The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
   33  */
   34 
   35 /*-
   36  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   37  * All rights reserved.
   38  *
   39  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   40  *
   41  * Permission to use, copy, modify and distribute this software and
   42  * its documentation is hereby granted, provided that both the copyright
   43  * notice and this permission notice appear in all copies of the
   44  * software, derivative works or modified versions, and any portions
   45  * thereof, and that both notices appear in supporting documentation.
   46  *
   47  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   48  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   49  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   50  *
   51  * Carnegie Mellon requests users of this software to return to
   52  *
   53  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   54  *  School of Computer Science
   55  *  Carnegie Mellon University
   56  *  Pittsburgh PA 15213-3890
   57  *
   58  * any improvements or extensions that they make and grant Carnegie the
   59  * rights to redistribute these changes.
   60  */
   61 
   62 /*
   63  *                      GENERAL RULES ON VM_PAGE MANIPULATION
   64  *
   65  *      - a pageq mutex is required when adding or removing a page from a
   66  *        page queue (vm_page_queue[]), regardless of other mutexes or the
   67  *        busy state of a page.
   68  *
   69  *      - a hash chain mutex is required when associating or disassociating
   70  *        a page from the VM PAGE CACHE hash table (vm_page_buckets),
   71  *        regardless of other mutexes or the busy state of a page.
   72  *
   73  *      - either a hash chain mutex OR a busied page is required in order
   74  *        to modify the page flags.  A hash chain mutex must be obtained in
   75  *        order to busy a page.  A page's flags cannot be modified by a
   76  *        hash chain mutex if the page is marked busy.
   77  *
   78  *      - The object memq mutex is held when inserting or removing
   79  *        pages from an object (vm_page_insert() or vm_page_remove()).  This
   80  *        is different from the object's main mutex.
   81  *
   82  *      Generally speaking, you have to be aware of side effects when running
   83  *      vm_page ops.  A vm_page_lookup() will return with the hash chain
   84  *      locked, whether it was able to lookup the page or not.  vm_page_free(),
   85  *      vm_page_cache(), vm_page_activate(), and a number of other routines
   86  *      will release the hash chain mutex for you.  Intermediate manipulation
   87  *      routines such as vm_page_flag_set() expect the hash chain to be held
   88  *      on entry and the hash chain will remain held on return.
   89  *
   90  *      pageq scanning can only occur with the pageq in question locked.
   91  *      We have a known bottleneck with the active queue, but the cache
   92  *      and free queues are actually arrays already. 
   93  */
   94 
   95 /*
   96  *      Resident memory management module.
   97  */
   98 
   99 #include <sys/cdefs.h>
  100 __FBSDID("$FreeBSD: releng/5.4/sys/vm/vm_page.c 142975 2005-03-02 04:00:04Z alc $");
  101 
  102 #include <sys/param.h>
  103 #include <sys/systm.h>
  104 #include <sys/lock.h>
  105 #include <sys/malloc.h>
  106 #include <sys/mutex.h>
  107 #include <sys/proc.h>
  108 #include <sys/vmmeter.h>
  109 #include <sys/vnode.h>
  110 
  111 #include <vm/vm.h>
  112 #include <vm/vm_param.h>
  113 #include <vm/vm_kern.h>
  114 #include <vm/vm_object.h>
  115 #include <vm/vm_page.h>
  116 #include <vm/vm_pageout.h>
  117 #include <vm/vm_pager.h>
  118 #include <vm/vm_extern.h>
  119 #include <vm/uma.h>
  120 #include <vm/uma_int.h>
  121 
  122 /*
  123  *      Associated with page of user-allocatable memory is a
  124  *      page structure.
  125  */
  126 
  127 struct mtx vm_page_queue_mtx;
  128 struct mtx vm_page_queue_free_mtx;
  129 
  130 vm_page_t vm_page_array = 0;
  131 int vm_page_array_size = 0;
  132 long first_page = 0;
  133 int vm_page_zero_count = 0;
  134 
  135 /*
  136  *      vm_set_page_size:
  137  *
  138  *      Sets the page size, perhaps based upon the memory
  139  *      size.  Must be called before any use of page-size
  140  *      dependent functions.
  141  */
  142 void
  143 vm_set_page_size(void)
  144 {
  145         if (cnt.v_page_size == 0)
  146                 cnt.v_page_size = PAGE_SIZE;
  147         if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
  148                 panic("vm_set_page_size: page size not a power of two");
  149 }
  150 
  151 /*
  152  *      vm_page_startup:
  153  *
  154  *      Initializes the resident memory module.
  155  *
  156  *      Allocates memory for the page cells, and
  157  *      for the object/offset-to-page hash table headers.
  158  *      Each page cell is initialized and placed on the free list.
  159  */
  160 vm_offset_t
  161 vm_page_startup(vm_offset_t vaddr)
  162 {
  163         vm_offset_t mapped;
  164         vm_size_t npages;
  165         vm_paddr_t page_range;
  166         vm_paddr_t new_end;
  167         int i;
  168         vm_paddr_t pa;
  169         int nblocks;
  170         vm_paddr_t last_pa;
  171 
  172         /* the biggest memory array is the second group of pages */
  173         vm_paddr_t end;
  174         vm_paddr_t biggestsize;
  175         int biggestone;
  176 
  177         vm_paddr_t total;
  178         vm_size_t bootpages;
  179 
  180         total = 0;
  181         biggestsize = 0;
  182         biggestone = 0;
  183         nblocks = 0;
  184         vaddr = round_page(vaddr);
  185 
  186         for (i = 0; phys_avail[i + 1]; i += 2) {
  187                 phys_avail[i] = round_page(phys_avail[i]);
  188                 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
  189         }
  190 
  191         for (i = 0; phys_avail[i + 1]; i += 2) {
  192                 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
  193 
  194                 if (size > biggestsize) {
  195                         biggestone = i;
  196                         biggestsize = size;
  197                 }
  198                 ++nblocks;
  199                 total += size;
  200         }
  201 
  202         end = phys_avail[biggestone+1];
  203 
  204         /*
  205          * Initialize the locks.
  206          */
  207         mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
  208             MTX_RECURSE);
  209         mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
  210             MTX_SPIN);
  211 
  212         /*
  213          * Initialize the queue headers for the free queue, the active queue
  214          * and the inactive queue.
  215          */
  216         vm_pageq_init();
  217 
  218         /*
  219          * Allocate memory for use when boot strapping the kernel memory
  220          * allocator.
  221          */
  222         bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
  223         new_end = end - bootpages;
  224         new_end = trunc_page(new_end);
  225         mapped = pmap_map(&vaddr, new_end, end,
  226             VM_PROT_READ | VM_PROT_WRITE);
  227         bzero((caddr_t) mapped, end - new_end);
  228         uma_startup((caddr_t)mapped);
  229 
  230         /*
  231          * Compute the number of pages of memory that will be available for
  232          * use (taking into account the overhead of a page structure per
  233          * page).
