The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * The Mach Operating System project at Carnegie-Mellon University.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
   34  */
   35 
   36 /*-
   37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   38  * All rights reserved.
   39  *
   40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   41  *
   42  * Permission to use, copy, modify and distribute this software and
   43  * its documentation is hereby granted, provided that both the copyright
   44  * notice and this permission notice appear in all copies of the
   45  * software, derivative works or modified versions, and any portions
   46  * thereof, and that both notices appear in supporting documentation.
   47  *
   48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   51  *
   52  * Carnegie Mellon requests users of this software to return to
   53  *
   54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   55  *  School of Computer Science
   56  *  Carnegie Mellon University
   57  *  Pittsburgh PA 15213-3890
   58  *
   59  * any improvements or extensions that they make and grant Carnegie the
   60  * rights to redistribute these changes.
   61  */
   62 
   63 /*
   64  *                      GENERAL RULES ON VM_PAGE MANIPULATION
   65  *
   66  *      - a pageq mutex is required when adding or removing a page from a
   67  *        page queue (vm_page_queue[]), regardless of other mutexes or the
   68  *        busy state of a page.
   69  *
   70  *      - The object mutex is held when inserting or removing
   71  *        pages from an object (vm_page_insert() or vm_page_remove()).
   72  *
   73  */
   74 
   75 /*
   76  *      Resident memory management module.
   77  */
   78 
   79 #include <sys/cdefs.h>
   80 __FBSDID("$FreeBSD: releng/9.1/sys/vm/vm_page.c 236924 2012-06-11 21:19:59Z kib $");
   81 
   82 #include "opt_vm.h"
   83 
   84 #include <sys/param.h>
   85 #include <sys/systm.h>
   86 #include <sys/lock.h>
   87 #include <sys/kernel.h>
   88 #include <sys/limits.h>
   89 #include <sys/malloc.h>
   90 #include <sys/msgbuf.h>
   91 #include <sys/mutex.h>
   92 #include <sys/proc.h>
   93 #include <sys/sysctl.h>
   94 #include <sys/vmmeter.h>
   95 #include <sys/vnode.h>
   96 
   97 #include <vm/vm.h>
   98 #include <vm/pmap.h>
   99 #include <vm/vm_param.h>
  100 #include <vm/vm_kern.h>
  101 #include <vm/vm_object.h>
  102 #include <vm/vm_page.h>
  103 #include <vm/vm_pageout.h>
  104 #include <vm/vm_pager.h>
  105 #include <vm/vm_phys.h>
  106 #include <vm/vm_reserv.h>
  107 #include <vm/vm_extern.h>
  108 #include <vm/uma.h>
  109 #include <vm/uma_int.h>
  110 
  111 #include <machine/md_var.h>
  112 
  113 /*
  114  *      Associated with page of user-allocatable memory is a
  115  *      page structure.
  116  */
  117 
  118 struct vpgqueues vm_page_queues[PQ_COUNT];
  119 struct vpglocks vm_page_queue_lock;
  120 struct vpglocks vm_page_queue_free_lock;
  121 
  122 struct vpglocks pa_lock[PA_LOCK_COUNT];
  123 
  124 vm_page_t vm_page_array;
  125 long vm_page_array_size;
  126 long first_page;
  127 int vm_page_zero_count;
  128 
  129 static int boot_pages = UMA_BOOT_PAGES;
  130 TUNABLE_INT("vm.boot_pages", &boot_pages);
  131 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
  132         "number of pages allocated for bootstrapping the VM system");
  133 
  134 int pa_tryrelock_restart;
  135 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
  136     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
  137 
  138 static uma_zone_t fakepg_zone;
  139 
  140 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
  141 static void vm_page_queue_remove(int queue, vm_page_t m);
  142 static void vm_page_enqueue(int queue, vm_page_t m);
  143 static void vm_page_init_fakepg(void *dummy);
  144 
  145 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
  146 
  147 static void
  148 vm_page_init_fakepg(void *dummy)
  149 {
  150 
  151         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
  152             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 
  153 }
  154 
  155 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
  156 #if PAGE_SIZE == 32768
  157 #ifdef CTASSERT
  158 CTASSERT(sizeof(u_long) >= 8);
  159 #endif
  160 #endif
  161 
  162 /*
  163  * Try to acquire a physical address lock while a pmap is locked.  If we
  164  * fail to trylock we unlock and lock the pmap directly and cache the
  165  * locked pa in *locked.  The caller should then restart their loop in case
  166  * the virtual to physical mapping has changed.
  167  */
  168 int
  169 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
  170 {
  171         vm_paddr_t lockpa;
  172 
  173         lockpa = *locked;
  174         *locked = pa;
  175         if (lockpa) {
  176                 PA_LOCK_ASSERT(lockpa, MA_OWNED);
  177                 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
  178                         return (0);
  179                 PA_UNLOCK(lockpa);
  180         }
  181         if (PA_TRYLOCK(pa))
  182                 return (0);
  183         PMAP_UNLOCK(pmap);
  184         atomic_add_int(&pa_tryrelock_restart, 1);
  185         PA_LOCK(pa);
  186         PMAP_LOCK(pmap);
  187         return (EAGAIN);
  188 }
  189 
  190 /*
  191  *      vm_set_page_size:
  192  *
  193  *      Sets the page size, perhaps based upon the memory
  194  *      size.  Must be called before any use of page-size
  195  *      dependent functions.
  196  */
  197 void
  198 vm_set_page_size(void)
  199 {
  200         if (cnt.v_page_size == 0)
  201                 cnt.v_page_size = PAGE_SIZE;
  202         if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
  203                 panic("vm_set_page_size: page size not a power of two");
  204 }
  205 
  206 /*
  207  *      vm_page_blacklist_lookup:
  208  *
  209  *      See if a physical address in this page has been listed
  210  *      in the blacklist tunable.  Entries in the tunable are
  211  *      separated by spaces or commas.  If an invalid integer is
  212  *      encountered then the rest of the string is skipped.
  213  */
  214 static int
  215 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
  216 {
  217         vm_paddr_t bad;
  218         char *cp, *pos;
  219 
  220         for (pos = list; *pos != '\0'; pos = cp) {
  221                 bad = strtoq(pos, &cp, 0);
  222                 if (*cp != '\0') {
  223                         if (*cp == ' ' || *cp == ',') {
  224                                 cp++;
  225                                 if (cp == pos)
  226                                         continue;
  227                         } else
  228                                 break;
  229                 }
  230                 if (pa == trunc_page(bad))
  231                         return (1);
  232         }
  233         return (0);
  234 }
  235 
  236 /*
  237  *      vm_page_startup:
  238  *
  239  *      Initializes the resident memory module.
  240  *
  241  *      Allocates memory for the page cells, and
  242  *      for the object/offset-to-page hash table headers.
  243  *      Each page cell is initialized and placed on the free list.
  244  */
  245 vm_offset_t
  246 vm_page_startup(vm_offset_t vaddr)
  247 {
  248         vm_offset_t mapped;
  249         vm_paddr_t page_range;
  250         vm_paddr_t new_end;
  251         int i;
  252         vm_paddr_t pa;
  253         vm_paddr_t last_pa;
  254         char *list;
  255 
  256         /* the biggest memory array is the second group of pages */
  257         vm_paddr_t end;
  258         vm_paddr_t biggestsize;
  259         vm_paddr_t low_water, high_water;
  260         int biggestone;
  261 
  262         biggestsize = 0;
  263         biggestone = 0;
  264         vaddr = round_page(vaddr);
  265 
  266         for (i = 0; phys_avail[i + 1]; i += 2) {
  267                 phys_avail[i] = round_page(phys_avail[i]);
  268                 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
  269         }
  270 
  271         low_water = phys_avail[0];
  272         high_water = phys_avail[1];
  273 
  274         for (i = 0; phys_avail[i + 1]; i += 2) {
  275                 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
  276 
  277                 if (size > biggestsize) {
  278                         biggestone = i;
  279                         biggestsize = size;
  280                 }
  281                 if (phys_avail[i] < low_water)
  282                         low_water = phys_avail[i];
  283                 if (phys_avail[i + 1] > high_water)
  284                         high_water = phys_avail[i + 1];
  285         }
  286 
  287 #ifdef XEN
  288         low_water = 0;
  289 #endif  
  290 
  291         end = phys_avail[biggestone+1];
  292 
  293         /*
  294          * Initialize the locks.
  295          */
  296         mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
  297             MTX_RECURSE);
  298         mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
  299             MTX_DEF);
  300 
  301         /* Setup page locks. */
  302         for (i = 0; i < PA_LOCK_COUNT; i++)
  303                 mtx_init(&pa_lock[i].data, "page lock", NULL, MTX_DEF);
  304 
  305         /*
  306          * Initialize the queue headers for the hold queue, the active queue,
  307          * and the inactive queue.
  308          */
  309         for (i = 0; i < PQ_COUNT; i++)
  310                 TAILQ_INIT(&vm_page_queues[i].pl);
  311         vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
  312         vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
  313         vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
  314 
  315         /*
  316          * Allocate memory for use when boot strapping the kernel memory
  317          * allocator.
  318          */
  319         new_end = end - (boot_pages * UMA_SLAB_SIZE);
  320         new_end = trunc_page(new_end);
  321         mapped = pmap_map(&vaddr, new_end, end,
  322             VM_PROT_READ | VM_PROT_WRITE);
  323         bzero((void *)mapped, end - new_end);
  324         uma_startup((void *)mapped, boot_pages);
  325 
  326 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
  327     defined(__mips__)
  328         /*
  329          * Allocate a bitmap to indicate that a random physical page
  330          * needs to be included in a minidump.
  331          *
  332          * The amd64 port needs this to indicate which direct map pages
  333          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
  334          *
  335          * However, i386 still needs this workspace internally within the
  336          * minidump code.  In theory, they are not needed on i386, but are
  337          * included should the sf_buf code decide to use them.
  338          */
  339         last_pa = 0;
  340         for (i = 0; dump_avail[i + 1] != 0; i += 2)
  341                 if (dump_avail[i + 1] > last_pa)
  342                         last_pa = dump_avail[i + 1];
  343         page_range = last_pa / PAGE_SIZE;
  344         vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
  345         new_end -= vm_page_dump_size;
  346         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
  347             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
  348         bzero((void *)vm_page_dump, vm_page_dump_size);
  349 #endif
  350 #ifdef __amd64__
  351         /*
  352          * Request that the physical pages underlying the message buffer be
  353          * included in a crash dump.  Since the message buffer is accessed
  354          * through the direct map, they are not automatically included.
  355          */
  356         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
  357         last_pa = pa + round_page(msgbufsize);
  358         while (pa < last_pa) {
  359                 dump_add_page(pa);
  360                 pa += PAGE_SIZE;
  361         }
  362 #endif
  363         /*
  364          * Compute the number of pages of memory that will be available for
  365          * use (taking into account the overhead of a page structure per
  366          * page).
  367          */
  368         first_page = low_water / PAGE_SIZE;
  369 #ifdef VM_PHYSSEG_SPARSE
  370         page_range = 0;
  371         for (i = 0; phys_avail[i + 1] != 0; i += 2)
  372                 page_range += atop(phys_avail[i + 1] - phys_avail[i]);
  373 #elif defined(VM_PHYSSEG_DENSE)
  374         page_range = high_water / PAGE_SIZE - first_page;
  375 #else
  376 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
  377 #endif
  378         end = new_end;
  379 
  380         /*
  381          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
  382          */
  383         vaddr += PAGE_SIZE;
  384 
  385         /*
  386          * Initialize the mem entry structures now, and put them in the free
  387          * queue.
  388          */
  389         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
  390         mapped = pmap_map(&vaddr, new_end, end,
  391             VM_PROT_READ | VM_PROT_WRITE);
  392         vm_page_array = (vm_page_t) mapped;
  393 #if VM_NRESERVLEVEL > 0
  394         /*
  395          * Allocate memory for the reservation management system's data
  396          * structures.
  397          */
  398         new_end = vm_reserv_startup(&vaddr, new_end, high_water);
  399 #endif
  400 #if defined(__amd64__) || defined(__mips__)
  401         /*
  402          * pmap_map on amd64 and mips can come out of the direct-map, not kvm
  403          * like i386, so the pages must be tracked for a crashdump to include
  404          * this data.  This includes the vm_page_array and the early UMA
  405          * bootstrap pages.
