The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * The Mach Operating System project at Carnegie-Mellon University.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
   34  */
   35 
   36 /*-
   37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   38  * All rights reserved.
   39  *
   40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   41  *
   42  * Permission to use, copy, modify and distribute this software and
   43  * its documentation is hereby granted, provided that both the copyright
   44  * notice and this permission notice appear in all copies of the
   45  * software, derivative works or modified versions, and any portions
   46  * thereof, and that both notices appear in supporting documentation.
   47  *
   48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   51  *
   52  * Carnegie Mellon requests users of this software to return to
   53  *
   54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   55  *  School of Computer Science
   56  *  Carnegie Mellon University
   57  *  Pittsburgh PA 15213-3890
   58  *
   59  * any improvements or extensions that they make and grant Carnegie the
   60  * rights to redistribute these changes.
   61  */
   62 
   63 /*
   64  *                      GENERAL RULES ON VM_PAGE MANIPULATION
   65  *
   66  *      - a pageq mutex is required when adding or removing a page from a
   67  *        page queue (vm_page_queue[]), regardless of other mutexes or the
   68  *        busy state of a page.
   69  *
   70  *      - a hash chain mutex is required when associating or disassociating
   71  *        a page from the VM PAGE CACHE hash table (vm_page_buckets),
   72  *        regardless of other mutexes or the busy state of a page.
   73  *
   74  *      - either a hash chain mutex OR a busied page is required in order
   75  *        to modify the page flags.  A hash chain mutex must be obtained in
   76  *        order to busy a page.  A page's flags cannot be modified by a
   77  *        hash chain mutex if the page is marked busy.
   78  *
   79  *      - The object memq mutex is held when inserting or removing
   80  *        pages from an object (vm_page_insert() or vm_page_remove()).  This
   81  *        is different from the object's main mutex.
   82  *
   83  *      Generally speaking, you have to be aware of side effects when running
   84  *      vm_page ops.  A vm_page_lookup() will return with the hash chain
   85  *      locked, whether it was able to lookup the page or not.  vm_page_free(),
   86  *      vm_page_cache(), vm_page_activate(), and a number of other routines
   87  *      will release the hash chain mutex for you.  Intermediate manipulation
   88  *      routines such as vm_page_flag_set() expect the hash chain to be held
   89  *      on entry and the hash chain will remain held on return.
   90  *
   91  *      pageq scanning can only occur with the pageq in question locked.
   92  *      We have a known bottleneck with the active queue, but the cache
   93  *      and free queues are actually arrays already. 
   94  */
   95 
   96 /*
   97  *      Resident memory management module.
   98  */
   99 
  100 #include <sys/cdefs.h>
  101 __FBSDID("$FreeBSD: releng/8.0/sys/vm/vm_page.c 195840 2009-07-24 13:50:29Z jhb $");
  102 
  103 #include "opt_vm.h"
  104 
  105 #include <sys/param.h>
  106 #include <sys/systm.h>
  107 #include <sys/lock.h>
  108 #include <sys/kernel.h>
  109 #include <sys/limits.h>
  110 #include <sys/malloc.h>
  111 #include <sys/mutex.h>
  112 #include <sys/proc.h>
  113 #include <sys/sysctl.h>
  114 #include <sys/vmmeter.h>
  115 #include <sys/vnode.h>
  116 
  117 #include <vm/vm.h>
  118 #include <vm/vm_param.h>
  119 #include <vm/vm_kern.h>
  120 #include <vm/vm_object.h>
  121 #include <vm/vm_page.h>
  122 #include <vm/vm_pageout.h>
  123 #include <vm/vm_pager.h>
  124 #include <vm/vm_phys.h>
  125 #include <vm/vm_reserv.h>
  126 #include <vm/vm_extern.h>
  127 #include <vm/uma.h>
  128 #include <vm/uma_int.h>
  129 
  130 #include <machine/md_var.h>
  131 
  132 /*
  133  *      Associated with page of user-allocatable memory is a
  134  *      page structure.
  135  */
  136 
  137 struct vpgqueues vm_page_queues[PQ_COUNT];
  138 struct mtx vm_page_queue_mtx;
  139 struct mtx vm_page_queue_free_mtx;
  140 
  141 vm_page_t vm_page_array = 0;
  142 int vm_page_array_size = 0;
  143 long first_page = 0;
  144 int vm_page_zero_count = 0;
  145 
  146 static int boot_pages = UMA_BOOT_PAGES;
  147 TUNABLE_INT("vm.boot_pages", &boot_pages);
  148 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
  149         "number of pages allocated for bootstrapping the VM system");
  150 
  151 static void vm_page_enqueue(int queue, vm_page_t m);
  152 
  153 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
  154 #if PAGE_SIZE == 32768
  155 #ifdef CTASSERT
  156 CTASSERT(sizeof(u_long) >= 8);
  157 #endif
  158 #endif
  159 
  160 /*
  161  *      vm_set_page_size:
  162  *
  163  *      Sets the page size, perhaps based upon the memory
  164  *      size.  Must be called before any use of page-size
  165  *      dependent functions.
  166  */
  167 void
  168 vm_set_page_size(void)
  169 {
  170         if (cnt.v_page_size == 0)
  171                 cnt.v_page_size = PAGE_SIZE;
  172         if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
  173                 panic("vm_set_page_size: page size not a power of two");
  174 }
  175 
  176 /*
  177  *      vm_page_blacklist_lookup:
  178  *
  179  *      See if a physical address in this page has been listed
  180  *      in the blacklist tunable.  Entries in the tunable are
  181  *      separated by spaces or commas.  If an invalid integer is
  182  *      encountered then the rest of the string is skipped.
  183  */
  184 static int
  185 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
  186 {
  187         vm_paddr_t bad;
  188         char *cp, *pos;
  189 
  190         for (pos = list; *pos != '\0'; pos = cp) {
  191                 bad = strtoq(pos, &cp, 0);
  192                 if (*cp != '\0') {
  193                         if (*cp == ' ' || *cp == ',') {
  194                                 cp++;
  195                                 if (cp == pos)
  196                                         continue;
  197                         } else
  198                                 break;
  199                 }
  200                 if (pa == trunc_page(bad))
  201                         return (1);
  202         }
  203         return (0);
  204 }
  205 
  206 /*
  207  *      vm_page_startup:
  208  *
  209  *      Initializes the resident memory module.
  210  *
  211  *      Allocates memory for the page cells, and
  212  *      for the object/offset-to-page hash table headers.
  213  *      Each page cell is initialized and placed on the free list.
  214  */
  215 vm_offset_t
  216 vm_page_startup(vm_offset_t vaddr)
  217 {
  218         vm_offset_t mapped;
  219         vm_paddr_t page_range;
  220         vm_paddr_t new_end;
  221         int i;
  222         vm_paddr_t pa;
  223         int nblocks;
  224         vm_paddr_t last_pa;
  225         char *list;
  226 
  227         /* the biggest memory array is the second group of pages */
  228         vm_paddr_t end;
  229         vm_paddr_t biggestsize;
  230         vm_paddr_t low_water, high_water;
  231         int biggestone;
  232 
  233         biggestsize = 0;
  234         biggestone = 0;
  235         nblocks = 0;
  236         vaddr = round_page(vaddr);
  237 
  238         for (i = 0; phys_avail[i + 1]; i += 2) {
  239                 phys_avail[i] = round_page(phys_avail[i]);
  240                 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
  241         }
  242 
  243         low_water = phys_avail[0];
  244         high_water = phys_avail[1];
  245 
  246         for (i = 0; phys_avail[i + 1]; i += 2) {
  247                 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
  248 
  249                 if (size > biggestsize) {
  250                         biggestone = i;
  251                         biggestsize = size;
  252                 }
  253                 if (phys_avail[i] < low_water)
  254                         low_water = phys_avail[i];
  255                 if (phys_avail[i + 1] > high_water)
  256                         high_water = phys_avail[i + 1];
  257                 ++nblocks;
  258         }
  259 
  260 #ifdef XEN
  261         low_water = 0;
  262 #endif  
  263 
  264         end = phys_avail[biggestone+1];
  265 
  266         /*
  267          * Initialize the locks.
  268          */
  269         mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
  270             MTX_RECURSE);
  271         mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
  272             MTX_DEF);
  273 
  274         /*
  275          * Initialize the queue headers for the hold queue, the active queue,
  276          * and the inactive queue.
  277          */
  278         for (i = 0; i < PQ_COUNT; i++)
  279                 TAILQ_INIT(&vm_page_queues[i].pl);
  280         vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
  281         vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
  282         vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
  283 
  284         /*
  285          * Allocate memory for use when boot strapping the kernel memory
  286          * allocator.
  287          */
  288         new_end = end - (boot_pages * UMA_SLAB_SIZE);
  289         new_end = trunc_page(new_end);
  290         mapped = pmap_map(&vaddr, new_end, end,
  291             VM_PROT_READ | VM_PROT_WRITE);
  292         bzero((void *)mapped, end - new_end);
  293         uma_startup((void *)mapped, boot_pages);
  294 
  295 #if defined(__amd64__) || defined(__i386__) || defined(__arm__)
  296         /*
  297          * Allocate a bitmap to indicate that a random physical page
  298          * needs to be included in a minidump.
