The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
    3  *
    4  * Copyright (c) 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * The Mach Operating System project at Carnegie-Mellon University.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)vm_page.h     8.2 (Berkeley) 12/13/93
   35  *
   36  *
   37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   38  * All rights reserved.
   39  *
   40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   41  *
   42  * Permission to use, copy, modify and distribute this software and
   43  * its documentation is hereby granted, provided that both the copyright
   44  * notice and this permission notice appear in all copies of the
   45  * software, derivative works or modified versions, and any portions
   46  * thereof, and that both notices appear in supporting documentation.
   47  *
   48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   51  *
   52  * Carnegie Mellon requests users of this software to return to
   53  *
   54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   55  *  School of Computer Science
   56  *  Carnegie Mellon University
   57  *  Pittsburgh PA 15213-3890
   58  *
   59  * any improvements or extensions that they make and grant Carnegie the
   60  * rights to redistribute these changes.
   61  *
   62  * $FreeBSD: releng/12.0/sys/vm/vm_page.h 338499 2018-09-06 16:17:45Z markj $
   63  */
   64 
   65 /*
   66  *      Resident memory system definitions.
   67  */
   68 
   69 #ifndef _VM_PAGE_
   70 #define _VM_PAGE_
   71 
   72 #include <vm/pmap.h>
   73 
   74 /*
   75  *      Management of resident (logical) pages.
   76  *
   77  *      A small structure is kept for each resident
   78  *      page, indexed by page number.  Each structure
   79  *      is an element of several collections:
   80  *
   81  *              A radix tree used to quickly
   82  *              perform object/offset lookups
   83  *
   84  *              A list of all pages for a given object,
   85  *              so they can be quickly deactivated at
   86  *              time of deallocation.
   87  *
   88  *              An ordered list of pages due for pageout.
   89  *
   90  *      In addition, the structure contains the object
   91  *      and offset to which this page belongs (for pageout),
   92  *      and sundry status bits.
   93  *
   94  *      In general, operations on this structure's mutable fields are
   95  *      synchronized using either one of or a combination of the lock on the
   96  *      object that the page belongs to (O), the page lock (P),
   97  *      the per-domain lock for the free queues (F), or the page's queue
   98  *      lock (Q).  The physical address of a page is used to select its page
   99  *      lock from a pool.  The queue lock for a page depends on the value of
  100  *      its queue field and described in detail below.  If a field is
  101  *      annotated below with two of these locks, then holding either lock is
  102  *      sufficient for read access, but both locks are required for write
  103  *      access.  An annotation of (C) indicates that the field is immutable.
  104  *
  105  *      In contrast, the synchronization of accesses to the page's
  106  *      dirty field is machine dependent (M).  In the
  107  *      machine-independent layer, the lock on the object that the
  108  *      page belongs to must be held in order to operate on the field.
  109  *      However, the pmap layer is permitted to set all bits within
  110  *      the field without holding that lock.  If the underlying
  111  *      architecture does not support atomic read-modify-write
  112  *      operations on the field's type, then the machine-independent
  113  *      layer uses a 32-bit atomic on the aligned 32-bit word that
  114  *      contains the dirty field.  In the machine-independent layer,
  115  *      the implementation of read-modify-write operations on the
  116  *      field is encapsulated in vm_page_clear_dirty_mask().
  117  *
  118  *      The page structure contains two counters which prevent page reuse.
  119  *      Both counters are protected by the page lock (P).  The hold
  120  *      counter counts transient references obtained via a pmap lookup, and
  121  *      is also used to prevent page reclamation in situations where it is
  122  *      undesirable to block other accesses to the page.  The wire counter
  123  *      is used to implement mlock(2) and is non-zero for pages containing
  124  *      kernel memory.  Pages that are wired or held will not be reclaimed
  125  *      or laundered by the page daemon, but are treated differently during
  126  *      a page queue scan: held pages remain at their position in the queue,
  127  *      while wired pages are removed from the queue and must later be
  128  *      re-enqueued appropriately by the unwiring thread.  It is legal to
  129  *      call vm_page_free() on a held page; doing so causes it to be removed
  130  *      from its object and page queue, and the page is released to the
  131  *      allocator once the last hold reference is dropped.  In contrast,
  132  *      wired pages may not be freed.
  133  *
  134  *      In some pmap implementations, the wire count of a page table page is
  135  *      used to track the number of populated entries.
