FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.h
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 *
60 * $FreeBSD: releng/11.1/sys/vm/vm_page.h 337828 2018-08-15 02:30:11Z delphij $
61 */
62
63 /*
64 * Resident memory system definitions.
65 */
66
67 #ifndef _VM_PAGE_
68 #define _VM_PAGE_
69
70 #include <vm/pmap.h>
71
72 /*
73 * Management of resident (logical) pages.
74 *
75 * A small structure is kept for each resident
76 * page, indexed by page number. Each structure
77 * is an element of several collections:
78 *
79 * A radix tree used to quickly
80 * perform object/offset lookups
81 *
82 * A list of all pages for a given object,
83 * so they can be quickly deactivated at
84 * time of deallocation.
85 *
86 * An ordered list of pages due for pageout.
87 *
88 * In addition, the structure contains the object
89 * and offset to which this page belongs (for pageout),
90 * and sundry status bits.
91 *
92 * In general, operations on this structure's mutable fields are
93 * synchronized using either one of or a combination of the lock on the
94 * object that the page belongs to (O), the pool lock for the page (P),
95 * or the lock for either the free or paging queue (Q). If a field is
96 * annotated below with two of these locks, then holding either lock is
97 * sufficient for read access, but both locks are required for write
98 * access.
99 *
100 * In contrast, the synchronization of accesses to the page's
101 * dirty field is machine dependent (M). In the
102 * machine-independent layer, the lock on the object that the
103 * page belongs to must be held in order to operate on the field.
104 * However, the pmap layer is permitted to set all bits within
105 * the field without holding that lock. If the underlying
106 * architecture does not support atomic read-modify-write
107 * operations on the field's type, then the machine-independent
108 * layer uses a 32-bit atomic on the aligned 32-bit word that
109 * contains the dirty field. In the machine-independent layer,
110 * the implementation of read-modify-write operations on the
111 * field is encapsulated in vm_page_clear_dirty_mask().
112 */
113
114 #if PAGE_SIZE == 4096
115 #define VM_PAGE_BITS_ALL 0xffu
116 typedef uint8_t vm_page_bits_t;
117 #elif PAGE_SIZE == 8192
118 #define VM_PAGE_BITS_ALL 0xffffu
119 typedef uint16_t vm_page_bits_t;
120 #elif PAGE_SIZE == 16384
121 #define VM_PAGE_BITS_ALL 0xffffffffu
122 typedef uint32_t vm_page_bits_t;
123 #elif PAGE_SIZE == 32768
124 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
125 typedef uint64_t vm_page_bits_t;
126 #endif
127
128 struct vm_page {
129 union {
130 TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */
131 struct {
132 SLIST_ENTRY(vm_page) ss; /* private slists */
133 void *pv;
134 } s;
135 struct {
136 u_long p;
137 u_long v;
138 } memguard;
139 } plinks;
140 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */
141 vm_object_t object; /* which object am I in (O,P) */
142 vm_pindex_t pindex; /* offset into object (O,P) */
143 vm_paddr_t phys_addr; /* physical address of page */
144 struct md_page md; /* machine dependent stuff */
145 u_int wire_count; /* wired down maps refs (P) */
146 volatile u_int busy_lock; /* busy owners lock */
147 uint16_t hold_count; /* page hold count (P) */
148 uint16_t flags; /* page PG_* flags (P) */
149 uint8_t aflags; /* access is atomic */
150 uint8_t oflags; /* page VPO_* flags (O) */
151 uint8_t queue; /* page queue index (P,Q) */
152 int8_t psind; /* pagesizes[] index (O) */
153 int8_t segind;
154 uint8_t order; /* index of the buddy queue */
155 uint8_t pool;
156 u_char act_count; /* page usage count (P) */
157 /* NOTE that these must support one bit per DEV_BSIZE in a page */
158 /* so, on normal X86 kernels, they must be at least 8 bits wide */
159 vm_page_bits_t valid; /* map of valid DEV_BSIZE chunks (O) */
160 vm_page_bits_t dirty; /* map of dirty DEV_BSIZE chunks (M) */
161 };
162
163 /*
164 * Page flags stored in oflags:
165 *
166 * Access to these page flags is synchronized by the lock on the object
167 * containing the page (O).
168 *
169 * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
170 * indicates that the page is not under PV management but
171 * otherwise should be treated as a normal page. Pages not
172 * under PV management cannot be paged out via the
173 * object/vm_page_t because there is no knowledge of their pte
174 * mappings, and such pages are also not on any PQ queue.