  234          */
  235         first_page = phys_avail[0] / PAGE_SIZE;
  236         page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
  237         npages = (total - (page_range * sizeof(struct vm_page)) -
  238             (end - new_end)) / PAGE_SIZE;
  239         end = new_end;
  240 
  241         /*
  242          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
  243          */
  244         vaddr += PAGE_SIZE;
  245 
  246         /*
  247          * Initialize the mem entry structures now, and put them in the free
  248          * queue.
  249          */
  250         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
  251         mapped = pmap_map(&vaddr, new_end, end,
  252             VM_PROT_READ | VM_PROT_WRITE);
  253         vm_page_array = (vm_page_t) mapped;
  254         phys_avail[biggestone + 1] = new_end;
  255 
  256         /*
  257          * Clear all of the page structures
  258          */
  259         bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
  260         vm_page_array_size = page_range;
  261 
  262         /*
  263          * Construct the free queue(s) in descending order (by physical
  264          * address) so that the first 16MB of physical memory is allocated
  265          * last rather than first.  On large-memory machines, this avoids
  266          * the exhaustion of low physical memory before isa_dmainit has run.
  267          */
  268         cnt.v_page_count = 0;
  269         cnt.v_free_count = 0;
  270         for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
  271                 pa = phys_avail[i];
  272                 last_pa = phys_avail[i + 1];
  273                 while (pa < last_pa && npages-- > 0) {
  274                         vm_pageq_add_new_page(pa);
  275                         pa += PAGE_SIZE;
  276                 }
  277         }
  278         return (vaddr);
  279 }
  280 
  281 void
  282 vm_page_flag_set(vm_page_t m, unsigned short bits)
  283 {
  284 
  285         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  286         m->flags |= bits;
  287 } 
  288 
  289 void
  290 vm_page_flag_clear(vm_page_t m, unsigned short bits)
  291 {
  292 
  293         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  294         m->flags &= ~bits;
  295 }
  296 
  297 void
  298 vm_page_busy(vm_page_t m)
  299 {
  300 
  301         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  302         KASSERT((m->flags & PG_BUSY) == 0,
  303             ("vm_page_busy: page already busy!!!"));
  304         vm_page_flag_set(m, PG_BUSY);
  305 }
  306 
  307 /*
  308  *      vm_page_flash:
  309  *
  310  *      wakeup anyone waiting for the page.
  311  */
  312 void
  313 vm_page_flash(vm_page_t m)
  314 {
  315 
  316         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  317         if (m->flags & PG_WANTED) {
  318                 vm_page_flag_clear(m, PG_WANTED);
  319                 wakeup(m);
  320         }
  321 }
  322 
  323 /*
  324  *      vm_page_wakeup:
  325  *
  326  *      clear the PG_BUSY flag and wakeup anyone waiting for the
  327  *      page.
  328  *
  329  */
  330 void
  331 vm_page_wakeup(vm_page_t m)
  332 {
  333 
  334         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  335         KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
  336         vm_page_flag_clear(m, PG_BUSY);
  337         vm_page_flash(m);
  338 }
  339 
  340 void
  341 vm_page_io_start(vm_page_t m)
  342 {
  343 
  344         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  345         m->busy++;
  346 }
  347 
  348 void
  349 vm_page_io_finish(vm_page_t m)
  350 {
  351 
  352         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  353         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  354         m->busy--;
  355         if (m->busy == 0)
  356                 vm_page_flash(m);
  357 }
  358 
  359 /*
  360  * Keep page from being freed by the page daemon
  361  * much of the same effect as wiring, except much lower
  362  * overhead and should be used only for *very* temporary
  363  * holding ("wiring").
  364  */
  365 void
  366 vm_page_hold(vm_page_t mem)
  367 {
  368 
  369         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  370         mem->hold_count++;
  371 }
  372 
  373 void
  374 vm_page_unhold(vm_page_t mem)
  375 {
  376 
  377         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  378         --mem->hold_count;
  379         KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
  380         if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
  381                 vm_page_free_toq(mem);
  382 }
  383 
  384 /*
  385  *      vm_page_free:
  386  *
  387  *      Free a page
  388  *
  389  *      The clearing of PG_ZERO is a temporary safety until the code can be
  390  *      reviewed to determine that PG_ZERO is being properly cleared on
  391  *      write faults or maps.  PG_ZERO was previously cleared in
  392  *      vm_page_alloc().
  393  */
  394 void
  395 vm_page_free(vm_page_t m)
  396 {
  397         vm_page_flag_clear(m, PG_ZERO);
  398         vm_page_free_toq(m);
  399         vm_page_zero_idle_wakeup();
  400 }
  401 
  402 /*
  403  *      vm_page_free_zero:
  404  *
  405  *      Free a page to the zerod-pages queue
  406  */
  407 void
  408 vm_page_free_zero(vm_page_t m)
  409 {
  410         vm_page_flag_set(m, PG_ZERO);
  411         vm_page_free_toq(m);
  412 }
  413 
  414 /*
  415  *      vm_page_sleep_if_busy:
  416  *
  417  *      Sleep and release the page queues lock if PG_BUSY is set or,
  418  *      if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
  419  *      thread slept and the page queues lock was released.
  420  *      Otherwise, retains the page queues lock and returns FALSE.
  421  */
  422 int
  423 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
  424 {
  425         vm_object_t object;
  426 
  427         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  428         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  429         if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
  430                 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
  431                 /*
  432                  * It's possible that while we sleep, the page will get
  433                  * unbusied and freed.  If we are holding the object
  434                  * lock, we will assume we hold a reference to the object
  435                  * such that even if m->object changes, we can re-lock
  436                  * it.
  437                  */
  438                 object = m->object;
  439                 VM_OBJECT_UNLOCK(object);
  440                 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
  441                 VM_OBJECT_LOCK(object);
  442                 return (TRUE);
  443         }
  444         return (FALSE);
  445 }
  446 
  447 /*
  448  *      vm_page_dirty:
  449  *
  450  *      make page all dirty
  451  */
  452 void
  453 vm_page_dirty(vm_page_t m)
  454 {
  455         KASSERT(m->queue - m->pc != PQ_CACHE,
  456             ("vm_page_dirty: page in cache!"));
  457         KASSERT(m->queue - m->pc != PQ_FREE,
  458             ("vm_page_dirty: page is free!"));
  459         m->dirty = VM_PAGE_BITS_ALL;
  460 }
  461 
  462 /*
  463  *      vm_page_splay:
  464  *
  465  *      Implements Sleator and Tarjan's top-down splay algorithm.  Returns
  466  *      the vm_page containing the given pindex.  If, however, that
  467  *      pindex is not found in the vm_object, returns a vm_page that is
  468  *      adjacent to the pindex, coming before or after it.