  136  *
  137  *      The busy lock is an embedded reader-writer lock which protects the
  138  *      page's contents and identity (i.e., its <object, pindex> tuple) and
  139  *      interlocks with the object lock (O).  In particular, a page may be
  140  *      busied or unbusied only with the object write lock held.  To avoid
  141  *      bloating the page structure, the busy lock lacks some of the
  142  *      features available to the kernel's general-purpose synchronization
  143  *      primitives.  As a result, busy lock ordering rules are not verified,
  144  *      lock recursion is not detected, and an attempt to xbusy a busy page
  145  *      or sbusy an xbusy page results will trigger a panic rather than
  146  *      causing the thread to block.  vm_page_sleep_if_busy() can be used to
  147  *      sleep until the page's busy state changes, after which the caller
  148  *      must re-lookup the page and re-evaluate its state.
  149  *
  150  *      The queue field is the index of the page queue containing the
  151  *      page, or PQ_NONE if the page is not enqueued.  The queue lock of a
  152  *      page is the page queue lock corresponding to the page queue index,
  153  *      or the page lock (P) for the page if it is not enqueued.  To modify
  154  *      the queue field, the queue lock for the old value of the field must
  155  *      be held.  It is invalid for a page's queue field to transition
  156  *      between two distinct page queue indices.  That is, when updating
  157  *      the queue field, either the new value or the old value must be
  158  *      PQ_NONE.
  159  *
  160  *      To avoid contention on page queue locks, page queue operations
  161  *      (enqueue, dequeue, requeue) are batched using per-CPU queues.
  162  *      A deferred operation is requested by inserting an entry into a
  163  *      batch queue; the entry is simply a pointer to the page, and the
  164  *      request type is encoded in the page's aflags field using the values
  165  *      in PGA_QUEUE_STATE_MASK.  The type-stability of struct vm_pages is
  166  *      crucial to this scheme since the processing of entries in a given
  167  *      batch queue may be deferred indefinitely.  In particular, a page
  168  *      may be freed before its pending batch queue entries have been
  169  *      processed.  The page lock (P) must be held to schedule a batched
  170  *      queue operation, and the page queue lock must be held in order to
  171  *      process batch queue entries for the page queue.
  172  */
  173 
  174 #if PAGE_SIZE == 4096
  175 #define VM_PAGE_BITS_ALL 0xffu
  176 typedef uint8_t vm_page_bits_t;
  177 #elif PAGE_SIZE == 8192
  178 #define VM_PAGE_BITS_ALL 0xffffu
  179 typedef uint16_t vm_page_bits_t;
  180 #elif PAGE_SIZE == 16384
  181 #define VM_PAGE_BITS_ALL 0xffffffffu
  182 typedef uint32_t vm_page_bits_t;
  183 #elif PAGE_SIZE == 32768
  184 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
  185 typedef uint64_t vm_page_bits_t;
  186 #endif
  187 
  188 struct vm_page {
  189         union {
  190                 TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */
  191                 struct {
  192                         SLIST_ENTRY(vm_page) ss; /* private slists */
  193                         void *pv;
  194                 } s;
  195                 struct {
  196                         u_long p;
  197                         u_long v;
  198                 } memguard;
  199         } plinks;
  200         TAILQ_ENTRY(vm_page) listq;     /* pages in same object (O) */
  201         vm_object_t object;             /* which object am I in (O,P) */
  202         vm_pindex_t pindex;             /* offset into object (O,P) */
  203         vm_paddr_t phys_addr;           /* physical address of page (C) */
  204         struct md_page md;              /* machine dependent stuff */
  205         u_int wire_count;               /* wired down maps refs (P) */
  206         volatile u_int busy_lock;       /* busy owners lock */
  207         uint16_t hold_count;            /* page hold count (P) */
  208         uint16_t flags;                 /* page PG_* flags (P) */
  209         uint8_t aflags;                 /* access is atomic */
  210         uint8_t oflags;                 /* page VPO_* flags (O) */
  211         uint8_t queue;                  /* page queue index (Q) */
  212         int8_t psind;                   /* pagesizes[] index (O) */
  213         int8_t segind;                  /* vm_phys segment index (C) */
  214         uint8_t order;                  /* index of the buddy queue (F) */
  215         uint8_t pool;                   /* vm_phys freepool index (F) */
  216         u_char  act_count;              /* page usage count (P) */
  217         /* NOTE that these must support one bit per DEV_BSIZE in a page */
  218         /* so, on normal X86 kernels, they must be at least 8 bits wide */
  219         vm_page_bits_t valid;           /* map of valid DEV_BSIZE chunks (O) */
  220         vm_page_bits_t dirty;           /* map of dirty DEV_BSIZE chunks (M) */
  221 };
  222 
  223 /*
  224  * Page flags stored in oflags:
  225  *
  226  * Access to these page flags is synchronized by the lock on the object
  227  * containing the page (O).
