The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
   33  */
   34 
   35 /*-
   36  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   37  * All rights reserved.
   38  *
   39  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   40  *
   41  * Permission to use, copy, modify and distribute this software and
   42  * its documentation is hereby granted, provided that both the copyright
   43  * notice and this permission notice appear in all copies of the
   44  * software, derivative works or modified versions, and any portions
   45  * thereof, and that both notices appear in supporting documentation.
   46  *
   47  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   48  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   49  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   50  *
   51  * Carnegie Mellon requests users of this software to return to
   52  *
   53  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   54  *  School of Computer Science
   55  *  Carnegie Mellon University
   56  *  Pittsburgh PA 15213-3890
   57  *
   58  * any improvements or extensions that they make and grant Carnegie the
   59  * rights to redistribute these changes.
   60  */
   61 
   62 /*
   63  *                      GENERAL RULES ON VM_PAGE MANIPULATION
   64  *
   65  *      - a pageq mutex is required when adding or removing a page from a
   66  *        page queue (vm_page_queue[]), regardless of other mutexes or the
   67  *        busy state of a page.
   68  *
   69  *      - a hash chain mutex is required when associating or disassociating
   70  *        a page from the VM PAGE CACHE hash table (vm_page_buckets),
   71  *        regardless of other mutexes or the busy state of a page.
   72  *
   73  *      - either a hash chain mutex OR a busied page is required in order
   74  *        to modify the page flags.  A hash chain mutex must be obtained in
   75  *        order to busy a page.  A page's flags cannot be modified by a
   76  *        hash chain mutex if the page is marked busy.
   77  *
   78  *      - The object memq mutex is held when inserting or removing
   79  *        pages from an object (vm_page_insert() or vm_page_remove()).  This
   80  *        is different from the object's main mutex.
   81  *
   82  *      Generally speaking, you have to be aware of side effects when running
   83  *      vm_page ops.  A vm_page_lookup() will return with the hash chain
   84  *      locked, whether it was able to lookup the page or not.  vm_page_free(),
   85  *      vm_page_cache(), vm_page_activate(), and a number of other routines
   86  *      will release the hash chain mutex for you.  Intermediate manipulation
   87  *      routines such as vm_page_flag_set() expect the hash chain to be held
   88  *      on entry and the hash chain will remain held on return.
   89  *
   90  *      pageq scanning can only occur with the pageq in question locked.
   91  *      We have a known bottleneck with the active queue, but the cache
   92  *      and free queues are actually arrays already. 
   93  */
   94 
   95 /*
   96  *      Resident memory management module.
   97  */
   98 
   99 #include <sys/cdefs.h>
  100 __FBSDID("$FreeBSD: releng/6.0/sys/vm/vm_page.c 143646 2005-03-15 14:14:09Z jeff $");
  101 
  102 #include <sys/param.h>
  103 #include <sys/systm.h>
  104 #include <sys/lock.h>
  105 #include <sys/malloc.h>
  106 #include <sys/mutex.h>
  107 #include <sys/proc.h>
  108 #include <sys/vmmeter.h>
  109 #include <sys/vnode.h>
  110 
  111 #include <vm/vm.h>
  112 #include <vm/vm_param.h>
  113 #include <vm/vm_kern.h>
  114 #include <vm/vm_object.h>
  115 #include <vm/vm_page.h>
  116 #include <vm/vm_pageout.h>
  117 #include <vm/vm_pager.h>
  118 #include <vm/vm_extern.h>
  119 #include <vm/uma.h>
  120 #include <vm/uma_int.h>
  121 
  122 /*
  123  *      Associated with page of user-allocatable memory is a
  124  *      page structure.
  125  */
  126 
  127 struct mtx vm_page_queue_mtx;
  128 struct mtx vm_page_queue_free_mtx;
  129 
  130 vm_page_t vm_page_array = 0;
  131 int vm_page_array_size = 0;
  132 long first_page = 0;
  133 int vm_page_zero_count = 0;
  134 
  135 /*
  136  *      vm_set_page_size:
  137  *
  138  *      Sets the page size, perhaps based upon the memory
  139  *      size.  Must be called before any use of page-size
  140  *      dependent functions.
  141  */
  142 void
  143 vm_set_page_size(void)
  144 {
  145         if (cnt.v_page_size == 0)
  146                 cnt.v_page_size = PAGE_SIZE;
  147         if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
  148                 panic("vm_set_page_size: page size not a power of two");
  149 }
  150 
  151 /*
  152  *      vm_page_startup:
  153  *
  154  *      Initializes the resident memory module.
  155  *
  156  *      Allocates memory for the page cells, and
  157  *      for the object/offset-to-page hash table headers.
  158  *      Each page cell is initialized and placed on the free list.
  159  */
  160 vm_offset_t
  161 vm_page_startup(vm_offset_t vaddr)
  162 {
  163         vm_offset_t mapped;
  164         vm_size_t npages;
  165         vm_paddr_t page_range;
  166         vm_paddr_t new_end;
  167         int i;
  168         vm_paddr_t pa;
  169         int nblocks;
  170         vm_paddr_t last_pa;
  171 
  172         /* the biggest memory array is the second group of pages */
  173         vm_paddr_t end;
  174         vm_paddr_t biggestsize;
  175         int biggestone;
  176 
  177         vm_paddr_t total;
  178         vm_size_t bootpages;
  179 
  180         total = 0;
  181         biggestsize = 0;
  182         biggestone = 0;
  183         nblocks = 0;
  184         vaddr = round_page(vaddr);
  185 
  186         for (i = 0; phys_avail[i + 1]; i += 2) {
  187                 phys_avail[i] = round_page(phys_avail[i]);
  188                 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
  189         }
  190 
  191         for (i = 0; phys_avail[i + 1]; i += 2) {
  192                 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
  193 
  194                 if (size > biggestsize) {
  195                         biggestone = i;
  196                         biggestsize = size;
  197                 }
  198                 ++nblocks;
  199                 total += size;
  200         }
  201 
  202         end = phys_avail[biggestone+1];
  203 
  204         /*
  205          * Initialize the locks.
  206          */
  207         mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
  208             MTX_RECURSE);
  209         mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
  210             MTX_SPIN);
  211 
  212         /*
  213          * Initialize the queue headers for the free queue, the active queue
  214          * and the inactive queue.
  215          */
  216         vm_pageq_init();
  217 
  218         /*
  219          * Allocate memory for use when boot strapping the kernel memory
  220          * allocator.
  221          */
  222         bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
  223         new_end = end - bootpages;
  224         new_end = trunc_page(new_end);
  225         mapped = pmap_map(&vaddr, new_end, end,
  226             VM_PROT_READ | VM_PROT_WRITE);
  227         bzero((caddr_t) mapped, end - new_end);
  228         uma_startup((caddr_t)mapped);
  229 
  230         /*
  231          * Compute the number of pages of memory that will be available for
  232          * use (taking into account the overhead of a page structure per
  233          * page).