  469  */
  470 vm_page_t
  471 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
  472 {
  473         struct vm_page dummy;
  474         vm_page_t lefttreemax, righttreemin, y;
  475 
  476         if (root == NULL)
  477                 return (root);
  478         lefttreemax = righttreemin = &dummy;
  479         for (;; root = y) {
  480                 if (pindex < root->pindex) {
  481                         if ((y = root->left) == NULL)
  482                                 break;
  483                         if (pindex < y->pindex) {
  484                                 /* Rotate right. */
  485                                 root->left = y->right;
  486                                 y->right = root;
  487                                 root = y;
  488                                 if ((y = root->left) == NULL)
  489                                         break;
  490                         }
  491                         /* Link into the new root's right tree. */
  492                         righttreemin->left = root;
  493                         righttreemin = root;
  494                 } else if (pindex > root->pindex) {
  495                         if ((y = root->right) == NULL)
  496                                 break;
  497                         if (pindex > y->pindex) {
  498                                 /* Rotate left. */
  499                                 root->right = y->left;
  500                                 y->left = root;
  501                                 root = y;
  502                                 if ((y = root->right) == NULL)
  503                                         break;
  504                         }
  505                         /* Link into the new root's left tree. */
  506                         lefttreemax->right = root;
  507                         lefttreemax = root;
  508                 } else
  509                         break;
  510         }
  511         /* Assemble the new root. */
  512         lefttreemax->right = root->left;
  513         righttreemin->left = root->right;
  514         root->left = dummy.right;
  515         root->right = dummy.left;
  516         return (root);
  517 }
  518 
  519 /*
  520  *      vm_page_insert:         [ internal use only ]
  521  *
  522  *      Inserts the given mem entry into the object and object list.
  523  *
  524  *      The pagetables are not updated but will presumably fault the page
  525  *      in if necessary, or if a kernel page the caller will at some point
  526  *      enter the page into the kernel's pmap.  We are not allowed to block
  527  *      here so we *can't* do this anyway.
  528  *
  529  *      The object and page must be locked.
  530  *      This routine may not block.
  531  */
  532 void
  533 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
  534 {
  535         vm_page_t root;
  536 
  537         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  538         if (m->object != NULL)
  539                 panic("vm_page_insert: page already inserted");
  540 
  541         /*
  542          * Record the object/offset pair in this page
  543          */
  544         m->object = object;
  545         m->pindex = pindex;
  546 
  547         /*
  548          * Now link into the object's ordered list of backed pages.
  549          */
  550         root = object->root;
  551         if (root == NULL) {
  552                 m->left = NULL;
  553                 m->right = NULL;
  554                 TAILQ_INSERT_TAIL(&object->memq, m, listq);
  555         } else {
  556                 root = vm_page_splay(pindex, root);
  557                 if (pindex < root->pindex) {
  558                         m->left = root->left;
  559                         m->right = root;
  560                         root->left = NULL;
  561                         TAILQ_INSERT_BEFORE(root, m, listq);
  562                 } else if (pindex == root->pindex)
  563                         panic("vm_page_insert: offset already allocated");
  564                 else {
  565                         m->right = root->right;
  566                         m->left = root;
  567                         root->right = NULL;
  568                         TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
  569                 }
  570         }
  571         object->root = m;
  572         object->generation++;
  573 
  574         /*
  575          * show that the object has one more resident page.
  576          */
  577         object->resident_page_count++;
  578 
  579         /*
  580          * Since we are inserting a new and possibly dirty page,
  581          * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
  582          */
  583         if (m->flags & PG_WRITEABLE)
  584                 vm_object_set_writeable_dirty(object);
  585 }
  586 
  587 /*
  588  *      vm_page_remove:
  589  *                              NOTE: used by device pager as well -wfj
  590  *
  591  *      Removes the given mem entry from the object/offset-page
  592  *      table and the object page list, but do not invalidate/terminate
  593  *      the backing store.
  594  *
  595  *      The object and page must be locked.
  596  *      The underlying pmap entry (if any) is NOT removed here.
  597  *      This routine may not block.
  598  */
  599 void
  600 vm_page_remove(vm_page_t m)
  601 {
  602         vm_object_t object;
  603         vm_page_t root;
  604 
  605         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  606         if ((object = m->object) == NULL)
  607                 return;
  608         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  609         if (m->flags & PG_BUSY) {
  610                 vm_page_flag_clear(m, PG_BUSY);
  611                 vm_page_flash(m);
  612         }
  613 
  614         /*
  615          * Now remove from the object's list of backed pages.
  616          */
  617         if (m != object->root)
  618                 vm_page_splay(m->pindex, object->root);
  619         if (m->left == NULL)
  620                 root = m->right;
  621         else {
  622                 root = vm_page_splay(m->pindex, m->left);
  623                 root->right = m->right;
  624         }
  625         object->root = root;
  626         TAILQ_REMOVE(&object->memq, m, listq);
  627 
  628         /*
  629          * And show that the object has one fewer resident page.
  630          */
  631         object->resident_page_count--;
  632         object->generation++;
  633 
  634         m->object = NULL;
  635 }
  636 
  637 /*
  638  *      vm_page_lookup:
  639  *
  640  *      Returns the page associated with the object/offset
  641  *      pair specified; if none is found, NULL is returned.
  642  *
  643  *      The object must be locked.
  644  *      This routine may not block.
  645  *      This is a critical path routine
  646  */
  647 vm_page_t
  648 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
  649 {
  650         vm_page_t m;
  651 
  652         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  653         if ((m = object->root) != NULL && m->pindex != pindex) {
  654                 m = vm_page_splay(pindex, m);
  655                 if ((object->root = m)->pindex != pindex)
  656                         m = NULL;
  657         }
  658         return (m);
  659 }
  660 
  661 /*
  662  *      vm_page_rename:
  663  *
  664  *      Move the given memory entry from its
  665  *      current object to the specified target object/offset.
  666  *
  667  *      The object must be locked.
  668  *      This routine may not block.
  669  *
  670  *      Note: swap associated with the page must be invalidated by the move.  We
  671  *            have to do this for several reasons:  (1) we aren't freeing the
  672  *            page, (2) we are dirtying the page, (3) the VM system is probably
  673  *            moving the page from object A to B, and will then later move
  674  *            the backing store from A to B and we can't have a conflict.
  675  *
  676  *      Note: we *always* dirty the page.  It is necessary both for the
  677  *            fact that we moved it, and because we may be invalidating
  678  *            swap.  If the page is on the cache, we have to deactivate it
  679  *            or vm_page_dirty() will panic.  Dirty pages are not allowed
  680  *            on the cache.
  681  */
  682 void
  683 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
  684 {
  685 
  686         vm_page_remove(m);
  687         vm_page_insert(m, new_object, new_pindex);
  688         if (m->queue - m->pc == PQ_CACHE)
  689                 vm_page_deactivate(m);
  690         vm_page_dirty(m);
  691 }
  692 
  693 /*
  694  *      vm_page_select_cache:
  695  *
  696  *      Move a page of the given color from the cache queue to the free
  697  *      queue.  As pages might be found, but are not applicable, they are
  698  *      deactivated.
  699  *
  700  *      This routine may not block.