  228  *
  229  * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
  230  *       indicates that the page is not under PV management but
  231  *       otherwise should be treated as a normal page.  Pages not
  232  *       under PV management cannot be paged out via the
  233  *       object/vm_page_t because there is no knowledge of their pte
  234  *       mappings, and such pages are also not on any PQ queue.
  235  *
  236  */
  237 #define VPO_KMEM_EXEC   0x01            /* kmem mapping allows execution */
  238 #define VPO_SWAPSLEEP   0x02            /* waiting for swap to finish */
  239 #define VPO_UNMANAGED   0x04            /* no PV management for page */
  240 #define VPO_SWAPINPROG  0x08            /* swap I/O in progress on page */
  241 #define VPO_NOSYNC      0x10            /* do not collect for syncer */
  242 
  243 /*
  244  * Busy page implementation details.
  245  * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation,
  246  * even if the support for owner identity is removed because of size
  247  * constraints.  Checks on lock recursion are then not possible, while the
  248  * lock assertions effectiveness is someway reduced.
  249  */
  250 #define VPB_BIT_SHARED          0x01
  251 #define VPB_BIT_EXCLUSIVE       0x02
  252 #define VPB_BIT_WAITERS         0x04
  253 #define VPB_BIT_FLAGMASK                                                \
  254         (VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS)
  255 
  256 #define VPB_SHARERS_SHIFT       3
  257 #define VPB_SHARERS(x)                                                  \
  258         (((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT)
  259 #define VPB_SHARERS_WORD(x)     ((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED)
  260 #define VPB_ONE_SHARER          (1 << VPB_SHARERS_SHIFT)
  261 
  262 #define VPB_SINGLE_EXCLUSIVER   VPB_BIT_EXCLUSIVE
  263 
  264 #define VPB_UNBUSIED            VPB_SHARERS_WORD(0)
  265 
  266 #define PQ_NONE         255
  267 #define PQ_INACTIVE     0
  268 #define PQ_ACTIVE       1
  269 #define PQ_LAUNDRY      2
  270 #define PQ_UNSWAPPABLE  3
  271 #define PQ_COUNT        4
  272 
  273 #ifndef VM_PAGE_HAVE_PGLIST
  274 TAILQ_HEAD(pglist, vm_page);
  275 #define VM_PAGE_HAVE_PGLIST
  276 #endif
  277 SLIST_HEAD(spglist, vm_page);
  278 
  279 #ifdef _KERNEL
  280 extern vm_page_t bogus_page;
  281 #endif  /* _KERNEL */
  282 
  283 extern struct mtx_padalign pa_lock[];
  284 
  285 #if defined(__arm__)
  286 #define PDRSHIFT        PDR_SHIFT
  287 #elif !defined(PDRSHIFT)
  288 #define PDRSHIFT        21
  289 #endif
  290 
  291 #define pa_index(pa)    ((pa) >> PDRSHIFT)
  292 #define PA_LOCKPTR(pa)  ((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT]))
  293 #define PA_LOCKOBJPTR(pa)       ((struct lock_object *)PA_LOCKPTR((pa)))
  294 #define PA_LOCK(pa)     mtx_lock(PA_LOCKPTR(pa))
  295 #define PA_TRYLOCK(pa)  mtx_trylock(PA_LOCKPTR(pa))
  296 #define PA_UNLOCK(pa)   mtx_unlock(PA_LOCKPTR(pa))
  297 #define PA_UNLOCK_COND(pa)                      \
  298         do {                                    \
  299                 if ((pa) != 0) {                \
  300                         PA_UNLOCK((pa));        \
  301                         (pa) = 0;               \
  302                 }                               \
  303         } while (0)
  304 
  305 #define PA_LOCK_ASSERT(pa, a)   mtx_assert(PA_LOCKPTR(pa), (a))
  306 
  307 #if defined(KLD_MODULE) && !defined(KLD_TIED)
  308 #define vm_page_lock(m)         vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE)
  309 #define vm_page_unlock(m)       vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE)
  310 #define vm_page_trylock(m)      vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE)
  311 #else   /* !KLD_MODULE */
  312 #define vm_page_lockptr(m)      (PA_LOCKPTR(VM_PAGE_TO_PHYS((m))))
  313 #define vm_page_lock(m)         mtx_lock(vm_page_lockptr((m)))
  314 #define vm_page_unlock(m)       mtx_unlock(vm_page_lockptr((m)))
  315 #define vm_page_trylock(m)      mtx_trylock(vm_page_lockptr((m)))
  316 #endif
  317 #if defined(INVARIANTS)
  318 #define vm_page_assert_locked(m)                \
  319     vm_page_assert_locked_KBI((m), __FILE__, __LINE__)
  320 #define vm_page_lock_assert(m, a)               \
  321     vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__)
  322 #else
  323 #define vm_page_assert_locked(m)
  324 #define vm_page_lock_assert(m, a)
  325 #endif
  326 
  327 /*
  328  * The vm_page's aflags are updated using atomic operations.  To set or clear
  329  * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear()
  330  * must be used.  Neither these flags nor these functions are part of the KBI.
