The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. All advertising materials mentioning features or use of this software
   17  *    must display the following acknowledgement:
   18  *      This product includes software developed by the University of
   19  *      California, Berkeley and its contributors.
   20  * 4. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      from: @(#)vm_page.h     8.2 (Berkeley) 12/13/93
   37  *
   38  *
   39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   40  * All rights reserved.
   41  *
   42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   43  *
   44  * Permission to use, copy, modify and distribute this software and
   45  * its documentation is hereby granted, provided that both the copyright
   46  * notice and this permission notice appear in all copies of the
   47  * software, derivative works or modified versions, and any portions
   48  * thereof, and that both notices appear in supporting documentation.
   49  *
   50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   53  *
   54  * Carnegie Mellon requests users of this software to return to
   55  *
   56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   57  *  School of Computer Science
   58  *  Carnegie Mellon University
   59  *  Pittsburgh PA 15213-3890
   60  *
   61  * any improvements or extensions that they make and grant Carnegie the
   62  * rights to redistribute these changes.
   63  *
   64  * $FreeBSD$
   65  */
   66 
   67 /*
   68  *      Resident memory system definitions.
   69  */
   70 
   71 #ifndef _VM_PAGE_
   72 #define _VM_PAGE_
   73 
   74 #if !defined(KLD_MODULE)
   75 #include "opt_vmpage.h"
   76 #endif
   77 
   78 #include <vm/pmap.h>
   79 #include <machine/atomic.h>
   80 
   81 /*
   82  *      Management of resident (logical) pages.
   83  *
   84  *      A small structure is kept for each resident
   85  *      page, indexed by page number.  Each structure
   86  *      is an element of several lists:
   87  *
   88  *              A hash table bucket used to quickly
   89  *              perform object/offset lookups
   90  *
   91  *              A list of all pages for a given object,
   92  *              so they can be quickly deactivated at
   93  *              time of deallocation.
   94  *
   95  *              An ordered list of pages due for pageout.
   96  *
   97  *      In addition, the structure contains the object
   98  *      and offset to which this page belongs (for pageout),
   99  *      and sundry status bits.
  100  *
  101  *      Fields in this structure are locked either by the lock on the
  102  *      object that the page belongs to (O) or by the lock on the page
  103  *      queues (P).
  104  *
  105  *      The 'valid' and 'dirty' fields are distinct.  A page may have dirty
  106  *      bits set without having associated valid bits set.  This is used by
  107  *      NFS to implement piecemeal writes.
  108  */
  109 
  110 TAILQ_HEAD(pglist, vm_page);
  111 
  112 struct vm_page {
  113         TAILQ_ENTRY(vm_page) pageq;     /* queue info for FIFO queue or free list (P) */
  114         struct vm_page  *hnext;         /* hash table link (O,P)        */
  115         TAILQ_ENTRY(vm_page) listq;     /* pages in same object (O)     */
  116 
  117         vm_object_t object;             /* which object am I in (O,P)*/
  118         vm_pindex_t pindex;             /* offset into object (O,P) */
  119         vm_paddr_t phys_addr;           /* physical address of page */
  120         struct md_page md;              /* machine dependant stuff */
  121         u_short queue;                  /* page queue index */
  122         u_short flags,                  /* see below */
  123                 pc;                     /* page color */
  124         u_short wire_count;             /* wired down maps refs (P) */
  125         short hold_count;               /* page hold count */
  126         u_char  act_count;              /* page usage count */
  127         u_char  busy;                   /* page busy count */
  128         /* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
  129         /* so, on normal X86 kernels, they must be at least 8 bits wide */
  130 #if PAGE_SIZE == 4096
  131         u_char  valid;                  /* map of valid DEV_BSIZE chunks */
  132         u_char  dirty;                  /* map of dirty DEV_BSIZE chunks */
  133 #elif PAGE_SIZE == 8192
  134         u_short valid;                  /* map of valid DEV_BSIZE chunks */
  135         u_short dirty;                  /* map of dirty DEV_BSIZE chunks */
  136 #endif
  137 };
  138 
  139 /*
  140  * note: currently use SWAPBLK_NONE as an absolute value rather then 
  141  * a flag bit.
