FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.h
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 *
60 * $FreeBSD: releng/10.0/sys/vm/vm_page.h 255626 2013-09-17 07:35:26Z kib $
61 */
62
63 /*
64 * Resident memory system definitions.
65 */
66
67 #ifndef _VM_PAGE_
68 #define _VM_PAGE_
69
70 #include <vm/pmap.h>
71
72 /*
73 * Management of resident (logical) pages.
74 *
75 * A small structure is kept for each resident
76 * page, indexed by page number. Each structure
77 * is an element of several collections:
78 *
79 * A radix tree used to quickly
80 * perform object/offset lookups
81 *
82 * A list of all pages for a given object,
83 * so they can be quickly deactivated at
84 * time of deallocation.
85 *
86 * An ordered list of pages due for pageout.
87 *
88 * In addition, the structure contains the object
89 * and offset to which this page belongs (for pageout),
90 * and sundry status bits.
91 *
92 * In general, operations on this structure's mutable fields are
93 * synchronized using either one of or a combination of the lock on the
94 * object that the page belongs to (O), the pool lock for the page (P),
95 * or the lock for either the free or paging queue (Q). If a field is
96 * annotated below with two of these locks, then holding either lock is
97 * sufficient for read access, but both locks are required for write
98 * access.
99 *
100 * In contrast, the synchronization of accesses to the page's
101 * dirty field is machine dependent (M). In the
102 * machine-independent layer, the lock on the object that the
103 * page belongs to must be held in order to operate on the field.
104 * However, the pmap layer is permitted to set all bits within
105 * the field without holding that lock. If the underlying
106 * architecture does not support atomic read-modify-write
107 * operations on the field's type, then the machine-independent
108 * layer uses a 32-bit atomic on the aligned 32-bit word that
109 * contains the dirty field. In the machine-independent layer,
110 * the implementation of read-modify-write operations on the
111 * field is encapsulated in vm_page_clear_dirty_mask().
112 */
113
114 #if PAGE_SIZE == 4096
115 #define VM_PAGE_BITS_ALL 0xffu
116 typedef uint8_t vm_page_bits_t;
117 #elif PAGE_SIZE == 8192
118 #define VM_PAGE_BITS_ALL 0xffffu
119 typedef uint16_t vm_page_bits_t;
120 #elif PAGE_SIZE == 16384
121 #define VM_PAGE_BITS_ALL 0xffffffffu
122 typedef uint32_t vm_page_bits_t;
123 #elif PAGE_SIZE == 32768
124 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
125 typedef uint64_t vm_page_bits_t;
126 #endif
127
128 struct vm_page {
129 union {
130 TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */
131 struct {
132 SLIST_ENTRY(vm_page) ss; /* private slists */
133 void *pv;
134 } s;
135 struct {
136 u_long p;
137 u_long v;
138 } memguard;
139 } plinks;
140 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */
141 vm_object_t object; /* which object am I in (O,P) */
142 vm_pindex_t pindex; /* offset into object (O,P) */
143 vm_paddr_t phys_addr; /* physical address of page */
144 struct md_page md; /* machine dependant stuff */
145 u_int wire_count; /* wired down maps refs (P) */
146 volatile u_int busy_lock; /* busy owners lock */
147 uint16_t hold_count; /* page hold count (P) */
148 uint16_t flags; /* page PG_* flags (P) */
149 uint8_t aflags; /* access is atomic */
150 uint8_t oflags; /* page VPO_* flags (O) */
151 uint8_t queue; /* page queue index (P,Q) */
152 int8_t segind;
153 uint8_t order; /* index of the buddy queue */
154 uint8_t pool;
155 u_char act_count; /* page usage count (P) */
156 /* NOTE that these must support one bit per DEV_BSIZE in a page */
157 /* so, on normal X86 kernels, they must be at least 8 bits wide */
158 vm_page_bits_t valid; /* map of valid DEV_BSIZE chunks (O) */
159 vm_page_bits_t dirty; /* map of dirty DEV_BSIZE chunks (M) */
160 };
161
162 /*
163 * Page flags stored in oflags:
164 *
165 * Access to these page flags is synchronized by the lock on the object
166 * containing the page (O).
