FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.c
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
37 * $FreeBSD: releng/5.0/sys/vm/vm_page.c 107189 2002-11-23 19:10:31Z alc $
38 */
39
40 /*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 /*
68 * GENERAL RULES ON VM_PAGE MANIPULATION
69 *
70 * - a pageq mutex is required when adding or removing a page from a
71 * page queue (vm_page_queue[]), regardless of other mutexes or the
72 * busy state of a page.
73 *
74 * - a hash chain mutex is required when associating or disassociating
75 * a page from the VM PAGE CACHE hash table (vm_page_buckets),
76 * regardless of other mutexes or the busy state of a page.
77 *
78 * - either a hash chain mutex OR a busied page is required in order
79 * to modify the page flags. A hash chain mutex must be obtained in
80 * order to busy a page. A page's flags cannot be modified by a
81 * hash chain mutex if the page is marked busy.
82 *
83 * - The object memq mutex is held when inserting or removing
84 * pages from an object (vm_page_insert() or vm_page_remove()). This
85 * is different from the object's main mutex.
86 *
87 * Generally speaking, you have to be aware of side effects when running
88 * vm_page ops. A vm_page_lookup() will return with the hash chain
89 * locked, whether it was able to lookup the page or not. vm_page_free(),
90 * vm_page_cache(), vm_page_activate(), and a number of other routines
91 * will release the hash chain mutex for you. Intermediate manipulation
92 * routines such as vm_page_flag_set() expect the hash chain to be held
93 * on entry and the hash chain will remain held on return.
94 *
95 * pageq scanning can only occur with the pageq in question locked.
96 * We have a known bottleneck with the active queue, but the cache
97 * and free queues are actually arrays already.
98 */
99
100 /*
101 * Resident memory management module.
102 */
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/lock.h>
107 #include <sys/malloc.h>
108 #include <sys/mutex.h>
109 #include <sys/proc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123
124 /*
125 * Associated with page of user-allocatable memory is a
126 * page structure.
127 */
128
129 struct mtx vm_page_queue_mtx;
130 struct mtx vm_page_queue_free_mtx;
131
132 vm_page_t vm_page_array = 0;
133 int vm_page_array_size = 0;
134 long first_page = 0;
135 int vm_page_zero_count = 0;
136
137 /*
138 * vm_set_page_size:
139 *
140 * Sets the page size, perhaps based upon the memory
141 * size. Must be called before any use of page-size
142 * dependent functions.
143 */
144 void
145 vm_set_page_size(void)
146 {
147 if (cnt.v_page_size == 0)
148 cnt.v_page_size = PAGE_SIZE;
149 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
150 panic("vm_set_page_size: page size not a power of two");
151 }
152
153 /*
154 * vm_page_startup:
155 *
156 * Initializes the resident memory module.
157 *
158 * Allocates memory for the page cells, and
159 * for the object/offset-to-page hash table headers.
160 * Each page cell is initialized and placed on the free list.
161 */
162 vm_offset_t
163 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
164 {
165 vm_offset_t mapped;
166 vm_size_t npages, page_range;
167 vm_offset_t new_end;
168 int i;
169 vm_offset_t pa;
170 int nblocks;
171 vm_offset_t last_pa;
172
173 /* the biggest memory array is the second group of pages */
174 vm_offset_t end;
175 vm_offset_t biggestone, biggestsize;
176
177 vm_offset_t total;
178 vm_size_t bootpages;
179
180 total = 0;
181 biggestsize = 0;
182 biggestone = 0;
183 nblocks = 0;
184 vaddr = round_page(vaddr);
185
186 for (i = 0; phys_avail[i + 1]; i += 2) {
187 phys_avail[i] = round_page(phys_avail[i]);
188 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189 }
190
191 for (i = 0; phys_avail[i + 1]; i += 2) {
192 vm_size_t size = phys_avail[i + 1] - phys_avail[i];
193
194 if (size > biggestsize) {
195 biggestone = i;
196 biggestsize = size;
197 }
198 ++nblocks;
199 total += size;
200 }
201
202 end = phys_avail[biggestone+1];
203
204 /*
205 * Initialize the locks.
206 */
207 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
208 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
209 MTX_SPIN);
210
211 /*
212 * Initialize the queue headers for the free queue, the active queue
213 * and the inactive queue.
214 */
215 vm_pageq_init();
216
217 /*
218 * Allocate memory for use when boot strapping the kernel memory
219 * allocator.
220 */
221 bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
222 new_end = end - bootpages;
223 new_end = trunc_page(new_end);
224 mapped = pmap_map(&vaddr, new_end, end,
225 VM_PROT_READ | VM_PROT_WRITE);
226 bzero((caddr_t) mapped, end - new_end);
227 uma_startup((caddr_t)mapped);
228
229 /*
230 * Compute the number of pages of memory that will be available for
231 * use (taking into account the overhead of a page structure per
232 * page).
233 */
234 first_page = phys_avail[0] / PAGE_SIZE;
235 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
236 npages = (total - (page_range * sizeof(struct vm_page)) -
237 (end - new_end)) / PAGE_SIZE;
238 end = new_end;
239
240 /*
241 * Initialize the mem entry structures now, and put them in the free
242 * queue.
243 */
244 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
245 mapped = pmap_map(&vaddr, new_end, end,
246 VM_PROT_READ | VM_PROT_WRITE);
247 vm_page_array = (vm_page_t) mapped;
248
249 /*
250 * Clear all of the page structures
251 */
252 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
253 vm_page_array_size = page_range;
254
255 /*
256 * Construct the free queue(s) in descending order (by physical
257 * address) so that the first 16MB of physical memory is allocated
258 * last rather than first. On large-memory machines, this avoids
259 * the exhaustion of low physical memory before isa_dmainit has run.
260 */
261 cnt.v_page_count = 0;
262 cnt.v_free_count = 0;
263 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
264 pa = phys_avail[i];
265 if (i == biggestone)
266 last_pa = new_end;
267 else
268 last_pa = phys_avail[i + 1];
269 while (pa < last_pa && npages-- > 0) {
270 vm_pageq_add_new_page(pa);
271 pa += PAGE_SIZE;
272 }
273 }
274 return (vaddr);
275 }
276
277 void
278 vm_page_flag_set(vm_page_t m, unsigned short bits)
279 {
280 GIANT_REQUIRED;
281 m->flags |= bits;
282 }
283
284 void
285 vm_page_flag_clear(vm_page_t m, unsigned short bits)
286 {
287 GIANT_REQUIRED;
288 m->flags &= ~bits;
289 }
290
291 void
292 vm_page_busy(vm_page_t m)
293 {
294 KASSERT((m->flags & PG_BUSY) == 0,
295 ("vm_page_busy: page already busy!!!"));
296 vm_page_flag_set(m, PG_BUSY);
297 }
298
299 /*
300 * vm_page_flash:
301 *
302 * wakeup anyone waiting for the page.
