The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * The Mach Operating System project at Carnegie-Mellon University.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
   34  */
   35 
   36 /*-
   37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   38  * All rights reserved.
   39  *
   40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   41  *
   42  * Permission to use, copy, modify and distribute this software and
   43  * its documentation is hereby granted, provided that both the copyright
   44  * notice and this permission notice appear in all copies of the
   45  * software, derivative works or modified versions, and any portions
   46  * thereof, and that both notices appear in supporting documentation.
   47  *
   48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   51  *
   52  * Carnegie Mellon requests users of this software to return to
   53  *
   54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   55  *  School of Computer Science
   56  *  Carnegie Mellon University
   57  *  Pittsburgh PA 15213-3890
   58  *
   59  * any improvements or extensions that they make and grant Carnegie the
   60  * rights to redistribute these changes.
   61  */
   62 
   63 /*
   64  *                      GENERAL RULES ON VM_PAGE MANIPULATION
   65  *
   66  *      - a pageq mutex is required when adding or removing a page from a
   67  *        page queue (vm_page_queue[]), regardless of other mutexes or the
   68  *        busy state of a page.
   69  *
   70  *      - The object mutex is held when inserting or removing
   71  *        pages from an object (vm_page_insert() or vm_page_remove()).
   72  *
   73  */
   74 
   75 /*
   76  *      Resident memory management module.
   77  */
   78 
   79 #include <sys/cdefs.h>
   80 __FBSDID("$FreeBSD: releng/9.0/sys/vm/vm_page.c 227420 2011-11-10 16:50:36Z alc $");
   81 
   82 #include "opt_vm.h"
   83 
   84 #include <sys/param.h>
   85 #include <sys/systm.h>
   86 #include <sys/lock.h>
   87 #include <sys/kernel.h>
   88 #include <sys/limits.h>
   89 #include <sys/malloc.h>
   90 #include <sys/msgbuf.h>
   91 #include <sys/mutex.h>
   92 #include <sys/proc.h>
   93 #include <sys/sysctl.h>
   94 #include <sys/vmmeter.h>
   95 #include <sys/vnode.h>
   96 
   97 #include <vm/vm.h>
   98 #include <vm/pmap.h>
   99 #include <vm/vm_param.h>
  100 #include <vm/vm_kern.h>
  101 #include <vm/vm_object.h>
  102 #include <vm/vm_page.h>
  103 #include <vm/vm_pageout.h>
  104 #include <vm/vm_pager.h>
  105 #include <vm/vm_phys.h>
  106 #include <vm/vm_reserv.h>
  107 #include <vm/vm_extern.h>
  108 #include <vm/uma.h>
  109 #include <vm/uma_int.h>
  110 
  111 #include <machine/md_var.h>
  112 
  113 /*
  114  *      Associated with page of user-allocatable memory is a
  115  *      page structure.
  116  */
  117 
  118 struct vpgqueues vm_page_queues[PQ_COUNT];
  119 struct vpglocks vm_page_queue_lock;
  120 struct vpglocks vm_page_queue_free_lock;
  121 
  122 struct vpglocks pa_lock[PA_LOCK_COUNT];
  123 
  124 vm_page_t vm_page_array = 0;
  125 int vm_page_array_size = 0;
  126 long first_page = 0;
  127 int vm_page_zero_count = 0;
  128 
  129 static int boot_pages = UMA_BOOT_PAGES;
  130 TUNABLE_INT("vm.boot_pages", &boot_pages);
  131 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
  132         "number of pages allocated for bootstrapping the VM system");
  133 
  134 static int pa_tryrelock_restart;
  135 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
  136     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
  137 
  138 static uma_zone_t fakepg_zone;
  139 
  140 static void vm_page_clear_dirty_mask(vm_page_t m, int pagebits);
  141 static void vm_page_queue_remove(int queue, vm_page_t m);
  142 static void vm_page_enqueue(int queue, vm_page_t m);
  143 static void vm_page_init_fakepg(void *dummy);
  144 
  145 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
  146 
  147 static void
  148 vm_page_init_fakepg(void *dummy)
  149 {
  150 
  151         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
  152             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 
  153 }
  154 
  155 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
  156 #if PAGE_SIZE == 32768
  157 #ifdef CTASSERT
  158 CTASSERT(sizeof(u_long) >= 8);
  159 #endif
  160 #endif
  161 
  162 /*
  163  * Try to acquire a physical address lock while a pmap is locked.  If we
  164  * fail to trylock we unlock and lock the pmap directly and cache the
  165  * locked pa in *locked.  The caller should then restart their loop in case
  166  * the virtual to physical mapping has changed.
  167  */
  168 int
  169 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
  170 {
  171         vm_paddr_t lockpa;
  172 
  173         lockpa = *locked;
  174         *locked = pa;
  175         if (lockpa) {
  176                 PA_LOCK_ASSERT(lockpa, MA_OWNED);
  177                 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
  178                         return (0);
  179                 PA_UNLOCK(lockpa);
  180         }
  181         if (PA_TRYLOCK(pa))
  182                 return (0);
  183         PMAP_UNLOCK(pmap);
  184         atomic_add_int(&pa_tryrelock_restart, 1);
  185         PA_LOCK(pa);
  186         PMAP_LOCK(pmap);
  187         return (EAGAIN);
  188 }
  189 
  190 /*
  191  *      vm_set_page_size:
  192  *
  193  *      Sets the page size, perhaps based upon the memory
  194  *      size.  Must be called before any use of page-size
  195  *      dependent functions.
  196  */
  197 void
  198 vm_set_page_size(void)
  199 {
  200         if (cnt.v_page_size == 0)
  201                 cnt.v_page_size = PAGE_SIZE;
  202         if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
  203                 panic("vm_set_page_size: page size not a power of two");
  204 }
  205 
  206 /*
  207  *      vm_page_blacklist_lookup:
  208  *
  209  *      See if a physical address in this page has been listed
  210  *      in the blacklist tunable.  Entries in the tunable are
  211  *      separated by spaces or commas.  If an invalid integer is
  212  *      encountered then the rest of the string is skipped.
  213  */
  214 static int
  215 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
  216 {
  217         vm_paddr_t bad;
  218         char *cp, *pos;
  219 
  220         for (pos = list; *pos != '\0'; pos = cp) {
  221                 bad = strtoq(pos, &cp, 0);
  222                 if (*cp != '\0') {
  223                         if (*cp == ' ' || *cp == ',') {
  224                                 cp++;
  225                                 if (cp == pos)
  226                                         continue;
  227                         } else
  228                                 break;
  229                 }
  230                 if (pa == trunc_page(bad))
  231                         return (1);
  232         }
  233         return (0);
  234 }
  235 
  236 /*
  237  *      vm_page_startup:
  238  *
  239  *      Initializes the resident memory module.
  240  *
  241  *      Allocates memory for the page cells, and
  242  *      for the object/offset-to-page hash table headers.
  243  *      Each page cell is initialized and placed on the free list.
  244  */
  245 vm_offset_t
  246 vm_page_startup(vm_offset_t vaddr)
  247 {
  248         vm_offset_t mapped;
  249         vm_paddr_t page_range;
  250         vm_paddr_t new_end;
  251         int i;
  252         vm_paddr_t pa;
  253         vm_paddr_t last_pa;
  254         char *list;
  255 
  256         /* the biggest memory array is the second group of pages */
  257         vm_paddr_t end;
  258         vm_paddr_t biggestsize;
  259         vm_paddr_t low_water, high_water;
  260         int biggestone;
  261 
  262         biggestsize = 0;
  263         biggestone = 0;
  264         vaddr = round_page(vaddr);
  265 
  266         for (i = 0; phys_avail[i + 1]; i += 2) {
  267                 phys_avail[i] = round_page(phys_avail[i]);
  268                 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
  269         }
  270 
  271         low_water = phys_avail[0];
  272         high_water = phys_avail[1];
  273 
  274         for (i = 0; phys_avail[i + 1]; i += 2) {
  275                 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
  276 
  277                 if (size > biggestsize) {
  278                         biggestone = i;
  279                         biggestsize = size;
  280                 }
  281                 if (phys_avail[i] < low_water)
  282                         low_water = phys_avail[i];
  283                 if (phys_avail[i + 1] > high_water)
  284                         high_water = phys_avail[i + 1];
  285         }
  286 
  287 #ifdef XEN
  288         low_water = 0;
  289 #endif  
  290 
  291         end = phys_avail[biggestone+1];
  292 
  293         /*
  294          * Initialize the locks.
  295          */
  296         mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
  297             MTX_RECURSE);
  298         mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
  299             MTX_DEF);
  300 
  301         /* Setup page locks. */
  302         for (i = 0; i < PA_LOCK_COUNT; i++)
  303                 mtx_init(&pa_lock[i].data, "page lock", NULL, MTX_DEF);
  304 
  305         /*
  306          * Initialize the queue headers for the hold queue, the active queue,
  307          * and the inactive queue.
  308          */
  309         for (i = 0; i < PQ_COUNT; i++)
  310                 TAILQ_INIT(&vm_page_queues[i].pl);
  311         vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
  312         vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
  313         vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
  314 
  315         /*
  316          * Allocate memory for use when boot strapping the kernel memory
  317          * allocator.
  318          */
  319         new_end = end - (boot_pages * UMA_SLAB_SIZE);
  320         new_end = trunc_page(new_end);
  321         mapped = pmap_map(&vaddr, new_end, end,
  322             VM_PROT_READ | VM_PROT_WRITE);
  323         bzero((void *)mapped, end - new_end);
  324         uma_startup((void *)mapped, boot_pages);
  325 
  326 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
  327     defined(__mips__)
  328         /*
  329          * Allocate a bitmap to indicate that a random physical page
  330          * needs to be included in a minidump.
  331          *
  332          * The amd64 port needs this to indicate which direct map pages
  333          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
  334          *
  335          * However, i386 still needs this workspace internally within the
  336          * minidump code.  In theory, they are not needed on i386, but are
  337          * included should the sf_buf code decide to use them.
  338          */
  339         last_pa = 0;
  340         for (i = 0; dump_avail[i + 1] != 0; i += 2)
  341                 if (dump_avail[i + 1] > last_pa)
  342                         last_pa = dump_avail[i + 1];
  343         page_range = last_pa / PAGE_SIZE;
  344         vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
  345         new_end -= vm_page_dump_size;
  346         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
  347             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
  348         bzero((void *)vm_page_dump, vm_page_dump_size);
  349 #endif
  350 #ifdef __amd64__
  351         /*
  352          * Request that the physical pages underlying the message buffer be
  353          * included in a crash dump.  Since the message buffer is accessed
  354          * through the direct map, they are not automatically included.
  355          */
  356         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
  357         last_pa = pa + round_page(msgbufsize);
  358         while (pa < last_pa) {
  359                 dump_add_page(pa);
  360                 pa += PAGE_SIZE;
  361         }
  362 #endif
  363         /*
  364          * Compute the number of pages of memory that will be available for
  365          * use (taking into account the overhead of a page structure per
  366          * page).
  367          */
  368         first_page = low_water / PAGE_SIZE;
  369 #ifdef VM_PHYSSEG_SPARSE
  370         page_range = 0;
  371         for (i = 0; phys_avail[i + 1] != 0; i += 2)
  372                 page_range += atop(phys_avail[i + 1] - phys_avail[i]);
  373 #elif defined(VM_PHYSSEG_DENSE)
  374         page_range = high_water / PAGE_SIZE - first_page;
  375 #else
  376 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
  377 #endif
  378         end = new_end;
  379 
  380         /*
  381          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
  382          */
  383         vaddr += PAGE_SIZE;
  384 
  385         /*
  386          * Initialize the mem entry structures now, and put them in the free
  387          * queue.
