FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.c
1 /*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
33 */
34
35 /*-
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
54 * School of Computer Science
55 * Carnegie Mellon University
56 * Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62 /*
63 * GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 * - a pageq mutex is required when adding or removing a page from a
66 * page queue (vm_page_queue[]), regardless of other mutexes or the
67 * busy state of a page.
68 *
69 * - a hash chain mutex is required when associating or disassociating
70 * a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 * regardless of other mutexes or the busy state of a page.
72 *
73 * - either a hash chain mutex OR a busied page is required in order
74 * to modify the page flags. A hash chain mutex must be obtained in
75 * order to busy a page. A page's flags cannot be modified by a
76 * hash chain mutex if the page is marked busy.
77 *
78 * - The object memq mutex is held when inserting or removing
79 * pages from an object (vm_page_insert() or vm_page_remove()). This
80 * is different from the object's main mutex.
81 *
82 * Generally speaking, you have to be aware of side effects when running
83 * vm_page ops. A vm_page_lookup() will return with the hash chain
84 * locked, whether it was able to lookup the page or not. vm_page_free(),
85 * vm_page_cache(), vm_page_activate(), and a number of other routines
86 * will release the hash chain mutex for you. Intermediate manipulation
87 * routines such as vm_page_flag_set() expect the hash chain to be held
88 * on entry and the hash chain will remain held on return.
89 *
90 * pageq scanning can only occur with the pageq in question locked.
91 * We have a known bottleneck with the active queue, but the cache
92 * and free queues are actually arrays already.
93 */
94
95 /*
96 * Resident memory management module.
97 */
98
99 #include <sys/cdefs.h>
100 __FBSDID("$FreeBSD: releng/6.0/sys/vm/vm_page.c 143646 2005-03-15 14:14:09Z jeff $");
101
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/malloc.h>
106 #include <sys/mutex.h>
107 #include <sys/proc.h>
108 #include <sys/vmmeter.h>
109 #include <sys/vnode.h>
110
111 #include <vm/vm.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/vm_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/uma.h>
120 #include <vm/uma_int.h>
121
122 /*
123 * Associated with page of user-allocatable memory is a
124 * page structure.
125 */
126
127 struct mtx vm_page_queue_mtx;
128 struct mtx vm_page_queue_free_mtx;
129
130 vm_page_t vm_page_array = 0;
131 int vm_page_array_size = 0;
132 long first_page = 0;
133 int vm_page_zero_count = 0;
134
135 /*
136 * vm_set_page_size:
137 *
138 * Sets the page size, perhaps based upon the memory
139 * size. Must be called before any use of page-size
140 * dependent functions.
141 */
142 void
143 vm_set_page_size(void)
144 {
145 if (cnt.v_page_size == 0)
146 cnt.v_page_size = PAGE_SIZE;
147 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
148 panic("vm_set_page_size: page size not a power of two");
149 }
150
151 /*
152 * vm_page_startup:
153 *
154 * Initializes the resident memory module.
155 *
156 * Allocates memory for the page cells, and
157 * for the object/offset-to-page hash table headers.
158 * Each page cell is initialized and placed on the free list.
159 */
160 vm_offset_t
161 vm_page_startup(vm_offset_t vaddr)
162 {
163 vm_offset_t mapped;
164 vm_size_t npages;
165 vm_paddr_t page_range;
166 vm_paddr_t new_end;
167 int i;
168 vm_paddr_t pa;
169 int nblocks;
170 vm_paddr_t last_pa;
171
172 /* the biggest memory array is the second group of pages */
173 vm_paddr_t end;
174 vm_paddr_t biggestsize;
175 int biggestone;
176
177 vm_paddr_t total;
178 vm_size_t bootpages;
179
180 total = 0;
181 biggestsize = 0;
182 biggestone = 0;
183 nblocks = 0;
184 vaddr = round_page(vaddr);
185
186 for (i = 0; phys_avail[i + 1]; i += 2) {
187 phys_avail[i] = round_page(phys_avail[i]);
188 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189 }
190
191 for (i = 0; phys_avail[i + 1]; i += 2) {
192 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
193
194 if (size > biggestsize) {
195 biggestone = i;
196 biggestsize = size;
197 }
198 ++nblocks;
199 total += size;
200 }
201
202 end = phys_avail[biggestone+1];
203
204 /*
205 * Initialize the locks.
206 */
207 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
208 MTX_RECURSE);
209 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
210 MTX_SPIN);
211
212 /*
213 * Initialize the queue headers for the free queue, the active queue
214 * and the inactive queue.
215 */
216 vm_pageq_init();
217
218 /*
219 * Allocate memory for use when boot strapping the kernel memory
220 * allocator.
221 */
222 bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
223 new_end = end - bootpages;
224 new_end = trunc_page(new_end);
225 mapped = pmap_map(&vaddr, new_end, end,
226 VM_PROT_READ | VM_PROT_WRITE);
227 bzero((caddr_t) mapped, end - new_end);
228 uma_startup((caddr_t)mapped);
229
230 /*
231 * Compute the number of pages of memory that will be available for
232 * use (taking into account the overhead of a page structure per
233 * page).
234 */
235 first_page = phys_avail[0] / PAGE_SIZE;
236 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
237 npages = (total - (page_range * sizeof(struct vm_page)) -
238 (end - new_end)) / PAGE_SIZE;
239 end = new_end;
240
241 /*
242 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
243 */
244 vaddr += PAGE_SIZE;
245
246 /*
247 * Initialize the mem entry structures now, and put them in the free
248 * queue.
249 */
250 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
251 mapped = pmap_map(&vaddr, new_end, end,
252 VM_PROT_READ | VM_PROT_WRITE);
253 vm_page_array = (vm_page_t) mapped;
254 phys_avail[biggestone + 1] = new_end;
255
256 /*
257 * Clear all of the page structures
258 */
259 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
260 vm_page_array_size = page_range;
261
262 /*
263 * Construct the free queue(s) in descending order (by physical
264 * address) so that the first 16MB of physical memory is allocated
265 * last rather than first. On large-memory machines, this avoids
266 * the exhaustion of low physical memory before isa_dma_init has run.
