FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.c
1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * The Mach Operating System project at Carnegie-Mellon University.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
36 */
37
38 /*-
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 */
64
65 /*
66 * Resident memory management module.
67 */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_vm.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/vm_dumpset.h>
112 #include <vm/uma.h>
113 #include <vm/uma_int.h>
114
115 #include <machine/md_var.h>
116
117 struct vm_domain vm_dom[MAXMEMDOM];
118
119 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
120
121 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
122
123 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
124 /* The following fields are protected by the domainset lock. */
125 domainset_t __exclusive_cache_line vm_min_domains;
126 domainset_t __exclusive_cache_line vm_severe_domains;
127 static int vm_min_waiters;
128 static int vm_severe_waiters;
129 static int vm_pageproc_waiters;
130
131 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
132 "VM page statistics");
133
134 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
135 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
136 CTLFLAG_RD, &pqstate_commit_retries,
137 "Number of failed per-page atomic queue state updates");
138
139 static COUNTER_U64_DEFINE_EARLY(queue_ops);
140 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
141 CTLFLAG_RD, &queue_ops,
142 "Number of batched queue operations");
143
144 static COUNTER_U64_DEFINE_EARLY(queue_nops);
145 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
146 CTLFLAG_RD, &queue_nops,
147 "Number of batched queue operations with no effects");
148
149 /*
150 * bogus page -- for I/O to/from partially complete buffers,
151 * or for paging into sparsely invalid regions.
152 */
153 vm_page_t bogus_page;
154
155 vm_page_t vm_page_array;
156 long vm_page_array_size;
157 long first_page;
158
159 struct bitset *vm_page_dump;
160 long vm_page_dump_pages;
161
162 static TAILQ_HEAD(, vm_page) blacklist_head;
163 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
164 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
165 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
166
167 static uma_zone_t fakepg_zone;
168
169 static void vm_page_alloc_check(vm_page_t m);
170 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
171 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
172 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
173 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
174 static bool vm_page_free_prep(vm_page_t m);
175 static void vm_page_free_toq(vm_page_t m);
176 static void vm_page_init(void *dummy);
177 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
178 vm_pindex_t pindex, vm_page_t mpred);
179 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
180 vm_page_t mpred);
181 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
182 const uint16_t nflag);
183 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
184 vm_page_t m_run, vm_paddr_t high);
185 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
186 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
187 int req);
188 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
189 int flags);
190 static void vm_page_zone_release(void *arg, void **store, int cnt);
191
192 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
193
194 static void
195 vm_page_init(void *dummy)
196 {
197
198 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
199 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
200 bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
201 VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
202 }
203
204 /*
205 * The cache page zone is initialized later since we need to be able to allocate
206 * pages before UMA is fully initialized.
207 */
208 static void
209 vm_page_init_cache_zones(void *dummy __unused)
210 {
211 struct vm_domain *vmd;
212 struct vm_pgcache *pgcache;
213 int cache, domain, maxcache, pool;
214
215 maxcache = 0;
216 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache);
217 maxcache *= mp_ncpus;
218 for (domain = 0; domain < vm_ndomains; domain++) {
219 vmd = VM_DOMAIN(domain);
220 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
221 pgcache = &vmd->vmd_pgcache[pool];
222 pgcache->domain = domain;
223 pgcache->pool = pool;
224 pgcache->zone = uma_zcache_create("vm pgcache",
225 PAGE_SIZE, NULL, NULL, NULL, NULL,
226 vm_page_zone_import, vm_page_zone_release, pgcache,
227 UMA_ZONE_VM);
228
229 /*
230 * Limit each pool's zone to 0.1% of the pages in the
231 * domain.
232 */
233 cache = maxcache != 0 ? maxcache :
234 vmd->vmd_page_count / 1000;
235 uma_zone_set_maxcache(pgcache->zone, cache);
236 }
237 }
238 }
239 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
240
241 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
242 #if PAGE_SIZE == 32768
243 #ifdef CTASSERT
244 CTASSERT(sizeof(u_long) >= 8);
245 #endif
246 #endif
247
248 /*
249 * vm_set_page_size:
250 *
251 * Sets the page size, perhaps based upon the memory
252 * size. Must be called before any use of page-size
253 * dependent functions.
254 */
255 void
256 vm_set_page_size(void)
257 {
258 if (vm_cnt.v_page_size == 0)
259 vm_cnt.v_page_size = PAGE_SIZE;
260 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
261 panic("vm_set_page_size: page size not a power of two");
262 }
263
264 /*
265 * vm_page_blacklist_next:
266 *
267 * Find the next entry in the provided string of blacklist
268 * addresses. Entries are separated by space, comma, or newline.
269 * If an invalid integer is encountered then the rest of the
270 * string is skipped. Updates the list pointer to the next
271 * character, or NULL if the string is exhausted or invalid.
272 */
273 static vm_paddr_t
274 vm_page_blacklist_next(char **list, char *end)
275 {
276 vm_paddr_t bad;
277 char *cp, *pos;
278
279 if (list == NULL || *list == NULL)
280 return (0);
281 if (**list =='\0') {
282 *list = NULL;
283 return (0);
284 }
285
286 /*
287 * If there's no end pointer then the buffer is coming from
288 * the kenv and we know it's null-terminated.
289 */
290 if (end == NULL)
291 end = *list + strlen(*list);
292
293 /* Ensure that strtoq() won't walk off the end */
294 if (*end != '\0') {
295 if (*end == '\n' || *end == ' ' || *end == ',')
296 *end = '\0';
297 else {
298 printf("Blacklist not terminated, skipping\n");
299 *list = NULL;
300 return (0);
301 }
302 }
303
304 for (pos = *list; *pos != '\0'; pos = cp) {
305 bad = strtoq(pos, &cp, 0);
306 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
307 if (bad == 0) {
308 if (++cp < end)
309 continue;
310 else
311 break;
312 }
313 } else
314 break;
315 if (*cp == '\0' || ++cp >= end)
316 *list = NULL;
317 else
318 *list = cp;
319 return (trunc_page(bad));
320 }
321 printf("Garbage in RAM blacklist, skipping\n");
322 *list = NULL;
323 return (0);
324 }
325
326 bool
327 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
328 {
329 struct vm_domain *vmd;
330 vm_page_t m;
331 int ret;
332
333 m = vm_phys_paddr_to_vm_page(pa);
334 if (m == NULL)
335 return (true); /* page does not exist, no failure */
336
337 vmd = vm_pagequeue_domain(m);
338 vm_domain_free_lock(vmd);
339 ret = vm_phys_unfree_page(m);
340 vm_domain_free_unlock(vmd);
341 if (ret != 0) {
342 vm_domain_freecnt_inc(vmd, -1);
343 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
344 if (verbose)
345 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
346 }
347 return (ret);
348 }
349
350 /*
351 * vm_page_blacklist_check:
352 *
353 * Iterate through the provided string of blacklist addresses, pulling
354 * each entry out of the physical allocator free list and putting it
355 * onto a list for reporting via the vm.page_blacklist sysctl.
356 */
357 static void
358 vm_page_blacklist_check(char *list, char *end)
359 {
360 vm_paddr_t pa;
361 char *next;
362
363 next = list;
364 while (next != NULL) {
365 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
366 continue;
367 vm_page_blacklist_add(pa, bootverbose);
368 }
369 }
370
371 /*
372 * vm_page_blacklist_load:
373 *
374 * Search for a special module named "ram_blacklist". It'll be a
375 * plain text file provided by the user via the loader directive
376 * of the same name.
377 */
378 static void
379 vm_page_blacklist_load(char **list, char **end)
380 {
381 void *mod;
382 u_char *ptr;
383 u_int len;
384
385 mod = NULL;
386 ptr = NULL;
387
388 mod = preload_search_by_type("ram_blacklist");
389 if (mod != NULL) {
390 ptr = preload_fetch_addr(mod);
391 len = preload_fetch_size(mod);
392 }
393 *list = ptr;
394 if (ptr != NULL)
395 *end = ptr + len;
396 else
397 *end = NULL;
398 return;
399 }
400
401 static int
402 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
403 {
404 vm_page_t m;
405 struct sbuf sbuf;
406 int error, first;
407
408 first = 1;
409 error = sysctl_wire_old_buffer(req, 0);
410 if (error != 0)
411 return (error);
412 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
413 TAILQ_FOREACH(m, &blacklist_head, listq) {
414 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
415 (uintmax_t)m->phys_addr);
416 first = 0;
417 }
418 error = sbuf_finish(&sbuf);
419 sbuf_delete(&sbuf);
420 return (error);
421 }
422
423 /*
424 * Initialize a dummy page for use in scans of the specified paging queue.
425 * In principle, this function only needs to set the flag PG_MARKER.
426 * Nonetheless, it write busies the page as a safety precaution.
427 */
428 void
429 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
430 {
431
432 bzero(marker, sizeof(*marker));
433 marker->flags = PG_MARKER;
434 marker->a.flags = aflags;
435 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
436 marker->a.queue = queue;
437 }
438
439 static void
440 vm_page_domain_init(int domain)
441 {
442 struct vm_domain *vmd;
443 struct vm_pagequeue *pq;
444 int i;
445
446 vmd = VM_DOMAIN(domain);
447 bzero(vmd, sizeof(*vmd));
448 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
449 "vm inactive pagequeue";
450 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
451 "vm active pagequeue";
452 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
453 "vm laundry pagequeue";
454 *__DECONST(const char **,
455 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
456 "vm unswappable pagequeue";
457 vmd->vmd_domain = domain;
458 vmd->vmd_page_count = 0;
459 vmd->vmd_free_count = 0;
460 vmd->vmd_segs = 0;
461 vmd->vmd_oom = FALSE;
462 for (i = 0; i < PQ_COUNT; i++) {
463 pq = &vmd->vmd_pagequeues[i];
464 TAILQ_INIT(&pq->pq_pl);
465 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
466 MTX_DEF | MTX_DUPOK);
467 pq->pq_pdpages = 0;
468 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
469 }
470 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
471 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
472 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
473
474 /*
475 * inacthead is used to provide FIFO ordering for LRU-bypassing
476 * insertions.
477 */
478 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
479 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
480 &vmd->vmd_inacthead, plinks.q);
481
482 /*
483 * The clock pages are used to implement active queue scanning without
484 * requeues. Scans start at clock[0], which is advanced after the scan
485 * ends. When the two clock hands meet, they are reset and scanning
486 * resumes from the head of the queue.
487 */
488 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
489 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
490 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
491 &vmd->vmd_clock[0], plinks.q);
492 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
493 &vmd->vmd_clock[1], plinks.q);
494 }
495
496 /*
497 * Initialize a physical page in preparation for adding it to the free
498 * lists.
499 */
500 static void
501 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
502 {
503
504 m->object = NULL;
505 m->ref_count = 0;
506 m->busy_lock = VPB_FREED;
507 m->flags = m->a.flags = 0;
508 m->phys_addr = pa;
509 m->a.queue = PQ_NONE;
510 m->psind = 0;
511 m->segind = segind;
512 m->order = VM_NFREEORDER;
513 m->pool = VM_FREEPOOL_DEFAULT;
514 m->valid = m->dirty = 0;
515 pmap_page_init(m);
516 }
517
518 #ifndef PMAP_HAS_PAGE_ARRAY
519 static vm_paddr_t
520 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
521 {
522 vm_paddr_t new_end;
523
524 /*
525 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
526 * However, because this page is allocated from KVM, out-of-bounds
527 * accesses using the direct map will not be trapped.
528 */
529 *vaddr += PAGE_SIZE;
530
531 /*
532 * Allocate physical memory for the page structures, and map it.
533 */
534 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
535 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
536 VM_PROT_READ | VM_PROT_WRITE);
537 vm_page_array_size = page_range;
538
539 return (new_end);
540 }
541 #endif
542
543 /*
544 * vm_page_startup:
545 *
546 * Initializes the resident memory module. Allocates physical memory for
547 * bootstrapping UMA and some data structures that are used to manage
548 * physical pages. Initializes these structures, and populates the free
549 * page queues.
550 */
551 vm_offset_t
552 vm_page_startup(vm_offset_t vaddr)
553 {
554 struct vm_phys_seg *seg;
555 vm_page_t m;
556 char *list, *listend;
557 vm_paddr_t end, high_avail, low_avail, new_end, size;
558 vm_paddr_t page_range __unused;
559 vm_paddr_t last_pa, pa;
560 u_long pagecount;
561 #if MINIDUMP_PAGE_TRACKING
562 u_long vm_page_dump_size;
563 #endif
564 int biggestone, i, segind;
565 #ifdef WITNESS
566 vm_offset_t mapped;
567 int witness_size;
568 #endif
569 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
570 long ii;
571 #endif
572
573 vaddr = round_page(vaddr);
574
575 vm_phys_early_startup();
576 biggestone = vm_phys_avail_largest();
577 end = phys_avail[biggestone+1];
578
579 /*
580 * Initialize the page and queue locks.
581 */
582 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
583 for (i = 0; i < PA_LOCK_COUNT; i++)
584 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
585 for (i = 0; i < vm_ndomains; i++)
586 vm_page_domain_init(i);
587
588 new_end = end;
589 #ifdef WITNESS
590 witness_size = round_page(witness_startup_count());
591 new_end -= witness_size;
592 mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
593 VM_PROT_READ | VM_PROT_WRITE);
594 bzero((void *)mapped, witness_size);
595 witness_startup((void *)mapped);
596 #endif
597
598 #if MINIDUMP_PAGE_TRACKING
599 /*
600 * Allocate a bitmap to indicate that a random physical page
601 * needs to be included in a minidump.
602 *
603 * The amd64 port needs this to indicate which direct map pages
604 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
605 *
606 * However, i386 still needs this workspace internally within the
607 * minidump code. In theory, they are not needed on i386, but are
608 * included should the sf_buf code decide to use them.
609 */
610 last_pa = 0;
611 vm_page_dump_pages = 0;
612 for (i = 0; dump_avail[i + 1] != 0; i += 2) {
613 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
614 dump_avail[i] / PAGE_SIZE;
615 if (dump_avail[i + 1] > last_pa)
616 last_pa = dump_avail[i + 1];
617 }
618 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
619 new_end -= vm_page_dump_size;
620 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
621 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
622 bzero((void *)vm_page_dump, vm_page_dump_size);
623 #else
624 (void)last_pa;
625 #endif
626 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
627 defined(__riscv) || defined(__powerpc64__)
628 /*
629 * Include the UMA bootstrap pages, witness pages and vm_page_dump
630 * in a crash dump. When pmap_map() uses the direct map, they are
631 * not automatically included.
632 */
633 for (pa = new_end; pa < end; pa += PAGE_SIZE)
634 dump_add_page(pa);
635 #endif
636 phys_avail[biggestone + 1] = new_end;
637 #ifdef __amd64__
638 /*
639 * Request that the physical pages underlying the message buffer be
640 * included in a crash dump. Since the message buffer is accessed
641 * through the direct map, they are not automatically included.
642 */
643 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
644 last_pa = pa + round_page(msgbufsize);
645 while (pa < last_pa) {
646 dump_add_page(pa);
647 pa += PAGE_SIZE;
648 }
649 #endif
650 /*
651 * Compute the number of pages of memory that will be available for
652 * use, taking into account the overhead of a page structure per page.
653 * In other words, solve
654 * "available physical memory" - round_page(page_range *
655 * sizeof(struct vm_page)) = page_range * PAGE_SIZE
656 * for page_range.
657 */
658 low_avail = phys_avail[0];
659 high_avail = phys_avail[1];
660 for (i = 0; i < vm_phys_nsegs; i++) {
661 if (vm_phys_segs[i].start < low_avail)
662 low_avail = vm_phys_segs[i].start;
663 if (vm_phys_segs[i].end > high_avail)
664 high_avail = vm_phys_segs[i].end;
665 }
666 /* Skip the first chunk. It is already accounted for. */
667 for (i = 2; phys_avail[i + 1] != 0; i += 2) {
668 if (phys_avail[i] < low_avail)
669 low_avail = phys_avail[i];
670 if (phys_avail[i + 1] > high_avail)
671 high_avail = phys_avail[i + 1];
672 }
673 first_page = low_avail / PAGE_SIZE;
674 #ifdef VM_PHYSSEG_SPARSE
675 size = 0;
676 for (i = 0; i < vm_phys_nsegs; i++)
677 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
678 for (i = 0; phys_avail[i + 1] != 0; i += 2)
679 size += phys_avail[i + 1] - phys_avail[i];
680 #elif defined(VM_PHYSSEG_DENSE)
681 size = high_avail - low_avail;
682 #else
683 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
684 #endif
685
686 #ifdef PMAP_HAS_PAGE_ARRAY
687 pmap_page_array_startup(size / PAGE_SIZE);
688 biggestone = vm_phys_avail_largest();
689 end = new_end = phys_avail[biggestone + 1];
690 #else
691 #ifdef VM_PHYSSEG_DENSE
692 /*
693 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
694 * the overhead of a page structure per page only if vm_page_array is
695 * allocated from the last physical memory chunk. Otherwise, we must
696 * allocate page structures representing the physical memory
697 * underlying vm_page_array, even though they will not be used.
698 */
699 if (new_end != high_avail)
700 page_range = size / PAGE_SIZE;
701 else
702 #endif
703 {
704 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
705
706 /*
707 * If the partial bytes remaining are large enough for
708 * a page (PAGE_SIZE) without a corresponding
709 * 'struct vm_page', then new_end will contain an
710 * extra page after subtracting the length of the VM
711 * page array. Compensate by subtracting an extra
712 * page from new_end.
713 */
714 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
715 if (new_end == high_avail)
716 high_avail -= PAGE_SIZE;
717 new_end -= PAGE_SIZE;
718 }
719 }
720 end = new_end;
721 new_end = vm_page_array_alloc(&vaddr, end, page_range);
722 #endif
723
724 #if VM_NRESERVLEVEL > 0
725 /*
726 * Allocate physical memory for the reservation management system's
727 * data structures, and map it.
728 */
729 new_end = vm_reserv_startup(&vaddr, new_end);
730 #endif
731 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
732 defined(__riscv) || defined(__powerpc64__)
733 /*
734 * Include vm_page_array and vm_reserv_array in a crash dump.
735 */
736 for (pa = new_end; pa < end; pa += PAGE_SIZE)
737 dump_add_page(pa);
738 #endif
739 phys_avail[biggestone + 1] = new_end;
740
741 /*
742 * Add physical memory segments corresponding to the available
743 * physical pages.
744 */
745 for (i = 0; phys_avail[i + 1] != 0; i += 2)
746 if (vm_phys_avail_size(i) != 0)
747 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
748
749 /*
750 * Initialize the physical memory allocator.
751 */
752 vm_phys_init();
753
754 /*
755 * Initialize the page structures and add every available page to the
756 * physical memory allocator's free lists.
757 */
758 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
759 for (ii = 0; ii < vm_page_array_size; ii++) {
760 m = &vm_page_array[ii];
761 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
762 m->flags = PG_FICTITIOUS;
763 }
764 #endif
765 vm_cnt.v_page_count = 0;
766 for (segind = 0; segind < vm_phys_nsegs; segind++) {
767 seg = &vm_phys_segs[segind];
768 for (m = seg->first_page, pa = seg->start; pa < seg->end;
769 m++, pa += PAGE_SIZE)
770 vm_page_init_page(m, pa, segind);
771
772 /*
773 * Add the segment to the free lists only if it is covered by
774 * one of the ranges in phys_avail. Because we've added the
775 * ranges to the vm_phys_segs array, we can assume that each
776 * segment is either entirely contained in one of the ranges,
777 * or doesn't overlap any of them.
778 */
779 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
780 struct vm_domain *vmd;
781
782 if (seg->start < phys_avail[i] ||
783 seg->end > phys_avail[i + 1])
784 continue;
785
786 m = seg->first_page;
787 pagecount = (u_long)atop(seg->end - seg->start);
788
789 vmd = VM_DOMAIN(seg->domain);
790 vm_domain_free_lock(vmd);
791 vm_phys_enqueue_contig(m, pagecount);
792 vm_domain_free_unlock(vmd);
793 vm_domain_freecnt_inc(vmd, pagecount);
794 vm_cnt.v_page_count += (u_int)pagecount;
795
796 vmd = VM_DOMAIN(seg->domain);
797 vmd->vmd_page_count += (u_int)pagecount;
798 vmd->vmd_segs |= 1UL << m->segind;
799 break;
800 }
801 }
802
803 /*
804 * Remove blacklisted pages from the physical memory allocator.