  234          */
  235         first_page = phys_avail[0] / PAGE_SIZE;
  236         page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
  237         npages = (total - (page_range * sizeof(struct vm_page)) -
  238             (end - new_end)) / PAGE_SIZE;
  239         end = new_end;
  240 
  241         /*
  242          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
  243          */
  244         vaddr += PAGE_SIZE;
  245 
  246         /*
  247          * Initialize the mem entry structures now, and put them in the free
  248          * queue.
  249          */
  250         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
  251         mapped = pmap_map(&vaddr, new_end, end,
  252             VM_PROT_READ | VM_PROT_WRITE);
  253         vm_page_array = (vm_page_t) mapped;
  254         phys_avail[biggestone + 1] = new_end;
  255 
  256         /*
  257          * Clear all of the page structures
  258          */
  259         bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
  260         vm_page_array_size = page_range;
  261 
  262         /*
  263          * Construct the free queue(s) in descending order (by physical
  264          * address) so that the first 16MB of physical memory is allocated
  265          * last rather than first.  On large-memory machines, this avoids
  266          * the exhaustion of low physical memory before isa_dma_init has run.
  267          */
  268         cnt.v_page_count = 0;
  269         cnt.v_free_count = 0;
  270         for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
  271                 pa = phys_avail[i];
  272                 last_pa = phys_avail[i + 1];
  273                 while (pa < last_pa && npages-- > 0) {
  274                         vm_pageq_add_new_page(pa);
  275                         pa += PAGE_SIZE;
  276                 }
  277         }
  278         return (vaddr);
  279 }
  280 
  281 void
  282 vm_page_flag_set(vm_page_t m, unsigned short bits)
  283 {
  284 
  285         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  286         m->flags |= bits;
  287 } 
  288 
  289 void
  290 vm_page_flag_clear(vm_page_t m, unsigned short bits)
  291 {
  292 
  293         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  294         m->flags &= ~bits;
  295 }
  296 
  297 void
  298 vm_page_busy(vm_page_t m)
  299 {
  300 
  301         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  302         KASSERT((m->flags & PG_BUSY) == 0,
  303             ("vm_page_busy: page already busy!!!"));
  304         vm_page_flag_set(m, PG_BUSY);
  305 }
  306 
  307 /*
  308  *      vm_page_flash:
  309  *
  310  *      wakeup anyone waiting for the page.
  311  */
  312 void
  313 vm_page_flash(vm_page_t m)
  314 {
  315 
  316         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  317         if (m->flags & PG_WANTED) {
  318                 vm_page_flag_clear(m, PG_WANTED);
  319                 wakeup(m);
  320         }
  321 }
  322 
  323 /*
  324  *      vm_page_wakeup:
  325  *
  326  *      clear the PG_BUSY flag and wakeup anyone waiting for the
  327  *      page.
  328  *
  329  */
  330 void
  331 vm_page_wakeup(vm_page_t m)
  332 {
  333 
  334         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  335         KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
  336         vm_page_flag_clear(m, PG_BUSY);
  337         vm_page_flash(m);
  338 }
  339 
  340 void
  341 vm_page_io_start(vm_page_t m)
  342 {
  343 
  344         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  345         m->busy++;
  346 }
  347 
  348 void
  349 vm_page_io_finish(vm_page_t m)
  350 {
  351 
  352         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  353         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  354         m->busy--;
  355         if (m->busy == 0)
  356                 vm_page_flash(m);
  357 }
  358 
  359 /*
  360  * Keep page from being freed by the page daemon
  361  * much of the same effect as wiring, except much lower
  362  * overhead and should be used only for *very* temporary
  363  * holding ("wiring").
  364  */
  365 void
  366 vm_page_hold(vm_page_t mem)
  367 {
  368 
  369         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  370         mem->hold_count++;
  371 }
  372 
  373 void
  374 vm_page_unhold(vm_page_t mem)
  375 {
  376 
  377         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  378         --mem->hold_count;
  379         KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
  380         if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
  381                 vm_page_free_toq(mem);
  382 }
  383 
  384 /*
  385  *      vm_page_free:
  386  *
  387  *      Free a page
  388  *
  389  *      The clearing of PG_ZERO is a temporary safety until the code can be
  390  *      reviewed to determine that PG_ZERO is being properly cleared on
  391  *      write faults or maps.  PG_ZERO was previously cleared in
  392  *      vm_page_alloc().
  393  */
  394 void
  395 vm_page_free(vm_page_t m)
  396 {
  397         vm_page_flag_clear(m, PG_ZERO);
  398         vm_page_free_toq(m);
  399         vm_page_zero_idle_wakeup();
  400 }
  401 
  402 /*
  403  *      vm_page_free_zero:
  404  *
  405  *      Free a page to the zerod-pages queue
  406  */
  407 void
  408 vm_page_free_zero(vm_page_t m)
  409 {
  410         vm_page_flag_set(m, PG_ZERO);
  411         vm_page_free_toq(m);
  412 }
  413 
  414 /*
  415  *      vm_page_sleep_if_busy:
  416  *
  417  *      Sleep and release the page queues lock if PG_BUSY is set or,
  418  *      if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
  419  *      thread slept and the page queues lock was released.
  420  *      Otherwise, retains the page queues lock and returns FALSE.
  421  */
  422 int
  423 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
  424 {
  425         vm_object_t object;
  426 
  427         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  428         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  429         if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
  430                 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
  431                 /*
  432                  * It's possible that while we sleep, the page will get
  433                  * unbusied and freed.  If we are holding the object
  434                  * lock, we will assume we hold a reference to the object
  435                  * such that even if m->object changes, we can re-lock
  436                  * it.
  437                  */
  438                 object = m->object;
  439                 VM_OBJECT_UNLOCK(object);
  440                 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
  441                 VM_OBJECT_LOCK(object);
  442                 return (TRUE);
  443         }
  444         return (FALSE);
  445 }
  446 
  447 /*
  448  *      vm_page_dirty:
  449  *
  450  *      make page all dirty
  451  */
  452 void
  453 vm_page_dirty(vm_page_t m)
  454 {
  455         KASSERT(m->queue - m->pc != PQ_CACHE,
  456             ("vm_page_dirty: page in cache!"));
  457         KASSERT(m->queue - m->pc != PQ_FREE,
  458             ("vm_page_dirty: page is free!"));
  459         m->dirty = VM_PAGE_BITS_ALL;
  460 }
  461 
  462 /*
  463  *      vm_page_splay:
  464  *
  465  *      Implements Sleator and Tarjan's top-down splay algorithm.  Returns
  466  *      the vm_page containing the given pindex.  If, however, that
  467  *      pindex is not found in the vm_object, returns a vm_page that is
  468  *      adjacent to the pindex, coming before or after it.
