FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.c
1 /*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
33 */
34
35 /*-
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
54 * School of Computer Science
55 * Carnegie Mellon University
56 * Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62 /*
63 * GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 * - a pageq mutex is required when adding or removing a page from a
66 * page queue (vm_page_queue[]), regardless of other mutexes or the
67 * busy state of a page.
68 *
69 * - a hash chain mutex is required when associating or disassociating
70 * a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 * regardless of other mutexes or the busy state of a page.
72 *
73 * - either a hash chain mutex OR a busied page is required in order
74 * to modify the page flags. A hash chain mutex must be obtained in
75 * order to busy a page. A page's flags cannot be modified by a
76 * hash chain mutex if the page is marked busy.
77 *
78 * - The object memq mutex is held when inserting or removing
79 * pages from an object (vm_page_insert() or vm_page_remove()). This
80 * is different from the object's main mutex.
81 *
82 * Generally speaking, you have to be aware of side effects when running
83 * vm_page ops. A vm_page_lookup() will return with the hash chain
84 * locked, whether it was able to lookup the page or not. vm_page_free(),
85 * vm_page_cache(), vm_page_activate(), and a number of other routines
86 * will release the hash chain mutex for you. Intermediate manipulation
87 * routines such as vm_page_flag_set() expect the hash chain to be held
88 * on entry and the hash chain will remain held on return.
89 *
90 * pageq scanning can only occur with the pageq in question locked.
91 * We have a known bottleneck with the active queue, but the cache
92 * and free queues are actually arrays already.
93 */
94
95 /*
96 * Resident memory management module.
97 */
98
99 #include <sys/cdefs.h>
100 __FBSDID("$FreeBSD$");
101
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/kernel.h>
106 #include <sys/malloc.h>
107 #include <sys/mutex.h>
108 #include <sys/proc.h>
109 #include <sys/sysctl.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123
124 #include <machine/md_var.h>
125
126 /*
127 * Associated with page of user-allocatable memory is a
128 * page structure.
129 */
130
131 struct mtx vm_page_queue_mtx;
132 struct mtx vm_page_queue_free_mtx;
133
134 vm_page_t vm_page_array = 0;
135 int vm_page_array_size = 0;
136 long first_page = 0;
137 int vm_page_zero_count = 0;
138
139 static int boot_pages = UMA_BOOT_PAGES;
140 TUNABLE_INT("vm.boot_pages", &boot_pages);
141 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
142 "number of pages allocated for bootstrapping the VM system");
143
144 /*
145 * vm_set_page_size:
146 *
147 * Sets the page size, perhaps based upon the memory
148 * size. Must be called before any use of page-size
149 * dependent functions.
150 */
151 void
152 vm_set_page_size(void)
153 {
154 if (cnt.v_page_size == 0)
155 cnt.v_page_size = PAGE_SIZE;
156 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
157 panic("vm_set_page_size: page size not a power of two");
158 }
159
160 /*
161 * vm_page_blacklist_lookup:
162 *
163 * See if a physical address in this page has been listed
164 * in the blacklist tunable. Entries in the tunable are
165 * separated by spaces or commas. If an invalid integer is
166 * encountered then the rest of the string is skipped.
167 */
168 static int
169 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
170 {
171 vm_paddr_t bad;
172 char *cp, *pos;
173
174 for (pos = list; *pos != '\0'; pos = cp) {
175 bad = strtoq(pos, &cp, 0);
176 if (*cp != '\0') {
177 if (*cp == ' ' || *cp == ',') {
178 cp++;
179 if (cp == pos)
180 continue;
181 } else
182 break;
183 }
184 if (pa == trunc_page(bad))
185 return (1);
186 }
187 return (0);
188 }
189
190 /*
191 * vm_page_startup:
192 *
193 * Initializes the resident memory module.
194 *
195 * Allocates memory for the page cells, and
196 * for the object/offset-to-page hash table headers.
197 * Each page cell is initialized and placed on the free list.
198 */
199 vm_offset_t
200 vm_page_startup(vm_offset_t vaddr)
201 {
202 vm_offset_t mapped;
203 vm_size_t npages;
204 vm_paddr_t page_range;
205 vm_paddr_t new_end;
206 int i;
207 vm_paddr_t pa;
208 int nblocks;
209 vm_paddr_t last_pa;
210 char *list;
211
212 /* the biggest memory array is the second group of pages */
213 vm_paddr_t end;
214 vm_paddr_t biggestsize;
215 int biggestone;
216
217 vm_paddr_t total;
218
219 total = 0;
220 biggestsize = 0;
221 biggestone = 0;
222 nblocks = 0;
223 vaddr = round_page(vaddr);
224
225 for (i = 0; phys_avail[i + 1]; i += 2) {
226 phys_avail[i] = round_page(phys_avail[i]);
227 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
228 }
229
230 for (i = 0; phys_avail[i + 1]; i += 2) {
231 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
232
233 if (size > biggestsize) {
234 biggestone = i;
235 biggestsize = size;
236 }
237 ++nblocks;
238 total += size;
239 }
240
241 end = phys_avail[biggestone+1];
242
243 /*
244 * Initialize the locks.
245 */
246 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
247 MTX_RECURSE);
248 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
249 MTX_SPIN);
250
251 /*
252 * Initialize the queue headers for the free queue, the active queue
253 * and the inactive queue.
254 */
255 vm_pageq_init();
256
257 /*
258 * Allocate memory for use when boot strapping the kernel memory
259 * allocator.
260 */
261 new_end = end - (boot_pages * UMA_SLAB_SIZE);
262 new_end = trunc_page(new_end);
263 mapped = pmap_map(&vaddr, new_end, end,
264 VM_PROT_READ | VM_PROT_WRITE);
265 bzero((void *)mapped, end - new_end);
266 uma_startup((void *)mapped, boot_pages);
267
268 #if defined(__amd64__) || defined(__i386__)
269 /*
270 * Allocate a bitmap to indicate that a random physical page
271 * needs to be included in a minidump.
272 *
273 * The amd64 port needs this to indicate which direct map pages
274 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
275 *
276 * However, i386 still needs this workspace internally within the
277 * minidump code. In theory, they are not needed on i386, but are
278 * included should the sf_buf code decide to use them.