  406          */
  407         for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
  408                 dump_add_page(pa);
  409 #endif  
  410         phys_avail[biggestone + 1] = new_end;
  411 
  412         /*
  413          * Clear all of the page structures
  414          */
  415         bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
  416         for (i = 0; i < page_range; i++)
  417                 vm_page_array[i].order = VM_NFREEORDER;
  418         vm_page_array_size = page_range;
  419 
  420         /*
  421          * Initialize the physical memory allocator.
  422          */
  423         vm_phys_init();
  424 
  425         /*
  426          * Add every available physical page that is not blacklisted to
  427          * the free lists.
  428          */
  429         cnt.v_page_count = 0;
  430         cnt.v_free_count = 0;
  431         list = getenv("vm.blacklist");
  432         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  433                 pa = phys_avail[i];
  434                 last_pa = phys_avail[i + 1];
  435                 while (pa < last_pa) {
  436                         if (list != NULL &&
  437                             vm_page_blacklist_lookup(list, pa))
  438                                 printf("Skipping page with pa 0x%jx\n",
  439                                     (uintmax_t)pa);
  440                         else
  441                                 vm_phys_add_page(pa);
  442                         pa += PAGE_SIZE;
  443                 }
  444         }
  445         freeenv(list);
  446 #if VM_NRESERVLEVEL > 0
  447         /*
  448          * Initialize the reservation management system.
  449          */
  450         vm_reserv_init();
  451 #endif
  452         return (vaddr);
  453 }
  454 
  455 
  456 CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0);
  457 
  458 void
  459 vm_page_aflag_set(vm_page_t m, uint8_t bits)
  460 {
  461         uint32_t *addr, val;
  462 
  463         /*
  464          * The PGA_WRITEABLE flag can only be set if the page is managed and
  465          * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
  466          */
  467         KASSERT((bits & PGA_WRITEABLE) == 0 ||
  468             (m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == VPO_BUSY,
  469             ("PGA_WRITEABLE and !VPO_BUSY"));
  470 
  471         /*
  472          * We want to use atomic updates for m->aflags, which is a
  473          * byte wide.  Not all architectures provide atomic operations
  474          * on the single-byte destination.  Punt and access the whole
  475          * 4-byte word with an atomic update.  Parallel non-atomic
  476          * updates to the fields included in the update by proximity
  477          * are handled properly by atomics.
  478          */
  479         addr = (void *)&m->aflags;
  480         MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
  481         val = bits;
  482 #if BYTE_ORDER == BIG_ENDIAN
  483         val <<= 24;
  484 #endif
  485         atomic_set_32(addr, val);
  486 } 
  487 
  488 void
  489 vm_page_aflag_clear(vm_page_t m, uint8_t bits)
  490 {
  491         uint32_t *addr, val;
  492 
  493         /*
  494          * The PGA_REFERENCED flag can only be cleared if the object
  495          * containing the page is locked.
  496          */
  497         KASSERT((bits & PGA_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
  498             ("PGA_REFERENCED and !VM_OBJECT_LOCKED"));
  499 
  500         /*
  501          * See the comment in vm_page_aflag_set().
  502          */
  503         addr = (void *)&m->aflags;
  504         MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
  505         val = bits;
  506 #if BYTE_ORDER == BIG_ENDIAN
  507         val <<= 24;
  508 #endif
  509         atomic_clear_32(addr, val);
  510 }
  511 
  512 void
  513 vm_page_reference(vm_page_t m)
  514 {
  515 
  516         vm_page_aflag_set(m, PGA_REFERENCED);
  517 }
  518 
  519 void
  520 vm_page_busy(vm_page_t m)
  521 {
  522 
  523         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  524         KASSERT((m->oflags & VPO_BUSY) == 0,
  525             ("vm_page_busy: page already busy!!!"));
  526         m->oflags |= VPO_BUSY;
  527 }
  528 
  529 /*
  530  *      vm_page_flash:
  531  *
  532  *      wakeup anyone waiting for the page.
  533  */
  534 void
  535 vm_page_flash(vm_page_t m)
  536 {
  537 
  538         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  539         if (m->oflags & VPO_WANTED) {
  540                 m->oflags &= ~VPO_WANTED;
  541                 wakeup(m);
  542         }
  543 }
  544 
  545 /*
  546  *      vm_page_wakeup:
  547  *
  548  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
  549  *      page.
  550  *
  551  */
  552 void
  553 vm_page_wakeup(vm_page_t m)
  554 {
  555 
  556         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  557         KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
  558         m->oflags &= ~VPO_BUSY;
  559         vm_page_flash(m);
  560 }
  561 
  562 void
  563 vm_page_io_start(vm_page_t m)
  564 {
  565 
  566         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  567         m->busy++;
  568 }
  569 
  570 void
  571 vm_page_io_finish(vm_page_t m)
  572 {
  573 
  574         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  575         KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
  576         m->busy--;
  577         if (m->busy == 0)
  578                 vm_page_flash(m);
  579 }
  580 
  581 /*
  582  * Keep page from being freed by the page daemon
  583  * much of the same effect as wiring, except much lower
  584  * overhead and should be used only for *very* temporary
  585  * holding ("wiring").
  586  */
  587 void
  588 vm_page_hold(vm_page_t mem)
  589 {
  590 
  591         vm_page_lock_assert(mem, MA_OWNED);
  592         mem->hold_count++;
  593 }
  594 
  595 void
  596 vm_page_unhold(vm_page_t mem)
  597 {
  598 
  599         vm_page_lock_assert(mem, MA_OWNED);
  600         --mem->hold_count;
  601         KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
  602         if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
  603                 vm_page_free_toq(mem);
  604 }
  605 
  606 /*
  607  *      vm_page_unhold_pages:
  608  *
  609  *      Unhold each of the pages that is referenced by the given array.
  610  */ 
  611 void
  612 vm_page_unhold_pages(vm_page_t *ma, int count)
  613 {
  614         struct mtx *mtx, *new_mtx;
  615 
  616         mtx = NULL;
  617         for (; count != 0; count--) {
  618                 /*
  619                  * Avoid releasing and reacquiring the same page lock.
  620                  */
  621                 new_mtx = vm_page_lockptr(*ma);
  622                 if (mtx != new_mtx) {
  623                         if (mtx != NULL)
  624                                 mtx_unlock(mtx);
  625                         mtx = new_mtx;
  626                         mtx_lock(mtx);
  627                 }
  628                 vm_page_unhold(*ma);
  629                 ma++;
  630         }
  631         if (mtx != NULL)
  632                 mtx_unlock(mtx);
  633 }
  634 
  635 vm_page_t
  636 PHYS_TO_VM_PAGE(vm_paddr_t pa)
  637 {
  638         vm_page_t m;
  639 
  640 #ifdef VM_PHYSSEG_SPARSE
  641         m = vm_phys_paddr_to_vm_page(pa);
  642         if (m == NULL)
  643                 m = vm_phys_fictitious_to_vm_page(pa);
  644         return (m);
  645 #elif defined(VM_PHYSSEG_DENSE)
  646         long pi;
  647 
  648         pi = atop(pa);
  649         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
  650                 m = &vm_page_array[pi - first_page];
  651                 return (m);
  652         }
  653         return (vm_phys_fictitious_to_vm_page(pa));
  654 #else
  655 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
  656 #endif
  657 }
  658 
  659 /*
  660  *      vm_page_getfake:
  661  *
  662  *      Create a fictitious page with the specified physical address and
  663  *      memory attribute.  The memory attribute is the only the machine-
  664  *      dependent aspect of a fictitious page that must be initialized.
  665  */
  666 vm_page_t
  667 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
  668 {
  669         vm_page_t m;
  670 
  671         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
  672         vm_page_initfake(m, paddr, memattr);
  673         return (m);
  674 }
  675 
  676 void
  677 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
  678 {
  679 
  680         if ((m->flags & PG_FICTITIOUS) != 0) {
  681                 /*
  682                  * The page's memattr might have changed since the
  683                  * previous initialization.  Update the pmap to the
  684                  * new memattr.
  685                  */
  686                 goto memattr;
  687         }
  688         m->phys_addr = paddr;
  689         m->queue = PQ_NONE;
  690         /* Fictitious pages don't use "segind". */
  691         m->flags = PG_FICTITIOUS;
  692         /* Fictitious pages don't use "order" or "pool". */
  693         m->oflags = VPO_BUSY | VPO_UNMANAGED;
  694         m->wire_count = 1;
  695 memattr:
  696         pmap_page_set_memattr(m, memattr);
  697 }
  698 
  699 /*
  700  *      vm_page_putfake:
  701  *
  702  *      Release a fictitious page.
  703  */
  704 void
  705 vm_page_putfake(vm_page_t m)
  706 {
  707 
  708         KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
  709         KASSERT((m->flags & PG_FICTITIOUS) != 0,
  710             ("vm_page_putfake: bad page %p", m));
  711         uma_zfree(fakepg_zone, m);
  712 }
  713 
  714 /*
  715  *      vm_page_updatefake:
  716  *
  717  *      Update the given fictitious page to the specified physical address and
  718  *      memory attribute.
  719  */
  720 void
  721 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
  722 {
  723 
  724         KASSERT((m->flags & PG_FICTITIOUS) != 0,
  725             ("vm_page_updatefake: bad page %p", m));
  726         m->phys_addr = paddr;
  727         pmap_page_set_memattr(m, memattr);
  728 }
  729 
  730 /*
  731  *      vm_page_free:
  732  *
  733  *      Free a page.
  734  */
  735 void
  736 vm_page_free(vm_page_t m)
  737 {
  738 
  739         m->flags &= ~PG_ZERO;
  740         vm_page_free_toq(m);
  741 }
  742 
  743 /*
  744  *      vm_page_free_zero:
  745  *
  746  *      Free a page to the zerod-pages queue
  747  */
  748 void
  749 vm_page_free_zero(vm_page_t m)
  750 {
  751 
  752         m->flags |= PG_ZERO;
  753         vm_page_free_toq(m);
  754 }
  755 
  756 /*
  757  *      vm_page_sleep:
  758  *
  759  *      Sleep and release the page and page queues locks.
  760  *
  761  *      The object containing the given page must be locked.
  762  */
  763 void
  764 vm_page_sleep(vm_page_t m, const char *msg)
  765 {
  766 
  767         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  768         if (mtx_owned(&vm_page_queue_mtx))
  769                 vm_page_unlock_queues();
  770         if (mtx_owned(vm_page_lockptr(m)))
  771                 vm_page_unlock(m);
  772 
  773         /*
  774          * It's possible that while we sleep, the page will get
  775          * unbusied and freed.  If we are holding the object
  776          * lock, we will assume we hold a reference to the object
  777          * such that even if m->object changes, we can re-lock
  778          * it.
  779          */
  780         m->oflags |= VPO_WANTED;
  781         msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
  782 }
  783 
  784 /*
  785  *      vm_page_dirty:
  786  *
  787  *      Set all bits in the page's dirty field.
  788  *
  789  *      The object containing the specified page must be locked if the
  790  *      call is made from the machine-independent layer.
  791  *
  792  *      See vm_page_clear_dirty_mask().
  793  */
  794 void
  795 vm_page_dirty(vm_page_t m)
  796 {
  797 
  798         KASSERT((m->flags & PG_CACHED) == 0,
  799             ("vm_page_dirty: page in cache!"));
  800         KASSERT(!VM_PAGE_IS_FREE(m),
  801             ("vm_page_dirty: page is free!"));
  802         KASSERT(m->valid == VM_PAGE_BITS_ALL,
  803             ("vm_page_dirty: page is invalid!"));
  804         m->dirty = VM_PAGE_BITS_ALL;
  805 }
  806 
  807 /*
  808  *      vm_page_splay:
  809  *
  810  *      Implements Sleator and Tarjan's top-down splay algorithm.  Returns
  811  *      the vm_page containing the given pindex.  If, however, that
  812  *      pindex is not found in the vm_object, returns a vm_page that is
  813  *      adjacent to the pindex, coming before or after it.