303 */
304 void
305 vm_page_flash(vm_page_t m)
306 {
307 if (m->flags & PG_WANTED) {
308 vm_page_flag_clear(m, PG_WANTED);
309 wakeup(m);
310 }
311 }
312
313 /*
314 * vm_page_wakeup:
315 *
316 * clear the PG_BUSY flag and wakeup anyone waiting for the
317 * page.
318 *
319 */
320 void
321 vm_page_wakeup(vm_page_t m)
322 {
323 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
324 vm_page_flag_clear(m, PG_BUSY);
325 vm_page_flash(m);
326 }
327
328 /*
329 *
330 *
331 */
332 void
333 vm_page_io_start(vm_page_t m)
334 {
335
336 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
337 m->busy++;
338 }
339
340 void
341 vm_page_io_finish(vm_page_t m)
342 {
343
344 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
345 m->busy--;
346 if (m->busy == 0)
347 vm_page_flash(m);
348 }
349
350 /*
351 * Keep page from being freed by the page daemon
352 * much of the same effect as wiring, except much lower
353 * overhead and should be used only for *very* temporary
354 * holding ("wiring").
355 */
356 void
357 vm_page_hold(vm_page_t mem)
358 {
359 GIANT_REQUIRED;
360 mem->hold_count++;
361 }
362
363 void
364 vm_page_unhold(vm_page_t mem)
365 {
366 GIANT_REQUIRED;
367 --mem->hold_count;
368 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
369 if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
370 vm_page_free_toq(mem);
371 }
372
373 /*
374 * vm_page_copy:
375 *
376 * Copy one page to another
377 */
378 void
379 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
380 {
381 pmap_copy_page(src_m, dest_m);
382 dest_m->valid = VM_PAGE_BITS_ALL;
383 }
384
385 /*
386 * vm_page_free:
387 *
388 * Free a page
389 *
390 * The clearing of PG_ZERO is a temporary safety until the code can be
391 * reviewed to determine that PG_ZERO is being properly cleared on
392 * write faults or maps. PG_ZERO was previously cleared in
393 * vm_page_alloc().
394 */
395 void
396 vm_page_free(vm_page_t m)
397 {
398 vm_page_flag_clear(m, PG_ZERO);
399 vm_page_free_toq(m);
400 vm_page_zero_idle_wakeup();
401 }
402
403 /*
404 * vm_page_free_zero:
405 *
406 * Free a page to the zerod-pages queue
407 */
408 void
409 vm_page_free_zero(vm_page_t m)
410 {
411 vm_page_flag_set(m, PG_ZERO);
412 vm_page_free_toq(m);
413 }
414
415 /*
416 * vm_page_sleep_busy:
417 *
418 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
419 * m->busy is zero. Returns TRUE if it had to sleep ( including if
420 * it almost had to sleep and made temporary spl*() mods), FALSE
421 * otherwise.
422 *
423 * This routine assumes that interrupts can only remove the busy
424 * status from a page, not set the busy status or change it from
425 * PG_BUSY to m->busy or vise versa (which would create a timing
426 * window).
427 */
428 int
429 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
430 {
431 GIANT_REQUIRED;
432 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
433 int s = splvm();
434 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
435 /*
436 * Page is busy. Wait and retry.
437 */
438 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
439 tsleep(m, PVM, msg, 0);
440 }
441 splx(s);
442 return (TRUE);
443 /* not reached */
444 }
445 return (FALSE);
446 }
447
448 /*
449 * vm_page_sleep_if_busy:
450 *
451 * Sleep and release the page queues lock if PG_BUSY is set or,
452 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the
453 * thread slept and the page queues lock was released.
454 * Otherwise, retains the page queues lock and returns FALSE.
455 */
456 int
457 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
458 {
459
460 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
461 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
462 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
463 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
464 return (TRUE);
465 }
466 return (FALSE);
467 }
468
469 /*
470 * vm_page_dirty:
471 *
472 * make page all dirty
473 */
474 void
475 vm_page_dirty(vm_page_t m)
476 {
477 KASSERT(m->queue - m->pc != PQ_CACHE,
478 ("vm_page_dirty: page in cache!"));
479 m->dirty = VM_PAGE_BITS_ALL;
480 }
481
482 /*
483 * vm_page_splay:
484 *
485 * Implements Sleator and Tarjan's top-down splay algorithm. Returns
486 * the vm_page containing the given pindex. If, however, that
487 * pindex is not found in the vm_object, returns a vm_page that is
488 * adjacent to the pindex, coming before or after it.
489 */
490 vm_page_t
491 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
492 {
493 struct vm_page dummy;
494 vm_page_t lefttreemax, righttreemin, y;
495
496 if (root == NULL)
497 return (root);
498 lefttreemax = righttreemin = &dummy;
499 for (;; root = y) {
500 if (pindex < root->pindex) {
501 if ((y = root->left) == NULL)
502 break;
503 if (pindex < y->pindex) {
504 /* Rotate right. */
505 root->left = y->right;
506 y->right = root;
507 root = y;
508 if ((y = root->left) == NULL)
509 break;
510 }
511 /* Link into the new root's right tree. */
512 righttreemin->left = root;
513 righttreemin = root;
514 } else if (pindex > root->pindex) {
515 if ((y = root->right) == NULL)
516 break;
517 if (pindex > y->pindex) {
518 /* Rotate left. */
519 root->right = y->left;
520 y->left = root;
521 root = y;
522 if ((y = root->right) == NULL)
523 break;
524 }
525 /* Link into the new root's left tree. */
526 lefttreemax->right = root;
527 lefttreemax = root;
528 } else
529 break;
530 }
531 /* Assemble the new root. */
532 lefttreemax->right = root->left;
533 righttreemin->left = root->right;
534 root->left = dummy.right;
535 root->right = dummy.left;
536 return (root);
537 }
538
539 /*
540 * vm_page_insert: [ internal use only ]
541 *
542 * Inserts the given mem entry into the object and object list.