  331  *
  332  * PGA_REFERENCED may be cleared only if the page is locked.  It is set by
  333  * both the MI and MD VM layers.  However, kernel loadable modules should not
  334  * directly set this flag.  They should call vm_page_reference() instead.
  335  *
  336  * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter().
  337  * When it does so, the object must be locked, or the page must be
  338  * exclusive busied.  The MI VM layer must never access this flag
  339  * directly.  Instead, it should call pmap_page_is_write_mapped().
  340  *
  341  * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has
  342  * at least one executable mapping.  It is not consumed by the MI VM layer.
  343  *
  344  * PGA_ENQUEUED is set and cleared when a page is inserted into or removed
  345  * from a page queue, respectively.  It determines whether the plinks.q field
  346  * of the page is valid.  To set or clear this flag, the queue lock for the
  347  * page must be held: the page queue lock corresponding to the page's "queue"
  348  * field if its value is not PQ_NONE, and the page lock otherwise.
  349  *
  350  * PGA_DEQUEUE is set when the page is scheduled to be dequeued from a page
  351  * queue, and cleared when the dequeue request is processed.  A page may
  352  * have PGA_DEQUEUE set and PGA_ENQUEUED cleared, for instance if a dequeue
  353  * is requested after the page is scheduled to be enqueued but before it is
  354  * actually inserted into the page queue.  The page lock must be held to set
  355  * this flag, and the queue lock for the page must be held to clear it.
  356  *
  357  * PGA_REQUEUE is set when the page is scheduled to be enqueued or requeued
  358  * in its page queue.  The page lock must be held to set this flag, and the
  359  * queue lock for the page must be held to clear it.
  360  *
  361  * PGA_REQUEUE_HEAD is a special flag for enqueuing pages near the head of
  362  * the inactive queue, thus bypassing LRU.  The page lock must be held to
  363  * set this flag, and the queue lock for the page must be held to clear it.
  364  */
  365 #define PGA_WRITEABLE   0x01            /* page may be mapped writeable */
  366 #define PGA_REFERENCED  0x02            /* page has been referenced */
  367 #define PGA_EXECUTABLE  0x04            /* page may be mapped executable */
  368 #define PGA_ENQUEUED    0x08            /* page is enqueued in a page queue */
  369 #define PGA_DEQUEUE     0x10            /* page is due to be dequeued */
  370 #define PGA_REQUEUE     0x20            /* page is due to be requeued */
  371 #define PGA_REQUEUE_HEAD 0x40           /* page requeue should bypass LRU */
  372 
  373 #define PGA_QUEUE_STATE_MASK    (PGA_ENQUEUED | PGA_DEQUEUE | PGA_REQUEUE | \
  374                                 PGA_REQUEUE_HEAD)
  375 
  376 /*
  377  * Page flags.  If changed at any other time than page allocation or
  378  * freeing, the modification must be protected by the vm_page lock.
  379  */
  380 #define PG_FICTITIOUS   0x0004          /* physical page doesn't exist */
  381 #define PG_ZERO         0x0008          /* page is zeroed */
  382 #define PG_MARKER       0x0010          /* special queue marker page */
  383 #define PG_NODUMP       0x0080          /* don't include this page in a dump */
  384 #define PG_UNHOLDFREE   0x0100          /* delayed free of a held page */
  385 
  386 /*
  387  * Misc constants.
  388  */
  389 #define ACT_DECLINE             1
  390 #define ACT_ADVANCE             3
  391 #define ACT_INIT                5
  392 #define ACT_MAX                 64
  393 
  394 #ifdef _KERNEL
  395 
  396 #include <sys/systm.h>
  397 
  398 #include <machine/atomic.h>
  399 
  400 /*
  401  * Each pageable resident page falls into one of five lists:
  402  *
  403  *      free
  404  *              Available for allocation now.