  814  */
  815 vm_page_t
  816 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
  817 {
  818         struct vm_page dummy;
  819         vm_page_t lefttreemax, righttreemin, y;
  820 
  821         if (root == NULL)
  822                 return (root);
  823         lefttreemax = righttreemin = &dummy;
  824         for (;; root = y) {
  825                 if (pindex < root->pindex) {
  826                         if ((y = root->left) == NULL)
  827                                 break;
  828                         if (pindex < y->pindex) {
  829                                 /* Rotate right. */
  830                                 root->left = y->right;
  831                                 y->right = root;
  832                                 root = y;
  833                                 if ((y = root->left) == NULL)
  834                                         break;
  835                         }
  836                         /* Link into the new root's right tree. */
  837                         righttreemin->left = root;
  838                         righttreemin = root;
  839                 } else if (pindex > root->pindex) {
  840                         if ((y = root->right) == NULL)
  841                                 break;
  842                         if (pindex > y->pindex) {
  843                                 /* Rotate left. */
  844                                 root->right = y->left;
  845                                 y->left = root;
  846                                 root = y;
  847                                 if ((y = root->right) == NULL)
  848                                         break;
  849                         }
  850                         /* Link into the new root's left tree. */
  851                         lefttreemax->right = root;
  852                         lefttreemax = root;
  853                 } else
  854                         break;
  855         }
  856         /* Assemble the new root. */
  857         lefttreemax->right = root->left;
  858         righttreemin->left = root->right;
  859         root->left = dummy.right;
  860         root->right = dummy.left;
  861         return (root);
  862 }
  863 
  864 /*
  865  *      vm_page_insert:         [ internal use only ]
  866  *
  867  *      Inserts the given mem entry into the object and object list.
  868  *
  869  *      The pagetables are not updated but will presumably fault the page
  870  *      in if necessary, or if a kernel page the caller will at some point
  871  *      enter the page into the kernel's pmap.  We are not allowed to block
  872  *      here so we *can't* do this anyway.
  873  *
  874  *      The object and page must be locked.
  875  *      This routine may not block.
  876  */
  877 void
  878 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
  879 {
  880         vm_page_t root;
  881 
  882         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  883         if (m->object != NULL)
  884                 panic("vm_page_insert: page already inserted");
  885 
  886         /*
  887          * Record the object/offset pair in this page
  888          */
  889         m->object = object;
  890         m->pindex = pindex;
  891 
  892         /*
  893          * Now link into the object's ordered list of backed pages.
  894          */
  895         root = object->root;
  896         if (root == NULL) {
  897                 m->left = NULL;
  898                 m->right = NULL;
  899                 TAILQ_INSERT_TAIL(&object->memq, m, listq);
  900         } else {
  901                 root = vm_page_splay(pindex, root);
  902                 if (pindex < root->pindex) {
  903                         m->left = root->left;
  904                         m->right = root;
  905                         root->left = NULL;
  906                         TAILQ_INSERT_BEFORE(root, m, listq);
  907                 } else if (pindex == root->pindex)
  908                         panic("vm_page_insert: offset already allocated");
  909                 else {
  910                         m->right = root->right;
  911                         m->left = root;
  912                         root->right = NULL;
  913                         TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
  914                 }
  915         }
  916         object->root = m;
  917 
  918         /*
  919          * show that the object has one more resident page.
  920          */
  921         object->resident_page_count++;
  922         /*
  923          * Hold the vnode until the last page is released.
  924          */
  925         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
  926                 vhold((struct vnode *)object->handle);
  927 
  928         /*
  929          * Since we are inserting a new and possibly dirty page,
  930          * update the object's OBJ_MIGHTBEDIRTY flag.
  931          */
  932         if (m->aflags & PGA_WRITEABLE)
  933                 vm_object_set_writeable_dirty(object);
  934 }
  935 
  936 /*
  937  *      vm_page_remove:
  938  *                              NOTE: used by device pager as well -wfj
  939  *
  940  *      Removes the given mem entry from the object/offset-page
  941  *      table and the object page list, but do not invalidate/terminate
  942  *      the backing store.
  943  *
  944  *      The object and page must be locked.
  945  *      The underlying pmap entry (if any) is NOT removed here.
  946  *      This routine may not block.
  947  */
  948 void
  949 vm_page_remove(vm_page_t m)
  950 {
  951         vm_object_t object;
  952         vm_page_t next, prev, root;
  953 
  954         if ((m->oflags & VPO_UNMANAGED) == 0)
  955                 vm_page_lock_assert(m, MA_OWNED);
  956         if ((object = m->object) == NULL)
  957                 return;
  958         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  959         if (m->oflags & VPO_BUSY) {
  960                 m->oflags &= ~VPO_BUSY;
  961                 vm_page_flash(m);
  962         }
  963 
  964         /*
  965          * Now remove from the object's list of backed pages.
  966          */
  967         if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
  968                 /*
  969                  * Since the page's successor in the list is also its parent
  970                  * in the tree, its right subtree must be empty.
  971                  */
  972                 next->left = m->left;
  973                 KASSERT(m->right == NULL,
  974                     ("vm_page_remove: page %p has right child", m));
  975         } else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
  976             prev->right == m) {
  977                 /*
  978                  * Since the page's predecessor in the list is also its parent
  979                  * in the tree, its left subtree must be empty.
  980                  */
  981                 KASSERT(m->left == NULL,
  982                     ("vm_page_remove: page %p has left child", m));
  983                 prev->right = m->right;
  984         } else {
  985                 if (m != object->root)
  986                         vm_page_splay(m->pindex, object->root);
  987                 if (m->left == NULL)
  988                         root = m->right;
  989                 else if (m->right == NULL)
  990                         root = m->left;
  991                 else {
  992                         /*
  993                          * Move the page's successor to the root, because
  994                          * pages are usually removed in ascending order.
  995                          */
  996                         if (m->right != next)
  997                                 vm_page_splay(m->pindex, m->right);
  998                         next->left = m->left;
  999                         root = next;
 1000                 }
 1001                 object->root = root;
 1002         }
 1003         TAILQ_REMOVE(&object->memq, m, listq);
 1004 
 1005         /*
 1006          * And show that the object has one fewer resident page.
 1007          */
 1008         object->resident_page_count--;
 1009         /*
 1010          * The vnode may now be recycled.
 1011          */
 1012         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
 1013                 vdrop((struct vnode *)object->handle);
 1014 
 1015         m->object = NULL;
 1016 }
 1017 
 1018 /*
 1019  *      vm_page_lookup:
 1020  *
 1021  *      Returns the page associated with the object/offset
 1022  *      pair specified; if none is found, NULL is returned.
 1023  *
 1024  *      The object must be locked.
 1025  *      This routine may not block.
 1026  *      This is a critical path routine
 1027  */
 1028 vm_page_t
 1029 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
 1030 {
 1031         vm_page_t m;
 1032 
 1033         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1034         if ((m = object->root) != NULL && m->pindex != pindex) {
 1035                 m = vm_page_splay(pindex, m);
 1036                 if ((object->root = m)->pindex != pindex)
 1037                         m = NULL;
 1038         }
 1039         return (m);
 1040 }
 1041 
 1042 /*
 1043  *      vm_page_find_least:
 1044  *
 1045  *      Returns the page associated with the object with least pindex
 1046  *      greater than or equal to the parameter pindex, or NULL.
 1047  *
 1048  *      The object must be locked.
 1049  *      The routine may not block.
 1050  */
 1051 vm_page_t
 1052 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
 1053 {
 1054         vm_page_t m;
 1055 
 1056         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1057         if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
 1058                 if (m->pindex < pindex) {
 1059                         m = vm_page_splay(pindex, object->root);
 1060                         if ((object->root = m)->pindex < pindex)
 1061                                 m = TAILQ_NEXT(m, listq);
 1062                 }
 1063         }
 1064         return (m);
 1065 }
 1066 
 1067 /*
 1068  * Returns the given page's successor (by pindex) within the object if it is
 1069  * resident; if none is found, NULL is returned.
 1070  *
 1071  * The object must be locked.
 1072  */
 1073 vm_page_t
 1074 vm_page_next(vm_page_t m)
 1075 {
 1076         vm_page_t next;
 1077 
 1078         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1079         if ((next = TAILQ_NEXT(m, listq)) != NULL &&
 1080             next->pindex != m->pindex + 1)
 1081                 next = NULL;
 1082         return (next);
 1083 }
 1084 
 1085 /*
 1086  * Returns the given page's predecessor (by pindex) within the object if it is
 1087  * resident; if none is found, NULL is returned.
 1088  *
 1089  * The object must be locked.
 1090  */
 1091 vm_page_t
 1092 vm_page_prev(vm_page_t m)
 1093 {
 1094         vm_page_t prev;
 1095 
 1096         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1097         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
 1098             prev->pindex != m->pindex - 1)
 1099                 prev = NULL;
 1100         return (prev);
 1101 }
 1102 
 1103 /*
 1104  *      vm_page_rename:
 1105  *
 1106  *      Move the given memory entry from its
 1107  *      current object to the specified target object/offset.
 1108  *
 1109  *      The object must be locked.
 1110  *      This routine may not block.
 1111  *
 1112  *      Note: swap associated with the page must be invalidated by the move.  We
 1113  *            have to do this for several reasons:  (1) we aren't freeing the
 1114  *            page, (2) we are dirtying the page, (3) the VM system is probably
 1115  *            moving the page from object A to B, and will then later move
 1116  *            the backing store from A to B and we can't have a conflict.
 1117  *
 1118  *      Note: we *always* dirty the page.  It is necessary both for the
 1119  *            fact that we moved it, and because we may be invalidating
 1120  *            swap.  If the page is on the cache, we have to deactivate it
 1121  *            or vm_page_dirty() will panic.  Dirty pages are not allowed
 1122  *            on the cache.
 1123  */
 1124 void
 1125 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
 1126 {
 1127 
 1128         vm_page_remove(m);
 1129         vm_page_insert(m, new_object, new_pindex);
 1130         vm_page_dirty(m);
 1131 }
 1132 
 1133 /*
 1134  *      Convert all of the given object's cached pages that have a
 1135  *      pindex within the given range into free pages.  If the value
 1136  *      zero is given for "end", then the range's upper bound is
 1137  *      infinity.  If the given object is backed by a vnode and it
 1138  *      transitions from having one or more cached pages to none, the
 1139  *      vnode's hold count is reduced. 
 1140  */
 1141 void
 1142 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1143 {
 1144         vm_page_t m, m_next;
 1145         boolean_t empty;
 1146 
 1147         mtx_lock(&vm_page_queue_free_mtx);
 1148         if (__predict_false(object->cache == NULL)) {
 1149                 mtx_unlock(&vm_page_queue_free_mtx);
 1150                 return;
 1151         }
 1152         m = object->cache = vm_page_splay(start, object->cache);
 1153         if (m->pindex < start) {
 1154                 if (m->right == NULL)
 1155                         m = NULL;
 1156                 else {
 1157                         m_next = vm_page_splay(start, m->right);
 1158                         m_next->left = m;
 1159                         m->right = NULL;
 1160                         m = object->cache = m_next;
 1161                 }
 1162         }
 1163 
 1164         /*
 1165          * At this point, "m" is either (1) a reference to the page
 1166          * with the least pindex that is greater than or equal to
 1167          * "start" or (2) NULL.
 1168          */
 1169         for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
 1170                 /*
 1171                  * Find "m"'s successor and remove "m" from the
 1172                  * object's cache.
 1173                  */
 1174                 if (m->right == NULL) {
 1175                         object->cache = m->left;
 1176                         m_next = NULL;
 1177                 } else {
 1178                         m_next = vm_page_splay(start, m->right);
 1179                         m_next->left = m->left;
 1180                         object->cache = m_next;
 1181                 }
 1182                 /* Convert "m" to a free page. */
 1183                 m->object = NULL;
 1184                 m->valid = 0;
 1185                 /* Clear PG_CACHED and set PG_FREE. */
 1186                 m->flags ^= PG_CACHED | PG_FREE;
 1187                 KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
 1188                     ("vm_page_cache_free: page %p has inconsistent flags", m));
 1189                 cnt.v_cache_count--;
 1190                 cnt.v_free_count++;
 1191         }
 1192         empty = object->cache == NULL;
 1193         mtx_unlock(&vm_page_queue_free_mtx);
 1194         if (object->type == OBJT_VNODE && empty)
 1195                 vdrop(object->handle);
 1196 }
 1197 
 1198 /*
 1199  *      Returns the cached page that is associated with the given
 1200  *      object and offset.  If, however, none exists, returns NULL.