  701  */
  702 vm_page_t
  703 vm_page_select_cache(int color)
  704 {
  705         vm_object_t object;
  706         vm_page_t m;
  707         boolean_t was_trylocked;
  708 
  709         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  710         while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
  711                 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
  712                 KASSERT(!pmap_page_is_mapped(m),
  713                     ("Found mapped cache page %p", m));
  714                 KASSERT((m->flags & PG_UNMANAGED) == 0,
  715                     ("Found unmanaged cache page %p", m));
  716                 KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
  717                 if (m->hold_count == 0 && (object = m->object,
  718                     (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
  719                     VM_OBJECT_LOCKED(object))) {
  720                         KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0,
  721                             ("Found busy cache page %p", m));
  722                         vm_page_free(m);
  723                         if (was_trylocked)
  724                                 VM_OBJECT_UNLOCK(object);
  725                         break;
  726                 }
  727                 vm_page_deactivate(m);
  728         }
  729         return (m);
  730 }
  731 
  732 /*
  733  *      vm_page_alloc:
  734  *
  735  *      Allocate and return a memory cell associated
  736  *      with this VM object/offset pair.
  737  *
  738  *      page_req classes:
  739  *      VM_ALLOC_NORMAL         normal process request
  740  *      VM_ALLOC_SYSTEM         system *really* needs a page
  741  *      VM_ALLOC_INTERRUPT      interrupt time request
  742  *      VM_ALLOC_ZERO           zero page
  743  *
  744  *      This routine may not block.
  745  *
  746  *      Additional special handling is required when called from an
  747  *      interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
  748  *      the page cache in this case.
  749  */
  750 vm_page_t
  751 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
  752 {
  753         vm_page_t m = NULL;
  754         int color, flags, page_req;
  755 
  756         page_req = req & VM_ALLOC_CLASS_MASK;
  757         KASSERT(curthread->td_intr_nesting_level == 0 ||
  758             page_req == VM_ALLOC_INTERRUPT,
  759             ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
  760 
  761         if ((req & VM_ALLOC_NOOBJ) == 0) {
  762                 KASSERT(object != NULL,
  763                     ("vm_page_alloc: NULL object."));
  764                 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  765                 color = (pindex + object->pg_color) & PQ_L2_MASK;
  766         } else
  767                 color = pindex & PQ_L2_MASK;
  768 
  769         /*
  770          * The pager is allowed to eat deeper into the free page list.
  771          */
  772         if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
  773                 page_req = VM_ALLOC_SYSTEM;
  774         };
  775 
  776 loop:
  777         mtx_lock_spin(&vm_page_queue_free_mtx);
  778         if (cnt.v_free_count > cnt.v_free_reserved ||
  779             (page_req == VM_ALLOC_SYSTEM && 
  780              cnt.v_cache_count == 0 && 
  781              cnt.v_free_count > cnt.v_interrupt_free_min) ||
  782             (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
  783                 /*
  784                  * Allocate from the free queue if the number of free pages
  785                  * exceeds the minimum for the request class.
  786                  */
  787                 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
  788         } else if (page_req != VM_ALLOC_INTERRUPT) {
  789                 mtx_unlock_spin(&vm_page_queue_free_mtx);
  790                 /*
  791                  * Allocatable from cache (non-interrupt only).  On success,
  792                  * we must free the page and try again, thus ensuring that
  793                  * cnt.v_*_free_min counters are replenished.
  794                  */
  795                 vm_page_lock_queues();
  796                 if ((m = vm_page_select_cache(color)) == NULL) {
  797 #if defined(DIAGNOSTIC)
  798                         if (cnt.v_cache_count > 0)
  799                                 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
  800 #endif
  801                         vm_page_unlock_queues();
  802                         atomic_add_int(&vm_pageout_deficit, 1);
  803                         pagedaemon_wakeup();
  804                         return (NULL);
  805                 }
  806                 vm_page_unlock_queues();
  807                 goto loop;
  808         } else {
  809                 /*
  810                  * Not allocatable from cache from interrupt, give up.
  811                  */
  812                 mtx_unlock_spin(&vm_page_queue_free_mtx);
  813                 atomic_add_int(&vm_pageout_deficit, 1);
  814                 pagedaemon_wakeup();
  815                 return (NULL);
  816         }
  817 
  818         /*
  819          *  At this point we had better have found a good page.
  820          */
  821 
  822         KASSERT(
  823             m != NULL,
  824             ("vm_page_alloc(): missing page on free queue")
  825         );
  826 
  827         /*
  828          * Remove from free queue
  829          */
  830         vm_pageq_remove_nowakeup(m);
  831 
  832         /*
  833          * Initialize structure.  Only the PG_ZERO flag is inherited.
  834          */
  835         flags = PG_BUSY;
  836         if (m->flags & PG_ZERO) {
  837                 vm_page_zero_count--;
  838                 if (req & VM_ALLOC_ZERO)
  839                         flags = PG_ZERO | PG_BUSY;
  840         }
  841         if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
  842                 flags &= ~PG_BUSY;
  843         m->flags = flags;
  844         if (req & VM_ALLOC_WIRED) {
  845                 atomic_add_int(&cnt.v_wire_count, 1);
  846                 m->wire_count = 1;
  847         } else
  848                 m->wire_count = 0;
  849         m->hold_count = 0;
  850         m->act_count = 0;
  851         m->busy = 0;
  852         m->valid = 0;
  853         KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
  854         mtx_unlock_spin(&vm_page_queue_free_mtx);
  855 
  856         if ((req & VM_ALLOC_NOOBJ) == 0)
  857                 vm_page_insert(m, object, pindex);
  858         else
  859                 m->pindex = pindex;
  860 
  861         /*
  862          * Don't wakeup too often - wakeup the pageout daemon when
  863          * we would be nearly out of memory.
  864          */
  865         if (vm_paging_needed())
  866                 pagedaemon_wakeup();
  867 
  868         return (m);
  869 }
  870 
  871 /*
  872  *      vm_wait:        (also see VM_WAIT macro)
  873  *
  874  *      Block until free pages are available for allocation
  875  *      - Called in various places before memory allocations.
  876  */
  877 void
  878 vm_wait(void)
  879 {
  880 
  881         vm_page_lock_queues();
  882         if (curproc == pageproc) {
  883                 vm_pageout_pages_needed = 1;
  884                 msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
  885                     PDROP | PSWP, "VMWait", 0);
  886         } else {
  887                 if (!vm_pages_needed) {
  888                         vm_pages_needed = 1;
  889                         wakeup(&vm_pages_needed);
  890                 }
  891                 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
  892                     "vmwait", 0);
  893         }
  894 }
  895 
  896 /*
  897  *      vm_waitpfault:  (also see VM_WAITPFAULT macro)
  898  *
  899  *      Block until free pages are available for allocation
  900  *      - Called only in vm_fault so that processes page faulting
  901  *        can be easily tracked.
  902  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
  903  *        processes will be able to grab memory first.  Do not change
  904  *        this balance without careful testing first.
  905  */
  906 void
  907 vm_waitpfault(void)
  908 {
  909 
  910         vm_page_lock_queues();
  911         if (!vm_pages_needed) {
  912                 vm_pages_needed = 1;
  913                 wakeup(&vm_pages_needed);
  914         }
  915         msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
  916             "pfault", 0);
  917 }
  918 
  919 /*
  920  *      vm_page_activate:
  921  *
  922  *      Put the specified page on the active list (if appropriate).