  299          *
  300          * The amd64 port needs this to indicate which direct map pages
  301          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
  302          *
  303          * However, i386 still needs this workspace internally within the
  304          * minidump code.  In theory, they are not needed on i386, but are
  305          * included should the sf_buf code decide to use them.
  306          */
  307         page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
  308         vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
  309         new_end -= vm_page_dump_size;
  310         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
  311             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
  312         bzero((void *)vm_page_dump, vm_page_dump_size);
  313 #endif
  314         /*
  315          * Compute the number of pages of memory that will be available for
  316          * use (taking into account the overhead of a page structure per
  317          * page).
  318          */
  319         first_page = low_water / PAGE_SIZE;
  320 #ifdef VM_PHYSSEG_SPARSE
  321         page_range = 0;
  322         for (i = 0; phys_avail[i + 1] != 0; i += 2)
  323                 page_range += atop(phys_avail[i + 1] - phys_avail[i]);
  324 #elif defined(VM_PHYSSEG_DENSE)
  325         page_range = high_water / PAGE_SIZE - first_page;
  326 #else
  327 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
  328 #endif
  329         end = new_end;
  330 
  331         /*
  332          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
  333          */
  334         vaddr += PAGE_SIZE;
  335 
  336         /*
  337          * Initialize the mem entry structures now, and put them in the free
  338          * queue.
  339          */
  340         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
  341         mapped = pmap_map(&vaddr, new_end, end,
  342             VM_PROT_READ | VM_PROT_WRITE);
  343         vm_page_array = (vm_page_t) mapped;
  344 #if VM_NRESERVLEVEL > 0
  345         /*
  346          * Allocate memory for the reservation management system's data
  347          * structures.
  348          */
  349         new_end = vm_reserv_startup(&vaddr, new_end, high_water);
  350 #endif
  351 #ifdef __amd64__
  352         /*
  353          * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
  354          * so the pages must be tracked for a crashdump to include this data.
  355          * This includes the vm_page_array and the early UMA bootstrap pages.
  356          */
  357         for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
  358                 dump_add_page(pa);
  359 #endif  
  360         phys_avail[biggestone + 1] = new_end;
  361 
  362         /*
  363          * Clear all of the page structures
  364          */
  365         bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
  366         for (i = 0; i < page_range; i++)
  367                 vm_page_array[i].order = VM_NFREEORDER;
  368         vm_page_array_size = page_range;
  369 
  370         /*
  371          * Initialize the physical memory allocator.
  372          */
  373         vm_phys_init();
  374 
  375         /*
  376          * Add every available physical page that is not blacklisted to
  377          * the free lists.
  378          */
  379         cnt.v_page_count = 0;
  380         cnt.v_free_count = 0;
  381         list = getenv("vm.blacklist");
  382         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  383                 pa = phys_avail[i];
  384                 last_pa = phys_avail[i + 1];
  385                 while (pa < last_pa) {
  386                         if (list != NULL &&
  387                             vm_page_blacklist_lookup(list, pa))
  388                                 printf("Skipping page with pa 0x%jx\n",
  389                                     (uintmax_t)pa);
  390                         else
  391                                 vm_phys_add_page(pa);
  392                         pa += PAGE_SIZE;
  393                 }
  394         }
  395         freeenv(list);
  396 #if VM_NRESERVLEVEL > 0
  397         /*
  398          * Initialize the reservation management system.
  399          */
  400         vm_reserv_init();
  401 #endif
  402         return (vaddr);
  403 }
  404 
  405 void
  406 vm_page_flag_set(vm_page_t m, unsigned short bits)
  407 {
  408 
  409         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  410         m->flags |= bits;
  411 } 
  412 
  413 void
  414 vm_page_flag_clear(vm_page_t m, unsigned short bits)
  415 {
  416 
  417         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  418         m->flags &= ~bits;
  419 }
  420 
  421 void
  422 vm_page_busy(vm_page_t m)
  423 {
  424 
  425         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  426         KASSERT((m->oflags & VPO_BUSY) == 0,
  427             ("vm_page_busy: page already busy!!!"));
  428         m->oflags |= VPO_BUSY;
  429 }
  430 
  431 /*
  432  *      vm_page_flash:
  433  *
  434  *      wakeup anyone waiting for the page.
  435  */
  436 void
  437 vm_page_flash(vm_page_t m)
  438 {
  439 
  440         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  441         if (m->oflags & VPO_WANTED) {
  442                 m->oflags &= ~VPO_WANTED;
  443                 wakeup(m);
  444         }
  445 }
  446 
  447 /*
  448  *      vm_page_wakeup:
  449  *
  450  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
  451  *      page.
  452  *
  453  */
  454 void
  455 vm_page_wakeup(vm_page_t m)
  456 {
  457 
  458         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  459         KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
  460         m->oflags &= ~VPO_BUSY;
  461         vm_page_flash(m);
  462 }
  463 
  464 void
  465 vm_page_io_start(vm_page_t m)
  466 {
  467 
  468         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  469         m->busy++;
  470 }
  471 
  472 void
  473 vm_page_io_finish(vm_page_t m)
  474 {
  475 
  476         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  477         m->busy--;
  478         if (m->busy == 0)
  479                 vm_page_flash(m);
  480 }
  481 
  482 /*
  483  * Keep page from being freed by the page daemon
  484  * much of the same effect as wiring, except much lower
  485  * overhead and should be used only for *very* temporary
  486  * holding ("wiring").
  487  */
  488 void
  489 vm_page_hold(vm_page_t mem)
  490 {
  491 
  492         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  493         mem->hold_count++;
  494 }
  495 
  496 void
  497 vm_page_unhold(vm_page_t mem)
  498 {
  499 
  500         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  501         --mem->hold_count;
  502         KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
  503         if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
  504                 vm_page_free_toq(mem);
  505 }
  506 
  507 /*
  508  *      vm_page_free:
  509  *
  510  *      Free a page.
  511  */
  512 void
  513 vm_page_free(vm_page_t m)
  514 {
  515 
  516         m->flags &= ~PG_ZERO;
  517         vm_page_free_toq(m);
  518 }
  519 
  520 /*
  521  *      vm_page_free_zero:
  522  *
  523  *      Free a page to the zerod-pages queue
  524  */
  525 void
  526 vm_page_free_zero(vm_page_t m)
  527 {
  528 
  529         m->flags |= PG_ZERO;
  530         vm_page_free_toq(m);
  531 }
  532 
  533 /*
  534  *      vm_page_sleep:
  535  *
  536  *      Sleep and release the page queues lock.
  537  *
  538  *      The object containing the given page must be locked.
  539  */
  540 void
  541 vm_page_sleep(vm_page_t m, const char *msg)
  542 {
  543 
  544         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  545         if (!mtx_owned(&vm_page_queue_mtx))
  546                 vm_page_lock_queues();
  547         vm_page_flag_set(m, PG_REFERENCED);
  548         vm_page_unlock_queues();
  549 
  550         /*
  551          * It's possible that while we sleep, the page will get
  552          * unbusied and freed.  If we are holding the object
  553          * lock, we will assume we hold a reference to the object
  554          * such that even if m->object changes, we can re-lock
  555          * it.
  556          */
  557         m->oflags |= VPO_WANTED;
  558         msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
  559 }
  560 
  561 /*
  562  *      vm_page_dirty:
  563  *
  564  *      make page all dirty
  565  */
  566 void
  567 vm_page_dirty(vm_page_t m)
  568 {
  569 
  570         KASSERT((m->flags & PG_CACHED) == 0,
  571             ("vm_page_dirty: page in cache!"));
  572         KASSERT(!VM_PAGE_IS_FREE(m),
  573             ("vm_page_dirty: page is free!"));
  574         KASSERT(m->valid == VM_PAGE_BITS_ALL,
  575             ("vm_page_dirty: page is invalid!"));
  576         m->dirty = VM_PAGE_BITS_ALL;
  577 }
  578 
  579 /*
  580  *      vm_page_splay:
  581  *
  582  *      Implements Sleator and Tarjan's top-down splay algorithm.  Returns
  583  *      the vm_page containing the given pindex.  If, however, that
  584  *      pindex is not found in the vm_object, returns a vm_page that is
  585  *      adjacent to the pindex, coming before or after it.
  586  */
  587 vm_page_t
  588 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
  589 {
  590         struct vm_page dummy;
  591         vm_page_t lefttreemax, righttreemin, y;
  592 
  593         if (root == NULL)
  594                 return (root);
  595         lefttreemax = righttreemin = &dummy;
  596         for (;; root = y) {
  597                 if (pindex < root->pindex) {
  598                         if ((y = root->left) == NULL)
  599                                 break;
  600                         if (pindex < y->pindex) {
  601                                 /* Rotate right. */
  602                                 root->left = y->right;
  603                                 y->right = root;
  604                                 root = y;
  605                                 if ((y = root->left) == NULL)
  606                                         break;
  607                         }
  608                         /* Link into the new root's right tree. */
  609                         righttreemin->left = root;
  610                         righttreemin = root;
  611                 } else if (pindex > root->pindex) {
  612                         if ((y = root->right) == NULL)
  613                                 break;
  614                         if (pindex > y->pindex) {
  615                                 /* Rotate left. */
  616                                 root->right = y->left;
  617                                 y->left = root;
  618                                 root = y;
  619                                 if ((y = root->right) == NULL)
  620                                         break;
  621                         }
  622                         /* Link into the new root's left tree. */
  623                         lefttreemax->right = root;
  624                         lefttreemax = root;
  625                 } else
  626                         break;
  627         }
  628         /* Assemble the new root. */
  629         lefttreemax->right = root->left;
  630         righttreemin->left = root->right;
  631         root->left = dummy.right;
  632         root->right = dummy.left;
  633         return (root);
  634 }
  635 
  636 /*
  637  *      vm_page_insert:         [ internal use only ]
  638  *
  639  *      Inserts the given mem entry into the object and object list.