805 */
806 TAILQ_INIT(&blacklist_head);
807 vm_page_blacklist_load(&list, &listend);
808 vm_page_blacklist_check(list, listend);
809
810 list = kern_getenv("vm.blacklist");
811 vm_page_blacklist_check(list, NULL);
812
813 freeenv(list);
814 #if VM_NRESERVLEVEL > 0
815 /*
816 * Initialize the reservation management system.
817 */
818 vm_reserv_init();
819 #endif
820
821 return (vaddr);
822 }
823
824 void
825 vm_page_reference(vm_page_t m)
826 {
827
828 vm_page_aflag_set(m, PGA_REFERENCED);
829 }
830
831 /*
832 * vm_page_trybusy
833 *
834 * Helper routine for grab functions to trylock busy.
835 *
836 * Returns true on success and false on failure.
837 */
838 static bool
839 vm_page_trybusy(vm_page_t m, int allocflags)
840 {
841
842 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
843 return (vm_page_trysbusy(m));
844 else
845 return (vm_page_tryxbusy(m));
846 }
847
848 /*
849 * vm_page_tryacquire
850 *
851 * Helper routine for grab functions to trylock busy and wire.
852 *
853 * Returns true on success and false on failure.
854 */
855 static inline bool
856 vm_page_tryacquire(vm_page_t m, int allocflags)
857 {
858 bool locked;
859
860 locked = vm_page_trybusy(m, allocflags);
861 if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
862 vm_page_wire(m);
863 return (locked);
864 }
865
866 /*
867 * vm_page_busy_acquire:
868 *
869 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop
870 * and drop the object lock if necessary.
871 */
872 bool
873 vm_page_busy_acquire(vm_page_t m, int allocflags)
874 {
875 vm_object_t obj;
876 bool locked;
877
878 /*
879 * The page-specific object must be cached because page
880 * identity can change during the sleep, causing the
881 * re-lock of a different object.
882 * It is assumed that a reference to the object is already
883 * held by the callers.
884 */
885 obj = atomic_load_ptr(&m->object);
886 for (;;) {
887 if (vm_page_tryacquire(m, allocflags))
888 return (true);
889 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
890 return (false);
891 if (obj != NULL)
892 locked = VM_OBJECT_WOWNED(obj);
893 else
894 locked = false;
895 MPASS(locked || vm_page_wired(m));
896 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
897 locked) && locked)
898 VM_OBJECT_WLOCK(obj);
899 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
900 return (false);
901 KASSERT(m->object == obj || m->object == NULL,
902 ("vm_page_busy_acquire: page %p does not belong to %p",
903 m, obj));
904 }
905 }
906
907 /*
908 * vm_page_busy_downgrade:
909 *
910 * Downgrade an exclusive busy page into a single shared busy page.
911 */
912 void
913 vm_page_busy_downgrade(vm_page_t m)
914 {
915 u_int x;
916
917 vm_page_assert_xbusied(m);
918
919 x = vm_page_busy_fetch(m);
920 for (;;) {
921 if (atomic_fcmpset_rel_int(&m->busy_lock,
922 &x, VPB_SHARERS_WORD(1)))
923 break;
924 }
925 if ((x & VPB_BIT_WAITERS) != 0)
926 wakeup(m);
927 }
928
929 /*
930 *
931 * vm_page_busy_tryupgrade:
932 *
933 * Attempt to upgrade a single shared busy into an exclusive busy.
934 */
935 int
936 vm_page_busy_tryupgrade(vm_page_t m)
937 {
938 u_int ce, x;
939
940 vm_page_assert_sbusied(m);
941
942 x = vm_page_busy_fetch(m);
943 ce = VPB_CURTHREAD_EXCLUSIVE;
944 for (;;) {
945 if (VPB_SHARERS(x) > 1)
946 return (0);
947 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
948 ("vm_page_busy_tryupgrade: invalid lock state"));
949 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
950 ce | (x & VPB_BIT_WAITERS)))
951 continue;
952 return (1);
953 }
954 }
955
956 /*
957 * vm_page_sbusied:
958 *
959 * Return a positive value if the page is shared busied, 0 otherwise.
960 */
961 int
962 vm_page_sbusied(vm_page_t m)
963 {
964 u_int x;
965
966 x = vm_page_busy_fetch(m);
967 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
968 }
969
970 /*
971 * vm_page_sunbusy:
972 *
973 * Shared unbusy a page.
974 */
975 void
976 vm_page_sunbusy(vm_page_t m)
977 {
978 u_int x;
979
980 vm_page_assert_sbusied(m);
981
982 x = vm_page_busy_fetch(m);
983 for (;;) {
984 KASSERT(x != VPB_FREED,
985 ("vm_page_sunbusy: Unlocking freed page."));
986 if (VPB_SHARERS(x) > 1) {
987 if (atomic_fcmpset_int(&m->busy_lock, &x,
988 x - VPB_ONE_SHARER))
989 break;
990 continue;
991 }
992 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
993 ("vm_page_sunbusy: invalid lock state"));
994 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
995 continue;
996 if ((x & VPB_BIT_WAITERS) == 0)
997 break;
998 wakeup(m);
999 break;
1000 }
1001 }
1002
1003 /*
1004 * vm_page_busy_sleep:
1005 *
1006 * Sleep if the page is busy, using the page pointer as wchan.
1007 * This is used to implement the hard-path of busying mechanism.
1008 *
1009 * If nonshared is true, sleep only if the page is xbusy.
1010 *
1011 * The object lock must be held on entry and will be released on exit.
1012 */
1013 void
1014 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1015 {
1016 vm_object_t obj;
1017
1018 obj = m->object;
1019 VM_OBJECT_ASSERT_LOCKED(obj);
1020 vm_page_lock_assert(m, MA_NOTOWNED);
1021
1022 if (!_vm_page_busy_sleep(obj, m, m->pindex, wmesg,
1023 nonshared ? VM_ALLOC_SBUSY : 0 , true))
1024 VM_OBJECT_DROP(obj);
1025 }
1026
1027 /*
1028 * vm_page_busy_sleep_unlocked:
1029 *
1030 * Sleep if the page is busy, using the page pointer as wchan.
1031 * This is used to implement the hard-path of busying mechanism.
1032 *
1033 * If nonshared is true, sleep only if the page is xbusy.
1034 *
1035 * The object lock must not be held on entry. The operation will
1036 * return if the page changes identity.
1037 */
1038 void
1039 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1040 const char *wmesg, bool nonshared)
1041 {
1042
1043 VM_OBJECT_ASSERT_UNLOCKED(obj);
1044 vm_page_lock_assert(m, MA_NOTOWNED);
1045
1046 _vm_page_busy_sleep(obj, m, pindex, wmesg,
1047 nonshared ? VM_ALLOC_SBUSY : 0, false);
1048 }
1049
1050 /*
1051 * _vm_page_busy_sleep:
1052 *
1053 * Internal busy sleep function. Verifies the page identity and
1054 * lockstate against parameters. Returns true if it sleeps and
1055 * false otherwise.
1056 *
1057 * If locked is true the lock will be dropped for any true returns
1058 * and held for any false returns.
1059 */
1060 static bool
1061 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1062 const char *wmesg, int allocflags, bool locked)
1063 {
1064 bool xsleep;
1065 u_int x;
1066
1067 /*
1068 * If the object is busy we must wait for that to drain to zero
1069 * before trying the page again.
1070 */
1071 if (obj != NULL && vm_object_busied(obj)) {
1072 if (locked)
1073 VM_OBJECT_DROP(obj);
1074 vm_object_busy_wait(obj, wmesg);
1075 return (true);
1076 }
1077
1078 if (!vm_page_busied(m))
1079 return (false);
1080
1081 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1082 sleepq_lock(m);
1083 x = vm_page_busy_fetch(m);
1084 do {
1085 /*
1086 * If the page changes objects or becomes unlocked we can
1087 * simply return.
1088 */
1089 if (x == VPB_UNBUSIED ||
1090 (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1091 m->object != obj || m->pindex != pindex) {
1092 sleepq_release(m);
1093 return (false);
1094 }
1095 if ((x & VPB_BIT_WAITERS) != 0)
1096 break;
1097 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1098 if (locked)
1099 VM_OBJECT_DROP(obj);
1100 DROP_GIANT();
1101 sleepq_add(m, NULL, wmesg, 0, 0);
1102 sleepq_wait(m, PVM);
1103 PICKUP_GIANT();
1104 return (true);
1105 }
1106
1107 /*
1108 * vm_page_trysbusy:
1109 *
1110 * Try to shared busy a page.
1111 * If the operation succeeds 1 is returned otherwise 0.
1112 * The operation never sleeps.
1113 */
1114 int
1115 vm_page_trysbusy(vm_page_t m)
1116 {
1117 vm_object_t obj;
1118 u_int x;
1119
1120 obj = m->object;
1121 x = vm_page_busy_fetch(m);
1122 for (;;) {
1123 if ((x & VPB_BIT_SHARED) == 0)
1124 return (0);
1125 /*
1126 * Reduce the window for transient busies that will trigger
1127 * false negatives in vm_page_ps_test().
1128 */
1129 if (obj != NULL && vm_object_busied(obj))
1130 return (0);
1131 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1132 x + VPB_ONE_SHARER))
1133 break;
1134 }
1135
1136 /* Refetch the object now that we're guaranteed that it is stable. */
1137 obj = m->object;
1138 if (obj != NULL && vm_object_busied(obj)) {
1139 vm_page_sunbusy(m);
1140 return (0);
1141 }
1142 return (1);
1143 }
1144
1145 /*
1146 * vm_page_tryxbusy:
1147 *
1148 * Try to exclusive busy a page.
1149 * If the operation succeeds 1 is returned otherwise 0.
1150 * The operation never sleeps.
1151 */
1152 int
1153 vm_page_tryxbusy(vm_page_t m)
1154 {
1155 vm_object_t obj;
1156
1157 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1158 VPB_CURTHREAD_EXCLUSIVE) == 0)
1159 return (0);
1160
1161 obj = m->object;
1162 if (obj != NULL && vm_object_busied(obj)) {
1163 vm_page_xunbusy(m);
1164 return (0);
1165 }
1166 return (1);
1167 }
1168
1169 static void
1170 vm_page_xunbusy_hard_tail(vm_page_t m)
1171 {
1172 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1173 /* Wake the waiter. */
1174 wakeup(m);
1175 }
1176
1177 /*
1178 * vm_page_xunbusy_hard:
1179 *
1180 * Called when unbusy has failed because there is a waiter.
1181 */
1182 void
1183 vm_page_xunbusy_hard(vm_page_t m)
1184 {
1185 vm_page_assert_xbusied(m);
1186 vm_page_xunbusy_hard_tail(m);
1187 }
1188
1189 void
1190 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1191 {
1192 vm_page_assert_xbusied_unchecked(m);
1193 vm_page_xunbusy_hard_tail(m);
1194 }
1195
1196 static void
1197 vm_page_busy_free(vm_page_t m)
1198 {
1199 u_int x;
1200
1201 atomic_thread_fence_rel();
1202 x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1203 if ((x & VPB_BIT_WAITERS) != 0)
1204 wakeup(m);
1205 }
1206
1207 /*
1208 * vm_page_unhold_pages:
1209 *
1210 * Unhold each of the pages that is referenced by the given array.
1211 */
1212 void
1213 vm_page_unhold_pages(vm_page_t *ma, int count)
1214 {
1215
1216 for (; count != 0; count--) {
1217 vm_page_unwire(*ma, PQ_ACTIVE);
1218 ma++;
1219 }
1220 }
1221
1222 vm_page_t
1223 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1224 {
1225 vm_page_t m;
1226
1227 #ifdef VM_PHYSSEG_SPARSE
1228 m = vm_phys_paddr_to_vm_page(pa);
1229 if (m == NULL)
1230 m = vm_phys_fictitious_to_vm_page(pa);
1231 return (m);
1232 #elif defined(VM_PHYSSEG_DENSE)
1233 long pi;
1234
1235 pi = atop(pa);
1236 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1237 m = &vm_page_array[pi - first_page];
1238 return (m);
1239 }
1240 return (vm_phys_fictitious_to_vm_page(pa));
1241 #else
1242 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1243 #endif
1244 }
1245
1246 /*
1247 * vm_page_getfake:
1248 *
1249 * Create a fictitious page with the specified physical address and
1250 * memory attribute. The memory attribute is the only the machine-
1251 * dependent aspect of a fictitious page that must be initialized.
1252 */
1253 vm_page_t
1254 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1255 {
1256 vm_page_t m;
1257
1258 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1259 vm_page_initfake(m, paddr, memattr);
1260 return (m);
1261 }
1262
1263 void
1264 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1265 {
1266
1267 if ((m->flags & PG_FICTITIOUS) != 0) {
1268 /*
1269 * The page's memattr might have changed since the
1270 * previous initialization. Update the pmap to the
1271 * new memattr.
1272 */
1273 goto memattr;
1274 }
1275 m->phys_addr = paddr;
1276 m->a.queue = PQ_NONE;
1277 /* Fictitious pages don't use "segind". */
1278 m->flags = PG_FICTITIOUS;
1279 /* Fictitious pages don't use "order" or "pool". */
1280 m->oflags = VPO_UNMANAGED;
1281 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1282 /* Fictitious pages are unevictable. */
1283 m->ref_count = 1;
1284 pmap_page_init(m);
1285 memattr:
1286 pmap_page_set_memattr(m, memattr);
1287 }
1288
1289 /*
1290 * vm_page_putfake:
1291 *
1292 * Release a fictitious page.
1293 */
1294 void
1295 vm_page_putfake(vm_page_t m)
1296 {
1297
1298 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1299 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1300 ("vm_page_putfake: bad page %p", m));
1301 vm_page_assert_xbusied(m);
1302 vm_page_busy_free(m);
1303 uma_zfree(fakepg_zone, m);
1304 }
1305
1306 /*
1307 * vm_page_updatefake:
1308 *
1309 * Update the given fictitious page to the specified physical address and
1310 * memory attribute.
1311 */
1312 void
1313 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1314 {
1315
1316 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1317 ("vm_page_updatefake: bad page %p", m));
1318 m->phys_addr = paddr;
1319 pmap_page_set_memattr(m, memattr);
1320 }
1321
1322 /*
1323 * vm_page_free:
1324 *
1325 * Free a page.
1326 */
1327 void
1328 vm_page_free(vm_page_t m)
1329 {
1330
1331 m->flags &= ~PG_ZERO;
1332 vm_page_free_toq(m);
1333 }
1334
1335 /*
1336 * vm_page_free_zero:
1337 *
1338 * Free a page to the zerod-pages queue
1339 */
1340 void
1341 vm_page_free_zero(vm_page_t m)
1342 {
1343
1344 m->flags |= PG_ZERO;
1345 vm_page_free_toq(m);
1346 }
1347
1348 /*
1349 * Unbusy and handle the page queueing for a page from a getpages request that
1350 * was optionally read ahead or behind.
1351 */
1352 void
1353 vm_page_readahead_finish(vm_page_t m)
1354 {
1355
1356 /* We shouldn't put invalid pages on queues. */
1357 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1358
1359 /*
1360 * Since the page is not the actually needed one, whether it should
1361 * be activated or deactivated is not obvious. Empirical results
1362 * have shown that deactivating the page is usually the best choice,
1363 * unless the page is wanted by another thread.
1364 */
1365 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1366 vm_page_activate(m);
1367 else
1368 vm_page_deactivate(m);
1369 vm_page_xunbusy_unchecked(m);
1370 }
1371
1372 /*
1373 * Destroy the identity of an invalid page and free it if possible.
1374 * This is intended to be used when reading a page from backing store fails.
1375 */
1376 void
1377 vm_page_free_invalid(vm_page_t m)
1378 {
1379
1380 KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1381 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1382 KASSERT(m->object != NULL, ("page %p has no object", m));
1383 VM_OBJECT_ASSERT_WLOCKED(m->object);
1384
1385 /*
1386 * We may be attempting to free the page as part of the handling for an
1387 * I/O error, in which case the page was xbusied by a different thread.
1388 */
1389 vm_page_xbusy_claim(m);
1390
1391 /*
1392 * If someone has wired this page while the object lock
1393 * was not held, then the thread that unwires is responsible
1394 * for freeing the page. Otherwise just free the page now.
1395 * The wire count of this unmapped page cannot change while
1396 * we have the page xbusy and the page's object wlocked.
1397 */
1398 if (vm_page_remove(m))
1399 vm_page_free(m);
1400 }
1401
1402 /*
1403 * vm_page_sleep_if_busy:
1404 *
1405 * Sleep and release the object lock if the page is busied.
1406 * Returns TRUE if the thread slept.
1407 *
1408 * The given page must be unlocked and object containing it must
1409 * be locked.
1410 */
1411 int
1412 vm_page_sleep_if_busy(vm_page_t m, const char *wmesg)
1413 {
1414 vm_object_t obj;
1415
1416 vm_page_lock_assert(m, MA_NOTOWNED);
1417 VM_OBJECT_ASSERT_WLOCKED(m->object);
1418
1419 /*
1420 * The page-specific object must be cached because page
1421 * identity can change during the sleep, causing the
1422 * re-lock of a different object.
1423 * It is assumed that a reference to the object is already
1424 * held by the callers.
1425 */
1426 obj = m->object;
1427 if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, 0, true)) {
1428 VM_OBJECT_WLOCK(obj);
1429 return (TRUE);
1430 }
1431 return (FALSE);
1432 }
1433
1434 /*
1435 * vm_page_sleep_if_xbusy:
1436 *
1437 * Sleep and release the object lock if the page is xbusied.
1438 * Returns TRUE if the thread slept.
1439 *
1440 * The given page must be unlocked and object containing it must
1441 * be locked.
1442 */
1443 int
1444 vm_page_sleep_if_xbusy(vm_page_t m, const char *wmesg)
1445 {
1446 vm_object_t obj;
1447
1448 vm_page_lock_assert(m, MA_NOTOWNED);
1449 VM_OBJECT_ASSERT_WLOCKED(m->object);
1450
1451 /*
1452 * The page-specific object must be cached because page
1453 * identity can change during the sleep, causing the
1454 * re-lock of a different object.
1455 * It is assumed that a reference to the object is already
1456 * held by the callers.
1457 */
1458 obj = m->object;
1459 if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, VM_ALLOC_SBUSY,
1460 true)) {
1461 VM_OBJECT_WLOCK(obj);
1462 return (TRUE);
1463 }
1464 return (FALSE);
1465 }
1466
1467 /*
1468 * vm_page_dirty_KBI: [ internal use only ]
1469 *
1470 * Set all bits in the page's dirty field.
1471 *
1472 * The object containing the specified page must be locked if the
1473 * call is made from the machine-independent layer.
1474 *
1475 * See vm_page_clear_dirty_mask().
1476 *
1477 * This function should only be called by vm_page_dirty().
1478 */
1479 void
1480 vm_page_dirty_KBI(vm_page_t m)
1481 {
1482
1483 /* Refer to this operation by its public name. */
1484 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1485 m->dirty = VM_PAGE_BITS_ALL;
1486 }
1487
1488 /*
1489 * vm_page_insert: [ internal use only ]
1490 *
1491 * Inserts the given mem entry into the object and object list.
1492 *
1493 * The object must be locked.
1494 */
1495 int
1496 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1497 {
1498 vm_page_t mpred;
1499
1500 VM_OBJECT_ASSERT_WLOCKED(object);
1501 mpred = vm_radix_lookup_le(&object->rtree, pindex);
1502 return (vm_page_insert_after(m, object, pindex, mpred));
1503 }
1504
1505 /*
1506 * vm_page_insert_after:
1507 *
1508 * Inserts the page "m" into the specified object at offset "pindex".
1509 *
1510 * The page "mpred" must immediately precede the offset "pindex" within
1511 * the specified object.
1512 *
1513 * The object must be locked.
1514 */
1515 static int
1516 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1517 vm_page_t mpred)
1518 {
1519 vm_page_t msucc;
1520
1521 VM_OBJECT_ASSERT_WLOCKED(object);
1522 KASSERT(m->object == NULL,
1523 ("vm_page_insert_after: page already inserted"));
1524 if (mpred != NULL) {
1525 KASSERT(mpred->object == object,
1526 ("vm_page_insert_after: object doesn't contain mpred"));
1527 KASSERT(mpred->pindex < pindex,
1528 ("vm_page_insert_after: mpred doesn't precede pindex"));
1529 msucc = TAILQ_NEXT(mpred, listq);
1530 } else
1531 msucc = TAILQ_FIRST(&object->memq);
1532 if (msucc != NULL)
1533 KASSERT(msucc->pindex > pindex,
1534 ("vm_page_insert_after: msucc doesn't succeed pindex"));
1535
1536 /*
1537 * Record the object/offset pair in this page.