175 *
176 */
177 #define VPO_UNUSED01 0x01 /* --available-- */
178 #define VPO_SWAPSLEEP 0x02 /* waiting for swap to finish */
179 #define VPO_UNMANAGED 0x04 /* no PV management for page */
180 #define VPO_SWAPINPROG 0x08 /* swap I/O in progress on page */
181 #define VPO_NOSYNC 0x10 /* do not collect for syncer */
182
183 /*
184 * Busy page implementation details.
185 * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation,
186 * even if the support for owner identity is removed because of size
187 * constraints. Checks on lock recursion are then not possible, while the
188 * lock assertions effectiveness is someway reduced.
189 */
190 #define VPB_BIT_SHARED 0x01
191 #define VPB_BIT_EXCLUSIVE 0x02
192 #define VPB_BIT_WAITERS 0x04
193 #define VPB_BIT_FLAGMASK \
194 (VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS)
195
196 #define VPB_SHARERS_SHIFT 3
197 #define VPB_SHARERS(x) \
198 (((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT)
199 #define VPB_SHARERS_WORD(x) ((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED)
200 #define VPB_ONE_SHARER (1 << VPB_SHARERS_SHIFT)
201
202 #define VPB_SINGLE_EXCLUSIVER VPB_BIT_EXCLUSIVE
203
204 #define VPB_UNBUSIED VPB_SHARERS_WORD(0)
205
206 #define PQ_NONE 255
207 #define PQ_INACTIVE 0
208 #define PQ_ACTIVE 1
209 #define PQ_LAUNDRY 2
210 #define PQ_COUNT 3
211
212 TAILQ_HEAD(pglist, vm_page);
213 SLIST_HEAD(spglist, vm_page);
214
215 struct vm_pagequeue {
216 struct mtx pq_mutex;
217 struct pglist pq_pl;
218 int pq_cnt;
219 u_int * const pq_vcnt;
220 const char * const pq_name;
221 } __aligned(CACHE_LINE_SIZE);
222
223
224 struct vm_domain {
225 struct vm_pagequeue vmd_pagequeues[PQ_COUNT];
226 u_int vmd_page_count;
227 u_int vmd_free_count;
228 long vmd_segs; /* bitmask of the segments */
229 boolean_t vmd_oom;
230 int vmd_oom_seq;
231 int vmd_last_active_scan;
232 struct vm_page vmd_laundry_marker;
233 struct vm_page vmd_marker; /* marker for pagedaemon private use */
234 struct vm_page vmd_inacthead; /* marker for LRU-defeating insertions */
235 };
236
237 extern struct vm_domain vm_dom[MAXMEMDOM];
238
239 #define vm_pagequeue_assert_locked(pq) mtx_assert(&(pq)->pq_mutex, MA_OWNED)
240 #define vm_pagequeue_lock(pq) mtx_lock(&(pq)->pq_mutex)
241 #define vm_pagequeue_lockptr(pq) (&(pq)->pq_mutex)
242 #define vm_pagequeue_unlock(pq) mtx_unlock(&(pq)->pq_mutex)
243
244 #ifdef _KERNEL
245 static __inline void
246 vm_pagequeue_cnt_add(struct vm_pagequeue *pq, int addend)
247 {
248
249 #ifdef notyet
250 vm_pagequeue_assert_locked(pq);
251 #endif
252 pq->pq_cnt += addend;
253 atomic_add_int(pq->pq_vcnt, addend);
254 }
255 #define vm_pagequeue_cnt_inc(pq) vm_pagequeue_cnt_add((pq), 1)
256 #define vm_pagequeue_cnt_dec(pq) vm_pagequeue_cnt_add((pq), -1)
257 #endif /* _KERNEL */
258
259 extern struct mtx_padalign vm_page_queue_free_mtx;
260 extern struct mtx_padalign pa_lock[];
261
262 #if defined(__arm__)
263 #define PDRSHIFT PDR_SHIFT
264 #elif !defined(PDRSHIFT)
265 #define PDRSHIFT 21
266 #endif
267
268 #define pa_index(pa) ((pa) >> PDRSHIFT)
269 #define PA_LOCKPTR(pa) ((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT]))
270 #define PA_LOCKOBJPTR(pa) ((struct lock_object *)PA_LOCKPTR((pa)))
271 #define PA_LOCK(pa) mtx_lock(PA_LOCKPTR(pa))
272 #define PA_TRYLOCK(pa) mtx_trylock(PA_LOCKPTR(pa))
273 #define PA_UNLOCK(pa) mtx_unlock(PA_LOCKPTR(pa))
274 #define PA_UNLOCK_COND(pa) \
275 do { \
276 if ((pa) != 0) { \
277 PA_UNLOCK((pa)); \
278 (pa) = 0; \
279 } \
280 } while (0)
281
282 #define PA_LOCK_ASSERT(pa, a) mtx_assert(PA_LOCKPTR(pa), (a))
283
284 #ifdef KLD_MODULE