  142  */
  143 
  144 #define SWAPBLK_MASK    ((daddr_t)((u_daddr_t)-1 >> 1))         /* mask */
  145 #define SWAPBLK_NONE    ((daddr_t)((u_daddr_t)SWAPBLK_MASK + 1))/* flag */
  146 
  147 #if !defined(KLD_MODULE)
  148 
  149 /*
  150  * Page coloring parameters
  151  */
  152 /* Each of PQ_FREE, and PQ_CACHE have PQ_HASH_SIZE entries */
  153 
  154 /* Backward compatibility for existing PQ_*CACHE config options. */
  155 #if !defined(PQ_CACHESIZE)
  156 #if defined(PQ_HUGECACHE)
  157 #define PQ_CACHESIZE 1024
  158 #elif defined(PQ_LARGECACHE)
  159 #define PQ_CACHESIZE 512
  160 #elif defined(PQ_MEDIUMCACHE)
  161 #define PQ_CACHESIZE 256
  162 #elif defined(PQ_NORMALCACHE)
  163 #define PQ_CACHESIZE 64
  164 #elif defined(PQ_NOOPT)
  165 #define PQ_CACHESIZE 0
  166 #else
  167 #define PQ_CACHESIZE 128
  168 #endif
  169 #endif
  170 
  171 #if PQ_CACHESIZE >= 1024
  172 #define PQ_PRIME1 31    /* Prime number somewhat less than PQ_HASH_SIZE */
  173 #define PQ_PRIME2 23    /* Prime number somewhat less than PQ_HASH_SIZE */
  174 #define PQ_L2_SIZE 256  /* A number of colors opt for 1M cache */
  175 
  176 #elif PQ_CACHESIZE >= 512
  177 #define PQ_PRIME1 31    /* Prime number somewhat less than PQ_HASH_SIZE */
  178 #define PQ_PRIME2 23    /* Prime number somewhat less than PQ_HASH_SIZE */
  179 #define PQ_L2_SIZE 128  /* A number of colors opt for 512K cache */
  180 
  181 #elif PQ_CACHESIZE >= 256
  182 #define PQ_PRIME1 13    /* Prime number somewhat less than PQ_HASH_SIZE */
  183 #define PQ_PRIME2 7     /* Prime number somewhat less than PQ_HASH_SIZE */
  184 #define PQ_L2_SIZE 64   /* A number of colors opt for 256K cache */
  185 
  186 #elif PQ_CACHESIZE >= 128
  187 #define PQ_PRIME1 9     /* Produces a good PQ_L2_SIZE/3 + PQ_PRIME1 */
  188 #define PQ_PRIME2 5     /* Prime number somewhat less than PQ_HASH_SIZE */
  189 #define PQ_L2_SIZE 32   /* A number of colors opt for 128k cache */
  190 
  191 #elif PQ_CACHESIZE >= 64
  192 #define PQ_PRIME1 5     /* Prime number somewhat less than PQ_HASH_SIZE */
  193 #define PQ_PRIME2 3     /* Prime number somewhat less than PQ_HASH_SIZE */
  194 #define PQ_L2_SIZE 16   /* A reasonable number of colors (opt for 64K cache) */
  195 
  196 #else
  197 #define PQ_PRIME1 1     /* Disable page coloring. */
  198 #define PQ_PRIME2 1
  199 #define PQ_L2_SIZE 1
  200 
  201 #endif
  202 
  203 #define PQ_L2_MASK (PQ_L2_SIZE - 1)
  204 
  205 #define PQ_NONE 0
  206 #define PQ_FREE 1
  207 #define PQ_INACTIVE (1 + 1*PQ_L2_SIZE)
  208 #define PQ_ACTIVE (2 + 1*PQ_L2_SIZE)
  209 #define PQ_CACHE (3 + 1*PQ_L2_SIZE)
  210 #define PQ_HOLD  (3 + 2*PQ_L2_SIZE)
  211 #define PQ_COUNT (4 + 2*PQ_L2_SIZE)
  212 
  213 struct vpgqueues {
  214         struct pglist pl;
  215         int     *cnt;
  216         int     lcnt;
  217 };
  218 
  219 extern struct vpgqueues vm_page_queues[PQ_COUNT];
  220 
  221 #endif
  222 
  223 /*
  224  * These are the flags defined for vm_page.
  225  *
  226  * Note: PG_FILLED and PG_DIRTY are added for the filesystems.