1538 */
1539 m->object = object;
1540 m->pindex = pindex;
1541 m->ref_count |= VPRC_OBJREF;
1542
1543 /*
1544 * Now link into the object's ordered list of backed pages.
1545 */
1546 if (vm_radix_insert(&object->rtree, m)) {
1547 m->object = NULL;
1548 m->pindex = 0;
1549 m->ref_count &= ~VPRC_OBJREF;
1550 return (1);
1551 }
1552 vm_page_insert_radixdone(m, object, mpred);
1553 return (0);
1554 }
1555
1556 /*
1557 * vm_page_insert_radixdone:
1558 *
1559 * Complete page "m" insertion into the specified object after the
1560 * radix trie hooking.
1561 *
1562 * The page "mpred" must precede the offset "m->pindex" within the
1563 * specified object.
1564 *
1565 * The object must be locked.
1566 */
1567 static void
1568 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1569 {
1570
1571 VM_OBJECT_ASSERT_WLOCKED(object);
1572 KASSERT(object != NULL && m->object == object,
1573 ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1574 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1575 ("vm_page_insert_radixdone: page %p is missing object ref", m));
1576 if (mpred != NULL) {
1577 KASSERT(mpred->object == object,
1578 ("vm_page_insert_radixdone: object doesn't contain mpred"));
1579 KASSERT(mpred->pindex < m->pindex,
1580 ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1581 }
1582
1583 if (mpred != NULL)
1584 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1585 else
1586 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1587
1588 /*
1589 * Show that the object has one more resident page.
1590 */
1591 object->resident_page_count++;
1592
1593 /*
1594 * Hold the vnode until the last page is released.
1595 */
1596 if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1597 vhold(object->handle);
1598
1599 /*
1600 * Since we are inserting a new and possibly dirty page,
1601 * update the object's generation count.
1602 */
1603 if (pmap_page_is_write_mapped(m))
1604 vm_object_set_writeable_dirty(object);
1605 }
1606
1607 /*
1608 * Do the work to remove a page from its object. The caller is responsible for
1609 * updating the page's fields to reflect this removal.
1610 */
1611 static void
1612 vm_page_object_remove(vm_page_t m)
1613 {
1614 vm_object_t object;
1615 vm_page_t mrem;
1616
1617 vm_page_assert_xbusied(m);
1618 object = m->object;
1619 VM_OBJECT_ASSERT_WLOCKED(object);
1620 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1621 ("page %p is missing its object ref", m));
1622
1623 /* Deferred free of swap space. */
1624 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1625 vm_pager_page_unswapped(m);
1626
1627 m->object = NULL;
1628 mrem = vm_radix_remove(&object->rtree, m->pindex);
1629 KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1630
1631 /*
1632 * Now remove from the object's list of backed pages.
1633 */
1634 TAILQ_REMOVE(&object->memq, m, listq);
1635
1636 /*
1637 * And show that the object has one fewer resident page.
1638 */
1639 object->resident_page_count--;
1640
1641 /*
1642 * The vnode may now be recycled.
1643 */
1644 if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1645 vdrop(object->handle);
1646 }
1647
1648 /*
1649 * vm_page_remove:
1650 *
1651 * Removes the specified page from its containing object, but does not
1652 * invalidate any backing storage. Returns true if the object's reference
1653 * was the last reference to the page, and false otherwise.
1654 *
1655 * The object must be locked and the page must be exclusively busied.
1656 * The exclusive busy will be released on return. If this is not the
1657 * final ref and the caller does not hold a wire reference it may not
1658 * continue to access the page.
1659 */
1660 bool
1661 vm_page_remove(vm_page_t m)
1662 {
1663 bool dropped;
1664
1665 dropped = vm_page_remove_xbusy(m);
1666 vm_page_xunbusy(m);
1667
1668 return (dropped);
1669 }
1670
1671 /*
1672 * vm_page_remove_xbusy
1673 *
1674 * Removes the page but leaves the xbusy held. Returns true if this
1675 * removed the final ref and false otherwise.
1676 */
1677 bool
1678 vm_page_remove_xbusy(vm_page_t m)
1679 {
1680
1681 vm_page_object_remove(m);
1682 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1683 }
1684
1685 /*
1686 * vm_page_lookup:
1687 *
1688 * Returns the page associated with the object/offset
1689 * pair specified; if none is found, NULL is returned.
1690 *
1691 * The object must be locked.
1692 */
1693 vm_page_t
1694 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1695 {
1696
1697 VM_OBJECT_ASSERT_LOCKED(object);
1698 return (vm_radix_lookup(&object->rtree, pindex));
1699 }
1700
1701 /*
1702 * vm_page_lookup_unlocked:
1703 *
1704 * Returns the page associated with the object/offset pair specified;
1705 * if none is found, NULL is returned. The page may be no longer be
1706 * present in the object at the time that this function returns. Only
1707 * useful for opportunistic checks such as inmem().
1708 */
1709 vm_page_t
1710 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1711 {
1712
1713 return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1714 }
1715
1716 /*
1717 * vm_page_relookup:
1718 *
1719 * Returns a page that must already have been busied by
1720 * the caller. Used for bogus page replacement.
1721 */
1722 vm_page_t
1723 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1724 {
1725 vm_page_t m;
1726
1727 m = vm_radix_lookup_unlocked(&object->rtree, pindex);
1728 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1729 m->object == object && m->pindex == pindex,
1730 ("vm_page_relookup: Invalid page %p", m));
1731 return (m);
1732 }
1733
1734 /*
1735 * This should only be used by lockless functions for releasing transient
1736 * incorrect acquires. The page may have been freed after we acquired a
1737 * busy lock. In this case busy_lock == VPB_FREED and we have nothing
1738 * further to do.
1739 */
1740 static void
1741 vm_page_busy_release(vm_page_t m)
1742 {
1743 u_int x;
1744
1745 x = vm_page_busy_fetch(m);
1746 for (;;) {
1747 if (x == VPB_FREED)
1748 break;
1749 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1750 if (atomic_fcmpset_int(&m->busy_lock, &x,
1751 x - VPB_ONE_SHARER))
1752 break;
1753 continue;
1754 }
1755 KASSERT((x & VPB_BIT_SHARED) != 0 ||
1756 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1757 ("vm_page_busy_release: %p xbusy not owned.", m));
1758 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1759 continue;
1760 if ((x & VPB_BIT_WAITERS) != 0)
1761 wakeup(m);
1762 break;
1763 }
1764 }
1765
1766 /*
1767 * vm_page_find_least:
1768 *
1769 * Returns the page associated with the object with least pindex
1770 * greater than or equal to the parameter pindex, or NULL.
1771 *
1772 * The object must be locked.
1773 */
1774 vm_page_t
1775 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1776 {
1777 vm_page_t m;
1778
1779 VM_OBJECT_ASSERT_LOCKED(object);
1780 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1781 m = vm_radix_lookup_ge(&object->rtree, pindex);
1782 return (m);
1783 }
1784
1785 /*
1786 * Returns the given page's successor (by pindex) within the object if it is
1787 * resident; if none is found, NULL is returned.
1788 *
1789 * The object must be locked.
1790 */
1791 vm_page_t
1792 vm_page_next(vm_page_t m)
1793 {
1794 vm_page_t next;
1795
1796 VM_OBJECT_ASSERT_LOCKED(m->object);
1797 if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1798 MPASS(next->object == m->object);
1799 if (next->pindex != m->pindex + 1)
1800 next = NULL;
1801 }
1802 return (next);
1803 }
1804
1805 /*
1806 * Returns the given page's predecessor (by pindex) within the object if it is
1807 * resident; if none is found, NULL is returned.
1808 *
1809 * The object must be locked.
1810 */
1811 vm_page_t
1812 vm_page_prev(vm_page_t m)
1813 {
1814 vm_page_t prev;
1815
1816 VM_OBJECT_ASSERT_LOCKED(m->object);
1817 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1818 MPASS(prev->object == m->object);
1819 if (prev->pindex != m->pindex - 1)
1820 prev = NULL;
1821 }
1822 return (prev);
1823 }
1824
1825 /*
1826 * Uses the page mnew as a replacement for an existing page at index
1827 * pindex which must be already present in the object.
1828 *
1829 * Both pages must be exclusively busied on enter. The old page is
1830 * unbusied on exit.
1831 *
1832 * A return value of true means mold is now free. If this is not the
1833 * final ref and the caller does not hold a wire reference it may not
1834 * continue to access the page.
1835 */
1836 static bool
1837 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1838 vm_page_t mold)
1839 {
1840 vm_page_t mret;
1841 bool dropped;
1842
1843 VM_OBJECT_ASSERT_WLOCKED(object);
1844 vm_page_assert_xbusied(mold);
1845 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1846 ("vm_page_replace: page %p already in object", mnew));
1847
1848 /*
1849 * This function mostly follows vm_page_insert() and
1850 * vm_page_remove() without the radix, object count and vnode
1851 * dance. Double check such functions for more comments.
1852 */
1853
1854 mnew->object = object;
1855 mnew->pindex = pindex;
1856 atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1857 mret = vm_radix_replace(&object->rtree, mnew);
1858 KASSERT(mret == mold,
1859 ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1860 KASSERT((mold->oflags & VPO_UNMANAGED) ==
1861 (mnew->oflags & VPO_UNMANAGED),
1862 ("vm_page_replace: mismatched VPO_UNMANAGED"));
1863
1864 /* Keep the resident page list in sorted order. */
1865 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1866 TAILQ_REMOVE(&object->memq, mold, listq);
1867 mold->object = NULL;
1868
1869 /*
1870 * The object's resident_page_count does not change because we have
1871 * swapped one page for another, but the generation count should
1872 * change if the page is dirty.
1873 */
1874 if (pmap_page_is_write_mapped(mnew))
1875 vm_object_set_writeable_dirty(object);
1876 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1877 vm_page_xunbusy(mold);
1878
1879 return (dropped);
1880 }
1881
1882 void
1883 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1884 vm_page_t mold)
1885 {
1886
1887 vm_page_assert_xbusied(mnew);
1888
1889 if (vm_page_replace_hold(mnew, object, pindex, mold))
1890 vm_page_free(mold);
1891 }
1892
1893 /*
1894 * vm_page_rename:
1895 *
1896 * Move the given memory entry from its
1897 * current object to the specified target object/offset.
1898 *
1899 * Note: swap associated with the page must be invalidated by the move. We
1900 * have to do this for several reasons: (1) we aren't freeing the
1901 * page, (2) we are dirtying the page, (3) the VM system is probably
1902 * moving the page from object A to B, and will then later move
1903 * the backing store from A to B and we can't have a conflict.
1904 *
1905 * Note: we *always* dirty the page. It is necessary both for the
1906 * fact that we moved it, and because we may be invalidating
1907 * swap.
1908 *
1909 * The objects must be locked.
1910 */
1911 int
1912 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1913 {
1914 vm_page_t mpred;
1915 vm_pindex_t opidx;
1916
1917 VM_OBJECT_ASSERT_WLOCKED(new_object);
1918
1919 KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1920 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1921 KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1922 ("vm_page_rename: pindex already renamed"));
1923
1924 /*
1925 * Create a custom version of vm_page_insert() which does not depend
1926 * by m_prev and can cheat on the implementation aspects of the
1927 * function.
1928 */
1929 opidx = m->pindex;
1930 m->pindex = new_pindex;
1931 if (vm_radix_insert(&new_object->rtree, m)) {
1932 m->pindex = opidx;
1933 return (1);
1934 }
1935
1936 /*
1937 * The operation cannot fail anymore. The removal must happen before
1938 * the listq iterator is tainted.
1939 */
1940 m->pindex = opidx;
1941 vm_page_object_remove(m);
1942
1943 /* Return back to the new pindex to complete vm_page_insert(). */
1944 m->pindex = new_pindex;
1945 m->object = new_object;
1946
1947 vm_page_insert_radixdone(m, new_object, mpred);
1948 vm_page_dirty(m);
1949 return (0);
1950 }
1951
1952 /*
1953 * vm_page_alloc:
1954 *
1955 * Allocate and return a page that is associated with the specified
1956 * object and offset pair. By default, this page is exclusive busied.
1957 *
1958 * The caller must always specify an allocation class.
1959 *
1960 * allocation classes:
1961 * VM_ALLOC_NORMAL normal process request
1962 * VM_ALLOC_SYSTEM system *really* needs a page
1963 * VM_ALLOC_INTERRUPT interrupt time request
1964 *
1965 * optional allocation flags:
1966 * VM_ALLOC_COUNT(number) the number of additional pages that the caller
1967 * intends to allocate
1968 * VM_ALLOC_NOBUSY do not exclusive busy the page
1969 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
1970 * VM_ALLOC_NOOBJ page is not associated with an object and
1971 * should not be exclusive busy
1972 * VM_ALLOC_SBUSY shared busy the allocated page
1973 * VM_ALLOC_WIRED wire the allocated page
1974 * VM_ALLOC_ZERO prefer a zeroed page
1975 */
1976 vm_page_t
1977 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1978 {
1979
1980 return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1981 vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1982 }
1983
1984 vm_page_t
1985 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1986 int req)
1987 {
1988
1989 return (vm_page_alloc_domain_after(object, pindex, domain, req,
1990 object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1991 NULL));
1992 }
1993
1994 /*
1995 * Allocate a page in the specified object with the given page index. To
1996 * optimize insertion of the page into the object, the caller must also specifiy
1997 * the resident page in the object with largest index smaller than the given
1998 * page index, or NULL if no such page exists.
1999 */
2000 vm_page_t
2001 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
2002 int req, vm_page_t mpred)
2003 {
2004 struct vm_domainset_iter di;
2005 vm_page_t m;
2006 int domain;
2007
2008 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2009 do {
2010 m = vm_page_alloc_domain_after(object, pindex, domain, req,
2011 mpred);
2012 if (m != NULL)
2013 break;
2014 } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2015
2016 return (m);
2017 }
2018
2019 /*
2020 * Returns true if the number of free pages exceeds the minimum
2021 * for the request class and false otherwise.
2022 */
2023 static int
2024 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2025 {
2026 u_int limit, old, new;
2027
2028 if (req_class == VM_ALLOC_INTERRUPT)
2029 limit = 0;
2030 else if (req_class == VM_ALLOC_SYSTEM)
2031 limit = vmd->vmd_interrupt_free_min;
2032 else
2033 limit = vmd->vmd_free_reserved;
2034
2035 /*
2036 * Attempt to reserve the pages. Fail if we're below the limit.
2037 */
2038 limit += npages;
2039 old = vmd->vmd_free_count;
2040 do {
2041 if (old < limit)
2042 return (0);
2043 new = old - npages;
2044 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2045
2046 /* Wake the page daemon if we've crossed the threshold. */
2047 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2048 pagedaemon_wakeup(vmd->vmd_domain);
2049
2050 /* Only update bitsets on transitions. */
2051 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2052 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2053 vm_domain_set(vmd);
2054
2055 return (1);
2056 }
2057
2058 int
2059 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2060 {
2061 int req_class;
2062
2063 /*
2064 * The page daemon is allowed to dig deeper into the free page list.
2065 */
2066 req_class = req & VM_ALLOC_CLASS_MASK;
2067 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2068 req_class = VM_ALLOC_SYSTEM;
2069 return (_vm_domain_allocate(vmd, req_class, npages));
2070 }
2071
2072 vm_page_t
2073 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2074 int req, vm_page_t mpred)
2075 {
2076 struct vm_domain *vmd;
2077 vm_page_t m;
2078 int flags, pool;
2079
2080 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2081 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2082 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2083 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2084 ("inconsistent object(%p)/req(%x)", object, req));
2085 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2086 ("Can't sleep and retry object insertion."));
2087 KASSERT(mpred == NULL || mpred->pindex < pindex,
2088 ("mpred %p doesn't precede pindex 0x%jx", mpred,
2089 (uintmax_t)pindex));
2090 if (object != NULL)
2091 VM_OBJECT_ASSERT_WLOCKED(object);
2092
2093 flags = 0;
2094 m = NULL;
2095 pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
2096 again:
2097 #if VM_NRESERVLEVEL > 0
2098 /*
2099 * Can we allocate the page from a reservation?
2100 */
2101 if (vm_object_reserv(object) &&
2102 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2103 NULL) {
2104 goto found;
2105 }
2106 #endif
2107 vmd = VM_DOMAIN(domain);
2108 if (vmd->vmd_pgcache[pool].zone != NULL) {
2109 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT | M_NOVM);
2110 if (m != NULL) {
2111 flags |= PG_PCPU_CACHE;
2112 goto found;
2113 }
2114 }
2115 if (vm_domain_allocate(vmd, req, 1)) {
2116 /*
2117 * If not, allocate it from the free page queues.
2118 */
2119 vm_domain_free_lock(vmd);
2120 m = vm_phys_alloc_pages(domain, pool, 0);
2121 vm_domain_free_unlock(vmd);
2122 if (m == NULL) {
2123 vm_domain_freecnt_inc(vmd, 1);
2124 #if VM_NRESERVLEVEL > 0
2125 if (vm_reserv_reclaim_inactive(domain))
2126 goto again;
2127 #endif
2128 }
2129 }
2130 if (m == NULL) {
2131 /*
2132 * Not allocatable, give up.
2133 */
2134 if (vm_domain_alloc_fail(vmd, object, req))
2135 goto again;
2136 return (NULL);
2137 }
2138
2139 /*
2140 * At this point we had better have found a good page.
2141 */
2142 found:
2143 vm_page_dequeue(m);
2144 vm_page_alloc_check(m);
2145
2146 /*
2147 * Initialize the page. Only the PG_ZERO flag is inherited.
2148 */
2149 if ((req & VM_ALLOC_ZERO) != 0)
2150 flags |= (m->flags & PG_ZERO);
2151 if ((req & VM_ALLOC_NODUMP) != 0)
2152 flags |= PG_NODUMP;
2153 m->flags = flags;
2154 m->a.flags = 0;
2155 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2156 VPO_UNMANAGED : 0;
2157 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2158 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2159 else if ((req & VM_ALLOC_SBUSY) != 0)
2160 m->busy_lock = VPB_SHARERS_WORD(1);
2161 else
2162 m->busy_lock = VPB_UNBUSIED;
2163 if (req & VM_ALLOC_WIRED) {
2164 vm_wire_add(1);
2165 m->ref_count = 1;
2166 }
2167 m->a.act_count = 0;
2168
2169 if (object != NULL) {
2170 if (vm_page_insert_after(m, object, pindex, mpred)) {
2171 if (req & VM_ALLOC_WIRED) {
2172 vm_wire_sub(1);
2173 m->ref_count = 0;
2174 }
2175 KASSERT(m->object == NULL, ("page %p has object", m));
2176 m->oflags = VPO_UNMANAGED;
2177 m->busy_lock = VPB_UNBUSIED;
2178 /* Don't change PG_ZERO. */
2179 vm_page_free_toq(m);
2180 if (req & VM_ALLOC_WAITFAIL) {
2181 VM_OBJECT_WUNLOCK(object);
2182 vm_radix_wait();
2183 VM_OBJECT_WLOCK(object);
2184 }
2185 return (NULL);
2186 }
2187
2188 /* Ignore device objects; the pager sets "memattr" for them. */
2189 if (object->memattr != VM_MEMATTR_DEFAULT &&
2190 (object->flags & OBJ_FICTITIOUS) == 0)
2191 pmap_page_set_memattr(m, object->memattr);
2192 } else
2193 m->pindex = pindex;
2194
2195 return (m);
2196 }
2197
2198 /*
2199 * vm_page_alloc_contig:
2200 *
2201 * Allocate a contiguous set of physical pages of the given size "npages"
2202 * from the free lists. All of the physical pages must be at or above
2203 * the given physical address "low" and below the given physical address
2204 * "high". The given value "alignment" determines the alignment of the
2205 * first physical page in the set. If the given value "boundary" is
2206 * non-zero, then the set of physical pages cannot cross any physical
2207 * address boundary that is a multiple of that value. Both "alignment"
2208 * and "boundary" must be a power of two.
2209 *
2210 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2211 * then the memory attribute setting for the physical pages is configured
2212 * to the object's memory attribute setting. Otherwise, the memory
2213 * attribute setting for the physical pages is configured to "memattr",
2214 * overriding the object's memory attribute setting. However, if the
2215 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2216 * memory attribute setting for the physical pages cannot be configured
2217 * to VM_MEMATTR_DEFAULT.
2218 *
2219 * The specified object may not contain fictitious pages.