 1201  *
 1202  *      The free page queue must be locked.
 1203  */
 1204 static inline vm_page_t
 1205 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
 1206 {
 1207         vm_page_t m;
 1208 
 1209         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1210         if ((m = object->cache) != NULL && m->pindex != pindex) {
 1211                 m = vm_page_splay(pindex, m);
 1212                 if ((object->cache = m)->pindex != pindex)
 1213                         m = NULL;
 1214         }
 1215         return (m);
 1216 }
 1217 
 1218 /*
 1219  *      Remove the given cached page from its containing object's
 1220  *      collection of cached pages.
 1221  *
 1222  *      The free page queue must be locked.
 1223  */
 1224 void
 1225 vm_page_cache_remove(vm_page_t m)
 1226 {
 1227         vm_object_t object;
 1228         vm_page_t root;
 1229 
 1230         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1231         KASSERT((m->flags & PG_CACHED) != 0,
 1232             ("vm_page_cache_remove: page %p is not cached", m));
 1233         object = m->object;
 1234         if (m != object->cache) {
 1235                 root = vm_page_splay(m->pindex, object->cache);
 1236                 KASSERT(root == m,
 1237                     ("vm_page_cache_remove: page %p is not cached in object %p",
 1238                     m, object));
 1239         }
 1240         if (m->left == NULL)
 1241                 root = m->right;
 1242         else if (m->right == NULL)
 1243                 root = m->left;
 1244         else {
 1245                 root = vm_page_splay(m->pindex, m->left);
 1246                 root->right = m->right;
 1247         }
 1248         object->cache = root;
 1249         m->object = NULL;
 1250         cnt.v_cache_count--;
 1251 }
 1252 
 1253 /*
 1254  *      Transfer all of the cached pages with offset greater than or
 1255  *      equal to 'offidxstart' from the original object's cache to the
 1256  *      new object's cache.  However, any cached pages with offset
 1257  *      greater than or equal to the new object's size are kept in the
 1258  *      original object.  Initially, the new object's cache must be
 1259  *      empty.  Offset 'offidxstart' in the original object must
 1260  *      correspond to offset zero in the new object.
 1261  *
 1262  *      The new object must be locked.
 1263  */
 1264 void
 1265 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
 1266     vm_object_t new_object)
 1267 {
 1268         vm_page_t m, m_next;
 1269 
 1270         /*
 1271          * Insertion into an object's collection of cached pages
 1272          * requires the object to be locked.  In contrast, removal does
 1273          * not.
 1274          */
 1275         VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
 1276         KASSERT(new_object->cache == NULL,
 1277             ("vm_page_cache_transfer: object %p has cached pages",
 1278             new_object));
 1279         mtx_lock(&vm_page_queue_free_mtx);
 1280         if ((m = orig_object->cache) != NULL) {
 1281                 /*
 1282                  * Transfer all of the pages with offset greater than or
 1283                  * equal to 'offidxstart' from the original object's
 1284                  * cache to the new object's cache.
 1285                  */
 1286                 m = vm_page_splay(offidxstart, m);
 1287                 if (m->pindex < offidxstart) {
 1288                         orig_object->cache = m;
 1289                         new_object->cache = m->right;
 1290                         m->right = NULL;
 1291                 } else {
 1292                         orig_object->cache = m->left;
 1293                         new_object->cache = m;
 1294                         m->left = NULL;
 1295                 }
 1296                 while ((m = new_object->cache) != NULL) {
 1297                         if ((m->pindex - offidxstart) >= new_object->size) {
 1298                                 /*
 1299                                  * Return all of the cached pages with
 1300                                  * offset greater than or equal to the
 1301                                  * new object's size to the original
 1302                                  * object's cache. 
 1303                                  */
 1304                                 new_object->cache = m->left;
 1305                                 m->left = orig_object->cache;
 1306                                 orig_object->cache = m;
 1307                                 break;
 1308                         }
 1309                         m_next = vm_page_splay(m->pindex, m->right);
 1310                         /* Update the page's object and offset. */
 1311                         m->object = new_object;
 1312                         m->pindex -= offidxstart;
 1313                         if (m_next == NULL)
 1314                                 break;
 1315                         m->right = NULL;
 1316                         m_next->left = m;
 1317                         new_object->cache = m_next;
 1318                 }
 1319                 KASSERT(new_object->cache == NULL ||
 1320                     new_object->type == OBJT_SWAP,
 1321                     ("vm_page_cache_transfer: object %p's type is incompatible"
 1322                     " with cached pages", new_object));
 1323         }
 1324         mtx_unlock(&vm_page_queue_free_mtx);
 1325 }
 1326 
 1327 /*
 1328  *      Returns TRUE if a cached page is associated with the given object and
 1329  *      offset, and FALSE otherwise.
 1330  *
 1331  *      The object must be locked.
 1332  */
 1333 boolean_t
 1334 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
 1335 {
 1336         vm_page_t m;
 1337 
 1338         /*
 1339          * Insertion into an object's collection of cached pages requires the
 1340          * object to be locked.  Therefore, if the object is locked and the
 1341          * object's collection is empty, there is no need to acquire the free
 1342          * page queues lock in order to prove that the specified page doesn't
 1343          * exist.
 1344          */
 1345         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1346         if (object->cache == NULL)
 1347                 return (FALSE);
 1348         mtx_lock(&vm_page_queue_free_mtx);
 1349         m = vm_page_cache_lookup(object, pindex);
 1350         mtx_unlock(&vm_page_queue_free_mtx);
 1351         return (m != NULL);
 1352 }
 1353 
 1354 /*
 1355  *      vm_page_alloc:
 1356  *
 1357  *      Allocate and return a memory cell associated
 1358  *      with this VM object/offset pair.
 1359  *
 1360  *      The caller must always specify an allocation class.
 1361  *
 1362  *      allocation classes:
 1363  *      VM_ALLOC_NORMAL         normal process request
 1364  *      VM_ALLOC_SYSTEM         system *really* needs a page
 1365  *      VM_ALLOC_INTERRUPT      interrupt time request
 1366  *
 1367  *      optional allocation flags:
 1368  *      VM_ALLOC_ZERO           prefer a zeroed page
 1369  *      VM_ALLOC_WIRED          wire the allocated page
 1370  *      VM_ALLOC_NOOBJ          page is not associated with a vm object
 1371  *      VM_ALLOC_NOBUSY         do not set the page busy
 1372  *      VM_ALLOC_IFCACHED       return page only if it is cached
 1373  *      VM_ALLOC_IFNOTCACHED    return NULL, do not reactivate if the page
 1374  *                              is cached
 1375  *
 1376  *      This routine may not sleep.
 1377  */
 1378 vm_page_t
 1379 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
 1380 {
 1381         struct vnode *vp = NULL;
 1382         vm_object_t m_object;
 1383         vm_page_t m;
 1384         int flags, page_req;
 1385 
 1386         if ((req & VM_ALLOC_NOOBJ) == 0) {
 1387                 KASSERT(object != NULL,
 1388                     ("vm_page_alloc: NULL object."));
 1389                 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1390         }
 1391 
 1392         page_req = req & VM_ALLOC_CLASS_MASK;
 1393 
 1394         /*
 1395          * The pager is allowed to eat deeper into the free page list.
 1396          */
 1397         if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT))
 1398                 page_req = VM_ALLOC_SYSTEM;
 1399 
 1400         mtx_lock(&vm_page_queue_free_mtx);
 1401         if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
 1402             (page_req == VM_ALLOC_SYSTEM && 
 1403             cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
 1404             (page_req == VM_ALLOC_INTERRUPT &&
 1405             cnt.v_free_count + cnt.v_cache_count > 0)) {
 1406                 /*
 1407                  * Allocate from the free queue if the number of free pages
 1408                  * exceeds the minimum for the request class.
 1409                  */
 1410                 if (object != NULL &&
 1411                     (m = vm_page_cache_lookup(object, pindex)) != NULL) {
 1412                         if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
 1413                                 mtx_unlock(&vm_page_queue_free_mtx);
 1414                                 return (NULL);
 1415                         }
 1416                         if (vm_phys_unfree_page(m))
 1417                                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
 1418 #if VM_NRESERVLEVEL > 0
 1419                         else if (!vm_reserv_reactivate_page(m))
 1420 #else
 1421                         else
 1422 #endif
 1423                                 panic("vm_page_alloc: cache page %p is missing"
 1424                                     " from the free queue", m);
 1425                 } else if ((req & VM_ALLOC_IFCACHED) != 0) {
 1426                         mtx_unlock(&vm_page_queue_free_mtx);
 1427                         return (NULL);
 1428 #if VM_NRESERVLEVEL > 0
 1429                 } else if (object == NULL || object->type == OBJT_DEVICE ||
 1430                     object->type == OBJT_SG ||
 1431                     (object->flags & OBJ_COLORED) == 0 ||
 1432                     (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
 1433 #else
 1434                 } else {
 1435 #endif
 1436                         m = vm_phys_alloc_pages(object != NULL ?
 1437                             VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
 1438 #if VM_NRESERVLEVEL > 0
 1439                         if (m == NULL && vm_reserv_reclaim_inactive()) {
 1440                                 m = vm_phys_alloc_pages(object != NULL ?
 1441                                     VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
 1442                                     0);
 1443                         }
 1444 #endif
 1445                 }
 1446         } else {
 1447                 /*
 1448                  * Not allocatable, give up.
 1449                  */
 1450                 mtx_unlock(&vm_page_queue_free_mtx);
 1451                 atomic_add_int(&vm_pageout_deficit,
 1452                     MAX((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
 1453                 pagedaemon_wakeup();
 1454                 return (NULL);
 1455         }
 1456 
 1457         /*
 1458          *  At this point we had better have found a good page.
 1459          */
 1460 
 1461         KASSERT(m != NULL, ("vm_page_alloc: missing page"));
 1462         KASSERT(m->queue == PQ_NONE,
 1463             ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
 1464         KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
 1465         KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
 1466         KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
 1467         KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
 1468         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
 1469             ("vm_page_alloc: page %p has unexpected memattr %d", m,
 1470             pmap_page_get_memattr(m)));
 1471         if ((m->flags & PG_CACHED) != 0) {
 1472                 KASSERT(m->valid != 0,
 1473                     ("vm_page_alloc: cached page %p is invalid", m));
 1474                 if (m->object == object && m->pindex == pindex)
 1475                         cnt.v_reactivated++;
 1476                 else
 1477                         m->valid = 0;
 1478                 m_object = m->object;
 1479                 vm_page_cache_remove(m);
 1480                 if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
 1481                         vp = m_object->handle;
 1482         } else {
 1483                 KASSERT(VM_PAGE_IS_FREE(m),
 1484                     ("vm_page_alloc: page %p is not free", m));
 1485                 KASSERT(m->valid == 0,
 1486                     ("vm_page_alloc: free page %p is valid", m));
 1487                 cnt.v_free_count--;
 1488         }
 1489 
 1490         /*
 1491          * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
 1492          * must be cleared before the free page queues lock is released.
 1493          */
 1494         flags = 0;
 1495         if (req & VM_ALLOC_NODUMP)
 1496                 flags |= PG_NODUMP;
 1497         if (m->flags & PG_ZERO) {
 1498                 vm_page_zero_count--;
 1499                 if (req & VM_ALLOC_ZERO)
 1500                         flags = PG_ZERO;
 1501         }
 1502         m->flags = flags;
 1503         mtx_unlock(&vm_page_queue_free_mtx);
 1504         m->aflags = 0;
 1505         if (object == NULL || object->type == OBJT_PHYS)
 1506                 m->oflags = VPO_UNMANAGED;
 1507         else
 1508                 m->oflags = 0;
 1509         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0)
 1510                 m->oflags |= VPO_BUSY;
 1511         if (req & VM_ALLOC_WIRED) {
 1512                 /*
 1513                  * The page lock is not required for wiring a page until that
 1514                  * page is inserted into the object.
