERT_LOCKED(m->object);
3853 }
3854 #endif
3855
3856 #include "opt_ddb.h"
3857 #ifdef DDB
3858 #include <sys/kernel.h>
3859
3860 #include <ddb/ddb.h>
3861
3862 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3863 {
3864
3865 db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3866 db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3867 db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3868 db_printf("vm_cnt.v_laundry_count: %d\n", vm_cnt.v_laundry_count);
3869 db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3870 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3871 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3872 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3873 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3874 }
3875
3876 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3877 {
3878 int dom;
3879
3880 db_printf("pq_free %d\n", vm_cnt.v_free_count);
3881 for (dom = 0; dom < vm_ndomains; dom++) {
3882 db_printf(
3883 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d\n",
3884 dom,
3885 vm_dom[dom].vmd_page_count,
3886 vm_dom[dom].vmd_free_count,
3887 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3888 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3889 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt);
3890 }
3891 }
3892
3893 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3894 {
3895 vm_page_t m;
3896 boolean_t phys, virt;
3897
3898 if (!have_addr) {
3899 db_printf("show pginfo addr\n");
3900 return;
3901 }
3902
3903 phys = strchr(modif, 'p') != NULL;
3904 virt = strchr(modif, 'v') != NULL;
3905 if (virt)
3906 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
3907 else if (phys)
3908 m = PHYS_TO_VM_PAGE(addr);
3909 else
3910 m = (vm_page_t)addr;
3911 db_printf(
3912 "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3913 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3914 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3915 m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3916 m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3917 }
3918 #endif /* DDB */
Cache object: 7f4d5ccc2b2cd6ba88f90b088c7e8238
|