  923  *      Ensure that act_count is at least ACT_INIT but do not otherwise
  924  *      mess with it.
  925  *
  926  *      The page queues must be locked.
  927  *      This routine may not block.
  928  */
  929 void
  930 vm_page_activate(vm_page_t m)
  931 {
  932 
  933         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  934         if (m->queue != PQ_ACTIVE) {
  935                 if ((m->queue - m->pc) == PQ_CACHE)
  936                         cnt.v_reactivated++;
  937                 vm_pageq_remove(m);
  938                 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
  939                         if (m->act_count < ACT_INIT)
  940                                 m->act_count = ACT_INIT;
  941                         vm_pageq_enqueue(PQ_ACTIVE, m);
  942                 }
  943         } else {
  944                 if (m->act_count < ACT_INIT)
  945                         m->act_count = ACT_INIT;
  946         }
  947 }
  948 
  949 /*
  950  *      vm_page_free_wakeup:
  951  *
  952  *      Helper routine for vm_page_free_toq() and vm_page_cache().  This
  953  *      routine is called when a page has been added to the cache or free
  954  *      queues.
  955  *
  956  *      The page queues must be locked.
  957  *      This routine may not block.
  958  */
  959 static __inline void
  960 vm_page_free_wakeup(void)
  961 {
  962 
  963         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  964         /*
  965          * if pageout daemon needs pages, then tell it that there are
  966          * some free.
  967          */
  968         if (vm_pageout_pages_needed &&
  969             cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
  970                 wakeup(&vm_pageout_pages_needed);
  971                 vm_pageout_pages_needed = 0;
  972         }
  973         /*
  974          * wakeup processes that are waiting on memory if we hit a
  975          * high water mark. And wakeup scheduler process if we have
  976          * lots of memory. this process will swapin processes.
  977          */
  978         if (vm_pages_needed && !vm_page_count_min()) {
  979                 vm_pages_needed = 0;
  980                 wakeup(&cnt.v_free_count);
  981         }
  982 }
  983 
  984 /*
  985  *      vm_page_free_toq:
  986  *
  987  *      Returns the given page to the PQ_FREE list,
  988  *      disassociating it with any VM object.
  989  *
  990  *      Object and page must be locked prior to entry.
  991  *      This routine may not block.
  992  */
  993 
  994 void
  995 vm_page_free_toq(vm_page_t m)
  996 {
  997         struct vpgqueues *pq;
  998         vm_object_t object = m->object;
  999 
 1000         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1001         cnt.v_tfree++;
 1002 
 1003         if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
 1004                 printf(
 1005                 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
 1006                     (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
 1007                     m->hold_count);
 1008                 if ((m->queue - m->pc) == PQ_FREE)
 1009                         panic("vm_page_free: freeing free page");
 1010                 else
 1011                         panic("vm_page_free: freeing busy page");
 1012         }
 1013 
 1014         /*
 1015          * unqueue, then remove page.  Note that we cannot destroy
 1016          * the page here because we do not want to call the pager's
 1017          * callback routine until after we've put the page on the
 1018          * appropriate free queue.
 1019          */
 1020         vm_pageq_remove_nowakeup(m);
 1021         vm_page_remove(m);
 1022 
 1023         /*
 1024          * If fictitious remove object association and
 1025          * return, otherwise delay object association removal.
 1026          */
 1027         if ((m->flags & PG_FICTITIOUS) != 0) {
 1028                 return;
 1029         }
 1030 
 1031         m->valid = 0;
 1032         vm_page_undirty(m);
 1033 
 1034         if (m->wire_count != 0) {
 1035                 if (m->wire_count > 1) {
 1036                         panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
 1037                                 m->wire_count, (long)m->pindex);
 1038                 }
 1039                 panic("vm_page_free: freeing wired page");
 1040         }
 1041 
 1042         /*
 1043          * If we've exhausted the object's resident pages we want to free
 1044          * it up.
 1045          */
 1046         if (object && 
 1047             (object->type == OBJT_VNODE) &&
 1048             ((object->flags & OBJ_DEAD) == 0)
 1049         ) {
 1050                 struct vnode *vp = (struct vnode *)object->handle;
 1051 
 1052                 if (vp) {
 1053                         VI_LOCK(vp);
 1054                         if (VSHOULDFREE(vp))
 1055                                 vfree(vp);
 1056                         VI_UNLOCK(vp);
 1057                 }
 1058         }
 1059 
 1060         /*
 1061          * Clear the UNMANAGED flag when freeing an unmanaged page.
 1062          */
 1063         if (m->flags & PG_UNMANAGED) {
 1064                 m->flags &= ~PG_UNMANAGED;
 1065         }
 1066 
 1067         if (m->hold_count != 0) {
 1068                 m->flags &= ~PG_ZERO;
 1069                 m->queue = PQ_HOLD;
 1070         } else
 1071                 m->queue = PQ_FREE + m->pc;
 1072         pq = &vm_page_queues[m->queue];
 1073         mtx_lock_spin(&vm_page_queue_free_mtx);
 1074         pq->lcnt++;
 1075         ++(*pq->cnt);
 1076 
 1077         /*
 1078          * Put zero'd pages on the end ( where we look for zero'd pages
 1079          * first ) and non-zerod pages at the head.
 1080          */
 1081         if (m->flags & PG_ZERO) {
 1082                 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
 1083                 ++vm_page_zero_count;
 1084         } else {
 1085                 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
 1086         }
 1087         mtx_unlock_spin(&vm_page_queue_free_mtx);
 1088         vm_page_free_wakeup();
 1089 }
 1090 
 1091 /*
 1092  *      vm_page_unmanage:
 1093  *
 1094  *      Prevent PV management from being done on the page.  The page is
 1095  *      removed from the paging queues as if it were wired, and as a 
 1096  *      consequence of no longer being managed the pageout daemon will not
 1097  *      touch it (since there is no way to locate the pte mappings for the
 1098  *      page).  madvise() calls that mess with the pmap will also no longer
 1099  *      operate on the page.
 1100  *
 1101  *      Beyond that the page is still reasonably 'normal'.  Freeing the page
 1102  *      will clear the flag.
 1103  *
 1104  *      This routine is used by OBJT_PHYS objects - objects using unswappable
 1105  *      physical memory as backing store rather then swap-backed memory and
 1106  *      will eventually be extended to support 4MB unmanaged physical 
 1107  *      mappings.
 1108  */
 1109 void
 1110 vm_page_unmanage(vm_page_t m)
 1111 {
 1112 
 1113         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1114         if ((m->flags & PG_UNMANAGED) == 0) {
 1115                 if (m->wire_count == 0)
 1116                         vm_pageq_remove(m);
 1117         }
 1118         vm_page_flag_set(m, PG_UNMANAGED);
 1119 }
 1120 
 1121 /*
 1122  *      vm_page_wire:
 1123  *
 1124  *      Mark this page as wired down by yet
 1125  *      another map, removing it from paging queues
 1126  *      as necessary.