2220 *
2221 * The caller must always specify an allocation class.
2222 *
2223 * allocation classes:
2224 * VM_ALLOC_NORMAL normal process request
2225 * VM_ALLOC_SYSTEM system *really* needs a page
2226 * VM_ALLOC_INTERRUPT interrupt time request
2227 *
2228 * optional allocation flags:
2229 * VM_ALLOC_NOBUSY do not exclusive busy the page
2230 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
2231 * VM_ALLOC_NOOBJ page is not associated with an object and
2232 * should not be exclusive busy
2233 * VM_ALLOC_SBUSY shared busy the allocated page
2234 * VM_ALLOC_WIRED wire the allocated page
2235 * VM_ALLOC_ZERO prefer a zeroed page
2236 */
2237 vm_page_t
2238 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2239 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2240 vm_paddr_t boundary, vm_memattr_t memattr)
2241 {
2242 struct vm_domainset_iter di;
2243 vm_page_t m;
2244 int domain;
2245
2246 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2247 do {
2248 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2249 npages, low, high, alignment, boundary, memattr);
2250 if (m != NULL)
2251 break;
2252 } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2253
2254 return (m);
2255 }
2256
2257 vm_page_t
2258 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2259 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2260 vm_paddr_t boundary, vm_memattr_t memattr)
2261 {
2262 struct vm_domain *vmd;
2263 vm_page_t m, m_ret, mpred;
2264 u_int busy_lock, flags, oflags;
2265
2266 mpred = NULL; /* XXX: pacify gcc */
2267 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2268 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2269 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2270 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2271 ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2272 req));
2273 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2274 ("Can't sleep and retry object insertion."));
2275 if (object != NULL) {
2276 VM_OBJECT_ASSERT_WLOCKED(object);
2277 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2278 ("vm_page_alloc_contig: object %p has fictitious pages",
2279 object));
2280 }
2281 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2282
2283 if (object != NULL) {
2284 mpred = vm_radix_lookup_le(&object->rtree, pindex);
2285 KASSERT(mpred == NULL || mpred->pindex != pindex,
2286 ("vm_page_alloc_contig: pindex already allocated"));
2287 }
2288
2289 /*
2290 * Can we allocate the pages without the number of free pages falling
2291 * below the lower bound for the allocation class?
2292 */
2293 m_ret = NULL;
2294 again:
2295 #if VM_NRESERVLEVEL > 0
2296 /*
2297 * Can we allocate the pages from a reservation?
2298 */
2299 if (vm_object_reserv(object) &&
2300 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2301 mpred, npages, low, high, alignment, boundary)) != NULL) {
2302 goto found;
2303 }
2304 #endif
2305 vmd = VM_DOMAIN(domain);
2306 if (vm_domain_allocate(vmd, req, npages)) {
2307 /*
2308 * allocate them from the free page queues.
2309 */
2310 vm_domain_free_lock(vmd);
2311 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2312 alignment, boundary);
2313 vm_domain_free_unlock(vmd);
2314 if (m_ret == NULL) {
2315 vm_domain_freecnt_inc(vmd, npages);
2316 #if VM_NRESERVLEVEL > 0
2317 if (vm_reserv_reclaim_contig(domain, npages, low,
2318 high, alignment, boundary))
2319 goto again;
2320 #endif
2321 }
2322 }
2323 if (m_ret == NULL) {
2324 if (vm_domain_alloc_fail(vmd, object, req))
2325 goto again;
2326 return (NULL);
2327 }
2328 #if VM_NRESERVLEVEL > 0
2329 found:
2330 #endif
2331 for (m = m_ret; m < &m_ret[npages]; m++) {
2332 vm_page_dequeue(m);
2333 vm_page_alloc_check(m);
2334 }
2335
2336 /*
2337 * Initialize the pages. Only the PG_ZERO flag is inherited.
2338 */
2339 flags = 0;
2340 if ((req & VM_ALLOC_ZERO) != 0)
2341 flags = PG_ZERO;
2342 if ((req & VM_ALLOC_NODUMP) != 0)
2343 flags |= PG_NODUMP;
2344 oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2345 VPO_UNMANAGED : 0;
2346 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2347 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2348 else if ((req & VM_ALLOC_SBUSY) != 0)
2349 busy_lock = VPB_SHARERS_WORD(1);
2350 else
2351 busy_lock = VPB_UNBUSIED;
2352 if ((req & VM_ALLOC_WIRED) != 0)
2353 vm_wire_add(npages);
2354 if (object != NULL) {
2355 if (object->memattr != VM_MEMATTR_DEFAULT &&
2356 memattr == VM_MEMATTR_DEFAULT)
2357 memattr = object->memattr;
2358 }
2359 for (m = m_ret; m < &m_ret[npages]; m++) {
2360 m->a.flags = 0;
2361 m->flags = (m->flags | PG_NODUMP) & flags;
2362 m->busy_lock = busy_lock;
2363 if ((req & VM_ALLOC_WIRED) != 0)
2364 m->ref_count = 1;
2365 m->a.act_count = 0;
2366 m->oflags = oflags;
2367 if (object != NULL) {
2368 if (vm_page_insert_after(m, object, pindex, mpred)) {
2369 if ((req & VM_ALLOC_WIRED) != 0)
2370 vm_wire_sub(npages);
2371 KASSERT(m->object == NULL,
2372 ("page %p has object", m));
2373 mpred = m;
2374 for (m = m_ret; m < &m_ret[npages]; m++) {
2375 if (m <= mpred &&
2376 (req & VM_ALLOC_WIRED) != 0)
2377 m->ref_count = 0;
2378 m->oflags = VPO_UNMANAGED;
2379 m->busy_lock = VPB_UNBUSIED;
2380 /* Don't change PG_ZERO. */
2381 vm_page_free_toq(m);
2382 }
2383 if (req & VM_ALLOC_WAITFAIL) {
2384 VM_OBJECT_WUNLOCK(object);
2385 vm_radix_wait();
2386 VM_OBJECT_WLOCK(object);
2387 }
2388 return (NULL);
2389 }
2390 mpred = m;
2391 } else
2392 m->pindex = pindex;
2393 if (memattr != VM_MEMATTR_DEFAULT)
2394 pmap_page_set_memattr(m, memattr);
2395 pindex++;
2396 }
2397 return (m_ret);
2398 }
2399
2400 /*
2401 * Check a page that has been freshly dequeued from a freelist.
2402 */
2403 static void
2404 vm_page_alloc_check(vm_page_t m)
2405 {
2406
2407 KASSERT(m->object == NULL, ("page %p has object", m));
2408 KASSERT(m->a.queue == PQ_NONE &&
2409 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2410 ("page %p has unexpected queue %d, flags %#x",
2411 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2412 KASSERT(m->ref_count == 0, ("page %p has references", m));
2413 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2414 KASSERT(m->dirty == 0, ("page %p is dirty", m));
2415 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2416 ("page %p has unexpected memattr %d",
2417 m, pmap_page_get_memattr(m)));
2418 KASSERT(m->valid == 0, ("free page %p is valid", m));
2419 }
2420
2421 /*
2422 * vm_page_alloc_freelist:
2423 *
2424 * Allocate a physical page from the specified free page list.
2425 *
2426 * The caller must always specify an allocation class.
2427 *
2428 * allocation classes:
2429 * VM_ALLOC_NORMAL normal process request
2430 * VM_ALLOC_SYSTEM system *really* needs a page
2431 * VM_ALLOC_INTERRUPT interrupt time request
2432 *
2433 * optional allocation flags:
2434 * VM_ALLOC_COUNT(number) the number of additional pages that the caller
2435 * intends to allocate
2436 * VM_ALLOC_WIRED wire the allocated page
2437 * VM_ALLOC_ZERO prefer a zeroed page
2438 */
2439 vm_page_t
2440 vm_page_alloc_freelist(int freelist, int req)
2441 {
2442 struct vm_domainset_iter di;
2443 vm_page_t m;
2444 int domain;
2445
2446 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2447 do {
2448 m = vm_page_alloc_freelist_domain(domain, freelist, req);
2449 if (m != NULL)
2450 break;
2451 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2452
2453 return (m);
2454 }
2455
2456 vm_page_t
2457 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2458 {
2459 struct vm_domain *vmd;
2460 vm_page_t m;
2461 u_int flags;
2462
2463 m = NULL;
2464 vmd = VM_DOMAIN(domain);
2465 again:
2466 if (vm_domain_allocate(vmd, req, 1)) {
2467 vm_domain_free_lock(vmd);
2468 m = vm_phys_alloc_freelist_pages(domain, freelist,
2469 VM_FREEPOOL_DIRECT, 0);
2470 vm_domain_free_unlock(vmd);
2471 if (m == NULL)
2472 vm_domain_freecnt_inc(vmd, 1);
2473 }
2474 if (m == NULL) {
2475 if (vm_domain_alloc_fail(vmd, NULL, req))
2476 goto again;
2477 return (NULL);
2478 }
2479 vm_page_dequeue(m);
2480 vm_page_alloc_check(m);
2481
2482 /*
2483 * Initialize the page. Only the PG_ZERO flag is inherited.
2484 */
2485 m->a.flags = 0;
2486 flags = 0;
2487 if ((req & VM_ALLOC_ZERO) != 0)
2488 flags = PG_ZERO;
2489 m->flags &= flags;
2490 if ((req & VM_ALLOC_WIRED) != 0) {
2491 vm_wire_add(1);
2492 m->ref_count = 1;
2493 }
2494 /* Unmanaged pages don't use "act_count". */
2495 m->oflags = VPO_UNMANAGED;
2496 return (m);
2497 }
2498
2499 static int
2500 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2501 {
2502 struct vm_domain *vmd;
2503 struct vm_pgcache *pgcache;
2504 int i;
2505
2506 pgcache = arg;
2507 vmd = VM_DOMAIN(pgcache->domain);
2508
2509 /*
2510 * The page daemon should avoid creating extra memory pressure since its
2511 * main purpose is to replenish the store of free pages.
2512 */
2513 if (vmd->vmd_severeset || curproc == pageproc ||
2514 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2515 return (0);
2516 domain = vmd->vmd_domain;
2517 vm_domain_free_lock(vmd);
2518 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2519 (vm_page_t *)store);
2520 vm_domain_free_unlock(vmd);
2521 if (cnt != i)
2522 vm_domain_freecnt_inc(vmd, cnt - i);
2523
2524 return (i);
2525 }
2526
2527 static void
2528 vm_page_zone_release(void *arg, void **store, int cnt)
2529 {
2530 struct vm_domain *vmd;
2531 struct vm_pgcache *pgcache;
2532 vm_page_t m;
2533 int i;
2534
2535 pgcache = arg;
2536 vmd = VM_DOMAIN(pgcache->domain);
2537 vm_domain_free_lock(vmd);
2538 for (i = 0; i < cnt; i++) {
2539 m = (vm_page_t)store[i];
2540 vm_phys_free_pages(m, 0);
2541 }
2542 vm_domain_free_unlock(vmd);
2543 vm_domain_freecnt_inc(vmd, cnt);
2544 }
2545
2546 #define VPSC_ANY 0 /* No restrictions. */
2547 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */
2548 #define VPSC_NOSUPER 2 /* Skip superpages. */
2549
2550 /*
2551 * vm_page_scan_contig:
2552 *
2553 * Scan vm_page_array[] between the specified entries "m_start" and
2554 * "m_end" for a run of contiguous physical pages that satisfy the
2555 * specified conditions, and return the lowest page in the run. The
2556 * specified "alignment" determines the alignment of the lowest physical
2557 * page in the run. If the specified "boundary" is non-zero, then the
2558 * run of physical pages cannot span a physical address that is a
2559 * multiple of "boundary".
2560 *
2561 * "m_end" is never dereferenced, so it need not point to a vm_page
2562 * structure within vm_page_array[].
2563 *
2564 * "npages" must be greater than zero. "m_start" and "m_end" must not
2565 * span a hole (or discontiguity) in the physical address space. Both
2566 * "alignment" and "boundary" must be a power of two.
2567 */
2568 vm_page_t
2569 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2570 u_long alignment, vm_paddr_t boundary, int options)
2571 {
2572 vm_object_t object;
2573 vm_paddr_t pa;
2574 vm_page_t m, m_run;
2575 #if VM_NRESERVLEVEL > 0
2576 int level;
2577 #endif
2578 int m_inc, order, run_ext, run_len;
2579
2580 KASSERT(npages > 0, ("npages is 0"));
2581 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2582 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2583 m_run = NULL;
2584 run_len = 0;
2585 for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2586 KASSERT((m->flags & PG_MARKER) == 0,
2587 ("page %p is PG_MARKER", m));
2588 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2589 ("fictitious page %p has invalid ref count", m));
2590
2591 /*
2592 * If the current page would be the start of a run, check its
2593 * physical address against the end, alignment, and boundary
2594 * conditions. If it doesn't satisfy these conditions, either
2595 * terminate the scan or advance to the next page that
2596 * satisfies the failed condition.
2597 */
2598 if (run_len == 0) {
2599 KASSERT(m_run == NULL, ("m_run != NULL"));
2600 if (m + npages > m_end)
2601 break;
2602 pa = VM_PAGE_TO_PHYS(m);
2603 if ((pa & (alignment - 1)) != 0) {
2604 m_inc = atop(roundup2(pa, alignment) - pa);
2605 continue;
2606 }
2607 if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2608 boundary) != 0) {
2609 m_inc = atop(roundup2(pa, boundary) - pa);
2610 continue;
2611 }
2612 } else
2613 KASSERT(m_run != NULL, ("m_run == NULL"));
2614
2615 retry:
2616 m_inc = 1;
2617 if (vm_page_wired(m))
2618 run_ext = 0;
2619 #if VM_NRESERVLEVEL > 0
2620 else if ((level = vm_reserv_level(m)) >= 0 &&
2621 (options & VPSC_NORESERV) != 0) {
2622 run_ext = 0;
2623 /* Advance to the end of the reservation. */
2624 pa = VM_PAGE_TO_PHYS(m);
2625 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2626 pa);
2627 }
2628 #endif
2629 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2630 /*
2631 * The page is considered eligible for relocation if
2632 * and only if it could be laundered or reclaimed by
2633 * the page daemon.
2634 */
2635 VM_OBJECT_RLOCK(object);
2636 if (object != m->object) {
2637 VM_OBJECT_RUNLOCK(object);
2638 goto retry;
2639 }
2640 /* Don't care: PG_NODUMP, PG_ZERO. */
2641 if (object->type != OBJT_DEFAULT &&
2642 object->type != OBJT_SWAP &&
2643 object->type != OBJT_VNODE) {
2644 run_ext = 0;
2645 #if VM_NRESERVLEVEL > 0
2646 } else if ((options & VPSC_NOSUPER) != 0 &&
2647 (level = vm_reserv_level_iffullpop(m)) >= 0) {
2648 run_ext = 0;
2649 /* Advance to the end of the superpage. */
2650 pa = VM_PAGE_TO_PHYS(m);
2651 m_inc = atop(roundup2(pa + 1,
2652 vm_reserv_size(level)) - pa);
2653 #endif
2654 } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2655 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2656 /*
2657 * The page is allocated but eligible for
2658 * relocation. Extend the current run by one
2659 * page.
2660 */
2661 KASSERT(pmap_page_get_memattr(m) ==
2662 VM_MEMATTR_DEFAULT,
2663 ("page %p has an unexpected memattr", m));
2664 KASSERT((m->oflags & (VPO_SWAPINPROG |
2665 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2666 ("page %p has unexpected oflags", m));
2667 /* Don't care: PGA_NOSYNC. */
2668 run_ext = 1;
2669 } else
2670 run_ext = 0;
2671 VM_OBJECT_RUNLOCK(object);
2672 #if VM_NRESERVLEVEL > 0
2673 } else if (level >= 0) {
2674 /*
2675 * The page is reserved but not yet allocated. In
2676 * other words, it is still free. Extend the current
2677 * run by one page.
2678 */
2679 run_ext = 1;
2680 #endif
2681 } else if ((order = m->order) < VM_NFREEORDER) {
2682 /*
2683 * The page is enqueued in the physical memory
2684 * allocator's free page queues. Moreover, it is the
2685 * first page in a power-of-two-sized run of
2686 * contiguous free pages. Add these pages to the end
2687 * of the current run, and jump ahead.
2688 */
2689 run_ext = 1 << order;
2690 m_inc = 1 << order;
2691 } else {
2692 /*
2693 * Skip the page for one of the following reasons: (1)
2694 * It is enqueued in the physical memory allocator's
2695 * free page queues. However, it is not the first
2696 * page in a run of contiguous free pages. (This case
2697 * rarely occurs because the scan is performed in
2698 * ascending order.) (2) It is not reserved, and it is
2699 * transitioning from free to allocated. (Conversely,
2700 * the transition from allocated to free for managed
2701 * pages is blocked by the page busy lock.) (3) It is
2702 * allocated but not contained by an object and not
2703 * wired, e.g., allocated by Xen's balloon driver.
2704 */
2705 run_ext = 0;
2706 }
2707
2708 /*
2709 * Extend or reset the current run of pages.
2710 */
2711 if (run_ext > 0) {
2712 if (run_len == 0)
2713 m_run = m;
2714 run_len += run_ext;
2715 } else {
2716 if (run_len > 0) {
2717 m_run = NULL;
2718 run_len = 0;
2719 }
2720 }
2721 }
2722 if (run_len >= npages)
2723 return (m_run);
2724 return (NULL);
2725 }
2726
2727 /*
2728 * vm_page_reclaim_run:
2729 *
2730 * Try to relocate each of the allocated virtual pages within the
2731 * specified run of physical pages to a new physical address. Free the
2732 * physical pages underlying the relocated virtual pages. A virtual page
2733 * is relocatable if and only if it could be laundered or reclaimed by
2734 * the page daemon. Whenever possible, a virtual page is relocated to a
2735 * physical address above "high".
2736 *
2737 * Returns 0 if every physical page within the run was already free or
2738 * just freed by a successful relocation. Otherwise, returns a non-zero
2739 * value indicating why the last attempt to relocate a virtual page was
2740 * unsuccessful.
2741 *
2742 * "req_class" must be an allocation class.
2743 */
2744 static int
2745 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2746 vm_paddr_t high)
2747 {
2748 struct vm_domain *vmd;
2749 struct spglist free;
2750 vm_object_t object;
2751 vm_paddr_t pa;
2752 vm_page_t m, m_end, m_new;
2753 int error, order, req;
2754
2755 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2756 ("req_class is not an allocation class"));
2757 SLIST_INIT(&free);
2758 error = 0;
2759 m = m_run;
2760 m_end = m_run + npages;
2761 for (; error == 0 && m < m_end; m++) {
2762 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2763 ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2764
2765 /*
2766 * Racily check for wirings. Races are handled once the object
2767 * lock is held and the page is unmapped.
2768 */
2769 if (vm_page_wired(m))
2770 error = EBUSY;
2771 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2772 /*
2773 * The page is relocated if and only if it could be
2774 * laundered or reclaimed by the page daemon.
2775 */
2776 VM_OBJECT_WLOCK(object);
2777 /* Don't care: PG_NODUMP, PG_ZERO. */
2778 if (m->object != object ||
2779 (object->type != OBJT_DEFAULT &&
2780 object->type != OBJT_SWAP &&
2781 object->type != OBJT_VNODE))
2782 error = EINVAL;
2783 else if (object->memattr != VM_MEMATTR_DEFAULT)
2784 error = EINVAL;
2785 else if (vm_page_queue(m) != PQ_NONE &&
2786 vm_page_tryxbusy(m) != 0) {
2787 if (vm_page_wired(m)) {
2788 vm_page_xunbusy(m);
2789 error = EBUSY;
2790 goto unlock;
2791 }
2792 KASSERT(pmap_page_get_memattr(m) ==
2793 VM_MEMATTR_DEFAULT,
2794 ("page %p has an unexpected memattr", m));
2795 KASSERT(m->oflags == 0,
2796 ("page %p has unexpected oflags", m));
2797 /* Don't care: PGA_NOSYNC. */
2798 if (!vm_page_none_valid(m)) {
2799 /*
2800 * First, try to allocate a new page
2801 * that is above "high". Failing
2802 * that, try to allocate a new page
2803 * that is below "m_run". Allocate
2804 * the new page between the end of
2805 * "m_run" and "high" only as a last
2806 * resort.