267 */
268 cnt.v_page_count = 0;
269 cnt.v_free_count = 0;
270 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
271 pa = phys_avail[i];
272 last_pa = phys_avail[i + 1];
273 while (pa < last_pa && npages-- > 0) {
274 vm_pageq_add_new_page(pa);
275 pa += PAGE_SIZE;
276 }
277 }
278 return (vaddr);
279 }
280
281 void
282 vm_page_flag_set(vm_page_t m, unsigned short bits)
283 {
284
285 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
286 m->flags |= bits;
287 }
288
289 void
290 vm_page_flag_clear(vm_page_t m, unsigned short bits)
291 {
292
293 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
294 m->flags &= ~bits;
295 }
296
297 void
298 vm_page_busy(vm_page_t m)
299 {
300
301 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
302 KASSERT((m->flags & PG_BUSY) == 0,
303 ("vm_page_busy: page already busy!!!"));
304 vm_page_flag_set(m, PG_BUSY);
305 }
306
307 /*
308 * vm_page_flash:
309 *
310 * wakeup anyone waiting for the page.
311 */
312 void
313 vm_page_flash(vm_page_t m)
314 {
315
316 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
317 if (m->flags & PG_WANTED) {
318 vm_page_flag_clear(m, PG_WANTED);
319 wakeup(m);
320 }
321 }
322
323 /*
324 * vm_page_wakeup:
325 *
326 * clear the PG_BUSY flag and wakeup anyone waiting for the
327 * page.
328 *
329 */
330 void
331 vm_page_wakeup(vm_page_t m)
332 {
333
334 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
335 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
336 vm_page_flag_clear(m, PG_BUSY);
337 vm_page_flash(m);
338 }
339
340 void
341 vm_page_io_start(vm_page_t m)
342 {
343
344 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
345 m->busy++;
346 }
347
348 void
349 vm_page_io_finish(vm_page_t m)
350 {
351
352 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
353 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
354 m->busy--;
355 if (m->busy == 0)
356 vm_page_flash(m);
357 }
358
359 /*
360 * Keep page from being freed by the page daemon
361 * much of the same effect as wiring, except much lower
362 * overhead and should be used only for *very* temporary
363 * holding ("wiring").
364 */
365 void
366 vm_page_hold(vm_page_t mem)
367 {
368
369 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
370 mem->hold_count++;
371 }
372
373 void
374 vm_page_unhold(vm_page_t mem)
375 {
376
377 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
378 --mem->hold_count;
379 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
380 if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
381 vm_page_free_toq(mem);
382 }
383
384 /*
385 * vm_page_free:
386 *
387 * Free a page
388 *
389 * The clearing of PG_ZERO is a temporary safety until the code can be
390 * reviewed to determine that PG_ZERO is being properly cleared on
391 * write faults or maps. PG_ZERO was previously cleared in
392 * vm_page_alloc().
393 */
394 void
395 vm_page_free(vm_page_t m)
396 {
397 vm_page_flag_clear(m, PG_ZERO);
398 vm_page_free_toq(m);
399 vm_page_zero_idle_wakeup();
400 }
401
402 /*
403 * vm_page_free_zero:
404 *
405 * Free a page to the zerod-pages queue
406 */
407 void
408 vm_page_free_zero(vm_page_t m)
409 {
410 vm_page_flag_set(m, PG_ZERO);
411 vm_page_free_toq(m);
412 }
413
414 /*
415 * vm_page_sleep_if_busy:
416 *
417 * Sleep and release the page queues lock if PG_BUSY is set or,
418 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the
419 * thread slept and the page queues lock was released.
420 * Otherwise, retains the page queues lock and returns FALSE.
421 */
422 int
423 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
424 {
425 vm_object_t object;
426
427 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
428 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
429 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
430 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
431 /*
432 * It's possible that while we sleep, the page will get
433 * unbusied and freed. If we are holding the object
434 * lock, we will assume we hold a reference to the object
435 * such that even if m->object changes, we can re-lock
436 * it.
437 */
438 object = m->object;
439 VM_OBJECT_UNLOCK(object);
440 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
441 VM_OBJECT_LOCK(object);
442 return (TRUE);
443 }
444 return (FALSE);
445 }
446
447 /*
448 * vm_page_dirty:
449 *
450 * make page all dirty
451 */
452 void
453 vm_page_dirty(vm_page_t m)
454 {
455 KASSERT(m->queue - m->pc != PQ_CACHE,
456 ("vm_page_dirty: page in cache!"));
457 KASSERT(m->queue - m->pc != PQ_FREE,
458 ("vm_page_dirty: page is free!"));
459 m->dirty = VM_PAGE_BITS_ALL;
460 }
461
462 /*
463 * vm_page_splay:
464 *
465 * Implements Sleator and Tarjan's top-down splay algorithm. Returns
466 * the vm_page containing the given pindex. If, however, that
467 * pindex is not found in the vm_object, returns a vm_page that is
468 * adjacent to the pindex, coming before or after it.
469 */
470 vm_page_t
471 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
472 {
473 struct vm_page dummy;
474 vm_page_t lefttreemax, righttreemin, y;
475
476 if (root == NULL)
477 return (root);
478 lefttreemax = righttreemin = &dummy;
479 for (;; root = y) {
480 if (pindex < root->pindex) {
481 if ((y = root->left) == NULL)
482 break;
483 if (pindex < y->pindex) {
484 /* Rotate right. */
485 root->left = y->right;
486 y->right = root;
487 root = y;
488 if ((y = root->left) == NULL)
489 break;
490 }
491 /* Link into the new root's right tree. */
492 righttreemin->left = root;
493 righttreemin = root;
494 } else if (pindex > root->pindex) {
495 if ((y = root->right) == NULL)
496 break;
497 if (pindex > y->pindex) {
498 /* Rotate left. */
499 root->right = y->left;
500 y->left = root;
501 root = y;
502 if ((y = root->right) == NULL)
503 break;
504 }
505 /* Link into the new root's left tree. */
506 lefttreemax->right = root;
507 lefttreemax = root;
508 } else
509 break;
510 }
511 /* Assemble the new root. */
512 lefttreemax->right = root->left;
513 righttreemin->left = root->right;
514 root->left = dummy.right;
515 root->right = dummy.left;
516 return (root);
517 }
518
519 /*
520 * vm_page_insert: [ internal use only ]
521 *
522 * Inserts the given mem entry into the object and object list.