279 */
280 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
281 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
282 new_end -= vm_page_dump_size;
283 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
284 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
285 bzero((void *)vm_page_dump, vm_page_dump_size);
286 #endif
287 /*
288 * Compute the number of pages of memory that will be available for
289 * use (taking into account the overhead of a page structure per
290 * page).
291 */
292 first_page = phys_avail[0] / PAGE_SIZE;
293 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
294 npages = (total - (page_range * sizeof(struct vm_page)) -
295 (end - new_end)) / PAGE_SIZE;
296 end = new_end;
297
298 /*
299 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
300 */
301 vaddr += PAGE_SIZE;
302
303 /*
304 * Initialize the mem entry structures now, and put them in the free
305 * queue.
306 */
307 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
308 mapped = pmap_map(&vaddr, new_end, end,
309 VM_PROT_READ | VM_PROT_WRITE);
310 vm_page_array = (vm_page_t) mapped;
311 #ifdef __amd64__
312 /*
313 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
314 * so the pages must be tracked for a crashdump to include this data.
315 * This includes the vm_page_array and the early UMA bootstrap pages.
316 */
317 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
318 dump_add_page(pa);
319 #endif
320 phys_avail[biggestone + 1] = new_end;
321
322 /*
323 * Clear all of the page structures
324 */
325 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
326 vm_page_array_size = page_range;
327
328 /*
329 * Construct the free queue(s) in descending order (by physical
330 * address) so that the first 16MB of physical memory is allocated
331 * last rather than first. On large-memory machines, this avoids
332 * the exhaustion of low physical memory before isa_dma_init has run.
333 */
334 cnt.v_page_count = 0;
335 cnt.v_free_count = 0;
336 list = getenv("vm.blacklist");
337 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
338 pa = phys_avail[i];
339 last_pa = phys_avail[i + 1];
340 while (pa < last_pa && npages-- > 0) {
341 if (list != NULL &&
342 vm_page_blacklist_lookup(list, pa))
343 printf("Skipping page with pa 0x%jx\n",
344 (uintmax_t)pa);
345 else
346 vm_pageq_add_new_page(pa);
347 pa += PAGE_SIZE;
348 }
349 }
350 freeenv(list);
351 return (vaddr);
352 }
353
354 void
355 vm_page_flag_set(vm_page_t m, unsigned short bits)
356 {
357
358 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
359 m->flags |= bits;
360 }
361
362 void
363 vm_page_flag_clear(vm_page_t m, unsigned short bits)
364 {
365
366 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
367 m->flags &= ~bits;
368 }
369
370 void
371 vm_page_busy(vm_page_t m)
372 {
373
374 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
375 KASSERT((m->flags & PG_BUSY) == 0,
376 ("vm_page_busy: page already busy!!!"));
377 vm_page_flag_set(m, PG_BUSY);
378 }
379
380 /*
381 * vm_page_flash:
382 *
383 * wakeup anyone waiting for the page.
384 */
385 void
386 vm_page_flash(vm_page_t m)
387 {
388
389 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
390 if (m->flags & PG_WANTED) {
391 vm_page_flag_clear(m, PG_WANTED);
392 wakeup(m);
393 }
394 }
395
396 /*
397 * vm_page_wakeup:
398 *
399 * clear the PG_BUSY flag and wakeup anyone waiting for the
400 * page.
401 *
402 */
403 void
404 vm_page_wakeup(vm_page_t m)
405 {
406
407 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
408 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
409 vm_page_flag_clear(m, PG_BUSY);
410 vm_page_flash(m);
411 }
412
413 void
414 vm_page_io_start(vm_page_t m)
415 {
416
417 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
418 m->busy++;
419 }
420
421 void
422 vm_page_io_finish(vm_page_t m)
423 {
424
425 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
426 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
427 m->busy--;
428 if (m->busy == 0)
429 vm_page_flash(m);
430 }
431
432 /*
433 * Keep page from being freed by the page daemon
434 * much of the same effect as wiring, except much lower
435 * overhead and should be used only for *very* temporary
436 * holding ("wiring").
437 */
438 void
439 vm_page_hold(vm_page_t mem)
440 {
441
442 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
443 mem->hold_count++;
444 }
445
446 void
447 vm_page_unhold(vm_page_t mem)
448 {
449
450 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
451 --mem->hold_count;
452 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
453 if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
454 vm_page_free_toq(mem);
455 }
456
457 /*
458 * vm_page_free:
459 *
460 * Free a page
461 *
462 * The clearing of PG_ZERO is a temporary safety until the code can be
463 * reviewed to determine that PG_ZERO is being properly cleared on
464 * write faults or maps. PG_ZERO was previously cleared in
465 * vm_page_alloc().
466 */
467 void
468 vm_page_free(vm_page_t m)
469 {
470 vm_page_flag_clear(m, PG_ZERO);
471 vm_page_free_toq(m);
472 vm_page_zero_idle_wakeup();
473 }
474
475 /*
476 * vm_page_free_zero:
477 *
478 * Free a page to the zerod-pages queue
479 */
480 void
481 vm_page_free_zero(vm_page_t m)
482 {
483 vm_page_flag_set(m, PG_ZERO);
484 vm_page_free_toq(m);
485 }
486
487 /*
488 * vm_page_sleep_if_busy:
489 *
490 * Sleep and release the page queues lock if PG_BUSY is set or,
491 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the
492 * thread slept and the page queues lock was released.
493 * Otherwise, retains the page queues lock and returns FALSE.
494 */
495 int
496 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
497 {
498 vm_object_t object;
499
500 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
501 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
502 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
503 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
504 /*
505 * It's possible that while we sleep, the page will get
506 * unbusied and freed. If we are holding the object
507 * lock, we will assume we hold a reference to the object
508 * such that even if m->object changes, we can re-lock
509 * it.
510 */
511 object = m->object;
512 VM_OBJECT_UNLOCK(object);
513 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
514 VM_OBJECT_LOCK(object);
515 return (TRUE);
516 }
517 return (FALSE);
518 }
519
520 /*
521 * vm_page_dirty:
522 *
523 * make page all dirty
524 */
525 void
526 vm_page_dirty(vm_page_t m)
527 {
528 KASSERT(m->queue - m->pc != PQ_CACHE,
529 ("vm_page_dirty: page in cache!"));
530 KASSERT(m->queue - m->pc != PQ_FREE,
531 ("vm_page_dirty: page is free!"));
532 m->dirty = VM_PAGE_BITS_ALL;
533 }
534
535 /*
536 * vm_page_splay:
537 *
538 * Implements Sleator and Tarjan's top-down splay algorithm. Returns
539 * the vm_page containing the given pindex. If, however, that
540 * pindex is not found in the vm_object, returns a vm_page that is
541 * adjacent to the pindex, coming before or after it.