167 *
168 * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
169 * indicates that the page is not under PV management but
170 * otherwise should be treated as a normal page. Pages not
171 * under PV management cannot be paged out via the
172 * object/vm_page_t because there is no knowledge of their pte
173 * mappings, and such pages are also not on any PQ queue.
174 *
175 */
176 #define VPO_UNUSED01 0x01 /* --available-- */
177 #define VPO_SWAPSLEEP 0x02 /* waiting for swap to finish */
178 #define VPO_UNMANAGED 0x04 /* no PV management for page */
179 #define VPO_SWAPINPROG 0x08 /* swap I/O in progress on page */
180 #define VPO_NOSYNC 0x10 /* do not collect for syncer */
181
182 /*
183 * Busy page implementation details.
184 * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation,
185 * even if the support for owner identity is removed because of size
186 * constraints. Checks on lock recursion are then not possible, while the
187 * lock assertions effectiveness is someway reduced.
188 */
189 #define VPB_BIT_SHARED 0x01
190 #define VPB_BIT_EXCLUSIVE 0x02
191 #define VPB_BIT_WAITERS 0x04
192 #define VPB_BIT_FLAGMASK \
193 (VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS)
194
195 #define VPB_SHARERS_SHIFT 3
196 #define VPB_SHARERS(x) \
197 (((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT)
198 #define VPB_SHARERS_WORD(x) ((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED)
199 #define VPB_ONE_SHARER (1 << VPB_SHARERS_SHIFT)
200
201 #define VPB_SINGLE_EXCLUSIVER VPB_BIT_EXCLUSIVE
202
203 #define VPB_UNBUSIED VPB_SHARERS_WORD(0)
204
205 #define PQ_NONE 255
206 #define PQ_INACTIVE 0
207 #define PQ_ACTIVE 1
208 #define PQ_COUNT 2
209
210 TAILQ_HEAD(pglist, vm_page);
211 SLIST_HEAD(spglist, vm_page);
212
213 struct vm_pagequeue {
214 struct mtx pq_mutex;
215 struct pglist pq_pl;
216 int pq_cnt;
217 int * const pq_vcnt;
218 const char * const pq_name;
219 } __aligned(CACHE_LINE_SIZE);
220
221
222 struct vm_domain {
223 struct vm_pagequeue vmd_pagequeues[PQ_COUNT];
224 u_int vmd_page_count;
225 u_int vmd_free_count;
226 long vmd_segs; /* bitmask of the segments */
227 boolean_t vmd_oom;
228 int vmd_pass; /* local pagedaemon pass */
229 struct vm_page vmd_marker; /* marker for pagedaemon private use */
230 };
231
232 extern struct vm_domain vm_dom[MAXMEMDOM];
233
234 #define vm_pagequeue_assert_locked(pq) mtx_assert(&(pq)->pq_mutex, MA_OWNED)
235 #define vm_pagequeue_lock(pq) mtx_lock(&(pq)->pq_mutex)
236 #define vm_pagequeue_unlock(pq) mtx_unlock(&(pq)->pq_mutex)
237
238 #ifdef _KERNEL
239 static __inline void
240 vm_pagequeue_cnt_add(struct vm_pagequeue *pq, int addend)
241 {
242
243 #ifdef notyet
244 vm_pagequeue_assert_locked(pq);
245 #endif
246 pq->pq_cnt += addend;
247 atomic_add_int(pq->pq_vcnt, addend);
248 }
249 #define vm_pagequeue_cnt_inc(pq) vm_pagequeue_cnt_add((pq), 1)
250 #define vm_pagequeue_cnt_dec(pq) vm_pagequeue_cnt_add((pq), -1)
251 #endif /* _KERNEL */
252
253 extern struct mtx_padalign vm_page_queue_free_mtx;
254 extern struct mtx_padalign pa_lock[];
255
256 #if defined(__arm__)
257 #define PDRSHIFT PDR_SHIFT
258 #elif !defined(PDRSHIFT)
259 #define PDRSHIFT 21
260 #endif
261
262 #define pa_index(pa) ((pa) >> PDRSHIFT)
263 #define PA_LOCKPTR(pa) ((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT]))
264 #define PA_LOCKOBJPTR(pa) ((struct lock_object *)PA_LOCKPTR((pa)))
265 #define PA_LOCK(pa) mtx_lock(PA_LOCKPTR(pa))