  469  */
  470 vm_page_t
  471 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
  472 {
  473         struct vm_page dummy;
  474         vm_page_t lefttreemax, righttreemin, y;
  475 
  476         if (root == NULL)
  477                 return (root);
  478         lefttreemax = righttreemin = &dummy;
  479         for (;; root = y) {
  480                 if (pindex < root->pindex) {
  481                         if ((y = root->left) == NULL)
  482                                 break;
  483                         if (pindex < y->pindex) {
  484                                 /* Rotate right. */
  485                                 root->left = y->right;
  486                                 y->right = root;
  487                                 root = y;
  488                                 if ((y = root->left) == NULL)
  489                                         break;
  490                         }
  491                         /* Link into the new root's right tree. */
  492                         righttreemin->left = root;
  493                         righttreemin = root;
  494                 } else if (pindex > root->pindex) {
  495                         if ((y = root->right) == NULL)
  496                                 break;
  497                         if (pindex > y->pindex) {
  498                                 /* Rotate left. */
  499                                 root->right = y->left;
  500                                 y->left = root;
  501                                 root = y;
  502                                 if ((y = root->right) == NULL)
  503                                         break;
  504                         }
  505                         /* Link into the new root's left tree. */
  506                         lefttreemax->right = root;
  507                         lefttreemax = root;
  508                 } else
  509                         break;
  510         }
  511         /* Assemble the new root. */
  512         lefttreemax->right = root->left;
  513         righttreemin->left = root->right;
  514         root->left = dummy.right;
  515         root->right = dummy.left;
  516         return (root);
  517 }
  518 
  519 /*
  520  *      vm_page_insert:         [ internal use only ]
  521  *
  522  *      Inserts the given mem entry into the object and object list.
  523  *
  524  *      The pagetables are not updated but will presumably fault the page
  525  *      in if necessary, or if a kernel page the caller will at some point
  526  *      enter the page into the kernel's pmap.  We are not allowed to block
  527  *      here so we *can't* do this anyway.
  528  *
  529  *      The object and page must be locked.
  530  *      This routine may not block.
  531  */
  532 void
  533 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
  534 {
  535         vm_page_t root;
  536 
  537         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  538         if (m->object != NULL)
  539                 panic("vm_page_insert: page already inserted");
  540 
  541         /*
  542          * Record the object/offset pair in this page
  543          */
  544         m->object = object;
  545         m->pindex = pindex;
  546 
  547         /*
  548          * Now link into the object's ordered list of backed pages.
  549          */
  550         root = object->root;
  551         if (root == NULL) {
  552                 m->left = NULL;
  553                 m->right = NULL;
  554                 TAILQ_INSERT_TAIL(&object->memq, m, listq);
  555         } else {
  556                 root = vm_page_splay(pindex, root);
  557                 if (pindex < root->pindex) {
  558                         m->left = root->left;
  559                         m->right = root;
  560                         root->left = NULL;
  561                         TAILQ_INSERT_BEFORE(root, m, listq);
  562                 } else if (pindex == root->pindex)
  563                         panic("vm_page_insert: offset already allocated");
  564                 else {
  565                         m->right = root->right;
  566                         m->left = root;
  567                         root->right = NULL;
  568                         TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
  569                 }
  570         }
  571         object->root = m;
  572         object->generation++;
  573 
  574         /*
  575          * show that the object has one more resident page.
  576          */
  577         object->resident_page_count++;
  578         /*
  579          * Hold the vnode until the last page is released.
  580          */
  581         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
  582                 vhold((struct vnode *)object->handle);
  583 
  584         /*
  585          * Since we are inserting a new and possibly dirty page,
  586          * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
  587          */
  588         if (m->flags & PG_WRITEABLE)
  589                 vm_object_set_writeable_dirty(object);
  590 }
  591 
  592 /*
  593  *      vm_page_remove:
  594  *                              NOTE: used by device pager as well -wfj
  595  *
  596  *      Removes the given mem entry from the object/offset-page
  597  *      table and the object page list, but do not invalidate/terminate
  598  *      the backing store.
  599  *
  600  *      The object and page must be locked.
  601  *      The underlying pmap entry (if any) is NOT removed here.
  602  *      This routine may not block.
  603  */
  604 void
  605 vm_page_remove(vm_page_t m)
  606 {
  607         vm_object_t object;
  608         vm_page_t root;
  609 
  610         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  611         if ((object = m->object) == NULL)
  612                 return;
  613         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  614         if (m->flags & PG_BUSY) {
  615                 vm_page_flag_clear(m, PG_BUSY);
  616                 vm_page_flash(m);
  617         }
  618 
  619         /*
  620          * Now remove from the object's list of backed pages.
  621          */
  622         if (m != object->root)
  623                 vm_page_splay(m->pindex, object->root);
  624         if (m->left == NULL)
  625                 root = m->right;
  626         else {
  627                 root = vm_page_splay(m->pindex, m->left);
  628                 root->right = m->right;
  629         }
  630         object->root = root;
  631         TAILQ_REMOVE(&object->memq, m, listq);
  632 
  633         /*
  634          * And show that the object has one fewer resident page.
  635          */
  636         object->resident_page_count--;
  637         object->generation++;
  638         /*
  639          * The vnode may now be recycled.
  640          */
  641         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
  642                 vdrop((struct vnode *)object->handle);
  643 
  644         m->object = NULL;
  645 }
  646 
  647 /*
  648  *      vm_page_lookup:
  649  *
  650  *      Returns the page associated with the object/offset
  651  *      pair specified; if none is found, NULL is returned.
  652  *
  653  *      The object must be locked.
  654  *      This routine may not block.
  655  *      This is a critical path routine
  656  */
  657 vm_page_t
  658 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
  659 {
  660         vm_page_t m;
  661 
  662         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  663         if ((m = object->root) != NULL && m->pindex != pindex) {
  664                 m = vm_page_splay(pindex, m);
  665                 if ((object->root = m)->pindex != pindex)
  666                         m = NULL;
  667         }
  668         return (m);
  669 }
  670 
  671 /*
  672  *      vm_page_rename:
  673  *
  674  *      Move the given memory entry from its
  675  *      current object to the specified target object/offset.
  676  *
  677  *      The object must be locked.
  678  *      This routine may not block.
  679  *
  680  *      Note: swap associated with the page must be invalidated by the move.  We
  681  *            have to do this for several reasons:  (1) we aren't freeing the
  682  *            page, (2) we are dirtying the page, (3) the VM system is probably
  683  *            moving the page from object A to B, and will then later move
  684  *            the backing store from A to B and we can't have a conflict.
  685  *
  686  *      Note: we *always* dirty the page.  It is necessary both for the
  687  *            fact that we moved it, and because we may be invalidating
  688  *            swap.  If the page is on the cache, we have to deactivate it
  689  *            or vm_page_dirty() will panic.  Dirty pages are not allowed
  690  *            on the cache.
  691  */
  692 void
  693 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
  694 {
  695 
  696         vm_page_remove(m);
  697         vm_page_insert(m, new_object, new_pindex);
  698         if (m->queue - m->pc == PQ_CACHE)
  699                 vm_page_deactivate(m);
  700         vm_page_dirty(m);
  701 }
  702 
  703 /*
  704  *      vm_page_select_cache:
  705  *
  706  *      Move a page of the given color from the cache queue to the free
  707  *      queue.  As pages might be found, but are not applicable, they are
  708  *      deactivated.