  388          */
  389         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
  390         mapped = pmap_map(&vaddr, new_end, end,
  391             VM_PROT_READ | VM_PROT_WRITE);
  392         vm_page_array = (vm_page_t) mapped;
  393 #if VM_NRESERVLEVEL > 0
  394         /*
  395          * Allocate memory for the reservation management system's data
  396          * structures.
  397          */
  398         new_end = vm_reserv_startup(&vaddr, new_end, high_water);
  399 #endif
  400 #if defined(__amd64__) || defined(__mips__)
  401         /*
  402          * pmap_map on amd64 and mips can come out of the direct-map, not kvm
  403          * like i386, so the pages must be tracked for a crashdump to include
  404          * this data.  This includes the vm_page_array and the early UMA
  405          * bootstrap pages.
  406          */
  407         for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
  408                 dump_add_page(pa);
  409 #endif  
  410         phys_avail[biggestone + 1] = new_end;
  411 
  412         /*
  413          * Clear all of the page structures
  414          */
  415         bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
  416         for (i = 0; i < page_range; i++)
  417                 vm_page_array[i].order = VM_NFREEORDER;
  418         vm_page_array_size = page_range;
  419 
  420         /*
  421          * Initialize the physical memory allocator.
  422          */
  423         vm_phys_init();
  424 
  425         /*
  426          * Add every available physical page that is not blacklisted to
  427          * the free lists.
  428          */
  429         cnt.v_page_count = 0;
  430         cnt.v_free_count = 0;
  431         list = getenv("vm.blacklist");
  432         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  433                 pa = phys_avail[i];
  434                 last_pa = phys_avail[i + 1];
  435                 while (pa < last_pa) {
  436                         if (list != NULL &&
  437                             vm_page_blacklist_lookup(list, pa))
  438                                 printf("Skipping page with pa 0x%jx\n",
  439                                     (uintmax_t)pa);
  440                         else
  441                                 vm_phys_add_page(pa);
  442                         pa += PAGE_SIZE;
  443                 }
  444         }
  445         freeenv(list);
  446 #if VM_NRESERVLEVEL > 0
  447         /*
  448          * Initialize the reservation management system.
  449          */
  450         vm_reserv_init();
  451 #endif
  452         return (vaddr);
  453 }
  454 
  455 
  456 CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0);
  457 
  458 void
  459 vm_page_aflag_set(vm_page_t m, uint8_t bits)
  460 {
  461         uint32_t *addr, val;
  462 
  463         /*
  464          * The PGA_WRITEABLE flag can only be set if the page is managed and
  465          * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
  466          */
  467         KASSERT((bits & PGA_WRITEABLE) == 0 ||
  468             (m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == VPO_BUSY,
  469             ("PGA_WRITEABLE and !VPO_BUSY"));
  470 
  471         /*
  472          * We want to use atomic updates for m->aflags, which is a
  473          * byte wide.  Not all architectures provide atomic operations
  474          * on the single-byte destination.  Punt and access the whole
  475          * 4-byte word with an atomic update.  Parallel non-atomic
  476          * updates to the fields included in the update by proximity
  477          * are handled properly by atomics.
  478          */
  479         addr = (void *)&m->aflags;
  480         MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
  481         val = bits;
  482 #if BYTE_ORDER == BIG_ENDIAN
  483         val <<= 24;
  484 #endif
  485         atomic_set_32(addr, val);
  486 } 
  487 
  488 void
  489 vm_page_aflag_clear(vm_page_t m, uint8_t bits)
  490 {
  491         uint32_t *addr, val;
  492 
  493         /*
  494          * The PGA_REFERENCED flag can only be cleared if the object
  495          * containing the page is locked.
  496          */
  497         KASSERT((bits & PGA_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
  498             ("PGA_REFERENCED and !VM_OBJECT_LOCKED"));
  499 
  500         /*
  501          * See the comment in vm_page_aflag_set().
  502          */
  503         addr = (void *)&m->aflags;
  504         MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
  505         val = bits;
  506 #if BYTE_ORDER == BIG_ENDIAN
  507         val <<= 24;
  508 #endif
  509         atomic_clear_32(addr, val);
  510 }
  511 
  512 void
  513 vm_page_reference(vm_page_t m)
  514 {
  515 
  516         vm_page_aflag_set(m, PGA_REFERENCED);
  517 }
  518 
  519 void
  520 vm_page_busy(vm_page_t m)
  521 {
  522 
  523         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  524         KASSERT((m->oflags & VPO_BUSY) == 0,
  525             ("vm_page_busy: page already busy!!!"));
  526         m->oflags |= VPO_BUSY;
  527 }
  528 
  529 /*
  530  *      vm_page_flash:
  531  *
  532  *      wakeup anyone waiting for the page.
  533  */
  534 void
  535 vm_page_flash(vm_page_t m)
  536 {
  537 
  538         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  539         if (m->oflags & VPO_WANTED) {
  540                 m->oflags &= ~VPO_WANTED;
  541                 wakeup(m);
  542         }
  543 }
  544 
  545 /*
  546  *      vm_page_wakeup:
  547  *
  548  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
  549  *      page.
  550  *
  551  */
  552 void
  553 vm_page_wakeup(vm_page_t m)
  554 {
  555 
  556         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  557         KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
  558         m->oflags &= ~VPO_BUSY;
  559         vm_page_flash(m);
  560 }
  561 
  562 void
  563 vm_page_io_start(vm_page_t m)
  564 {
  565 
  566         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  567         m->busy++;
  568 }
  569 
  570 void
  571 vm_page_io_finish(vm_page_t m)
  572 {
  573 
  574         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  575         KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
  576         m->busy--;
  577         if (m->busy == 0)
  578                 vm_page_flash(m);
  579 }
  580 
  581 /*
  582  * Keep page from being freed by the page daemon
  583  * much of the same effect as wiring, except much lower
  584  * overhead and should be used only for *very* temporary
  585  * holding ("wiring").
  586  */
  587 void
  588 vm_page_hold(vm_page_t mem)
  589 {
  590 
  591         vm_page_lock_assert(mem, MA_OWNED);
  592         mem->hold_count++;
  593 }
  594 
  595 void
  596 vm_page_unhold(vm_page_t mem)
  597 {
  598 
  599         vm_page_lock_assert(mem, MA_OWNED);
  600         --mem->hold_count;
  601         KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
  602         if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
  603                 vm_page_free_toq(mem);
  604 }
  605 
  606 /*
  607  *      vm_page_unhold_pages:
  608  *
  609  *      Unhold each of the pages that is referenced by the given array.
  610  */ 
  611 void
  612 vm_page_unhold_pages(vm_page_t *ma, int count)
  613 {
  614         struct mtx *mtx, *new_mtx;
  615 
  616         mtx = NULL;
  617         for (; count != 0; count--) {
  618                 /*
  619                  * Avoid releasing and reacquiring the same page lock.
  620                  */
  621                 new_mtx = vm_page_lockptr(*ma);
  622                 if (mtx != new_mtx) {
  623                         if (mtx != NULL)
  624                                 mtx_unlock(mtx);
  625                         mtx = new_mtx;
  626                         mtx_lock(mtx);
  627                 }
  628                 vm_page_unhold(*ma);
  629                 ma++;
  630         }
  631         if (mtx != NULL)
  632                 mtx_unlock(mtx);
  633 }
  634 
  635 /*
  636  *      vm_page_getfake:
  637  *
  638  *      Create a fictitious page with the specified physical address and
  639  *      memory attribute.  The memory attribute is the only the machine-
  640  *      dependent aspect of a fictitious page that must be initialized.
  641  */
  642 vm_page_t
  643 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
  644 {
  645         vm_page_t m;
  646 
  647         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
  648         m->phys_addr = paddr;
  649         m->queue = PQ_NONE;
  650         /* Fictitious pages don't use "segind". */
  651         m->flags = PG_FICTITIOUS;
  652         /* Fictitious pages don't use "order" or "pool". */
  653         m->oflags = VPO_BUSY | VPO_UNMANAGED;
  654         m->wire_count = 1;
  655         pmap_page_set_memattr(m, memattr);
  656         return (m);
  657 }
  658 
  659 /*
  660  *      vm_page_putfake:
  661  *
  662  *      Release a fictitious page.
  663  */
  664 void
  665 vm_page_putfake(vm_page_t m)
  666 {
  667 
  668         KASSERT((m->flags & PG_FICTITIOUS) != 0,
  669             ("vm_page_putfake: bad page %p", m));
  670         uma_zfree(fakepg_zone, m);
  671 }
  672 
  673 /*
  674  *      vm_page_updatefake:
  675  *
  676  *      Update the given fictitious page to the specified physical address and
  677  *      memory attribute.
  678  */
  679 void
  680 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
  681 {
  682 
  683         KASSERT((m->flags & PG_FICTITIOUS) != 0,
  684             ("vm_page_updatefake: bad page %p", m));
  685         m->phys_addr = paddr;
  686         pmap_page_set_memattr(m, memattr);
  687 }
  688 
  689 /*
  690  *      vm_page_free:
  691  *
  692  *      Free a page.
  693  */
  694 void
  695 vm_page_free(vm_page_t m)
  696 {
  697 
  698         m->flags &= ~PG_ZERO;
  699         vm_page_free_toq(m);
  700 }
  701 
  702 /*
  703  *      vm_page_free_zero:
  704  *
  705  *      Free a page to the zerod-pages queue
  706  */
  707 void
  708 vm_page_free_zero(vm_page_t m)
  709 {
  710 
  711         m->flags |= PG_ZERO;
  712         vm_page_free_toq(m);
  713 }
  714 
  715 /*
  716  *      vm_page_sleep:
  717  *
  718  *      Sleep and release the page and page queues locks.
  719  *
  720  *      The object containing the given page must be locked.
  721  */
  722 void
  723 vm_page_sleep(vm_page_t m, const char *msg)
  724 {
  725 
  726         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  727         if (mtx_owned(&vm_page_queue_mtx))
  728                 vm_page_unlock_queues();
  729         if (mtx_owned(vm_page_lockptr(m)))
  730                 vm_page_unlock(m);
  731 
  732         /*
  733          * It's possible that while we sleep, the page will get
  734          * unbusied and freed.  If we are holding the object
  735          * lock, we will assume we hold a reference to the object
  736          * such that even if m->object changes, we can re-lock
  737          * it.
  738          */
  739         m->oflags |= VPO_WANTED;
  740         msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
  741 }
  742 
  743 /*
  744  *      vm_page_dirty:
  745  *
  746  *      Set all bits in the page's dirty field.
  747  *
  748  *      The object containing the specified page must be locked if the
  749  *      call is made from the machine-independent layer.
  750  *
  751  *      See vm_page_clear_dirty_mask().
  752  */
  753 void
  754 vm_page_dirty(vm_page_t m)
  755 {
  756 
  757         KASSERT((m->flags & PG_CACHED) == 0,
  758             ("vm_page_dirty: page in cache!"));
  759         KASSERT(!VM_PAGE_IS_FREE(m),
  760             ("vm_page_dirty: page is free!"));
  761         KASSERT(m->valid == VM_PAGE_BITS_ALL,
  762             ("vm_page_dirty: page is invalid!"));
  763         m->dirty = VM_PAGE_BITS_ALL;
  764 }
  765 
  766 /*
  767  *      vm_page_splay:
  768  *
  769  *      Implements Sleator and Tarjan's top-down splay algorithm.  Returns
  770  *      the vm_page containing the given pindex.  If, however, that
  771  *      pindex is not found in the vm_object, returns a vm_page that is
  772  *      adjacent to the pindex, coming before or after it.