 1127  *
 1128  *      The page queues must be locked.
 1129  *      This routine may not block.
 1130  */
 1131 void
 1132 vm_page_wire(vm_page_t m)
 1133 {
 1134 
 1135         /*
 1136          * Only bump the wire statistics if the page is not already wired,
 1137          * and only unqueue the page if it is on some queue (if it is unmanaged
 1138          * it is already off the queues).
 1139          */
 1140         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1141         if (m->flags & PG_FICTITIOUS)
 1142                 return;
 1143         if (m->wire_count == 0) {
 1144                 if ((m->flags & PG_UNMANAGED) == 0)
 1145                         vm_pageq_remove(m);
 1146                 atomic_add_int(&cnt.v_wire_count, 1);
 1147         }
 1148         m->wire_count++;
 1149         KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
 1150 }
 1151 
 1152 /*
 1153  *      vm_page_unwire:
 1154  *
 1155  *      Release one wiring of this page, potentially
 1156  *      enabling it to be paged again.
 1157  *
 1158  *      Many pages placed on the inactive queue should actually go
 1159  *      into the cache, but it is difficult to figure out which.  What
 1160  *      we do instead, if the inactive target is well met, is to put
 1161  *      clean pages at the head of the inactive queue instead of the tail.
 1162  *      This will cause them to be moved to the cache more quickly and
 1163  *      if not actively re-referenced, freed more quickly.  If we just
 1164  *      stick these pages at the end of the inactive queue, heavy filesystem
 1165  *      meta-data accesses can cause an unnecessary paging load on memory bound 
 1166  *      processes.  This optimization causes one-time-use metadata to be
 1167  *      reused more quickly.
 1168  *
 1169  *      BUT, if we are in a low-memory situation we have no choice but to
 1170  *      put clean pages on the cache queue.
 1171  *
 1172  *      A number of routines use vm_page_unwire() to guarantee that the page
 1173  *      will go into either the inactive or active queues, and will NEVER
 1174  *      be placed in the cache - for example, just after dirtying a page.
 1175  *      dirty pages in the cache are not allowed.
 1176  *
 1177  *      The page queues must be locked.
 1178  *      This routine may not block.
 1179  */
 1180 void
 1181 vm_page_unwire(vm_page_t m, int activate)
 1182 {
 1183 
 1184         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1185         if (m->flags & PG_FICTITIOUS)
 1186                 return;
 1187         if (m->wire_count > 0) {
 1188                 m->wire_count--;
 1189                 if (m->wire_count == 0) {
 1190                         atomic_subtract_int(&cnt.v_wire_count, 1);
 1191                         if (m->flags & PG_UNMANAGED) {
 1192                                 ;
 1193                         } else if (activate)
 1194                                 vm_pageq_enqueue(PQ_ACTIVE, m);
 1195                         else {
 1196                                 vm_page_flag_clear(m, PG_WINATCFLS);
 1197                                 vm_pageq_enqueue(PQ_INACTIVE, m);
 1198                         }
 1199                 }
 1200         } else {
 1201                 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
 1202         }
 1203 }
 1204 
 1205 
 1206 /*
 1207  * Move the specified page to the inactive queue.  If the page has
 1208  * any associated swap, the swap is deallocated.
 1209  *
 1210  * Normally athead is 0 resulting in LRU operation.  athead is set
 1211  * to 1 if we want this page to be 'as if it were placed in the cache',
 1212  * except without unmapping it from the process address space.
 1213  *
 1214  * This routine may not block.
 1215  */
 1216 static __inline void
 1217 _vm_page_deactivate(vm_page_t m, int athead)
 1218 {
 1219 
 1220         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1221 
 1222         /*
 1223          * Ignore if already inactive.
 1224          */
 1225         if (m->queue == PQ_INACTIVE)
 1226                 return;
 1227         if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
 1228                 if ((m->queue - m->pc) == PQ_CACHE)
 1229                         cnt.v_reactivated++;
 1230                 vm_page_flag_clear(m, PG_WINATCFLS);
 1231                 vm_pageq_remove(m);
 1232                 if (athead)
 1233                         TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
 1234                 else
 1235                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
 1236                 m->queue = PQ_INACTIVE;
 1237                 vm_page_queues[PQ_INACTIVE].lcnt++;
 1238                 cnt.v_inactive_count++;
 1239         }
 1240 }
 1241 
 1242 void
 1243 vm_page_deactivate(vm_page_t m)
 1244 {
 1245     _vm_page_deactivate(m, 0);
 1246 }
 1247 
 1248 /*
 1249  * vm_page_try_to_cache:
 1250  *
 1251  * Returns 0 on failure, 1 on success
 1252  */
 1253 int
 1254 vm_page_try_to_cache(vm_page_t m)
 1255 {
 1256 
 1257         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1258         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1259         if (m->dirty || m->hold_count || m->busy || m->wire_count ||
 1260             (m->flags & (PG_BUSY|PG_UNMANAGED))) {
 1261                 return (0);
 1262         }
 1263         pmap_remove_all(m);
 1264         if (m->dirty)
 1265                 return (0);
 1266         vm_page_cache(m);
 1267         return (1);
 1268 }
 1269 
 1270 /*
 1271  * vm_page_try_to_free()
 1272  *
 1273  *      Attempt to free the page.  If we cannot free it, we do nothing.
 1274  *      1 is returned on success, 0 on failure.
 1275  */
 1276 int
 1277 vm_page_try_to_free(vm_page_t m)
 1278 {
 1279 
 1280         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1281         if (m->object != NULL)
 1282                 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1283         if (m->dirty || m->hold_count || m->busy || m->wire_count ||
 1284             (m->flags & (PG_BUSY|PG_UNMANAGED))) {
 1285                 return (0);
 1286         }
 1287         pmap_remove_all(m);
 1288         if (m->dirty)
 1289                 return (0);
 1290         vm_page_free(m);
 1291         return (1);
 1292 }
 1293 
 1294 /*
 1295  * vm_page_cache
 1296  *
 1297  * Put the specified page onto the page cache queue (if appropriate).
 1298  *
 1299  * This routine may not block.
 1300  */
 1301 void
 1302 vm_page_cache(vm_page_t m)
 1303 {
 1304 
 1305         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1306         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1307         if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
 1308             m->hold_count || m->wire_count) {
 1309                 printf("vm_page_cache: attempting to cache busy page\n");
 1310                 return;
 1311         }
 1312         if ((m->queue - m->pc) == PQ_CACHE)
 1313                 return;
 1314 
 1315         /*
 1316          * Remove all pmaps and indicate that the page is not
 1317          * writeable or mapped.
 1318          */
 1319         pmap_remove_all(m);
 1320         if (m->dirty != 0) {
 1321                 panic("vm_page_cache: caching a dirty page, pindex: %ld",
 1322                         (long)m->pindex);
 1323         }
 1324         vm_pageq_remove_nowakeup(m);
 1325         vm_pageq_enqueue(PQ_CACHE + m->pc, m);
 1326         vm_page_free_wakeup();
 1327 }
 1328 
 1329 /*
 1330  * vm_page_dontneed
 1331  *
 1332  *      Cache, deactivate, or do nothing as appropriate.  This routine
 1333  *      is typically used by madvise() MADV_DONTNEED.