  709  *
  710  *      This routine may not block.
  711  */
  712 vm_page_t
  713 vm_page_select_cache(int color)
  714 {
  715         vm_object_t object;
  716         vm_page_t m;
  717         boolean_t was_trylocked;
  718 
  719         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  720         while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
  721                 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
  722                 KASSERT(!pmap_page_is_mapped(m),
  723                     ("Found mapped cache page %p", m));
  724                 KASSERT((m->flags & PG_UNMANAGED) == 0,
  725                     ("Found unmanaged cache page %p", m));
  726                 KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
  727                 if (m->hold_count == 0 && (object = m->object,
  728                     (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
  729                     VM_OBJECT_LOCKED(object))) {
  730                         KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0,
  731                             ("Found busy cache page %p", m));
  732                         vm_page_free(m);
  733                         if (was_trylocked)
  734                                 VM_OBJECT_UNLOCK(object);
  735                         break;
  736                 }
  737                 vm_page_deactivate(m);
  738         }
  739         return (m);
  740 }
  741 
  742 /*
  743  *      vm_page_alloc:
  744  *
  745  *      Allocate and return a memory cell associated
  746  *      with this VM object/offset pair.
  747  *
  748  *      page_req classes:
  749  *      VM_ALLOC_NORMAL         normal process request
  750  *      VM_ALLOC_SYSTEM         system *really* needs a page
  751  *      VM_ALLOC_INTERRUPT      interrupt time request
  752  *      VM_ALLOC_ZERO           zero page
  753  *
  754  *      This routine may not block.
  755  *
  756  *      Additional special handling is required when called from an
  757  *      interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
  758  *      the page cache in this case.
  759  */
  760 vm_page_t
  761 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
  762 {
  763         vm_page_t m = NULL;
  764         int color, flags, page_req;
  765 
  766         page_req = req & VM_ALLOC_CLASS_MASK;
  767         KASSERT(curthread->td_intr_nesting_level == 0 ||
  768             page_req == VM_ALLOC_INTERRUPT,
  769             ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
  770 
  771         if ((req & VM_ALLOC_NOOBJ) == 0) {
  772                 KASSERT(object != NULL,
  773                     ("vm_page_alloc: NULL object."));
  774                 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  775                 color = (pindex + object->pg_color) & PQ_L2_MASK;
  776         } else
  777                 color = pindex & PQ_L2_MASK;
  778 
  779         /*
  780          * The pager is allowed to eat deeper into the free page list.
  781          */
  782         if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
  783                 page_req = VM_ALLOC_SYSTEM;
  784         };
  785 
  786 loop:
  787         mtx_lock_spin(&vm_page_queue_free_mtx);
  788         if (cnt.v_free_count > cnt.v_free_reserved ||
  789             (page_req == VM_ALLOC_SYSTEM && 
  790              cnt.v_cache_count == 0 && 
  791              cnt.v_free_count > cnt.v_interrupt_free_min) ||
  792             (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
  793                 /*
  794                  * Allocate from the free queue if the number of free pages
  795                  * exceeds the minimum for the request class.
  796                  */
  797                 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
  798         } else if (page_req != VM_ALLOC_INTERRUPT) {
  799                 mtx_unlock_spin(&vm_page_queue_free_mtx);
  800                 /*
  801                  * Allocatable from cache (non-interrupt only).  On success,
  802                  * we must free the page and try again, thus ensuring that
  803                  * cnt.v_*_free_min counters are replenished.
  804                  */
  805                 vm_page_lock_queues();
  806                 if ((m = vm_page_select_cache(color)) == NULL) {
  807 #if defined(DIAGNOSTIC)
  808                         if (cnt.v_cache_count > 0)
  809                                 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
  810 #endif
  811                         vm_page_unlock_queues();
  812                         atomic_add_int(&vm_pageout_deficit, 1);
  813                         pagedaemon_wakeup();
  814                         return (NULL);
  815                 }
  816                 vm_page_unlock_queues();
  817                 goto loop;
  818         } else {
  819                 /*
  820                  * Not allocatable from cache from interrupt, give up.
  821                  */
  822                 mtx_unlock_spin(&vm_page_queue_free_mtx);
  823                 atomic_add_int(&vm_pageout_deficit, 1);
  824                 pagedaemon_wakeup();
  825                 return (NULL);
  826         }
  827 
  828         /*
  829          *  At this point we had better have found a good page.
  830          */
  831 
  832         KASSERT(
  833             m != NULL,
  834             ("vm_page_alloc(): missing page on free queue")
  835         );
  836 
  837         /*
  838          * Remove from free queue
  839          */
  840         vm_pageq_remove_nowakeup(m);
  841 
  842         /*
  843          * Initialize structure.  Only the PG_ZERO flag is inherited.
  844          */
  845         flags = PG_BUSY;
  846         if (m->flags & PG_ZERO) {
  847                 vm_page_zero_count--;
  848                 if (req & VM_ALLOC_ZERO)
  849                         flags = PG_ZERO | PG_BUSY;
  850         }
  851         if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
  852                 flags &= ~PG_BUSY;
  853         m->flags = flags;
  854         if (req & VM_ALLOC_WIRED) {
  855                 atomic_add_int(&cnt.v_wire_count, 1);
  856                 m->wire_count = 1;
  857         } else
  858                 m->wire_count = 0;
  859         m->hold_count = 0;
  860         m->act_count = 0;
  861         m->busy = 0;
  862         m->valid = 0;
  863         KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
  864         mtx_unlock_spin(&vm_page_queue_free_mtx);
  865 
  866         if ((req & VM_ALLOC_NOOBJ) == 0)
  867                 vm_page_insert(m, object, pindex);
  868         else
  869                 m->pindex = pindex;
  870 
  871         /*
  872          * Don't wakeup too often - wakeup the pageout daemon when
  873          * we would be nearly out of memory.
  874          */
  875         if (vm_paging_needed())
  876                 pagedaemon_wakeup();
  877 
  878         return (m);
  879 }
  880 
  881 /*
  882  *      vm_wait:        (also see VM_WAIT macro)
  883  *
  884  *      Block until free pages are available for allocation
  885  *      - Called in various places before memory allocations.
  886  */
  887 void
  888 vm_wait(void)
  889 {
  890 
  891         vm_page_lock_queues();
  892         if (curproc == pageproc) {
  893                 vm_pageout_pages_needed = 1;
  894                 msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
  895                     PDROP | PSWP, "VMWait", 0);
  896         } else {
  897                 if (!vm_pages_needed) {
  898                         vm_pages_needed = 1;
  899                         wakeup(&vm_pages_needed);
  900                 }
  901                 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
  902                     "vmwait", 0);
  903         }
  904 }
  905 
  906 /*
  907  *      vm_waitpfault:  (also see VM_WAITPFAULT macro)
  908  *
  909  *      Block until free pages are available for allocation
  910  *      - Called only in vm_fault so that processes page faulting
  911  *        can be easily tracked.