  773  */
  774 vm_page_t
  775 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
  776 {
  777         struct vm_page dummy;
  778         vm_page_t lefttreemax, righttreemin, y;
  779 
  780         if (root == NULL)
  781                 return (root);
  782         lefttreemax = righttreemin = &dummy;
  783         for (;; root = y) {
  784                 if (pindex < root->pindex) {
  785                         if ((y = root->left) == NULL)
  786                                 break;
  787                         if (pindex < y->pindex) {
  788                                 /* Rotate right. */
  789                                 root->left = y->right;
  790                                 y->right = root;
  791                                 root = y;
  792                                 if ((y = root->left) == NULL)
  793                                         break;
  794                         }
  795                         /* Link into the new root's right tree. */
  796                         righttreemin->left = root;
  797                         righttreemin = root;
  798                 } else if (pindex > root->pindex) {
  799                         if ((y = root->right) == NULL)
  800                                 break;
  801                         if (pindex > y->pindex) {
  802                                 /* Rotate left. */
  803                                 root->right = y->left;
  804                                 y->left = root;
  805                                 root = y;
  806                                 if ((y = root->right) == NULL)
  807                                         break;
  808                         }
  809                         /* Link into the new root's left tree. */
  810                         lefttreemax->right = root;
  811                         lefttreemax = root;
  812                 } else
  813                         break;
  814         }
  815         /* Assemble the new root. */
  816         lefttreemax->right = root->left;
  817         righttreemin->left = root->right;
  818         root->left = dummy.right;
  819         root->right = dummy.left;
  820         return (root);
  821 }
  822 
  823 /*
  824  *      vm_page_insert:         [ internal use only ]
  825  *
  826  *      Inserts the given mem entry into the object and object list.
  827  *
  828  *      The pagetables are not updated but will presumably fault the page
  829  *      in if necessary, or if a kernel page the caller will at some point
  830  *      enter the page into the kernel's pmap.  We are not allowed to block
  831  *      here so we *can't* do this anyway.
  832  *
  833  *      The object and page must be locked.
  834  *      This routine may not block.
  835  */
  836 void
  837 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
  838 {
  839         vm_page_t root;
  840 
  841         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  842         if (m->object != NULL)
  843                 panic("vm_page_insert: page already inserted");
  844 
  845         /*
  846          * Record the object/offset pair in this page
  847          */
  848         m->object = object;
  849         m->pindex = pindex;
  850 
  851         /*
  852          * Now link into the object's ordered list of backed pages.
  853          */
  854         root = object->root;
  855         if (root == NULL) {
  856                 m->left = NULL;
  857                 m->right = NULL;
  858                 TAILQ_INSERT_TAIL(&object->memq, m, listq);
  859         } else {
  860                 root = vm_page_splay(pindex, root);
  861                 if (pindex < root->pindex) {
  862                         m->left = root->left;
  863                         m->right = root;
  864                         root->left = NULL;
  865                         TAILQ_INSERT_BEFORE(root, m, listq);
  866                 } else if (pindex == root->pindex)
  867                         panic("vm_page_insert: offset already allocated");
  868                 else {
  869                         m->right = root->right;
  870                         m->left = root;
  871                         root->right = NULL;
  872                         TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
  873                 }
  874         }
  875         object->root = m;
  876 
  877         /*
  878          * show that the object has one more resident page.
  879          */
  880         object->resident_page_count++;
  881         /*
  882          * Hold the vnode until the last page is released.
  883          */
  884         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
  885                 vhold((struct vnode *)object->handle);
  886 
  887         /*
  888          * Since we are inserting a new and possibly dirty page,
  889          * update the object's OBJ_MIGHTBEDIRTY flag.
  890          */
  891         if (m->aflags & PGA_WRITEABLE)
  892                 vm_object_set_writeable_dirty(object);
  893 }
  894 
  895 /*
  896  *      vm_page_remove:
  897  *                              NOTE: used by device pager as well -wfj
  898  *
  899  *      Removes the given mem entry from the object/offset-page
  900  *      table and the object page list, but do not invalidate/terminate
  901  *      the backing store.
  902  *
  903  *      The object and page must be locked.
  904  *      The underlying pmap entry (if any) is NOT removed here.
  905  *      This routine may not block.
  906  */
  907 void
  908 vm_page_remove(vm_page_t m)
  909 {
  910         vm_object_t object;
  911         vm_page_t next, prev, root;
  912 
  913         if ((m->oflags & VPO_UNMANAGED) == 0)
  914                 vm_page_lock_assert(m, MA_OWNED);
  915         if ((object = m->object) == NULL)
  916                 return;
  917         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  918         if (m->oflags & VPO_BUSY) {
  919                 m->oflags &= ~VPO_BUSY;
  920                 vm_page_flash(m);
  921         }
  922 
  923         /*
  924          * Now remove from the object's list of backed pages.
  925          */
  926         if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
  927                 /*
  928                  * Since the page's successor in the list is also its parent
  929                  * in the tree, its right subtree must be empty.
  930                  */
  931                 next->left = m->left;
  932                 KASSERT(m->right == NULL,
  933                     ("vm_page_remove: page %p has right child", m));
  934         } else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
  935             prev->right == m) {
  936                 /*
  937                  * Since the page's predecessor in the list is also its parent
  938                  * in the tree, its left subtree must be empty.
  939                  */
  940                 KASSERT(m->left == NULL,
  941                     ("vm_page_remove: page %p has left child", m));
  942                 prev->right = m->right;
  943         } else {
  944                 if (m != object->root)
  945                         vm_page_splay(m->pindex, object->root);
  946                 if (m->left == NULL)
  947                         root = m->right;
  948                 else if (m->right == NULL)
  949                         root = m->left;
  950                 else {
  951                         /*
  952                          * Move the page's successor to the root, because
  953                          * pages are usually removed in ascending order.
  954                          */
  955                         if (m->right != next)
  956                                 vm_page_splay(m->pindex, m->right);
  957                         next->left = m->left;
  958                         root = next;
  959                 }
  960                 object->root = root;
  961         }
  962         TAILQ_REMOVE(&object->memq, m, listq);
  963 
  964         /*
  965          * And show that the object has one fewer resident page.
  966          */
  967         object->resident_page_count--;
  968         /*
  969          * The vnode may now be recycled.
  970          */
  971         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
  972                 vdrop((struct vnode *)object->handle);
  973 
  974         m->object = NULL;
  975 }
  976 
  977 /*
  978  *      vm_page_lookup:
  979  *
  980  *      Returns the page associated with the object/offset
  981  *      pair specified; if none is found, NULL is returned.
  982  *
  983  *      The object must be locked.
  984  *      This routine may not block.
  985  *      This is a critical path routine
  986  */
  987 vm_page_t
  988 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
  989 {
  990         vm_page_t m;
  991 
  992         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  993         if ((m = object->root) != NULL && m->pindex != pindex) {
  994                 m = vm_page_splay(pindex, m);
  995                 if ((object->root = m)->pindex != pindex)
  996                         m = NULL;
  997         }
  998         return (m);
  999 }
 1000 
 1001 /*
 1002  *      vm_page_find_least:
 1003  *
 1004  *      Returns the page associated with the object with least pindex
 1005  *      greater than or equal to the parameter pindex, or NULL.
 1006  *
 1007  *      The object must be locked.
 1008  *      The routine may not block.
 1009  */
 1010 vm_page_t
 1011 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
 1012 {
 1013         vm_page_t m;
 1014 
 1015         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1016         if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
 1017                 if (m->pindex < pindex) {
 1018                         m = vm_page_splay(pindex, object->root);
 1019                         if ((object->root = m)->pindex < pindex)
 1020                                 m = TAILQ_NEXT(m, listq);
 1021                 }
 1022         }
 1023         return (m);
 1024 }
 1025 
 1026 /*
 1027  * Returns the given page's successor (by pindex) within the object if it is
 1028  * resident; if none is found, NULL is returned.
 1029  *
 1030  * The object must be locked.
 1031  */
 1032 vm_page_t
 1033 vm_page_next(vm_page_t m)
 1034 {
 1035         vm_page_t next;
 1036 
 1037         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1038         if ((next = TAILQ_NEXT(m, listq)) != NULL &&
 1039             next->pindex != m->pindex + 1)
 1040                 next = NULL;
 1041         return (next);
 1042 }
 1043 
 1044 /*
 1045  * Returns the given page's predecessor (by pindex) within the object if it is
 1046  * resident; if none is found, NULL is returned.
 1047  *
 1048  * The object must be locked.
 1049  */
 1050 vm_page_t
 1051 vm_page_prev(vm_page_t m)
 1052 {
 1053         vm_page_t prev;
 1054 
 1055         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1056         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
 1057             prev->pindex != m->pindex - 1)
 1058                 prev = NULL;
 1059         return (prev);
 1060 }
 1061 
 1062 /*
 1063  *      vm_page_rename:
 1064  *
 1065  *      Move the given memory entry from its
 1066  *      current object to the specified target object/offset.
 1067  *
 1068  *      The object must be locked.
 1069  *      This routine may not block.
 1070  *
 1071  *      Note: swap associated with the page must be invalidated by the move.  We
 1072  *            have to do this for several reasons:  (1) we aren't freeing the
 1073  *            page, (2) we are dirtying the page, (3) the VM system is probably
 1074  *            moving the page from object A to B, and will then later move
 1075  *            the backing store from A to B and we can't have a conflict.
 1076  *
 1077  *      Note: we *always* dirty the page.  It is necessary both for the
 1078  *            fact that we moved it, and because we may be invalidating
 1079  *            swap.  If the page is on the cache, we have to deactivate it
 1080  *            or vm_page_dirty() will panic.  Dirty pages are not allowed
 1081  *            on the cache.
 1082  */
 1083 void
 1084 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
 1085 {
 1086 
 1087         vm_page_remove(m);
 1088         vm_page_insert(m, new_object, new_pindex);
 1089         vm_page_dirty(m);
 1090 }
 1091 
 1092 /*
 1093  *      Convert all of the given object's cached pages that have a
 1094  *      pindex within the given range into free pages.  If the value
 1095  *      zero is given for "end", then the range's upper bound is
 1096  *      infinity.  If the given object is backed by a vnode and it
 1097  *      transitions from having one or more cached pages to none, the
 1098  *      vnode's hold count is reduced. 
 1099  */
 1100 void
 1101 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
 1102 {
 1103         vm_page_t m, m_next;
 1104         boolean_t empty;
 1105 
 1106         mtx_lock(&vm_page_queue_free_mtx);
 1107         if (__predict_false(object->cache == NULL)) {
 1108                 mtx_unlock(&vm_page_queue_free_mtx);
 1109                 return;
 1110         }
 1111         m = object->cache = vm_page_splay(start, object->cache);
 1112         if (m->pindex < start) {
 1113                 if (m->right == NULL)
 1114                         m = NULL;
 1115                 else {
 1116                         m_next = vm_page_splay(start, m->right);
 1117                         m_next->left = m;
 1118                         m->right = NULL;
 1119                         m = object->cache = m_next;
 1120                 }
 1121         }
 1122 
 1123         /*
 1124          * At this point, "m" is either (1) a reference to the page
 1125          * with the least pindex that is greater than or equal to
 1126          * "start" or (2) NULL.
 1127          */
 1128         for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
 1129                 /*
 1130                  * Find "m"'s successor and remove "m" from the
 1131                  * object's cache.
 1132                  */
 1133                 if (m->right == NULL) {
 1134                         object->cache = m->left;
 1135                         m_next = NULL;
 1136                 } else {
 1137                         m_next = vm_page_splay(start, m->right);
 1138                         m_next->left = m->left;
 1139                         object->cache = m_next;
 1140                 }
 1141                 /* Convert "m" to a free page. */
 1142                 m->object = NULL;
 1143                 m->valid = 0;
 1144                 /* Clear PG_CACHED and set PG_FREE. */
 1145                 m->flags ^= PG_CACHED | PG_FREE;
 1146                 KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
 1147                     ("vm_page_cache_free: page %p has inconsistent flags", m));
 1148                 cnt.v_cache_count--;
 1149                 cnt.v_free_count++;
 1150         }
 1151         empty = object->cache == NULL;
 1152         mtx_unlock(&vm_page_queue_free_mtx);
 1153         if (object->type == OBJT_VNODE && empty)
 1154                 vdrop(object->handle);
 1155 }
 1156 
 1157 /*
 1158  *      Returns the cached page that is associated with the given
 1159  *      object and offset.  If, however, none exists, returns NULL.