523 *
524 * The pagetables are not updated but will presumably fault the page
525 * in if necessary, or if a kernel page the caller will at some point
526 * enter the page into the kernel's pmap. We are not allowed to block
527 * here so we *can't* do this anyway.
528 *
529 * The object and page must be locked.
530 * This routine may not block.
531 */
532 void
533 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
534 {
535 vm_page_t root;
536
537 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
538 if (m->object != NULL)
539 panic("vm_page_insert: page already inserted");
540
541 /*
542 * Record the object/offset pair in this page
543 */
544 m->object = object;
545 m->pindex = pindex;
546
547 /*
548 * Now link into the object's ordered list of backed pages.
549 */
550 root = object->root;
551 if (root == NULL) {
552 m->left = NULL;
553 m->right = NULL;
554 TAILQ_INSERT_TAIL(&object->memq, m, listq);
555 } else {
556 root = vm_page_splay(pindex, root);
557 if (pindex < root->pindex) {
558 m->left = root->left;
559 m->right = root;
560 root->left = NULL;
561 TAILQ_INSERT_BEFORE(root, m, listq);
562 } else if (pindex == root->pindex)
563 panic("vm_page_insert: offset already allocated");
564 else {
565 m->right = root->right;
566 m->left = root;
567 root->right = NULL;
568 TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
569 }
570 }
571 object->root = m;
572 object->generation++;
573
574 /*
575 * show that the object has one more resident page.
576 */
577 object->resident_page_count++;
578 /*
579 * Hold the vnode until the last page is released.
580 */
581 if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
582 vhold((struct vnode *)object->handle);
583
584 /*
585 * Since we are inserting a new and possibly dirty page,
586 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
587 */
588 if (m->flags & PG_WRITEABLE)
589 vm_object_set_writeable_dirty(object);
590 }
591
592 /*
593 * vm_page_remove:
594 * NOTE: used by device pager as well -wfj
595 *
596 * Removes the given mem entry from the object/offset-page
597 * table and the object page list, but do not invalidate/terminate
598 * the backing store.
599 *
600 * The object and page must be locked.
601 * The underlying pmap entry (if any) is NOT removed here.
602 * This routine may not block.
603 */
604 void
605 vm_page_remove(vm_page_t m)
606 {
607 vm_object_t object;
608 vm_page_t root;
609
610 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
611 if ((object = m->object) == NULL)
612 return;
613 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
614 if (m->flags & PG_BUSY) {
615 vm_page_flag_clear(m, PG_BUSY);
616 vm_page_flash(m);
617 }
618
619 /*
620 * Now remove from the object's list of backed pages.
621 */
622 if (m != object->root)
623 vm_page_splay(m->pindex, object->root);
624 if (m->left == NULL)
625 root = m->right;
626 else {
627 root = vm_page_splay(m->pindex, m->left);
628 root->right = m->right;
629 }
630 object->root = root;
631 TAILQ_REMOVE(&object->memq, m, listq);
632
633 /*
634 * And show that the object has one fewer resident page.
635 */
636 object->resident_page_count--;
637 object->generation++;
638 /*
639 * The vnode may now be recycled.
640 */
641 if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
642 vdrop((struct vnode *)object->handle);
643
644 m->object = NULL;
645 }
646
647 /*
648 * vm_page_lookup:
649 *
650 * Returns the page associated with the object/offset
651 * pair specified; if none is found, NULL is returned.
652 *
653 * The object must be locked.
654 * This routine may not block.
655 * This is a critical path routine
656 */
657 vm_page_t
658 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
659 {
660 vm_page_t m;
661
662 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
663 if ((m = object->root) != NULL && m->pindex != pindex) {
664 m = vm_page_splay(pindex, m);
665 if ((object->root = m)->pindex != pindex)
666 m = NULL;
667 }
668 return (m);
669 }
670
671 /*
672 * vm_page_rename:
673 *
674 * Move the given memory entry from its
675 * current object to the specified target object/offset.
676 *
677 * The object must be locked.
678 * This routine may not block.
679 *
680 * Note: swap associated with the page must be invalidated by the move. We
681 * have to do this for several reasons: (1) we aren't freeing the
682 * page, (2) we are dirtying the page, (3) the VM system is probably
683 * moving the page from object A to B, and will then later move
684 * the backing store from A to B and we can't have a conflict.
685 *
686 * Note: we *always* dirty the page. It is necessary both for the
687 * fact that we moved it, and because we may be invalidating
688 * swap. If the page is on the cache, we have to deactivate it
689 * or vm_page_dirty() will panic. Dirty pages are not allowed
690 * on the cache.
691 */
692 void
693 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
694 {
695
696 vm_page_remove(m);
697 vm_page_insert(m, new_object, new_pindex);
698 if (m->queue - m->pc == PQ_CACHE)
699 vm_page_deactivate(m);
700 vm_page_dirty(m);
701 }
702
703 /*
704 * vm_page_select_cache:
705 *
706 * Move a page of the given color from the cache queue to the free
707 * queue. As pages might be found, but are not applicable, they are
708 * deactivated.
709 *
710 * This routine may not block.