266 #define PA_TRYLOCK(pa) mtx_trylock(PA_LOCKPTR(pa))
267 #define PA_UNLOCK(pa) mtx_unlock(PA_LOCKPTR(pa))
268 #define PA_UNLOCK_COND(pa) \
269 do { \
270 if ((pa) != 0) { \
271 PA_UNLOCK((pa)); \
272 (pa) = 0; \
273 } \
274 } while (0)
275
276 #define PA_LOCK_ASSERT(pa, a) mtx_assert(PA_LOCKPTR(pa), (a))
277
278 #ifdef KLD_MODULE
279 #define vm_page_lock(m) vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE)
280 #define vm_page_unlock(m) vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE)
281 #define vm_page_trylock(m) vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE)
282 #else /* !KLD_MODULE */
283 #define vm_page_lockptr(m) (PA_LOCKPTR(VM_PAGE_TO_PHYS((m))))
284 #define vm_page_lock(m) mtx_lock(vm_page_lockptr((m)))
285 #define vm_page_unlock(m) mtx_unlock(vm_page_lockptr((m)))
286 #define vm_page_trylock(m) mtx_trylock(vm_page_lockptr((m)))
287 #endif
288 #if defined(INVARIANTS)
289 #define vm_page_assert_locked(m) \
290 vm_page_assert_locked_KBI((m), __FILE__, __LINE__)
291 #define vm_page_lock_assert(m, a) \
292 vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__)
293 #else
294 #define vm_page_assert_locked(m)
295 #define vm_page_lock_assert(m, a)
296 #endif
297
298 /*
299 * The vm_page's aflags are updated using atomic operations. To set or clear
300 * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear()
301 * must be used. Neither these flags nor these functions are part of the KBI.
302 *
303 * PGA_REFERENCED may be cleared only if the page is locked. It is set by
304 * both the MI and MD VM layers. However, kernel loadable modules should not
305 * directly set this flag. They should call vm_page_reference() instead.
306 *
307 * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter(). When it
308 * does so, the page must be exclusive busied. The MI VM layer must never
309 * access this flag directly. Instead, it should call
310 * pmap_page_is_write_mapped().
311 *
312 * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has
313 * at least one executable mapping. It is not consumed by the MI VM layer.
314 */
315 #define PGA_WRITEABLE 0x01 /* page may be mapped writeable */
316 #define PGA_REFERENCED 0x02 /* page has been referenced */
317 #define PGA_EXECUTABLE 0x04 /* page may be mapped executable */
318
319 /*
320 * Page flags. If changed at any other time than page allocation or
321 * freeing, the modification must be protected by the vm_page lock.
322 */
323 #define PG_CACHED 0x0001 /* page is cached */
324 #define PG_FREE 0x0002 /* page is free */
325 #define PG_FICTITIOUS 0x0004 /* physical page doesn't exist */
326 #define PG_ZERO 0x0008 /* page is zeroed */
327 #define PG_MARKER 0x0010 /* special queue marker page */
328 #define PG_WINATCFLS 0x0040 /* flush dirty page on inactive q */
329 #define PG_NODUMP 0x0080 /* don't include this page in a dump */
330 #define PG_UNHOLDFREE 0x0100 /* delayed free of a held page */
331
332 /*
333 * Misc constants.
334 */
335 #define ACT_DECLINE 1
336 #define ACT_ADVANCE 3
337 #define ACT_INIT 5
338 #define ACT_MAX 64
339
340 #ifdef _KERNEL
341
342 #include <sys/systm.h>
343
344 #include <machine/atomic.h>
345
346 /*
347 * Each pageable resident page falls into one of four lists:
348 *
349 * free
350 * Available for allocation now.
351 *
352 * cache
353 * Almost available for allocation. Still associated with
354 * an object, but clean and immediately freeable.