  405  *
  406  *      inactive
  407  *              Low activity, candidates for reclamation.
  408  *              This list is approximately LRU ordered.
  409  *
  410  *      laundry
  411  *              This is the list of pages that should be
  412  *              paged out next.
  413  *
  414  *      unswappable
  415  *              Dirty anonymous pages that cannot be paged
  416  *              out because no swap device is configured.
  417  *
  418  *      active
  419  *              Pages that are "active", i.e., they have been
  420  *              recently referenced.
  421  *
  422  */
  423 
  424 extern vm_page_t vm_page_array;         /* First resident page in table */
  425 extern long vm_page_array_size;         /* number of vm_page_t's */
  426 extern long first_page;                 /* first physical page number */
  427 
  428 #define VM_PAGE_TO_PHYS(entry)  ((entry)->phys_addr)
  429 
  430 /*
  431  * PHYS_TO_VM_PAGE() returns the vm_page_t object that represents a memory
  432  * page to which the given physical address belongs. The correct vm_page_t
  433  * object is returned for addresses that are not page-aligned.
  434  */
  435 vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
  436 
  437 /*
  438  * Page allocation parameters for vm_page for the functions
  439  * vm_page_alloc(), vm_page_grab(), vm_page_alloc_contig() and
  440  * vm_page_alloc_freelist().  Some functions support only a subset
  441  * of the flags, and ignore others, see the flags legend.
  442  *
  443  * The meaning of VM_ALLOC_ZERO differs slightly between the vm_page_alloc*()
  444  * and the vm_page_grab*() functions.  See these functions for details.
  445  *
  446  * Bits 0 - 1 define class.
  447  * Bits 2 - 15 dedicated for flags.
  448  * Legend:
  449  * (a) - vm_page_alloc() supports the flag.
  450  * (c) - vm_page_alloc_contig() supports the flag.
  451  * (f) - vm_page_alloc_freelist() supports the flag.
  452  * (g) - vm_page_grab() supports the flag.
  453  * (p) - vm_page_grab_pages() supports the flag.
  454  * Bits above 15 define the count of additional pages that the caller
  455  * intends to allocate.
  456  */
  457 #define VM_ALLOC_NORMAL         0
  458 #define VM_ALLOC_INTERRUPT      1
  459 #define VM_ALLOC_SYSTEM         2
  460 #define VM_ALLOC_CLASS_MASK     3
  461 #define VM_ALLOC_WAITOK         0x0008  /* (acf) Sleep and retry */
  462 #define VM_ALLOC_WAITFAIL       0x0010  /* (acf) Sleep and return error */
  463 #define VM_ALLOC_WIRED          0x0020  /* (acfgp) Allocate a wired page */
  464 #define VM_ALLOC_ZERO           0x0040  /* (acfgp) Allocate a prezeroed page */
  465 #define VM_ALLOC_NOOBJ          0x0100  /* (acg) No associated object */
  466 #define VM_ALLOC_NOBUSY         0x0200  /* (acgp) Do not excl busy the page */
  467 #define VM_ALLOC_IGN_SBUSY      0x1000  /* (gp) Ignore shared busy flag */
  468 #define VM_ALLOC_NODUMP         0x2000  /* (ag) don't include in dump */
  469 #define VM_ALLOC_SBUSY          0x4000  /* (acgp) Shared busy the page */
  470 #define VM_ALLOC_NOWAIT         0x8000  /* (acfgp) Do not sleep */
  471 #define VM_ALLOC_COUNT_SHIFT    16
  472 #define VM_ALLOC_COUNT(count)   ((count) << VM_ALLOC_COUNT_SHIFT)
  473 
  474 #ifdef M_NOWAIT
  475 static inline int
  476 malloc2vm_flags(int malloc_flags)
  477 {
  478         int pflags;
  479 
  480         KASSERT((malloc_flags & M_USE_RESERVE) == 0 ||
  481             (malloc_flags & M_NOWAIT) != 0,
  482             ("M_USE_RESERVE requires M_NOWAIT"));
  483         pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT :
  484             VM_ALLOC_SYSTEM;
  485         if ((malloc_flags & M_ZERO) != 0)
  486                 pflags |= VM_ALLOC_ZERO;
  487         if ((malloc_flags & M_NODUMP) != 0)
  488                 pflags |= VM_ALLOC_NODUMP;
  489         if ((malloc_flags & M_NOWAIT))
  490                 pflags |= VM_ALLOC_NOWAIT;
  491         if ((malloc_flags & M_WAITOK))
  492                 pflags |= VM_ALLOC_WAITOK;
  493         return (pflags);
  494 }
  495 #endif
  496 
  497 /*
  498  * Predicates supported by vm_page_ps_test():
  499  *
  500  *      PS_ALL_DIRTY is true only if the entire (super)page is dirty.