711 */
712 vm_page_t
713 vm_page_select_cache(int color)
714 {
715 vm_object_t object;
716 vm_page_t m;
717 boolean_t was_trylocked;
718
719 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
720 while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
721 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
722 KASSERT(!pmap_page_is_mapped(m),
723 ("Found mapped cache page %p", m));
724 KASSERT((m->flags & PG_UNMANAGED) == 0,
725 ("Found unmanaged cache page %p", m));
726 KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
727 if (m->hold_count == 0 && (object = m->object,
728 (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
729 VM_OBJECT_LOCKED(object))) {
730 KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0,
731 ("Found busy cache page %p", m));
732 vm_page_free(m);
733 if (was_trylocked)
734 VM_OBJECT_UNLOCK(object);
735 break;
736 }
737 vm_page_deactivate(m);
738 }
739 return (m);
740 }
741
742 /*
743 * vm_page_alloc:
744 *
745 * Allocate and return a memory cell associated
746 * with this VM object/offset pair.
747 *
748 * page_req classes:
749 * VM_ALLOC_NORMAL normal process request
750 * VM_ALLOC_SYSTEM system *really* needs a page
751 * VM_ALLOC_INTERRUPT interrupt time request
752 * VM_ALLOC_ZERO zero page
753 *
754 * This routine may not block.
755 *
756 * Additional special handling is required when called from an
757 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with
758 * the page cache in this case.
759 */
760 vm_page_t
761 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
762 {
763 vm_page_t m = NULL;
764 int color, flags, page_req;
765
766 page_req = req & VM_ALLOC_CLASS_MASK;
767 KASSERT(curthread->td_intr_nesting_level == 0 ||
768 page_req == VM_ALLOC_INTERRUPT,
769 ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
770
771 if ((req & VM_ALLOC_NOOBJ) == 0) {
772 KASSERT(object != NULL,
773 ("vm_page_alloc: NULL object."));
774 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
775 color = (pindex + object->pg_color) & PQ_L2_MASK;
776 } else
777 color = pindex & PQ_L2_MASK;
778
779 /*
780 * The pager is allowed to eat deeper into the free page list.
781 */
782 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
783 page_req = VM_ALLOC_SYSTEM;
784 };
785
786 loop:
787 mtx_lock_spin(&vm_page_queue_free_mtx);
788 if (cnt.v_free_count > cnt.v_free_reserved ||
789 (page_req == VM_ALLOC_SYSTEM &&
790 cnt.v_cache_count == 0 &&
791 cnt.v_free_count > cnt.v_interrupt_free_min) ||
792 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
793 /*
794 * Allocate from the free queue if the number of free pages
795 * exceeds the minimum for the request class.
796 */
797 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
798 } else if (page_req != VM_ALLOC_INTERRUPT) {
799 mtx_unlock_spin(&vm_page_queue_free_mtx);
800 /*
801 * Allocatable from cache (non-interrupt only). On success,
802 * we must free the page and try again, thus ensuring that
803 * cnt.v_*_free_min counters are replenished.
804 */
805 vm_page_lock_queues();
806 if ((m = vm_page_select_cache(color)) == NULL) {
807 #if defined(DIAGNOSTIC)
808 if (cnt.v_cache_count > 0)
809 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
810 #endif
811 vm_page_unlock_queues();
812 atomic_add_int(&vm_pageout_deficit, 1);
813 pagedaemon_wakeup();
814 return (NULL);
815 }
816 vm_page_unlock_queues();
817 goto loop;
818 } else {
819 /*
820 * Not allocatable from cache from interrupt, give up.
821 */
822 mtx_unlock_spin(&vm_page_queue_free_mtx);
823 atomic_add_int(&vm_pageout_deficit, 1);
824 pagedaemon_wakeup();
825 return (NULL);
826 }
827
828 /*
829 * At this point we had better have found a good page.
830 */
831
832 KASSERT(
833 m != NULL,
834 ("vm_page_alloc(): missing page on free queue")
835 );
836
837 /*
838 * Remove from free queue
839 */
840 vm_pageq_remove_nowakeup(m);
841
842 /*
843 * Initialize structure. Only the PG_ZERO flag is inherited.
844 */
845 flags = PG_BUSY;
846 if (m->flags & PG_ZERO) {
847 vm_page_zero_count--;
848 if (req & VM_ALLOC_ZERO)
849 flags = PG_ZERO | PG_BUSY;
850 }
851 if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
852 flags &= ~PG_BUSY;
853 m->flags = flags;
854 if (req & VM_ALLOC_WIRED) {
855 atomic_add_int(&cnt.v_wire_count, 1);
856 m->wire_count = 1;
857 } else
858 m->wire_count = 0;
859 m->hold_count = 0;
860 m->act_count = 0;
861 m->busy = 0;
862 m->valid = 0;
863 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
864 mtx_unlock_spin(&vm_page_queue_free_mtx);
865
866 if ((req & VM_ALLOC_NOOBJ) == 0)
867 vm_page_insert(m, object, pindex);
868 else
869 m->pindex = pindex;
870
871 /*
872 * Don't wakeup too often - wakeup the pageout daemon when
873 * we would be nearly out of memory.
874 */
875 if (vm_paging_needed())
876 pagedaemon_wakeup();
877
878 return (m);
879 }
880
881 /*
882 * vm_wait: (also see VM_WAIT macro)
883 *
884 * Block until free pages are available for allocation
885 * - Called in various places before memory allocations.
886 */
887 void
888 vm_wait(void)
889 {
890
891 vm_page_lock_queues();
892 if (curproc == pageproc) {
893 vm_pageout_pages_needed = 1;
894 msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
895 PDROP | PSWP, "VMWait", 0);
896 } else {
897 if (!vm_pages_needed) {
898 vm_pages_needed = 1;
899 wakeup(&vm_pages_needed);
900 }
901 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
902 "vmwait", 0);
903 }
904 }
905
906 /*
907 * vm_waitpfault: (also see VM_WAITPFAULT macro)
908 *
909 * Block until free pages are available for allocation
910 * - Called only in vm_fault so that processes page faulting
911 * can be easily tracked.
912 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
913 * processes will be able to grab memory first. Do not change
914 * this balance without careful testing first.
915 */
916 void
917 vm_waitpfault(void)
918 {
919
920 vm_page_lock_queues();
921 if (!vm_pages_needed) {
922 vm_pages_needed = 1;
923 wakeup(&vm_pages_needed);
924 }
925 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
926 "pfault", 0);
927 }
928
929 /*
930 * vm_page_activate:
931 *
932 * Put the specified page on the active list (if appropriate).