285 #define vm_page_lock(m) vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE)
286 #define vm_page_unlock(m) vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE)
287 #define vm_page_trylock(m) vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE)
288 #else /* !KLD_MODULE */
289 #define vm_page_lockptr(m) (PA_LOCKPTR(VM_PAGE_TO_PHYS((m))))
290 #define vm_page_lock(m) mtx_lock(vm_page_lockptr((m)))
291 #define vm_page_unlock(m) mtx_unlock(vm_page_lockptr((m)))
292 #define vm_page_trylock(m) mtx_trylock(vm_page_lockptr((m)))
293 #endif
294 #if defined(INVARIANTS)
295 #define vm_page_assert_locked(m) \
296 vm_page_assert_locked_KBI((m), __FILE__, __LINE__)
297 #define vm_page_lock_assert(m, a) \
298 vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__)
299 #else
300 #define vm_page_assert_locked(m)
301 #define vm_page_lock_assert(m, a)
302 #endif
303
304 /*
305 * The vm_page's aflags are updated using atomic operations. To set or clear
306 * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear()
307 * must be used. Neither these flags nor these functions are part of the KBI.
308 *
309 * PGA_REFERENCED may be cleared only if the page is locked. It is set by
310 * both the MI and MD VM layers. However, kernel loadable modules should not
311 * directly set this flag. They should call vm_page_reference() instead.
312 *
313 * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter().
314 * When it does so, the object must be locked, or the page must be
315 * exclusive busied. The MI VM layer must never access this flag
316 * directly. Instead, it should call pmap_page_is_write_mapped().
317 *
318 * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has
319 * at least one executable mapping. It is not consumed by the MI VM layer.
320 */
321 #define PGA_WRITEABLE 0x01 /* page may be mapped writeable */
322 #define PGA_REFERENCED 0x02 /* page has been referenced */
323 #define PGA_EXECUTABLE 0x04 /* page may be mapped executable */
324
325 /*
326 * Page flags. If changed at any other time than page allocation or
327 * freeing, the modification must be protected by the vm_page lock.
328 */
329 #define PG_FICTITIOUS 0x0004 /* physical page doesn't exist */
330 #define PG_ZERO 0x0008 /* page is zeroed */
331 #define PG_MARKER 0x0010 /* special queue marker page */
332 #define PG_NODUMP 0x0080 /* don't include this page in a dump */
333 #define PG_UNHOLDFREE 0x0100 /* delayed free of a held page */
334
335 /*
336 * Misc constants.
337 */
338 #define ACT_DECLINE 1
339 #define ACT_ADVANCE 3
340 #define ACT_INIT 5
341 #define ACT_MAX 64
342
343 #ifdef _KERNEL
344
345 #include <sys/systm.h>
346
347 #include <machine/atomic.h>
348
349 /*
350 * Each pageable resident page falls into one of four lists:
351 *
352 * free
353 * Available for allocation now.
354 *
355 * inactive
356 * Low activity, candidates for reclamation.
357 * This list is approximately LRU ordered.
358 *
359 * laundry
360 * This is the list of pages that should be
361 * paged out next.
362 *
363 * active
364 * Pages that are "active", i.e., they have been
365 * recently referenced.
366 *
367 */
368
369 extern int vm_page_zero_count;
370
371 extern vm_page_t vm_page_array; /* First resident page in table */
372 extern long vm_page_array_size; /* number of vm_page_t's */
373 extern long first_page; /* first physical page number */
374
375 #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr)
376
377 /*
378 * PHYS_TO_VM_PAGE() returns the vm_page_t object that represents a memory
379 * page to which the given physical address belongs. The correct vm_page_t
380 * object is returned for addresses that are not page-aligned.