355 *
356 * The following lists are LRU sorted:
357 *
358 * inactive
359 * Low activity, candidates for reclamation.
360 * This is the list of pages that should be
361 * paged out next.
362 *
363 * active
364 * Pages that are "active" i.e. they have been
365 * recently referenced.
366 *
367 */
368
369 extern int vm_page_zero_count;
370
371 extern vm_page_t vm_page_array; /* First resident page in table */
372 extern long vm_page_array_size; /* number of vm_page_t's */
373 extern long first_page; /* first physical page number */
374
375 #define VM_PAGE_IS_FREE(m) (((m)->flags & PG_FREE) != 0)
376
377 #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr)
378
379 vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
380
381 /* page allocation classes: */
382 #define VM_ALLOC_NORMAL 0
383 #define VM_ALLOC_INTERRUPT 1
384 #define VM_ALLOC_SYSTEM 2
385 #define VM_ALLOC_CLASS_MASK 3
386 /* page allocation flags: */
387 #define VM_ALLOC_WIRED 0x0020 /* non pageable */
388 #define VM_ALLOC_ZERO 0x0040 /* Try to obtain a zeroed page */
389 #define VM_ALLOC_NOOBJ 0x0100 /* No associated object */
390 #define VM_ALLOC_NOBUSY 0x0200 /* Do not busy the page */
391 #define VM_ALLOC_IFCACHED 0x0400 /* Fail if the page is not cached */
392 #define VM_ALLOC_IFNOTCACHED 0x0800 /* Fail if the page is cached */
393 #define VM_ALLOC_IGN_SBUSY 0x1000 /* vm_page_grab() only */
394 #define VM_ALLOC_NODUMP 0x2000 /* don't include in dump */
395 #define VM_ALLOC_SBUSY 0x4000 /* Shared busy the page */
396
397 #define VM_ALLOC_COUNT_SHIFT 16
398 #define VM_ALLOC_COUNT(count) ((count) << VM_ALLOC_COUNT_SHIFT)
399
400 #ifdef M_NOWAIT
401 static inline int
402 malloc2vm_flags(int malloc_flags)
403 {
404 int pflags;
405
406 KASSERT((malloc_flags & M_USE_RESERVE) == 0 ||
407 (malloc_flags & M_NOWAIT) != 0,
408 ("M_USE_RESERVE requires M_NOWAIT"));
409 pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT :
410 VM_ALLOC_SYSTEM;
411 if ((malloc_flags & M_ZERO) != 0)
412 pflags |= VM_ALLOC_ZERO;
413 if ((malloc_flags & M_NODUMP) != 0)
414 pflags |= VM_ALLOC_NODUMP;
415 return (pflags);
416 }
417 #endif
418
419 void vm_page_busy_downgrade(vm_page_t m);
420 void vm_page_busy_sleep(vm_page_t m, const char *msg);
421 void vm_page_flash(vm_page_t m);
422 void vm_page_hold(vm_page_t mem);
423 void vm_page_unhold(vm_page_t mem);
424 void vm_page_free(vm_page_t m);
425 void vm_page_free_zero(vm_page_t m);
426
427 void vm_page_activate (vm_page_t);
428 void vm_page_advise(vm_page_t m, int advice);
429 vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int);
430 vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
431 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
432 vm_paddr_t boundary, vm_memattr_t memattr);
433 vm_page_t vm_page_alloc_freelist(int, int);
434 vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int);
435 void vm_page_cache(vm_page_t);
436 void vm_page_cache_free(vm_object_t, vm_pindex_t, vm_pindex_t);
437 void vm_page_cache_transfer(vm_object_t, vm_pindex_t, vm_object_t);
438 int vm_page_try_to_cache (vm_page_t);
439 int vm_page_try_to_free (vm_page_t);
440 void vm_page_deactivate (vm_page_t);
441 void vm_page_dequeue(vm_page_t m);
442 void vm_page_dequeue_locked(vm_page_t m);
443 vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t);
444 vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
445 void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
446 int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
447 boolean_t vm_page_is_cached(vm_object_t object, vm_pindex_t pindex);
448 vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t);
449 vm_page_t vm_page_next(vm_page_t m);