933 * Ensure that act_count is at least ACT_INIT but do not otherwise
934 * mess with it.
935 *
936 * The page queues must be locked.
937 * This routine may not block.
938 */
939 void
940 vm_page_activate(vm_page_t m)
941 {
942
943 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
944 if (m->queue != PQ_ACTIVE) {
945 if ((m->queue - m->pc) == PQ_CACHE)
946 cnt.v_reactivated++;
947 vm_pageq_remove(m);
948 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
949 if (m->act_count < ACT_INIT)
950 m->act_count = ACT_INIT;
951 vm_pageq_enqueue(PQ_ACTIVE, m);
952 }
953 } else {
954 if (m->act_count < ACT_INIT)
955 m->act_count = ACT_INIT;
956 }
957 }
958
959 /*
960 * vm_page_free_wakeup:
961 *
962 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
963 * routine is called when a page has been added to the cache or free
964 * queues.
965 *
966 * The page queues must be locked.
967 * This routine may not block.
968 */
969 static __inline void
970 vm_page_free_wakeup(void)
971 {
972
973 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
974 /*
975 * if pageout daemon needs pages, then tell it that there are
976 * some free.
977 */
978 if (vm_pageout_pages_needed &&
979 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
980 wakeup(&vm_pageout_pages_needed);
981 vm_pageout_pages_needed = 0;
982 }
983 /*
984 * wakeup processes that are waiting on memory if we hit a
985 * high water mark. And wakeup scheduler process if we have
986 * lots of memory. this process will swapin processes.
987 */
988 if (vm_pages_needed && !vm_page_count_min()) {
989 vm_pages_needed = 0;
990 wakeup(&cnt.v_free_count);
991 }
992 }
993
994 /*
995 * vm_page_free_toq:
996 *
997 * Returns the given page to the PQ_FREE list,
998 * disassociating it with any VM object.
999 *
1000 * Object and page must be locked prior to entry.
1001 * This routine may not block.
1002 */
1003
1004 void
1005 vm_page_free_toq(vm_page_t m)
1006 {
1007 struct vpgqueues *pq;
1008
1009 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1010 cnt.v_tfree++;
1011
1012 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1013 printf(
1014 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1015 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1016 m->hold_count);
1017 if ((m->queue - m->pc) == PQ_FREE)
1018 panic("vm_page_free: freeing free page");
1019 else
1020 panic("vm_page_free: freeing busy page");
1021 }
1022
1023 /*
1024 * unqueue, then remove page. Note that we cannot destroy
1025 * the page here because we do not want to call the pager's
1026 * callback routine until after we've put the page on the
1027 * appropriate free queue.
1028 */
1029 vm_pageq_remove_nowakeup(m);
1030 vm_page_remove(m);
1031
1032 /*
1033 * If fictitious remove object association and
1034 * return, otherwise delay object association removal.
1035 */
1036 if ((m->flags & PG_FICTITIOUS) != 0) {
1037 return;
1038 }
1039
1040 m->valid = 0;
1041 vm_page_undirty(m);
1042
1043 if (m->wire_count != 0) {
1044 if (m->wire_count > 1) {
1045 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1046 m->wire_count, (long)m->pindex);
1047 }
1048 panic("vm_page_free: freeing wired page");
1049 }
1050
1051 /*
1052 * Clear the UNMANAGED flag when freeing an unmanaged page.
1053 */
1054 if (m->flags & PG_UNMANAGED) {
1055 m->flags &= ~PG_UNMANAGED;
1056 }
1057
1058 if (m->hold_count != 0) {
1059 m->flags &= ~PG_ZERO;
1060 m->queue = PQ_HOLD;
1061 } else
1062 m->queue = PQ_FREE + m->pc;
1063 pq = &vm_page_queues[m->queue];
1064 mtx_lock_spin(&vm_page_queue_free_mtx);
1065 pq->lcnt++;
1066 ++(*pq->cnt);
1067
1068 /*
1069 * Put zero'd pages on the end ( where we look for zero'd pages
1070 * first ) and non-zerod pages at the head.
1071 */
1072 if (m->flags & PG_ZERO) {
1073 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1074 ++vm_page_zero_count;
1075 } else {
1076 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1077 }
1078 mtx_unlock_spin(&vm_page_queue_free_mtx);
1079 vm_page_free_wakeup();
1080 }
1081
1082 /*
1083 * vm_page_unmanage:
1084 *
1085 * Prevent PV management from being done on the page. The page is
1086 * removed from the paging queues as if it were wired, and as a
1087 * consequence of no longer being managed the pageout daemon will not
1088 * touch it (since there is no way to locate the pte mappings for the
1089 * page). madvise() calls that mess with the pmap will also no longer
1090 * operate on the page.
1091 *
1092 * Beyond that the page is still reasonably 'normal'. Freeing the page
1093 * will clear the flag.
1094 *
1095 * This routine is used by OBJT_PHYS objects - objects using unswappable
1096 * physical memory as backing store rather then swap-backed memory and
1097 * will eventually be extended to support 4MB unmanaged physical
1098 * mappings.
1099 */
1100 void
1101 vm_page_unmanage(vm_page_t m)
1102 {
1103
1104 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1105 if ((m->flags & PG_UNMANAGED) == 0) {
1106 if (m->wire_count == 0)
1107 vm_pageq_remove(m);
1108 }
1109 vm_page_flag_set(m, PG_UNMANAGED);
1110 }
1111
1112 /*
1113 * vm_page_wire:
1114 *
1115 * Mark this page as wired down by yet
1116 * another map, removing it from paging queues
1117 * as necessary.
1118 *
1119 * The page queues must be locked.
1120 * This routine may not block.
1121 */
1122 void
1123 vm_page_wire(vm_page_t m)
1124 {
1125
1126 /*
1127 * Only bump the wire statistics if the page is not already wired,
1128 * and only unqueue the page if it is on some queue (if it is unmanaged
1129 * it is already off the queues).