 1160  *
 1161  *      The free page queue must be locked.
 1162  */
 1163 static inline vm_page_t
 1164 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
 1165 {
 1166         vm_page_t m;
 1167 
 1168         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1169         if ((m = object->cache) != NULL && m->pindex != pindex) {
 1170                 m = vm_page_splay(pindex, m);
 1171                 if ((object->cache = m)->pindex != pindex)
 1172                         m = NULL;
 1173         }
 1174         return (m);
 1175 }
 1176 
 1177 /*
 1178  *      Remove the given cached page from its containing object's
 1179  *      collection of cached pages.
 1180  *
 1181  *      The free page queue must be locked.
 1182  */
 1183 void
 1184 vm_page_cache_remove(vm_page_t m)
 1185 {
 1186         vm_object_t object;
 1187         vm_page_t root;
 1188 
 1189         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1190         KASSERT((m->flags & PG_CACHED) != 0,
 1191             ("vm_page_cache_remove: page %p is not cached", m));
 1192         object = m->object;
 1193         if (m != object->cache) {
 1194                 root = vm_page_splay(m->pindex, object->cache);
 1195                 KASSERT(root == m,
 1196                     ("vm_page_cache_remove: page %p is not cached in object %p",
 1197                     m, object));
 1198         }
 1199         if (m->left == NULL)
 1200                 root = m->right;
 1201         else if (m->right == NULL)
 1202                 root = m->left;
 1203         else {
 1204                 root = vm_page_splay(m->pindex, m->left);
 1205                 root->right = m->right;
 1206         }
 1207         object->cache = root;
 1208         m->object = NULL;
 1209         cnt.v_cache_count--;
 1210 }
 1211 
 1212 /*
 1213  *      Transfer all of the cached pages with offset greater than or
 1214  *      equal to 'offidxstart' from the original object's cache to the
 1215  *      new object's cache.  However, any cached pages with offset
 1216  *      greater than or equal to the new object's size are kept in the
 1217  *      original object.  Initially, the new object's cache must be
 1218  *      empty.  Offset 'offidxstart' in the original object must
 1219  *      correspond to offset zero in the new object.
 1220  *
 1221  *      The new object must be locked.
 1222  */
 1223 void
 1224 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
 1225     vm_object_t new_object)
 1226 {
 1227         vm_page_t m, m_next;
 1228 
 1229         /*
 1230          * Insertion into an object's collection of cached pages
 1231          * requires the object to be locked.  In contrast, removal does
 1232          * not.
 1233          */
 1234         VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
 1235         KASSERT(new_object->cache == NULL,
 1236             ("vm_page_cache_transfer: object %p has cached pages",
 1237             new_object));
 1238         mtx_lock(&vm_page_queue_free_mtx);
 1239         if ((m = orig_object->cache) != NULL) {
 1240                 /*
 1241                  * Transfer all of the pages with offset greater than or
 1242                  * equal to 'offidxstart' from the original object's
 1243                  * cache to the new object's cache.
 1244                  */
 1245                 m = vm_page_splay(offidxstart, m);
 1246                 if (m->pindex < offidxstart) {
 1247                         orig_object->cache = m;
 1248                         new_object->cache = m->right;
 1249                         m->right = NULL;
 1250                 } else {
 1251                         orig_object->cache = m->left;
 1252                         new_object->cache = m;
 1253                         m->left = NULL;
 1254                 }
 1255                 while ((m = new_object->cache) != NULL) {
 1256                         if ((m->pindex - offidxstart) >= new_object->size) {
 1257                                 /*
 1258                                  * Return all of the cached pages with
 1259                                  * offset greater than or equal to the
 1260                                  * new object's size to the original
 1261                                  * object's cache. 
 1262                                  */
 1263                                 new_object->cache = m->left;
 1264                                 m->left = orig_object->cache;
 1265                                 orig_object->cache = m;
 1266                                 break;
 1267                         }
 1268                         m_next = vm_page_splay(m->pindex, m->right);
 1269                         /* Update the page's object and offset. */
 1270                         m->object = new_object;
 1271                         m->pindex -= offidxstart;
 1272                         if (m_next == NULL)
 1273                                 break;
 1274                         m->right = NULL;
 1275                         m_next->left = m;
 1276                         new_object->cache = m_next;
 1277                 }
 1278                 KASSERT(new_object->cache == NULL ||
 1279                     new_object->type == OBJT_SWAP,
 1280                     ("vm_page_cache_transfer: object %p's type is incompatible"
 1281                     " with cached pages", new_object));
 1282         }
 1283         mtx_unlock(&vm_page_queue_free_mtx);
 1284 }
 1285 
 1286 /*
 1287  *      vm_page_alloc:
 1288  *
 1289  *      Allocate and return a memory cell associated
 1290  *      with this VM object/offset pair.
 1291  *
 1292  *      The caller must always specify an allocation class.
 1293  *
 1294  *      allocation classes:
 1295  *      VM_ALLOC_NORMAL         normal process request
 1296  *      VM_ALLOC_SYSTEM         system *really* needs a page
 1297  *      VM_ALLOC_INTERRUPT      interrupt time request
 1298  *
 1299  *      optional allocation flags:
 1300  *      VM_ALLOC_ZERO           prefer a zeroed page
 1301  *      VM_ALLOC_WIRED          wire the allocated page
 1302  *      VM_ALLOC_NOOBJ          page is not associated with a vm object
 1303  *      VM_ALLOC_NOBUSY         do not set the page busy
 1304  *      VM_ALLOC_IFCACHED       return page only if it is cached
 1305  *      VM_ALLOC_IFNOTCACHED    return NULL, do not reactivate if the page
 1306  *                              is cached
 1307  *
 1308  *      This routine may not sleep.
 1309  */
 1310 vm_page_t
 1311 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
 1312 {
 1313         struct vnode *vp = NULL;
 1314         vm_object_t m_object;
 1315         vm_page_t m;
 1316         int flags, page_req;
 1317 
 1318         if ((req & VM_ALLOC_NOOBJ) == 0) {
 1319                 KASSERT(object != NULL,
 1320                     ("vm_page_alloc: NULL object."));
 1321                 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1322         }
 1323 
 1324         page_req = req & VM_ALLOC_CLASS_MASK;
 1325 
 1326         /*
 1327          * The pager is allowed to eat deeper into the free page list.
 1328          */
 1329         if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT))
 1330                 page_req = VM_ALLOC_SYSTEM;
 1331 
 1332         mtx_lock(&vm_page_queue_free_mtx);
 1333         if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
 1334             (page_req == VM_ALLOC_SYSTEM && 
 1335             cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
 1336             (page_req == VM_ALLOC_INTERRUPT &&
 1337             cnt.v_free_count + cnt.v_cache_count > 0)) {
 1338                 /*
 1339                  * Allocate from the free queue if the number of free pages
 1340                  * exceeds the minimum for the request class.
 1341                  */
 1342                 if (object != NULL &&
 1343                     (m = vm_page_cache_lookup(object, pindex)) != NULL) {
 1344                         if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
 1345                                 mtx_unlock(&vm_page_queue_free_mtx);
 1346                                 return (NULL);
 1347                         }
 1348                         if (vm_phys_unfree_page(m))
 1349                                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
 1350 #if VM_NRESERVLEVEL > 0
 1351                         else if (!vm_reserv_reactivate_page(m))
 1352 #else
 1353                         else
 1354 #endif
 1355                                 panic("vm_page_alloc: cache page %p is missing"
 1356                                     " from the free queue", m);
 1357                 } else if ((req & VM_ALLOC_IFCACHED) != 0) {
 1358                         mtx_unlock(&vm_page_queue_free_mtx);
 1359                         return (NULL);
 1360 #if VM_NRESERVLEVEL > 0
 1361                 } else if (object == NULL || object->type == OBJT_DEVICE ||
 1362                     object->type == OBJT_SG ||
 1363                     (object->flags & OBJ_COLORED) == 0 ||
 1364                     (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
 1365 #else
 1366                 } else {
 1367 #endif
 1368                         m = vm_phys_alloc_pages(object != NULL ?
 1369                             VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
 1370 #if VM_NRESERVLEVEL > 0
 1371                         if (m == NULL && vm_reserv_reclaim_inactive()) {
 1372                                 m = vm_phys_alloc_pages(object != NULL ?
 1373                                     VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
 1374                                     0);
 1375                         }
 1376 #endif
 1377                 }
 1378         } else {
 1379                 /*
 1380                  * Not allocatable, give up.
 1381                  */
 1382                 mtx_unlock(&vm_page_queue_free_mtx);
 1383                 atomic_add_int(&vm_pageout_deficit,
 1384                     MAX((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
 1385                 pagedaemon_wakeup();
 1386                 return (NULL);
 1387         }
 1388 
 1389         /*
 1390          *  At this point we had better have found a good page.
 1391          */
 1392 
 1393         KASSERT(m != NULL, ("vm_page_alloc: missing page"));
 1394         KASSERT(m->queue == PQ_NONE,
 1395             ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
 1396         KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
 1397         KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
 1398         KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
 1399         KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
 1400         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
 1401             ("vm_page_alloc: page %p has unexpected memattr %d", m,
 1402             pmap_page_get_memattr(m)));
 1403         if ((m->flags & PG_CACHED) != 0) {
 1404                 KASSERT(m->valid != 0,
 1405                     ("vm_page_alloc: cached page %p is invalid", m));
 1406                 if (m->object == object && m->pindex == pindex)
 1407                         cnt.v_reactivated++;
 1408                 else
 1409                         m->valid = 0;
 1410                 m_object = m->object;
 1411                 vm_page_cache_remove(m);
 1412                 if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
 1413                         vp = m_object->handle;
 1414         } else {
 1415                 KASSERT(VM_PAGE_IS_FREE(m),
 1416                     ("vm_page_alloc: page %p is not free", m));
 1417                 KASSERT(m->valid == 0,
 1418                     ("vm_page_alloc: free page %p is valid", m));
 1419                 cnt.v_free_count--;
 1420         }
 1421 
 1422         /*
 1423          * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
 1424          * must be cleared before the free page queues lock is released.
 1425          */
 1426         flags = 0;
 1427         if (m->flags & PG_ZERO) {
 1428                 vm_page_zero_count--;
 1429                 if (req & VM_ALLOC_ZERO)
 1430                         flags = PG_ZERO;
 1431         }
 1432         m->flags = flags;
 1433         mtx_unlock(&vm_page_queue_free_mtx);
 1434         m->aflags = 0;
 1435         if (object == NULL || object->type == OBJT_PHYS)
 1436                 m->oflags = VPO_UNMANAGED;
 1437         else
 1438                 m->oflags = 0;
 1439         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0)
 1440                 m->oflags |= VPO_BUSY;
 1441         if (req & VM_ALLOC_WIRED) {
 1442                 /*
 1443                  * The page lock is not required for wiring a page until that
 1444                  * page is inserted into the object.
 1445                  */
 1446                 atomic_add_int(&cnt.v_wire_count, 1);
 1447                 m->wire_count = 1;
 1448         }
 1449         m->act_count = 0;
 1450 
 1451         if (object != NULL) {
 1452                 /* Ignore device objects; the pager sets "memattr" for them. */
 1453                 if (object->memattr != VM_MEMATTR_DEFAULT &&
 1454                     object->type != OBJT_DEVICE && object->type != OBJT_SG)
 1455                         pmap_page_set_memattr(m, object->memattr);
 1456                 vm_page_insert(m, object, pindex);
 1457         } else
 1458                 m->pindex = pindex;
 1459 
 1460         /*
 1461          * The following call to vdrop() must come after the above call
 1462          * to vm_page_insert() in case both affect the same object and
 1463          * vnode.  Otherwise, the affected vnode's hold count could
 1464          * temporarily become zero.