450 int vm_page_pa_tryrelock(pmap_t, vm_paddr_t, vm_paddr_t *);
451 struct vm_pagequeue *vm_page_pagequeue(vm_page_t m);
452 vm_page_t vm_page_prev(vm_page_t m);
453 void vm_page_putfake(vm_page_t m);
454 void vm_page_readahead_finish(vm_page_t m);
455 void vm_page_reference(vm_page_t m);
456 void vm_page_remove (vm_page_t);
457 int vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t);
458 vm_page_t vm_page_replace(vm_page_t mnew, vm_object_t object,
459 vm_pindex_t pindex);
460 void vm_page_requeue(vm_page_t m);
461 void vm_page_requeue_locked(vm_page_t m);
462 int vm_page_sbusied(vm_page_t m);
463 void vm_page_set_valid_range(vm_page_t m, int base, int size);
464 int vm_page_sleep_if_busy(vm_page_t m, const char *msg);
465 vm_offset_t vm_page_startup(vm_offset_t vaddr);
466 void vm_page_sunbusy(vm_page_t m);
467 int vm_page_trysbusy(vm_page_t m);
468 void vm_page_unhold_pages(vm_page_t *ma, int count);
469 void vm_page_unwire (vm_page_t, int);
470 void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
471 void vm_page_wire (vm_page_t);
472 void vm_page_xunbusy_hard(vm_page_t m);
473 void vm_page_set_validclean (vm_page_t, int, int);
474 void vm_page_clear_dirty (vm_page_t, int, int);
475 void vm_page_set_invalid (vm_page_t, int, int);
476 int vm_page_is_valid (vm_page_t, int, int);
477 void vm_page_test_dirty (vm_page_t);
478 vm_page_bits_t vm_page_bits(int base, int size);
479 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
480 void vm_page_free_toq(vm_page_t m);
481 void vm_page_zero_idle_wakeup(void);
482
483 void vm_page_dirty_KBI(vm_page_t m);
484 void vm_page_lock_KBI(vm_page_t m, const char *file, int line);
485 void vm_page_unlock_KBI(vm_page_t m, const char *file, int line);
486 int vm_page_trylock_KBI(vm_page_t m, const char *file, int line);
487 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
488 void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line);
489 void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line);
490 #endif
491
492 #define vm_page_assert_sbusied(m) \
493 KASSERT(vm_page_sbusied(m), \
494 ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \
495 (void *)m, __FILE__, __LINE__));
496
497 #define vm_page_assert_unbusied(m) \
498 KASSERT(!vm_page_busied(m), \
499 ("vm_page_assert_unbusied: page %p busy @ %s:%d", \
500 (void *)m, __FILE__, __LINE__));
501
502 #define vm_page_assert_xbusied(m) \
503 KASSERT(vm_page_xbusied(m), \
504 ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \
505 (void *)m, __FILE__, __LINE__));
506
507 #define vm_page_busied(m) \
508 ((m)->busy_lock != VPB_UNBUSIED)
509
510 #define vm_page_sbusy(m) do { \
511 if (!vm_page_trysbusy(m)) \
512 panic("%s: page %p failed shared busing", __func__, m); \
513 } while (0)
514
515 #define vm_page_tryxbusy(m) \
516 (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED, \
517 VPB_SINGLE_EXCLUSIVER))
518
519 #define vm_page_xbusied(m) \
520 ((m->busy_lock & VPB_SINGLE_EXCLUSIVER) != 0)
521
522 #define vm_page_xbusy(m) do { \
523 if (!vm_page_tryxbusy(m)) \
524 panic("%s: page %p failed exclusive busing", __func__, \
525 m); \
526 } while (0)
527
528 #define vm_page_xunbusy(m) do { \
529 if (!atomic_cmpset_rel_int(&(m)->busy_lock, \
530 VPB_SINGLE_EXCLUSIVER, VPB_UNBUSIED)) \
531 vm_page_xunbusy_hard(m); \
532 } while (0)
533
534 #ifdef INVARIANTS
535 void vm_page_object_lock_assert(vm_page_t m);
536 #define VM_PAGE_OBJECT_LOCK_ASSERT(m) vm_page_object_lock_assert(m)
537 #else
538 #define VM_PAGE_OBJECT_LOCK_ASSERT(m) (void)0
539 #endif
540
541 /*
542 * We want to use atomic updates for the aflags field, which is 8 bits wide.