1130 */
1131 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1132 if (m->flags & PG_FICTITIOUS)
1133 return;
1134 if (m->wire_count == 0) {
1135 if ((m->flags & PG_UNMANAGED) == 0)
1136 vm_pageq_remove(m);
1137 atomic_add_int(&cnt.v_wire_count, 1);
1138 }
1139 m->wire_count++;
1140 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1141 }
1142
1143 /*
1144 * vm_page_unwire:
1145 *
1146 * Release one wiring of this page, potentially
1147 * enabling it to be paged again.
1148 *
1149 * Many pages placed on the inactive queue should actually go
1150 * into the cache, but it is difficult to figure out which. What
1151 * we do instead, if the inactive target is well met, is to put
1152 * clean pages at the head of the inactive queue instead of the tail.
1153 * This will cause them to be moved to the cache more quickly and
1154 * if not actively re-referenced, freed more quickly. If we just
1155 * stick these pages at the end of the inactive queue, heavy filesystem
1156 * meta-data accesses can cause an unnecessary paging load on memory bound
1157 * processes. This optimization causes one-time-use metadata to be
1158 * reused more quickly.
1159 *
1160 * BUT, if we are in a low-memory situation we have no choice but to
1161 * put clean pages on the cache queue.
1162 *
1163 * A number of routines use vm_page_unwire() to guarantee that the page
1164 * will go into either the inactive or active queues, and will NEVER
1165 * be placed in the cache - for example, just after dirtying a page.
1166 * dirty pages in the cache are not allowed.
1167 *
1168 * The page queues must be locked.
1169 * This routine may not block.
1170 */
1171 void
1172 vm_page_unwire(vm_page_t m, int activate)
1173 {
1174
1175 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1176 if (m->flags & PG_FICTITIOUS)
1177 return;
1178 if (m->wire_count > 0) {
1179 m->wire_count--;
1180 if (m->wire_count == 0) {
1181 atomic_subtract_int(&cnt.v_wire_count, 1);
1182 if (m->flags & PG_UNMANAGED) {
1183 ;
1184 } else if (activate)
1185 vm_pageq_enqueue(PQ_ACTIVE, m);
1186 else {
1187 vm_page_flag_clear(m, PG_WINATCFLS);
1188 vm_pageq_enqueue(PQ_INACTIVE, m);
1189 }
1190 }
1191 } else {
1192 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1193 }
1194 }
1195
1196
1197 /*
1198 * Move the specified page to the inactive queue. If the page has
1199 * any associated swap, the swap is deallocated.
1200 *
1201 * Normally athead is 0 resulting in LRU operation. athead is set
1202 * to 1 if we want this page to be 'as if it were placed in the cache',
1203 * except without unmapping it from the process address space.
1204 *
1205 * This routine may not block.
1206 */
1207 static __inline void
1208 _vm_page_deactivate(vm_page_t m, int athead)
1209 {
1210
1211 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1212
1213 /*
1214 * Ignore if already inactive.
1215 */
1216 if (m->queue == PQ_INACTIVE)
1217 return;
1218 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1219 if ((m->queue - m->pc) == PQ_CACHE)
1220 cnt.v_reactivated++;
1221 vm_page_flag_clear(m, PG_WINATCFLS);
1222 vm_pageq_remove(m);
1223 if (athead)
1224 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1225 else
1226 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1227 m->queue = PQ_INACTIVE;
1228 vm_page_queues[PQ_INACTIVE].lcnt++;
1229 cnt.v_inactive_count++;
1230 }
1231 }
1232
1233 void
1234 vm_page_deactivate(vm_page_t m)
1235 {
1236 _vm_page_deactivate(m, 0);
1237 }
1238
1239 /*
1240 * vm_page_try_to_cache:
1241 *
1242 * Returns 0 on failure, 1 on success
1243 */
1244 int
1245 vm_page_try_to_cache(vm_page_t m)
1246 {
1247
1248 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1249 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1250 if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1251 (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1252 return (0);
1253 }
1254 pmap_remove_all(m);
1255 if (m->dirty)
1256 return (0);
1257 vm_page_cache(m);
1258 return (1);
1259 }
1260
1261 /*
1262 * vm_page_try_to_free()
1263 *
1264 * Attempt to free the page. If we cannot free it, we do nothing.
1265 * 1 is returned on success, 0 on failure.
1266 */
1267 int
1268 vm_page_try_to_free(vm_page_t m)
1269 {
1270
1271 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1272 if (m->object != NULL)
1273 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1274 if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1275 (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1276 return (0);
1277 }
1278 pmap_remove_all(m);
1279 if (m->dirty)
1280 return (0);
1281 vm_page_free(m);
1282 return (1);
1283 }
1284
1285 /*
1286 * vm_page_cache
1287 *
1288 * Put the specified page onto the page cache queue (if appropriate).
1289 *
1290 * This routine may not block.
1291 */
1292 void
1293 vm_page_cache(vm_page_t m)
1294 {
1295
1296 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1297 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1298 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1299 m->hold_count || m->wire_count) {
1300 printf("vm_page_cache: attempting to cache busy page\n");
1301 return;
1302 }
1303 if ((m->queue - m->pc) == PQ_CACHE)
1304 return;
1305
1306 /*
1307 * Remove all pmaps and indicate that the page is not
1308 * writeable or mapped.
1309 */
1310 pmap_remove_all(m);
1311 if (m->dirty != 0) {
1312 panic("vm_page_cache: caching a dirty page, pindex: %ld",
1313 (long)m->pindex);
1314 }
1315 vm_pageq_remove_nowakeup(m);
1316 vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1317 vm_page_free_wakeup();
1318 }
1319
1320 /*
1321 * vm_page_dontneed
1322 *
1323 * Cache, deactivate, or do nothing as appropriate. This routine
1324 * is typically used by madvise() MADV_DONTNEED.