  227  *
  228  * Note: PG_UNMANAGED (used by OBJT_PHYS) indicates that the page is
  229  *       not under PV management but otherwise should be treated as a
  230  *       normal page.  Pages not under PV management cannot be paged out
  231  *       via the object/vm_page_t because there is no knowledge of their
  232  *       pte mappings, nor can they be removed from their objects via 
  233  *       the object, and such pages are also not on any PQ queue.
  234  */
  235 #define PG_BUSY         0x0001          /* page is in transit (O) */
  236 #define PG_WANTED       0x0002          /* someone is waiting for page (O) */
  237 #define PG_WINATCFLS    0x0004          /* flush dirty page on inactive q */
  238 #define PG_FICTITIOUS   0x0008          /* physical page doesn't exist (O) */
  239 #define PG_WRITEABLE    0x0010          /* page is mapped writeable */
  240 #define PG_MAPPED       0x0020          /* page is mapped */
  241 #define PG_ZERO         0x0040          /* page is zeroed */
  242 #define PG_REFERENCED   0x0080          /* page has been referenced */
  243 #define PG_CLEANCHK     0x0100          /* page will be checked for cleaning */
  244 #define PG_SWAPINPROG   0x0200          /* swap I/O in progress on page      */
  245 #define PG_NOSYNC       0x0400          /* do not collect for syncer */
  246 #define PG_UNMANAGED    0x0800          /* No PV management for page */
  247 #define PG_MARKER       0x1000          /* special queue marker page */
  248 
  249 /*
  250  * Misc constants.
  251  */
  252 
  253 #define ACT_DECLINE             1
  254 #define ACT_ADVANCE             3
  255 #define ACT_INIT                5
  256 #define ACT_MAX                 64
  257 #define PFCLUSTER_BEHIND        3
  258 #define PFCLUSTER_AHEAD         3
  259 
  260 #ifdef _KERNEL
  261 /*
  262  * Each pageable resident page falls into one of four lists:
  263  *
  264  *      free
  265  *              Available for allocation now.
  266  *
  267  * The following are all LRU sorted:
  268  *
  269  *      cache
  270  *              Almost available for allocation. Still in an
  271  *              object, but clean and immediately freeable at
  272  *              non-interrupt times.
  273  *
  274  *      inactive
  275  *              Low activity, candidates for reclamation.
  276  *              This is the list of pages that should be
  277  *              paged out next.
  278  *
  279  *      active
  280  *              Pages that are "active" i.e. they have been
  281  *              recently referenced.
  282  *
  283  *      zero
  284  *              Pages that are really free and have been pre-zeroed
  285  *
  286  */
  287 
  288 extern int vm_page_zero_count;
  289 
  290 extern vm_page_t vm_page_array;         /* First resident page in table */
  291 extern int vm_page_array_size;          /* number of vm_page_t's */
  292 extern long first_page;                 /* first physical page number */
  293 
  294 #define VM_PAGE_TO_PHYS(entry)  ((entry)->phys_addr)
  295 
  296 #define PHYS_TO_VM_PAGE(pa) \
  297                 (&vm_page_array[atop(pa) - first_page ])
  298 
  299 /*
  300  *      Functions implemented as macros
  301  */
  302 
  303 static __inline void
  304 vm_page_flag_set(vm_page_t m, unsigned int bits)
  305 {
  306         atomic_set_short(&(m)->flags, bits);
  307 }
  308 
  309 static __inline void
  310 vm_page_flag_clear(vm_page_t m, unsigned int bits)
  311 {
  312         atomic_clear_short(&(m)->flags, bits);
  313 }
  314 
  315 #if 0
  316 static __inline void
  317 vm_page_assert_wait(vm_page_t m, int interruptible)
  318 {
  319         vm_page_flag_set(m, PG_WANTED);
  320         assert_wait((int) m, interruptible);
  321 }
  322 #endif
  323 
  324 static __inline void
  325 vm_page_busy(vm_page_t m)
  326 {
  327         KASSERT((m->flags & PG_BUSY) == 0, ("vm_page_busy: page already busy!!!"));
  328         vm_page_flag_set(m, PG_BUSY);
  329 }
  330 
  331 /*
  332  *      vm_page_flash:
  333  *
  334  *      wakeup anyone waiting for the page.