543 *
544 * The pagetables are not updated but will presumably fault the page
545 * in if necessary, or if a kernel page the caller will at some point
546 * enter the page into the kernel's pmap. We are not allowed to block
547 * here so we *can't* do this anyway.
548 *
549 * The object and page must be locked, and must be splhigh.
550 * This routine may not block.
551 */
552 void
553 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
554 {
555 vm_page_t root;
556
557 GIANT_REQUIRED;
558
559 if (m->object != NULL)
560 panic("vm_page_insert: already inserted");
561
562 /*
563 * Record the object/offset pair in this page
564 */
565 m->object = object;
566 m->pindex = pindex;
567
568 /*
569 * Now link into the object's ordered list of backed pages.
570 */
571 root = object->root;
572 if (root == NULL) {
573 m->left = NULL;
574 m->right = NULL;
575 TAILQ_INSERT_TAIL(&object->memq, m, listq);
576 } else {
577 root = vm_page_splay(pindex, root);
578 if (pindex < root->pindex) {
579 m->left = root->left;
580 m->right = root;
581 root->left = NULL;
582 TAILQ_INSERT_BEFORE(root, m, listq);
583 } else {
584 m->right = root->right;
585 m->left = root;
586 root->right = NULL;
587 TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
588 }
589 }
590 object->root = m;
591 object->generation++;
592
593 /*
594 * show that the object has one more resident page.
595 */
596 object->resident_page_count++;
597
598 /*
599 * Since we are inserting a new and possibly dirty page,
600 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
601 */
602 if (m->flags & PG_WRITEABLE)
603 vm_object_set_writeable_dirty(object);
604 }
605
606 /*
607 * vm_page_remove:
608 * NOTE: used by device pager as well -wfj
609 *
610 * Removes the given mem entry from the object/offset-page
611 * table and the object page list, but do not invalidate/terminate
612 * the backing store.
613 *
614 * The object and page must be locked, and at splhigh.
615 * The underlying pmap entry (if any) is NOT removed here.
616 * This routine may not block.
617 */
618 void
619 vm_page_remove(vm_page_t m)
620 {
621 vm_object_t object;
622 vm_page_t root;
623
624 GIANT_REQUIRED;
625
626 if (m->object == NULL)
627 return;
628
629 if ((m->flags & PG_BUSY) == 0) {
630 panic("vm_page_remove: page not busy");
631 }
632
633 /*
634 * Basically destroy the page.
635 */
636 vm_page_wakeup(m);
637
638 object = m->object;
639
640 /*
641 * Now remove from the object's list of backed pages.
642 */
643 if (m != object->root)
644 vm_page_splay(m->pindex, object->root);
645 if (m->left == NULL)
646 root = m->right;
647 else {
648 root = vm_page_splay(m->pindex, m->left);
649 root->right = m->right;
650 }
651 object->root = root;
652 TAILQ_REMOVE(&object->memq, m, listq);
653
654 /*
655 * And show that the object has one fewer resident page.
656 */
657 object->resident_page_count--;
658 object->generation++;
659
660 m->object = NULL;
661 }
662
663 /*
664 * vm_page_lookup:
665 *
666 * Returns the page associated with the object/offset
667 * pair specified; if none is found, NULL is returned.
668 *
669 * The object must be locked.
670 * This routine may not block.
671 * This is a critical path routine
672 */
673 vm_page_t
674 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
675 {
676 vm_page_t m;
677
678 GIANT_REQUIRED;
679
680 m = vm_page_splay(pindex, object->root);
681 if ((object->root = m) != NULL && m->pindex != pindex)
682 m = NULL;
683 return (m);
684 }
685
686 /*
687 * vm_page_rename:
688 *
689 * Move the given memory entry from its
690 * current object to the specified target object/offset.
691 *
692 * The object must be locked.
693 * This routine may not block.
694 *
695 * Note: this routine will raise itself to splvm(), the caller need not.
696 *
697 * Note: swap associated with the page must be invalidated by the move. We
698 * have to do this for several reasons: (1) we aren't freeing the
699 * page, (2) we are dirtying the page, (3) the VM system is probably
700 * moving the page from object A to B, and will then later move
701 * the backing store from A to B and we can't have a conflict.
702 *
703 * Note: we *always* dirty the page. It is necessary both for the
704 * fact that we moved it, and because we may be invalidating
705 * swap. If the page is on the cache, we have to deactivate it
706 * or vm_page_dirty() will panic. Dirty pages are not allowed
707 * on the cache.
708 */
709 void
710 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
711 {
712 int s;
713
714 s = splvm();
715 vm_page_lock_queues();
716 vm_page_remove(m);
717 vm_page_insert(m, new_object, new_pindex);
718 if (m->queue - m->pc == PQ_CACHE)
719 vm_page_deactivate(m);
720 vm_page_dirty(m);
721 vm_page_unlock_queues();
722 splx(s);
723 }
724
725 /*
726 * vm_page_select_cache:
727 *
728 * Find a page on the cache queue with color optimization. As pages
729 * might be found, but not applicable, they are deactivated. This
730 * keeps us from using potentially busy cached pages.
731 *
732 * This routine must be called at splvm().
733 * This routine may not block.
734 */
735 static vm_page_t
736 vm_page_select_cache(vm_pindex_t color)
737 {
738 vm_page_t m;
739
740 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
741 while (TRUE) {
742 m = vm_pageq_find(PQ_CACHE, color & PQ_L2_MASK, FALSE);
743 if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
744 m->hold_count || m->wire_count)) {
745 vm_page_deactivate(m);
746 continue;
747 }
748 return m;
749 }
750 }
751
752 /*
753 * vm_page_select_free:
754 *
755 * Find a free or zero page, with specified preference.
756 *
757 * This routine must be called at splvm().
758 * This routine may not block.
759 */
760 static __inline vm_page_t
761 vm_page_select_free(vm_pindex_t color, boolean_t prefer_zero)
762 {
763 vm_page_t m;
764
765 m = vm_pageq_find(PQ_FREE, color & PQ_L2_MASK, prefer_zero);
766 return (m);
767 }
768
769 /*
770 * vm_page_alloc:
771 *
772 * Allocate and return a memory cell associated
773 * with this VM object/offset pair.