2807 */
2808 req = req_class | VM_ALLOC_NOOBJ;
2809 if ((m->flags & PG_NODUMP) != 0)
2810 req |= VM_ALLOC_NODUMP;
2811 if (trunc_page(high) !=
2812 ~(vm_paddr_t)PAGE_MASK) {
2813 m_new = vm_page_alloc_contig(
2814 NULL, 0, req, 1,
2815 round_page(high),
2816 ~(vm_paddr_t)0,
2817 PAGE_SIZE, 0,
2818 VM_MEMATTR_DEFAULT);
2819 } else
2820 m_new = NULL;
2821 if (m_new == NULL) {
2822 pa = VM_PAGE_TO_PHYS(m_run);
2823 m_new = vm_page_alloc_contig(
2824 NULL, 0, req, 1,
2825 0, pa - 1, PAGE_SIZE, 0,
2826 VM_MEMATTR_DEFAULT);
2827 }
2828 if (m_new == NULL) {
2829 pa += ptoa(npages);
2830 m_new = vm_page_alloc_contig(
2831 NULL, 0, req, 1,
2832 pa, high, PAGE_SIZE, 0,
2833 VM_MEMATTR_DEFAULT);
2834 }
2835 if (m_new == NULL) {
2836 vm_page_xunbusy(m);
2837 error = ENOMEM;
2838 goto unlock;
2839 }
2840
2841 /*
2842 * Unmap the page and check for new
2843 * wirings that may have been acquired
2844 * through a pmap lookup.
2845 */
2846 if (object->ref_count != 0 &&
2847 !vm_page_try_remove_all(m)) {
2848 vm_page_xunbusy(m);
2849 vm_page_free(m_new);
2850 error = EBUSY;
2851 goto unlock;
2852 }
2853
2854 /*
2855 * Replace "m" with the new page. For
2856 * vm_page_replace(), "m" must be busy
2857 * and dequeued. Finally, change "m"
2858 * as if vm_page_free() was called.
2859 */
2860 m_new->a.flags = m->a.flags &
2861 ~PGA_QUEUE_STATE_MASK;
2862 KASSERT(m_new->oflags == VPO_UNMANAGED,
2863 ("page %p is managed", m_new));
2864 m_new->oflags = 0;
2865 pmap_copy_page(m, m_new);
2866 m_new->valid = m->valid;
2867 m_new->dirty = m->dirty;
2868 m->flags &= ~PG_ZERO;
2869 vm_page_dequeue(m);
2870 if (vm_page_replace_hold(m_new, object,
2871 m->pindex, m) &&
2872 vm_page_free_prep(m))
2873 SLIST_INSERT_HEAD(&free, m,
2874 plinks.s.ss);
2875
2876 /*
2877 * The new page must be deactivated
2878 * before the object is unlocked.
2879 */
2880 vm_page_deactivate(m_new);
2881 } else {
2882 m->flags &= ~PG_ZERO;
2883 vm_page_dequeue(m);
2884 if (vm_page_free_prep(m))
2885 SLIST_INSERT_HEAD(&free, m,
2886 plinks.s.ss);
2887 KASSERT(m->dirty == 0,
2888 ("page %p is dirty", m));
2889 }
2890 } else
2891 error = EBUSY;
2892 unlock:
2893 VM_OBJECT_WUNLOCK(object);
2894 } else {
2895 MPASS(vm_page_domain(m) == domain);
2896 vmd = VM_DOMAIN(domain);
2897 vm_domain_free_lock(vmd);
2898 order = m->order;
2899 if (order < VM_NFREEORDER) {
2900 /*
2901 * The page is enqueued in the physical memory
2902 * allocator's free page queues. Moreover, it
2903 * is the first page in a power-of-two-sized
2904 * run of contiguous free pages. Jump ahead
2905 * to the last page within that run, and
2906 * continue from there.
2907 */
2908 m += (1 << order) - 1;
2909 }
2910 #if VM_NRESERVLEVEL > 0
2911 else if (vm_reserv_is_page_free(m))
2912 order = 0;
2913 #endif
2914 vm_domain_free_unlock(vmd);
2915 if (order == VM_NFREEORDER)
2916 error = EINVAL;
2917 }
2918 }
2919 if ((m = SLIST_FIRST(&free)) != NULL) {
2920 int cnt;
2921
2922 vmd = VM_DOMAIN(domain);
2923 cnt = 0;
2924 vm_domain_free_lock(vmd);
2925 do {
2926 MPASS(vm_page_domain(m) == domain);
2927 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2928 vm_phys_free_pages(m, 0);
2929 cnt++;
2930 } while ((m = SLIST_FIRST(&free)) != NULL);
2931 vm_domain_free_unlock(vmd);
2932 vm_domain_freecnt_inc(vmd, cnt);
2933 }
2934 return (error);
2935 }
2936
2937 #define NRUNS 16
2938
2939 CTASSERT(powerof2(NRUNS));
2940
2941 #define RUN_INDEX(count) ((count) & (NRUNS - 1))
2942
2943 #define MIN_RECLAIM 8
2944
2945 /*
2946 * vm_page_reclaim_contig:
2947 *
2948 * Reclaim allocated, contiguous physical memory satisfying the specified
2949 * conditions by relocating the virtual pages using that physical memory.
2950 * Returns true if reclamation is successful and false otherwise. Since
2951 * relocation requires the allocation of physical pages, reclamation may
2952 * fail due to a shortage of free pages. When reclamation fails, callers
2953 * are expected to perform vm_wait() before retrying a failed allocation
2954 * operation, e.g., vm_page_alloc_contig().
2955 *
2956 * The caller must always specify an allocation class through "req".
2957 *
2958 * allocation classes:
2959 * VM_ALLOC_NORMAL normal process request
2960 * VM_ALLOC_SYSTEM system *really* needs a page
2961 * VM_ALLOC_INTERRUPT interrupt time request
2962 *
2963 * The optional allocation flags are ignored.
2964 *
2965 * "npages" must be greater than zero. Both "alignment" and "boundary"
2966 * must be a power of two.
2967 */
2968 bool
2969 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2970 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2971 {
2972 struct vm_domain *vmd;
2973 vm_paddr_t curr_low;
2974 vm_page_t m_run, m_runs[NRUNS];
2975 u_long count, reclaimed;
2976 int error, i, options, req_class;
2977
2978 KASSERT(npages > 0, ("npages is 0"));
2979 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2980 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2981 req_class = req & VM_ALLOC_CLASS_MASK;
2982
2983 /*
2984 * The page daemon is allowed to dig deeper into the free page list.
2985 */
2986 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2987 req_class = VM_ALLOC_SYSTEM;
2988
2989 /*
2990 * Return if the number of free pages cannot satisfy the requested
2991 * allocation.
2992 */
2993 vmd = VM_DOMAIN(domain);
2994 count = vmd->vmd_free_count;
2995 if (count < npages + vmd->vmd_free_reserved || (count < npages +
2996 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2997 (count < npages && req_class == VM_ALLOC_INTERRUPT))
2998 return (false);
2999
3000 /*
3001 * Scan up to three times, relaxing the restrictions ("options") on
3002 * the reclamation of reservations and superpages each time.
3003 */
3004 for (options = VPSC_NORESERV;;) {
3005 /*
3006 * Find the highest runs that satisfy the given constraints
3007 * and restrictions, and record them in "m_runs".
3008 */
3009 curr_low = low;
3010 count = 0;
3011 for (;;) {
3012 m_run = vm_phys_scan_contig(domain, npages, curr_low,
3013 high, alignment, boundary, options);
3014 if (m_run == NULL)
3015 break;
3016 curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
3017 m_runs[RUN_INDEX(count)] = m_run;
3018 count++;
3019 }
3020
3021 /*
3022 * Reclaim the highest runs in LIFO (descending) order until
3023 * the number of reclaimed pages, "reclaimed", is at least
3024 * MIN_RECLAIM. Reset "reclaimed" each time because each
3025 * reclamation is idempotent, and runs will (likely) recur
3026 * from one scan to the next as restrictions are relaxed.
3027 */
3028 reclaimed = 0;
3029 for (i = 0; count > 0 && i < NRUNS; i++) {
3030 count--;
3031 m_run = m_runs[RUN_INDEX(count)];
3032 error = vm_page_reclaim_run(req_class, domain, npages,
3033 m_run, high);
3034 if (error == 0) {
3035 reclaimed += npages;
3036 if (reclaimed >= MIN_RECLAIM)
3037 return (true);
3038 }
3039 }
3040
3041 /*
3042 * Either relax the restrictions on the next scan or return if
3043 * the last scan had no restrictions.
3044 */
3045 if (options == VPSC_NORESERV)
3046 options = VPSC_NOSUPER;
3047 else if (options == VPSC_NOSUPER)
3048 options = VPSC_ANY;
3049 else if (options == VPSC_ANY)
3050 return (reclaimed != 0);
3051 }
3052 }
3053
3054 bool
3055 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3056 u_long alignment, vm_paddr_t boundary)
3057 {
3058 struct vm_domainset_iter di;
3059 int domain;
3060 bool ret;
3061
3062 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3063 do {
3064 ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
3065 high, alignment, boundary);
3066 if (ret)
3067 break;
3068 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3069
3070 return (ret);
3071 }
3072
3073 /*
3074 * Set the domain in the appropriate page level domainset.
3075 */
3076 void
3077 vm_domain_set(struct vm_domain *vmd)
3078 {
3079
3080 mtx_lock(&vm_domainset_lock);
3081 if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3082 vmd->vmd_minset = 1;
3083 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3084 }
3085 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3086 vmd->vmd_severeset = 1;
3087 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3088 }
3089 mtx_unlock(&vm_domainset_lock);
3090 }
3091
3092 /*
3093 * Clear the domain from the appropriate page level domainset.
3094 */
3095 void
3096 vm_domain_clear(struct vm_domain *vmd)
3097 {
3098
3099 mtx_lock(&vm_domainset_lock);
3100 if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3101 vmd->vmd_minset = 0;
3102 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3103 if (vm_min_waiters != 0) {
3104 vm_min_waiters = 0;
3105 wakeup(&vm_min_domains);
3106 }
3107 }
3108 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3109 vmd->vmd_severeset = 0;
3110 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3111 if (vm_severe_waiters != 0) {
3112 vm_severe_waiters = 0;
3113 wakeup(&vm_severe_domains);
3114 }
3115 }
3116
3117 /*
3118 * If pageout daemon needs pages, then tell it that there are
3119 * some free.
3120 */
3121 if (vmd->vmd_pageout_pages_needed &&
3122 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3123 wakeup(&vmd->vmd_pageout_pages_needed);
3124 vmd->vmd_pageout_pages_needed = 0;
3125 }
3126
3127 /* See comments in vm_wait_doms(). */
3128 if (vm_pageproc_waiters) {
3129 vm_pageproc_waiters = 0;
3130 wakeup(&vm_pageproc_waiters);
3131 }
3132 mtx_unlock(&vm_domainset_lock);
3133 }
3134
3135 /*
3136 * Wait for free pages to exceed the min threshold globally.
3137 */
3138 void
3139 vm_wait_min(void)
3140 {
3141
3142 mtx_lock(&vm_domainset_lock);
3143 while (vm_page_count_min()) {
3144 vm_min_waiters++;
3145 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3146 }
3147 mtx_unlock(&vm_domainset_lock);
3148 }
3149
3150 /*
3151 * Wait for free pages to exceed the severe threshold globally.
3152 */
3153 void
3154 vm_wait_severe(void)
3155 {
3156
3157 mtx_lock(&vm_domainset_lock);
3158 while (vm_page_count_severe()) {
3159 vm_severe_waiters++;
3160 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3161 "vmwait", 0);
3162 }
3163 mtx_unlock(&vm_domainset_lock);
3164 }
3165
3166 u_int
3167 vm_wait_count(void)
3168 {
3169
3170 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3171 }
3172
3173 int
3174 vm_wait_doms(const domainset_t *wdoms, int mflags)
3175 {
3176 int error;
3177
3178 error = 0;
3179
3180 /*
3181 * We use racey wakeup synchronization to avoid expensive global
3182 * locking for the pageproc when sleeping with a non-specific vm_wait.
3183 * To handle this, we only sleep for one tick in this instance. It
3184 * is expected that most allocations for the pageproc will come from
3185 * kmem or vm_page_grab* which will use the more specific and
3186 * race-free vm_wait_domain().
3187 */
3188 if (curproc == pageproc) {
3189 mtx_lock(&vm_domainset_lock);
3190 vm_pageproc_waiters++;
3191 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3192 PVM | PDROP | mflags, "pageprocwait", 1);
3193 } else {
3194 /*
3195 * XXX Ideally we would wait only until the allocation could
3196 * be satisfied. This condition can cause new allocators to
3197 * consume all freed pages while old allocators wait.
3198 */
3199 mtx_lock(&vm_domainset_lock);
3200 if (vm_page_count_min_set(wdoms)) {
3201 vm_min_waiters++;
3202 error = msleep(&vm_min_domains, &vm_domainset_lock,
3203 PVM | PDROP | mflags, "vmwait", 0);
3204 } else
3205 mtx_unlock(&vm_domainset_lock);
3206 }
3207 return (error);
3208 }
3209
3210 /*
3211 * vm_wait_domain:
3212 *
3213 * Sleep until free pages are available for allocation.
3214 * - Called in various places after failed memory allocations.
3215 */
3216 void
3217 vm_wait_domain(int domain)
3218 {
3219 struct vm_domain *vmd;
3220 domainset_t wdom;
3221
3222 vmd = VM_DOMAIN(domain);
3223 vm_domain_free_assert_unlocked(vmd);
3224
3225 if (curproc == pageproc) {
3226 mtx_lock(&vm_domainset_lock);
3227 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3228 vmd->vmd_pageout_pages_needed = 1;
3229 msleep(&vmd->vmd_pageout_pages_needed,
3230 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3231 } else
3232 mtx_unlock(&vm_domainset_lock);
3233 } else {
3234 if (pageproc == NULL)
3235 panic("vm_wait in early boot");
3236 DOMAINSET_ZERO(&wdom);
3237 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3238 vm_wait_doms(&wdom, 0);
3239 }
3240 }
3241
3242 static int
3243 vm_wait_flags(vm_object_t obj, int mflags)
3244 {
3245 struct domainset *d;
3246
3247 d = NULL;
3248
3249 /*
3250 * Carefully fetch pointers only once: the struct domainset
3251 * itself is ummutable but the pointer might change.
3252 */
3253 if (obj != NULL)
3254 d = obj->domain.dr_policy;
3255 if (d == NULL)
3256 d = curthread->td_domain.dr_policy;
3257
3258 return (vm_wait_doms(&d->ds_mask, mflags));
3259 }
3260
3261 /*
3262 * vm_wait:
3263 *
3264 * Sleep until free pages are available for allocation in the
3265 * affinity domains of the obj. If obj is NULL, the domain set
3266 * for the calling thread is used.
3267 * Called in various places after failed memory allocations.
3268 */
3269 void
3270 vm_wait(vm_object_t obj)
3271 {
3272 (void)vm_wait_flags(obj, 0);
3273 }
3274
3275 int
3276 vm_wait_intr(vm_object_t obj)
3277 {
3278 return (vm_wait_flags(obj, PCATCH));
3279 }
3280
3281 /*
3282 * vm_domain_alloc_fail:
3283 *
3284 * Called when a page allocation function fails. Informs the
3285 * pagedaemon and performs the requested wait. Requires the
3286 * domain_free and object lock on entry. Returns with the
3287 * object lock held and free lock released. Returns an error when
3288 * retry is necessary.
3289 *
3290 */
3291 static int
3292 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3293 {
3294
3295 vm_domain_free_assert_unlocked(vmd);
3296
3297 atomic_add_int(&vmd->vmd_pageout_deficit,
3298 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3299 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3300 if (object != NULL)
3301 VM_OBJECT_WUNLOCK(object);
3302 vm_wait_domain(vmd->vmd_domain);
3303 if (object != NULL)
3304 VM_OBJECT_WLOCK(object);
3305 if (req & VM_ALLOC_WAITOK)
3306 return (EAGAIN);
3307 }
3308
3309 return (0);
3310 }
3311
3312 /*
3313 * vm_waitpfault:
3314 *
3315 * Sleep until free pages are available for allocation.
3316 * - Called only in vm_fault so that processes page faulting
3317 * can be easily tracked.
3318 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3319 * processes will be able to grab memory first. Do not change
3320 * this balance without careful testing first.
3321 */
3322 void
3323 vm_waitpfault(struct domainset *dset, int timo)
3324 {
3325
3326 /*
3327 * XXX Ideally we would wait only until the allocation could
3328 * be satisfied. This condition can cause new allocators to
3329 * consume all freed pages while old allocators wait.
3330 */
3331 mtx_lock(&vm_domainset_lock);
3332 if (vm_page_count_min_set(&dset->ds_mask)) {
3333 vm_min_waiters++;
3334 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3335 "pfault", timo);
3336 } else
3337 mtx_unlock(&vm_domainset_lock);
3338 }
3339
3340 static struct vm_pagequeue *
3341 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3342 {
3343
3344 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3345 }
3346
3347 #ifdef INVARIANTS
3348 static struct vm_pagequeue *
3349 vm_page_pagequeue(vm_page_t m)
3350 {
3351
3352 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3353 }
3354 #endif
3355
3356 static __always_inline bool
3357 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3358 {
3359 vm_page_astate_t tmp;
3360
3361 tmp = *old;
3362 do {
3363 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3364 return (true);
3365 counter_u64_add(pqstate_commit_retries, 1);
3366 } while (old->_bits == tmp._bits);
3367
3368 return (false);
3369 }
3370
3371 /*
3372 * Do the work of committing a queue state update that moves the page out of
3373 * its current queue.
3374 */
3375 static bool
3376 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3377 vm_page_astate_t *old, vm_page_astate_t new)
3378 {
3379 vm_page_t next;
3380
3381 vm_pagequeue_assert_locked(pq);
3382 KASSERT(vm_page_pagequeue(m) == pq,
3383 ("%s: queue %p does not match page %p", __func__, pq, m));
3384 KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3385 ("%s: invalid queue indices %d %d",
3386 __func__, old->queue, new.queue));
3387
3388 /*
3389 * Once the queue index of the page changes there is nothing
3390 * synchronizing with further updates to the page's physical
3391 * queue state. Therefore we must speculatively remove the page
3392 * from the queue now and be prepared to roll back if the queue
3393 * state update fails. If the page is not physically enqueued then
3394 * we just update its queue index.
3395 */
3396 if ((old->flags & PGA_ENQUEUED) != 0) {
3397 new.flags &= ~PGA_ENQUEUED;
3398 next = TAILQ_NEXT(m, plinks.q);
3399 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3400 vm_pagequeue_cnt_dec(pq);
3401 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3402 if (next == NULL)
3403 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3404 else
3405 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3406 vm_pagequeue_cnt_inc(pq);
3407 return (false);
3408 } else {
3409 return (true);
3410 }
3411 } else {
3412 return (vm_page_pqstate_fcmpset(m, old, new));
3413 }
3414 }
3415
3416 static bool
3417 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3418 vm_page_astate_t new)
3419 {
3420 struct vm_pagequeue *pq;
3421 vm_page_astate_t as;
3422 bool ret;
3423
3424 pq = _vm_page_pagequeue(m, old->queue);
3425
3426 /*
3427 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3428 * corresponding page queue lock is held.
3429 */
3430 vm_pagequeue_lock(pq);
3431 as = vm_page_astate_load(m);
3432 if (__predict_false(as._bits != old->_bits)) {
3433 *old = as;
3434 ret = false;
3435 } else {
3436 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3437 }
3438 vm_pagequeue_unlock(pq);
3439 return (ret);
3440 }
3441
3442 /*
3443 * Commit a queue state update that enqueues or requeues a page.
3444 */
3445 static bool
3446 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3447 vm_page_astate_t *old, vm_page_astate_t new)
3448 {
3449 struct vm_domain *vmd;
3450
3451 vm_pagequeue_assert_locked(pq);
3452 KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3453 ("%s: invalid queue indices %d %d",
3454 __func__, old->queue, new.queue));
3455
3456 new.flags |= PGA_ENQUEUED;
3457 if (!vm_page_pqstate_fcmpset(m, old, new))
3458 return (false);
3459
3460 if ((old->flags & PGA_ENQUEUED) != 0)
3461 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3462 else
3463 vm_pagequeue_cnt_inc(pq);
3464
3465 /*
3466 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if
3467 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3468 * applied, even if it was set first.
3469 */
3470 if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3471 vmd = vm_pagequeue_domain(m);
3472 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3473 ("%s: invalid page queue for page %p", __func__, m));
3474 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3475 } else {
3476 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3477 }
3478 return (true);
3479 }
3480
3481 /*
3482 * Commit a queue state update that encodes a request for a deferred queue
3483 * operation.