  335  */
  336 
  337 static __inline void
  338 vm_page_flash(vm_page_t m)
  339 {
  340         if (m->flags & PG_WANTED) {
  341                 vm_page_flag_clear(m, PG_WANTED);
  342                 wakeup(m);
  343         }
  344 }
  345 
  346 /*
  347  *      vm_page_wakeup:
  348  *
  349  *      clear the PG_BUSY flag and wakeup anyone waiting for the
  350  *      page.
  351  *
  352  */
  353 
  354 static __inline void
  355 vm_page_wakeup(vm_page_t m)
  356 {
  357         KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
  358         vm_page_flag_clear(m, PG_BUSY);
  359         vm_page_flash(m);
  360 }
  361 
  362 /*
  363  *
  364  *
  365  */
  366 
  367 static __inline void
  368 vm_page_io_start(vm_page_t m)
  369 {
  370         atomic_add_char(&(m)->busy, 1);
  371 }
  372 
  373 static __inline void
  374 vm_page_io_finish(vm_page_t m)
  375 {
  376         atomic_subtract_char(&m->busy, 1);
  377         if (m->busy == 0)
  378                 vm_page_flash(m);
  379 }
  380 
  381 
  382 #if PAGE_SIZE == 4096
  383 #define VM_PAGE_BITS_ALL 0xff
  384 #endif
  385 
  386 #if PAGE_SIZE == 8192
  387 #define VM_PAGE_BITS_ALL 0xffff
  388 #endif
  389 
  390 #define VM_ALLOC_NORMAL         0
  391 #define VM_ALLOC_INTERRUPT      1
  392 #define VM_ALLOC_SYSTEM         2
  393 #define VM_ALLOC_ZERO           3
  394 #define VM_ALLOC_RETRY          0x80
  395 
  396 void vm_page_unhold(vm_page_t mem);
  397 
  398 void vm_page_activate (vm_page_t);
  399 vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int);
  400 vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int);
  401 void vm_page_cache (register vm_page_t);
  402 int vm_page_try_to_cache (vm_page_t);
  403 int vm_page_try_to_free (vm_page_t);
  404 void vm_page_dontneed (register vm_page_t);
  405 static __inline void vm_page_copy (vm_page_t, vm_page_t);
  406 static __inline void vm_page_free (vm_page_t);
  407 static __inline void vm_page_free_zero (vm_page_t);
  408 void vm_page_deactivate (vm_page_t);
  409 void vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
  410 vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t);
  411 void vm_page_remove (vm_page_t);
  412 void vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t);
  413 vm_offset_t vm_page_startup (vm_offset_t, vm_offset_t, vm_offset_t);
  414 vm_page_t vm_add_new_page (vm_paddr_t pa);
  415 void vm_page_unmanage (vm_page_t);
  416 void vm_page_unwire (vm_page_t, int);
  417 void vm_page_wire (vm_page_t);
  418 void vm_page_unqueue (vm_page_t);
  419 void vm_page_unqueue_nowakeup (vm_page_t);
  420 void vm_page_set_validclean (vm_page_t, int, int);
  421 void vm_page_set_dirty (vm_page_t, int, int);
  422 void vm_page_clear_dirty (vm_page_t, int, int);
  423 void vm_page_set_invalid (vm_page_t, int, int);
  424 static __inline boolean_t vm_page_zero_fill (vm_page_t);
  425 int vm_page_is_valid (vm_page_t, int, int);
  426 void vm_page_test_dirty (vm_page_t);
  427 int vm_page_bits (int, int);
  428 vm_page_t _vm_page_list_find (int, int);
  429 #if 0
  430 int vm_page_sleep(vm_page_t m, char *msg, char *busy);
  431 int vm_page_asleep(vm_page_t m, char *msg, char *busy);
  432 #endif
  433 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
  434 void vm_page_free_toq(vm_page_t m);
  435 
  436 /*
  437  * Keep page from being freed by the page daemon
  438  * much of the same effect as wiring, except much lower
  439  * overhead and should be used only for *very* temporary
  440  * holding ("wiring").
  441  */
  442 static __inline void
  443 vm_page_hold(vm_page_t mem)
  444 {
  445         mem->hold_count++;
  446 }
  447 
  448 /*
  449  *      vm_page_protect:
  450  *
  451  *      Reduce the protection of a page.  This routine never raises the 
  452  *      protection and therefore can be safely called if the page is already
  453  *      at VM_PROT_NONE (it will be a NOP effectively ).