  912  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
  913  *        processes will be able to grab memory first.  Do not change
  914  *        this balance without careful testing first.
  915  */
  916 void
  917 vm_waitpfault(void)
  918 {
  919 
  920         vm_page_lock_queues();
  921         if (!vm_pages_needed) {
  922                 vm_pages_needed = 1;
  923                 wakeup(&vm_pages_needed);
  924         }
  925         msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
  926             "pfault", 0);
  927 }
  928 
  929 /*
  930  *      vm_page_activate:
  931  *
  932  *      Put the specified page on the active list (if appropriate).
  933  *      Ensure that act_count is at least ACT_INIT but do not otherwise
  934  *      mess with it.
  935  *
  936  *      The page queues must be locked.
  937  *      This routine may not block.
  938  */
  939 void
  940 vm_page_activate(vm_page_t m)
  941 {
  942 
  943         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  944         if (m->queue != PQ_ACTIVE) {
  945                 if ((m->queue - m->pc) == PQ_CACHE)
  946                         cnt.v_reactivated++;
  947                 vm_pageq_remove(m);
  948                 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
  949                         if (m->act_count < ACT_INIT)
  950                                 m->act_count = ACT_INIT;
  951                         vm_pageq_enqueue(PQ_ACTIVE, m);
  952                 }
  953         } else {
  954                 if (m->act_count < ACT_INIT)
  955                         m->act_count = ACT_INIT;
  956         }
  957 }
  958 
  959 /*
  960  *      vm_page_free_wakeup:
  961  *
  962  *      Helper routine for vm_page_free_toq() and vm_page_cache().  This
  963  *      routine is called when a page has been added to the cache or free
  964  *      queues.
  965  *
  966  *      The page queues must be locked.
  967  *      This routine may not block.
  968  */
  969 static __inline void
  970 vm_page_free_wakeup(void)
  971 {
  972 
  973         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  974         /*
  975          * if pageout daemon needs pages, then tell it that there are
  976          * some free.
  977          */
  978         if (vm_pageout_pages_needed &&
  979             cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
  980                 wakeup(&vm_pageout_pages_needed);
  981                 vm_pageout_pages_needed = 0;
  982         }
  983         /*
  984          * wakeup processes that are waiting on memory if we hit a
  985          * high water mark. And wakeup scheduler process if we have
  986          * lots of memory. this process will swapin processes.
  987          */
  988         if (vm_pages_needed && !vm_page_count_min()) {
  989                 vm_pages_needed = 0;
  990                 wakeup(&cnt.v_free_count);
  991         }
  992 }
  993 
  994 /*
  995  *      vm_page_free_toq:
  996  *
  997  *      Returns the given page to the PQ_FREE list,
  998  *      disassociating it with any VM object.
  999  *
 1000  *      Object and page must be locked prior to entry.
 1001  *      This routine may not block.
 1002  */
 1003 
 1004 void
 1005 vm_page_free_toq(vm_page_t m)
 1006 {
 1007         struct vpgqueues *pq;
 1008 
 1009         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1010         cnt.v_tfree++;
 1011 
 1012         if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
 1013                 printf(
 1014                 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
 1015                     (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
 1016                     m->hold_count);
 1017                 if ((m->queue - m->pc) == PQ_FREE)
 1018                         panic("vm_page_free: freeing free page");
 1019                 else
 1020                         panic("vm_page_free: freeing busy page");
 1021         }
 1022 
 1023         /*
 1024          * unqueue, then remove page.  Note that we cannot destroy
 1025          * the page here because we do not want to call the pager's
 1026          * callback routine until after we've put the page on the
 1027          * appropriate free queue.
 1028          */
 1029         vm_pageq_remove_nowakeup(m);
 1030         vm_page_remove(m);
 1031 
 1032         /*
 1033          * If fictitious remove object association and
 1034          * return, otherwise delay object association removal.
 1035          */
 1036         if ((m->flags & PG_FICTITIOUS) != 0) {
 1037                 return;
 1038         }
 1039 
 1040         m->valid = 0;
 1041         vm_page_undirty(m);
 1042 
 1043         if (m->wire_count != 0) {
 1044                 if (m->wire_count > 1) {
 1045                         panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
 1046                                 m->wire_count, (long)m->pindex);
 1047                 }
 1048                 panic("vm_page_free: freeing wired page");
 1049         }
 1050 
 1051         /*
 1052          * Clear the UNMANAGED flag when freeing an unmanaged page.
 1053          */
 1054         if (m->flags & PG_UNMANAGED) {
 1055                 m->flags &= ~PG_UNMANAGED;
 1056         }
 1057 
 1058         if (m->hold_count != 0) {
 1059                 m->flags &= ~PG_ZERO;
 1060                 m->queue = PQ_HOLD;
 1061         } else
 1062                 m->queue = PQ_FREE + m->pc;
 1063         pq = &vm_page_queues[m->queue];
 1064         mtx_lock_spin(&vm_page_queue_free_mtx);
 1065         pq->lcnt++;
 1066         ++(*pq->cnt);
 1067 
 1068         /*
 1069          * Put zero'd pages on the end ( where we look for zero'd pages
 1070          * first ) and non-zerod pages at the head.
 1071          */
 1072         if (m->flags & PG_ZERO) {
 1073                 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
 1074                 ++vm_page_zero_count;
 1075         } else {
 1076                 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
 1077         }
 1078         mtx_unlock_spin(&vm_page_queue_free_mtx);
 1079         vm_page_free_wakeup();
 1080 }
 1081 
 1082 /*
 1083  *      vm_page_unmanage:
 1084  *
 1085  *      Prevent PV management from being done on the page.  The page is
 1086  *      removed from the paging queues as if it were wired, and as a 
 1087  *      consequence of no longer being managed the pageout daemon will not
 1088  *      touch it (since there is no way to locate the pte mappings for the
 1089  *      page).  madvise() calls that mess with the pmap will also no longer
 1090  *      operate on the page.
 1091  *
 1092  *      Beyond that the page is still reasonably 'normal'.  Freeing the page
 1093  *      will clear the flag.
 1094  *
 1095  *      This routine is used by OBJT_PHYS objects - objects using unswappable
 1096  *      physical memory as backing store rather then swap-backed memory and
 1097  *      will eventually be extended to support 4MB unmanaged physical 
 1098  *      mappings.
 1099  */
 1100 void
 1101 vm_page_unmanage(vm_page_t m)
 1102 {
 1103 
 1104         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1105         if ((m->flags & PG_UNMANAGED) == 0) {
 1106                 if (m->wire_count == 0)
 1107                         vm_pageq_remove(m);
 1108         }
 1109         vm_page_flag_set(m, PG_UNMANAGED);
 1110 }
 1111 
 1112 /*
 1113  *      vm_page_wire:
 1114  *
 1115  *      Mark this page as wired down by yet
 1116  *      another map, removing it from paging queues
 1117  *      as necessary.
 1118  *
 1119  *      The page queues must be locked.
 1120  *      This routine may not block.