  640  *
  641  *      The pagetables are not updated but will presumably fault the page
  642  *      in if necessary, or if a kernel page the caller will at some point
  643  *      enter the page into the kernel's pmap.  We are not allowed to block
  644  *      here so we *can't* do this anyway.
  645  *
  646  *      The object and page must be locked.
  647  *      This routine may not block.
  648  */
  649 void
  650 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
  651 {
  652         vm_page_t root;
  653 
  654         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  655         if (m->object != NULL)
  656                 panic("vm_page_insert: page already inserted");
  657 
  658         /*
  659          * Record the object/offset pair in this page
  660          */
  661         m->object = object;
  662         m->pindex = pindex;
  663 
  664         /*
  665          * Now link into the object's ordered list of backed pages.
  666          */
  667         root = object->root;
  668         if (root == NULL) {
  669                 m->left = NULL;
  670                 m->right = NULL;
  671                 TAILQ_INSERT_TAIL(&object->memq, m, listq);
  672         } else {
  673                 root = vm_page_splay(pindex, root);
  674                 if (pindex < root->pindex) {
  675                         m->left = root->left;
  676                         m->right = root;
  677                         root->left = NULL;
  678                         TAILQ_INSERT_BEFORE(root, m, listq);
  679                 } else if (pindex == root->pindex)
  680                         panic("vm_page_insert: offset already allocated");
  681                 else {
  682                         m->right = root->right;
  683                         m->left = root;
  684                         root->right = NULL;
  685                         TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
  686                 }
  687         }
  688         object->root = m;
  689         object->generation++;
  690 
  691         /*
  692          * show that the object has one more resident page.
  693          */
  694         object->resident_page_count++;
  695         /*
  696          * Hold the vnode until the last page is released.
  697          */
  698         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
  699                 vhold((struct vnode *)object->handle);
  700 
  701         /*
  702          * Since we are inserting a new and possibly dirty page,
  703          * update the object's OBJ_MIGHTBEDIRTY flag.
  704          */
  705         if (m->flags & PG_WRITEABLE)
  706                 vm_object_set_writeable_dirty(object);
  707 }
  708 
  709 /*
  710  *      vm_page_remove:
  711  *                              NOTE: used by device pager as well -wfj
  712  *
  713  *      Removes the given mem entry from the object/offset-page
  714  *      table and the object page list, but do not invalidate/terminate
  715  *      the backing store.
  716  *
  717  *      The object and page must be locked.
  718  *      The underlying pmap entry (if any) is NOT removed here.
  719  *      This routine may not block.
  720  */
  721 void
  722 vm_page_remove(vm_page_t m)
  723 {
  724         vm_object_t object;
  725         vm_page_t root;
  726 
  727         if ((object = m->object) == NULL)
  728                 return;
  729         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  730         if (m->oflags & VPO_BUSY) {
  731                 m->oflags &= ~VPO_BUSY;
  732                 vm_page_flash(m);
  733         }
  734         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  735 
  736         /*
  737          * Now remove from the object's list of backed pages.
  738          */
  739         if (m != object->root)
  740                 vm_page_splay(m->pindex, object->root);
  741         if (m->left == NULL)
  742                 root = m->right;
  743         else {
  744                 root = vm_page_splay(m->pindex, m->left);
  745                 root->right = m->right;
  746         }
  747         object->root = root;
  748         TAILQ_REMOVE(&object->memq, m, listq);
  749 
  750         /*
  751          * And show that the object has one fewer resident page.
  752          */
  753         object->resident_page_count--;
  754         object->generation++;
  755         /*
  756          * The vnode may now be recycled.
  757          */
  758         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
  759                 vdrop((struct vnode *)object->handle);
  760 
  761         m->object = NULL;
  762 }
  763 
  764 /*
  765  *      vm_page_lookup:
  766  *
  767  *      Returns the page associated with the object/offset
  768  *      pair specified; if none is found, NULL is returned.
  769  *
  770  *      The object must be locked.
  771  *      This routine may not block.
  772  *      This is a critical path routine
  773  */
  774 vm_page_t
  775 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
  776 {
  777         vm_page_t m;
  778 
  779         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  780         if ((m = object->root) != NULL && m->pindex != pindex) {
  781                 m = vm_page_splay(pindex, m);
  782                 if ((object->root = m)->pindex != pindex)
  783                         m = NULL;
  784         }
  785         return (m);
  786 }
  787 
  788 /*
  789  *      vm_page_rename:
  790  *
  791  *      Move the given memory entry from its
  792  *      current object to the specified target object/offset.
  793  *
  794  *      The object must be locked.
  795  *      This routine may not block.
  796  *
  797  *      Note: swap associated with the page must be invalidated by the move.  We
  798  *            have to do this for several reasons:  (1) we aren't freeing the
  799  *            page, (2) we are dirtying the page, (3) the VM system is probably
  800  *            moving the page from object A to B, and will then later move
  801  *            the backing store from A to B and we can't have a conflict.
  802  *
  803  *      Note: we *always* dirty the page.  It is necessary both for the
  804  *            fact that we moved it, and because we may be invalidating
  805  *            swap.  If the page is on the cache, we have to deactivate it
  806  *            or vm_page_dirty() will panic.  Dirty pages are not allowed
  807  *            on the cache.
  808  */
  809 void
  810 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
  811 {
  812 
  813         vm_page_remove(m);
  814         vm_page_insert(m, new_object, new_pindex);
  815         vm_page_dirty(m);
  816 }
  817 
  818 /*
  819  *      Convert all of the given object's cached pages that have a
  820  *      pindex within the given range into free pages.  If the value
  821  *      zero is given for "end", then the range's upper bound is
  822  *      infinity.  If the given object is backed by a vnode and it
  823  *      transitions from having one or more cached pages to none, the
  824  *      vnode's hold count is reduced. 
  825  */
  826 void
  827 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
  828 {
  829         vm_page_t m, m_next;
  830         boolean_t empty;
  831 
  832         mtx_lock(&vm_page_queue_free_mtx);
  833         if (__predict_false(object->cache == NULL)) {
  834                 mtx_unlock(&vm_page_queue_free_mtx);
  835                 return;
  836         }
  837         m = object->cache = vm_page_splay(start, object->cache);
  838         if (m->pindex < start) {
  839                 if (m->right == NULL)
  840                         m = NULL;
  841                 else {
  842                         m_next = vm_page_splay(start, m->right);
  843                         m_next->left = m;
  844                         m->right = NULL;
  845                         m = object->cache = m_next;
  846                 }
  847         }
  848 
  849         /*
  850          * At this point, "m" is either (1) a reference to the page
  851          * with the least pindex that is greater than or equal to
  852          * "start" or (2) NULL.
  853          */
  854         for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
  855                 /*
  856                  * Find "m"'s successor and remove "m" from the
  857                  * object's cache.
  858                  */
  859                 if (m->right == NULL) {
  860                         object->cache = m->left;
  861                         m_next = NULL;
  862                 } else {
  863                         m_next = vm_page_splay(start, m->right);
  864                         m_next->left = m->left;
  865                         object->cache = m_next;
  866                 }
  867                 /* Convert "m" to a free page. */
  868                 m->object = NULL;
  869                 m->valid = 0;
  870                 /* Clear PG_CACHED and set PG_FREE. */
  871                 m->flags ^= PG_CACHED | PG_FREE;
  872                 KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
  873                     ("vm_page_cache_free: page %p has inconsistent flags", m));
  874                 cnt.v_cache_count--;
  875                 cnt.v_free_count++;
  876         }
  877         empty = object->cache == NULL;
  878         mtx_unlock(&vm_page_queue_free_mtx);
  879         if (object->type == OBJT_VNODE && empty)
  880                 vdrop(object->handle);
  881 }
  882 
  883 /*
  884  *      Returns the cached page that is associated with the given
  885  *      object and offset.  If, however, none exists, returns NULL.
  886  *
  887  *      The free page queue must be locked.
  888  */
  889 static inline vm_page_t
  890 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
  891 {
  892         vm_page_t m;
  893 
  894         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  895         if ((m = object->cache) != NULL && m->pindex != pindex) {
  896                 m = vm_page_splay(pindex, m);
  897                 if ((object->cache = m)->pindex != pindex)
  898                         m = NULL;
  899         }
  900         return (m);
  901 }
  902 
  903 /*
  904  *      Remove the given cached page from its containing object's
  905  *      collection of cached pages.