3484 */
3485 static bool
3486 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3487 vm_page_astate_t new)
3488 {
3489
3490 KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3491 ("%s: invalid state, queue %d flags %x",
3492 __func__, new.queue, new.flags));
3493
3494 if (old->_bits != new._bits &&
3495 !vm_page_pqstate_fcmpset(m, old, new))
3496 return (false);
3497 vm_page_pqbatch_submit(m, new.queue);
3498 return (true);
3499 }
3500
3501 /*
3502 * A generic queue state update function. This handles more cases than the
3503 * specialized functions above.
3504 */
3505 bool
3506 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3507 {
3508
3509 if (old->_bits == new._bits)
3510 return (true);
3511
3512 if (old->queue != PQ_NONE && new.queue != old->queue) {
3513 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3514 return (false);
3515 if (new.queue != PQ_NONE)
3516 vm_page_pqbatch_submit(m, new.queue);
3517 } else {
3518 if (!vm_page_pqstate_fcmpset(m, old, new))
3519 return (false);
3520 if (new.queue != PQ_NONE &&
3521 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3522 vm_page_pqbatch_submit(m, new.queue);
3523 }
3524 return (true);
3525 }
3526
3527 /*
3528 * Apply deferred queue state updates to a page.
3529 */
3530 static inline void
3531 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3532 {
3533 vm_page_astate_t new, old;
3534
3535 CRITICAL_ASSERT(curthread);
3536 vm_pagequeue_assert_locked(pq);
3537 KASSERT(queue < PQ_COUNT,
3538 ("%s: invalid queue index %d", __func__, queue));
3539 KASSERT(pq == _vm_page_pagequeue(m, queue),
3540 ("%s: page %p does not belong to queue %p", __func__, m, pq));
3541
3542 for (old = vm_page_astate_load(m);;) {
3543 if (__predict_false(old.queue != queue ||
3544 (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3545 counter_u64_add(queue_nops, 1);
3546 break;
3547 }
3548 KASSERT(old.queue != PQ_NONE ||
3549 (old.flags & PGA_QUEUE_STATE_MASK) == 0,
3550 ("%s: page %p has unexpected queue state", __func__, m));
3551
3552 new = old;
3553 if ((old.flags & PGA_DEQUEUE) != 0) {
3554 new.flags &= ~PGA_QUEUE_OP_MASK;
3555 new.queue = PQ_NONE;
3556 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3557 m, &old, new))) {
3558 counter_u64_add(queue_ops, 1);
3559 break;
3560 }
3561 } else {
3562 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3563 if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3564 m, &old, new))) {
3565 counter_u64_add(queue_ops, 1);
3566 break;
3567 }
3568 }
3569 }
3570 }
3571
3572 static void
3573 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3574 uint8_t queue)
3575 {
3576 int i;
3577
3578 for (i = 0; i < bq->bq_cnt; i++)
3579 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3580 vm_batchqueue_init(bq);
3581 }
3582
3583 /*
3584 * vm_page_pqbatch_submit: [ internal use only ]
3585 *
3586 * Enqueue a page in the specified page queue's batched work queue.
3587 * The caller must have encoded the requested operation in the page
3588 * structure's a.flags field.
3589 */
3590 void
3591 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3592 {
3593 struct vm_batchqueue *bq;
3594 struct vm_pagequeue *pq;
3595 int domain;
3596
3597 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3598 ("page %p is unmanaged", m));
3599 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3600
3601 domain = vm_page_domain(m);
3602 critical_enter();
3603 bq = DPCPU_PTR(pqbatch[domain][queue]);
3604 if (vm_batchqueue_insert(bq, m)) {
3605 critical_exit();
3606 return;
3607 }
3608 critical_exit();
3609
3610 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3611 vm_pagequeue_lock(pq);
3612 critical_enter();
3613 bq = DPCPU_PTR(pqbatch[domain][queue]);
3614 vm_pqbatch_process(pq, bq, queue);
3615 vm_pqbatch_process_page(pq, m, queue);
3616 vm_pagequeue_unlock(pq);
3617 critical_exit();
3618 }
3619
3620 /*
3621 * vm_page_pqbatch_drain: [ internal use only ]
3622 *
3623 * Force all per-CPU page queue batch queues to be drained. This is
3624 * intended for use in severe memory shortages, to ensure that pages
3625 * do not remain stuck in the batch queues.
3626 */
3627 void
3628 vm_page_pqbatch_drain(void)
3629 {
3630 struct thread *td;
3631 struct vm_domain *vmd;
3632 struct vm_pagequeue *pq;
3633 int cpu, domain, queue;
3634
3635 td = curthread;
3636 CPU_FOREACH(cpu) {
3637 thread_lock(td);
3638 sched_bind(td, cpu);
3639 thread_unlock(td);
3640
3641 for (domain = 0; domain < vm_ndomains; domain++) {
3642 vmd = VM_DOMAIN(domain);
3643 for (queue = 0; queue < PQ_COUNT; queue++) {
3644 pq = &vmd->vmd_pagequeues[queue];
3645 vm_pagequeue_lock(pq);
3646 critical_enter();
3647 vm_pqbatch_process(pq,
3648 DPCPU_PTR(pqbatch[domain][queue]), queue);
3649 critical_exit();
3650 vm_pagequeue_unlock(pq);
3651 }
3652 }
3653 }
3654 thread_lock(td);
3655 sched_unbind(td);
3656 thread_unlock(td);
3657 }
3658
3659 /*
3660 * vm_page_dequeue_deferred: [ internal use only ]
3661 *
3662 * Request removal of the given page from its current page
3663 * queue. Physical removal from the queue may be deferred
3664 * indefinitely.
3665 */
3666 void
3667 vm_page_dequeue_deferred(vm_page_t m)
3668 {
3669 vm_page_astate_t new, old;
3670
3671 old = vm_page_astate_load(m);
3672 do {
3673 if (old.queue == PQ_NONE) {
3674 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3675 ("%s: page %p has unexpected queue state",
3676 __func__, m));
3677 break;
3678 }
3679 new = old;
3680 new.flags |= PGA_DEQUEUE;
3681 } while (!vm_page_pqstate_commit_request(m, &old, new));
3682 }
3683
3684 /*
3685 * vm_page_dequeue:
3686 *
3687 * Remove the page from whichever page queue it's in, if any, before
3688 * returning.
3689 */
3690 void
3691 vm_page_dequeue(vm_page_t m)
3692 {
3693 vm_page_astate_t new, old;
3694
3695 old = vm_page_astate_load(m);
3696 do {
3697 if (old.queue == PQ_NONE) {
3698 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3699 ("%s: page %p has unexpected queue state",
3700 __func__, m));
3701 break;
3702 }
3703 new = old;
3704 new.flags &= ~PGA_QUEUE_OP_MASK;
3705 new.queue = PQ_NONE;
3706 } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3707
3708 }
3709
3710 /*
3711 * Schedule the given page for insertion into the specified page queue.
3712 * Physical insertion of the page may be deferred indefinitely.
3713 */
3714 static void
3715 vm_page_enqueue(vm_page_t m, uint8_t queue)
3716 {
3717
3718 KASSERT(m->a.queue == PQ_NONE &&
3719 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3720 ("%s: page %p is already enqueued", __func__, m));
3721 KASSERT(m->ref_count > 0,
3722 ("%s: page %p does not carry any references", __func__, m));
3723
3724 m->a.queue = queue;
3725 if ((m->a.flags & PGA_REQUEUE) == 0)
3726 vm_page_aflag_set(m, PGA_REQUEUE);
3727 vm_page_pqbatch_submit(m, queue);
3728 }
3729
3730 /*
3731 * vm_page_free_prep:
3732 *
3733 * Prepares the given page to be put on the free list,
3734 * disassociating it from any VM object. The caller may return
3735 * the page to the free list only if this function returns true.
3736 *
3737 * The object, if it exists, must be locked, and then the page must
3738 * be xbusy. Otherwise the page must be not busied. A managed
3739 * page must be unmapped.
3740 */
3741 static bool
3742 vm_page_free_prep(vm_page_t m)
3743 {
3744
3745 /*
3746 * Synchronize with threads that have dropped a reference to this
3747 * page.
3748 */
3749 atomic_thread_fence_acq();
3750
3751 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3752 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3753 uint64_t *p;
3754 int i;
3755 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3756 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3757 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3758 m, i, (uintmax_t)*p));
3759 }
3760 #endif
3761 if ((m->oflags & VPO_UNMANAGED) == 0) {
3762 KASSERT(!pmap_page_is_mapped(m),
3763 ("vm_page_free_prep: freeing mapped page %p", m));
3764 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3765 ("vm_page_free_prep: mapping flags set in page %p", m));
3766 } else {
3767 KASSERT(m->a.queue == PQ_NONE,
3768 ("vm_page_free_prep: unmanaged page %p is queued", m));
3769 }
3770 VM_CNT_INC(v_tfree);
3771
3772 if (m->object != NULL) {
3773 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3774 ((m->object->flags & OBJ_UNMANAGED) != 0),
3775 ("vm_page_free_prep: managed flag mismatch for page %p",
3776 m));
3777 vm_page_assert_xbusied(m);
3778
3779 /*
3780 * The object reference can be released without an atomic
3781 * operation.
3782 */
3783 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3784 m->ref_count == VPRC_OBJREF,
3785 ("vm_page_free_prep: page %p has unexpected ref_count %u",
3786 m, m->ref_count));
3787 vm_page_object_remove(m);
3788 m->ref_count -= VPRC_OBJREF;
3789 } else
3790 vm_page_assert_unbusied(m);
3791
3792 vm_page_busy_free(m);
3793
3794 /*
3795 * If fictitious remove object association and
3796 * return.
3797 */
3798 if ((m->flags & PG_FICTITIOUS) != 0) {
3799 KASSERT(m->ref_count == 1,
3800 ("fictitious page %p is referenced", m));
3801 KASSERT(m->a.queue == PQ_NONE,
3802 ("fictitious page %p is queued", m));
3803 return (false);
3804 }
3805
3806 /*
3807 * Pages need not be dequeued before they are returned to the physical
3808 * memory allocator, but they must at least be marked for a deferred
3809 * dequeue.
3810 */
3811 if ((m->oflags & VPO_UNMANAGED) == 0)
3812 vm_page_dequeue_deferred(m);
3813
3814 m->valid = 0;
3815 vm_page_undirty(m);
3816
3817 if (m->ref_count != 0)
3818 panic("vm_page_free_prep: page %p has references", m);
3819
3820 /*
3821 * Restore the default memory attribute to the page.
3822 */
3823 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3824 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3825
3826 #if VM_NRESERVLEVEL > 0
3827 /*
3828 * Determine whether the page belongs to a reservation. If the page was
3829 * allocated from a per-CPU cache, it cannot belong to a reservation, so
3830 * as an optimization, we avoid the check in that case.
3831 */
3832 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3833 return (false);
3834 #endif
3835
3836 return (true);
3837 }
3838
3839 /*
3840 * vm_page_free_toq:
3841 *
3842 * Returns the given page to the free list, disassociating it
3843 * from any VM object.
3844 *
3845 * The object must be locked. The page must be exclusively busied if it
3846 * belongs to an object.
3847 */
3848 static void
3849 vm_page_free_toq(vm_page_t m)
3850 {
3851 struct vm_domain *vmd;
3852 uma_zone_t zone;
3853
3854 if (!vm_page_free_prep(m))
3855 return;
3856
3857 vmd = vm_pagequeue_domain(m);
3858 zone = vmd->vmd_pgcache[m->pool].zone;
3859 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3860 uma_zfree(zone, m);
3861 return;
3862 }
3863 vm_domain_free_lock(vmd);
3864 vm_phys_free_pages(m, 0);
3865 vm_domain_free_unlock(vmd);
3866 vm_domain_freecnt_inc(vmd, 1);
3867 }
3868
3869 /*
3870 * vm_page_free_pages_toq:
3871 *
3872 * Returns a list of pages to the free list, disassociating it
3873 * from any VM object. In other words, this is equivalent to
3874 * calling vm_page_free_toq() for each page of a list of VM objects.
3875 */
3876 void
3877 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3878 {
3879 vm_page_t m;
3880 int count;
3881
3882 if (SLIST_EMPTY(free))
3883 return;
3884
3885 count = 0;
3886 while ((m = SLIST_FIRST(free)) != NULL) {
3887 count++;
3888 SLIST_REMOVE_HEAD(free, plinks.s.ss);
3889 vm_page_free_toq(m);
3890 }
3891
3892 if (update_wire_count)
3893 vm_wire_sub(count);
3894 }
3895
3896 /*
3897 * Mark this page as wired down. For managed pages, this prevents reclamation
3898 * by the page daemon, or when the containing object, if any, is destroyed.
3899 */
3900 void
3901 vm_page_wire(vm_page_t m)
3902 {
3903 u_int old;
3904
3905 #ifdef INVARIANTS
3906 if (m->object != NULL && !vm_page_busied(m) &&
3907 !vm_object_busied(m->object))
3908 VM_OBJECT_ASSERT_LOCKED(m->object);
3909 #endif
3910 KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3911 VPRC_WIRE_COUNT(m->ref_count) >= 1,
3912 ("vm_page_wire: fictitious page %p has zero wirings", m));
3913
3914 old = atomic_fetchadd_int(&m->ref_count, 1);
3915 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3916 ("vm_page_wire: counter overflow for page %p", m));
3917 if (VPRC_WIRE_COUNT(old) == 0) {
3918 if ((m->oflags & VPO_UNMANAGED) == 0)
3919 vm_page_aflag_set(m, PGA_DEQUEUE);
3920 vm_wire_add(1);
3921 }
3922 }
3923
3924 /*
3925 * Attempt to wire a mapped page following a pmap lookup of that page.
3926 * This may fail if a thread is concurrently tearing down mappings of the page.
3927 * The transient failure is acceptable because it translates to the
3928 * failure of the caller pmap_extract_and_hold(), which should be then
3929 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3930 */
3931 bool
3932 vm_page_wire_mapped(vm_page_t m)
3933 {
3934 u_int old;
3935
3936 old = m->ref_count;
3937 do {
3938 KASSERT(old > 0,
3939 ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3940 if ((old & VPRC_BLOCKED) != 0)
3941 return (false);
3942 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3943
3944 if (VPRC_WIRE_COUNT(old) == 0) {
3945 if ((m->oflags & VPO_UNMANAGED) == 0)
3946 vm_page_aflag_set(m, PGA_DEQUEUE);
3947 vm_wire_add(1);
3948 }
3949 return (true);
3950 }
3951
3952 /*
3953 * Release a wiring reference to a managed page. If the page still belongs to
3954 * an object, update its position in the page queues to reflect the reference.
3955 * If the wiring was the last reference to the page, free the page.
3956 */
3957 static void
3958 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
3959 {
3960 u_int old;
3961
3962 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3963 ("%s: page %p is unmanaged", __func__, m));
3964
3965 /*
3966 * Update LRU state before releasing the wiring reference.
3967 * Use a release store when updating the reference count to
3968 * synchronize with vm_page_free_prep().
3969 */
3970 old = m->ref_count;
3971 do {
3972 KASSERT(VPRC_WIRE_COUNT(old) > 0,
3973 ("vm_page_unwire: wire count underflow for page %p", m));
3974
3975 if (old > VPRC_OBJREF + 1) {
3976 /*
3977 * The page has at least one other wiring reference. An
3978 * earlier iteration of this loop may have called
3979 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
3980 * re-set it if necessary.
3981 */
3982 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
3983 vm_page_aflag_set(m, PGA_DEQUEUE);
3984 } else if (old == VPRC_OBJREF + 1) {
3985 /*
3986 * This is the last wiring. Clear PGA_DEQUEUE and
3987 * update the page's queue state to reflect the
3988 * reference. If the page does not belong to an object
3989 * (i.e., the VPRC_OBJREF bit is clear), we only need to
3990 * clear leftover queue state.
3991 */
3992 vm_page_release_toq(m, nqueue, noreuse);
3993 } else if (old == 1) {
3994 vm_page_aflag_clear(m, PGA_DEQUEUE);
3995 }
3996 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3997
3998 if (VPRC_WIRE_COUNT(old) == 1) {
3999 vm_wire_sub(1);
4000 if (old == 1)
4001 vm_page_free(m);
4002 }
4003 }
4004
4005 /*
4006 * Release one wiring of the specified page, potentially allowing it to be
4007 * paged out.
4008 *
4009 * Only managed pages belonging to an object can be paged out. If the number
4010 * of wirings transitions to zero and the page is eligible for page out, then
4011 * the page is added to the specified paging queue. If the released wiring
4012 * represented the last reference to the page, the page is freed.
4013 */
4014 void
4015 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4016 {
4017
4018 KASSERT(nqueue < PQ_COUNT,
4019 ("vm_page_unwire: invalid queue %u request for page %p",
4020 nqueue, m));
4021
4022 if ((m->oflags & VPO_UNMANAGED) != 0) {
4023 if (vm_page_unwire_noq(m) && m->ref_count == 0)
4024 vm_page_free(m);
4025 return;
4026 }
4027 vm_page_unwire_managed(m, nqueue, false);
4028 }
4029
4030 /*
4031 * Unwire a page without (re-)inserting it into a page queue. It is up
4032 * to the caller to enqueue, requeue, or free the page as appropriate.
4033 * In most cases involving managed pages, vm_page_unwire() should be used
4034 * instead.
4035 */
4036 bool
4037 vm_page_unwire_noq(vm_page_t m)
4038 {
4039 u_int old;
4040
4041 old = vm_page_drop(m, 1);
4042 KASSERT(VPRC_WIRE_COUNT(old) != 0,
4043 ("vm_page_unref: counter underflow for page %p", m));
4044 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4045 ("vm_page_unref: missing ref on fictitious page %p", m));
4046
4047 if (VPRC_WIRE_COUNT(old) > 1)
4048 return (false);
4049 if ((m->oflags & VPO_UNMANAGED) == 0)
4050 vm_page_aflag_clear(m, PGA_DEQUEUE);
4051 vm_wire_sub(1);
4052 return (true);
4053 }
4054
4055 /*
4056 * Ensure that the page ends up in the specified page queue. If the page is
4057 * active or being moved to the active queue, ensure that its act_count is
4058 * at least ACT_INIT but do not otherwise mess with it.
4059 */
4060 static __always_inline void
4061 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4062 {
4063 vm_page_astate_t old, new;
4064
4065 KASSERT(m->ref_count > 0,
4066 ("%s: page %p does not carry any references", __func__, m));
4067 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4068 ("%s: invalid flags %x", __func__, nflag));
4069
4070 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4071 return;
4072
4073 old = vm_page_astate_load(m);
4074 do {
4075 if ((old.flags & PGA_DEQUEUE) != 0)
4076 break;
4077 new = old;
4078 new.flags &= ~PGA_QUEUE_OP_MASK;
4079 if (nqueue == PQ_ACTIVE)
4080 new.act_count = max(old.act_count, ACT_INIT);
4081 if (old.queue == nqueue) {
4082 if (nqueue != PQ_ACTIVE)
4083 new.flags |= nflag;
4084 } else {
4085 new.flags |= nflag;
4086 new.queue = nqueue;
4087 }
4088 } while (!vm_page_pqstate_commit(m, &old, new));
4089 }
4090
4091 /*
4092 * Put the specified page on the active list (if appropriate).
4093 */
4094 void
4095 vm_page_activate(vm_page_t m)
4096 {
4097
4098 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4099 }
4100
4101 /*
4102 * Move the specified page to the tail of the inactive queue, or requeue
4103 * the page if it is already in the inactive queue.
4104 */
4105 void
4106 vm_page_deactivate(vm_page_t m)
4107 {
4108
4109 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4110 }
4111
4112 void
4113 vm_page_deactivate_noreuse(vm_page_t m)
4114 {
4115
4116 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4117 }
4118
4119 /*
4120 * Put a page in the laundry, or requeue it if it is already there.
4121 */
4122 void
4123 vm_page_launder(vm_page_t m)
4124 {
4125
4126 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4127 }
4128
4129 /*
4130 * Put a page in the PQ_UNSWAPPABLE holding queue.
4131 */
4132 void
4133 vm_page_unswappable(vm_page_t m)
4134 {
4135
4136 KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4137 ("page %p already unswappable", m));
4138
4139 vm_page_dequeue(m);
4140 vm_page_enqueue(m, PQ_UNSWAPPABLE);
4141 }
4142
4143 /*
4144 * Release a page back to the page queues in preparation for unwiring.