381 */
382 vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
383
384 /*
385 * Page allocation parameters for vm_page for the functions
386 * vm_page_alloc(), vm_page_grab(), vm_page_alloc_contig() and
387 * vm_page_alloc_freelist(). Some functions support only a subset
388 * of the flags, and ignore others, see the flags legend.
389 *
390 * Bits 0 - 1 define class.
391 * Bits 2 - 15 dedicated for flags.
392 * Legend:
393 * (a) - vm_page_alloc() supports the flag.
394 * (c) - vm_page_alloc_contig() supports the flag.
395 * (f) - vm_page_alloc_freelist() supports the flag.
396 * (g) - vm_page_grab() supports the flag.
397 * Bits above 15 define the count of additional pages that the caller
398 * intends to allocate.
399 */
400 #define VM_ALLOC_NORMAL 0
401 #define VM_ALLOC_INTERRUPT 1
402 #define VM_ALLOC_SYSTEM 2
403 #define VM_ALLOC_CLASS_MASK 3
404 #define VM_ALLOC_WIRED 0x0020 /* (acfg) Allocate non pageable page */
405 #define VM_ALLOC_ZERO 0x0040 /* (acfg) Try to obtain a zeroed page */
406 #define VM_ALLOC_NOOBJ 0x0100 /* (acg) No associated object */
407 #define VM_ALLOC_NOBUSY 0x0200 /* (acg) Do not busy the page */
408 #define VM_ALLOC_IFCACHED 0x0400
409 #define VM_ALLOC_IFNOTCACHED 0x0800
410 #define VM_ALLOC_IGN_SBUSY 0x1000 /* (g) Ignore shared busy flag */
411 #define VM_ALLOC_NODUMP 0x2000 /* (ag) don't include in dump */
412 #define VM_ALLOC_SBUSY 0x4000 /* (acg) Shared busy the page */
413 #define VM_ALLOC_NOWAIT 0x8000 /* (g) Do not sleep, return NULL */
414 #define VM_ALLOC_COUNT_SHIFT 16
415 #define VM_ALLOC_COUNT(count) ((count) << VM_ALLOC_COUNT_SHIFT)
416
417 #ifdef M_NOWAIT
418 static inline int
419 malloc2vm_flags(int malloc_flags)
420 {
421 int pflags;
422
423 KASSERT((malloc_flags & M_USE_RESERVE) == 0 ||
424 (malloc_flags & M_NOWAIT) != 0,
425 ("M_USE_RESERVE requires M_NOWAIT"));
426 pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT :
427 VM_ALLOC_SYSTEM;
428 if ((malloc_flags & M_ZERO) != 0)
429 pflags |= VM_ALLOC_ZERO;
430 if ((malloc_flags & M_NODUMP) != 0)
431 pflags |= VM_ALLOC_NODUMP;
432 return (pflags);
433 }
434 #endif
435
436 void vm_page_busy_downgrade(vm_page_t m);
437 void vm_page_busy_sleep(vm_page_t m, const char *msg, bool nonshared);
438 void vm_page_flash(vm_page_t m);
439 void vm_page_hold(vm_page_t mem);
440 void vm_page_unhold(vm_page_t mem);
441 void vm_page_free(vm_page_t m);
442 void vm_page_free_zero(vm_page_t m);
443
444 void vm_page_activate (vm_page_t);
445 void vm_page_advise(vm_page_t m, int advice);
446 vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int);
447 vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
448 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
449 vm_paddr_t boundary, vm_memattr_t memattr);
450 vm_page_t vm_page_alloc_freelist(int, int);
451 bool vm_page_blacklist_add(vm_paddr_t pa, bool verbose);
452 vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int);
453 int vm_page_try_to_free (vm_page_t);
454 void vm_page_deactivate (vm_page_t);
455 void vm_page_deactivate_noreuse(vm_page_t);
456 void vm_page_dequeue(vm_page_t m);
457 void vm_page_dequeue_locked(vm_page_t m);
458 vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t);
459 vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
460 void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
461 int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
462 void vm_page_launder(vm_page_t m);
463 vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t);
464 vm_page_t vm_page_next(vm_page_t m);
465 int vm_page_pa_tryrelock(pmap_t, vm_paddr_t, vm_paddr_t *);
466 struct vm_pagequeue *vm_page_pagequeue(vm_page_t m);
467 vm_page_t vm_page_prev(vm_page_t m);
468 boolean_t vm_page_ps_is_valid(vm_page_t m);
469 void vm_page_putfake(vm_page_t m);
470 void vm_page_readahead_finish(vm_page_t m);
471 bool vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low,
472 vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