 1515                  */
 1516                 atomic_add_int(&cnt.v_wire_count, 1);
 1517                 m->wire_count = 1;
 1518         }
 1519         m->act_count = 0;
 1520 
 1521         if (object != NULL) {
 1522                 /* Ignore device objects; the pager sets "memattr" for them. */
 1523                 if (object->memattr != VM_MEMATTR_DEFAULT &&
 1524                     object->type != OBJT_DEVICE && object->type != OBJT_SG)
 1525                         pmap_page_set_memattr(m, object->memattr);
 1526                 vm_page_insert(m, object, pindex);
 1527         } else
 1528                 m->pindex = pindex;
 1529 
 1530         /*
 1531          * The following call to vdrop() must come after the above call
 1532          * to vm_page_insert() in case both affect the same object and
 1533          * vnode.  Otherwise, the affected vnode's hold count could
 1534          * temporarily become zero.
 1535          */
 1536         if (vp != NULL)
 1537                 vdrop(vp);
 1538 
 1539         /*
 1540          * Don't wakeup too often - wakeup the pageout daemon when
 1541          * we would be nearly out of memory.
 1542          */
 1543         if (vm_paging_needed())
 1544                 pagedaemon_wakeup();
 1545 
 1546         return (m);
 1547 }
 1548 
 1549 /*
 1550  * Initialize a page that has been freshly dequeued from a freelist.
 1551  * The caller has to drop the vnode returned, if it is not NULL.
 1552  *
 1553  * To be called with vm_page_queue_free_mtx held.
 1554  */
 1555 struct vnode *
 1556 vm_page_alloc_init(vm_page_t m)
 1557 {
 1558         struct vnode *drop;
 1559         vm_object_t m_object;
 1560 
 1561         KASSERT(m->queue == PQ_NONE,
 1562             ("vm_page_alloc_init: page %p has unexpected queue %d",
 1563             m, m->queue));
 1564         KASSERT(m->wire_count == 0,
 1565             ("vm_page_alloc_init: page %p is wired", m));
 1566         KASSERT(m->hold_count == 0,
 1567             ("vm_page_alloc_init: page %p is held", m));
 1568         KASSERT(m->busy == 0,
 1569             ("vm_page_alloc_init: page %p is busy", m));
 1570         KASSERT(m->dirty == 0,
 1571             ("vm_page_alloc_init: page %p is dirty", m));
 1572         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
 1573             ("vm_page_alloc_init: page %p has unexpected memattr %d",
 1574             m, pmap_page_get_memattr(m)));
 1575         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1576         drop = NULL;
 1577         if ((m->flags & PG_CACHED) != 0) {
 1578                 m->valid = 0;
 1579                 m_object = m->object;
 1580                 vm_page_cache_remove(m);
 1581                 if (m_object->type == OBJT_VNODE &&
 1582                     m_object->cache == NULL)
 1583                         drop = m_object->handle;
 1584         } else {
 1585                 KASSERT(VM_PAGE_IS_FREE(m),
 1586                     ("vm_page_alloc_init: page %p is not free", m));
 1587                 KASSERT(m->valid == 0,
 1588                     ("vm_page_alloc_init: free page %p is valid", m));
 1589                 cnt.v_free_count--;
 1590         }
 1591         if (m->flags & PG_ZERO)
 1592                 vm_page_zero_count--;
 1593         /* Don't clear the PG_ZERO flag; we'll need it later. */
 1594         m->flags &= PG_ZERO;
 1595         m->aflags = 0;
 1596         m->oflags = VPO_UNMANAGED;
 1597         /* Unmanaged pages don't use "act_count". */
 1598         return (drop);
 1599 }
 1600 
 1601 /*
 1602  *      vm_page_alloc_freelist:
 1603  * 
 1604  *      Allocate a page from the specified freelist.
 1605  *      Only the ALLOC_CLASS values in req are honored, other request flags
 1606  *      are ignored.
 1607  */
 1608 vm_page_t
 1609 vm_page_alloc_freelist(int flind, int req)
 1610 {
 1611         struct vnode *drop;
 1612         vm_page_t m;
 1613         int page_req;
 1614 
 1615         m = NULL;
 1616         page_req = req & VM_ALLOC_CLASS_MASK;
 1617         mtx_lock(&vm_page_queue_free_mtx);
 1618         /*
 1619          * Do not allocate reserved pages unless the req has asked for it.
 1620          */
 1621         if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
 1622             (page_req == VM_ALLOC_SYSTEM && 
 1623             cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
 1624             (page_req == VM_ALLOC_INTERRUPT &&
 1625             cnt.v_free_count + cnt.v_cache_count > 0)) {
 1626                 m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
 1627         }
 1628         if (m == NULL) {
 1629                 mtx_unlock(&vm_page_queue_free_mtx);
 1630                 return (NULL);
 1631         }
 1632         drop = vm_page_alloc_init(m);
 1633         mtx_unlock(&vm_page_queue_free_mtx);
 1634         if (drop)
 1635                 vdrop(drop);
 1636         return (m);
 1637 }
 1638 
 1639 /*
 1640  *      vm_wait:        (also see VM_WAIT macro)
 1641  *
 1642  *      Block until free pages are available for allocation
 1643  *      - Called in various places before memory allocations.
 1644  */
 1645 void
 1646 vm_wait(void)
 1647 {
 1648 
 1649         mtx_lock(&vm_page_queue_free_mtx);
 1650         if (curproc == pageproc) {
 1651                 vm_pageout_pages_needed = 1;
 1652                 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
 1653                     PDROP | PSWP, "VMWait", 0);
 1654         } else {
 1655                 if (!vm_pages_needed) {
 1656                         vm_pages_needed = 1;
 1657                         wakeup(&vm_pages_needed);
 1658                 }
 1659                 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
 1660                     "vmwait", 0);
 1661         }
 1662 }
 1663 
 1664 /*
 1665  *      vm_waitpfault:  (also see VM_WAITPFAULT macro)
 1666  *
 1667  *      Block until free pages are available for allocation
 1668  *      - Called only in vm_fault so that processes page faulting
 1669  *        can be easily tracked.
 1670  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
 1671  *        processes will be able to grab memory first.  Do not change
 1672  *        this balance without careful testing first.
 1673  */
 1674 void
 1675 vm_waitpfault(void)
 1676 {
 1677 
 1678         mtx_lock(&vm_page_queue_free_mtx);
 1679         if (!vm_pages_needed) {
 1680                 vm_pages_needed = 1;
 1681                 wakeup(&vm_pages_needed);
 1682         }
 1683         msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
 1684             "pfault", 0);
 1685 }
 1686 
 1687 /*
 1688  *      vm_page_requeue:
 1689  *
 1690  *      Move the given page to the tail of its present page queue.
 1691  *
 1692  *      The page queues must be locked.
 1693  */
 1694 void
 1695 vm_page_requeue(vm_page_t m)
 1696 {
 1697         struct vpgqueues *vpq;
 1698         int queue;
 1699 
 1700         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1701         queue = m->queue;
 1702         KASSERT(queue != PQ_NONE,
 1703             ("vm_page_requeue: page %p is not queued", m));
 1704         vpq = &vm_page_queues[queue];
 1705         TAILQ_REMOVE(&vpq->pl, m, pageq);
 1706         TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
 1707 }
 1708 
 1709 /*
 1710  *      vm_page_queue_remove:
 1711  *
 1712  *      Remove the given page from the specified queue.
 1713  *
 1714  *      The page and page queues must be locked.
 1715  */
 1716 static __inline void
 1717 vm_page_queue_remove(int queue, vm_page_t m)
 1718 {
 1719         struct vpgqueues *pq;
 1720 
 1721         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1722         vm_page_lock_assert(m, MA_OWNED);
 1723         pq = &vm_page_queues[queue];
 1724         TAILQ_REMOVE(&pq->pl, m, pageq);
 1725         (*pq->cnt)--;
 1726 }
 1727 
 1728 /*
 1729  *      vm_pageq_remove:
 1730  *
 1731  *      Remove a page from its queue.
 1732  *
 1733  *      The given page must be locked.
 1734  *      This routine may not block.
 1735  */
 1736 void
 1737 vm_pageq_remove(vm_page_t m)
 1738 {
 1739         int queue;
 1740 
 1741         vm_page_lock_assert(m, MA_OWNED);
 1742         if ((queue = m->queue) != PQ_NONE) {
 1743                 vm_page_lock_queues();
 1744                 m->queue = PQ_NONE;
 1745                 vm_page_queue_remove(queue, m);
 1746                 vm_page_unlock_queues();
 1747         }
 1748 }
 1749 
 1750 /*
 1751  *      vm_page_enqueue:
 1752  *
 1753  *      Add the given page to the specified queue.
 1754  *
 1755  *      The page queues must be locked.
 1756  */
 1757 static void
 1758 vm_page_enqueue(int queue, vm_page_t m)
 1759 {
 1760         struct vpgqueues *vpq;
 1761 
 1762         vpq = &vm_page_queues[queue];
 1763         m->queue = queue;
 1764         TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
 1765         ++*vpq->cnt;
 1766 }
 1767 
 1768 /*
 1769  *      vm_page_activate:
 1770  *
 1771  *      Put the specified page on the active list (if appropriate).
 1772  *      Ensure that act_count is at least ACT_INIT but do not otherwise
 1773  *      mess with it.
 1774  *
 1775  *      The page must be locked.
 1776  *      This routine may not block.
 1777  */
 1778 void
 1779 vm_page_activate(vm_page_t m)
 1780 {
 1781         int queue;
 1782 
 1783         vm_page_lock_assert(m, MA_OWNED);
 1784         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1785         if ((queue = m->queue) != PQ_ACTIVE) {
 1786                 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
 1787                         if (m->act_count < ACT_INIT)
 1788                                 m->act_count = ACT_INIT;
 1789                         vm_page_lock_queues();
 1790                         if (queue != PQ_NONE)
 1791                                 vm_page_queue_remove(queue, m);
 1792                         vm_page_enqueue(PQ_ACTIVE, m);
 1793                         vm_page_unlock_queues();
 1794                 } else
 1795                         KASSERT(queue == PQ_NONE,
 1796                             ("vm_page_activate: wired page %p is queued", m));
 1797         } else {
 1798                 if (m->act_count < ACT_INIT)
 1799                         m->act_count = ACT_INIT;
 1800         }
 1801 }
 1802 
 1803 /*
 1804  *      vm_page_free_wakeup:
 1805  *
 1806  *      Helper routine for vm_page_free_toq() and vm_page_cache().  This
 1807  *      routine is called when a page has been added to the cache or free
 1808  *      queues.
 1809  *
 1810  *      The page queues must be locked.
 1811  *      This routine may not block.
 1812  */
 1813 static inline void
 1814 vm_page_free_wakeup(void)
 1815 {
 1816 
 1817         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1818         /*
 1819          * if pageout daemon needs pages, then tell it that there are
 1820          * some free.
 1821          */
 1822         if (vm_pageout_pages_needed &&
 1823             cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
 1824                 wakeup(&vm_pageout_pages_needed);
 1825                 vm_pageout_pages_needed = 0;
 1826         }
 1827         /*
 1828          * wakeup processes that are waiting on memory if we hit a
 1829          * high water mark. And wakeup scheduler process if we have
 1830          * lots of memory. this process will swapin processes.
 1831          */
 1832         if (vm_pages_needed && !vm_page_count_min()) {
 1833                 vm_pages_needed = 0;
 1834                 wakeup(&cnt.v_free_count);
 1835         }
 1836 }
 1837 
 1838 /*
 1839  *      vm_page_free_toq:
 1840  *
 1841  *      Returns the given page to the free list,
 1842  *      disassociating it with any VM object.
 1843  *
 1844  *      Object and page must be locked prior to entry.
 1845  *      This routine may not block.