 1121  */
 1122 void
 1123 vm_page_wire(vm_page_t m)
 1124 {
 1125 
 1126         /*
 1127          * Only bump the wire statistics if the page is not already wired,
 1128          * and only unqueue the page if it is on some queue (if it is unmanaged
 1129          * it is already off the queues).
 1130          */
 1131         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1132         if (m->flags & PG_FICTITIOUS)
 1133                 return;
 1134         if (m->wire_count == 0) {
 1135                 if ((m->flags & PG_UNMANAGED) == 0)
 1136                         vm_pageq_remove(m);
 1137                 atomic_add_int(&cnt.v_wire_count, 1);
 1138         }
 1139         m->wire_count++;
 1140         KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
 1141 }
 1142 
 1143 /*
 1144  *      vm_page_unwire:
 1145  *
 1146  *      Release one wiring of this page, potentially
 1147  *      enabling it to be paged again.
 1148  *
 1149  *      Many pages placed on the inactive queue should actually go
 1150  *      into the cache, but it is difficult to figure out which.  What
 1151  *      we do instead, if the inactive target is well met, is to put
 1152  *      clean pages at the head of the inactive queue instead of the tail.
 1153  *      This will cause them to be moved to the cache more quickly and
 1154  *      if not actively re-referenced, freed more quickly.  If we just
 1155  *      stick these pages at the end of the inactive queue, heavy filesystem
 1156  *      meta-data accesses can cause an unnecessary paging load on memory bound 
 1157  *      processes.  This optimization causes one-time-use metadata to be
 1158  *      reused more quickly.
 1159  *
 1160  *      BUT, if we are in a low-memory situation we have no choice but to
 1161  *      put clean pages on the cache queue.
 1162  *
 1163  *      A number of routines use vm_page_unwire() to guarantee that the page
 1164  *      will go into either the inactive or active queues, and will NEVER
 1165  *      be placed in the cache - for example, just after dirtying a page.
 1166  *      dirty pages in the cache are not allowed.
 1167  *
 1168  *      The page queues must be locked.
 1169  *      This routine may not block.
 1170  */
 1171 void
 1172 vm_page_unwire(vm_page_t m, int activate)
 1173 {
 1174 
 1175         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1176         if (m->flags & PG_FICTITIOUS)
 1177                 return;
 1178         if (m->wire_count > 0) {
 1179                 m->wire_count--;
 1180                 if (m->wire_count == 0) {
 1181                         atomic_subtract_int(&cnt.v_wire_count, 1);
 1182                         if (m->flags & PG_UNMANAGED) {
 1183                                 ;
 1184                         } else if (activate)
 1185                                 vm_pageq_enqueue(PQ_ACTIVE, m);
 1186                         else {
 1187                                 vm_page_flag_clear(m, PG_WINATCFLS);
 1188                                 vm_pageq_enqueue(PQ_INACTIVE, m);
 1189                         }
 1190                 }
 1191         } else {
 1192                 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
 1193         }
 1194 }
 1195 
 1196 
 1197 /*
 1198  * Move the specified page to the inactive queue.  If the page has
 1199  * any associated swap, the swap is deallocated.
 1200  *
 1201  * Normally athead is 0 resulting in LRU operation.  athead is set
 1202  * to 1 if we want this page to be 'as if it were placed in the cache',
 1203  * except without unmapping it from the process address space.
 1204  *
 1205  * This routine may not block.
 1206  */
 1207 static __inline void
 1208 _vm_page_deactivate(vm_page_t m, int athead)
 1209 {
 1210 
 1211         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1212 
 1213         /*
 1214          * Ignore if already inactive.
 1215          */
 1216         if (m->queue == PQ_INACTIVE)
 1217                 return;
 1218         if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
 1219                 if ((m->queue - m->pc) == PQ_CACHE)
 1220                         cnt.v_reactivated++;
 1221                 vm_page_flag_clear(m, PG_WINATCFLS);
 1222                 vm_pageq_remove(m);
 1223                 if (athead)
 1224                         TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
 1225                 else
 1226                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
 1227                 m->queue = PQ_INACTIVE;
 1228                 vm_page_queues[PQ_INACTIVE].lcnt++;
 1229                 cnt.v_inactive_count++;
 1230         }
 1231 }
 1232 
 1233 void
 1234 vm_page_deactivate(vm_page_t m)
 1235 {
 1236     _vm_page_deactivate(m, 0);
 1237 }
 1238 
 1239 /*
 1240  * vm_page_try_to_cache:
 1241  *
 1242  * Returns 0 on failure, 1 on success
 1243  */
 1244 int
 1245 vm_page_try_to_cache(vm_page_t m)
 1246 {
 1247 
 1248         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1249         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1250         if (m->dirty || m->hold_count || m->busy || m->wire_count ||
 1251             (m->flags & (PG_BUSY|PG_UNMANAGED))) {
 1252                 return (0);
 1253         }
 1254         pmap_remove_all(m);
 1255         if (m->dirty)
 1256                 return (0);
 1257         vm_page_cache(m);
 1258         return (1);
 1259 }
 1260 
 1261 /*
 1262  * vm_page_try_to_free()
 1263  *
 1264  *      Attempt to free the page.  If we cannot free it, we do nothing.
 1265  *      1 is returned on success, 0 on failure.
 1266  */
 1267 int
 1268 vm_page_try_to_free(vm_page_t m)
 1269 {
 1270 
 1271         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1272         if (m->object != NULL)
 1273                 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1274         if (m->dirty || m->hold_count || m->busy || m->wire_count ||
 1275             (m->flags & (PG_BUSY|PG_UNMANAGED))) {
 1276                 return (0);
 1277         }
 1278         pmap_remove_all(m);
 1279         if (m->dirty)
 1280                 return (0);
 1281         vm_page_free(m);
 1282         return (1);
 1283 }
 1284 
 1285 /*
 1286  * vm_page_cache
 1287  *
 1288  * Put the specified page onto the page cache queue (if appropriate).
 1289  *
 1290  * This routine may not block.
 1291  */
 1292 void
 1293 vm_page_cache(vm_page_t m)
 1294 {
 1295 
 1296         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1297         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1298         if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
 1299             m->hold_count || m->wire_count) {
 1300                 printf("vm_page_cache: attempting to cache busy page\n");
 1301                 return;
 1302         }
 1303         if ((m->queue - m->pc) == PQ_CACHE)
 1304                 return;
 1305 
 1306         /*
 1307          * Remove all pmaps and indicate that the page is not
 1308          * writeable or mapped.
 1309          */
 1310         pmap_remove_all(m);
 1311         if (m->dirty != 0) {
 1312                 panic("vm_page_cache: caching a dirty page, pindex: %ld",
 1313                         (long)m->pindex);
 1314         }
 1315         vm_pageq_remove_nowakeup(m);
 1316         vm_pageq_enqueue(PQ_CACHE + m->pc, m);
 1317         vm_page_free_wakeup();
 1318 }
 1319 
 1320 /*
 1321  * vm_page_dontneed
 1322  *
 1323  *      Cache, deactivate, or do nothing as appropriate.  This routine
 1324  *      is typically used by madvise() MADV_DONTNEED.