1325 *
1326 * Generally speaking we want to move the page into the cache so
1327 * it gets reused quickly. However, this can result in a silly syndrome
1328 * due to the page recycling too quickly. Small objects will not be
1329 * fully cached. On the otherhand, if we move the page to the inactive
1330 * queue we wind up with a problem whereby very large objects
1331 * unnecessarily blow away our inactive and cache queues.
1332 *
1333 * The solution is to move the pages based on a fixed weighting. We
1334 * either leave them alone, deactivate them, or move them to the cache,
1335 * where moving them to the cache has the highest weighting.
1336 * By forcing some pages into other queues we eventually force the
1337 * system to balance the queues, potentially recovering other unrelated
1338 * space from active. The idea is to not force this to happen too
1339 * often.
1340 */
1341 void
1342 vm_page_dontneed(vm_page_t m)
1343 {
1344 static int dnweight;
1345 int dnw;
1346 int head;
1347
1348 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1349 dnw = ++dnweight;
1350
1351 /*
1352 * occassionally leave the page alone
1353 */
1354 if ((dnw & 0x01F0) == 0 ||
1355 m->queue == PQ_INACTIVE ||
1356 m->queue - m->pc == PQ_CACHE
1357 ) {
1358 if (m->act_count >= ACT_INIT)
1359 --m->act_count;
1360 return;
1361 }
1362
1363 if (m->dirty == 0 && pmap_is_modified(m))
1364 vm_page_dirty(m);
1365
1366 if (m->dirty || (dnw & 0x0070) == 0) {
1367 /*
1368 * Deactivate the page 3 times out of 32.
1369 */
1370 head = 0;
1371 } else {
1372 /*
1373 * Cache the page 28 times out of every 32. Note that
1374 * the page is deactivated instead of cached, but placed
1375 * at the head of the queue instead of the tail.
1376 */
1377 head = 1;
1378 }
1379 _vm_page_deactivate(m, head);
1380 }
1381
1382 /*
1383 * Grab a page, waiting until we are waken up due to the page
1384 * changing state. We keep on waiting, if the page continues
1385 * to be in the object. If the page doesn't exist, first allocate it
1386 * and then conditionally zero it.
1387 *
1388 * This routine may block.
1389 */
1390 vm_page_t
1391 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1392 {
1393 vm_page_t m;
1394
1395 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1396 retrylookup:
1397 if ((m = vm_page_lookup(object, pindex)) != NULL) {
1398 vm_page_lock_queues();
1399 if (m->busy || (m->flags & PG_BUSY)) {
1400 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1401 VM_OBJECT_UNLOCK(object);
1402 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1403 VM_OBJECT_LOCK(object);
1404 if ((allocflags & VM_ALLOC_RETRY) == 0)
1405 return (NULL);
1406 goto retrylookup;
1407 } else {
1408 if (allocflags & VM_ALLOC_WIRED)
1409 vm_page_wire(m);
1410 if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1411 vm_page_busy(m);
1412 vm_page_unlock_queues();
1413 return (m);
1414 }
1415 }
1416 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1417 if (m == NULL) {
1418 VM_OBJECT_UNLOCK(object);
1419 VM_WAIT;
1420 VM_OBJECT_LOCK(object);
1421 if ((allocflags & VM_ALLOC_RETRY) == 0)
1422 return (NULL);
1423 goto retrylookup;
1424 }
1425 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1426 pmap_zero_page(m);
1427 return (m);
1428 }
1429
1430 /*
1431 * Mapping function for valid bits or for dirty bits in
1432 * a page. May not block.
1433 *
1434 * Inputs are required to range within a page.
1435 */
1436 __inline int
1437 vm_page_bits(int base, int size)
1438 {
1439 int first_bit;
1440 int last_bit;
1441
1442 KASSERT(
1443 base + size <= PAGE_SIZE,
1444 ("vm_page_bits: illegal base/size %d/%d", base, size)
1445 );
1446
1447 if (size == 0) /* handle degenerate case */
1448 return (0);
1449
1450 first_bit = base >> DEV_BSHIFT;
1451 last_bit = (base + size - 1) >> DEV_BSHIFT;
1452
1453 return ((2 << last_bit) - (1 << first_bit));
1454 }
1455
1456 /*
1457 * vm_page_set_validclean:
1458 *
1459 * Sets portions of a page valid and clean. The arguments are expected
1460 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1461 * of any partial chunks touched by the range. The invalid portion of
1462 * such chunks will be zero'd.
1463 *
1464 * This routine may not block.
1465 *
1466 * (base + size) must be less then or equal to PAGE_SIZE.
1467 */
1468 void
1469 vm_page_set_validclean(vm_page_t m, int base, int size)
1470 {
1471 int pagebits;
1472 int frag;
1473 int endoff;
1474
1475 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1476 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1477 if (size == 0) /* handle degenerate case */
1478 return;
1479
1480 /*
1481 * If the base is not DEV_BSIZE aligned and the valid
1482 * bit is clear, we have to zero out a portion of the
1483 * first block.
1484 */
1485 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1486 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1487 pmap_zero_page_area(m, frag, base - frag);
1488
1489 /*
1490 * If the ending offset is not DEV_BSIZE aligned and the
1491 * valid bit is clear, we have to zero out a portion of
1492 * the last block.
1493 */
1494 endoff = base + size;
1495 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1496 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1497 pmap_zero_page_area(m, endoff,
1498 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1499
1500 /*
1501 * Set valid, clear dirty bits. If validating the entire
1502 * page we can safely clear the pmap modify bit. We also
1503 * use this opportunity to clear the PG_NOSYNC flag. If a process
1504 * takes a write fault on a MAP_NOSYNC memory area the flag will
1505 * be set again.
1506 *
1507 * We set valid bits inclusive of any overlap, but we can only
1508 * clear dirty bits for DEV_BSIZE chunks that are fully within
1509 * the range.