543 * However, not all architectures support atomic operations on 8-bit
544 * destinations. In order that we can easily use a 32-bit operation, we
545 * require that the aflags field be 32-bit aligned.
546 */
547 CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0);
548
549 /*
550 * Clear the given bits in the specified page.
551 */
552 static inline void
553 vm_page_aflag_clear(vm_page_t m, uint8_t bits)
554 {
555 uint32_t *addr, val;
556
557 /*
558 * The PGA_REFERENCED flag can only be cleared if the page is locked.
559 */
560 if ((bits & PGA_REFERENCED) != 0)
561 vm_page_assert_locked(m);
562
563 /*
564 * Access the whole 32-bit word containing the aflags field with an
565 * atomic update. Parallel non-atomic updates to the other fields
566 * within this word are handled properly by the atomic update.
567 */
568 addr = (void *)&m->aflags;
569 KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0,
570 ("vm_page_aflag_clear: aflags is misaligned"));
571 val = bits;
572 #if BYTE_ORDER == BIG_ENDIAN
573 val <<= 24;
574 #endif
575 atomic_clear_32(addr, val);
576 }
577
578 /*
579 * Set the given bits in the specified page.
580 */
581 static inline void
582 vm_page_aflag_set(vm_page_t m, uint8_t bits)
583 {
584 uint32_t *addr, val;
585
586 /*
587 * The PGA_WRITEABLE flag can only be set if the page is managed and
588 * exclusive busied. Currently, this flag is only set by pmap_enter().
589 */
590 KASSERT((bits & PGA_WRITEABLE) == 0 ||
591 ((m->oflags & VPO_UNMANAGED) == 0 && vm_page_xbusied(m)),
592 ("vm_page_aflag_set: PGA_WRITEABLE and not exclusive busy"));
593
594 /*
595 * Access the whole 32-bit word containing the aflags field with an
596 * atomic update. Parallel non-atomic updates to the other fields
597 * within this word are handled properly by the atomic update.
598 */
599 addr = (void *)&m->aflags;
600 KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0,
601 ("vm_page_aflag_set: aflags is misaligned"));
602 val = bits;
603 #if BYTE_ORDER == BIG_ENDIAN
604 val <<= 24;
605 #endif
606 atomic_set_32(addr, val);
607 }
608
609 /*
610 * vm_page_dirty:
611 *
612 * Set all bits in the page's dirty field.
613 *
614 * The object containing the specified page must be locked if the
615 * call is made from the machine-independent layer.
616 *
617 * See vm_page_clear_dirty_mask().
618 */
619 static __inline void
620 vm_page_dirty(vm_page_t m)
621 {
622
623 /* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */
624 #if defined(KLD_MODULE) || defined(INVARIANTS)
625 vm_page_dirty_KBI(m);
626 #else
627 m->dirty = VM_PAGE_BITS_ALL;
628 #endif
629 }
630
631 /*
632 * vm_page_remque:
633 *
634 * If the given page is in a page queue, then remove it from that page
635 * queue.
636 *
637 * The page must be locked.
638 */
639 static inline void
640 vm_page_remque(vm_page_t m)
641 {
642
643 if (m->queue != PQ_NONE)
644 vm_page_dequeue(m);
645 }
646
647 /*
648 * vm_page_undirty:
649 *
650 * Set page to not be dirty. Note: does not clear pmap modify bits
651 */
652 static __inline void
653 vm_page_undirty(vm_page_t m)
654 {
655
656 VM_PAGE_OBJECT_LOCK_ASSERT(m);
657 m->dirty = 0;
658 }
659
660 #endif /* _KERNEL */
661 #endif /* !_VM_PAGE_ */
Cache object: a8a31a80ab7568ef77a220a7a4c3ff7a
|