  906  *
  907  *      The free page queue must be locked.
  908  */
  909 void
  910 vm_page_cache_remove(vm_page_t m)
  911 {
  912         vm_object_t object;
  913         vm_page_t root;
  914 
  915         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  916         KASSERT((m->flags & PG_CACHED) != 0,
  917             ("vm_page_cache_remove: page %p is not cached", m));
  918         object = m->object;
  919         if (m != object->cache) {
  920                 root = vm_page_splay(m->pindex, object->cache);
  921                 KASSERT(root == m,
  922                     ("vm_page_cache_remove: page %p is not cached in object %p",
  923                     m, object));
  924         }
  925         if (m->left == NULL)
  926                 root = m->right;
  927         else if (m->right == NULL)
  928                 root = m->left;
  929         else {
  930                 root = vm_page_splay(m->pindex, m->left);
  931                 root->right = m->right;
  932         }
  933         object->cache = root;
  934         m->object = NULL;
  935         cnt.v_cache_count--;
  936 }
  937 
  938 /*
  939  *      Transfer all of the cached pages with offset greater than or
  940  *      equal to 'offidxstart' from the original object's cache to the
  941  *      new object's cache.  However, any cached pages with offset
  942  *      greater than or equal to the new object's size are kept in the
  943  *      original object.  Initially, the new object's cache must be
  944  *      empty.  Offset 'offidxstart' in the original object must
  945  *      correspond to offset zero in the new object.
  946  *
  947  *      The new object must be locked.
  948  */
  949 void
  950 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
  951     vm_object_t new_object)
  952 {
  953         vm_page_t m, m_next;
  954 
  955         /*
  956          * Insertion into an object's collection of cached pages
  957          * requires the object to be locked.  In contrast, removal does
  958          * not.
  959          */
  960         VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
  961         KASSERT(new_object->cache == NULL,
  962             ("vm_page_cache_transfer: object %p has cached pages",
  963             new_object));
  964         mtx_lock(&vm_page_queue_free_mtx);
  965         if ((m = orig_object->cache) != NULL) {
  966                 /*
  967                  * Transfer all of the pages with offset greater than or
  968                  * equal to 'offidxstart' from the original object's
  969                  * cache to the new object's cache.
  970                  */
  971                 m = vm_page_splay(offidxstart, m);
  972                 if (m->pindex < offidxstart) {
  973                         orig_object->cache = m;
  974                         new_object->cache = m->right;
  975                         m->right = NULL;
  976                 } else {
  977                         orig_object->cache = m->left;
  978                         new_object->cache = m;
  979                         m->left = NULL;
  980                 }
  981                 while ((m = new_object->cache) != NULL) {
  982                         if ((m->pindex - offidxstart) >= new_object->size) {
  983                                 /*
  984                                  * Return all of the cached pages with
  985                                  * offset greater than or equal to the
  986                                  * new object's size to the original
  987                                  * object's cache. 
  988                                  */
  989                                 new_object->cache = m->left;
  990                                 m->left = orig_object->cache;
  991                                 orig_object->cache = m;
  992                                 break;
  993                         }
  994                         m_next = vm_page_splay(m->pindex, m->right);
  995                         /* Update the page's object and offset. */
  996                         m->object = new_object;
  997                         m->pindex -= offidxstart;
  998                         if (m_next == NULL)
  999                                 break;
 1000                         m->right = NULL;
 1001                         m_next->left = m;
 1002                         new_object->cache = m_next;
 1003                 }
 1004                 KASSERT(new_object->cache == NULL ||
 1005                     new_object->type == OBJT_SWAP,
 1006                     ("vm_page_cache_transfer: object %p's type is incompatible"
 1007                     " with cached pages", new_object));
 1008         }
 1009         mtx_unlock(&vm_page_queue_free_mtx);
 1010 }
 1011 
 1012 /*
 1013  *      vm_page_alloc:
 1014  *
 1015  *      Allocate and return a memory cell associated
 1016  *      with this VM object/offset pair.
 1017  *
 1018  *      page_req classes:
 1019  *      VM_ALLOC_NORMAL         normal process request
 1020  *      VM_ALLOC_SYSTEM         system *really* needs a page
 1021  *      VM_ALLOC_INTERRUPT      interrupt time request
 1022  *      VM_ALLOC_ZERO           zero page
 1023  *
 1024  *      This routine may not block.
 1025  */
 1026 vm_page_t
 1027 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
 1028 {
 1029         struct vnode *vp = NULL;
 1030         vm_object_t m_object;
 1031         vm_page_t m;
 1032         int flags, page_req;
 1033 
 1034         page_req = req & VM_ALLOC_CLASS_MASK;
 1035         KASSERT(curthread->td_intr_nesting_level == 0 ||
 1036             page_req == VM_ALLOC_INTERRUPT,
 1037             ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
 1038 
 1039         if ((req & VM_ALLOC_NOOBJ) == 0) {
 1040                 KASSERT(object != NULL,
 1041                     ("vm_page_alloc: NULL object."));
 1042                 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1043         }
 1044 
 1045         /*
 1046          * The pager is allowed to eat deeper into the free page list.
 1047          */
 1048         if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
 1049                 page_req = VM_ALLOC_SYSTEM;
 1050         };
 1051 
 1052         mtx_lock(&vm_page_queue_free_mtx);
 1053         if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
 1054             (page_req == VM_ALLOC_SYSTEM && 
 1055             cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
 1056             (page_req == VM_ALLOC_INTERRUPT &&
 1057             cnt.v_free_count + cnt.v_cache_count > 0)) {
 1058                 /*
 1059                  * Allocate from the free queue if the number of free pages
 1060                  * exceeds the minimum for the request class.
 1061                  */
 1062                 if (object != NULL &&
 1063                     (m = vm_page_cache_lookup(object, pindex)) != NULL) {
 1064                         if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
 1065                                 mtx_unlock(&vm_page_queue_free_mtx);
 1066                                 return (NULL);
 1067                         }
 1068                         if (vm_phys_unfree_page(m))
 1069                                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
 1070 #if VM_NRESERVLEVEL > 0
 1071                         else if (!vm_reserv_reactivate_page(m))
 1072 #else
 1073                         else
 1074 #endif
 1075                                 panic("vm_page_alloc: cache page %p is missing"
 1076                                     " from the free queue", m);
 1077                 } else if ((req & VM_ALLOC_IFCACHED) != 0) {
 1078                         mtx_unlock(&vm_page_queue_free_mtx);
 1079                         return (NULL);
 1080 #if VM_NRESERVLEVEL > 0
 1081                 } else if (object == NULL || object->type == OBJT_DEVICE ||
 1082                     (object->flags & OBJ_COLORED) == 0 ||
 1083                     (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
 1084 #else
 1085                 } else {
 1086 #endif
 1087                         m = vm_phys_alloc_pages(object != NULL ?
 1088                             VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
 1089 #if VM_NRESERVLEVEL > 0
 1090                         if (m == NULL && vm_reserv_reclaim_inactive()) {
 1091                                 m = vm_phys_alloc_pages(object != NULL ?
 1092                                     VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
 1093                                     0);
 1094                         }
 1095 #endif
 1096                 }
 1097         } else {
 1098                 /*
 1099                  * Not allocatable, give up.
 1100                  */
 1101                 mtx_unlock(&vm_page_queue_free_mtx);
 1102                 atomic_add_int(&vm_pageout_deficit, 1);
 1103                 pagedaemon_wakeup();
 1104                 return (NULL);
 1105         }
 1106 
 1107         /*
 1108          *  At this point we had better have found a good page.
 1109          */
 1110 
 1111         KASSERT(m != NULL, ("vm_page_alloc: missing page"));
 1112         KASSERT(m->queue == PQ_NONE,
 1113             ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
 1114         KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
 1115         KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
 1116         KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
 1117         KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
 1118         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
 1119             ("vm_page_alloc: page %p has unexpected memattr %d", m,
 1120             pmap_page_get_memattr(m)));
 1121         if ((m->flags & PG_CACHED) != 0) {
 1122                 KASSERT(m->valid != 0,
 1123                     ("vm_page_alloc: cached page %p is invalid", m));
 1124                 if (m->object == object && m->pindex == pindex)
 1125                         cnt.v_reactivated++;
 1126                 else
 1127                         m->valid = 0;
 1128                 m_object = m->object;
 1129                 vm_page_cache_remove(m);
 1130                 if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
 1131                         vp = m_object->handle;
 1132         } else {
 1133                 KASSERT(VM_PAGE_IS_FREE(m),
 1134                     ("vm_page_alloc: page %p is not free", m));
 1135                 KASSERT(m->valid == 0,
 1136                     ("vm_page_alloc: free page %p is valid", m));
 1137                 cnt.v_free_count--;
 1138         }
 1139 
 1140         /*
 1141          * Initialize structure.  Only the PG_ZERO flag is inherited.