 1334  *
 1335  *      Generally speaking we want to move the page into the cache so
 1336  *      it gets reused quickly.  However, this can result in a silly syndrome
 1337  *      due to the page recycling too quickly.  Small objects will not be
 1338  *      fully cached.  On the otherhand, if we move the page to the inactive
 1339  *      queue we wind up with a problem whereby very large objects 
 1340  *      unnecessarily blow away our inactive and cache queues.
 1341  *
 1342  *      The solution is to move the pages based on a fixed weighting.  We
 1343  *      either leave them alone, deactivate them, or move them to the cache,
 1344  *      where moving them to the cache has the highest weighting.
 1345  *      By forcing some pages into other queues we eventually force the
 1346  *      system to balance the queues, potentially recovering other unrelated
 1347  *      space from active.  The idea is to not force this to happen too
 1348  *      often.
 1349  */
 1350 void
 1351 vm_page_dontneed(vm_page_t m)
 1352 {
 1353         static int dnweight;
 1354         int dnw;
 1355         int head;
 1356 
 1357         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1358         dnw = ++dnweight;
 1359 
 1360         /*
 1361          * occassionally leave the page alone
 1362          */
 1363         if ((dnw & 0x01F0) == 0 ||
 1364             m->queue == PQ_INACTIVE || 
 1365             m->queue - m->pc == PQ_CACHE
 1366         ) {
 1367                 if (m->act_count >= ACT_INIT)
 1368                         --m->act_count;
 1369                 return;
 1370         }
 1371 
 1372         if (m->dirty == 0 && pmap_is_modified(m))
 1373                 vm_page_dirty(m);
 1374 
 1375         if (m->dirty || (dnw & 0x0070) == 0) {
 1376                 /*
 1377                  * Deactivate the page 3 times out of 32.
 1378                  */
 1379                 head = 0;
 1380         } else {
 1381                 /*
 1382                  * Cache the page 28 times out of every 32.  Note that
 1383                  * the page is deactivated instead of cached, but placed
 1384                  * at the head of the queue instead of the tail.
 1385                  */
 1386                 head = 1;
 1387         }
 1388         _vm_page_deactivate(m, head);
 1389 }
 1390 
 1391 /*
 1392  * Grab a page, waiting until we are waken up due to the page
 1393  * changing state.  We keep on waiting, if the page continues
 1394  * to be in the object.  If the page doesn't exist, first allocate it
 1395  * and then conditionally zero it.
 1396  *
 1397  * This routine may block.
 1398  */
 1399 vm_page_t
 1400 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
 1401 {
 1402         vm_page_t m;
 1403 
 1404         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1405 retrylookup:
 1406         if ((m = vm_page_lookup(object, pindex)) != NULL) {
 1407                 vm_page_lock_queues();
 1408                 if (m->busy || (m->flags & PG_BUSY)) {
 1409                         vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
 1410                         VM_OBJECT_UNLOCK(object);
 1411                         msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
 1412                         VM_OBJECT_LOCK(object);
 1413                         if ((allocflags & VM_ALLOC_RETRY) == 0)
 1414                                 return (NULL);
 1415                         goto retrylookup;
 1416                 } else {
 1417                         if (allocflags & VM_ALLOC_WIRED)
 1418                                 vm_page_wire(m);
 1419                         if ((allocflags & VM_ALLOC_NOBUSY) == 0)
 1420                                 vm_page_busy(m);
 1421                         vm_page_unlock_queues();
 1422                         return (m);
 1423                 }
 1424         }
 1425         m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
 1426         if (m == NULL) {
 1427                 VM_OBJECT_UNLOCK(object);
 1428                 VM_WAIT;
 1429                 VM_OBJECT_LOCK(object);
 1430                 if ((allocflags & VM_ALLOC_RETRY) == 0)
 1431                         return (NULL);
 1432                 goto retrylookup;
 1433         }
 1434         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
 1435                 pmap_zero_page(m);
 1436         return (m);
 1437 }
 1438 
 1439 /*
 1440  * Mapping function for valid bits or for dirty bits in
 1441  * a page.  May not block.
 1442  *
 1443  * Inputs are required to range within a page.
 1444  */
 1445 __inline int
 1446 vm_page_bits(int base, int size)
 1447 {
 1448         int first_bit;
 1449         int last_bit;
 1450 
 1451         KASSERT(
 1452             base + size <= PAGE_SIZE,
 1453             ("vm_page_bits: illegal base/size %d/%d", base, size)
 1454         );
 1455 
 1456         if (size == 0)          /* handle degenerate case */
 1457                 return (0);
 1458 
 1459         first_bit = base >> DEV_BSHIFT;
 1460         last_bit = (base + size - 1) >> DEV_BSHIFT;
 1461 
 1462         return ((2 << last_bit) - (1 << first_bit));
 1463 }
 1464 
 1465 /*
 1466  *      vm_page_set_validclean:
 1467  *
 1468  *      Sets portions of a page valid and clean.  The arguments are expected
 1469  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
 1470  *      of any partial chunks touched by the range.  The invalid portion of
 1471  *      such chunks will be zero'd.
 1472  *
 1473  *      This routine may not block.
 1474  *
 1475  *      (base + size) must be less then or equal to PAGE_SIZE.
 1476  */
 1477 void
 1478 vm_page_set_validclean(vm_page_t m, int base, int size)
 1479 {
 1480         int pagebits;
 1481         int frag;
 1482         int endoff;
 1483 
 1484         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1485         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1486         if (size == 0)  /* handle degenerate case */
 1487                 return;
 1488 
 1489         /*
 1490          * If the base is not DEV_BSIZE aligned and the valid
 1491          * bit is clear, we have to zero out a portion of the
 1492          * first block.
 1493          */
 1494         if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
 1495             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
 1496                 pmap_zero_page_area(m, frag, base - frag);
 1497 
 1498         /*
 1499          * If the ending offset is not DEV_BSIZE aligned and the 
 1500          * valid bit is clear, we have to zero out a portion of
 1501          * the last block.
 1502          */
 1503         endoff = base + size;
 1504         if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
 1505             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
 1506                 pmap_zero_page_area(m, endoff,
 1507                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
 1508 
 1509         /*
 1510          * Set valid, clear dirty bits.  If validating the entire
 1511          * page we can safely clear the pmap modify bit.  We also
 1512          * use this opportunity to clear the PG_NOSYNC flag.  If a process
 1513          * takes a write fault on a MAP_NOSYNC memory area the flag will
 1514          * be set again.
 1515          *
 1516          * We set valid bits inclusive of any overlap, but we can only
 1517          * clear dirty bits for DEV_BSIZE chunks that are fully within
 1518          * the range.