4145 */
4146 static void
4147 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4148 {
4149 vm_page_astate_t old, new;
4150 uint16_t nflag;
4151
4152 /*
4153 * Use a check of the valid bits to determine whether we should
4154 * accelerate reclamation of the page. The object lock might not be
4155 * held here, in which case the check is racy. At worst we will either
4156 * accelerate reclamation of a valid page and violate LRU, or
4157 * unnecessarily defer reclamation of an invalid page.
4158 *
4159 * If we were asked to not cache the page, place it near the head of the
4160 * inactive queue so that is reclaimed sooner.
4161 */
4162 if (noreuse || m->valid == 0) {
4163 nqueue = PQ_INACTIVE;
4164 nflag = PGA_REQUEUE_HEAD;
4165 } else {
4166 nflag = PGA_REQUEUE;
4167 }
4168
4169 old = vm_page_astate_load(m);
4170 do {
4171 new = old;
4172
4173 /*
4174 * If the page is already in the active queue and we are not
4175 * trying to accelerate reclamation, simply mark it as
4176 * referenced and avoid any queue operations.
4177 */
4178 new.flags &= ~PGA_QUEUE_OP_MASK;
4179 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE)
4180 new.flags |= PGA_REFERENCED;
4181 else {
4182 new.flags |= nflag;
4183 new.queue = nqueue;
4184 }
4185 } while (!vm_page_pqstate_commit(m, &old, new));
4186 }
4187
4188 /*
4189 * Unwire a page and either attempt to free it or re-add it to the page queues.
4190 */
4191 void
4192 vm_page_release(vm_page_t m, int flags)
4193 {
4194 vm_object_t object;
4195
4196 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4197 ("vm_page_release: page %p is unmanaged", m));
4198
4199 if ((flags & VPR_TRYFREE) != 0) {
4200 for (;;) {
4201 object = atomic_load_ptr(&m->object);
4202 if (object == NULL)
4203 break;
4204 /* Depends on type-stability. */
4205 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4206 break;
4207 if (object == m->object) {
4208 vm_page_release_locked(m, flags);
4209 VM_OBJECT_WUNLOCK(object);
4210 return;
4211 }
4212 VM_OBJECT_WUNLOCK(object);
4213 }
4214 }
4215 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4216 }
4217
4218 /* See vm_page_release(). */
4219 void
4220 vm_page_release_locked(vm_page_t m, int flags)
4221 {
4222
4223 VM_OBJECT_ASSERT_WLOCKED(m->object);
4224 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4225 ("vm_page_release_locked: page %p is unmanaged", m));
4226
4227 if (vm_page_unwire_noq(m)) {
4228 if ((flags & VPR_TRYFREE) != 0 &&
4229 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4230 m->dirty == 0 && vm_page_tryxbusy(m)) {
4231 /*
4232 * An unlocked lookup may have wired the page before the
4233 * busy lock was acquired, in which case the page must
4234 * not be freed.
4235 */
4236 if (__predict_true(!vm_page_wired(m))) {
4237 vm_page_free(m);
4238 return;
4239 }
4240 vm_page_xunbusy(m);
4241 } else {
4242 vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4243 }
4244 }
4245 }
4246
4247 static bool
4248 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4249 {
4250 u_int old;
4251
4252 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4253 ("vm_page_try_blocked_op: page %p has no object", m));
4254 KASSERT(vm_page_busied(m),
4255 ("vm_page_try_blocked_op: page %p is not busy", m));
4256 VM_OBJECT_ASSERT_LOCKED(m->object);
4257
4258 old = m->ref_count;
4259 do {
4260 KASSERT(old != 0,
4261 ("vm_page_try_blocked_op: page %p has no references", m));
4262 if (VPRC_WIRE_COUNT(old) != 0)
4263 return (false);
4264 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4265
4266 (op)(m);
4267
4268 /*
4269 * If the object is read-locked, new wirings may be created via an
4270 * object lookup.
4271 */
4272 old = vm_page_drop(m, VPRC_BLOCKED);
4273 KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4274 old == (VPRC_BLOCKED | VPRC_OBJREF),
4275 ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4276 old, m));
4277 return (true);
4278 }
4279
4280 /*
4281 * Atomically check for wirings and remove all mappings of the page.
4282 */
4283 bool
4284 vm_page_try_remove_all(vm_page_t m)
4285 {
4286
4287 return (vm_page_try_blocked_op(m, pmap_remove_all));
4288 }
4289
4290 /*
4291 * Atomically check for wirings and remove all writeable mappings of the page.
4292 */
4293 bool
4294 vm_page_try_remove_write(vm_page_t m)
4295 {
4296
4297 return (vm_page_try_blocked_op(m, pmap_remove_write));
4298 }
4299
4300 /*
4301 * vm_page_advise
4302 *
4303 * Apply the specified advice to the given page.
4304 */
4305 void
4306 vm_page_advise(vm_page_t m, int advice)
4307 {
4308
4309 VM_OBJECT_ASSERT_WLOCKED(m->object);
4310 vm_page_assert_xbusied(m);
4311
4312 if (advice == MADV_FREE)
4313 /*
4314 * Mark the page clean. This will allow the page to be freed
4315 * without first paging it out. MADV_FREE pages are often
4316 * quickly reused by malloc(3), so we do not do anything that
4317 * would result in a page fault on a later access.
4318 */
4319 vm_page_undirty(m);
4320 else if (advice != MADV_DONTNEED) {
4321 if (advice == MADV_WILLNEED)
4322 vm_page_activate(m);
4323 return;
4324 }
4325
4326 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4327 vm_page_dirty(m);
4328
4329 /*
4330 * Clear any references to the page. Otherwise, the page daemon will
4331 * immediately reactivate the page.
4332 */
4333 vm_page_aflag_clear(m, PGA_REFERENCED);
4334
4335 /*
4336 * Place clean pages near the head of the inactive queue rather than
4337 * the tail, thus defeating the queue's LRU operation and ensuring that
4338 * the page will be reused quickly. Dirty pages not already in the
4339 * laundry are moved there.
4340 */
4341 if (m->dirty == 0)
4342 vm_page_deactivate_noreuse(m);
4343 else if (!vm_page_in_laundry(m))
4344 vm_page_launder(m);
4345 }
4346
4347 /*
4348 * vm_page_grab_release
4349 *
4350 * Helper routine for grab functions to release busy on return.
4351 */
4352 static inline void
4353 vm_page_grab_release(vm_page_t m, int allocflags)
4354 {
4355
4356 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4357 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4358 vm_page_sunbusy(m);
4359 else
4360 vm_page_xunbusy(m);
4361 }
4362 }
4363
4364 /*
4365 * vm_page_grab_sleep
4366 *
4367 * Sleep for busy according to VM_ALLOC_ parameters. Returns true
4368 * if the caller should retry and false otherwise.
4369 *
4370 * If the object is locked on entry the object will be unlocked with
4371 * false returns and still locked but possibly having been dropped
4372 * with true returns.
4373 */
4374 static bool
4375 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4376 const char *wmesg, int allocflags, bool locked)
4377 {
4378
4379 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4380 return (false);
4381
4382 /*
4383 * Reference the page before unlocking and sleeping so that
4384 * the page daemon is less likely to reclaim it.
4385 */
4386 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4387 vm_page_reference(m);
4388
4389 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4390 locked)
4391 VM_OBJECT_WLOCK(object);
4392 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4393 return (false);
4394
4395 return (true);
4396 }
4397
4398 /*
4399 * Assert that the grab flags are valid.
4400 */
4401 static inline void
4402 vm_page_grab_check(int allocflags)
4403 {
4404
4405 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4406 (allocflags & VM_ALLOC_WIRED) != 0,
4407 ("vm_page_grab*: the pages must be busied or wired"));
4408
4409 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4410 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4411 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4412 }
4413
4414 /*
4415 * Calculate the page allocation flags for grab.
4416 */
4417 static inline int
4418 vm_page_grab_pflags(int allocflags)
4419 {
4420 int pflags;
4421
4422 pflags = allocflags &
4423 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4424 VM_ALLOC_NOBUSY);
4425 if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4426 pflags |= VM_ALLOC_WAITFAIL;
4427 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4428 pflags |= VM_ALLOC_SBUSY;
4429
4430 return (pflags);
4431 }
4432
4433 /*
4434 * Grab a page, waiting until we are waken up due to the page
4435 * changing state. We keep on waiting, if the page continues
4436 * to be in the object. If the page doesn't exist, first allocate it
4437 * and then conditionally zero it.
4438 *
4439 * This routine may sleep.
4440 *
4441 * The object must be locked on entry. The lock will, however, be released
4442 * and reacquired if the routine sleeps.
4443 */
4444 vm_page_t
4445 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4446 {
4447 vm_page_t m;
4448
4449 VM_OBJECT_ASSERT_WLOCKED(object);
4450 vm_page_grab_check(allocflags);
4451
4452 retrylookup:
4453 if ((m = vm_page_lookup(object, pindex)) != NULL) {
4454 if (!vm_page_tryacquire(m, allocflags)) {
4455 if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4456 allocflags, true))
4457 goto retrylookup;
4458 return (NULL);
4459 }
4460 goto out;
4461 }
4462 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4463 return (NULL);
4464 m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4465 if (m == NULL) {
4466 if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4467 return (NULL);
4468 goto retrylookup;
4469 }
4470 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4471 pmap_zero_page(m);
4472
4473 out:
4474 vm_page_grab_release(m, allocflags);
4475
4476 return (m);
4477 }
4478
4479 /*
4480 * Locklessly attempt to acquire a page given a (object, pindex) tuple
4481 * and an optional previous page to avoid the radix lookup. The resulting
4482 * page will be validated against the identity tuple and busied or wired
4483 * as requested. A NULL *mp return guarantees that the page was not in
4484 * radix at the time of the call but callers must perform higher level
4485 * synchronization or retry the operation under a lock if they require
4486 * an atomic answer. This is the only lock free validation routine,
4487 * other routines can depend on the resulting page state.
4488 *
4489 * The return value indicates whether the operation failed due to caller
4490 * flags. The return is tri-state with mp:
4491 *
4492 * (true, *mp != NULL) - The operation was successful.
4493 * (true, *mp == NULL) - The page was not found in tree.
4494 * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition.
4495 */
4496 static bool
4497 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex,
4498 vm_page_t prev, vm_page_t *mp, int allocflags)
4499 {
4500 vm_page_t m;
4501
4502 vm_page_grab_check(allocflags);
4503 MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev));
4504
4505 *mp = NULL;
4506 for (;;) {
4507 /*
4508 * We may see a false NULL here because the previous page
4509 * has been removed or just inserted and the list is loaded
4510 * without barriers. Switch to radix to verify.
4511 */
4512 if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL ||
4513 QMD_IS_TRASHED(m) || m->pindex != pindex ||
4514 atomic_load_ptr(&m->object) != object) {
4515 prev = NULL;
4516 /*
4517 * This guarantees the result is instantaneously
4518 * correct.
4519 */
4520 m = vm_radix_lookup_unlocked(&object->rtree, pindex);
4521 }
4522 if (m == NULL)
4523 return (true);
4524 if (vm_page_trybusy(m, allocflags)) {
4525 if (m->object == object && m->pindex == pindex)
4526 break;
4527 /* relookup. */
4528 vm_page_busy_release(m);
4529 cpu_spinwait();
4530 continue;
4531 }
4532 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4533 allocflags, false))
4534 return (false);
4535 }
4536 if ((allocflags & VM_ALLOC_WIRED) != 0)
4537 vm_page_wire(m);
4538 vm_page_grab_release(m, allocflags);
4539 *mp = m;
4540 return (true);
4541 }
4542
4543 /*
4544 * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4545 * is not set.
4546 */
4547 vm_page_t
4548 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4549 {
4550 vm_page_t m;
4551
4552 vm_page_grab_check(allocflags);
4553
4554 if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags))
4555 return (NULL);
4556 if (m != NULL)
4557 return (m);
4558
4559 /*
4560 * The radix lockless lookup should never return a false negative
4561 * errors. If the user specifies NOCREAT they are guaranteed there
4562 * was no page present at the instant of the call. A NOCREAT caller
4563 * must handle create races gracefully.
4564 */
4565 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4566 return (NULL);
4567
4568 VM_OBJECT_WLOCK(object);
4569 m = vm_page_grab(object, pindex, allocflags);
4570 VM_OBJECT_WUNLOCK(object);
4571
4572 return (m);
4573 }
4574
4575 /*
4576 * Grab a page and make it valid, paging in if necessary. Pages missing from
4577 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied
4578 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4579 * in simultaneously. Additional pages will be left on a paging queue but
4580 * will neither be wired nor busy regardless of allocflags.
4581 */
4582 int
4583 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4584 {
4585 vm_page_t m;
4586 vm_page_t ma[VM_INITIAL_PAGEIN];
4587 int after, i, pflags, rv;
4588
4589 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4590 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4591 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4592 KASSERT((allocflags &
4593 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4594 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4595 VM_OBJECT_ASSERT_WLOCKED(object);
4596 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4597 VM_ALLOC_WIRED);
4598 pflags |= VM_ALLOC_WAITFAIL;
4599
4600 retrylookup:
4601 if ((m = vm_page_lookup(object, pindex)) != NULL) {
4602 /*
4603 * If the page is fully valid it can only become invalid
4604 * with the object lock held. If it is not valid it can
4605 * become valid with the busy lock held. Therefore, we
4606 * may unnecessarily lock the exclusive busy here if we
4607 * race with I/O completion not using the object lock.
4608 * However, we will not end up with an invalid page and a
4609 * shared lock.
4610 */
4611 if (!vm_page_trybusy(m,
4612 vm_page_all_valid(m) ? allocflags : 0)) {
4613 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4614 allocflags, true);
4615 goto retrylookup;
4616 }
4617 if (vm_page_all_valid(m))
4618 goto out;
4619 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4620 vm_page_busy_release(m);
4621 *mp = NULL;
4622 return (VM_PAGER_FAIL);
4623 }
4624 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4625 *mp = NULL;
4626 return (VM_PAGER_FAIL);
4627 } else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
4628 goto retrylookup;
4629 }
4630
4631 vm_page_assert_xbusied(m);
4632 if (vm_pager_has_page(object, pindex, NULL, &after)) {
4633 after = MIN(after, VM_INITIAL_PAGEIN);
4634 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4635 after = MAX(after, 1);
4636 ma[0] = m;
4637 for (i = 1; i < after; i++) {
4638 if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4639 if (ma[i]->valid || !vm_page_tryxbusy(ma[i]))
4640 break;
4641 } else {
4642 ma[i] = vm_page_alloc(object, m->pindex + i,
4643 VM_ALLOC_NORMAL);
4644 if (ma[i] == NULL)
4645 break;
4646 }
4647 }
4648 after = i;
4649 vm_object_pip_add(object, after);
4650 VM_OBJECT_WUNLOCK(object);
4651 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4652 VM_OBJECT_WLOCK(object);
4653 vm_object_pip_wakeupn(object, after);
4654 /* Pager may have replaced a page. */
4655 m = ma[0];
4656 if (rv != VM_PAGER_OK) {
4657 for (i = 0; i < after; i++) {
4658 if (!vm_page_wired(ma[i]))
4659 vm_page_free(ma[i]);
4660 else
4661 vm_page_xunbusy(ma[i]);
4662 }
4663 *mp = NULL;
4664 return (rv);
4665 }
4666 for (i = 1; i < after; i++)
4667 vm_page_readahead_finish(ma[i]);
4668 MPASS(vm_page_all_valid(m));
4669 } else {
4670 vm_page_zero_invalid(m, TRUE);
4671 }
4672 out:
4673 if ((allocflags & VM_ALLOC_WIRED) != 0)
4674 vm_page_wire(m);
4675 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
4676 vm_page_busy_downgrade(m);
4677 else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
4678 vm_page_busy_release(m);
4679 *mp = m;
4680 return (VM_PAGER_OK);
4681 }
4682
4683 /*
4684 * Locklessly grab a valid page. If the page is not valid or not yet
4685 * allocated this will fall back to the object lock method.
4686 */
4687 int
4688 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
4689 vm_pindex_t pindex, int allocflags)
4690 {
4691 vm_page_t m;
4692 int flags;
4693 int error;
4694
4695 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4696 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4697 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4698 "mismatch"));
4699 KASSERT((allocflags &
4700 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4701 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
4702
4703 /*
4704 * Attempt a lockless lookup and busy. We need at least an sbusy
4705 * before we can inspect the valid field and return a wired page.
4706 */
4707 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
4708 if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags))
4709 return (VM_PAGER_FAIL);
4710 if ((m = *mp) != NULL) {
4711 if (vm_page_all_valid(m)) {
4712 if ((allocflags & VM_ALLOC_WIRED) != 0)
4713 vm_page_wire(m);
4714 vm_page_grab_release(m, allocflags);
4715 return (VM_PAGER_OK);
4716 }
4717 vm_page_busy_release(m);
4718 }
4719 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4720 *mp = NULL;
4721 return (VM_PAGER_FAIL);
4722 }
4723 VM_OBJECT_WLOCK(object);
4724 error = vm_page_grab_valid(mp, object, pindex, allocflags);
4725 VM_OBJECT_WUNLOCK(object);
4726
4727 return (error);
4728 }
4729
4730 /*
4731 * Return the specified range of pages from the given object. For each
4732 * page offset within the range, if a page already exists within the object
4733 * at that offset and it is busy, then wait for it to change state. If,
4734 * instead, the page doesn't exist, then allocate it.
4735 *
4736 * The caller must always specify an allocation class.
4737 *
4738 * allocation classes:
4739 * VM_ALLOC_NORMAL normal process request
4740 * VM_ALLOC_SYSTEM system *really* needs the pages
4741 *
4742 * The caller must always specify that the pages are to be busied and/or
4743 * wired.
4744 *
4745 * optional allocation flags:
4746 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages
4747 * VM_ALLOC_NOBUSY do not exclusive busy the page
4748 * VM_ALLOC_NOWAIT do not sleep
4749 * VM_ALLOC_SBUSY set page to sbusy state
4750 * VM_ALLOC_WIRED wire the pages
4751 * VM_ALLOC_ZERO zero and validate any invalid pages
4752 *
4753 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it
4754 * may return a partial prefix of the requested range.
4755 */
4756 int
4757 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4758 vm_page_t *ma, int count)
4759 {
4760 vm_page_t m, mpred;
4761 int pflags;
4762 int i;
4763
4764 VM_OBJECT_ASSERT_WLOCKED(object);
4765 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4766 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4767 KASSERT(count > 0,
4768 ("vm_page_grab_pages: invalid page count %d", count));
4769 vm_page_grab_check(allocflags);
4770
4771 pflags = vm_page_grab_pflags(allocflags);
4772 i = 0;
4773 retrylookup:
4774 m = vm_radix_lookup_le(&object->rtree, pindex + i);
4775 if (m == NULL || m->pindex != pindex + i) {
4776 mpred = m;
4777 m = NULL;
4778 } else
4779 mpred = TAILQ_PREV(m, pglist, listq);
4780 for (; i < count; i++) {
4781 if (m != NULL) {
4782 if (!vm_page_tryacquire(m, allocflags)) {
4783 if (vm_page_grab_sleep(object, m, pindex + i,
4784 "grbmaw", allocflags, true))
4785 goto retrylookup;
4786 break;
4787 }
4788 } else {
4789 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4790 break;
4791 m = vm_page_alloc_after(object, pindex + i,
4792 pflags | VM_ALLOC_COUNT(count - i), mpred);
4793 if (m == NULL) {
4794 if ((allocflags & (VM_ALLOC_NOWAIT |
4795 VM_ALLOC_WAITFAIL)) != 0)
4796 break;
4797 goto retrylookup;
4798 }
4799 }
4800 if (vm_page_none_valid(m) &&
4801 (allocflags & VM_ALLOC_ZERO) != 0) {
4802 if ((m->flags & PG_ZERO) == 0)
4803 pmap_zero_page(m);
4804 vm_page_valid(m);
4805 }
4806 vm_page_grab_release(m, allocflags);
4807 ma[i] = mpred = m;
4808 m = vm_page_next(m);
4809 }
4810 return (i);
4811 }
4812
4813 /*
4814 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags
4815 * and will fall back to the locked variant to handle allocation.
4816 */
4817 int
4818 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
4819 int allocflags, vm_page_t *ma, int count)
4820 {
4821 vm_page_t m, pred;
4822 int flags;
4823 int i;
4824
4825 KASSERT(count > 0,
4826 ("vm_page_grab_pages_unlocked: invalid page count %d", count));
4827 vm_page_grab_check(allocflags);
4828
4829 /*
4830 * Modify flags for lockless acquire to hold the page until we
4831 * set it valid if necessary.