  501  *      However, it can be spuriously false when the (super)page has become
  502  *      dirty in the pmap but that information has not been propagated to the
  503  *      machine-independent layer.
  504  */
  505 #define PS_ALL_DIRTY    0x1
  506 #define PS_ALL_VALID    0x2
  507 #define PS_NONE_BUSY    0x4
  508 
  509 void vm_page_busy_downgrade(vm_page_t m);
  510 void vm_page_busy_sleep(vm_page_t m, const char *msg, bool nonshared);
  511 void vm_page_flash(vm_page_t m);
  512 void vm_page_hold(vm_page_t mem);
  513 void vm_page_unhold(vm_page_t mem);
  514 void vm_page_free(vm_page_t m);
  515 void vm_page_free_zero(vm_page_t m);
  516 
  517 void vm_page_activate (vm_page_t);
  518 void vm_page_advise(vm_page_t m, int advice);
  519 vm_page_t vm_page_alloc(vm_object_t, vm_pindex_t, int);
  520 vm_page_t vm_page_alloc_domain(vm_object_t, vm_pindex_t, int, int);
  521 vm_page_t vm_page_alloc_after(vm_object_t, vm_pindex_t, int, vm_page_t);
  522 vm_page_t vm_page_alloc_domain_after(vm_object_t, vm_pindex_t, int, int,
  523     vm_page_t);
  524 vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
  525     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
  526     vm_paddr_t boundary, vm_memattr_t memattr);
  527 vm_page_t vm_page_alloc_contig_domain(vm_object_t object,
  528     vm_pindex_t pindex, int domain, int req, u_long npages, vm_paddr_t low,
  529     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
  530     vm_memattr_t memattr);
  531 vm_page_t vm_page_alloc_freelist(int, int);
  532 vm_page_t vm_page_alloc_freelist_domain(int, int, int);
  533 bool vm_page_blacklist_add(vm_paddr_t pa, bool verbose);
  534 void vm_page_change_lock(vm_page_t m, struct mtx **mtx);
  535 vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int);
  536 int vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
  537     vm_page_t *ma, int count);
  538 void vm_page_deactivate(vm_page_t);
  539 void vm_page_deactivate_noreuse(vm_page_t);
  540 void vm_page_dequeue(vm_page_t m);
  541 void vm_page_dequeue_deferred(vm_page_t m);
  542 void vm_page_drain_pqbatch(void);
  543 vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t);
  544 bool vm_page_free_prep(vm_page_t m);
  545 vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
  546 void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
  547 int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
  548 void vm_page_launder(vm_page_t m);
  549 vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t);
  550 vm_page_t vm_page_next(vm_page_t m);
  551 int vm_page_pa_tryrelock(pmap_t, vm_paddr_t, vm_paddr_t *);
  552 struct vm_pagequeue *vm_page_pagequeue(vm_page_t m);
  553 vm_page_t vm_page_prev(vm_page_t m);
  554 bool vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m);
  555 void vm_page_putfake(vm_page_t m);
  556 void vm_page_readahead_finish(vm_page_t m);
  557 bool vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low,
  558     vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
  559 bool vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
  560     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
  561 void vm_page_reference(vm_page_t m);
  562 void vm_page_remove (vm_page_t);
  563 int vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t);
  564 vm_page_t vm_page_replace(vm_page_t mnew, vm_object_t object,
  565     vm_pindex_t pindex);
  566 void vm_page_requeue(vm_page_t m);
  567 int vm_page_sbusied(vm_page_t m);
  568 vm_page_t vm_page_scan_contig(u_long npages, vm_page_t m_start,
  569     vm_page_t m_end, u_long alignment, vm_paddr_t boundary, int options);
  570 void vm_page_set_valid_range(vm_page_t m, int base, int size);
  571 int vm_page_sleep_if_busy(vm_page_t m, const char *msg);
  572 vm_offset_t vm_page_startup(vm_offset_t vaddr);
  573 void vm_page_sunbusy(vm_page_t m);
  574 bool vm_page_try_to_free(vm_page_t m);
  575 int vm_page_trysbusy(vm_page_t m);
  576 void vm_page_unhold_pages(vm_page_t *ma, int count);
  577 void vm_page_unswappable(vm_page_t m);
  578 bool vm_page_unwire(vm_page_t m, uint8_t queue);
  579 bool vm_page_unwire_noq(vm_page_t m);
  580 void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
  581 void vm_page_wire (vm_page_t);
  582 void vm_page_xunbusy_hard(vm_page_t m);
  583 void vm_page_xunbusy_maybelocked(vm_page_t m);
  584 void vm_page_set_validclean (vm_page_t, int, int);
  585 void vm_page_clear_dirty (vm_page_t, int, int);
  586 void vm_page_set_invalid (vm_page_t, int, int);