 1519          */
 1520         pagebits = vm_page_bits(base, size);
 1521         m->valid |= pagebits;
 1522 #if 0   /* NOT YET */
 1523         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
 1524                 frag = DEV_BSIZE - frag;
 1525                 base += frag;
 1526                 size -= frag;
 1527                 if (size < 0)
 1528                         size = 0;
 1529         }
 1530         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
 1531 #endif
 1532         m->dirty &= ~pagebits;
 1533         if (base == 0 && size == PAGE_SIZE) {
 1534                 pmap_clear_modify(m);
 1535                 vm_page_flag_clear(m, PG_NOSYNC);
 1536         }
 1537 }
 1538 
 1539 void
 1540 vm_page_clear_dirty(vm_page_t m, int base, int size)
 1541 {
 1542 
 1543         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1544         m->dirty &= ~vm_page_bits(base, size);
 1545 }
 1546 
 1547 /*
 1548  *      vm_page_set_invalid:
 1549  *
 1550  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
 1551  *      valid and dirty bits for the effected areas are cleared.
 1552  *
 1553  *      May not block.
 1554  */
 1555 void
 1556 vm_page_set_invalid(vm_page_t m, int base, int size)
 1557 {
 1558         int bits;
 1559 
 1560         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1561         bits = vm_page_bits(base, size);
 1562         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1563         m->valid &= ~bits;
 1564         m->dirty &= ~bits;
 1565         m->object->generation++;
 1566 }
 1567 
 1568 /*
 1569  * vm_page_zero_invalid()
 1570  *
 1571  *      The kernel assumes that the invalid portions of a page contain 
 1572  *      garbage, but such pages can be mapped into memory by user code.
 1573  *      When this occurs, we must zero out the non-valid portions of the
 1574  *      page so user code sees what it expects.
 1575  *
 1576  *      Pages are most often semi-valid when the end of a file is mapped 
 1577  *      into memory and the file's size is not page aligned.
 1578  */
 1579 void
 1580 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
 1581 {
 1582         int b;
 1583         int i;
 1584 
 1585         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1586         /*
 1587          * Scan the valid bits looking for invalid sections that
 1588          * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
 1589          * valid bit may be set ) have already been zerod by
 1590          * vm_page_set_validclean().
 1591          */
 1592         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
 1593                 if (i == (PAGE_SIZE / DEV_BSIZE) || 
 1594                     (m->valid & (1 << i))
 1595                 ) {
 1596                         if (i > b) {
 1597                                 pmap_zero_page_area(m, 
 1598                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
 1599                         }
 1600                         b = i + 1;
 1601                 }
 1602         }
 1603 
 1604         /*
 1605          * setvalid is TRUE when we can safely set the zero'd areas
 1606          * as being valid.  We can do this if there are no cache consistancy
 1607          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
 1608          */
 1609         if (setvalid)
 1610                 m->valid = VM_PAGE_BITS_ALL;
 1611 }
 1612 
 1613 /*
 1614  *      vm_page_is_valid:
 1615  *
 1616  *      Is (partial) page valid?  Note that the case where size == 0
 1617  *      will return FALSE in the degenerate case where the page is
 1618  *      entirely invalid, and TRUE otherwise.
 1619  *
 1620  *      May not block.
 1621  */
 1622 int
 1623 vm_page_is_valid(vm_page_t m, int base, int size)
 1624 {
 1625         int bits = vm_page_bits(base, size);
 1626 
 1627         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1628         if (m->valid && ((m->valid & bits) == bits))
 1629                 return 1;
 1630         else
 1631                 return 0;
 1632 }
 1633 
 1634 /*
 1635  * update dirty bits from pmap/mmu.  May not block.
 1636  */
 1637 void
 1638 vm_page_test_dirty(vm_page_t m)
 1639 {
 1640         if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
 1641                 vm_page_dirty(m);
 1642         }
 1643 }
 1644 
 1645 int so_zerocp_fullpage = 0;
 1646 
 1647 void
 1648 vm_page_cowfault(vm_page_t m)
 1649 {
 1650         vm_page_t mnew;
 1651         vm_object_t object;
 1652         vm_pindex_t pindex;
 1653 
 1654         object = m->object;
 1655         pindex = m->pindex;
 1656 
 1657  retry_alloc:
 1658         vm_page_remove(m);
 1659         mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
 1660         if (mnew == NULL) {
 1661                 vm_page_insert(m, object, pindex);
 1662                 vm_page_unlock_queues();
 1663                 VM_OBJECT_UNLOCK(object);
 1664                 VM_WAIT;
 1665                 VM_OBJECT_LOCK(object);
 1666                 vm_page_lock_queues();
 1667                 goto retry_alloc;
 1668         }
 1669 
 1670         if (m->cow == 0) {
 1671                 /* 
 1672                  * check to see if we raced with an xmit complete when 
 1673                  * waiting to allocate a page.  If so, put things back 
 1674                  * the way they were 
 1675                  */
 1676                 vm_page_free(mnew);
 1677                 vm_page_insert(m, object, pindex);
 1678         } else { /* clear COW & copy page */
 1679                 if (!so_zerocp_fullpage)
 1680                         pmap_copy_page(m, mnew);
 1681                 mnew->valid = VM_PAGE_BITS_ALL;
 1682                 vm_page_dirty(mnew);
 1683                 vm_page_flag_clear(mnew, PG_BUSY);
 1684         }
 1685 }
 1686 
 1687 void 
 1688 vm_page_cowclear(vm_page_t m)
 1689 {
 1690 
 1691         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1692         if (m->cow) {
 1693                 m->cow--;
 1694                 /* 
 1695                  * let vm_fault add back write permission  lazily
 1696                  */
 1697         } 
 1698         /*
 1699          *  sf_buf_free() will free the page, so we needn't do it here
 1700          */ 
 1701 }
 1702 
 1703 void
 1704 vm_page_cowsetup(vm_page_t m)
 1705 {
 1706 
 1707         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1708         m->cow++;
 1709         pmap_page_protect(m, VM_PROT_READ);
 1710 }
 1711 
 1712 #include "opt_ddb.h"
 1713 #ifdef DDB
 1714 #include <sys/kernel.h>
 1715 
 1716 #include <ddb/ddb.h>
 1717 
 1718 DB_SHOW_COMMAND(page, vm_page_print_page_info)
 1719 {
 1720         db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
 1721         db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
 1722         db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
 1723         db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
 1724         db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
 1725         db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
 1726         db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
 1727         db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
 1728         db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
 1729         db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
 1730 }
 1731 
 1732 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
 1733 {
 1734         int i;
 1735         db_printf("PQ_FREE:");
 1736         for (i = 0; i < PQ_L2_SIZE; i++) {
 1737                 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
 1738         }
 1739         db_printf("\n");
 1740                 
 1741         db_printf("PQ_CACHE:");
 1742         for (i = 0; i < PQ_L2_SIZE; i++) {
 1743                 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
 1744         }
 1745         db_printf("\n");
 1746 
 1747         db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
 1748                 vm_page_queues[PQ_ACTIVE].lcnt,
 1749                 vm_page_queues[PQ_INACTIVE].lcnt);
 1750 }
 1751 #endif /* DDB */

Cache object: 6539dca435d2f13d05670af07b365d6a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.