 1465          */
 1466         if (vp != NULL)
 1467                 vdrop(vp);
 1468 
 1469         /*
 1470          * Don't wakeup too often - wakeup the pageout daemon when
 1471          * we would be nearly out of memory.
 1472          */
 1473         if (vm_paging_needed())
 1474                 pagedaemon_wakeup();
 1475 
 1476         return (m);
 1477 }
 1478 
 1479 /*
 1480  * Initialize a page that has been freshly dequeued from a freelist.
 1481  * The caller has to drop the vnode returned, if it is not NULL.
 1482  *
 1483  * To be called with vm_page_queue_free_mtx held.
 1484  */
 1485 struct vnode *
 1486 vm_page_alloc_init(vm_page_t m)
 1487 {
 1488         struct vnode *drop;
 1489         vm_object_t m_object;
 1490 
 1491         KASSERT(m->queue == PQ_NONE,
 1492             ("vm_page_alloc_init: page %p has unexpected queue %d",
 1493             m, m->queue));
 1494         KASSERT(m->wire_count == 0,
 1495             ("vm_page_alloc_init: page %p is wired", m));
 1496         KASSERT(m->hold_count == 0,
 1497             ("vm_page_alloc_init: page %p is held", m));
 1498         KASSERT(m->busy == 0,
 1499             ("vm_page_alloc_init: page %p is busy", m));
 1500         KASSERT(m->dirty == 0,
 1501             ("vm_page_alloc_init: page %p is dirty", m));
 1502         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
 1503             ("vm_page_alloc_init: page %p has unexpected memattr %d",
 1504             m, pmap_page_get_memattr(m)));
 1505         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1506         drop = NULL;
 1507         if ((m->flags & PG_CACHED) != 0) {
 1508                 m->valid = 0;
 1509                 m_object = m->object;
 1510                 vm_page_cache_remove(m);
 1511                 if (m_object->type == OBJT_VNODE &&
 1512                     m_object->cache == NULL)
 1513                         drop = m_object->handle;
 1514         } else {
 1515                 KASSERT(VM_PAGE_IS_FREE(m),
 1516                     ("vm_page_alloc_init: page %p is not free", m));
 1517                 KASSERT(m->valid == 0,
 1518                     ("vm_page_alloc_init: free page %p is valid", m));
 1519                 cnt.v_free_count--;
 1520         }
 1521         if (m->flags & PG_ZERO)
 1522                 vm_page_zero_count--;
 1523         /* Don't clear the PG_ZERO flag; we'll need it later. */
 1524         m->flags &= PG_ZERO;
 1525         m->aflags = 0;
 1526         m->oflags = VPO_UNMANAGED;
 1527         /* Unmanaged pages don't use "act_count". */
 1528         return (drop);
 1529 }
 1530 
 1531 /*
 1532  *      vm_page_alloc_freelist:
 1533  * 
 1534  *      Allocate a page from the specified freelist.
 1535  *      Only the ALLOC_CLASS values in req are honored, other request flags
 1536  *      are ignored.
 1537  */
 1538 vm_page_t
 1539 vm_page_alloc_freelist(int flind, int req)
 1540 {
 1541         struct vnode *drop;
 1542         vm_page_t m;
 1543         int page_req;
 1544 
 1545         m = NULL;
 1546         page_req = req & VM_ALLOC_CLASS_MASK;
 1547         mtx_lock(&vm_page_queue_free_mtx);
 1548         /*
 1549          * Do not allocate reserved pages unless the req has asked for it.
 1550          */
 1551         if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
 1552             (page_req == VM_ALLOC_SYSTEM && 
 1553             cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
 1554             (page_req == VM_ALLOC_INTERRUPT &&
 1555             cnt.v_free_count + cnt.v_cache_count > 0)) {
 1556                 m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
 1557         }
 1558         if (m == NULL) {
 1559                 mtx_unlock(&vm_page_queue_free_mtx);
 1560                 return (NULL);
 1561         }
 1562         drop = vm_page_alloc_init(m);
 1563         mtx_unlock(&vm_page_queue_free_mtx);
 1564         if (drop)
 1565                 vdrop(drop);
 1566         return (m);
 1567 }
 1568 
 1569 /*
 1570  *      vm_wait:        (also see VM_WAIT macro)
 1571  *
 1572  *      Block until free pages are available for allocation
 1573  *      - Called in various places before memory allocations.
 1574  */
 1575 void
 1576 vm_wait(void)
 1577 {
 1578 
 1579         mtx_lock(&vm_page_queue_free_mtx);
 1580         if (curproc == pageproc) {
 1581                 vm_pageout_pages_needed = 1;
 1582                 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
 1583                     PDROP | PSWP, "VMWait", 0);
 1584         } else {
 1585                 if (!vm_pages_needed) {
 1586                         vm_pages_needed = 1;
 1587                         wakeup(&vm_pages_needed);
 1588                 }
 1589                 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
 1590                     "vmwait", 0);
 1591         }
 1592 }
 1593 
 1594 /*
 1595  *      vm_waitpfault:  (also see VM_WAITPFAULT macro)
 1596  *
 1597  *      Block until free pages are available for allocation
 1598  *      - Called only in vm_fault so that processes page faulting
 1599  *        can be easily tracked.
 1600  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
 1601  *        processes will be able to grab memory first.  Do not change
 1602  *        this balance without careful testing first.
 1603  */
 1604 void
 1605 vm_waitpfault(void)
 1606 {
 1607 
 1608         mtx_lock(&vm_page_queue_free_mtx);
 1609         if (!vm_pages_needed) {
 1610                 vm_pages_needed = 1;
 1611                 wakeup(&vm_pages_needed);
 1612         }
 1613         msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
 1614             "pfault", 0);
 1615 }
 1616 
 1617 /*
 1618  *      vm_page_requeue:
 1619  *
 1620  *      Move the given page to the tail of its present page queue.
 1621  *
 1622  *      The page queues must be locked.
 1623  */
 1624 void
 1625 vm_page_requeue(vm_page_t m)
 1626 {
 1627         struct vpgqueues *vpq;
 1628         int queue;
 1629 
 1630         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1631         queue = m->queue;
 1632         KASSERT(queue != PQ_NONE,
 1633             ("vm_page_requeue: page %p is not queued", m));
 1634         vpq = &vm_page_queues[queue];
 1635         TAILQ_REMOVE(&vpq->pl, m, pageq);
 1636         TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
 1637 }
 1638 
 1639 /*
 1640  *      vm_page_queue_remove:
 1641  *
 1642  *      Remove the given page from the specified queue.
 1643  *
 1644  *      The page and page queues must be locked.
 1645  */
 1646 static __inline void
 1647 vm_page_queue_remove(int queue, vm_page_t m)
 1648 {
 1649         struct vpgqueues *pq;
 1650 
 1651         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1652         vm_page_lock_assert(m, MA_OWNED);
 1653         pq = &vm_page_queues[queue];
 1654         TAILQ_REMOVE(&pq->pl, m, pageq);
 1655         (*pq->cnt)--;
 1656 }
 1657 
 1658 /*
 1659  *      vm_pageq_remove:
 1660  *
 1661  *      Remove a page from its queue.
 1662  *
 1663  *      The given page must be locked.
 1664  *      This routine may not block.
 1665  */
 1666 void
 1667 vm_pageq_remove(vm_page_t m)
 1668 {
 1669         int queue;
 1670 
 1671         vm_page_lock_assert(m, MA_OWNED);
 1672         if ((queue = m->queue) != PQ_NONE) {
 1673                 vm_page_lock_queues();
 1674                 m->queue = PQ_NONE;
 1675                 vm_page_queue_remove(queue, m);
 1676                 vm_page_unlock_queues();
 1677         }
 1678 }
 1679 
 1680 /*
 1681  *      vm_page_enqueue:
 1682  *
 1683  *      Add the given page to the specified queue.
 1684  *
 1685  *      The page queues must be locked.
 1686  */
 1687 static void
 1688 vm_page_enqueue(int queue, vm_page_t m)
 1689 {
 1690         struct vpgqueues *vpq;
 1691 
 1692         vpq = &vm_page_queues[queue];
 1693         m->queue = queue;
 1694         TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
 1695         ++*vpq->cnt;
 1696 }
 1697 
 1698 /*
 1699  *      vm_page_activate:
 1700  *
 1701  *      Put the specified page on the active list (if appropriate).
 1702  *      Ensure that act_count is at least ACT_INIT but do not otherwise
 1703  *      mess with it.
 1704  *
 1705  *      The page must be locked.
 1706  *      This routine may not block.
 1707  */
 1708 void
 1709 vm_page_activate(vm_page_t m)
 1710 {
 1711         int queue;
 1712 
 1713         vm_page_lock_assert(m, MA_OWNED);
 1714         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1715         if ((queue = m->queue) != PQ_ACTIVE) {
 1716                 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
 1717                         if (m->act_count < ACT_INIT)
 1718                                 m->act_count = ACT_INIT;
 1719                         vm_page_lock_queues();
 1720                         if (queue != PQ_NONE)
 1721                                 vm_page_queue_remove(queue, m);
 1722                         vm_page_enqueue(PQ_ACTIVE, m);
 1723                         vm_page_unlock_queues();
 1724                 } else
 1725                         KASSERT(queue == PQ_NONE,
 1726                             ("vm_page_activate: wired page %p is queued", m));
 1727         } else {
 1728                 if (m->act_count < ACT_INIT)
 1729                         m->act_count = ACT_INIT;
 1730         }
 1731 }
 1732 
 1733 /*
 1734  *      vm_page_free_wakeup:
 1735  *
 1736  *      Helper routine for vm_page_free_toq() and vm_page_cache().  This
 1737  *      routine is called when a page has been added to the cache or free
 1738  *      queues.
 1739  *
 1740  *      The page queues must be locked.
 1741  *      This routine may not block.
 1742  */
 1743 static inline void
 1744 vm_page_free_wakeup(void)
 1745 {
 1746 
 1747         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1748         /*
 1749          * if pageout daemon needs pages, then tell it that there are
 1750          * some free.
 1751          */
 1752         if (vm_pageout_pages_needed &&
 1753             cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
 1754                 wakeup(&vm_pageout_pages_needed);
 1755                 vm_pageout_pages_needed = 0;
 1756         }
 1757         /*
 1758          * wakeup processes that are waiting on memory if we hit a
 1759          * high water mark. And wakeup scheduler process if we have
 1760          * lots of memory. this process will swapin processes.
 1761          */
 1762         if (vm_pages_needed && !vm_page_count_min()) {
 1763                 vm_pages_needed = 0;
 1764                 wakeup(&cnt.v_free_count);
 1765         }
 1766 }
 1767 
 1768 /*
 1769  *      vm_page_free_toq:
 1770  *
 1771  *      Returns the given page to the free list,
 1772  *      disassociating it with any VM object.
 1773  *
 1774  *      Object and page must be locked prior to entry.
 1775  *      This routine may not block.
 1776  */
 1777 
 1778 void
 1779 vm_page_free_toq(vm_page_t m)
 1780 {
 1781 
 1782         if ((m->oflags & VPO_UNMANAGED) == 0) {
 1783                 vm_page_lock_assert(m, MA_OWNED);
 1784                 KASSERT(!pmap_page_is_mapped(m),
 1785                     ("vm_page_free_toq: freeing mapped page %p", m));
 1786         }
 1787         PCPU_INC(cnt.v_tfree);
 1788 
 1789         if (VM_PAGE_IS_FREE(m))
 1790                 panic("vm_page_free: freeing free page %p", m);
 1791         else if (m->busy != 0)
 1792                 panic("vm_page_free: freeing busy page %p", m);
 1793 
 1794         /*
 1795          * unqueue, then remove page.  Note that we cannot destroy
 1796          * the page here because we do not want to call the pager's
 1797          * callback routine until after we've put the page on the
 1798          * appropriate free queue.