774 *
775 * page_req classes:
776 * VM_ALLOC_NORMAL normal process request
777 * VM_ALLOC_SYSTEM system *really* needs a page
778 * VM_ALLOC_INTERRUPT interrupt time request
779 * VM_ALLOC_ZERO zero page
780 *
781 * This routine may not block.
782 *
783 * Additional special handling is required when called from an
784 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with
785 * the page cache in this case.
786 */
787 vm_page_t
788 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
789 {
790 vm_page_t m = NULL;
791 vm_pindex_t color;
792 int page_req, s;
793
794 GIANT_REQUIRED;
795
796 #ifdef INVARIANTS
797 if ((req & VM_ALLOC_NOOBJ) == 0) {
798 KASSERT(object != NULL,
799 ("vm_page_alloc: NULL object."));
800 KASSERT(!vm_page_lookup(object, pindex),
801 ("vm_page_alloc: page already allocated"));
802 }
803 #endif
804
805 page_req = req & VM_ALLOC_CLASS_MASK;
806
807 if ((req & VM_ALLOC_NOOBJ) == 0)
808 color = pindex + object->pg_color;
809 else
810 color = pindex;
811
812 /*
813 * The pager is allowed to eat deeper into the free page list.
814 */
815 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
816 page_req = VM_ALLOC_SYSTEM;
817 };
818
819 s = splvm();
820 loop:
821 mtx_lock_spin(&vm_page_queue_free_mtx);
822 if (cnt.v_free_count > cnt.v_free_reserved) {
823 /*
824 * Allocate from the free queue if there are plenty of pages
825 * in it.
826 */
827 m = vm_page_select_free(color, (req & VM_ALLOC_ZERO) != 0);
828
829 } else if (
830 (page_req == VM_ALLOC_SYSTEM &&
831 cnt.v_cache_count == 0 &&
832 cnt.v_free_count > cnt.v_interrupt_free_min) ||
833 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
834 ) {
835 /*
836 * Interrupt or system, dig deeper into the free list.
837 */
838 m = vm_page_select_free(color, FALSE);
839 } else if (page_req != VM_ALLOC_INTERRUPT) {
840 mtx_unlock_spin(&vm_page_queue_free_mtx);
841 /*
842 * Allocatable from cache (non-interrupt only). On success,
843 * we must free the page and try again, thus ensuring that
844 * cnt.v_*_free_min counters are replenished.
845 */
846 vm_page_lock_queues();
847 if ((m = vm_page_select_cache(color)) == NULL) {
848 vm_page_unlock_queues();
849 splx(s);
850 #if defined(DIAGNOSTIC)
851 if (cnt.v_cache_count > 0)
852 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
853 #endif
854 vm_pageout_deficit++;
855 pagedaemon_wakeup();
856 return (NULL);
857 }
858 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
859 vm_page_busy(m);
860 pmap_remove_all(m);
861 vm_page_free(m);
862 vm_page_unlock_queues();
863 goto loop;
864 } else {
865 /*
866 * Not allocatable from cache from interrupt, give up.
867 */
868 mtx_unlock_spin(&vm_page_queue_free_mtx);
869 splx(s);
870 vm_pageout_deficit++;
871 pagedaemon_wakeup();
872 return (NULL);
873 }
874
875 /*
876 * At this point we had better have found a good page.
877 */
878
879 KASSERT(
880 m != NULL,
881 ("vm_page_alloc(): missing page on free queue\n")
882 );
883
884 /*
885 * Remove from free queue
886 */
887
888 vm_pageq_remove_nowakeup(m);
889
890 /*
891 * Initialize structure. Only the PG_ZERO flag is inherited.
892 */
893 if (m->flags & PG_ZERO) {
894 vm_page_zero_count--;
895 m->flags = PG_ZERO | PG_BUSY;
896 } else {
897 m->flags = PG_BUSY;
898 }
899 if (req & VM_ALLOC_WIRED) {
900 cnt.v_wire_count++;
901 m->wire_count = 1;
902 } else
903 m->wire_count = 0;
904 m->hold_count = 0;
905 m->act_count = 0;
906 m->busy = 0;
907 m->valid = 0;
908 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
909 mtx_unlock_spin(&vm_page_queue_free_mtx);
910
911 /*
912 * vm_page_insert() is safe prior to the splx(). Note also that
913 * inserting a page here does not insert it into the pmap (which
914 * could cause us to block allocating memory). We cannot block
915 * anywhere.
916 */
917 if ((req & VM_ALLOC_NOOBJ) == 0)
918 vm_page_insert(m, object, pindex);
919
920 /*
921 * Don't wakeup too often - wakeup the pageout daemon when
922 * we would be nearly out of memory.
923 */
924 if (vm_paging_needed())
925 pagedaemon_wakeup();
926
927 splx(s);
928 return (m);
929 }
930
931 /*
932 * vm_wait: (also see VM_WAIT macro)
933 *
934 * Block until free pages are available for allocation
935 * - Called in various places before memory allocations.
936 */
937 void
938 vm_wait(void)
939 {
940 int s;
941
942 s = splvm();
943 if (curproc == pageproc) {
944 vm_pageout_pages_needed = 1;
945 tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
946 } else {
947 if (!vm_pages_needed) {
948 vm_pages_needed = 1;
949 wakeup(&vm_pages_needed);
950 }
951 tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
952 }
953 splx(s);
954 }
955
956 /*
957 * vm_waitpfault: (also see VM_WAITPFAULT macro)
958 *
959 * Block until free pages are available for allocation
960 * - Called only in vm_fault so that processes page faulting
961 * can be easily tracked.
962 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
963 * processes will be able to grab memory first. Do not change
964 * this balance without careful testing first.
965 */
966 void
967 vm_waitpfault(void)
968 {
969 int s;
970
971 s = splvm();
972 if (!vm_pages_needed) {
973 vm_pages_needed = 1;
974 wakeup(&vm_pages_needed);
975 }
976 tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
977 splx(s);
978 }
979
980 /*
981 * vm_page_activate:
982 *
983 * Put the specified page on the active list (if appropriate).
984 * Ensure that act_count is at least ACT_INIT but do not otherwise
985 * mess with it.
986 *
987 * The page queues must be locked.
988 * This routine may not block.