473 void vm_page_reference(vm_page_t m);
474 void vm_page_remove (vm_page_t);
475 int vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t);
476 vm_page_t vm_page_replace(vm_page_t mnew, vm_object_t object,
477 vm_pindex_t pindex);
478 void vm_page_requeue(vm_page_t m);
479 void vm_page_requeue_locked(vm_page_t m);
480 int vm_page_sbusied(vm_page_t m);
481 vm_page_t vm_page_scan_contig(u_long npages, vm_page_t m_start,
482 vm_page_t m_end, u_long alignment, vm_paddr_t boundary, int options);
483 void vm_page_set_valid_range(vm_page_t m, int base, int size);
484 int vm_page_sleep_if_busy(vm_page_t m, const char *msg);
485 vm_offset_t vm_page_startup(vm_offset_t vaddr);
486 void vm_page_sunbusy(vm_page_t m);
487 int vm_page_trysbusy(vm_page_t m);
488 void vm_page_unhold_pages(vm_page_t *ma, int count);
489 boolean_t vm_page_unwire(vm_page_t m, uint8_t queue);
490 void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
491 void vm_page_wire (vm_page_t);
492 void vm_page_xunbusy_hard(vm_page_t m);
493 void vm_page_xunbusy_maybelocked(vm_page_t m);
494 void vm_page_set_validclean (vm_page_t, int, int);
495 void vm_page_clear_dirty (vm_page_t, int, int);
496 void vm_page_set_invalid (vm_page_t, int, int);
497 int vm_page_is_valid (vm_page_t, int, int);
498 void vm_page_test_dirty (vm_page_t);
499 vm_page_bits_t vm_page_bits(int base, int size);
500 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
501 void vm_page_free_toq(vm_page_t m);
502 void vm_page_zero_idle_wakeup(void);
503
504 void vm_page_dirty_KBI(vm_page_t m);
505 void vm_page_lock_KBI(vm_page_t m, const char *file, int line);
506 void vm_page_unlock_KBI(vm_page_t m, const char *file, int line);
507 int vm_page_trylock_KBI(vm_page_t m, const char *file, int line);
508 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
509 void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line);
510 void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line);
511 #endif
512
513 #define vm_page_assert_sbusied(m) \
514 KASSERT(vm_page_sbusied(m), \
515 ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \
516 (m), __FILE__, __LINE__))
517
518 #define vm_page_assert_unbusied(m) \
519 KASSERT(!vm_page_busied(m), \
520 ("vm_page_assert_unbusied: page %p busy @ %s:%d", \
521 (m), __FILE__, __LINE__))
522
523 #define vm_page_assert_xbusied(m) \
524 KASSERT(vm_page_xbusied(m), \
525 ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \
526 (m), __FILE__, __LINE__))
527
528 #define vm_page_busied(m) \
529 ((m)->busy_lock != VPB_UNBUSIED)
530
531 #define vm_page_sbusy(m) do { \
532 if (!vm_page_trysbusy(m)) \
533 panic("%s: page %p failed shared busying", __func__, \
534 (m)); \
535 } while (0)
536
537 #define vm_page_tryxbusy(m) \
538 (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED, \
539 VPB_SINGLE_EXCLUSIVER))
540
541 #define vm_page_xbusied(m) \
542 (((m)->busy_lock & VPB_SINGLE_EXCLUSIVER) != 0)
543
544 #define vm_page_xbusy(m) do { \
545 if (!vm_page_tryxbusy(m)) \
546 panic("%s: page %p failed exclusive busying", __func__, \
547 (m)); \
548 } while (0)
549
550 /* Note: page m's lock must not be owned by the caller. */
551 #define vm_page_xunbusy(m) do { \
552 if (!atomic_cmpset_rel_int(&(m)->busy_lock, \
553 VPB_SINGLE_EXCLUSIVER, VPB_UNBUSIED)) \
554 vm_page_xunbusy_hard(m); \
555 } while (0)
556
557 #ifdef INVARIANTS
558 void vm_page_object_lock_assert(vm_page_t m);
559 #define VM_PAGE_OBJECT_LOCK_ASSERT(m) vm_page_object_lock_assert(m)
560 void vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits);
561 #define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits) \
562 vm_page_assert_pga_writeable(m, bits)
563 #else
564 #define VM_PAGE_OBJECT_LOCK_ASSERT(m) (void)0
565 #define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits) (void)0
566 #endif
567
568 /*
569 * We want to use atomic updates for the aflags field, which is 8 bits wide.