 1325  *
 1326  *      Generally speaking we want to move the page into the cache so
 1327  *      it gets reused quickly.  However, this can result in a silly syndrome
 1328  *      due to the page recycling too quickly.  Small objects will not be
 1329  *      fully cached.  On the otherhand, if we move the page to the inactive
 1330  *      queue we wind up with a problem whereby very large objects 
 1331  *      unnecessarily blow away our inactive and cache queues.
 1332  *
 1333  *      The solution is to move the pages based on a fixed weighting.  We
 1334  *      either leave them alone, deactivate them, or move them to the cache,
 1335  *      where moving them to the cache has the highest weighting.
 1336  *      By forcing some pages into other queues we eventually force the
 1337  *      system to balance the queues, potentially recovering other unrelated
 1338  *      space from active.  The idea is to not force this to happen too
 1339  *      often.
 1340  */
 1341 void
 1342 vm_page_dontneed(vm_page_t m)
 1343 {
 1344         static int dnweight;
 1345         int dnw;
 1346         int head;
 1347 
 1348         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1349         dnw = ++dnweight;
 1350 
 1351         /*
 1352          * occassionally leave the page alone
 1353          */
 1354         if ((dnw & 0x01F0) == 0 ||
 1355             m->queue == PQ_INACTIVE || 
 1356             m->queue - m->pc == PQ_CACHE
 1357         ) {
 1358                 if (m->act_count >= ACT_INIT)
 1359                         --m->act_count;
 1360                 return;
 1361         }
 1362 
 1363         if (m->dirty == 0 && pmap_is_modified(m))
 1364                 vm_page_dirty(m);
 1365 
 1366         if (m->dirty || (dnw & 0x0070) == 0) {
 1367                 /*
 1368                  * Deactivate the page 3 times out of 32.
 1369                  */
 1370                 head = 0;
 1371         } else {
 1372                 /*
 1373                  * Cache the page 28 times out of every 32.  Note that
 1374                  * the page is deactivated instead of cached, but placed
 1375                  * at the head of the queue instead of the tail.
 1376                  */
 1377                 head = 1;
 1378         }
 1379         _vm_page_deactivate(m, head);
 1380 }
 1381 
 1382 /*
 1383  * Grab a page, waiting until we are waken up due to the page
 1384  * changing state.  We keep on waiting, if the page continues
 1385  * to be in the object.  If the page doesn't exist, first allocate it
 1386  * and then conditionally zero it.
 1387  *
 1388  * This routine may block.
 1389  */
 1390 vm_page_t
 1391 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
 1392 {
 1393         vm_page_t m;
 1394 
 1395         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1396 retrylookup:
 1397         if ((m = vm_page_lookup(object, pindex)) != NULL) {
 1398                 vm_page_lock_queues();
 1399                 if (m->busy || (m->flags & PG_BUSY)) {
 1400                         vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
 1401                         VM_OBJECT_UNLOCK(object);
 1402                         msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
 1403                         VM_OBJECT_LOCK(object);
 1404                         if ((allocflags & VM_ALLOC_RETRY) == 0)
 1405                                 return (NULL);
 1406                         goto retrylookup;
 1407                 } else {
 1408                         if (allocflags & VM_ALLOC_WIRED)
 1409                                 vm_page_wire(m);
 1410                         if ((allocflags & VM_ALLOC_NOBUSY) == 0)
 1411                                 vm_page_busy(m);
 1412                         vm_page_unlock_queues();
 1413                         return (m);
 1414                 }
 1415         }
 1416         m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
 1417         if (m == NULL) {
 1418                 VM_OBJECT_UNLOCK(object);
 1419                 VM_WAIT;
 1420                 VM_OBJECT_LOCK(object);
 1421                 if ((allocflags & VM_ALLOC_RETRY) == 0)
 1422                         return (NULL);
 1423                 goto retrylookup;
 1424         }
 1425         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
 1426                 pmap_zero_page(m);
 1427         return (m);
 1428 }
 1429 
 1430 /*
 1431  * Mapping function for valid bits or for dirty bits in
 1432  * a page.  May not block.
 1433  *
 1434  * Inputs are required to range within a page.
 1435  */
 1436 __inline int
 1437 vm_page_bits(int base, int size)
 1438 {
 1439         int first_bit;
 1440         int last_bit;
 1441 
 1442         KASSERT(
 1443             base + size <= PAGE_SIZE,
 1444             ("vm_page_bits: illegal base/size %d/%d", base, size)
 1445         );
 1446 
 1447         if (size == 0)          /* handle degenerate case */
 1448                 return (0);
 1449 
 1450         first_bit = base >> DEV_BSHIFT;
 1451         last_bit = (base + size - 1) >> DEV_BSHIFT;
 1452 
 1453         return ((2 << last_bit) - (1 << first_bit));
 1454 }
 1455 
 1456 /*
 1457  *      vm_page_set_validclean:
 1458  *
 1459  *      Sets portions of a page valid and clean.  The arguments are expected
 1460  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
 1461  *      of any partial chunks touched by the range.  The invalid portion of
 1462  *      such chunks will be zero'd.
 1463  *
 1464  *      This routine may not block.
 1465  *
 1466  *      (base + size) must be less then or equal to PAGE_SIZE.
 1467  */
 1468 void
 1469 vm_page_set_validclean(vm_page_t m, int base, int size)
 1470 {
 1471         int pagebits;
 1472         int frag;
 1473         int endoff;
 1474 
 1475         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1476         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1477         if (size == 0)  /* handle degenerate case */
 1478                 return;
 1479 
 1480         /*
 1481          * If the base is not DEV_BSIZE aligned and the valid
 1482          * bit is clear, we have to zero out a portion of the
 1483          * first block.
 1484          */
 1485         if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
 1486             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
 1487                 pmap_zero_page_area(m, frag, base - frag);
 1488 
 1489         /*
 1490          * If the ending offset is not DEV_BSIZE aligned and the 
 1491          * valid bit is clear, we have to zero out a portion of
 1492          * the last block.
 1493          */
 1494         endoff = base + size;
 1495         if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
 1496             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
 1497                 pmap_zero_page_area(m, endoff,
 1498                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
 1499 
 1500         /*
 1501          * Set valid, clear dirty bits.  If validating the entire
 1502          * page we can safely clear the pmap modify bit.  We also
 1503          * use this opportunity to clear the PG_NOSYNC flag.  If a process
 1504          * takes a write fault on a MAP_NOSYNC memory area the flag will
 1505          * be set again.
 1506          *
 1507          * We set valid bits inclusive of any overlap, but we can only
 1508          * clear dirty bits for DEV_BSIZE chunks that are fully within
 1509          * the range.