989 */
990 void
991 vm_page_activate(vm_page_t m)
992 {
993 int s;
994
995 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
996 s = splvm();
997 if (m->queue != PQ_ACTIVE) {
998 if ((m->queue - m->pc) == PQ_CACHE)
999 cnt.v_reactivated++;
1000 vm_pageq_remove(m);
1001 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1002 if (m->act_count < ACT_INIT)
1003 m->act_count = ACT_INIT;
1004 vm_pageq_enqueue(PQ_ACTIVE, m);
1005 }
1006 } else {
1007 if (m->act_count < ACT_INIT)
1008 m->act_count = ACT_INIT;
1009 }
1010 splx(s);
1011 }
1012
1013 /*
1014 * vm_page_free_wakeup:
1015 *
1016 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
1017 * routine is called when a page has been added to the cache or free
1018 * queues.
1019 *
1020 * This routine may not block.
1021 * This routine must be called at splvm()
1022 */
1023 static __inline void
1024 vm_page_free_wakeup(void)
1025 {
1026 /*
1027 * if pageout daemon needs pages, then tell it that there are
1028 * some free.
1029 */
1030 if (vm_pageout_pages_needed &&
1031 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1032 wakeup(&vm_pageout_pages_needed);
1033 vm_pageout_pages_needed = 0;
1034 }
1035 /*
1036 * wakeup processes that are waiting on memory if we hit a
1037 * high water mark. And wakeup scheduler process if we have
1038 * lots of memory. this process will swapin processes.
1039 */
1040 if (vm_pages_needed && !vm_page_count_min()) {
1041 vm_pages_needed = 0;
1042 wakeup(&cnt.v_free_count);
1043 }
1044 }
1045
1046 /*
1047 * vm_page_free_toq:
1048 *
1049 * Returns the given page to the PQ_FREE list,
1050 * disassociating it with any VM object.
1051 *
1052 * Object and page must be locked prior to entry.
1053 * This routine may not block.
1054 */
1055
1056 void
1057 vm_page_free_toq(vm_page_t m)
1058 {
1059 int s;
1060 struct vpgqueues *pq;
1061 vm_object_t object = m->object;
1062
1063 GIANT_REQUIRED;
1064 s = splvm();
1065 cnt.v_tfree++;
1066
1067 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1068 printf(
1069 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1070 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1071 m->hold_count);
1072 if ((m->queue - m->pc) == PQ_FREE)
1073 panic("vm_page_free: freeing free page");
1074 else
1075 panic("vm_page_free: freeing busy page");
1076 }
1077
1078 /*
1079 * unqueue, then remove page. Note that we cannot destroy
1080 * the page here because we do not want to call the pager's
1081 * callback routine until after we've put the page on the
1082 * appropriate free queue.
1083 */
1084 vm_pageq_remove_nowakeup(m);
1085 vm_page_remove(m);
1086
1087 /*
1088 * If fictitious remove object association and
1089 * return, otherwise delay object association removal.
1090 */
1091 if ((m->flags & PG_FICTITIOUS) != 0) {
1092 splx(s);
1093 return;
1094 }
1095
1096 m->valid = 0;
1097 vm_page_undirty(m);
1098
1099 if (m->wire_count != 0) {
1100 if (m->wire_count > 1) {
1101 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1102 m->wire_count, (long)m->pindex);
1103 }
1104 panic("vm_page_free: freeing wired page\n");
1105 }
1106
1107 /*
1108 * If we've exhausted the object's resident pages we want to free
1109 * it up.
1110 */
1111 if (object &&
1112 (object->type == OBJT_VNODE) &&
1113 ((object->flags & OBJ_DEAD) == 0)
1114 ) {
1115 struct vnode *vp = (struct vnode *)object->handle;
1116
1117 if (vp) {
1118 VI_LOCK(vp);
1119 if (VSHOULDFREE(vp))
1120 vfree(vp);
1121 VI_UNLOCK(vp);
1122 }
1123 }
1124
1125 /*
1126 * Clear the UNMANAGED flag when freeing an unmanaged page.
1127 */
1128 if (m->flags & PG_UNMANAGED) {
1129 m->flags &= ~PG_UNMANAGED;
1130 } else {
1131 #ifdef __alpha__
1132 pmap_page_is_free(m);
1133 #endif
1134 }
1135
1136 if (m->hold_count != 0) {
1137 m->flags &= ~PG_ZERO;
1138 m->queue = PQ_HOLD;
1139 } else
1140 m->queue = PQ_FREE + m->pc;
1141 pq = &vm_page_queues[m->queue];
1142 mtx_lock_spin(&vm_page_queue_free_mtx);
1143 pq->lcnt++;
1144 ++(*pq->cnt);
1145
1146 /*
1147 * Put zero'd pages on the end ( where we look for zero'd pages
1148 * first ) and non-zerod pages at the head.
1149 */
1150 if (m->flags & PG_ZERO) {
1151 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1152 ++vm_page_zero_count;
1153 } else {
1154 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1155 }
1156 mtx_unlock_spin(&vm_page_queue_free_mtx);
1157 vm_page_free_wakeup();
1158 splx(s);
1159 }
1160
1161 /*
1162 * vm_page_unmanage:
1163 *
1164 * Prevent PV management from being done on the page. The page is
1165 * removed from the paging queues as if it were wired, and as a
1166 * consequence of no longer being managed the pageout daemon will not
1167 * touch it (since there is no way to locate the pte mappings for the
1168 * page). madvise() calls that mess with the pmap will also no longer
1169 * operate on the page.
1170 *
1171 * Beyond that the page is still reasonably 'normal'. Freeing the page
1172 * will clear the flag.
1173 *
1174 * This routine is used by OBJT_PHYS objects - objects using unswappable
1175 * physical memory as backing store rather then swap-backed memory and
1176 * will eventually be extended to support 4MB unmanaged physical
1177 * mappings.
1178 */
1179 void
1180 vm_page_unmanage(vm_page_t m)
1181 {
1182 int s;
1183
1184 s = splvm();
1185 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1186 if ((m->flags & PG_UNMANAGED) == 0) {
1187 if (m->wire_count == 0)
1188 vm_pageq_remove(m);
1189 }
1190 vm_page_flag_set(m, PG_UNMANAGED);
1191 splx(s);
1192 }
1193
1194 /*
1195 * vm_page_wire:
1196 *
1197 * Mark this page as wired down by yet
1198 * another map, removing it from paging queues
1199 * as necessary.