542 */
543 vm_page_t
544 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
545 {
546 struct vm_page dummy;
547 vm_page_t lefttreemax, righttreemin, y;
548
549 if (root == NULL)
550 return (root);
551 lefttreemax = righttreemin = &dummy;
552 for (;; root = y) {
553 if (pindex < root->pindex) {
554 if ((y = root->left) == NULL)
555 break;
556 if (pindex < y->pindex) {
557 /* Rotate right. */
558 root->left = y->right;
559 y->right = root;
560 root = y;
561 if ((y = root->left) == NULL)
562 break;
563 }
564 /* Link into the new root's right tree. */
565 righttreemin->left = root;
566 righttreemin = root;
567 } else if (pindex > root->pindex) {
568 if ((y = root->right) == NULL)
569 break;
570 if (pindex > y->pindex) {
571 /* Rotate left. */
572 root->right = y->left;
573 y->left = root;
574 root = y;
575 if ((y = root->right) == NULL)
576 break;
577 }
578 /* Link into the new root's left tree. */
579 lefttreemax->right = root;
580 lefttreemax = root;
581 } else
582 break;
583 }
584 /* Assemble the new root. */
585 lefttreemax->right = root->left;
586 righttreemin->left = root->right;
587 root->left = dummy.right;
588 root->right = dummy.left;
589 return (root);
590 }
591
592 /*
593 * vm_page_insert: [ internal use only ]
594 *
595 * Inserts the given mem entry into the object and object list.
596 *
597 * The pagetables are not updated but will presumably fault the page
598 * in if necessary, or if a kernel page the caller will at some point
599 * enter the page into the kernel's pmap. We are not allowed to block
600 * here so we *can't* do this anyway.
601 *
602 * The object and page must be locked.
603 * This routine may not block.
604 */
605 void
606 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
607 {
608 vm_page_t root;
609
610 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
611 if (m->object != NULL)
612 panic("vm_page_insert: page already inserted");
613
614 /*
615 * Record the object/offset pair in this page
616 */
617 m->object = object;
618 m->pindex = pindex;
619
620 /*
621 * Now link into the object's ordered list of backed pages.
622 */
623 root = object->root;
624 if (root == NULL) {
625 m->left = NULL;
626 m->right = NULL;
627 TAILQ_INSERT_TAIL(&object->memq, m, listq);
628 } else {
629 root = vm_page_splay(pindex, root);
630 if (pindex < root->pindex) {
631 m->left = root->left;
632 m->right = root;
633 root->left = NULL;
634 TAILQ_INSERT_BEFORE(root, m, listq);
635 } else if (pindex == root->pindex)
636 panic("vm_page_insert: offset already allocated");
637 else {
638 m->right = root->right;
639 m->left = root;
640 root->right = NULL;
641 TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
642 }
643 }
644 object->root = m;
645 object->generation++;
646
647 /*
648 * show that the object has one more resident page.
649 */
650 object->resident_page_count++;
651 /*
652 * Hold the vnode until the last page is released.
653 */
654 if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
655 vhold((struct vnode *)object->handle);
656
657 /*
658 * Since we are inserting a new and possibly dirty page,
659 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
660 */
661 if (m->flags & PG_WRITEABLE)
662 vm_object_set_writeable_dirty(object);
663 }
664
665 /*
666 * vm_page_remove:
667 * NOTE: used by device pager as well -wfj
668 *
669 * Removes the given mem entry from the object/offset-page
670 * table and the object page list, but do not invalidate/terminate
671 * the backing store.
672 *
673 * The object and page must be locked.
674 * The underlying pmap entry (if any) is NOT removed here.
675 * This routine may not block.
676 */
677 void
678 vm_page_remove(vm_page_t m)
679 {
680 vm_object_t object;
681 vm_page_t root;
682
683 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
684 if ((object = m->object) == NULL)
685 return;
686 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
687 if (m->flags & PG_BUSY) {
688 vm_page_flag_clear(m, PG_BUSY);
689 vm_page_flash(m);
690 }
691
692 /*
693 * Now remove from the object's list of backed pages.
694 */
695 if (m != object->root)
696 vm_page_splay(m->pindex, object->root);
697 if (m->left == NULL)
698 root = m->right;
699 else {
700 root = vm_page_splay(m->pindex, m->left);
701 root->right = m->right;
702 }
703 object->root = root;
704 TAILQ_REMOVE(&object->memq, m, listq);
705
706 /*
707 * And show that the object has one fewer resident page.
708 */
709 object->resident_page_count--;
710 object->generation++;
711 /*
712 * The vnode may now be recycled.
713 */
714 if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
715 vdrop((struct vnode *)object->handle);
716
717 m->object = NULL;
718 }
719
720 /*
721 * vm_page_lookup:
722 *
723 * Returns the page associated with the object/offset
724 * pair specified; if none is found, NULL is returned.
725 *
726 * The object must be locked.
727 * This routine may not block.
728 * This is a critical path routine
729 */
730 vm_page_t
731 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
732 {
733 vm_page_t m;
734
735 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
736 if ((m = object->root) != NULL && m->pindex != pindex) {
737 m = vm_page_splay(pindex, m);
738 if ((object->root = m)->pindex != pindex)
739 m = NULL;
740 }
741 return (m);
742 }
743
744 /*
745 * vm_page_rename:
746 *
747 * Move the given memory entry from its
748 * current object to the specified target object/offset.
749 *
750 * The object must be locked.
751 * This routine may not block.
752 *
753 * Note: swap associated with the page must be invalidated by the move. We
754 * have to do this for several reasons: (1) we aren't freeing the
755 * page, (2) we are dirtying the page, (3) the VM system is probably
756 * moving the page from object A to B, and will then later move
757 * the backing store from A to B and we can't have a conflict.
758 *
759 * Note: we *always* dirty the page. It is necessary both for the
760 * fact that we moved it, and because we may be invalidating
761 * swap. If the page is on the cache, we have to deactivate it
762 * or vm_page_dirty() will panic. Dirty pages are not allowed
763 * on the cache.