 1799          */
 1800         if ((m->oflags & VPO_UNMANAGED) == 0)
 1801                 vm_pageq_remove(m);
 1802         vm_page_remove(m);
 1803 
 1804         /*
 1805          * If fictitious remove object association and
 1806          * return, otherwise delay object association removal.
 1807          */
 1808         if ((m->flags & PG_FICTITIOUS) != 0) {
 1809                 return;
 1810         }
 1811 
 1812         m->valid = 0;
 1813         vm_page_undirty(m);
 1814 
 1815         if (m->wire_count != 0)
 1816                 panic("vm_page_free: freeing wired page %p", m);
 1817         if (m->hold_count != 0) {
 1818                 m->flags &= ~PG_ZERO;
 1819                 vm_page_lock_queues();
 1820                 vm_page_enqueue(PQ_HOLD, m);
 1821                 vm_page_unlock_queues();
 1822         } else {
 1823                 /*
 1824                  * Restore the default memory attribute to the page.
 1825                  */
 1826                 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
 1827                         pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
 1828 
 1829                 /*
 1830                  * Insert the page into the physical memory allocator's
 1831                  * cache/free page queues.
 1832                  */
 1833                 mtx_lock(&vm_page_queue_free_mtx);
 1834                 m->flags |= PG_FREE;
 1835                 cnt.v_free_count++;
 1836 #if VM_NRESERVLEVEL > 0
 1837                 if (!vm_reserv_free_page(m))
 1838 #else
 1839                 if (TRUE)
 1840 #endif
 1841                         vm_phys_free_pages(m, 0);
 1842                 if ((m->flags & PG_ZERO) != 0)
 1843                         ++vm_page_zero_count;
 1844                 else
 1845                         vm_page_zero_idle_wakeup();
 1846                 vm_page_free_wakeup();
 1847                 mtx_unlock(&vm_page_queue_free_mtx);
 1848         }
 1849 }
 1850 
 1851 /*
 1852  *      vm_page_wire:
 1853  *
 1854  *      Mark this page as wired down by yet
 1855  *      another map, removing it from paging queues
 1856  *      as necessary.
 1857  *
 1858  *      If the page is fictitious, then its wire count must remain one.
 1859  *
 1860  *      The page must be locked.
 1861  *      This routine may not block.
 1862  */
 1863 void
 1864 vm_page_wire(vm_page_t m)
 1865 {
 1866 
 1867         /*
 1868          * Only bump the wire statistics if the page is not already wired,
 1869          * and only unqueue the page if it is on some queue (if it is unmanaged
 1870          * it is already off the queues).
 1871          */
 1872         vm_page_lock_assert(m, MA_OWNED);
 1873         if ((m->flags & PG_FICTITIOUS) != 0) {
 1874                 KASSERT(m->wire_count == 1,
 1875                     ("vm_page_wire: fictitious page %p's wire count isn't one",
 1876                     m));
 1877                 return;
 1878         }
 1879         if (m->wire_count == 0) {
 1880                 if ((m->oflags & VPO_UNMANAGED) == 0)
 1881                         vm_pageq_remove(m);
 1882                 atomic_add_int(&cnt.v_wire_count, 1);
 1883         }
 1884         m->wire_count++;
 1885         KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
 1886 }
 1887 
 1888 /*
 1889  * vm_page_unwire:
 1890  *
 1891  * Release one wiring of the specified page, potentially enabling it to be
 1892  * paged again.  If paging is enabled, then the value of the parameter
 1893  * "activate" determines to which queue the page is added.  If "activate" is
 1894  * non-zero, then the page is added to the active queue.  Otherwise, it is
 1895  * added to the inactive queue.
 1896  *
 1897  * However, unless the page belongs to an object, it is not enqueued because
 1898  * it cannot be paged out.
 1899  *
 1900  * If a page is fictitious, then its wire count must alway be one.
 1901  *
 1902  * A managed page must be locked.
 1903  */
 1904 void
 1905 vm_page_unwire(vm_page_t m, int activate)
 1906 {
 1907 
 1908         if ((m->oflags & VPO_UNMANAGED) == 0)
 1909                 vm_page_lock_assert(m, MA_OWNED);
 1910         if ((m->flags & PG_FICTITIOUS) != 0) {
 1911                 KASSERT(m->wire_count == 1,
 1912             ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
 1913                 return;
 1914         }
 1915         if (m->wire_count > 0) {
 1916                 m->wire_count--;
 1917                 if (m->wire_count == 0) {
 1918                         atomic_subtract_int(&cnt.v_wire_count, 1);
 1919                         if ((m->oflags & VPO_UNMANAGED) != 0 ||
 1920                             m->object == NULL)
 1921                                 return;
 1922                         vm_page_lock_queues();
 1923                         if (activate)
 1924                                 vm_page_enqueue(PQ_ACTIVE, m);
 1925                         else {
 1926                                 m->flags &= ~PG_WINATCFLS;
 1927                                 vm_page_enqueue(PQ_INACTIVE, m);
 1928                         }
 1929                         vm_page_unlock_queues();
 1930                 }
 1931         } else
 1932                 panic("vm_page_unwire: page %p's wire count is zero", m);
 1933 }
 1934 
 1935 /*
 1936  * Move the specified page to the inactive queue.
 1937  *
 1938  * Many pages placed on the inactive queue should actually go
 1939  * into the cache, but it is difficult to figure out which.  What
 1940  * we do instead, if the inactive target is well met, is to put
 1941  * clean pages at the head of the inactive queue instead of the tail.
 1942  * This will cause them to be moved to the cache more quickly and
 1943  * if not actively re-referenced, reclaimed more quickly.  If we just
 1944  * stick these pages at the end of the inactive queue, heavy filesystem
 1945  * meta-data accesses can cause an unnecessary paging load on memory bound 
 1946  * processes.  This optimization causes one-time-use metadata to be
 1947  * reused more quickly.
 1948  *
 1949  * Normally athead is 0 resulting in LRU operation.  athead is set
 1950  * to 1 if we want this page to be 'as if it were placed in the cache',
 1951  * except without unmapping it from the process address space.
 1952  *
 1953  * This routine may not block.
 1954  */
 1955 static inline void
 1956 _vm_page_deactivate(vm_page_t m, int athead)
 1957 {
 1958         int queue;
 1959 
 1960         vm_page_lock_assert(m, MA_OWNED);
 1961 
 1962         /*
 1963          * Ignore if already inactive.
 1964          */
 1965         if ((queue = m->queue) == PQ_INACTIVE)
 1966                 return;
 1967         if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
 1968                 vm_page_lock_queues();
 1969                 m->flags &= ~PG_WINATCFLS;
 1970                 if (queue != PQ_NONE)
 1971                         vm_page_queue_remove(queue, m);
 1972                 if (athead)
 1973                         TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
 1974                             pageq);
 1975                 else
 1976                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
 1977                             pageq);
 1978                 m->queue = PQ_INACTIVE;
 1979                 cnt.v_inactive_count++;
 1980                 vm_page_unlock_queues();
 1981         }
 1982 }
 1983 
 1984 /*
 1985  * Move the specified page to the inactive queue.
 1986  *
 1987  * The page must be locked.
 1988  */
 1989 void
 1990 vm_page_deactivate(vm_page_t m)
 1991 {
 1992 
 1993         _vm_page_deactivate(m, 0);
 1994 }
 1995 
 1996 /*
 1997  * vm_page_try_to_cache:
 1998  *
 1999  * Returns 0 on failure, 1 on success
 2000  */
 2001 int
 2002 vm_page_try_to_cache(vm_page_t m)
 2003 {
 2004 
 2005         vm_page_lock_assert(m, MA_OWNED);
 2006         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2007         if (m->dirty || m->hold_count || m->busy || m->wire_count ||
 2008             (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
 2009                 return (0);
 2010         pmap_remove_all(m);
 2011         if (m->dirty)
 2012                 return (0);
 2013         vm_page_cache(m);
 2014         return (1);
 2015 }
 2016 
 2017 /*
 2018  * vm_page_try_to_free()
 2019  *
 2020  *      Attempt to free the page.  If we cannot free it, we do nothing.
 2021  *      1 is returned on success, 0 on failure.
 2022  */
 2023 int
 2024 vm_page_try_to_free(vm_page_t m)
 2025 {
 2026 
 2027         vm_page_lock_assert(m, MA_OWNED);
 2028         if (m->object != NULL)
 2029                 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2030         if (m->dirty || m->hold_count || m->busy || m->wire_count ||
 2031             (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
 2032                 return (0);
 2033         pmap_remove_all(m);
 2034         if (m->dirty)
 2035                 return (0);
 2036         vm_page_free(m);
 2037         return (1);
 2038 }
 2039 
 2040 /*
 2041  * vm_page_cache
 2042  *
 2043  * Put the specified page onto the page cache queue (if appropriate).
 2044  *
 2045  * This routine may not block.
 2046  */
 2047 void
 2048 vm_page_cache(vm_page_t m)
 2049 {
 2050         vm_object_t object;
 2051         vm_page_t next, prev, root;
 2052 
 2053         vm_page_lock_assert(m, MA_OWNED);
 2054         object = m->object;
 2055         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2056         if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy ||
 2057             m->hold_count || m->wire_count)
 2058                 panic("vm_page_cache: attempting to cache busy page");
 2059         pmap_remove_all(m);
 2060         if (m->dirty != 0)
 2061                 panic("vm_page_cache: page %p is dirty", m);
 2062         if (m->valid == 0 || object->type == OBJT_DEFAULT ||
 2063             (object->type == OBJT_SWAP &&
 2064             !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
 2065                 /*
 2066                  * Hypothesis: A cache-elgible page belonging to a
 2067                  * default object or swap object but without a backing
 2068                  * store must be zero filled.
 2069                  */
 2070                 vm_page_free(m);
 2071                 return;
 2072         }
 2073         KASSERT((m->flags & PG_CACHED) == 0,
 2074             ("vm_page_cache: page %p is already cached", m));
 2075         PCPU_INC(cnt.v_tcached);
 2076 
 2077         /*
 2078          * Remove the page from the paging queues.
 2079          */
 2080         vm_pageq_remove(m);
 2081 
 2082         /*
 2083          * Remove the page from the object's collection of resident
 2084          * pages. 
 2085          */
 2086         if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
 2087                 /*
 2088                  * Since the page's successor in the list is also its parent
 2089                  * in the tree, its right subtree must be empty.
 2090                  */
 2091                 next->left = m->left;
 2092                 KASSERT(m->right == NULL,
 2093                     ("vm_page_cache: page %p has right child", m));
 2094         } else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
 2095             prev->right == m) {
 2096                 /*
 2097                  * Since the page's predecessor in the list is also its parent
 2098                  * in the tree, its left subtree must be empty.
 2099                  */
 2100                 KASSERT(m->left == NULL,
 2101                     ("vm_page_cache: page %p has left child", m));
 2102                 prev->right = m->right;
 2103         } else {
 2104                 if (m != object->root)
 2105                         vm_page_splay(m->pindex, object->root);
 2106                 if (m->left == NULL)
 2107                         root = m->right;
 2108                 else if (m->right == NULL)
 2109                         root = m->left;
 2110                 else {
 2111                         /*
 2112                          * Move the page's successor to the root, because
 2113                          * pages are usually removed in ascending order.
 2114                          */
 2115                         if (m->right != next)
 2116                                 vm_page_splay(m->pindex, m->right);
 2117                         next->left = m->left;
 2118                         root = next;
 2119                 }
 2120                 object->root = root;
 2121         }
 2122         TAILQ_REMOVE(&object->memq, m, listq);
 2123         object->resident_page_count--;
 2124 
 2125         /*
 2126          * Restore the default memory attribute to the page.