 1142          */
 1143         flags = 0;
 1144         if (m->flags & PG_ZERO) {
 1145                 vm_page_zero_count--;
 1146                 if (req & VM_ALLOC_ZERO)
 1147                         flags = PG_ZERO;
 1148         }
 1149         if (object == NULL || object->type == OBJT_PHYS)
 1150                 flags |= PG_UNMANAGED;
 1151         m->flags = flags;
 1152         if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
 1153                 m->oflags = 0;
 1154         else
 1155                 m->oflags = VPO_BUSY;
 1156         if (req & VM_ALLOC_WIRED) {
 1157                 atomic_add_int(&cnt.v_wire_count, 1);
 1158                 m->wire_count = 1;
 1159         }
 1160         m->act_count = 0;
 1161         mtx_unlock(&vm_page_queue_free_mtx);
 1162 
 1163         if (object != NULL) {
 1164                 /* Ignore device objects; the pager sets "memattr" for them. */
 1165                 if (object->memattr != VM_MEMATTR_DEFAULT &&
 1166                     object->type != OBJT_DEVICE && object->type != OBJT_SG)
 1167                         pmap_page_set_memattr(m, object->memattr);
 1168                 vm_page_insert(m, object, pindex);
 1169         } else
 1170                 m->pindex = pindex;
 1171 
 1172         /*
 1173          * The following call to vdrop() must come after the above call
 1174          * to vm_page_insert() in case both affect the same object and
 1175          * vnode.  Otherwise, the affected vnode's hold count could
 1176          * temporarily become zero.
 1177          */
 1178         if (vp != NULL)
 1179                 vdrop(vp);
 1180 
 1181         /*
 1182          * Don't wakeup too often - wakeup the pageout daemon when
 1183          * we would be nearly out of memory.
 1184          */
 1185         if (vm_paging_needed())
 1186                 pagedaemon_wakeup();
 1187 
 1188         return (m);
 1189 }
 1190 
 1191 /*
 1192  *      vm_wait:        (also see VM_WAIT macro)
 1193  *
 1194  *      Block until free pages are available for allocation
 1195  *      - Called in various places before memory allocations.
 1196  */
 1197 void
 1198 vm_wait(void)
 1199 {
 1200 
 1201         mtx_lock(&vm_page_queue_free_mtx);
 1202         if (curproc == pageproc) {
 1203                 vm_pageout_pages_needed = 1;
 1204                 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
 1205                     PDROP | PSWP, "VMWait", 0);
 1206         } else {
 1207                 if (!vm_pages_needed) {
 1208                         vm_pages_needed = 1;
 1209                         wakeup(&vm_pages_needed);
 1210                 }
 1211                 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
 1212                     "vmwait", 0);
 1213         }
 1214 }
 1215 
 1216 /*
 1217  *      vm_waitpfault:  (also see VM_WAITPFAULT macro)
 1218  *
 1219  *      Block until free pages are available for allocation
 1220  *      - Called only in vm_fault so that processes page faulting
 1221  *        can be easily tracked.
 1222  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
 1223  *        processes will be able to grab memory first.  Do not change
 1224  *        this balance without careful testing first.
 1225  */
 1226 void
 1227 vm_waitpfault(void)
 1228 {
 1229 
 1230         mtx_lock(&vm_page_queue_free_mtx);
 1231         if (!vm_pages_needed) {
 1232                 vm_pages_needed = 1;
 1233                 wakeup(&vm_pages_needed);
 1234         }
 1235         msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
 1236             "pfault", 0);
 1237 }
 1238 
 1239 /*
 1240  *      vm_page_requeue:
 1241  *
 1242  *      If the given page is contained within a page queue, move it to the tail
 1243  *      of that queue.
 1244  *
 1245  *      The page queues must be locked.
 1246  */
 1247 void
 1248 vm_page_requeue(vm_page_t m)
 1249 {
 1250         int queue = VM_PAGE_GETQUEUE(m);
 1251         struct vpgqueues *vpq;
 1252 
 1253         if (queue != PQ_NONE) {
 1254                 vpq = &vm_page_queues[queue];
 1255                 TAILQ_REMOVE(&vpq->pl, m, pageq);
 1256                 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
 1257         }
 1258 }
 1259 
 1260 /*
 1261  *      vm_pageq_remove:
 1262  *
 1263  *      Remove a page from its queue.
 1264  *
 1265  *      The queue containing the given page must be locked.
 1266  *      This routine may not block.
 1267  */
 1268 void
 1269 vm_pageq_remove(vm_page_t m)
 1270 {
 1271         int queue = VM_PAGE_GETQUEUE(m);
 1272         struct vpgqueues *pq;
 1273 
 1274         if (queue != PQ_NONE) {
 1275                 VM_PAGE_SETQUEUE2(m, PQ_NONE);
 1276                 pq = &vm_page_queues[queue];
 1277                 TAILQ_REMOVE(&pq->pl, m, pageq);
 1278                 (*pq->cnt)--;
 1279         }
 1280 }
 1281 
 1282 /*
 1283  *      vm_page_enqueue:
 1284  *
 1285  *      Add the given page to the specified queue.
 1286  *
 1287  *      The page queues must be locked.
 1288  */
 1289 static void
 1290 vm_page_enqueue(int queue, vm_page_t m)
 1291 {
 1292         struct vpgqueues *vpq;
 1293 
 1294         vpq = &vm_page_queues[queue];
 1295         VM_PAGE_SETQUEUE2(m, queue);
 1296         TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
 1297         ++*vpq->cnt;
 1298 }
 1299 
 1300 /*
 1301  *      vm_page_activate:
 1302  *
 1303  *      Put the specified page on the active list (if appropriate).
 1304  *      Ensure that act_count is at least ACT_INIT but do not otherwise
 1305  *      mess with it.
 1306  *
 1307  *      The page queues must be locked.
 1308  *      This routine may not block.
 1309  */
 1310 void
 1311 vm_page_activate(vm_page_t m)
 1312 {
 1313 
 1314         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1315         if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
 1316                 vm_pageq_remove(m);
 1317                 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
 1318                         if (m->act_count < ACT_INIT)
 1319                                 m->act_count = ACT_INIT;
 1320                         vm_page_enqueue(PQ_ACTIVE, m);
 1321                 }
 1322         } else {
 1323                 if (m->act_count < ACT_INIT)
 1324                         m->act_count = ACT_INIT;
 1325         }
 1326 }
 1327 
 1328 /*
 1329  *      vm_page_free_wakeup:
 1330  *
 1331  *      Helper routine for vm_page_free_toq() and vm_page_cache().  This
 1332  *      routine is called when a page has been added to the cache or free
 1333  *      queues.
 1334  *
 1335  *      The page queues must be locked.
 1336  *      This routine may not block.
 1337  */
 1338 static inline void
 1339 vm_page_free_wakeup(void)
 1340 {
 1341 
 1342         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1343         /*
 1344          * if pageout daemon needs pages, then tell it that there are
 1345          * some free.
 1346          */
 1347         if (vm_pageout_pages_needed &&
 1348             cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
 1349                 wakeup(&vm_pageout_pages_needed);
 1350                 vm_pageout_pages_needed = 0;
 1351         }
 1352         /*
 1353          * wakeup processes that are waiting on memory if we hit a
 1354          * high water mark. And wakeup scheduler process if we have
 1355          * lots of memory. this process will swapin processes.
 1356          */
 1357         if (vm_pages_needed && !vm_page_count_min()) {
 1358                 vm_pages_needed = 0;
 1359                 wakeup(&cnt.v_free_count);
 1360         }
 1361 }
 1362 
 1363 /*
 1364  *      vm_page_free_toq:
 1365  *
 1366  *      Returns the given page to the free list,
 1367  *      disassociating it with any VM object.
 1368  *
 1369  *      Object and page must be locked prior to entry.
 1370  *      This routine may not block.
 1371  */
 1372 
 1373 void
 1374 vm_page_free_toq(vm_page_t m)
 1375 {
 1376 
 1377         if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
 1378                 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1379         KASSERT(!pmap_page_is_mapped(m),
 1380             ("vm_page_free_toq: freeing mapped page %p", m));
 1381         PCPU_INC(cnt.v_tfree);
 1382 
 1383         if (m->busy || VM_PAGE_IS_FREE(m)) {
 1384                 printf(
 1385                 "vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
 1386                     (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
 1387                     m->hold_count);
 1388                 if (VM_PAGE_IS_FREE(m))
 1389                         panic("vm_page_free: freeing free page");
 1390                 else
 1391                         panic("vm_page_free: freeing busy page");
 1392         }
 1393 
 1394         /*
 1395          * unqueue, then remove page.  Note that we cannot destroy
 1396          * the page here because we do not want to call the pager's
 1397          * callback routine until after we've put the page on the
 1398          * appropriate free queue.
 1399          */
 1400         vm_pageq_remove(m);
 1401         vm_page_remove(m);
 1402 
 1403         /*
 1404          * If fictitious remove object association and
 1405          * return, otherwise delay object association removal.
 1406          */
 1407         if ((m->flags & PG_FICTITIOUS) != 0) {
 1408                 return;
 1409         }
 1410 
 1411         m->valid = 0;
 1412         vm_page_undirty(m);
 1413 
 1414         if (m->wire_count != 0) {
 1415                 if (m->wire_count > 1) {
 1416                         panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
 1417                                 m->wire_count, (long)m->pindex);
 1418                 }
 1419                 panic("vm_page_free: freeing wired page");
 1420         }
 1421         if (m->hold_count != 0) {
 1422                 m->flags &= ~PG_ZERO;
 1423                 vm_page_enqueue(PQ_HOLD, m);
 1424         } else {
 1425                 /*
 1426                  * Restore the default memory attribute to the page.