1200 *
1201 * The page queues must be locked.
1202 * This routine may not block.
1203 */
1204 void
1205 vm_page_wire(vm_page_t m)
1206 {
1207 int s;
1208
1209 /*
1210 * Only bump the wire statistics if the page is not already wired,
1211 * and only unqueue the page if it is on some queue (if it is unmanaged
1212 * it is already off the queues).
1213 */
1214 s = splvm();
1215 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1216 if (m->wire_count == 0) {
1217 if ((m->flags & PG_UNMANAGED) == 0)
1218 vm_pageq_remove(m);
1219 cnt.v_wire_count++;
1220 }
1221 m->wire_count++;
1222 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1223 splx(s);
1224 }
1225
1226 /*
1227 * vm_page_unwire:
1228 *
1229 * Release one wiring of this page, potentially
1230 * enabling it to be paged again.
1231 *
1232 * Many pages placed on the inactive queue should actually go
1233 * into the cache, but it is difficult to figure out which. What
1234 * we do instead, if the inactive target is well met, is to put
1235 * clean pages at the head of the inactive queue instead of the tail.
1236 * This will cause them to be moved to the cache more quickly and
1237 * if not actively re-referenced, freed more quickly. If we just
1238 * stick these pages at the end of the inactive queue, heavy filesystem
1239 * meta-data accesses can cause an unnecessary paging load on memory bound
1240 * processes. This optimization causes one-time-use metadata to be
1241 * reused more quickly.
1242 *
1243 * BUT, if we are in a low-memory situation we have no choice but to
1244 * put clean pages on the cache queue.
1245 *
1246 * A number of routines use vm_page_unwire() to guarantee that the page
1247 * will go into either the inactive or active queues, and will NEVER
1248 * be placed in the cache - for example, just after dirtying a page.
1249 * dirty pages in the cache are not allowed.
1250 *
1251 * The page queues must be locked.
1252 * This routine may not block.
1253 */
1254 void
1255 vm_page_unwire(vm_page_t m, int activate)
1256 {
1257 int s;
1258
1259 s = splvm();
1260 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1261 if (m->wire_count > 0) {
1262 m->wire_count--;
1263 if (m->wire_count == 0) {
1264 cnt.v_wire_count--;
1265 if (m->flags & PG_UNMANAGED) {
1266 ;
1267 } else if (activate)
1268 vm_pageq_enqueue(PQ_ACTIVE, m);
1269 else {
1270 vm_page_flag_clear(m, PG_WINATCFLS);
1271 vm_pageq_enqueue(PQ_INACTIVE, m);
1272 }
1273 }
1274 } else {
1275 panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1276 }
1277 splx(s);
1278 }
1279
1280
1281 /*
1282 * Move the specified page to the inactive queue. If the page has
1283 * any associated swap, the swap is deallocated.
1284 *
1285 * Normally athead is 0 resulting in LRU operation. athead is set
1286 * to 1 if we want this page to be 'as if it were placed in the cache',
1287 * except without unmapping it from the process address space.
1288 *
1289 * This routine may not block.
1290 */
1291 static __inline void
1292 _vm_page_deactivate(vm_page_t m, int athead)
1293 {
1294 int s;
1295
1296 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1297 /*
1298 * Ignore if already inactive.
1299 */
1300 if (m->queue == PQ_INACTIVE)
1301 return;
1302
1303 s = splvm();
1304 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1305 if ((m->queue - m->pc) == PQ_CACHE)
1306 cnt.v_reactivated++;
1307 vm_page_flag_clear(m, PG_WINATCFLS);
1308 vm_pageq_remove(m);
1309 if (athead)
1310 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1311 else
1312 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1313 m->queue = PQ_INACTIVE;
1314 vm_page_queues[PQ_INACTIVE].lcnt++;
1315 cnt.v_inactive_count++;
1316 }
1317 splx(s);
1318 }
1319
1320 void
1321 vm_page_deactivate(vm_page_t m)
1322 {
1323 _vm_page_deactivate(m, 0);
1324 }
1325
1326 /*
1327 * vm_page_try_to_cache:
1328 *
1329 * Returns 0 on failure, 1 on success
1330 */
1331 int
1332 vm_page_try_to_cache(vm_page_t m)
1333 {
1334
1335 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1336 if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1337 (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1338 return (0);
1339 }
1340 vm_page_test_dirty(m);
1341 if (m->dirty)
1342 return (0);
1343 vm_page_cache(m);
1344 return (1);
1345 }
1346
1347 /*
1348 * vm_page_try_to_free()
1349 *
1350 * Attempt to free the page. If we cannot free it, we do nothing.
1351 * 1 is returned on success, 0 on failure.
1352 */
1353 int
1354 vm_page_try_to_free(vm_page_t m)
1355 {
1356
1357 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1358 if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1359 (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1360 return (0);
1361 }
1362 vm_page_test_dirty(m);
1363 if (m->dirty)
1364 return (0);
1365 vm_page_busy(m);
1366 pmap_remove_all(m);
1367 vm_page_free(m);
1368 return (1);
1369 }
1370
1371 /*
1372 * vm_page_cache
1373 *
1374 * Put the specified page onto the page cache queue (if appropriate).
1375 *
1376 * This routine may not block.
1377 */
1378 void
1379 vm_page_cache(vm_page_t m)
1380 {
1381 int s;
1382
1383 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1384 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1385 printf("vm_page_cache: attempting to cache busy page\n");
1386 return;
1387 }
1388 if ((m->queue - m->pc) == PQ_CACHE)
1389 return;
1390
1391 /*
1392 * Remove all pmaps and indicate that the page is not
1393 * writeable or mapped.
1394 */
1395 pmap_remove_all(m);
1396 if (m->dirty != 0) {
1397 panic("vm_page_cache: caching a dirty page, pindex: %ld",
1398 (long)m->pindex);
1399 }
1400 s = splvm();
1401 vm_pageq_remove_nowakeup(m);
1402 vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1403 vm_page_free_wakeup();
1404 splx(s);
1405 }
1406
1407 /*
1408 * vm_page_dontneed
1409 *
1410 * Cache, deactivate, or do nothing as appropriate. This routine
1411 * is typically used by madvise() MADV_DONTNEED.