 1846  */
 1847 
 1848 void
 1849 vm_page_free_toq(vm_page_t m)
 1850 {
 1851 
 1852         if ((m->oflags & VPO_UNMANAGED) == 0) {
 1853                 vm_page_lock_assert(m, MA_OWNED);
 1854                 KASSERT(!pmap_page_is_mapped(m),
 1855                     ("vm_page_free_toq: freeing mapped page %p", m));
 1856         }
 1857         PCPU_INC(cnt.v_tfree);
 1858 
 1859         if (VM_PAGE_IS_FREE(m))
 1860                 panic("vm_page_free: freeing free page %p", m);
 1861         else if (m->busy != 0)
 1862                 panic("vm_page_free: freeing busy page %p", m);
 1863 
 1864         /*
 1865          * unqueue, then remove page.  Note that we cannot destroy
 1866          * the page here because we do not want to call the pager's
 1867          * callback routine until after we've put the page on the
 1868          * appropriate free queue.
 1869          */
 1870         if ((m->oflags & VPO_UNMANAGED) == 0)
 1871                 vm_pageq_remove(m);
 1872         vm_page_remove(m);
 1873 
 1874         /*
 1875          * If fictitious remove object association and
 1876          * return, otherwise delay object association removal.
 1877          */
 1878         if ((m->flags & PG_FICTITIOUS) != 0) {
 1879                 return;
 1880         }
 1881 
 1882         m->valid = 0;
 1883         vm_page_undirty(m);
 1884 
 1885         if (m->wire_count != 0)
 1886                 panic("vm_page_free: freeing wired page %p", m);
 1887         if (m->hold_count != 0) {
 1888                 m->flags &= ~PG_ZERO;
 1889                 vm_page_lock_queues();
 1890                 vm_page_enqueue(PQ_HOLD, m);
 1891                 vm_page_unlock_queues();
 1892         } else {
 1893                 /*
 1894                  * Restore the default memory attribute to the page.
 1895                  */
 1896                 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
 1897                         pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
 1898 
 1899                 /*
 1900                  * Insert the page into the physical memory allocator's
 1901                  * cache/free page queues.
 1902                  */
 1903                 mtx_lock(&vm_page_queue_free_mtx);
 1904                 m->flags |= PG_FREE;
 1905                 cnt.v_free_count++;
 1906 #if VM_NRESERVLEVEL > 0
 1907                 if (!vm_reserv_free_page(m))
 1908 #else
 1909                 if (TRUE)
 1910 #endif
 1911                         vm_phys_free_pages(m, 0);
 1912                 if ((m->flags & PG_ZERO) != 0)
 1913                         ++vm_page_zero_count;
 1914                 else
 1915                         vm_page_zero_idle_wakeup();
 1916                 vm_page_free_wakeup();
 1917                 mtx_unlock(&vm_page_queue_free_mtx);
 1918         }
 1919 }
 1920 
 1921 /*
 1922  *      vm_page_wire:
 1923  *
 1924  *      Mark this page as wired down by yet
 1925  *      another map, removing it from paging queues
 1926  *      as necessary.
 1927  *
 1928  *      If the page is fictitious, then its wire count must remain one.
 1929  *
 1930  *      The page must be locked.
 1931  *      This routine may not block.
 1932  */
 1933 void
 1934 vm_page_wire(vm_page_t m)
 1935 {
 1936 
 1937         /*
 1938          * Only bump the wire statistics if the page is not already wired,
 1939          * and only unqueue the page if it is on some queue (if it is unmanaged
 1940          * it is already off the queues).
 1941          */
 1942         vm_page_lock_assert(m, MA_OWNED);
 1943         if ((m->flags & PG_FICTITIOUS) != 0) {
 1944                 KASSERT(m->wire_count == 1,
 1945                     ("vm_page_wire: fictitious page %p's wire count isn't one",
 1946                     m));
 1947                 return;
 1948         }
 1949         if (m->wire_count == 0) {
 1950                 if ((m->oflags & VPO_UNMANAGED) == 0)
 1951                         vm_pageq_remove(m);
 1952                 atomic_add_int(&cnt.v_wire_count, 1);
 1953         }
 1954         m->wire_count++;
 1955         KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
 1956 }
 1957 
 1958 /*
 1959  * vm_page_unwire:
 1960  *
 1961  * Release one wiring of the specified page, potentially enabling it to be
 1962  * paged again.  If paging is enabled, then the value of the parameter
 1963  * "activate" determines to which queue the page is added.  If "activate" is
 1964  * non-zero, then the page is added to the active queue.  Otherwise, it is
 1965  * added to the inactive queue.
 1966  *
 1967  * However, unless the page belongs to an object, it is not enqueued because
 1968  * it cannot be paged out.
 1969  *
 1970  * If a page is fictitious, then its wire count must alway be one.
 1971  *
 1972  * A managed page must be locked.
 1973  */
 1974 void
 1975 vm_page_unwire(vm_page_t m, int activate)
 1976 {
 1977 
 1978         if ((m->oflags & VPO_UNMANAGED) == 0)
 1979                 vm_page_lock_assert(m, MA_OWNED);
 1980         if ((m->flags & PG_FICTITIOUS) != 0) {
 1981                 KASSERT(m->wire_count == 1,
 1982             ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
 1983                 return;
 1984         }
 1985         if (m->wire_count > 0) {
 1986                 m->wire_count--;
 1987                 if (m->wire_count == 0) {
 1988                         atomic_subtract_int(&cnt.v_wire_count, 1);
 1989                         if ((m->oflags & VPO_UNMANAGED) != 0 ||
 1990                             m->object == NULL)
 1991                                 return;
 1992                         if (!activate)
 1993                                 m->flags &= ~PG_WINATCFLS;
 1994                         vm_page_lock_queues();
 1995                         vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
 1996                         vm_page_unlock_queues();
 1997                 }
 1998         } else
 1999                 panic("vm_page_unwire: page %p's wire count is zero", m);
 2000 }
 2001 
 2002 /*
 2003  * Move the specified page to the inactive queue.
 2004  *
 2005  * Many pages placed on the inactive queue should actually go
 2006  * into the cache, but it is difficult to figure out which.  What
 2007  * we do instead, if the inactive target is well met, is to put
 2008  * clean pages at the head of the inactive queue instead of the tail.
 2009  * This will cause them to be moved to the cache more quickly and
 2010  * if not actively re-referenced, reclaimed more quickly.  If we just
 2011  * stick these pages at the end of the inactive queue, heavy filesystem
 2012  * meta-data accesses can cause an unnecessary paging load on memory bound 
 2013  * processes.  This optimization causes one-time-use metadata to be
 2014  * reused more quickly.
 2015  *
 2016  * Normally athead is 0 resulting in LRU operation.  athead is set
 2017  * to 1 if we want this page to be 'as if it were placed in the cache',
 2018  * except without unmapping it from the process address space.
 2019  *
 2020  * This routine may not block.
 2021  */
 2022 static inline void
 2023 _vm_page_deactivate(vm_page_t m, int athead)
 2024 {
 2025         int queue;
 2026 
 2027         vm_page_lock_assert(m, MA_OWNED);
 2028 
 2029         /*
 2030          * Ignore if already inactive.
 2031          */
 2032         if ((queue = m->queue) == PQ_INACTIVE)
 2033                 return;
 2034         if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
 2035                 m->flags &= ~PG_WINATCFLS;
 2036                 vm_page_lock_queues();
 2037                 if (queue != PQ_NONE)
 2038                         vm_page_queue_remove(queue, m);
 2039                 if (athead)
 2040                         TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
 2041                             pageq);
 2042                 else
 2043                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
 2044                             pageq);
 2045                 m->queue = PQ_INACTIVE;
 2046                 cnt.v_inactive_count++;
 2047                 vm_page_unlock_queues();
 2048         }
 2049 }
 2050 
 2051 /*
 2052  * Move the specified page to the inactive queue.
 2053  *
 2054  * The page must be locked.
 2055  */
 2056 void
 2057 vm_page_deactivate(vm_page_t m)
 2058 {
 2059 
 2060         _vm_page_deactivate(m, 0);
 2061 }
 2062 
 2063 /*
 2064  * vm_page_try_to_cache:
 2065  *
 2066  * Returns 0 on failure, 1 on success
 2067  */
 2068 int
 2069 vm_page_try_to_cache(vm_page_t m)
 2070 {
 2071 
 2072         vm_page_lock_assert(m, MA_OWNED);
 2073         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2074         if (m->dirty || m->hold_count || m->busy || m->wire_count ||
 2075             (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
 2076                 return (0);
 2077         pmap_remove_all(m);
 2078         if (m->dirty)
 2079                 return (0);
 2080         vm_page_cache(m);
 2081         return (1);
 2082 }
 2083 
 2084 /*
 2085  * vm_page_try_to_free()
 2086  *
 2087  *      Attempt to free the page.  If we cannot free it, we do nothing.
 2088  *      1 is returned on success, 0 on failure.
 2089  */
 2090 int
 2091 vm_page_try_to_free(vm_page_t m)
 2092 {
 2093 
 2094         vm_page_lock_assert(m, MA_OWNED);
 2095         if (m->object != NULL)
 2096                 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2097         if (m->dirty || m->hold_count || m->busy || m->wire_count ||
 2098             (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
 2099                 return (0);
 2100         pmap_remove_all(m);
 2101         if (m->dirty)
 2102                 return (0);
 2103         vm_page_free(m);
 2104         return (1);
 2105 }
 2106 
 2107 /*
 2108  * vm_page_cache
 2109  *
 2110  * Put the specified page onto the page cache queue (if appropriate).
 2111  *
 2112  * This routine may not block.
 2113  */
 2114 void
 2115 vm_page_cache(vm_page_t m)
 2116 {
 2117         vm_object_t object;
 2118         vm_page_t next, prev, root;
 2119 
 2120         vm_page_lock_assert(m, MA_OWNED);
 2121         object = m->object;
 2122         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2123         if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy ||
 2124             m->hold_count || m->wire_count)
 2125                 panic("vm_page_cache: attempting to cache busy page");
 2126         pmap_remove_all(m);
 2127         if (m->dirty != 0)
 2128                 panic("vm_page_cache: page %p is dirty", m);
 2129         if (m->valid == 0 || object->type == OBJT_DEFAULT ||
 2130             (object->type == OBJT_SWAP &&
 2131             !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
 2132                 /*
 2133                  * Hypothesis: A cache-elgible page belonging to a
 2134                  * default object or swap object but without a backing
 2135                  * store must be zero filled.
 2136                  */
 2137                 vm_page_free(m);
 2138                 return;
 2139         }
 2140         KASSERT((m->flags & PG_CACHED) == 0,
 2141             ("vm_page_cache: page %p is already cached", m));
 2142         PCPU_INC(cnt.v_tcached);
 2143 
 2144         /*
 2145          * Remove the page from the paging queues.
 2146          */
 2147         vm_pageq_remove(m);
 2148 
 2149         /*
 2150          * Remove the page from the object's collection of resident
 2151          * pages. 
 2152          */
 2153         if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
 2154                 /*
 2155                  * Since the page's successor in the list is also its parent
 2156                  * in the tree, its right subtree must be empty.
 2157                  */
 2158                 next->left = m->left;
 2159                 KASSERT(m->right == NULL,
 2160                     ("vm_page_cache: page %p has right child", m));
 2161         } else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
 2162             prev->right == m) {
 2163                 /*
 2164                  * Since the page's predecessor in the list is also its parent
 2165                  * in the tree, its left subtree must be empty.
 2166                  */
 2167                 KASSERT(m->left == NULL,
 2168                     ("vm_page_cache: page %p has left child", m));
 2169                 prev->right = m->right;
 2170         } else {
 2171                 if (m != object->root)
 2172                         vm_page_splay(m->pindex, object->root);
 2173                 if (m->left == NULL)
 2174                         root = m->right;
 2175                 else if (m->right == NULL)
 2176                         root = m->left;
 2177                 else {
 2178                         /*
 2179                          * Move the page's successor to the root, because
 2180                          * pages are usually removed in ascending order.
 2181                          */
 2182                         if (m->right != next)
 2183                                 vm_page_splay(m->pindex, m->right);
 2184                         next->left = m->left;
 2185                         root = next;
 2186                 }
 2187                 object->root = root;
 2188         }
 2189         TAILQ_REMOVE(&object->memq, m, listq);
 2190         object->resident_page_count--;
 2191 
 2192         /*
 2193          * Restore the default memory attribute to the page.