 2127          */
 2128         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
 2129                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
 2130 
 2131         /*
 2132          * Insert the page into the object's collection of cached pages
 2133          * and the physical memory allocator's cache/free page queues.
 2134          */
 2135         m->flags &= ~PG_ZERO;
 2136         mtx_lock(&vm_page_queue_free_mtx);
 2137         m->flags |= PG_CACHED;
 2138         cnt.v_cache_count++;
 2139         root = object->cache;
 2140         if (root == NULL) {
 2141                 m->left = NULL;
 2142                 m->right = NULL;
 2143         } else {
 2144                 root = vm_page_splay(m->pindex, root);
 2145                 if (m->pindex < root->pindex) {
 2146                         m->left = root->left;
 2147                         m->right = root;
 2148                         root->left = NULL;
 2149                 } else if (__predict_false(m->pindex == root->pindex))
 2150                         panic("vm_page_cache: offset already cached");
 2151                 else {
 2152                         m->right = root->right;
 2153                         m->left = root;
 2154                         root->right = NULL;
 2155                 }
 2156         }
 2157         object->cache = m;
 2158 #if VM_NRESERVLEVEL > 0
 2159         if (!vm_reserv_free_page(m)) {
 2160 #else
 2161         if (TRUE) {
 2162 #endif
 2163                 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
 2164                 vm_phys_free_pages(m, 0);
 2165         }
 2166         vm_page_free_wakeup();
 2167         mtx_unlock(&vm_page_queue_free_mtx);
 2168 
 2169         /*
 2170          * Increment the vnode's hold count if this is the object's only
 2171          * cached page.  Decrement the vnode's hold count if this was
 2172          * the object's only resident page.
 2173          */
 2174         if (object->type == OBJT_VNODE) {
 2175                 if (root == NULL && object->resident_page_count != 0)
 2176                         vhold(object->handle);
 2177                 else if (root != NULL && object->resident_page_count == 0)
 2178                         vdrop(object->handle);
 2179         }
 2180 }
 2181 
 2182 /*
 2183  * vm_page_dontneed
 2184  *
 2185  *      Cache, deactivate, or do nothing as appropriate.  This routine
 2186  *      is typically used by madvise() MADV_DONTNEED.
 2187  *
 2188  *      Generally speaking we want to move the page into the cache so
 2189  *      it gets reused quickly.  However, this can result in a silly syndrome
 2190  *      due to the page recycling too quickly.  Small objects will not be
 2191  *      fully cached.  On the otherhand, if we move the page to the inactive
 2192  *      queue we wind up with a problem whereby very large objects 
 2193  *      unnecessarily blow away our inactive and cache queues.
 2194  *
 2195  *      The solution is to move the pages based on a fixed weighting.  We
 2196  *      either leave them alone, deactivate them, or move them to the cache,
 2197  *      where moving them to the cache has the highest weighting.
 2198  *      By forcing some pages into other queues we eventually force the
 2199  *      system to balance the queues, potentially recovering other unrelated
 2200  *      space from active.  The idea is to not force this to happen too
 2201  *      often.
 2202  */
 2203 void
 2204 vm_page_dontneed(vm_page_t m)
 2205 {
 2206         int dnw;
 2207         int head;
 2208 
 2209         vm_page_lock_assert(m, MA_OWNED);
 2210         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2211         dnw = PCPU_GET(dnweight);
 2212         PCPU_INC(dnweight);
 2213 
 2214         /*
 2215          * Occasionally leave the page alone.
 2216          */
 2217         if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
 2218                 if (m->act_count >= ACT_INIT)
 2219                         --m->act_count;
 2220                 return;
 2221         }
 2222 
 2223         /*
 2224          * Clear any references to the page.  Otherwise, the page daemon will
 2225          * immediately reactivate the page.
 2226          *
 2227          * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
 2228          * pmap operation, such as pmap_remove(), could clear a reference in
 2229          * the pmap and set PGA_REFERENCED on the page before the
 2230          * pmap_clear_reference() had completed.  Consequently, the page would
 2231          * appear referenced based upon an old reference that occurred before
 2232          * this function ran.
 2233          */
 2234         pmap_clear_reference(m);
 2235         vm_page_aflag_clear(m, PGA_REFERENCED);
 2236 
 2237         if (m->dirty == 0 && pmap_is_modified(m))
 2238                 vm_page_dirty(m);
 2239 
 2240         if (m->dirty || (dnw & 0x0070) == 0) {
 2241                 /*
 2242                  * Deactivate the page 3 times out of 32.
 2243                  */
 2244                 head = 0;
 2245         } else {
 2246                 /*
 2247                  * Cache the page 28 times out of every 32.  Note that
 2248                  * the page is deactivated instead of cached, but placed
 2249                  * at the head of the queue instead of the tail.
 2250                  */
 2251                 head = 1;
 2252         }
 2253         _vm_page_deactivate(m, head);
 2254 }
 2255 
 2256 /*
 2257  * Grab a page, waiting until we are waken up due to the page
 2258  * changing state.  We keep on waiting, if the page continues
 2259  * to be in the object.  If the page doesn't exist, first allocate it
 2260  * and then conditionally zero it.
 2261  *
 2262  * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
 2263  * to facilitate its eventual removal.
 2264  *
 2265  * This routine may block.
 2266  */
 2267 vm_page_t
 2268 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
 2269 {
 2270         vm_page_t m;
 2271 
 2272         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2273         KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
 2274             ("vm_page_grab: VM_ALLOC_RETRY is required"));
 2275 retrylookup:
 2276         if ((m = vm_page_lookup(object, pindex)) != NULL) {
 2277                 if ((m->oflags & VPO_BUSY) != 0 ||
 2278                     ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
 2279                         /*
 2280                          * Reference the page before unlocking and
 2281                          * sleeping so that the page daemon is less
 2282                          * likely to reclaim it.
 2283                          */
 2284                         vm_page_aflag_set(m, PGA_REFERENCED);
 2285                         vm_page_sleep(m, "pgrbwt");
 2286                         goto retrylookup;
 2287                 } else {
 2288                         if ((allocflags & VM_ALLOC_WIRED) != 0) {
 2289                                 vm_page_lock(m);
 2290                                 vm_page_wire(m);
 2291                                 vm_page_unlock(m);
 2292                         }
 2293                         if ((allocflags & VM_ALLOC_NOBUSY) == 0)
 2294                                 vm_page_busy(m);
 2295                         return (m);
 2296                 }
 2297         }
 2298         m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
 2299             VM_ALLOC_IGN_SBUSY));
 2300         if (m == NULL) {
 2301                 VM_OBJECT_UNLOCK(object);
 2302                 VM_WAIT;
 2303                 VM_OBJECT_LOCK(object);
 2304                 goto retrylookup;
 2305         } else if (m->valid != 0)
 2306                 return (m);
 2307         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
 2308                 pmap_zero_page(m);
 2309         return (m);
 2310 }
 2311 
 2312 /*
 2313  * Mapping function for valid bits or for dirty bits in
 2314  * a page.  May not block.
 2315  *
 2316  * Inputs are required to range within a page.
 2317  */
 2318 int
 2319 vm_page_bits(int base, int size)
 2320 {
 2321         int first_bit;
 2322         int last_bit;
 2323 
 2324         KASSERT(
 2325             base + size <= PAGE_SIZE,
 2326             ("vm_page_bits: illegal base/size %d/%d", base, size)
 2327         );
 2328 
 2329         if (size == 0)          /* handle degenerate case */
 2330                 return (0);
 2331 
 2332         first_bit = base >> DEV_BSHIFT;
 2333         last_bit = (base + size - 1) >> DEV_BSHIFT;
 2334 
 2335         return ((2 << last_bit) - (1 << first_bit));
 2336 }
 2337 
 2338 /*
 2339  *      vm_page_set_valid:
 2340  *
 2341  *      Sets portions of a page valid.  The arguments are expected
 2342  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
 2343  *      of any partial chunks touched by the range.  The invalid portion of
 2344  *      such chunks will be zeroed.
 2345  *
 2346  *      (base + size) must be less then or equal to PAGE_SIZE.
 2347  */
 2348 void
 2349 vm_page_set_valid(vm_page_t m, int base, int size)
 2350 {
 2351         int endoff, frag;
 2352 
 2353         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2354         if (size == 0)  /* handle degenerate case */
 2355                 return;
 2356 
 2357         /*
 2358          * If the base is not DEV_BSIZE aligned and the valid
 2359          * bit is clear, we have to zero out a portion of the
 2360          * first block.
 2361          */
 2362         if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
 2363             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
 2364                 pmap_zero_page_area(m, frag, base - frag);
 2365 
 2366         /*
 2367          * If the ending offset is not DEV_BSIZE aligned and the 
 2368          * valid bit is clear, we have to zero out a portion of
 2369          * the last block.
 2370          */
 2371         endoff = base + size;
 2372         if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
 2373             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
 2374                 pmap_zero_page_area(m, endoff,
 2375                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
 2376 
 2377         /*
 2378          * Assert that no previously invalid block that is now being validated
 2379          * is already dirty. 
 2380          */
 2381         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
 2382             ("vm_page_set_valid: page %p is dirty", m)); 
 2383 
 2384         /*
 2385          * Set valid bits inclusive of any overlap.
 2386          */
 2387         m->valid |= vm_page_bits(base, size);
 2388 }
 2389 
 2390 /*
 2391  * Clear the given bits from the specified page's dirty field.
 2392  */
 2393 static __inline void
 2394 vm_page_clear_dirty_mask(vm_page_t m, int pagebits)
 2395 {
 2396         uintptr_t addr;
 2397 #if PAGE_SIZE < 16384
 2398         int shift;
 2399 #endif
 2400 
 2401         /*
 2402          * If the object is locked and the page is neither VPO_BUSY nor
 2403          * PGA_WRITEABLE, then the page's dirty field cannot possibly be
 2404          * set by a concurrent pmap operation.
 2405          */
 2406         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2407         if ((m->oflags & VPO_BUSY) == 0 && (m->aflags & PGA_WRITEABLE) == 0)
 2408                 m->dirty &= ~pagebits;
 2409         else {
 2410                 /*
 2411                  * The pmap layer can call vm_page_dirty() without
 2412                  * holding a distinguished lock.  The combination of
 2413                  * the object's lock and an atomic operation suffice
 2414                  * to guarantee consistency of the page dirty field.
 2415                  *
 2416                  * For PAGE_SIZE == 32768 case, compiler already
 2417                  * properly aligns the dirty field, so no forcible
 2418                  * alignment is needed. Only require existence of
 2419                  * atomic_clear_64 when page size is 32768.
 2420                  */
 2421                 addr = (uintptr_t)&m->dirty;
 2422 #if PAGE_SIZE == 32768
 2423 #error pagebits too short
 2424                 atomic_clear_64((uint64_t *)addr, pagebits);
 2425 #elif PAGE_SIZE == 16384
 2426                 atomic_clear_32((uint32_t *)addr, pagebits);
 2427 #else           /* PAGE_SIZE <= 8192 */
 2428                 /*
 2429                  * Use a trick to perform a 32-bit atomic on the
 2430                  * containing aligned word, to not depend on the existence
 2431                  * of atomic_clear_{8, 16}.
 2432                  */
 2433                 shift = addr & (sizeof(uint32_t) - 1);
 2434 #if BYTE_ORDER == BIG_ENDIAN
 2435                 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
 2436 #else
 2437                 shift *= NBBY;
 2438 #endif
 2439                 addr &= ~(sizeof(uint32_t) - 1);
 2440                 atomic_clear_32((uint32_t *)addr, pagebits << shift);
 2441 #endif          /* PAGE_SIZE */
 2442         }
 2443 }
 2444 
 2445 /*
 2446  *      vm_page_set_validclean:
 2447  *
 2448  *      Sets portions of a page valid and clean.  The arguments are expected
 2449  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
 2450  *      of any partial chunks touched by the range.  The invalid portion of
 2451  *      such chunks will be zero'd.