 1427                  */
 1428                 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
 1429                         pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
 1430 
 1431                 /*
 1432                  * Insert the page into the physical memory allocator's
 1433                  * cache/free page queues.
 1434                  */
 1435                 mtx_lock(&vm_page_queue_free_mtx);
 1436                 m->flags |= PG_FREE;
 1437                 cnt.v_free_count++;
 1438 #if VM_NRESERVLEVEL > 0
 1439                 if (!vm_reserv_free_page(m))
 1440 #else
 1441                 if (TRUE)
 1442 #endif
 1443                         vm_phys_free_pages(m, 0);
 1444                 if ((m->flags & PG_ZERO) != 0)
 1445                         ++vm_page_zero_count;
 1446                 else
 1447                         vm_page_zero_idle_wakeup();
 1448                 vm_page_free_wakeup();
 1449                 mtx_unlock(&vm_page_queue_free_mtx);
 1450         }
 1451 }
 1452 
 1453 /*
 1454  *      vm_page_wire:
 1455  *
 1456  *      Mark this page as wired down by yet
 1457  *      another map, removing it from paging queues
 1458  *      as necessary.
 1459  *
 1460  *      The page queues must be locked.
 1461  *      This routine may not block.
 1462  */
 1463 void
 1464 vm_page_wire(vm_page_t m)
 1465 {
 1466 
 1467         /*
 1468          * Only bump the wire statistics if the page is not already wired,
 1469          * and only unqueue the page if it is on some queue (if it is unmanaged
 1470          * it is already off the queues).
 1471          */
 1472         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1473         if (m->flags & PG_FICTITIOUS)
 1474                 return;
 1475         if (m->wire_count == 0) {
 1476                 if ((m->flags & PG_UNMANAGED) == 0)
 1477                         vm_pageq_remove(m);
 1478                 atomic_add_int(&cnt.v_wire_count, 1);
 1479         }
 1480         m->wire_count++;
 1481         KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
 1482 }
 1483 
 1484 /*
 1485  *      vm_page_unwire:
 1486  *
 1487  *      Release one wiring of this page, potentially
 1488  *      enabling it to be paged again.
 1489  *
 1490  *      Many pages placed on the inactive queue should actually go
 1491  *      into the cache, but it is difficult to figure out which.  What
 1492  *      we do instead, if the inactive target is well met, is to put
 1493  *      clean pages at the head of the inactive queue instead of the tail.
 1494  *      This will cause them to be moved to the cache more quickly and
 1495  *      if not actively re-referenced, freed more quickly.  If we just
 1496  *      stick these pages at the end of the inactive queue, heavy filesystem
 1497  *      meta-data accesses can cause an unnecessary paging load on memory bound 
 1498  *      processes.  This optimization causes one-time-use metadata to be
 1499  *      reused more quickly.
 1500  *
 1501  *      BUT, if we are in a low-memory situation we have no choice but to
 1502  *      put clean pages on the cache queue.
 1503  *
 1504  *      A number of routines use vm_page_unwire() to guarantee that the page
 1505  *      will go into either the inactive or active queues, and will NEVER
 1506  *      be placed in the cache - for example, just after dirtying a page.
 1507  *      dirty pages in the cache are not allowed.
 1508  *
 1509  *      The page queues must be locked.
 1510  *      This routine may not block.
 1511  */
 1512 void
 1513 vm_page_unwire(vm_page_t m, int activate)
 1514 {
 1515 
 1516         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1517         if (m->flags & PG_FICTITIOUS)
 1518                 return;
 1519         if (m->wire_count > 0) {
 1520                 m->wire_count--;
 1521                 if (m->wire_count == 0) {
 1522                         atomic_subtract_int(&cnt.v_wire_count, 1);
 1523                         if (m->flags & PG_UNMANAGED) {
 1524                                 ;
 1525                         } else if (activate)
 1526                                 vm_page_enqueue(PQ_ACTIVE, m);
 1527                         else {
 1528                                 vm_page_flag_clear(m, PG_WINATCFLS);
 1529                                 vm_page_enqueue(PQ_INACTIVE, m);
 1530                         }
 1531                 }
 1532         } else {
 1533                 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
 1534         }
 1535 }
 1536 
 1537 
 1538 /*
 1539  * Move the specified page to the inactive queue.  If the page has
 1540  * any associated swap, the swap is deallocated.
 1541  *
 1542  * Normally athead is 0 resulting in LRU operation.  athead is set
 1543  * to 1 if we want this page to be 'as if it were placed in the cache',
 1544  * except without unmapping it from the process address space.
 1545  *
 1546  * This routine may not block.
 1547  */
 1548 static inline void
 1549 _vm_page_deactivate(vm_page_t m, int athead)
 1550 {
 1551 
 1552         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1553 
 1554         /*
 1555          * Ignore if already inactive.
 1556          */
 1557         if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
 1558                 return;
 1559         if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
 1560                 vm_page_flag_clear(m, PG_WINATCFLS);
 1561                 vm_pageq_remove(m);
 1562                 if (athead)
 1563                         TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
 1564                 else
 1565                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
 1566                 VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
 1567                 cnt.v_inactive_count++;
 1568         }
 1569 }
 1570 
 1571 void
 1572 vm_page_deactivate(vm_page_t m)
 1573 {
 1574     _vm_page_deactivate(m, 0);
 1575 }
 1576 
 1577 /*
 1578  * vm_page_try_to_cache:
 1579  *
 1580  * Returns 0 on failure, 1 on success
 1581  */
 1582 int
 1583 vm_page_try_to_cache(vm_page_t m)
 1584 {
 1585 
 1586         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1587         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1588         if (m->dirty || m->hold_count || m->busy || m->wire_count ||
 1589             (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
 1590                 return (0);
 1591         }
 1592         pmap_remove_all(m);
 1593         if (m->dirty)
 1594                 return (0);
 1595         vm_page_cache(m);
 1596         return (1);
 1597 }
 1598 
 1599 /*
 1600  * vm_page_try_to_free()
 1601  *
 1602  *      Attempt to free the page.  If we cannot free it, we do nothing.
 1603  *      1 is returned on success, 0 on failure.
 1604  */
 1605 int
 1606 vm_page_try_to_free(vm_page_t m)
 1607 {
 1608 
 1609         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1610         if (m->object != NULL)
 1611                 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1612         if (m->dirty || m->hold_count || m->busy || m->wire_count ||
 1613             (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
 1614                 return (0);
 1615         }
 1616         pmap_remove_all(m);
 1617         if (m->dirty)
 1618                 return (0);
 1619         vm_page_free(m);
 1620         return (1);
 1621 }
 1622 
 1623 /*
 1624  * vm_page_cache
 1625  *
 1626  * Put the specified page onto the page cache queue (if appropriate).
 1627  *
 1628  * This routine may not block.
 1629  */
 1630 void
 1631 vm_page_cache(vm_page_t m)
 1632 {
 1633         vm_object_t object;
 1634         vm_page_t root;
 1635 
 1636         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1637         object = m->object;
 1638         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1639         if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
 1640             m->hold_count || m->wire_count) {
 1641                 panic("vm_page_cache: attempting to cache busy page");
 1642         }
 1643         pmap_remove_all(m);
 1644         if (m->dirty != 0)
 1645                 panic("vm_page_cache: page %p is dirty", m);
 1646         if (m->valid == 0 || object->type == OBJT_DEFAULT ||
 1647             (object->type == OBJT_SWAP &&
 1648             !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
 1649                 /*
 1650                  * Hypothesis: A cache-elgible page belonging to a
 1651                  * default object or swap object but without a backing
 1652                  * store must be zero filled.
 1653                  */
 1654                 vm_page_free(m);
 1655                 return;
 1656         }
 1657         KASSERT((m->flags & PG_CACHED) == 0,
 1658             ("vm_page_cache: page %p is already cached", m));
 1659         cnt.v_tcached++;
 1660 
 1661         /*
 1662          * Remove the page from the paging queues.
 1663          */
 1664         vm_pageq_remove(m);
 1665 
 1666         /*
 1667          * Remove the page from the object's collection of resident
 1668          * pages. 
 1669          */
 1670         if (m != object->root)
 1671                 vm_page_splay(m->pindex, object->root);
 1672         if (m->left == NULL)
 1673                 root = m->right;
 1674         else {
 1675                 root = vm_page_splay(m->pindex, m->left);
 1676                 root->right = m->right;
 1677         }
 1678         object->root = root;
 1679         TAILQ_REMOVE(&object->memq, m, listq);
 1680         object->resident_page_count--;
 1681         object->generation++;
 1682 
 1683         /*
 1684          * Restore the default memory attribute to the page.
 1685          */
 1686         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
 1687                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
 1688 
 1689         /*
 1690          * Insert the page into the object's collection of cached pages
 1691          * and the physical memory allocator's cache/free page queues.