570 * However, not all architectures support atomic operations on 8-bit
571 * destinations. In order that we can easily use a 32-bit operation, we
572 * require that the aflags field be 32-bit aligned.
573 */
574 CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0);
575
576 /*
577 * Clear the given bits in the specified page.
578 */
579 static inline void
580 vm_page_aflag_clear(vm_page_t m, uint8_t bits)
581 {
582 uint32_t *addr, val;
583
584 /*
585 * The PGA_REFERENCED flag can only be cleared if the page is locked.
586 */
587 if ((bits & PGA_REFERENCED) != 0)
588 vm_page_assert_locked(m);
589
590 /*
591 * Access the whole 32-bit word containing the aflags field with an
592 * atomic update. Parallel non-atomic updates to the other fields
593 * within this word are handled properly by the atomic update.
594 */
595 addr = (void *)&m->aflags;
596 KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0,
597 ("vm_page_aflag_clear: aflags is misaligned"));
598 val = bits;
599 #if BYTE_ORDER == BIG_ENDIAN
600 val <<= 24;
601 #endif
602 atomic_clear_32(addr, val);
603 }
604
605 /*
606 * Set the given bits in the specified page.
607 */
608 static inline void
609 vm_page_aflag_set(vm_page_t m, uint8_t bits)
610 {
611 uint32_t *addr, val;
612
613 VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits);
614
615 /*
616 * Access the whole 32-bit word containing the aflags field with an
617 * atomic update. Parallel non-atomic updates to the other fields
618 * within this word are handled properly by the atomic update.
619 */
620 addr = (void *)&m->aflags;
621 KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0,
622 ("vm_page_aflag_set: aflags is misaligned"));
623 val = bits;
624 #if BYTE_ORDER == BIG_ENDIAN
625 val <<= 24;
626 #endif
627 atomic_set_32(addr, val);
628 }
629
630 /*
631 * vm_page_dirty:
632 *
633 * Set all bits in the page's dirty field.
634 *
635 * The object containing the specified page must be locked if the
636 * call is made from the machine-independent layer.
637 *
638 * See vm_page_clear_dirty_mask().
639 */
640 static __inline void
641 vm_page_dirty(vm_page_t m)
642 {
643
644 /* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */
645 #if defined(KLD_MODULE) || defined(INVARIANTS)
646 vm_page_dirty_KBI(m);
647 #else
648 m->dirty = VM_PAGE_BITS_ALL;
649 #endif
650 }
651
652 /*
653 * vm_page_remque:
654 *
655 * If the given page is in a page queue, then remove it from that page
656 * queue.
657 *
658 * The page must be locked.
659 */
660 static inline void
661 vm_page_remque(vm_page_t m)
662 {
663
664 if (m->queue != PQ_NONE)
665 vm_page_dequeue(m);
666 }
667
668 /*
669 * vm_page_undirty:
670 *
671 * Set page to not be dirty. Note: does not clear pmap modify bits
672 */
673 static __inline void
674 vm_page_undirty(vm_page_t m)
675 {
676
677 VM_PAGE_OBJECT_LOCK_ASSERT(m);
678 m->dirty = 0;
679 }
680
681 static inline void
682 vm_page_replace_checked(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
683 vm_page_t mold)
684 {
685 vm_page_t mret;
686
687 mret = vm_page_replace(mnew, object, pindex);
688 KASSERT(mret == mold,
689 ("invalid page replacement, mold=%p, mret=%p", mold, mret));
690
691 /* Unused if !INVARIANTS. */
692 (void)mold;
693 (void)mret;
694 }
695
696 static inline bool
697 vm_page_active(vm_page_t m)
698 {
699
700 return (m->queue == PQ_ACTIVE);
701 }
702
703 static inline bool
704 vm_page_inactive(vm_page_t m)
705 {
706
707 return (m->queue == PQ_INACTIVE);
708 }
709
710 static inline bool
711 vm_page_in_laundry(vm_page_t m)
712 {
713
714 return (m->queue == PQ_LAUNDRY);
715 }
716
717 #endif /* _KERNEL */
718 #endif /* !_VM_PAGE_ */
Cache object: 8fa8a3f278347494aa3603af62542254
|