 2452  *
 2453  *      This routine may not block.
 2454  *
 2455  *      (base + size) must be less then or equal to PAGE_SIZE.
 2456  */
 2457 void
 2458 vm_page_set_validclean(vm_page_t m, int base, int size)
 2459 {
 2460         u_long oldvalid;
 2461         int endoff, frag, pagebits;
 2462 
 2463         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2464         if (size == 0)  /* handle degenerate case */
 2465                 return;
 2466 
 2467         /*
 2468          * If the base is not DEV_BSIZE aligned and the valid
 2469          * bit is clear, we have to zero out a portion of the
 2470          * first block.
 2471          */
 2472         if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
 2473             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
 2474                 pmap_zero_page_area(m, frag, base - frag);
 2475 
 2476         /*
 2477          * If the ending offset is not DEV_BSIZE aligned and the 
 2478          * valid bit is clear, we have to zero out a portion of
 2479          * the last block.
 2480          */
 2481         endoff = base + size;
 2482         if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
 2483             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
 2484                 pmap_zero_page_area(m, endoff,
 2485                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
 2486 
 2487         /*
 2488          * Set valid, clear dirty bits.  If validating the entire
 2489          * page we can safely clear the pmap modify bit.  We also
 2490          * use this opportunity to clear the VPO_NOSYNC flag.  If a process
 2491          * takes a write fault on a MAP_NOSYNC memory area the flag will
 2492          * be set again.
 2493          *
 2494          * We set valid bits inclusive of any overlap, but we can only
 2495          * clear dirty bits for DEV_BSIZE chunks that are fully within
 2496          * the range.
 2497          */
 2498         oldvalid = m->valid;
 2499         pagebits = vm_page_bits(base, size);
 2500         m->valid |= pagebits;
 2501 #if 0   /* NOT YET */
 2502         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
 2503                 frag = DEV_BSIZE - frag;
 2504                 base += frag;
 2505                 size -= frag;
 2506                 if (size < 0)
 2507                         size = 0;
 2508         }
 2509         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
 2510 #endif
 2511         if (base == 0 && size == PAGE_SIZE) {
 2512                 /*
 2513                  * The page can only be modified within the pmap if it is
 2514                  * mapped, and it can only be mapped if it was previously
 2515                  * fully valid.
 2516                  */
 2517                 if (oldvalid == VM_PAGE_BITS_ALL)
 2518                         /*
 2519                          * Perform the pmap_clear_modify() first.  Otherwise,
 2520                          * a concurrent pmap operation, such as
 2521                          * pmap_protect(), could clear a modification in the
 2522                          * pmap and set the dirty field on the page before
 2523                          * pmap_clear_modify() had begun and after the dirty
 2524                          * field was cleared here.
 2525                          */
 2526                         pmap_clear_modify(m);
 2527                 m->dirty = 0;
 2528                 m->oflags &= ~VPO_NOSYNC;
 2529         } else if (oldvalid != VM_PAGE_BITS_ALL)
 2530                 m->dirty &= ~pagebits;
 2531         else
 2532                 vm_page_clear_dirty_mask(m, pagebits);
 2533 }
 2534 
 2535 void
 2536 vm_page_clear_dirty(vm_page_t m, int base, int size)
 2537 {
 2538 
 2539         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
 2540 }
 2541 
 2542 /*
 2543  *      vm_page_set_invalid:
 2544  *
 2545  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
 2546  *      valid and dirty bits for the effected areas are cleared.
 2547  *
 2548  *      May not block.
 2549  */
 2550 void
 2551 vm_page_set_invalid(vm_page_t m, int base, int size)
 2552 {
 2553         int bits;
 2554 
 2555         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2556         KASSERT((m->oflags & VPO_BUSY) == 0,
 2557             ("vm_page_set_invalid: page %p is busy", m));
 2558         bits = vm_page_bits(base, size);
 2559         if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
 2560                 pmap_remove_all(m);
 2561         KASSERT(!pmap_page_is_mapped(m),
 2562             ("vm_page_set_invalid: page %p is mapped", m));
 2563         m->valid &= ~bits;
 2564         m->dirty &= ~bits;
 2565 }
 2566 
 2567 /*
 2568  * vm_page_zero_invalid()
 2569  *
 2570  *      The kernel assumes that the invalid portions of a page contain 
 2571  *      garbage, but such pages can be mapped into memory by user code.
 2572  *      When this occurs, we must zero out the non-valid portions of the
 2573  *      page so user code sees what it expects.
 2574  *
 2575  *      Pages are most often semi-valid when the end of a file is mapped 
 2576  *      into memory and the file's size is not page aligned.
 2577  */
 2578 void
 2579 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
 2580 {
 2581         int b;
 2582         int i;
 2583 
 2584         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2585         /*
 2586          * Scan the valid bits looking for invalid sections that
 2587          * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
 2588          * valid bit may be set ) have already been zerod by
 2589          * vm_page_set_validclean().
 2590          */
 2591         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
 2592                 if (i == (PAGE_SIZE / DEV_BSIZE) || 
 2593                     (m->valid & (1 << i))
 2594                 ) {
 2595                         if (i > b) {
 2596                                 pmap_zero_page_area(m, 
 2597                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
 2598                         }
 2599                         b = i + 1;
 2600                 }
 2601         }
 2602 
 2603         /*
 2604          * setvalid is TRUE when we can safely set the zero'd areas
 2605          * as being valid.  We can do this if there are no cache consistancy
 2606          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
 2607          */
 2608         if (setvalid)
 2609                 m->valid = VM_PAGE_BITS_ALL;
 2610 }
 2611 
 2612 /*
 2613  *      vm_page_is_valid:
 2614  *
 2615  *      Is (partial) page valid?  Note that the case where size == 0
 2616  *      will return FALSE in the degenerate case where the page is
 2617  *      entirely invalid, and TRUE otherwise.
 2618  *
 2619  *      May not block.
 2620  */
 2621 int
 2622 vm_page_is_valid(vm_page_t m, int base, int size)
 2623 {
 2624         int bits = vm_page_bits(base, size);
 2625 
 2626         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2627         if (m->valid && ((m->valid & bits) == bits))
 2628                 return 1;
 2629         else
 2630                 return 0;
 2631 }
 2632 
 2633 /*
 2634  * update dirty bits from pmap/mmu.  May not block.
 2635  */
 2636 void
 2637 vm_page_test_dirty(vm_page_t m)
 2638 {
 2639 
 2640         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2641         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
 2642                 vm_page_dirty(m);
 2643 }
 2644 
 2645 int so_zerocp_fullpage = 0;
 2646 
 2647 /*
 2648  *      Replace the given page with a copy.  The copied page assumes
 2649  *      the portion of the given page's "wire_count" that is not the
 2650  *      responsibility of this copy-on-write mechanism.
 2651  *
 2652  *      The object containing the given page must have a non-zero
 2653  *      paging-in-progress count and be locked.
 2654  */
 2655 void
 2656 vm_page_cowfault(vm_page_t m)
 2657 {
 2658         vm_page_t mnew;
 2659         vm_object_t object;
 2660         vm_pindex_t pindex;
 2661 
 2662         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
 2663         vm_page_lock_assert(m, MA_OWNED);
 2664         object = m->object;
 2665         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2666         KASSERT(object->paging_in_progress != 0,
 2667             ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
 2668             object)); 
 2669         pindex = m->pindex;
 2670 
 2671  retry_alloc:
 2672         pmap_remove_all(m);
 2673         vm_page_remove(m);
 2674         mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
 2675         if (mnew == NULL) {
 2676                 vm_page_insert(m, object, pindex);
 2677                 vm_page_unlock(m);
 2678                 VM_OBJECT_UNLOCK(object);
 2679                 VM_WAIT;
 2680                 VM_OBJECT_LOCK(object);
 2681                 if (m == vm_page_lookup(object, pindex)) {
 2682                         vm_page_lock(m);
 2683                         goto retry_alloc;
 2684                 } else {
 2685                         /*
 2686                          * Page disappeared during the wait.
 2687                          */
 2688                         return;
 2689                 }
 2690         }
 2691 
 2692         if (m->cow == 0) {
 2693                 /* 
 2694                  * check to see if we raced with an xmit complete when 
 2695                  * waiting to allocate a page.  If so, put things back 
 2696                  * the way they were 
 2697                  */
 2698                 vm_page_unlock(m);
 2699                 vm_page_lock(mnew);
 2700                 vm_page_free(mnew);
 2701                 vm_page_unlock(mnew);
 2702                 vm_page_insert(m, object, pindex);
 2703         } else { /* clear COW & copy page */
 2704                 if (!so_zerocp_fullpage)
 2705                         pmap_copy_page(m, mnew);
 2706                 mnew->valid = VM_PAGE_BITS_ALL;
 2707                 vm_page_dirty(mnew);
 2708                 mnew->wire_count = m->wire_count - m->cow;
 2709                 m->wire_count = m->cow;
 2710                 vm_page_unlock(m);
 2711         }
 2712 }
 2713 
 2714 void 
 2715 vm_page_cowclear(vm_page_t m)
 2716 {
 2717 
 2718         vm_page_lock_assert(m, MA_OWNED);
 2719         if (m->cow) {
 2720                 m->cow--;
 2721                 /* 
 2722                  * let vm_fault add back write permission  lazily
 2723                  */
 2724         } 
 2725         /*
 2726          *  sf_buf_free() will free the page, so we needn't do it here
 2727          */ 
 2728 }
 2729 
 2730 int
 2731 vm_page_cowsetup(vm_page_t m)
 2732 {
 2733 
 2734         vm_page_lock_assert(m, MA_OWNED);
 2735         if ((m->flags & PG_FICTITIOUS) != 0 ||
 2736             (m->oflags & VPO_UNMANAGED) != 0 ||
 2737             m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
 2738                 return (EBUSY);
 2739         m->cow++;
 2740         pmap_remove_write(m);
 2741         VM_OBJECT_UNLOCK(m->object);
 2742         return (0);
 2743 }
 2744 
 2745 #ifdef INVARIANTS
 2746 void
 2747 vm_page_object_lock_assert(vm_page_t m)
 2748 {
 2749 
 2750         /*
 2751          * Certain of the page's fields may only be modified by the
 2752          * holder of the containing object's lock or the setter of the
 2753          * page's VPO_BUSY flag.  Unfortunately, the setter of the
 2754          * VPO_BUSY flag is not recorded, and thus cannot be checked
 2755          * here.
 2756          */
 2757         if (m->object != NULL && (m->oflags & VPO_BUSY) == 0)
 2758                 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2759 }
 2760 #endif
 2761 
 2762 #include "opt_ddb.h"
 2763 #ifdef DDB
 2764 #include <sys/kernel.h>
 2765 
 2766 #include <ddb/ddb.h>
 2767 
 2768 DB_SHOW_COMMAND(page, vm_page_print_page_info)
 2769 {
 2770         db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
 2771         db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
 2772         db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
 2773         db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
 2774         db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
 2775         db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
 2776         db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
 2777         db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
 2778         db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
 2779         db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
 2780 }
 2781 
 2782 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
 2783 {
 2784                 
 2785         db_printf("PQ_FREE:");
 2786         db_printf(" %d", cnt.v_free_count);
 2787         db_printf("\n");
 2788                 
 2789         db_printf("PQ_CACHE:");
 2790         db_printf(" %d", cnt.v_cache_count);
 2791         db_printf("\n");
 2792 
 2793         db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
 2794                 *vm_page_queues[PQ_ACTIVE].cnt,
 2795                 *vm_page_queues[PQ_INACTIVE].cnt);
 2796 }
 2797 #endif /* DDB */

Cache object: 040bf2bb138c88e16c5975bde37e810f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.