1412 *
1413 * Generally speaking we want to move the page into the cache so
1414 * it gets reused quickly. However, this can result in a silly syndrome
1415 * due to the page recycling too quickly. Small objects will not be
1416 * fully cached. On the otherhand, if we move the page to the inactive
1417 * queue we wind up with a problem whereby very large objects
1418 * unnecessarily blow away our inactive and cache queues.
1419 *
1420 * The solution is to move the pages based on a fixed weighting. We
1421 * either leave them alone, deactivate them, or move them to the cache,
1422 * where moving them to the cache has the highest weighting.
1423 * By forcing some pages into other queues we eventually force the
1424 * system to balance the queues, potentially recovering other unrelated
1425 * space from active. The idea is to not force this to happen too
1426 * often.
1427 */
1428 void
1429 vm_page_dontneed(vm_page_t m)
1430 {
1431 static int dnweight;
1432 int dnw;
1433 int head;
1434
1435 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1436 dnw = ++dnweight;
1437
1438 /*
1439 * occassionally leave the page alone
1440 */
1441 if ((dnw & 0x01F0) == 0 ||
1442 m->queue == PQ_INACTIVE ||
1443 m->queue - m->pc == PQ_CACHE
1444 ) {
1445 if (m->act_count >= ACT_INIT)
1446 --m->act_count;
1447 return;
1448 }
1449
1450 if (m->dirty == 0)
1451 vm_page_test_dirty(m);
1452
1453 if (m->dirty || (dnw & 0x0070) == 0) {
1454 /*
1455 * Deactivate the page 3 times out of 32.
1456 */
1457 head = 0;
1458 } else {
1459 /*
1460 * Cache the page 28 times out of every 32. Note that
1461 * the page is deactivated instead of cached, but placed
1462 * at the head of the queue instead of the tail.
1463 */
1464 head = 1;
1465 }
1466 _vm_page_deactivate(m, head);
1467 }
1468
1469 /*
1470 * Grab a page, waiting until we are waken up due to the page
1471 * changing state. We keep on waiting, if the page continues
1472 * to be in the object. If the page doesn't exist, allocate it.
1473 *
1474 * This routine may block.
1475 */
1476 vm_page_t
1477 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1478 {
1479 vm_page_t m;
1480 int s, generation;
1481
1482 GIANT_REQUIRED;
1483 retrylookup:
1484 if ((m = vm_page_lookup(object, pindex)) != NULL) {
1485 vm_page_lock_queues();
1486 if (m->busy || (m->flags & PG_BUSY)) {
1487 generation = object->generation;
1488
1489 s = splvm();
1490 while ((object->generation == generation) &&
1491 (m->busy || (m->flags & PG_BUSY))) {
1492 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1493 msleep(m, &vm_page_queue_mtx, PVM, "pgrbwt", 0);
1494 if ((allocflags & VM_ALLOC_RETRY) == 0) {
1495 vm_page_unlock_queues();
1496 splx(s);
1497 return NULL;
1498 }
1499 }
1500 vm_page_unlock_queues();
1501 splx(s);
1502 goto retrylookup;
1503 } else {
1504 if (allocflags & VM_ALLOC_WIRED)
1505 vm_page_wire(m);
1506 vm_page_busy(m);
1507 vm_page_unlock_queues();
1508 return m;
1509 }
1510 }
1511
1512 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1513 if (m == NULL) {
1514 VM_WAIT;
1515 if ((allocflags & VM_ALLOC_RETRY) == 0)
1516 return NULL;
1517 goto retrylookup;
1518 }
1519
1520 return m;
1521 }
1522
1523 /*
1524 * Mapping function for valid bits or for dirty bits in
1525 * a page. May not block.
1526 *
1527 * Inputs are required to range within a page.
1528 */
1529 __inline int
1530 vm_page_bits(int base, int size)
1531 {
1532 int first_bit;
1533 int last_bit;
1534
1535 KASSERT(
1536 base + size <= PAGE_SIZE,
1537 ("vm_page_bits: illegal base/size %d/%d", base, size)
1538 );
1539
1540 if (size == 0) /* handle degenerate case */
1541 return (0);
1542
1543 first_bit = base >> DEV_BSHIFT;
1544 last_bit = (base + size - 1) >> DEV_BSHIFT;
1545
1546 return ((2 << last_bit) - (1 << first_bit));
1547 }
1548
1549 /*
1550 * vm_page_set_validclean:
1551 *
1552 * Sets portions of a page valid and clean. The arguments are expected
1553 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1554 * of any partial chunks touched by the range. The invalid portion of
1555 * such chunks will be zero'd.
1556 *
1557 * This routine may not block.
1558 *
1559 * (base + size) must be less then or equal to PAGE_SIZE.
1560 */
1561 void
1562 vm_page_set_validclean(vm_page_t m, int base, int size)
1563 {
1564 int pagebits;
1565 int frag;
1566 int endoff;
1567
1568 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1569 if (size == 0) /* handle degenerate case */
1570 return;
1571
1572 /*
1573 * If the base is not DEV_BSIZE aligned and the valid
1574 * bit is clear, we have to zero out a portion of the
1575 * first block.
1576 */
1577 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1578 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1579 pmap_zero_page_area(m, frag, base - frag);
1580
1581 /*
1582 * If the ending offset is not DEV_BSIZE aligned and the
1583 * valid bit is clear, we have to zero out a portion of
1584 * the last block.
1585 */
1586 endoff = base + size;
1587 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1588 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1589 pmap_zero_page_area(m, endoff,
1590 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1591
1592 /*
1593 * Set valid, clear dirty bits. If validating the entire
1594 * page we can safely clear the pmap modify bit. We also
1595 * use this opportunity to clear the PG_NOSYNC flag. If a process
1596 * takes a write fault on a MAP_NOSYNC memory area the flag will
1597 * be set again.
1598 *
1599 * We set valid bits inclusive of any overlap, but we can only
1600 * clear dirty bits for DEV_BSIZE chunks that are fully within
1601 * the range.