1510 */
1511 pagebits = vm_page_bits(base, size);
1512 m->valid |= pagebits;
1513 #if 0 /* NOT YET */
1514 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1515 frag = DEV_BSIZE - frag;
1516 base += frag;
1517 size -= frag;
1518 if (size < 0)
1519 size = 0;
1520 }
1521 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1522 #endif
1523 m->dirty &= ~pagebits;
1524 if (base == 0 && size == PAGE_SIZE) {
1525 pmap_clear_modify(m);
1526 vm_page_flag_clear(m, PG_NOSYNC);
1527 }
1528 }
1529
1530 void
1531 vm_page_clear_dirty(vm_page_t m, int base, int size)
1532 {
1533
1534 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1535 m->dirty &= ~vm_page_bits(base, size);
1536 }
1537
1538 /*
1539 * vm_page_set_invalid:
1540 *
1541 * Invalidates DEV_BSIZE'd chunks within a page. Both the
1542 * valid and dirty bits for the effected areas are cleared.
1543 *
1544 * May not block.
1545 */
1546 void
1547 vm_page_set_invalid(vm_page_t m, int base, int size)
1548 {
1549 int bits;
1550
1551 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1552 bits = vm_page_bits(base, size);
1553 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1554 m->valid &= ~bits;
1555 m->dirty &= ~bits;
1556 m->object->generation++;
1557 }
1558
1559 /*
1560 * vm_page_zero_invalid()
1561 *
1562 * The kernel assumes that the invalid portions of a page contain
1563 * garbage, but such pages can be mapped into memory by user code.
1564 * When this occurs, we must zero out the non-valid portions of the
1565 * page so user code sees what it expects.
1566 *
1567 * Pages are most often semi-valid when the end of a file is mapped
1568 * into memory and the file's size is not page aligned.
1569 */
1570 void
1571 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1572 {
1573 int b;
1574 int i;
1575
1576 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1577 /*
1578 * Scan the valid bits looking for invalid sections that
1579 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
1580 * valid bit may be set ) have already been zerod by
1581 * vm_page_set_validclean().
1582 */
1583 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1584 if (i == (PAGE_SIZE / DEV_BSIZE) ||
1585 (m->valid & (1 << i))
1586 ) {
1587 if (i > b) {
1588 pmap_zero_page_area(m,
1589 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1590 }
1591 b = i + 1;
1592 }
1593 }
1594
1595 /*
1596 * setvalid is TRUE when we can safely set the zero'd areas
1597 * as being valid. We can do this if there are no cache consistancy
1598 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
1599 */
1600 if (setvalid)
1601 m->valid = VM_PAGE_BITS_ALL;
1602 }
1603
1604 /*
1605 * vm_page_is_valid:
1606 *
1607 * Is (partial) page valid? Note that the case where size == 0
1608 * will return FALSE in the degenerate case where the page is
1609 * entirely invalid, and TRUE otherwise.
1610 *
1611 * May not block.
1612 */
1613 int
1614 vm_page_is_valid(vm_page_t m, int base, int size)
1615 {
1616 int bits = vm_page_bits(base, size);
1617
1618 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1619 if (m->valid && ((m->valid & bits) == bits))
1620 return 1;
1621 else
1622 return 0;
1623 }
1624
1625 /*
1626 * update dirty bits from pmap/mmu. May not block.
1627 */
1628 void
1629 vm_page_test_dirty(vm_page_t m)
1630 {
1631 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1632 vm_page_dirty(m);
1633 }
1634 }
1635
1636 int so_zerocp_fullpage = 0;
1637
1638 void
1639 vm_page_cowfault(vm_page_t m)
1640 {
1641 vm_page_t mnew;
1642 vm_object_t object;
1643 vm_pindex_t pindex;
1644
1645 object = m->object;
1646 pindex = m->pindex;
1647
1648 retry_alloc:
1649 vm_page_remove(m);
1650 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1651 if (mnew == NULL) {
1652 vm_page_insert(m, object, pindex);
1653 vm_page_unlock_queues();
1654 VM_OBJECT_UNLOCK(object);
1655 VM_WAIT;
1656 VM_OBJECT_LOCK(object);
1657 vm_page_lock_queues();
1658 goto retry_alloc;
1659 }
1660
1661 if (m->cow == 0) {
1662 /*
1663 * check to see if we raced with an xmit complete when
1664 * waiting to allocate a page. If so, put things back
1665 * the way they were
1666 */
1667 vm_page_free(mnew);
1668 vm_page_insert(m, object, pindex);
1669 } else { /* clear COW & copy page */
1670 if (!so_zerocp_fullpage)
1671 pmap_copy_page(m, mnew);
1672 mnew->valid = VM_PAGE_BITS_ALL;
1673 vm_page_dirty(mnew);
1674 vm_page_flag_clear(mnew, PG_BUSY);
1675 }
1676 }
1677
1678 void
1679 vm_page_cowclear(vm_page_t m)
1680 {
1681
1682 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1683 if (m->cow) {
1684 m->cow--;
1685 /*
1686 * let vm_fault add back write permission lazily
1687 */
1688 }
1689 /*
1690 * sf_buf_free() will free the page, so we needn't do it here
1691 */
1692 }
1693
1694 void
1695 vm_page_cowsetup(vm_page_t m)
1696 {
1697
1698 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1699 m->cow++;
1700 pmap_page_protect(m, VM_PROT_READ);
1701 }
1702
1703 #include "opt_ddb.h"
1704 #ifdef DDB
1705 #include <sys/kernel.h>
1706
1707 #include <ddb/ddb.h>
1708
1709 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1710 {
1711 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1712 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1713 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1714 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1715 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1716 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1717 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1718 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1719 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1720 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1721 }
1722
1723 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1724 {
1725 int i;
1726 db_printf("PQ_FREE:");
1727 for (i = 0; i < PQ_L2_SIZE; i++) {
1728 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1729 }
1730 db_printf("\n");
1731
1732 db_printf("PQ_CACHE:");
1733 for (i = 0; i < PQ_L2_SIZE; i++) {
1734 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1735 }
1736 db_printf("\n");
1737
1738 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1739 vm_page_queues[PQ_ACTIVE].lcnt,
1740 vm_page_queues[PQ_INACTIVE].lcnt);
1741 }
1742 #endif /* DDB */
Cache object: acb50c7657cbcab15954e08163100dae
|