4832 */
4833 flags = allocflags & ~VM_ALLOC_NOBUSY;
4834 pred = NULL;
4835 for (i = 0; i < count; i++, pindex++) {
4836 if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags))
4837 return (i);
4838 if (m == NULL)
4839 break;
4840 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
4841 if ((m->flags & PG_ZERO) == 0)
4842 pmap_zero_page(m);
4843 vm_page_valid(m);
4844 }
4845 /* m will still be wired or busy according to flags. */
4846 vm_page_grab_release(m, allocflags);
4847 pred = ma[i] = m;
4848 }
4849 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
4850 return (i);
4851 count -= i;
4852 VM_OBJECT_WLOCK(object);
4853 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
4854 VM_OBJECT_WUNLOCK(object);
4855
4856 return (i);
4857 }
4858
4859 /*
4860 * Mapping function for valid or dirty bits in a page.
4861 *
4862 * Inputs are required to range within a page.
4863 */
4864 vm_page_bits_t
4865 vm_page_bits(int base, int size)
4866 {
4867 int first_bit;
4868 int last_bit;
4869
4870 KASSERT(
4871 base + size <= PAGE_SIZE,
4872 ("vm_page_bits: illegal base/size %d/%d", base, size)
4873 );
4874
4875 if (size == 0) /* handle degenerate case */
4876 return (0);
4877
4878 first_bit = base >> DEV_BSHIFT;
4879 last_bit = (base + size - 1) >> DEV_BSHIFT;
4880
4881 return (((vm_page_bits_t)2 << last_bit) -
4882 ((vm_page_bits_t)1 << first_bit));
4883 }
4884
4885 void
4886 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4887 {
4888
4889 #if PAGE_SIZE == 32768
4890 atomic_set_64((uint64_t *)bits, set);
4891 #elif PAGE_SIZE == 16384
4892 atomic_set_32((uint32_t *)bits, set);
4893 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4894 atomic_set_16((uint16_t *)bits, set);
4895 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4896 atomic_set_8((uint8_t *)bits, set);
4897 #else /* PAGE_SIZE <= 8192 */
4898 uintptr_t addr;
4899 int shift;
4900
4901 addr = (uintptr_t)bits;
4902 /*
4903 * Use a trick to perform a 32-bit atomic on the
4904 * containing aligned word, to not depend on the existence
4905 * of atomic_{set, clear}_{8, 16}.
4906 */
4907 shift = addr & (sizeof(uint32_t) - 1);
4908 #if BYTE_ORDER == BIG_ENDIAN
4909 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4910 #else
4911 shift *= NBBY;
4912 #endif
4913 addr &= ~(sizeof(uint32_t) - 1);
4914 atomic_set_32((uint32_t *)addr, set << shift);
4915 #endif /* PAGE_SIZE */
4916 }
4917
4918 static inline void
4919 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4920 {
4921
4922 #if PAGE_SIZE == 32768
4923 atomic_clear_64((uint64_t *)bits, clear);
4924 #elif PAGE_SIZE == 16384
4925 atomic_clear_32((uint32_t *)bits, clear);
4926 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4927 atomic_clear_16((uint16_t *)bits, clear);
4928 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4929 atomic_clear_8((uint8_t *)bits, clear);
4930 #else /* PAGE_SIZE <= 8192 */
4931 uintptr_t addr;
4932 int shift;
4933
4934 addr = (uintptr_t)bits;
4935 /*
4936 * Use a trick to perform a 32-bit atomic on the
4937 * containing aligned word, to not depend on the existence
4938 * of atomic_{set, clear}_{8, 16}.
4939 */
4940 shift = addr & (sizeof(uint32_t) - 1);
4941 #if BYTE_ORDER == BIG_ENDIAN
4942 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4943 #else
4944 shift *= NBBY;
4945 #endif
4946 addr &= ~(sizeof(uint32_t) - 1);
4947 atomic_clear_32((uint32_t *)addr, clear << shift);
4948 #endif /* PAGE_SIZE */
4949 }
4950
4951 static inline vm_page_bits_t
4952 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
4953 {
4954 #if PAGE_SIZE == 32768
4955 uint64_t old;
4956
4957 old = *bits;
4958 while (atomic_fcmpset_64(bits, &old, newbits) == 0);
4959 return (old);
4960 #elif PAGE_SIZE == 16384
4961 uint32_t old;
4962
4963 old = *bits;
4964 while (atomic_fcmpset_32(bits, &old, newbits) == 0);
4965 return (old);
4966 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
4967 uint16_t old;
4968
4969 old = *bits;
4970 while (atomic_fcmpset_16(bits, &old, newbits) == 0);
4971 return (old);
4972 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
4973 uint8_t old;
4974
4975 old = *bits;
4976 while (atomic_fcmpset_8(bits, &old, newbits) == 0);
4977 return (old);
4978 #else /* PAGE_SIZE <= 4096*/
4979 uintptr_t addr;
4980 uint32_t old, new, mask;
4981 int shift;
4982
4983 addr = (uintptr_t)bits;
4984 /*
4985 * Use a trick to perform a 32-bit atomic on the
4986 * containing aligned word, to not depend on the existence
4987 * of atomic_{set, swap, clear}_{8, 16}.
4988 */
4989 shift = addr & (sizeof(uint32_t) - 1);
4990 #if BYTE_ORDER == BIG_ENDIAN
4991 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4992 #else
4993 shift *= NBBY;
4994 #endif
4995 addr &= ~(sizeof(uint32_t) - 1);
4996 mask = VM_PAGE_BITS_ALL << shift;
4997
4998 old = *bits;
4999 do {
5000 new = old & ~mask;
5001 new |= newbits << shift;
5002 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5003 return (old >> shift);
5004 #endif /* PAGE_SIZE */
5005 }
5006
5007 /*
5008 * vm_page_set_valid_range:
5009 *
5010 * Sets portions of a page valid. The arguments are expected
5011 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5012 * of any partial chunks touched by the range. The invalid portion of
5013 * such chunks will be zeroed.
5014 *
5015 * (base + size) must be less then or equal to PAGE_SIZE.
5016 */
5017 void
5018 vm_page_set_valid_range(vm_page_t m, int base, int size)
5019 {
5020 int endoff, frag;
5021 vm_page_bits_t pagebits;
5022
5023 vm_page_assert_busied(m);
5024 if (size == 0) /* handle degenerate case */
5025 return;
5026
5027 /*
5028 * If the base is not DEV_BSIZE aligned and the valid
5029 * bit is clear, we have to zero out a portion of the
5030 * first block.
5031 */
5032 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5033 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5034 pmap_zero_page_area(m, frag, base - frag);
5035
5036 /*
5037 * If the ending offset is not DEV_BSIZE aligned and the
5038 * valid bit is clear, we have to zero out a portion of
5039 * the last block.
5040 */
5041 endoff = base + size;
5042 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5043 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5044 pmap_zero_page_area(m, endoff,
5045 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5046
5047 /*
5048 * Assert that no previously invalid block that is now being validated
5049 * is already dirty.
5050 */
5051 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5052 ("vm_page_set_valid_range: page %p is dirty", m));
5053
5054 /*
5055 * Set valid bits inclusive of any overlap.
5056 */
5057 pagebits = vm_page_bits(base, size);
5058 if (vm_page_xbusied(m))
5059 m->valid |= pagebits;
5060 else
5061 vm_page_bits_set(m, &m->valid, pagebits);
5062 }
5063
5064 /*
5065 * Set the page dirty bits and free the invalid swap space if
5066 * present. Returns the previous dirty bits.
5067 */
5068 vm_page_bits_t
5069 vm_page_set_dirty(vm_page_t m)
5070 {
5071 vm_page_bits_t old;
5072
5073 VM_PAGE_OBJECT_BUSY_ASSERT(m);
5074
5075 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5076 old = m->dirty;
5077 m->dirty = VM_PAGE_BITS_ALL;
5078 } else
5079 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5080 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5081 vm_pager_page_unswapped(m);
5082
5083 return (old);
5084 }
5085
5086 /*
5087 * Clear the given bits from the specified page's dirty field.
5088 */
5089 static __inline void
5090 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5091 {
5092
5093 vm_page_assert_busied(m);
5094
5095 /*
5096 * If the page is xbusied and not write mapped we are the
5097 * only thread that can modify dirty bits. Otherwise, The pmap
5098 * layer can call vm_page_dirty() without holding a distinguished
5099 * lock. The combination of page busy and atomic operations
5100 * suffice to guarantee consistency of the page dirty field.
5101 */
5102 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5103 m->dirty &= ~pagebits;
5104 else
5105 vm_page_bits_clear(m, &m->dirty, pagebits);
5106 }
5107
5108 /*
5109 * vm_page_set_validclean:
5110 *
5111 * Sets portions of a page valid and clean. The arguments are expected
5112 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5113 * of any partial chunks touched by the range. The invalid portion of
5114 * such chunks will be zero'd.
5115 *
5116 * (base + size) must be less then or equal to PAGE_SIZE.
5117 */
5118 void
5119 vm_page_set_validclean(vm_page_t m, int base, int size)
5120 {
5121 vm_page_bits_t oldvalid, pagebits;
5122 int endoff, frag;
5123
5124 vm_page_assert_busied(m);
5125 if (size == 0) /* handle degenerate case */
5126 return;
5127
5128 /*
5129 * If the base is not DEV_BSIZE aligned and the valid
5130 * bit is clear, we have to zero out a portion of the
5131 * first block.
5132 */
5133 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5134 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5135 pmap_zero_page_area(m, frag, base - frag);
5136
5137 /*
5138 * If the ending offset is not DEV_BSIZE aligned and the
5139 * valid bit is clear, we have to zero out a portion of
5140 * the last block.
5141 */
5142 endoff = base + size;
5143 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5144 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5145 pmap_zero_page_area(m, endoff,
5146 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5147
5148 /*
5149 * Set valid, clear dirty bits. If validating the entire
5150 * page we can safely clear the pmap modify bit. We also
5151 * use this opportunity to clear the PGA_NOSYNC flag. If a process
5152 * takes a write fault on a MAP_NOSYNC memory area the flag will
5153 * be set again.
5154 *
5155 * We set valid bits inclusive of any overlap, but we can only
5156 * clear dirty bits for DEV_BSIZE chunks that are fully within
5157 * the range.
5158 */
5159 oldvalid = m->valid;
5160 pagebits = vm_page_bits(base, size);
5161 if (vm_page_xbusied(m))
5162 m->valid |= pagebits;
5163 else
5164 vm_page_bits_set(m, &m->valid, pagebits);
5165 #if 0 /* NOT YET */
5166 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5167 frag = DEV_BSIZE - frag;
5168 base += frag;
5169 size -= frag;
5170 if (size < 0)
5171 size = 0;
5172 }
5173 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5174 #endif
5175 if (base == 0 && size == PAGE_SIZE) {
5176 /*
5177 * The page can only be modified within the pmap if it is
5178 * mapped, and it can only be mapped if it was previously
5179 * fully valid.
5180 */
5181 if (oldvalid == VM_PAGE_BITS_ALL)
5182 /*
5183 * Perform the pmap_clear_modify() first. Otherwise,
5184 * a concurrent pmap operation, such as
5185 * pmap_protect(), could clear a modification in the
5186 * pmap and set the dirty field on the page before
5187 * pmap_clear_modify() had begun and after the dirty
5188 * field was cleared here.
5189 */
5190 pmap_clear_modify(m);
5191 m->dirty = 0;
5192 vm_page_aflag_clear(m, PGA_NOSYNC);
5193 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5194 m->dirty &= ~pagebits;
5195 else
5196 vm_page_clear_dirty_mask(m, pagebits);
5197 }
5198
5199 void
5200 vm_page_clear_dirty(vm_page_t m, int base, int size)
5201 {
5202
5203 vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5204 }
5205
5206 /*
5207 * vm_page_set_invalid:
5208 *
5209 * Invalidates DEV_BSIZE'd chunks within a page. Both the
5210 * valid and dirty bits for the effected areas are cleared.
5211 */
5212 void
5213 vm_page_set_invalid(vm_page_t m, int base, int size)
5214 {
5215 vm_page_bits_t bits;
5216 vm_object_t object;
5217
5218 /*
5219 * The object lock is required so that pages can't be mapped
5220 * read-only while we're in the process of invalidating them.
5221 */
5222 object = m->object;
5223 VM_OBJECT_ASSERT_WLOCKED(object);
5224 vm_page_assert_busied(m);
5225
5226 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5227 size >= object->un_pager.vnp.vnp_size)
5228 bits = VM_PAGE_BITS_ALL;
5229 else
5230 bits = vm_page_bits(base, size);
5231 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5232 pmap_remove_all(m);
5233 KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5234 !pmap_page_is_mapped(m),
5235 ("vm_page_set_invalid: page %p is mapped", m));
5236 if (vm_page_xbusied(m)) {
5237 m->valid &= ~bits;
5238 m->dirty &= ~bits;
5239 } else {
5240 vm_page_bits_clear(m, &m->valid, bits);
5241 vm_page_bits_clear(m, &m->dirty, bits);
5242 }
5243 }
5244
5245 /*
5246 * vm_page_invalid:
5247 *
5248 * Invalidates the entire page. The page must be busy, unmapped, and
5249 * the enclosing object must be locked. The object locks protects
5250 * against concurrent read-only pmap enter which is done without
5251 * busy.
5252 */
5253 void
5254 vm_page_invalid(vm_page_t m)
5255 {
5256
5257 vm_page_assert_busied(m);
5258 VM_OBJECT_ASSERT_LOCKED(m->object);
5259 MPASS(!pmap_page_is_mapped(m));
5260
5261 if (vm_page_xbusied(m))
5262 m->valid = 0;
5263 else
5264 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5265 }
5266
5267 /*
5268 * vm_page_zero_invalid()
5269 *
5270 * The kernel assumes that the invalid portions of a page contain
5271 * garbage, but such pages can be mapped into memory by user code.
5272 * When this occurs, we must zero out the non-valid portions of the
5273 * page so user code sees what it expects.
5274 *
5275 * Pages are most often semi-valid when the end of a file is mapped
5276 * into memory and the file's size is not page aligned.
5277 */
5278 void
5279 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5280 {
5281 int b;
5282 int i;
5283
5284 /*
5285 * Scan the valid bits looking for invalid sections that
5286 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the
5287 * valid bit may be set ) have already been zeroed by
5288 * vm_page_set_validclean().
5289 */
5290 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5291 if (i == (PAGE_SIZE / DEV_BSIZE) ||
5292 (m->valid & ((vm_page_bits_t)1 << i))) {
5293 if (i > b) {
5294 pmap_zero_page_area(m,
5295 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5296 }
5297 b = i + 1;
5298 }
5299 }
5300
5301 /*
5302 * setvalid is TRUE when we can safely set the zero'd areas
5303 * as being valid. We can do this if there are no cache consistancy
5304 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
5305 */
5306 if (setvalid)
5307 vm_page_valid(m);
5308 }
5309
5310 /*
5311 * vm_page_is_valid:
5312 *
5313 * Is (partial) page valid? Note that the case where size == 0
5314 * will return FALSE in the degenerate case where the page is
5315 * entirely invalid, and TRUE otherwise.
5316 *
5317 * Some callers envoke this routine without the busy lock held and
5318 * handle races via higher level locks. Typical callers should
5319 * hold a busy lock to prevent invalidation.
5320 */
5321 int
5322 vm_page_is_valid(vm_page_t m, int base, int size)
5323 {
5324 vm_page_bits_t bits;
5325
5326 bits = vm_page_bits(base, size);
5327 return (m->valid != 0 && (m->valid & bits) == bits);
5328 }
5329
5330 /*
5331 * Returns true if all of the specified predicates are true for the entire
5332 * (super)page and false otherwise.
5333 */
5334 bool
5335 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5336 {
5337 vm_object_t object;
5338 int i, npages;
5339
5340 object = m->object;
5341 if (skip_m != NULL && skip_m->object != object)
5342 return (false);
5343 VM_OBJECT_ASSERT_LOCKED(object);
5344 npages = atop(pagesizes[m->psind]);
5345
5346 /*
5347 * The physically contiguous pages that make up a superpage, i.e., a
5348 * page with a page size index ("psind") greater than zero, will
5349 * occupy adjacent entries in vm_page_array[].
5350 */
5351 for (i = 0; i < npages; i++) {
5352 /* Always test object consistency, including "skip_m". */
5353 if (m[i].object != object)
5354 return (false);
5355 if (&m[i] == skip_m)
5356 continue;
5357 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5358 return (false);
5359 if ((flags & PS_ALL_DIRTY) != 0) {
5360 /*
5361 * Calling vm_page_test_dirty() or pmap_is_modified()
5362 * might stop this case from spuriously returning
5363 * "false". However, that would require a write lock
5364 * on the object containing "m[i]".
5365 */
5366 if (m[i].dirty != VM_PAGE_BITS_ALL)
5367 return (false);
5368 }
5369 if ((flags & PS_ALL_VALID) != 0 &&
5370 m[i].valid != VM_PAGE_BITS_ALL)
5371 return (false);
5372 }
5373 return (true);
5374 }
5375
5376 /*
5377 * Set the page's dirty bits if the page is modified.
5378 */
5379 void
5380 vm_page_test_dirty(vm_page_t m)
5381 {
5382
5383 vm_page_assert_busied(m);
5384 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5385 vm_page_dirty(m);
5386 }
5387
5388 void
5389 vm_page_valid(vm_page_t m)
5390 {
5391
5392 vm_page_assert_busied(m);
5393 if (vm_page_xbusied(m))
5394 m->valid = VM_PAGE_BITS_ALL;
5395 else
5396 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5397 }
5398
5399 void
5400 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5401 {
5402
5403 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5404 }
5405
5406 void
5407 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5408 {
5409
5410 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5411 }
5412
5413 int
5414 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5415 {
5416
5417 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5418 }
5419
5420 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5421 void
5422 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5423 {
5424
5425 vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5426 }
5427
5428 void
5429 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5430 {
5431
5432 mtx_assert_(vm_page_lockptr(m), a, file, line);
5433 }
5434 #endif
5435
5436 #ifdef INVARIANTS
5437 void
5438 vm_page_object_busy_assert(vm_page_t m)
5439 {
5440
5441 /*
5442 * Certain of the page's fields may only be modified by the
5443 * holder of a page or object busy.
5444 */
5445 if (m->object != NULL && !vm_page_busied(m))
5446 VM_OBJECT_ASSERT_BUSY(m->object);
5447 }
5448
5449 void
5450 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5451 {
5452
5453 if ((bits & PGA_WRITEABLE) == 0)
5454 return;
5455
5456 /*
5457 * The PGA_WRITEABLE flag can only be set if the page is
5458 * managed, is exclusively busied or the object is locked.
5459 * Currently, this flag is only set by pmap_enter().
5460 */
5461 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5462 ("PGA_WRITEABLE on unmanaged page"));
5463 if (!vm_page_xbusied(m))
5464 VM_OBJECT_ASSERT_BUSY(m->object);
5465 }
5466 #endif
5467
5468 #include "opt_ddb.h"
5469 #ifdef DDB
5470 #include <sys/kernel.h>
5471
5472 #include <ddb/ddb.h>
5473
5474 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5475 {
5476
5477 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5478 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5479 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5480 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5481 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5482 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5483 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5484 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5485 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5486 }
5487
5488 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5489 {
5490 int dom;
5491
5492 db_printf("pq_free %d\n", vm_free_count());
5493 for (dom = 0; dom < vm_ndomains; dom++) {
5494 db_printf(
5495 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5496 dom,
5497 vm_dom[dom].vmd_page_count,
5498 vm_dom[dom].vmd_free_count,
5499 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5500 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5501 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5502 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5503 }
5504 }
5505
5506 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5507 {
5508 vm_page_t m;
5509 boolean_t phys, virt;
5510
5511 if (!have_addr) {
5512 db_printf("show pginfo addr\n");
5513 return;
5514 }
5515
5516 phys = strchr(modif, 'p') != NULL;
5517 virt = strchr(modif, 'v') != NULL;
5518 if (virt)
5519 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5520 else if (phys)
5521 m = PHYS_TO_VM_PAGE(addr);
5522 else
5523 m = (vm_page_t)addr;
5524 db_printf(
5525 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5526 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5527 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5528 m->a.queue, m->ref_count, m->a.flags, m->oflags,
5529 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5530 }
5531 #endif /* DDB */
Cache object: cf750ec510035948ee02341c6601f12a
|