 1510          */
 1511         pagebits = vm_page_bits(base, size);
 1512         m->valid |= pagebits;
 1513 #if 0   /* NOT YET */
 1514         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
 1515                 frag = DEV_BSIZE - frag;
 1516                 base += frag;
 1517                 size -= frag;
 1518                 if (size < 0)
 1519                         size = 0;
 1520         }
 1521         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
 1522 #endif
 1523         m->dirty &= ~pagebits;
 1524         if (base == 0 && size == PAGE_SIZE) {
 1525                 pmap_clear_modify(m);
 1526                 vm_page_flag_clear(m, PG_NOSYNC);
 1527         }
 1528 }
 1529 
 1530 void
 1531 vm_page_clear_dirty(vm_page_t m, int base, int size)
 1532 {
 1533 
 1534         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1535         m->dirty &= ~vm_page_bits(base, size);
 1536 }
 1537 
 1538 /*
 1539  *      vm_page_set_invalid:
 1540  *
 1541  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
 1542  *      valid and dirty bits for the effected areas are cleared.
 1543  *
 1544  *      May not block.
 1545  */
 1546 void
 1547 vm_page_set_invalid(vm_page_t m, int base, int size)
 1548 {
 1549         int bits;
 1550 
 1551         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1552         bits = vm_page_bits(base, size);
 1553         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1554         m->valid &= ~bits;
 1555         m->dirty &= ~bits;
 1556         m->object->generation++;
 1557 }
 1558 
 1559 /*
 1560  * vm_page_zero_invalid()
 1561  *
 1562  *      The kernel assumes that the invalid portions of a page contain 
 1563  *      garbage, but such pages can be mapped into memory by user code.
 1564  *      When this occurs, we must zero out the non-valid portions of the
 1565  *      page so user code sees what it expects.
 1566  *
 1567  *      Pages are most often semi-valid when the end of a file is mapped 
 1568  *      into memory and the file's size is not page aligned.
 1569  */
 1570 void
 1571 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
 1572 {
 1573         int b;
 1574         int i;
 1575 
 1576         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1577         /*
 1578          * Scan the valid bits looking for invalid sections that
 1579          * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
 1580          * valid bit may be set ) have already been zerod by
 1581          * vm_page_set_validclean().
 1582          */
 1583         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
 1584                 if (i == (PAGE_SIZE / DEV_BSIZE) || 
 1585                     (m->valid & (1 << i))
 1586                 ) {
 1587                         if (i > b) {
 1588                                 pmap_zero_page_area(m, 
 1589                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
 1590                         }
 1591                         b = i + 1;
 1592                 }
 1593         }
 1594 
 1595         /*
 1596          * setvalid is TRUE when we can safely set the zero'd areas
 1597          * as being valid.  We can do this if there are no cache consistancy
 1598          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
 1599          */
 1600         if (setvalid)
 1601                 m->valid = VM_PAGE_BITS_ALL;
 1602 }
 1603 
 1604 /*
 1605  *      vm_page_is_valid:
 1606  *
 1607  *      Is (partial) page valid?  Note that the case where size == 0
 1608  *      will return FALSE in the degenerate case where the page is
 1609  *      entirely invalid, and TRUE otherwise.
 1610  *
 1611  *      May not block.
 1612  */
 1613 int
 1614 vm_page_is_valid(vm_page_t m, int base, int size)
 1615 {
 1616         int bits = vm_page_bits(base, size);
 1617 
 1618         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1619         if (m->valid && ((m->valid & bits) == bits))
 1620                 return 1;
 1621         else
 1622                 return 0;
 1623 }
 1624 
 1625 /*
 1626  * update dirty bits from pmap/mmu.  May not block.
 1627  */
 1628 void
 1629 vm_page_test_dirty(vm_page_t m)
 1630 {
 1631         if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
 1632                 vm_page_dirty(m);
 1633         }
 1634 }
 1635 
 1636 int so_zerocp_fullpage = 0;
 1637 
 1638 void
 1639 vm_page_cowfault(vm_page_t m)
 1640 {
 1641         vm_page_t mnew;
 1642         vm_object_t object;
 1643         vm_pindex_t pindex;
 1644 
 1645         object = m->object;
 1646         pindex = m->pindex;
 1647 
 1648  retry_alloc:
 1649         vm_page_remove(m);
 1650         mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
 1651         if (mnew == NULL) {
 1652                 vm_page_insert(m, object, pindex);
 1653                 vm_page_unlock_queues();
 1654                 VM_OBJECT_UNLOCK(object);
 1655                 VM_WAIT;
 1656                 VM_OBJECT_LOCK(object);
 1657                 vm_page_lock_queues();
 1658                 goto retry_alloc;
 1659         }
 1660 
 1661         if (m->cow == 0) {
 1662                 /* 
 1663                  * check to see if we raced with an xmit complete when 
 1664                  * waiting to allocate a page.  If so, put things back 
 1665                  * the way they were 
 1666                  */
 1667                 vm_page_free(mnew);
 1668                 vm_page_insert(m, object, pindex);
 1669         } else { /* clear COW & copy page */
 1670                 if (!so_zerocp_fullpage)
 1671                         pmap_copy_page(m, mnew);
 1672                 mnew->valid = VM_PAGE_BITS_ALL;
 1673                 vm_page_dirty(mnew);
 1674                 vm_page_flag_clear(mnew, PG_BUSY);
 1675         }
 1676 }
 1677 
 1678 void 
 1679 vm_page_cowclear(vm_page_t m)
 1680 {
 1681 
 1682         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1683         if (m->cow) {
 1684                 m->cow--;
 1685                 /* 
 1686                  * let vm_fault add back write permission  lazily
 1687                  */
 1688         } 
 1689         /*
 1690          *  sf_buf_free() will free the page, so we needn't do it here
 1691          */ 
 1692 }
 1693 
 1694 void
 1695 vm_page_cowsetup(vm_page_t m)
 1696 {
 1697 
 1698         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1699         m->cow++;
 1700         pmap_page_protect(m, VM_PROT_READ);
 1701 }
 1702 
 1703 #include "opt_ddb.h"
 1704 #ifdef DDB
 1705 #include <sys/kernel.h>
 1706 
 1707 #include <ddb/ddb.h>
 1708 
 1709 DB_SHOW_COMMAND(page, vm_page_print_page_info)
 1710 {
 1711         db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
 1712         db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
 1713         db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
 1714         db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
 1715         db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
 1716         db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
 1717         db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
 1718         db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
 1719         db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
 1720         db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
 1721 }
 1722 
 1723 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
 1724 {
 1725         int i;
 1726         db_printf("PQ_FREE:");
 1727         for (i = 0; i < PQ_L2_SIZE; i++) {
 1728                 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
 1729         }
 1730         db_printf("\n");
 1731                 
 1732         db_printf("PQ_CACHE:");
 1733         for (i = 0; i < PQ_L2_SIZE; i++) {
 1734                 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
 1735         }
 1736         db_printf("\n");
 1737 
 1738         db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
 1739                 vm_page_queues[PQ_ACTIVE].lcnt,
 1740                 vm_page_queues[PQ_INACTIVE].lcnt);
 1741 }
 1742 #endif /* DDB */

Cache object: acb50c7657cbcab15954e08163100dae


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.