764 */
765 void
766 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
767 {
768
769 vm_page_remove(m);
770 vm_page_insert(m, new_object, new_pindex);
771 if (m->queue - m->pc == PQ_CACHE)
772 vm_page_deactivate(m);
773 vm_page_dirty(m);
774 }
775
776 /*
777 * vm_page_select_cache:
778 *
779 * Move a page of the given color from the cache queue to the free
780 * queue. As pages might be found, but are not applicable, they are
781 * deactivated.
782 *
783 * This routine may not block.
784 */
785 vm_page_t
786 vm_page_select_cache(int color)
787 {
788 vm_object_t object;
789 vm_page_t m;
790 boolean_t was_trylocked;
791
792 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
793 while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
794 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
795 KASSERT(!pmap_page_is_mapped(m),
796 ("Found mapped cache page %p", m));
797 KASSERT((m->flags & PG_UNMANAGED) == 0,
798 ("Found unmanaged cache page %p", m));
799 KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
800 if (m->hold_count == 0 && (object = m->object,
801 (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
802 VM_OBJECT_LOCKED(object))) {
803 KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0,
804 ("Found busy cache page %p", m));
805 vm_page_free(m);
806 if (was_trylocked)
807 VM_OBJECT_UNLOCK(object);
808 break;
809 }
810 vm_page_deactivate(m);
811 }
812 return (m);
813 }
814
815 /*
816 * vm_page_alloc:
817 *
818 * Allocate and return a memory cell associated
819 * with this VM object/offset pair.
820 *
821 * page_req classes:
822 * VM_ALLOC_NORMAL normal process request
823 * VM_ALLOC_SYSTEM system *really* needs a page
824 * VM_ALLOC_INTERRUPT interrupt time request
825 * VM_ALLOC_ZERO zero page
826 *
827 * This routine may not block.
828 *
829 * Additional special handling is required when called from an
830 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with
831 * the page cache in this case.
832 */
833 vm_page_t
834 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
835 {
836 vm_page_t m = NULL;
837 int color, flags, page_req;
838
839 page_req = req & VM_ALLOC_CLASS_MASK;
840 KASSERT(curthread->td_intr_nesting_level == 0 ||
841 page_req == VM_ALLOC_INTERRUPT,
842 ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
843
844 if ((req & VM_ALLOC_NOOBJ) == 0) {
845 KASSERT(object != NULL,
846 ("vm_page_alloc: NULL object."));
847 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
848 color = (pindex + object->pg_color) & PQ_L2_MASK;
849 } else
850 color = pindex & PQ_L2_MASK;
851
852 /*
853 * The pager is allowed to eat deeper into the free page list.
854 */
855 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
856 page_req = VM_ALLOC_SYSTEM;
857 };
858
859 loop:
860 mtx_lock_spin(&vm_page_queue_free_mtx);
861 if (cnt.v_free_count > cnt.v_free_reserved ||
862 (page_req == VM_ALLOC_SYSTEM &&
863 cnt.v_cache_count == 0 &&
864 cnt.v_free_count > cnt.v_interrupt_free_min) ||
865 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
866 /*
867 * Allocate from the free queue if the number of free pages
868 * exceeds the minimum for the request class.
869 */
870 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
871 } else if (page_req != VM_ALLOC_INTERRUPT) {
872 mtx_unlock_spin(&vm_page_queue_free_mtx);
873 /*
874 * Allocatable from cache (non-interrupt only). On success,
875 * we must free the page and try again, thus ensuring that
876 * cnt.v_*_free_min counters are replenished.
877 */
878 vm_page_lock_queues();
879 if ((m = vm_page_select_cache(color)) == NULL) {
880 #if defined(DIAGNOSTIC)
881 if (cnt.v_cache_count > 0)
882 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
883 #endif
884 vm_page_unlock_queues();
885 atomic_add_int(&vm_pageout_deficit, 1);
886 pagedaemon_wakeup();
887
888 if (page_req != VM_ALLOC_SYSTEM)
889 return (NULL);
890
891 mtx_lock_spin(&vm_page_queue_free_mtx);
892 if (cnt.v_free_count <= cnt.v_interrupt_free_min) {
893 mtx_unlock_spin(&vm_page_queue_free_mtx);
894 return (NULL);
895 }
896 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
897 } else {
898 vm_page_unlock_queues();
899 goto loop;
900 }
901 } else {
902 /*
903 * Not allocatable from cache from interrupt, give up.
904 */
905 mtx_unlock_spin(&vm_page_queue_free_mtx);
906 atomic_add_int(&vm_pageout_deficit, 1);
907 pagedaemon_wakeup();
908 return (NULL);
909 }
910
911 /*
912 * At this point we had better have found a good page.
913 */
914
915 KASSERT(
916 m != NULL,
917 ("vm_page_alloc(): missing page on free queue")
918 );
919
920 /*
921 * Remove from free queue
922 */
923 vm_pageq_remove_nowakeup(m);
924
925 /*
926 * Initialize structure. Only the PG_ZERO flag is inherited.
927 */
928 flags = PG_BUSY;
929 if (m->flags & PG_ZERO) {
930 vm_page_zero_count--;
931 if (req & VM_ALLOC_ZERO)
932 flags = PG_ZERO | PG_BUSY;
933 }
934 if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
935 flags &= ~PG_BUSY;
936 m->flags = flags;
937 if (req & VM_ALLOC_WIRED) {
938 atomic_add_int(&cnt.v_wire_count, 1);
939 m->wire_count = 1;
940 } else
941 m->wire_count = 0;
942 m->hold_count = 0;
943 m->act_count = 0;
944 m->busy = 0;
945 m->valid = 0;
946 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
947 mtx_unlock_spin(&vm_page_queue_free_mtx);
948
949 if ((req & VM_ALLOC_NOOBJ) == 0)
950 vm_page_insert(m, object, pindex);
951 else
952 m->pindex = pindex;
953
954 /*
955 * Don't wakeup too often - wakeup the pageout daemon when
956 * we would be nearly out of memory.
957 */
958 if (vm_paging_needed())
959 pagedaemon_wakeup();
960
961 return (m);
962 }
963
964 /*
965 * vm_wait: (also see VM_WAIT macro)
966 *
967 * Block until free pages are available for allocation
968 * - Called in various places before memory allocations.