  587 int vm_page_is_valid (vm_page_t, int, int);
  588 void vm_page_test_dirty (vm_page_t);
  589 vm_page_bits_t vm_page_bits(int base, int size);
  590 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
  591 void vm_page_free_toq(vm_page_t m);
  592 void vm_page_free_pages_toq(struct spglist *free, bool update_wire_count);
  593 
  594 void vm_page_dirty_KBI(vm_page_t m);
  595 void vm_page_lock_KBI(vm_page_t m, const char *file, int line);
  596 void vm_page_unlock_KBI(vm_page_t m, const char *file, int line);
  597 int vm_page_trylock_KBI(vm_page_t m, const char *file, int line);
  598 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
  599 void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line);
  600 void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line);
  601 #endif
  602 
  603 #define vm_page_assert_sbusied(m)                                       \
  604         KASSERT(vm_page_sbusied(m),                                     \
  605             ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \
  606             (m), __FILE__, __LINE__))
  607 
  608 #define vm_page_assert_unbusied(m)                                      \
  609         KASSERT(!vm_page_busied(m),                                     \
  610             ("vm_page_assert_unbusied: page %p busy @ %s:%d",           \
  611             (m), __FILE__, __LINE__))
  612 
  613 #define vm_page_assert_xbusied(m)                                       \
  614         KASSERT(vm_page_xbusied(m),                                     \
  615             ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \
  616             (m), __FILE__, __LINE__))
  617 
  618 #define vm_page_busied(m)                                               \
  619         ((m)->busy_lock != VPB_UNBUSIED)
  620 
  621 #define vm_page_sbusy(m) do {                                           \
  622         if (!vm_page_trysbusy(m))                                       \
  623                 panic("%s: page %p failed shared busying", __func__,    \
  624                     (m));                                               \
  625 } while (0)
  626 
  627 #define vm_page_tryxbusy(m)                                             \
  628         (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,           \
  629             VPB_SINGLE_EXCLUSIVER))
  630 
  631 #define vm_page_xbusied(m)                                              \
  632         (((m)->busy_lock & VPB_SINGLE_EXCLUSIVER) != 0)
  633 
  634 #define vm_page_xbusy(m) do {                                           \
  635         if (!vm_page_tryxbusy(m))                                       \
  636                 panic("%s: page %p failed exclusive busying", __func__, \
  637                     (m));                                               \
  638 } while (0)
  639 
  640 /* Note: page m's lock must not be owned by the caller. */
  641 #define vm_page_xunbusy(m) do {                                         \
  642         if (!atomic_cmpset_rel_int(&(m)->busy_lock,                     \
  643             VPB_SINGLE_EXCLUSIVER, VPB_UNBUSIED))                       \
  644                 vm_page_xunbusy_hard(m);                                \
  645 } while (0)
  646 
  647 #ifdef INVARIANTS
  648 void vm_page_object_lock_assert(vm_page_t m);
  649 #define VM_PAGE_OBJECT_LOCK_ASSERT(m)   vm_page_object_lock_assert(m)
  650 void vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits);
  651 #define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits)                           \
  652         vm_page_assert_pga_writeable(m, bits)
  653 #else
  654 #define VM_PAGE_OBJECT_LOCK_ASSERT(m)   (void)0
  655 #define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits)   (void)0
  656 #endif
  657 
  658 /*
  659  * We want to use atomic updates for the aflags field, which is 8 bits wide.
  660  * However, not all architectures support atomic operations on 8-bit
  661  * destinations.  In order that we can easily use a 32-bit operation, we
  662  * require that the aflags field be 32-bit aligned.
  663  */
  664 CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0);
  665 
  666 /*
  667  *      Clear the given bits in the specified page.
  668  */
  669 static inline void
  670 vm_page_aflag_clear(vm_page_t m, uint8_t bits)
  671 {
  672         uint32_t *addr, val;
  673 
  674         /*
  675          * The PGA_REFERENCED flag can only be cleared if the page is locked.