 2194          */
 2195         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
 2196                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
 2197 
 2198         /*
 2199          * Insert the page into the object's collection of cached pages
 2200          * and the physical memory allocator's cache/free page queues.
 2201          */
 2202         m->flags &= ~PG_ZERO;
 2203         mtx_lock(&vm_page_queue_free_mtx);
 2204         m->flags |= PG_CACHED;
 2205         cnt.v_cache_count++;
 2206         root = object->cache;
 2207         if (root == NULL) {
 2208                 m->left = NULL;
 2209                 m->right = NULL;
 2210         } else {
 2211                 root = vm_page_splay(m->pindex, root);
 2212                 if (m->pindex < root->pindex) {
 2213                         m->left = root->left;
 2214                         m->right = root;
 2215                         root->left = NULL;
 2216                 } else if (__predict_false(m->pindex == root->pindex))
 2217                         panic("vm_page_cache: offset already cached");
 2218                 else {
 2219                         m->right = root->right;
 2220                         m->left = root;
 2221                         root->right = NULL;
 2222                 }
 2223         }
 2224         object->cache = m;
 2225 #if VM_NRESERVLEVEL > 0
 2226         if (!vm_reserv_free_page(m)) {
 2227 #else
 2228         if (TRUE) {
 2229 #endif
 2230                 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
 2231                 vm_phys_free_pages(m, 0);
 2232         }
 2233         vm_page_free_wakeup();
 2234         mtx_unlock(&vm_page_queue_free_mtx);
 2235 
 2236         /*
 2237          * Increment the vnode's hold count if this is the object's only
 2238          * cached page.  Decrement the vnode's hold count if this was
 2239          * the object's only resident page.
 2240          */
 2241         if (object->type == OBJT_VNODE) {
 2242                 if (root == NULL && object->resident_page_count != 0)
 2243                         vhold(object->handle);
 2244                 else if (root != NULL && object->resident_page_count == 0)
 2245                         vdrop(object->handle);
 2246         }
 2247 }
 2248 
 2249 /*
 2250  * vm_page_dontneed
 2251  *
 2252  *      Cache, deactivate, or do nothing as appropriate.  This routine
 2253  *      is typically used by madvise() MADV_DONTNEED.
 2254  *
 2255  *      Generally speaking we want to move the page into the cache so
 2256  *      it gets reused quickly.  However, this can result in a silly syndrome
 2257  *      due to the page recycling too quickly.  Small objects will not be
 2258  *      fully cached.  On the otherhand, if we move the page to the inactive
 2259  *      queue we wind up with a problem whereby very large objects 
 2260  *      unnecessarily blow away our inactive and cache queues.
 2261  *
 2262  *      The solution is to move the pages based on a fixed weighting.  We
 2263  *      either leave them alone, deactivate them, or move them to the cache,
 2264  *      where moving them to the cache has the highest weighting.
 2265  *      By forcing some pages into other queues we eventually force the
 2266  *      system to balance the queues, potentially recovering other unrelated
 2267  *      space from active.  The idea is to not force this to happen too
 2268  *      often.
 2269  */
 2270 void
 2271 vm_page_dontneed(vm_page_t m)
 2272 {
 2273         int dnw;
 2274         int head;
 2275 
 2276         vm_page_lock_assert(m, MA_OWNED);
 2277         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2278         dnw = PCPU_GET(dnweight);
 2279         PCPU_INC(dnweight);
 2280 
 2281         /*
 2282          * Occasionally leave the page alone.
 2283          */
 2284         if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
 2285                 if (m->act_count >= ACT_INIT)
 2286                         --m->act_count;
 2287                 return;
 2288         }
 2289 
 2290         /*
 2291          * Clear any references to the page.  Otherwise, the page daemon will
 2292          * immediately reactivate the page.
 2293          *
 2294          * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
 2295          * pmap operation, such as pmap_remove(), could clear a reference in
 2296          * the pmap and set PGA_REFERENCED on the page before the
 2297          * pmap_clear_reference() had completed.  Consequently, the page would
 2298          * appear referenced based upon an old reference that occurred before
 2299          * this function ran.
 2300          */
 2301         pmap_clear_reference(m);
 2302         vm_page_aflag_clear(m, PGA_REFERENCED);
 2303 
 2304         if (m->dirty == 0 && pmap_is_modified(m))
 2305                 vm_page_dirty(m);
 2306 
 2307         if (m->dirty || (dnw & 0x0070) == 0) {
 2308                 /*
 2309                  * Deactivate the page 3 times out of 32.
 2310                  */
 2311                 head = 0;
 2312         } else {
 2313                 /*
 2314                  * Cache the page 28 times out of every 32.  Note that
 2315                  * the page is deactivated instead of cached, but placed
 2316                  * at the head of the queue instead of the tail.
 2317                  */
 2318                 head = 1;
 2319         }
 2320         _vm_page_deactivate(m, head);
 2321 }
 2322 
 2323 /*
 2324  * Grab a page, waiting until we are waken up due to the page
 2325  * changing state.  We keep on waiting, if the page continues
 2326  * to be in the object.  If the page doesn't exist, first allocate it
 2327  * and then conditionally zero it.
 2328  *
 2329  * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
 2330  * to facilitate its eventual removal.
 2331  *
 2332  * This routine may block.
 2333  */
 2334 vm_page_t
 2335 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
 2336 {
 2337         vm_page_t m;
 2338 
 2339         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2340         KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
 2341             ("vm_page_grab: VM_ALLOC_RETRY is required"));
 2342 retrylookup:
 2343         if ((m = vm_page_lookup(object, pindex)) != NULL) {
 2344                 if ((m->oflags & VPO_BUSY) != 0 ||
 2345                     ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
 2346                         /*
 2347                          * Reference the page before unlocking and
 2348                          * sleeping so that the page daemon is less
 2349                          * likely to reclaim it.
 2350                          */
 2351                         vm_page_aflag_set(m, PGA_REFERENCED);
 2352                         vm_page_sleep(m, "pgrbwt");
 2353                         goto retrylookup;
 2354                 } else {
 2355                         if ((allocflags & VM_ALLOC_WIRED) != 0) {
 2356                                 vm_page_lock(m);
 2357                                 vm_page_wire(m);
 2358                                 vm_page_unlock(m);
 2359                         }
 2360                         if ((allocflags & VM_ALLOC_NOBUSY) == 0)
 2361                                 vm_page_busy(m);
 2362                         return (m);
 2363                 }
 2364         }
 2365         m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
 2366             VM_ALLOC_IGN_SBUSY));
 2367         if (m == NULL) {
 2368                 VM_OBJECT_UNLOCK(object);
 2369                 VM_WAIT;
 2370                 VM_OBJECT_LOCK(object);
 2371                 goto retrylookup;
 2372         } else if (m->valid != 0)
 2373                 return (m);
 2374         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
 2375                 pmap_zero_page(m);
 2376         return (m);
 2377 }
 2378 
 2379 /*
 2380  * Mapping function for valid bits or for dirty bits in
 2381  * a page.  May not block.
 2382  *
 2383  * Inputs are required to range within a page.
 2384  */
 2385 vm_page_bits_t
 2386 vm_page_bits(int base, int size)
 2387 {
 2388         int first_bit;
 2389         int last_bit;
 2390 
 2391         KASSERT(
 2392             base + size <= PAGE_SIZE,
 2393             ("vm_page_bits: illegal base/size %d/%d", base, size)
 2394         );
 2395 
 2396         if (size == 0)          /* handle degenerate case */
 2397                 return (0);
 2398 
 2399         first_bit = base >> DEV_BSHIFT;
 2400         last_bit = (base + size - 1) >> DEV_BSHIFT;
 2401 
 2402         return (((vm_page_bits_t)2 << last_bit) -
 2403             ((vm_page_bits_t)1 << first_bit));
 2404 }
 2405 
 2406 /*
 2407  *      vm_page_set_valid:
 2408  *
 2409  *      Sets portions of a page valid.  The arguments are expected
 2410  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
 2411  *      of any partial chunks touched by the range.  The invalid portion of
 2412  *      such chunks will be zeroed.
 2413  *
 2414  *      (base + size) must be less then or equal to PAGE_SIZE.
 2415  */
 2416 void
 2417 vm_page_set_valid(vm_page_t m, int base, int size)
 2418 {
 2419         int endoff, frag;
 2420 
 2421         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2422         if (size == 0)  /* handle degenerate case */
 2423                 return;
 2424 
 2425         /*
 2426          * If the base is not DEV_BSIZE aligned and the valid
 2427          * bit is clear, we have to zero out a portion of the
 2428          * first block.
 2429          */
 2430         if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
 2431             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
 2432                 pmap_zero_page_area(m, frag, base - frag);
 2433 
 2434         /*
 2435          * If the ending offset is not DEV_BSIZE aligned and the 
 2436          * valid bit is clear, we have to zero out a portion of
 2437          * the last block.
 2438          */
 2439         endoff = base + size;
 2440         if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
 2441             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
 2442                 pmap_zero_page_area(m, endoff,
 2443                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
 2444 
 2445         /*
 2446          * Assert that no previously invalid block that is now being validated
 2447          * is already dirty. 
 2448          */
 2449         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
 2450             ("vm_page_set_valid: page %p is dirty", m)); 
 2451 
 2452         /*
 2453          * Set valid bits inclusive of any overlap.
 2454          */
 2455         m->valid |= vm_page_bits(base, size);
 2456 }
 2457 
 2458 /*
 2459  * Clear the given bits from the specified page's dirty field.
 2460  */
 2461 static __inline void
 2462 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
 2463 {
 2464         uintptr_t addr;
 2465 #if PAGE_SIZE < 16384
 2466         int shift;
 2467 #endif
 2468 
 2469         /*
 2470          * If the object is locked and the page is neither VPO_BUSY nor
 2471          * PGA_WRITEABLE, then the page's dirty field cannot possibly be
 2472          * set by a concurrent pmap operation.
 2473          */
 2474         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2475         if ((m->oflags & VPO_BUSY) == 0 && (m->aflags & PGA_WRITEABLE) == 0)
 2476                 m->dirty &= ~pagebits;
 2477         else {
 2478                 /*
 2479                  * The pmap layer can call vm_page_dirty() without
 2480                  * holding a distinguished lock.  The combination of
 2481                  * the object's lock and an atomic operation suffice
 2482                  * to guarantee consistency of the page dirty field.
 2483                  *
 2484                  * For PAGE_SIZE == 32768 case, compiler already
 2485                  * properly aligns the dirty field, so no forcible
 2486                  * alignment is needed. Only require existence of
 2487                  * atomic_clear_64 when page size is 32768.
 2488                  */
 2489                 addr = (uintptr_t)&m->dirty;
 2490 #if PAGE_SIZE == 32768
 2491                 atomic_clear_64((uint64_t *)addr, pagebits);
 2492 #elif PAGE_SIZE == 16384
 2493                 atomic_clear_32((uint32_t *)addr, pagebits);
 2494 #else           /* PAGE_SIZE <= 8192 */
 2495                 /*
 2496                  * Use a trick to perform a 32-bit atomic on the
 2497                  * containing aligned word, to not depend on the existence
 2498                  * of atomic_clear_{8, 16}.
 2499                  */
 2500                 shift = addr & (sizeof(uint32_t) - 1);
 2501 #if BYTE_ORDER == BIG_ENDIAN
 2502                 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
 2503 #else
 2504                 shift *= NBBY;
 2505 #endif
 2506                 addr &= ~(sizeof(uint32_t) - 1);
 2507                 atomic_clear_32((uint32_t *)addr, pagebits << shift);
 2508 #endif          /* PAGE_SIZE */
 2509         }
 2510 }
 2511 
 2512 /*
 2513  *      vm_page_set_validclean:
 2514  *
 2515  *      Sets portions of a page valid and clean.  The arguments are expected
 2516  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
 2517  *      of any partial chunks touched by the range.  The invalid portion of
 2518  *      such chunks will be zero'd.
 2519  *
 2520  *      This routine may not block.