969 */
970 void
971 vm_wait(void)
972 {
973
974 vm_page_lock_queues();
975 if (curproc == pageproc) {
976 vm_pageout_pages_needed = 1;
977 msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
978 PDROP | PSWP, "VMWait", 0);
979 } else {
980 if (!vm_pages_needed) {
981 vm_pages_needed = 1;
982 wakeup(&vm_pages_needed);
983 }
984 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
985 "vmwait", 0);
986 }
987 }
988
989 /*
990 * vm_waitpfault: (also see VM_WAITPFAULT macro)
991 *
992 * Block until free pages are available for allocation
993 * - Called only in vm_fault so that processes page faulting
994 * can be easily tracked.
995 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
996 * processes will be able to grab memory first. Do not change
997 * this balance without careful testing first.
998 */
999 void
1000 vm_waitpfault(void)
1001 {
1002
1003 vm_page_lock_queues();
1004 if (!vm_pages_needed) {
1005 vm_pages_needed = 1;
1006 wakeup(&vm_pages_needed);
1007 }
1008 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
1009 "pfault", 0);
1010 }
1011
1012 /*
1013 * vm_page_activate:
1014 *
1015 * Put the specified page on the active list (if appropriate).
1016 * Ensure that act_count is at least ACT_INIT but do not otherwise
1017 * mess with it.
1018 *
1019 * The page queues must be locked.
1020 * This routine may not block.
1021 */
1022 void
1023 vm_page_activate(vm_page_t m)
1024 {
1025
1026 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1027 if (m->queue != PQ_ACTIVE) {
1028 if ((m->queue - m->pc) == PQ_CACHE)
1029 cnt.v_reactivated++;
1030 vm_pageq_remove(m);
1031 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1032 if (m->act_count < ACT_INIT)
1033 m->act_count = ACT_INIT;
1034 vm_pageq_enqueue(PQ_ACTIVE, m);
1035 }
1036 } else {
1037 if (m->act_count < ACT_INIT)
1038 m->act_count = ACT_INIT;
1039 }
1040 }
1041
1042 /*
1043 * vm_page_free_wakeup:
1044 *
1045 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
1046 * routine is called when a page has been added to the cache or free
1047 * queues.
1048 *
1049 * The page queues must be locked.
1050 * This routine may not block.
1051 */
1052 static __inline void
1053 vm_page_free_wakeup(void)
1054 {
1055
1056 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1057 /*
1058 * if pageout daemon needs pages, then tell it that there are
1059 * some free.
1060 */
1061 if (vm_pageout_pages_needed &&
1062 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1063 wakeup(&vm_pageout_pages_needed);
1064 vm_pageout_pages_needed = 0;
1065 }
1066 /*
1067 * wakeup processes that are waiting on memory if we hit a
1068 * high water mark. And wakeup scheduler process if we have
1069 * lots of memory. this process will swapin processes.
1070 */
1071 if (vm_pages_needed && !vm_page_count_min()) {
1072 vm_pages_needed = 0;
1073 wakeup(&cnt.v_free_count);
1074 }
1075 }
1076
1077 /*
1078 * vm_page_free_toq:
1079 *
1080 * Returns the given page to the PQ_FREE list,
1081 * disassociating it with any VM object.
1082 *
1083 * Object and page must be locked prior to entry.
1084 * This routine may not block.
1085 */
1086
1087 void
1088 vm_page_free_toq(vm_page_t m)
1089 {
1090 struct vpgqueues *pq;
1091
1092 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1093 cnt.v_tfree++;
1094
1095 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1096 printf(
1097 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1098 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1099 m->hold_count);
1100 if ((m->queue - m->pc) == PQ_FREE)
1101 panic("vm_page_free: freeing free page");
1102 else
1103 panic("vm_page_free: freeing busy page");
1104 }
1105
1106 /*
1107 * unqueue, then remove page. Note that we cannot destroy
1108 * the page here because we do not want to call the pager's
1109 * callback routine until after we've put the page on the
1110 * appropriate free queue.
1111 */
1112 vm_pageq_remove_nowakeup(m);
1113 vm_page_remove(m);
1114
1115 /*
1116 * If fictitious remove object association and
1117 * return, otherwise delay object association removal.
1118 */
1119 if ((m->flags & PG_FICTITIOUS) != 0) {
1120 return;
1121 }
1122
1123 m->valid = 0;
1124 vm_page_undirty(m);
1125
1126 if (m->wire_count != 0) {
1127 if (m->wire_count > 1) {
1128 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1129 m->wire_count, (long)m->pindex);
1130 }
1131 panic("vm_page_free: freeing wired page");
1132 }
1133
1134 /*
1135 * Clear the UNMANAGED flag when freeing an unmanaged page.
1136 */
1137 if (m->flags & PG_UNMANAGED) {
1138 m->flags &= ~PG_UNMANAGED;
1139 }
1140
1141 if (m->hold_count != 0) {
1142 m->flags &= ~PG_ZERO;
1143 m->queue = PQ_HOLD;
1144 } else
1145 m->queue = PQ_FREE + m->pc;
1146 pq = &vm_page_queues[m->queue];
1147 mtx_lock_spin(&vm_page_queue_free_mtx);
1148 pq->lcnt++;
1149 ++(*pq->cnt);
1150
1151 /*
1152 * Put zero'd pages on the end ( where we look for zero'd pages
1153 * first ) and non-zerod pages at the head.
1154 */
1155 if (m->flags & PG_ZERO) {
1156 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1157 ++vm_page_zero_count;
1158 } else {
1159 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1160 }
1161 mtx_unlock_spin(&vm_page_queue_free_mtx);
1162 vm_page_free_wakeup();
1163 }
1164
1165 /*
1166 * vm_page_unmanage:
1167 *
1168 * Prevent PV management from being done on the page. The page is
1169 * removed from the paging queues as if it were wired, and as a
1170 * consequence of no longer being managed the pageout daemon will not
1171 * touch it (since there is no way to locate the pte mappings for the
1172 * page). madvise() calls that mess with the pmap will also no longer
1173 * operate on the page.
1174 *
1175 * Beyond that the page is still reasonably 'normal'. Freeing the page
1176 * will clear the flag.
1177 *
1178 * This routine is used by OBJT_PHYS objects - objects using unswappable
1179 * physical memory as backing store rather then swap-backed memory and
1180 * will eventually be extended to support 4MB unmanaged physical
1181 * mappings.