1602 */
1603 pagebits = vm_page_bits(base, size);
1604 m->valid |= pagebits;
1605 #if 0 /* NOT YET */
1606 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1607 frag = DEV_BSIZE - frag;
1608 base += frag;
1609 size -= frag;
1610 if (size < 0)
1611 size = 0;
1612 }
1613 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1614 #endif
1615 m->dirty &= ~pagebits;
1616 if (base == 0 && size == PAGE_SIZE) {
1617 pmap_clear_modify(m);
1618 vm_page_flag_clear(m, PG_NOSYNC);
1619 }
1620 }
1621
1622 #if 0
1623
1624 void
1625 vm_page_set_dirty(vm_page_t m, int base, int size)
1626 {
1627 m->dirty |= vm_page_bits(base, size);
1628 }
1629
1630 #endif
1631
1632 void
1633 vm_page_clear_dirty(vm_page_t m, int base, int size)
1634 {
1635 GIANT_REQUIRED;
1636 m->dirty &= ~vm_page_bits(base, size);
1637 }
1638
1639 /*
1640 * vm_page_set_invalid:
1641 *
1642 * Invalidates DEV_BSIZE'd chunks within a page. Both the
1643 * valid and dirty bits for the effected areas are cleared.
1644 *
1645 * May not block.
1646 */
1647 void
1648 vm_page_set_invalid(vm_page_t m, int base, int size)
1649 {
1650 int bits;
1651
1652 GIANT_REQUIRED;
1653 bits = vm_page_bits(base, size);
1654 m->valid &= ~bits;
1655 m->dirty &= ~bits;
1656 m->object->generation++;
1657 }
1658
1659 /*
1660 * vm_page_zero_invalid()
1661 *
1662 * The kernel assumes that the invalid portions of a page contain
1663 * garbage, but such pages can be mapped into memory by user code.
1664 * When this occurs, we must zero out the non-valid portions of the
1665 * page so user code sees what it expects.
1666 *
1667 * Pages are most often semi-valid when the end of a file is mapped
1668 * into memory and the file's size is not page aligned.
1669 */
1670 void
1671 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1672 {
1673 int b;
1674 int i;
1675
1676 /*
1677 * Scan the valid bits looking for invalid sections that
1678 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
1679 * valid bit may be set ) have already been zerod by
1680 * vm_page_set_validclean().
1681 */
1682 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1683 if (i == (PAGE_SIZE / DEV_BSIZE) ||
1684 (m->valid & (1 << i))
1685 ) {
1686 if (i > b) {
1687 pmap_zero_page_area(m,
1688 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1689 }
1690 b = i + 1;
1691 }
1692 }
1693
1694 /*
1695 * setvalid is TRUE when we can safely set the zero'd areas
1696 * as being valid. We can do this if there are no cache consistancy
1697 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
1698 */
1699 if (setvalid)
1700 m->valid = VM_PAGE_BITS_ALL;
1701 }
1702
1703 /*
1704 * vm_page_is_valid:
1705 *
1706 * Is (partial) page valid? Note that the case where size == 0
1707 * will return FALSE in the degenerate case where the page is
1708 * entirely invalid, and TRUE otherwise.
1709 *
1710 * May not block.
1711 */
1712 int
1713 vm_page_is_valid(vm_page_t m, int base, int size)
1714 {
1715 int bits = vm_page_bits(base, size);
1716
1717 if (m->valid && ((m->valid & bits) == bits))
1718 return 1;
1719 else
1720 return 0;
1721 }
1722
1723 /*
1724 * update dirty bits from pmap/mmu. May not block.
1725 */
1726 void
1727 vm_page_test_dirty(vm_page_t m)
1728 {
1729 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1730 vm_page_dirty(m);
1731 }
1732 }
1733
1734 int so_zerocp_fullpage = 0;
1735
1736 void
1737 vm_page_cowfault(vm_page_t m)
1738 {
1739 vm_page_t mnew;
1740 vm_object_t object;
1741 vm_pindex_t pindex;
1742
1743 object = m->object;
1744 pindex = m->pindex;
1745 vm_page_busy(m);
1746
1747 retry_alloc:
1748 vm_page_remove(m);
1749 /*
1750 * An interrupt allocation is requested because the page
1751 * queues lock is held.
1752 */
1753 mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1754 if (mnew == NULL) {
1755 vm_page_insert(m, object, pindex);
1756 vm_page_unlock_queues();
1757 VM_WAIT;
1758 vm_page_lock_queues();
1759 goto retry_alloc;
1760 }
1761
1762 if (m->cow == 0) {
1763 /*
1764 * check to see if we raced with an xmit complete when
1765 * waiting to allocate a page. If so, put things back
1766 * the way they were
1767 */
1768 vm_page_busy(mnew);
1769 vm_page_free(mnew);
1770 vm_page_insert(m, object, pindex);
1771 } else { /* clear COW & copy page */
1772 if (so_zerocp_fullpage) {
1773 mnew->valid = VM_PAGE_BITS_ALL;
1774 } else {
1775 vm_page_copy(m, mnew);
1776 }
1777 vm_page_dirty(mnew);
1778 vm_page_flag_clear(mnew, PG_BUSY);
1779 }
1780 }
1781
1782 void
1783 vm_page_cowclear(vm_page_t m)
1784 {
1785
1786 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1787 if (m->cow) {
1788 m->cow--;
1789 /*
1790 * let vm_fault add back write permission lazily
1791 */
1792 }
1793 /*
1794 * sf_buf_free() will free the page, so we needn't do it here
1795 */
1796 }
1797
1798 void
1799 vm_page_cowsetup(vm_page_t m)
1800 {
1801
1802 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1803 m->cow++;
1804 pmap_page_protect(m, VM_PROT_READ);
1805 }
1806
1807 #include "opt_ddb.h"
1808 #ifdef DDB
1809 #include <sys/kernel.h>
1810
1811 #include <ddb/ddb.h>
1812
1813 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1814 {
1815 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1816 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1817 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1818 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1819 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1820 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1821 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1822 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1823 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1824 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1825 }
1826
1827 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1828 {
1829 int i;
1830 db_printf("PQ_FREE:");
1831 for (i = 0; i < PQ_L2_SIZE; i++) {
1832 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1833 }
1834 db_printf("\n");
1835
1836 db_printf("PQ_CACHE:");
1837 for (i = 0; i < PQ_L2_SIZE; i++) {
1838 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1839 }
1840 db_printf("\n");
1841
1842 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1843 vm_page_queues[PQ_ACTIVE].lcnt,
1844 vm_page_queues[PQ_INACTIVE].lcnt);
1845 }
1846 #endif /* DDB */
Cache object: 857c32884dd51b2eaf2bdd4b086e0dc7
|