  676          */
  677         if ((bits & PGA_REFERENCED) != 0)
  678                 vm_page_assert_locked(m);
  679 
  680         /*
  681          * Access the whole 32-bit word containing the aflags field with an
  682          * atomic update.  Parallel non-atomic updates to the other fields
  683          * within this word are handled properly by the atomic update.
  684          */
  685         addr = (void *)&m->aflags;
  686         KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0,
  687             ("vm_page_aflag_clear: aflags is misaligned"));
  688         val = bits;
  689 #if BYTE_ORDER == BIG_ENDIAN
  690         val <<= 24;
  691 #endif
  692         atomic_clear_32(addr, val);
  693 }
  694 
  695 /*
  696  *      Set the given bits in the specified page.
  697  */
  698 static inline void
  699 vm_page_aflag_set(vm_page_t m, uint8_t bits)
  700 {
  701         uint32_t *addr, val;
  702 
  703         VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits);
  704 
  705         /*
  706          * Access the whole 32-bit word containing the aflags field with an
  707          * atomic update.  Parallel non-atomic updates to the other fields
  708          * within this word are handled properly by the atomic update.
  709          */
  710         addr = (void *)&m->aflags;
  711         KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0,
  712             ("vm_page_aflag_set: aflags is misaligned"));
  713         val = bits;
  714 #if BYTE_ORDER == BIG_ENDIAN
  715         val <<= 24;
  716 #endif
  717         atomic_set_32(addr, val);
  718 } 
  719 
  720 /*
  721  *      vm_page_dirty:
  722  *
  723  *      Set all bits in the page's dirty field.
  724  *
  725  *      The object containing the specified page must be locked if the
  726  *      call is made from the machine-independent layer.
  727  *
  728  *      See vm_page_clear_dirty_mask().
  729  */
  730 static __inline void
  731 vm_page_dirty(vm_page_t m)
  732 {
  733 
  734         /* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */
  735 #if (defined(KLD_MODULE) && !defined(KLD_TIED)) || defined(INVARIANTS)
  736         vm_page_dirty_KBI(m);
  737 #else
  738         m->dirty = VM_PAGE_BITS_ALL;
  739 #endif
  740 }
  741 
  742 /*
  743  *      vm_page_undirty:
  744  *
  745  *      Set page to not be dirty.  Note: does not clear pmap modify bits
  746  */
  747 static __inline void
  748 vm_page_undirty(vm_page_t m)
  749 {
  750 
  751         VM_PAGE_OBJECT_LOCK_ASSERT(m);
  752         m->dirty = 0;
  753 }
  754 
  755 static inline void
  756 vm_page_replace_checked(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
  757     vm_page_t mold)
  758 {
  759         vm_page_t mret;
  760 
  761         mret = vm_page_replace(mnew, object, pindex);
  762         KASSERT(mret == mold,
  763             ("invalid page replacement, mold=%p, mret=%p", mold, mret));
  764 
  765         /* Unused if !INVARIANTS. */
  766         (void)mold;
  767         (void)mret;
  768 }
  769 
  770 /*
  771  *      vm_page_queue:
  772  *
  773  *      Return the index of the queue containing m.  This index is guaranteed
  774  *      not to change while the page lock is held.
  775  */
  776 static inline uint8_t
  777 vm_page_queue(vm_page_t m)
  778 {
  779 
  780         vm_page_assert_locked(m);
  781 
  782         if ((m->aflags & PGA_DEQUEUE) != 0)
  783                 return (PQ_NONE);
  784         atomic_thread_fence_acq();
  785         return (m->queue);
  786 }
  787 
  788 static inline bool
  789 vm_page_active(vm_page_t m)
  790 {
  791 
  792         return (vm_page_queue(m) == PQ_ACTIVE);
  793 }
  794 
  795 static inline bool
  796 vm_page_inactive(vm_page_t m)
  797 {
  798 
  799         return (vm_page_queue(m) == PQ_INACTIVE);
  800 }
  801 
  802 static inline bool
  803 vm_page_in_laundry(vm_page_t m)
  804 {
  805         uint8_t queue;
  806 
  807         queue = vm_page_queue(m);
  808         return (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE);
  809 }
  810 
  811 /*
  812  *      vm_page_held:
  813  *
  814  *      Return true if a reference prevents the page from being reclaimable.
  815  */
  816 static inline bool
  817 vm_page_held(vm_page_t m)
  818 {
  819 
  820         return (m->hold_count > 0 || m->wire_count > 0);
  821 }
  822 
  823 #endif                          /* _KERNEL */
  824 #endif                          /* !_VM_PAGE_ */

Cache object: e3d77634b194faf51efd2709689cf94c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.