 1692          */
 1693         vm_page_flag_clear(m, PG_ZERO);
 1694         mtx_lock(&vm_page_queue_free_mtx);
 1695         m->flags |= PG_CACHED;
 1696         cnt.v_cache_count++;
 1697         root = object->cache;
 1698         if (root == NULL) {
 1699                 m->left = NULL;
 1700                 m->right = NULL;
 1701         } else {
 1702                 root = vm_page_splay(m->pindex, root);
 1703                 if (m->pindex < root->pindex) {
 1704                         m->left = root->left;
 1705                         m->right = root;
 1706                         root->left = NULL;
 1707                 } else if (__predict_false(m->pindex == root->pindex))
 1708                         panic("vm_page_cache: offset already cached");
 1709                 else {
 1710                         m->right = root->right;
 1711                         m->left = root;
 1712                         root->right = NULL;
 1713                 }
 1714         }
 1715         object->cache = m;
 1716 #if VM_NRESERVLEVEL > 0
 1717         if (!vm_reserv_free_page(m)) {
 1718 #else
 1719         if (TRUE) {
 1720 #endif
 1721                 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
 1722                 vm_phys_free_pages(m, 0);
 1723         }
 1724         vm_page_free_wakeup();
 1725         mtx_unlock(&vm_page_queue_free_mtx);
 1726 
 1727         /*
 1728          * Increment the vnode's hold count if this is the object's only
 1729          * cached page.  Decrement the vnode's hold count if this was
 1730          * the object's only resident page.
 1731          */
 1732         if (object->type == OBJT_VNODE) {
 1733                 if (root == NULL && object->resident_page_count != 0)
 1734                         vhold(object->handle);
 1735                 else if (root != NULL && object->resident_page_count == 0)
 1736                         vdrop(object->handle);
 1737         }
 1738 }
 1739 
 1740 /*
 1741  * vm_page_dontneed
 1742  *
 1743  *      Cache, deactivate, or do nothing as appropriate.  This routine
 1744  *      is typically used by madvise() MADV_DONTNEED.
 1745  *
 1746  *      Generally speaking we want to move the page into the cache so
 1747  *      it gets reused quickly.  However, this can result in a silly syndrome
 1748  *      due to the page recycling too quickly.  Small objects will not be
 1749  *      fully cached.  On the otherhand, if we move the page to the inactive
 1750  *      queue we wind up with a problem whereby very large objects 
 1751  *      unnecessarily blow away our inactive and cache queues.
 1752  *
 1753  *      The solution is to move the pages based on a fixed weighting.  We
 1754  *      either leave them alone, deactivate them, or move them to the cache,
 1755  *      where moving them to the cache has the highest weighting.
 1756  *      By forcing some pages into other queues we eventually force the
 1757  *      system to balance the queues, potentially recovering other unrelated
 1758  *      space from active.  The idea is to not force this to happen too
 1759  *      often.
 1760  */
 1761 void
 1762 vm_page_dontneed(vm_page_t m)
 1763 {
 1764         static int dnweight;
 1765         int dnw;
 1766         int head;
 1767 
 1768         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1769         dnw = ++dnweight;
 1770 
 1771         /*
 1772          * occassionally leave the page alone
 1773          */
 1774         if ((dnw & 0x01F0) == 0 ||
 1775             VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) {
 1776                 if (m->act_count >= ACT_INIT)
 1777                         --m->act_count;
 1778                 return;
 1779         }
 1780 
 1781         /*
 1782          * Clear any references to the page.  Otherwise, the page daemon will
 1783          * immediately reactivate the page.
 1784          */
 1785         vm_page_flag_clear(m, PG_REFERENCED);
 1786         pmap_clear_reference(m);
 1787 
 1788         if (m->dirty == 0 && pmap_is_modified(m))
 1789                 vm_page_dirty(m);
 1790 
 1791         if (m->dirty || (dnw & 0x0070) == 0) {
 1792                 /*
 1793                  * Deactivate the page 3 times out of 32.
 1794                  */
 1795                 head = 0;
 1796         } else {
 1797                 /*
 1798                  * Cache the page 28 times out of every 32.  Note that
 1799                  * the page is deactivated instead of cached, but placed
 1800                  * at the head of the queue instead of the tail.
 1801                  */
 1802                 head = 1;
 1803         }
 1804         _vm_page_deactivate(m, head);
 1805 }
 1806 
 1807 /*
 1808  * Grab a page, waiting until we are waken up due to the page
 1809  * changing state.  We keep on waiting, if the page continues
 1810  * to be in the object.  If the page doesn't exist, first allocate it
 1811  * and then conditionally zero it.
 1812  *
 1813  * This routine may block.
 1814  */
 1815 vm_page_t
 1816 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
 1817 {
 1818         vm_page_t m;
 1819 
 1820         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1821 retrylookup:
 1822         if ((m = vm_page_lookup(object, pindex)) != NULL) {
 1823                 if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
 1824                         if ((allocflags & VM_ALLOC_RETRY) == 0)
 1825                                 return (NULL);
 1826                         goto retrylookup;
 1827                 } else {
 1828                         if ((allocflags & VM_ALLOC_WIRED) != 0) {
 1829                                 vm_page_lock_queues();
 1830                                 vm_page_wire(m);
 1831                                 vm_page_unlock_queues();
 1832                         }
 1833                         if ((allocflags & VM_ALLOC_NOBUSY) == 0)
 1834                                 vm_page_busy(m);
 1835                         return (m);
 1836                 }
 1837         }
 1838         m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
 1839         if (m == NULL) {
 1840                 VM_OBJECT_UNLOCK(object);
 1841                 VM_WAIT;
 1842                 VM_OBJECT_LOCK(object);
 1843                 if ((allocflags & VM_ALLOC_RETRY) == 0)
 1844                         return (NULL);
 1845                 goto retrylookup;
 1846         } else if (m->valid != 0)
 1847                 return (m);
 1848         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
 1849                 pmap_zero_page(m);
 1850         return (m);
 1851 }
 1852 
 1853 /*
 1854  * Mapping function for valid bits or for dirty bits in
 1855  * a page.  May not block.
 1856  *
 1857  * Inputs are required to range within a page.
 1858  */
 1859 int
 1860 vm_page_bits(int base, int size)
 1861 {
 1862         int first_bit;
 1863         int last_bit;
 1864 
 1865         KASSERT(
 1866             base + size <= PAGE_SIZE,
 1867             ("vm_page_bits: illegal base/size %d/%d", base, size)
 1868         );
 1869 
 1870         if (size == 0)          /* handle degenerate case */
 1871                 return (0);
 1872 
 1873         first_bit = base >> DEV_BSHIFT;
 1874         last_bit = (base + size - 1) >> DEV_BSHIFT;
 1875 
 1876         return ((2 << last_bit) - (1 << first_bit));
 1877 }
 1878 
 1879 /*
 1880  *      vm_page_set_valid:
 1881  *
 1882  *      Sets portions of a page valid.  The arguments are expected
 1883  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
 1884  *      of any partial chunks touched by the range.  The invalid portion of
 1885  *      such chunks will be zeroed.
 1886  *
 1887  *      (base + size) must be less then or equal to PAGE_SIZE.
 1888  */
 1889 void
 1890 vm_page_set_valid(vm_page_t m, int base, int size)
 1891 {
 1892         int endoff, frag;
 1893 
 1894         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1895         if (size == 0)  /* handle degenerate case */
 1896                 return;
 1897 
 1898         /*
 1899          * If the base is not DEV_BSIZE aligned and the valid
 1900          * bit is clear, we have to zero out a portion of the
 1901          * first block.
 1902          */
 1903         if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
 1904             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
 1905                 pmap_zero_page_area(m, frag, base - frag);
 1906 
 1907         /*
 1908          * If the ending offset is not DEV_BSIZE aligned and the 
 1909          * valid bit is clear, we have to zero out a portion of
 1910          * the last block.
 1911          */
 1912         endoff = base + size;
 1913         if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
 1914             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
 1915                 pmap_zero_page_area(m, endoff,
 1916                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
 1917 
 1918         /*
 1919          * Assert that no previously invalid block that is now being validated
 1920          * is already dirty. 
 1921          */
 1922         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
 1923             ("vm_page_set_valid: page %p is dirty", m)); 
 1924 
 1925         /*
 1926          * Set valid bits inclusive of any overlap.
 1927          */
 1928         m->valid |= vm_page_bits(base, size);
 1929 }
 1930 
 1931 /*
 1932  *      vm_page_set_validclean:
 1933  *
 1934  *      Sets portions of a page valid and clean.  The arguments are expected
 1935  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
 1936  *      of any partial chunks touched by the range.  The invalid portion of
 1937  *      such chunks will be zero'd.
 1938  *
 1939  *      This routine may not block.
 1940  *
 1941  *      (base + size) must be less then or equal to PAGE_SIZE.
 1942  */
 1943 void
 1944 vm_page_set_validclean(vm_page_t m, int base, int size)
 1945 {
 1946         int pagebits;
 1947         int frag;
 1948         int endoff;
 1949 
 1950         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1951         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1952         if (size == 0)  /* handle degenerate case */
 1953                 return;
 1954 
 1955         /*
 1956          * If the base is not DEV_BSIZE aligned and the valid
 1957          * bit is clear, we have to zero out a portion of the
 1958          * first block.