 2521  *
 2522  *      (base + size) must be less then or equal to PAGE_SIZE.
 2523  */
 2524 void
 2525 vm_page_set_validclean(vm_page_t m, int base, int size)
 2526 {
 2527         vm_page_bits_t oldvalid, pagebits;
 2528         int endoff, frag;
 2529 
 2530         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2531         if (size == 0)  /* handle degenerate case */
 2532                 return;
 2533 
 2534         /*
 2535          * If the base is not DEV_BSIZE aligned and the valid
 2536          * bit is clear, we have to zero out a portion of the
 2537          * first block.
 2538          */
 2539         if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
 2540             (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
 2541                 pmap_zero_page_area(m, frag, base - frag);
 2542 
 2543         /*
 2544          * If the ending offset is not DEV_BSIZE aligned and the 
 2545          * valid bit is clear, we have to zero out a portion of
 2546          * the last block.
 2547          */
 2548         endoff = base + size;
 2549         if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
 2550             (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
 2551                 pmap_zero_page_area(m, endoff,
 2552                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
 2553 
 2554         /*
 2555          * Set valid, clear dirty bits.  If validating the entire
 2556          * page we can safely clear the pmap modify bit.  We also
 2557          * use this opportunity to clear the VPO_NOSYNC flag.  If a process
 2558          * takes a write fault on a MAP_NOSYNC memory area the flag will
 2559          * be set again.
 2560          *
 2561          * We set valid bits inclusive of any overlap, but we can only
 2562          * clear dirty bits for DEV_BSIZE chunks that are fully within
 2563          * the range.
 2564          */
 2565         oldvalid = m->valid;
 2566         pagebits = vm_page_bits(base, size);
 2567         m->valid |= pagebits;
 2568 #if 0   /* NOT YET */
 2569         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
 2570                 frag = DEV_BSIZE - frag;
 2571                 base += frag;
 2572                 size -= frag;
 2573                 if (size < 0)
 2574                         size = 0;
 2575         }
 2576         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
 2577 #endif
 2578         if (base == 0 && size == PAGE_SIZE) {
 2579                 /*
 2580                  * The page can only be modified within the pmap if it is
 2581                  * mapped, and it can only be mapped if it was previously
 2582                  * fully valid.
 2583                  */
 2584                 if (oldvalid == VM_PAGE_BITS_ALL)
 2585                         /*
 2586                          * Perform the pmap_clear_modify() first.  Otherwise,
 2587                          * a concurrent pmap operation, such as
 2588                          * pmap_protect(), could clear a modification in the
 2589                          * pmap and set the dirty field on the page before
 2590                          * pmap_clear_modify() had begun and after the dirty
 2591                          * field was cleared here.
 2592                          */
 2593                         pmap_clear_modify(m);
 2594                 m->dirty = 0;
 2595                 m->oflags &= ~VPO_NOSYNC;
 2596         } else if (oldvalid != VM_PAGE_BITS_ALL)
 2597                 m->dirty &= ~pagebits;
 2598         else
 2599                 vm_page_clear_dirty_mask(m, pagebits);
 2600 }
 2601 
 2602 void
 2603 vm_page_clear_dirty(vm_page_t m, int base, int size)
 2604 {
 2605 
 2606         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
 2607 }
 2608 
 2609 /*
 2610  *      vm_page_set_invalid:
 2611  *
 2612  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
 2613  *      valid and dirty bits for the effected areas are cleared.
 2614  *
 2615  *      May not block.
 2616  */
 2617 void
 2618 vm_page_set_invalid(vm_page_t m, int base, int size)
 2619 {
 2620         vm_page_bits_t bits;
 2621 
 2622         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2623         KASSERT((m->oflags & VPO_BUSY) == 0,
 2624             ("vm_page_set_invalid: page %p is busy", m));
 2625         bits = vm_page_bits(base, size);
 2626         if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
 2627                 pmap_remove_all(m);
 2628         KASSERT(!pmap_page_is_mapped(m),
 2629             ("vm_page_set_invalid: page %p is mapped", m));
 2630         m->valid &= ~bits;
 2631         m->dirty &= ~bits;
 2632 }
 2633 
 2634 /*
 2635  * vm_page_zero_invalid()
 2636  *
 2637  *      The kernel assumes that the invalid portions of a page contain 
 2638  *      garbage, but such pages can be mapped into memory by user code.
 2639  *      When this occurs, we must zero out the non-valid portions of the
 2640  *      page so user code sees what it expects.
 2641  *
 2642  *      Pages are most often semi-valid when the end of a file is mapped 
 2643  *      into memory and the file's size is not page aligned.
 2644  */
 2645 void
 2646 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
 2647 {
 2648         int b;
 2649         int i;
 2650 
 2651         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2652         /*
 2653          * Scan the valid bits looking for invalid sections that
 2654          * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
 2655          * valid bit may be set ) have already been zerod by
 2656          * vm_page_set_validclean().
 2657          */
 2658         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
 2659                 if (i == (PAGE_SIZE / DEV_BSIZE) || 
 2660                     (m->valid & ((vm_page_bits_t)1 << i))) {
 2661                         if (i > b) {
 2662                                 pmap_zero_page_area(m, 
 2663                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
 2664                         }
 2665                         b = i + 1;
 2666                 }
 2667         }
 2668 
 2669         /*
 2670          * setvalid is TRUE when we can safely set the zero'd areas
 2671          * as being valid.  We can do this if there are no cache consistancy
 2672          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
 2673          */
 2674         if (setvalid)
 2675                 m->valid = VM_PAGE_BITS_ALL;
 2676 }
 2677 
 2678 /*
 2679  *      vm_page_is_valid:
 2680  *
 2681  *      Is (partial) page valid?  Note that the case where size == 0
 2682  *      will return FALSE in the degenerate case where the page is
 2683  *      entirely invalid, and TRUE otherwise.
 2684  *
 2685  *      May not block.
 2686  */
 2687 int
 2688 vm_page_is_valid(vm_page_t m, int base, int size)
 2689 {
 2690         vm_page_bits_t bits;
 2691 
 2692         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2693         bits = vm_page_bits(base, size);
 2694         if (m->valid && ((m->valid & bits) == bits))
 2695                 return 1;
 2696         else
 2697                 return 0;
 2698 }
 2699 
 2700 /*
 2701  * update dirty bits from pmap/mmu.  May not block.
 2702  */
 2703 void
 2704 vm_page_test_dirty(vm_page_t m)
 2705 {
 2706 
 2707         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2708         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
 2709                 vm_page_dirty(m);
 2710 }
 2711 
 2712 void
 2713 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
 2714 {
 2715 
 2716         mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
 2717 }
 2718 
 2719 void
 2720 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
 2721 {
 2722 
 2723         mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
 2724 }
 2725 
 2726 int
 2727 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
 2728 {
 2729 
 2730         return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
 2731 }
 2732 
 2733 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
 2734 void
 2735 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
 2736 {
 2737 
 2738         mtx_assert_(vm_page_lockptr(m), a, file, line);
 2739 }
 2740 #endif
 2741 
 2742 int so_zerocp_fullpage = 0;
 2743 
 2744 /*
 2745  *      Replace the given page with a copy.  The copied page assumes
 2746  *      the portion of the given page's "wire_count" that is not the
 2747  *      responsibility of this copy-on-write mechanism.
 2748  *
 2749  *      The object containing the given page must have a non-zero
 2750  *      paging-in-progress count and be locked.
 2751  */
 2752 void
 2753 vm_page_cowfault(vm_page_t m)
 2754 {
 2755         vm_page_t mnew;
 2756         vm_object_t object;
 2757         vm_pindex_t pindex;
 2758 
 2759         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
 2760         vm_page_lock_assert(m, MA_OWNED);
 2761         object = m->object;
 2762         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2763         KASSERT(object->paging_in_progress != 0,
 2764             ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
 2765             object)); 
 2766         pindex = m->pindex;
 2767 
 2768  retry_alloc:
 2769         pmap_remove_all(m);
 2770         vm_page_remove(m);
 2771         mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
 2772         if (mnew == NULL) {
 2773                 vm_page_insert(m, object, pindex);
 2774                 vm_page_unlock(m);
 2775                 VM_OBJECT_UNLOCK(object);
 2776                 VM_WAIT;
 2777                 VM_OBJECT_LOCK(object);
 2778                 if (m == vm_page_lookup(object, pindex)) {
 2779                         vm_page_lock(m);
 2780                         goto retry_alloc;
 2781                 } else {
 2782                         /*
 2783                          * Page disappeared during the wait.
 2784                          */
 2785                         return;
 2786                 }
 2787         }
 2788 
 2789         if (m->cow == 0) {
 2790                 /* 
 2791                  * check to see if we raced with an xmit complete when 
 2792                  * waiting to allocate a page.  If so, put things back 
 2793                  * the way they were 
 2794                  */
 2795                 vm_page_unlock(m);
 2796                 vm_page_lock(mnew);
 2797                 vm_page_free(mnew);
 2798                 vm_page_unlock(mnew);
 2799                 vm_page_insert(m, object, pindex);
 2800         } else { /* clear COW & copy page */
 2801                 if (!so_zerocp_fullpage)
 2802                         pmap_copy_page(m, mnew);
 2803                 mnew->valid = VM_PAGE_BITS_ALL;
 2804                 vm_page_dirty(mnew);
 2805                 mnew->wire_count = m->wire_count - m->cow;
 2806                 m->wire_count = m->cow;
 2807                 vm_page_unlock(m);
 2808         }
 2809 }
 2810 
 2811 void 
 2812 vm_page_cowclear(vm_page_t m)
 2813 {
 2814 
 2815         vm_page_lock_assert(m, MA_OWNED);
 2816         if (m->cow) {
 2817                 m->cow--;
 2818                 /* 
 2819                  * let vm_fault add back write permission  lazily
 2820                  */
 2821         } 
 2822         /*
 2823          *  sf_buf_free() will free the page, so we needn't do it here
 2824          */ 
 2825 }
 2826 
 2827 int
 2828 vm_page_cowsetup(vm_page_t m)
 2829 {
 2830 
 2831         vm_page_lock_assert(m, MA_OWNED);
 2832         if ((m->flags & PG_FICTITIOUS) != 0 ||
 2833             (m->oflags & VPO_UNMANAGED) != 0 ||
 2834             m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
 2835                 return (EBUSY);
 2836         m->cow++;
 2837         pmap_remove_write(m);
 2838         VM_OBJECT_UNLOCK(m->object);
 2839         return (0);
 2840 }
 2841 
 2842 #ifdef INVARIANTS
 2843 void
 2844 vm_page_object_lock_assert(vm_page_t m)
 2845 {
 2846 
 2847         /*
 2848          * Certain of the page's fields may only be modified by the
 2849          * holder of the containing object's lock or the setter of the
 2850          * page's VPO_BUSY flag.  Unfortunately, the setter of the
 2851          * VPO_BUSY flag is not recorded, and thus cannot be checked
 2852          * here.
 2853          */
 2854         if (m->object != NULL && (m->oflags & VPO_BUSY) == 0)
 2855                 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2856 }
 2857 #endif
 2858 
 2859 #include "opt_ddb.h"
 2860 #ifdef DDB
 2861 #include <sys/kernel.h>
 2862 
 2863 #include <ddb/ddb.h>
 2864 
 2865 DB_SHOW_COMMAND(page, vm_page_print_page_info)
 2866 {
 2867         db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
 2868         db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
 2869         db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
 2870         db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
 2871         db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
 2872         db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
 2873         db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
 2874         db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
 2875         db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
 2876         db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
 2877 }
 2878 
 2879 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
 2880 {
 2881                 
 2882         db_printf("PQ_FREE:");
 2883         db_printf(" %d", cnt.v_free_count);
 2884         db_printf("\n");
 2885                 
 2886         db_printf("PQ_CACHE:");
 2887         db_printf(" %d", cnt.v_cache_count);
 2888         db_printf("\n");
 2889 
 2890         db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
 2891                 *vm_page_queues[PQ_ACTIVE].cnt,
 2892                 *vm_page_queues[PQ_INACTIVE].cnt);
 2893 }
 2894 #endif /* DDB */

Cache object: b48132d28426e6041ec50405f26b2657


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.