1182 */
1183 void
1184 vm_page_unmanage(vm_page_t m)
1185 {
1186
1187 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1188 if ((m->flags & PG_UNMANAGED) == 0) {
1189 if (m->wire_count == 0)
1190 vm_pageq_remove(m);
1191 }
1192 vm_page_flag_set(m, PG_UNMANAGED);
1193 }
1194
1195 /*
1196 * vm_page_wire:
1197 *
1198 * Mark this page as wired down by yet
1199 * another map, removing it from paging queues
1200 * as necessary.
1201 *
1202 * The page queues must be locked.
1203 * This routine may not block.
1204 */
1205 void
1206 vm_page_wire(vm_page_t m)
1207 {
1208
1209 /*
1210 * Only bump the wire statistics if the page is not already wired,
1211 * and only unqueue the page if it is on some queue (if it is unmanaged
1212 * it is already off the queues).
1213 */
1214 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1215 if (m->flags & PG_FICTITIOUS)
1216 return;
1217 if (m->wire_count == 0) {
1218 if ((m->flags & PG_UNMANAGED) == 0)
1219 vm_pageq_remove(m);
1220 atomic_add_int(&cnt.v_wire_count, 1);
1221 }
1222 m->wire_count++;
1223 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1224 }
1225
1226 /*
1227 * vm_page_unwire:
1228 *
1229 * Release one wiring of this page, potentially
1230 * enabling it to be paged again.
1231 *
1232 * Many pages placed on the inactive queue should actually go
1233 * into the cache, but it is difficult to figure out which. What
1234 * we do instead, if the inactive target is well met, is to put
1235 * clean pages at the head of the inactive queue instead of the tail.
1236 * This will cause them to be moved to the cache more quickly and
1237 * if not actively re-referenced, freed more quickly. If we just
1238 * stick these pages at the end of the inactive queue, heavy filesystem
1239 * meta-data accesses can cause an unnecessary paging load on memory bound
1240 * processes. This optimization causes one-time-use metadata to be
1241 * reused more quickly.
1242 *
1243 * BUT, if we are in a low-memory situation we have no choice but to
1244 * put clean pages on the cache queue.
1245 *
1246 * A number of routines use vm_page_unwire() to guarantee that the page
1247 * will go into either the inactive or active queues, and will NEVER
1248 * be placed in the cache - for example, just after dirtying a page.
1249 * dirty pages in the cache are not allowed.
1250 *
1251 * The page queues must be locked.
1252 * This routine may not block.
1253 */
1254 void
1255 vm_page_unwire(vm_page_t m, int activate)
1256 {
1257
1258 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1259 if (m->flags & PG_FICTITIOUS)
1260 return;
1261 if (m->wire_count > 0) {
1262 m->wire_count--;
1263 if (m->wire_count == 0) {
1264 atomic_subtract_int(&cnt.v_wire_count, 1);
1265 if (m->flags & PG_UNMANAGED) {
1266 ;
1267 } else if (activate)
1268 vm_pageq_enqueue(PQ_ACTIVE, m);
1269 else {
1270 vm_page_flag_clear(m, PG_WINATCFLS);
1271 vm_pageq_enqueue(PQ_INACTIVE, m);
1272 }
1273 }
1274 } else {
1275 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1276 }
1277 }
1278
1279
1280 /*
1281 * Move the specified page to the inactive queue. If the page has
1282 * any associated swap, the swap is deallocated.
1283 *
1284 * Normally athead is 0 resulting in LRU operation. athead is set
1285 * to 1 if we want this page to be 'as if it were placed in the cache',
1286 * except without unmapping it from the process address space.
1287 *
1288 * This routine may not block.
1289 */
1290 static __inline void
1291 _vm_page_deactivate(vm_page_t m, int athead)
1292 {
1293
1294 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1295
1296 /*
1297 * Ignore if already inactive.
1298 */
1299 if (m->queue == PQ_INACTIVE)
1300 return;
1301 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1302 if ((m->queue - m->pc) == PQ_CACHE)
1303 cnt.v_reactivated++;
1304 vm_page_flag_clear(m, PG_WINATCFLS);
1305 vm_pageq_remove(m);
1306 if (athead)
1307 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1308 else
1309 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1310 m->queue = PQ_INACTIVE;
1311 vm_page_queues[PQ_INACTIVE].lcnt++;
1312 cnt.v_inactive_count++;
1313 }
1314 }
1315
1316 void
1317 vm_page_deactivate(vm_page_t m)
1318 {
1319 _vm_page_deactivate(m, 0);
1320 }
1321
1322 /*
1323 * vm_page_try_to_cache:
1324 *
1325 * Returns 0 on failure, 1 on success
1326 */
1327 int
1328 vm_page_try_to_cache(vm_page_t m)
1329 {
1330
1331 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1332 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1333 if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1334 (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1335 return (0);
1336 }
1337 pmap_remove_all(m);
1338 if (m->dirty)
1339 return (0);
1340 vm_page_cache(m);
1341 return (1);
1342 }
1343
1344 /*
1345 * vm_page_try_to_free()
1346 *
1347 * Attempt to free the page. If we cannot free it, we do nothing.
1348 * 1 is returned on success, 0 on failure.
1349 */
1350 int
1351 vm_page_try_to_free(vm_page_t m)
1352 {
1353
1354 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1355 if (m->object != NULL)
1356 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1357 if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1358 (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1359 return (0);
1360 }
1361 pmap_remove_all(m);
1362 if (m->dirty)
1363 return (0);
1364 vm_page_free(m);
1365 return (1);
1366 }
1367
1368 /*
1369 * vm_page_cache
1370 *
1371 * Put the specified page onto the page cache queue (if appropriate).
1372 *
1373 * This routine may not block.
1374 */
1375 void
1376 vm_page_cache(vm_page_t m)
1377 {
1378
1379 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1380 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1381 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1382 m->hold_count || m->wire_count) {
1383 printf("vm_page_cache: attempting to cache busy page\n");
1384 return;
1385 }
1386 if ((m->queue - m->pc) == PQ_CACHE)
1387 return;
1388
1389 /*
1390 * Remove all pmaps and indicate that the page is not
1391 * writeable or mapped.