 1959          */
 1960         if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
 1961             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
 1962                 pmap_zero_page_area(m, frag, base - frag);
 1963 
 1964         /*
 1965          * If the ending offset is not DEV_BSIZE aligned and the 
 1966          * valid bit is clear, we have to zero out a portion of
 1967          * the last block.
 1968          */
 1969         endoff = base + size;
 1970         if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
 1971             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
 1972                 pmap_zero_page_area(m, endoff,
 1973                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
 1974 
 1975         /*
 1976          * Set valid, clear dirty bits.  If validating the entire
 1977          * page we can safely clear the pmap modify bit.  We also
 1978          * use this opportunity to clear the VPO_NOSYNC flag.  If a process
 1979          * takes a write fault on a MAP_NOSYNC memory area the flag will
 1980          * be set again.
 1981          *
 1982          * We set valid bits inclusive of any overlap, but we can only
 1983          * clear dirty bits for DEV_BSIZE chunks that are fully within
 1984          * the range.
 1985          */
 1986         pagebits = vm_page_bits(base, size);
 1987         m->valid |= pagebits;
 1988 #if 0   /* NOT YET */
 1989         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
 1990                 frag = DEV_BSIZE - frag;
 1991                 base += frag;
 1992                 size -= frag;
 1993                 if (size < 0)
 1994                         size = 0;
 1995         }
 1996         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
 1997 #endif
 1998         m->dirty &= ~pagebits;
 1999         if (base == 0 && size == PAGE_SIZE) {
 2000                 pmap_clear_modify(m);
 2001                 m->oflags &= ~VPO_NOSYNC;
 2002         }
 2003 }
 2004 
 2005 void
 2006 vm_page_clear_dirty(vm_page_t m, int base, int size)
 2007 {
 2008 
 2009         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2010         m->dirty &= ~vm_page_bits(base, size);
 2011 }
 2012 
 2013 /*
 2014  *      vm_page_set_invalid:
 2015  *
 2016  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
 2017  *      valid and dirty bits for the effected areas are cleared.
 2018  *
 2019  *      May not block.
 2020  */
 2021 void
 2022 vm_page_set_invalid(vm_page_t m, int base, int size)
 2023 {
 2024         int bits;
 2025 
 2026         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2027         bits = vm_page_bits(base, size);
 2028         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2029         if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
 2030                 pmap_remove_all(m);
 2031         m->valid &= ~bits;
 2032         m->dirty &= ~bits;
 2033         m->object->generation++;
 2034 }
 2035 
 2036 /*
 2037  * vm_page_zero_invalid()
 2038  *
 2039  *      The kernel assumes that the invalid portions of a page contain 
 2040  *      garbage, but such pages can be mapped into memory by user code.
 2041  *      When this occurs, we must zero out the non-valid portions of the
 2042  *      page so user code sees what it expects.
 2043  *
 2044  *      Pages are most often semi-valid when the end of a file is mapped 
 2045  *      into memory and the file's size is not page aligned.
 2046  */
 2047 void
 2048 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
 2049 {
 2050         int b;
 2051         int i;
 2052 
 2053         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2054         /*
 2055          * Scan the valid bits looking for invalid sections that
 2056          * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
 2057          * valid bit may be set ) have already been zerod by
 2058          * vm_page_set_validclean().
 2059          */
 2060         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
 2061                 if (i == (PAGE_SIZE / DEV_BSIZE) || 
 2062                     (m->valid & (1 << i))
 2063                 ) {
 2064                         if (i > b) {
 2065                                 pmap_zero_page_area(m, 
 2066                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
 2067                         }
 2068                         b = i + 1;
 2069                 }
 2070         }
 2071 
 2072         /*
 2073          * setvalid is TRUE when we can safely set the zero'd areas
 2074          * as being valid.  We can do this if there are no cache consistancy
 2075          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
 2076          */
 2077         if (setvalid)
 2078                 m->valid = VM_PAGE_BITS_ALL;
 2079 }
 2080 
 2081 /*
 2082  *      vm_page_is_valid:
 2083  *
 2084  *      Is (partial) page valid?  Note that the case where size == 0
 2085  *      will return FALSE in the degenerate case where the page is
 2086  *      entirely invalid, and TRUE otherwise.
 2087  *
 2088  *      May not block.
 2089  */
 2090 int
 2091 vm_page_is_valid(vm_page_t m, int base, int size)
 2092 {
 2093         int bits = vm_page_bits(base, size);
 2094 
 2095         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2096         if (m->valid && ((m->valid & bits) == bits))
 2097                 return 1;
 2098         else
 2099                 return 0;
 2100 }
 2101 
 2102 /*
 2103  * update dirty bits from pmap/mmu.  May not block.
 2104  */
 2105 void
 2106 vm_page_test_dirty(vm_page_t m)
 2107 {
 2108         if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
 2109                 vm_page_dirty(m);
 2110         }
 2111 }
 2112 
 2113 int so_zerocp_fullpage = 0;
 2114 
 2115 /*
 2116  *      Replace the given page with a copy.  The copied page assumes
 2117  *      the portion of the given page's "wire_count" that is not the
 2118  *      responsibility of this copy-on-write mechanism.
 2119  *
 2120  *      The object containing the given page must have a non-zero
 2121  *      paging-in-progress count and be locked.
 2122  */
 2123 void
 2124 vm_page_cowfault(vm_page_t m)
 2125 {
 2126         vm_page_t mnew;
 2127         vm_object_t object;
 2128         vm_pindex_t pindex;
 2129 
 2130         object = m->object;
 2131         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2132         KASSERT(object->paging_in_progress != 0,
 2133             ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
 2134             object)); 
 2135         pindex = m->pindex;
 2136 
 2137  retry_alloc:
 2138         pmap_remove_all(m);
 2139         vm_page_remove(m);
 2140         mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
 2141         if (mnew == NULL) {
 2142                 vm_page_insert(m, object, pindex);
 2143                 vm_page_unlock_queues();
 2144                 VM_OBJECT_UNLOCK(object);
 2145                 VM_WAIT;
 2146                 VM_OBJECT_LOCK(object);
 2147                 if (m == vm_page_lookup(object, pindex)) {
 2148                         vm_page_lock_queues();
 2149                         goto retry_alloc;
 2150                 } else {
 2151                         /*
 2152                          * Page disappeared during the wait.
 2153                          */
 2154                         vm_page_lock_queues();
 2155                         return;
 2156                 }
 2157         }
 2158 
 2159         if (m->cow == 0) {
 2160                 /* 
 2161                  * check to see if we raced with an xmit complete when 
 2162                  * waiting to allocate a page.  If so, put things back 
 2163                  * the way they were 
 2164                  */
 2165                 vm_page_free(mnew);
 2166                 vm_page_insert(m, object, pindex);
 2167         } else { /* clear COW & copy page */
 2168                 if (!so_zerocp_fullpage)
 2169                         pmap_copy_page(m, mnew);
 2170                 mnew->valid = VM_PAGE_BITS_ALL;
 2171                 vm_page_dirty(mnew);
 2172                 mnew->wire_count = m->wire_count - m->cow;
 2173                 m->wire_count = m->cow;
 2174         }
 2175 }
 2176 
 2177 void 
 2178 vm_page_cowclear(vm_page_t m)
 2179 {
 2180 
 2181         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2182         if (m->cow) {
 2183                 m->cow--;
 2184                 /* 
 2185                  * let vm_fault add back write permission  lazily
 2186                  */
 2187         } 
 2188         /*
 2189          *  sf_buf_free() will free the page, so we needn't do it here
 2190          */ 
 2191 }
 2192 
 2193 int
 2194 vm_page_cowsetup(vm_page_t m)
 2195 {
 2196 
 2197         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2198         if (m->cow == USHRT_MAX - 1)
 2199                 return (EBUSY);
 2200         m->cow++;
 2201         pmap_remove_write(m);
 2202         return (0);
 2203 }
 2204 
 2205 #include "opt_ddb.h"
 2206 #ifdef DDB
 2207 #include <sys/kernel.h>
 2208 
 2209 #include <ddb/ddb.h>
 2210 
 2211 DB_SHOW_COMMAND(page, vm_page_print_page_info)
 2212 {
 2213         db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
 2214         db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
 2215         db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
 2216         db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
 2217         db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
 2218         db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
 2219         db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
 2220         db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
 2221         db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
 2222         db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
 2223 }
 2224 
 2225 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
 2226 {
 2227                 
 2228         db_printf("PQ_FREE:");
 2229         db_printf(" %d", cnt.v_free_count);
 2230         db_printf("\n");
 2231                 
 2232         db_printf("PQ_CACHE:");
 2233         db_printf(" %d", cnt.v_cache_count);
 2234         db_printf("\n");
 2235 
 2236         db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
 2237                 *vm_page_queues[PQ_ACTIVE].cnt,
 2238                 *vm_page_queues[PQ_INACTIVE].cnt);
 2239 }
 2240 #endif /* DDB */

Cache object: b8cdf9213ff0669d4f01920066773cb7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.