1392 */
1393 pmap_remove_all(m);
1394 if (m->dirty != 0) {
1395 panic("vm_page_cache: caching a dirty page, pindex: %ld",
1396 (long)m->pindex);
1397 }
1398 vm_pageq_remove_nowakeup(m);
1399 vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1400 vm_page_free_wakeup();
1401 }
1402
1403 /*
1404 * vm_page_dontneed
1405 *
1406 * Cache, deactivate, or do nothing as appropriate. This routine
1407 * is typically used by madvise() MADV_DONTNEED.
1408 *
1409 * Generally speaking we want to move the page into the cache so
1410 * it gets reused quickly. However, this can result in a silly syndrome
1411 * due to the page recycling too quickly. Small objects will not be
1412 * fully cached. On the otherhand, if we move the page to the inactive
1413 * queue we wind up with a problem whereby very large objects
1414 * unnecessarily blow away our inactive and cache queues.
1415 *
1416 * The solution is to move the pages based on a fixed weighting. We
1417 * either leave them alone, deactivate them, or move them to the cache,
1418 * where moving them to the cache has the highest weighting.
1419 * By forcing some pages into other queues we eventually force the
1420 * system to balance the queues, potentially recovering other unrelated
1421 * space from active. The idea is to not force this to happen too
1422 * often.
1423 */
1424 void
1425 vm_page_dontneed(vm_page_t m)
1426 {
1427 static int dnweight;
1428 int dnw;
1429 int head;
1430
1431 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1432 dnw = ++dnweight;
1433
1434 /*
1435 * occassionally leave the page alone
1436 */
1437 if ((dnw & 0x01F0) == 0 ||
1438 m->queue == PQ_INACTIVE ||
1439 m->queue - m->pc == PQ_CACHE
1440 ) {
1441 if (m->act_count >= ACT_INIT)
1442 --m->act_count;
1443 return;
1444 }
1445
1446 if (m->dirty == 0 && pmap_is_modified(m))
1447 vm_page_dirty(m);
1448
1449 if (m->dirty || (dnw & 0x0070) == 0) {
1450 /*
1451 * Deactivate the page 3 times out of 32.
1452 */
1453 head = 0;
1454 } else {
1455 /*
1456 * Cache the page 28 times out of every 32. Note that
1457 * the page is deactivated instead of cached, but placed
1458 * at the head of the queue instead of the tail.
1459 */
1460 head = 1;
1461 }
1462 _vm_page_deactivate(m, head);
1463 }
1464
1465 /*
1466 * Grab a page, waiting until we are waken up due to the page
1467 * changing state. We keep on waiting, if the page continues
1468 * to be in the object. If the page doesn't exist, first allocate it
1469 * and then conditionally zero it.
1470 *
1471 * This routine may block.
1472 */
1473 vm_page_t
1474 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1475 {
1476 vm_page_t m;
1477
1478 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1479 retrylookup:
1480 if ((m = vm_page_lookup(object, pindex)) != NULL) {
1481 vm_page_lock_queues();
1482 if (m->busy || (m->flags & PG_BUSY)) {
1483 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1484 VM_OBJECT_UNLOCK(object);
1485 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1486 VM_OBJECT_LOCK(object);
1487 if ((allocflags & VM_ALLOC_RETRY) == 0)
1488 return (NULL);
1489 goto retrylookup;
1490 } else {
1491 if (allocflags & VM_ALLOC_WIRED)
1492 vm_page_wire(m);
1493 if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1494 vm_page_busy(m);
1495 vm_page_unlock_queues();
1496 return (m);
1497 }
1498 }
1499 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1500 if (m == NULL) {
1501 VM_OBJECT_UNLOCK(object);
1502 VM_WAIT;
1503 VM_OBJECT_LOCK(object);
1504 if ((allocflags & VM_ALLOC_RETRY) == 0)
1505 return (NULL);
1506 goto retrylookup;
1507 }
1508 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1509 pmap_zero_page(m);
1510 return (m);
1511 }
1512
1513 /*
1514 * Mapping function for valid bits or for dirty bits in
1515 * a page. May not block.
1516 *
1517 * Inputs are required to range within a page.
1518 */
1519 __inline int
1520 vm_page_bits(int base, int size)
1521 {
1522 int first_bit;
1523 int last_bit;
1524
1525 KASSERT(
1526 base + size <= PAGE_SIZE,
1527 ("vm_page_bits: illegal base/size %d/%d", base, size)
1528 );
1529
1530 if (size == 0) /* handle degenerate case */
1531 return (0);
1532
1533 first_bit = base >> DEV_BSHIFT;
1534 last_bit = (base + size - 1) >> DEV_BSHIFT;
1535
1536 return ((2 << last_bit) - (1 << first_bit));
1537 }
1538
1539 /*
1540 * vm_page_set_validclean:
1541 *
1542 * Sets portions of a page valid and clean. The arguments are expected
1543 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1544 * of any partial chunks touched by the range. The invalid portion of
1545 * such chunks will be zero'd.
1546 *
1547 * This routine may not block.
1548 *
1549 * (base + size) must be less then or equal to PAGE_SIZE.
1550 */
1551 void
1552 vm_page_set_validclean(vm_page_t m, int base, int size)
1553 {
1554 int pagebits;
1555 int frag;
1556 int endoff;
1557
1558 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1559 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1560 if (size == 0) /* handle degenerate case */
1561 return;
1562
1563 /*
1564 * If the base is not DEV_BSIZE aligned and the valid
1565 * bit is clear, we have to zero out a portion of the
1566 * first block.
1567 */
1568 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1569 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1570 pmap_zero_page_area(m, frag, base - frag);
1571
1572 /*
1573 * If the ending offset is not DEV_BSIZE aligned and the
1574 * valid bit is clear, we have to zero out a portion of
1575 * the last block.
1576 */
1577 endoff = base + size;
1578 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1579 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1580 pmap_zero_page_area(m, endoff,
1581 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1582
1583 /*
1584 * Set valid, clear dirty bits. If validating the entire
1585 * page we can safely clear the pmap modify bit. We also
1586 * use this opportunity to clear the PG_NOSYNC flag. If a process
1587 * takes a write fault on a MAP_NOSYNC memory area the flag will
1588 * be set again.
1589 *
1590 * We set valid bits inclusive of any overlap, but we can only
1591 * clear dirty bits for DEV_BSIZE chunks that are fully within
1592 * the range.
1593 */
1594 pagebits = vm_page_bits(base, size);
1595 m->valid |= pagebits;
1596 #if 0 /* NOT YET */
1597 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1598 frag = DEV_BSIZE - frag;
1599 base += frag;
1600 size -= frag;
1601 if (size < 0)
1602 size = 0;
1603 }
1604 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1605 #endif
1606 m->dirty &= ~pagebits;
1607 if (base == 0 && size == PAGE_SIZE) {
1608 pmap_clear_modify(m);
1609 vm_page_flag_clear(m, PG_NOSYNC);
1610 }
1611 }
1612
1613 void
1614 vm_page_clear_dirty(vm_page_t m, int base, int size)
1615 {
1616
1617 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1618 m->dirty &= ~vm_page_bits(base, size);
1619 }
1620
1621 /*
1622 * vm_page_set_invalid:
1623 *
1624 * Invalidates DEV_BSIZE'd chunks within a page. Both the
1625 * valid and dirty bits for the effected areas are cleared.
1626 *
1627 * May not block.
1628 */
1629 void
1630 vm_page_set_invalid(vm_page_t m, int base, int size)
1631 {
1632 int bits;
1633
1634 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1635 bits = vm_page_bits(base, size);
1636 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1637 m->valid &= ~bits;
1638 m->dirty &= ~bits;
1639 m->object->generation++;
1640 }
1641
1642 /*
1643 * vm_page_zero_invalid()
1644 *
1645 * The kernel assumes that the invalid portions of a page contain
1646 * garbage, but such pages can be mapped into memory by user code.
1647 * When this occurs, we must zero out the non-valid portions of the
1648 * page so user code sees what it expects.
1649 *
1650 * Pages are most often semi-valid when the end of a file is mapped
1651 * into memory and the file's size is not page aligned.
1652 */
1653 void
1654 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1655 {
1656 int b;
1657 int i;
1658
1659 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1660 /*
1661 * Scan the valid bits looking for invalid sections that
1662 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
1663 * valid bit may be set ) have already been zerod by
1664 * vm_page_set_validclean().
1665 */
1666 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1667 if (i == (PAGE_SIZE / DEV_BSIZE) ||
1668 (m->valid & (1 << i))
1669 ) {
1670 if (i > b) {
1671 pmap_zero_page_area(m,
1672 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1673 }
1674 b = i + 1;
1675 }
1676 }
1677
1678 /*
1679 * setvalid is TRUE when we can safely set the zero'd areas
1680 * as being valid. We can do this if there are no cache consistancy
1681 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
1682 */
1683 if (setvalid)
1684 m->valid = VM_PAGE_BITS_ALL;
1685 }
1686
1687 /*
1688 * vm_page_is_valid:
1689 *
1690 * Is (partial) page valid? Note that the case where size == 0
1691 * will return FALSE in the degenerate case where the page is
1692 * entirely invalid, and TRUE otherwise.
1693 *
1694 * May not block.
1695 */
1696 int
1697 vm_page_is_valid(vm_page_t m, int base, int size)
1698 {
1699 int bits = vm_page_bits(base, size);
1700
1701 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1702 if (m->valid && ((m->valid & bits) == bits))
1703 return 1;
1704 else
1705 return 0;
1706 }
1707
1708 /*
1709 * update dirty bits from pmap/mmu. May not block.
1710 */
1711 void
1712 vm_page_test_dirty(vm_page_t m)
1713 {
1714 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1715 vm_page_dirty(m);
1716 }
1717 }
1718
1719 int so_zerocp_fullpage = 0;
1720
1721 void
1722 vm_page_cowfault(vm_page_t m)
1723 {
1724 vm_page_t mnew;
1725 vm_object_t object;
1726 vm_pindex_t pindex;
1727
1728 object = m->object;
1729 pindex = m->pindex;
1730
1731 retry_alloc:
1732 pmap_remove_all(m);
1733 vm_page_remove(m);
1734 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1735 if (mnew == NULL) {
1736 vm_page_insert(m, object, pindex);
1737 vm_page_unlock_queues();
1738 VM_OBJECT_UNLOCK(object);
1739 VM_WAIT;
1740 VM_OBJECT_LOCK(object);
1741 vm_page_lock_queues();
1742 goto retry_alloc;
1743 }
1744
1745 if (m->cow == 0) {
1746 /*
1747 * check to see if we raced with an xmit complete when
1748 * waiting to allocate a page. If so, put things back
1749 * the way they were
1750 */
1751 vm_page_free(mnew);
1752 vm_page_insert(m, object, pindex);
1753 } else { /* clear COW & copy page */
1754 if (!so_zerocp_fullpage)
1755 pmap_copy_page(m, mnew);
1756 mnew->valid = VM_PAGE_BITS_ALL;
1757 vm_page_dirty(mnew);
1758 vm_page_flag_clear(mnew, PG_BUSY);
1759 mnew->wire_count = m->wire_count - m->cow;
1760 m->wire_count = m->cow;
1761 }
1762 }
1763
1764 void
1765 vm_page_cowclear(vm_page_t m)
1766 {
1767
1768 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1769 if (m->cow) {
1770 m->cow--;
1771 /*
1772 * let vm_fault add back write permission lazily
1773 */
1774 }
1775 /*
1776 * sf_buf_free() will free the page, so we needn't do it here
1777 */
1778 }
1779
1780 void
1781 vm_page_cowsetup(vm_page_t m)
1782 {
1783
1784 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1785 m->cow++;
1786 pmap_page_protect(m, VM_PROT_READ);
1787 }
1788
1789 #include "opt_ddb.h"
1790 #ifdef DDB
1791 #include <sys/kernel.h>
1792
1793 #include <ddb/ddb.h>
1794
1795 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1796 {
1797 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1798 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1799 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1800 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1801 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1802 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1803 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1804 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1805 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1806 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1807 }
1808
1809 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1810 {
1811 int i;
1812 db_printf("PQ_FREE:");
1813 for (i = 0; i < PQ_L2_SIZE; i++) {
1814 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1815 }
1816 db_printf("\n");
1817
1818 db_printf("PQ_CACHE:");
1819 for (i = 0; i < PQ_L2_SIZE; i++) {
1820 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1821 }
1822 db_printf("\n");
1823
1824 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1825 vm_page_queues[PQ_ACTIVE].lcnt,
1826 vm_page_queues[PQ_INACTIVE].lcnt);
1827 }
1828 #endif /* DDB */
Cache object: 4f2b863801e66ad8a6ed167c74340e67
|