  454  */
  455 
  456 static __inline void
  457 vm_page_protect(vm_page_t mem, int prot)
  458 {
  459         if (prot == VM_PROT_NONE) {
  460                 if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
  461                         pmap_page_protect(mem, VM_PROT_NONE);
  462                         vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
  463                 }
  464         } else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
  465                 pmap_page_protect(mem, VM_PROT_READ);
  466                 vm_page_flag_clear(mem, PG_WRITEABLE);
  467         }
  468 }
  469 
  470 /*
  471  *      vm_page_zero_fill:
  472  *
  473  *      Zero-fill the specified page.
  474  *      Written as a standard pagein routine, to
  475  *      be used by the zero-fill object.
  476  */
  477 static __inline boolean_t
  478 vm_page_zero_fill(m)
  479         vm_page_t m;
  480 {
  481         pmap_zero_page(VM_PAGE_TO_PHYS(m));
  482         return (TRUE);
  483 }
  484 
  485 /*
  486  *      vm_page_copy:
  487  *
  488  *      Copy one page to another
  489  */
  490 static __inline void
  491 vm_page_copy(src_m, dest_m)
  492         vm_page_t src_m;
  493         vm_page_t dest_m;
  494 {
  495         pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
  496         dest_m->valid = VM_PAGE_BITS_ALL;
  497 }
  498 
  499 /*
  500  *      vm_page_free:
  501  *
  502  *      Free a page
  503  *
  504  *      The clearing of PG_ZERO is a temporary safety until the code can be
  505  *      reviewed to determine that PG_ZERO is being properly cleared on
  506  *      write faults or maps.  PG_ZERO was previously cleared in 
  507  *      vm_page_alloc().
  508  */
  509 static __inline void
  510 vm_page_free(m)
  511         vm_page_t m;
  512 {
  513         vm_page_flag_clear(m, PG_ZERO);
  514         vm_page_free_toq(m);
  515 }
  516 
  517 /*
  518  *      vm_page_free_zero:
  519  *
  520  *      Free a page to the zerod-pages queue
  521  */
  522 static __inline void
  523 vm_page_free_zero(m)
  524         vm_page_t m;
  525 {
  526         vm_page_flag_set(m, PG_ZERO);
  527         vm_page_free_toq(m);
  528 }
  529 
  530 /*
  531  *      vm_page_sleep_busy:
  532  *
  533  *      Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
  534  *      m->busy is zero.  Returns TRUE if it had to sleep ( including if 
  535  *      it almost had to sleep and made temporary spl*() mods), FALSE 
  536  *      otherwise.
  537  *
  538  *      This routine assumes that interrupts can only remove the busy
  539  *      status from a page, not set the busy status or change it from
  540  *      PG_BUSY to m->busy or vise versa (which would create a timing
  541  *      window).
  542  *
  543  *      Note that being an inline, this code will be well optimized.
  544  */
  545 
  546 static __inline int
  547 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
  548 {
  549         if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
  550                 int s = splvm();
  551                 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
  552                         /*
  553                          * Page is busy. Wait and retry.
  554                          */
  555                         vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
  556                         tsleep(m, PVM, msg, 0);
  557                 }
  558                 splx(s);
  559                 return(TRUE);
  560                 /* not reached */
  561         }
  562         return(FALSE);
  563 }
  564 
  565 /*
  566  *      vm_page_dirty:
  567  *
  568  *      make page all dirty
  569  */
  570 
  571 static __inline void
  572 vm_page_dirty(vm_page_t m)
  573 {
  574 #if !defined(KLD_MODULE)
  575         KASSERT(m->queue - m->pc != PQ_CACHE, ("vm_page_dirty: page in cache!"));
  576 #endif
  577         m->dirty = VM_PAGE_BITS_ALL;
  578 }
  579 
  580 /*
  581  *      vm_page_undirty:
  582  *
  583  *      Set page to not be dirty.  Note: does not clear pmap modify bits 
  584  */
  585 
  586 static __inline void
  587 vm_page_undirty(vm_page_t m)
  588 {
  589         m->dirty = 0;
  590 }
  591 
  592 #if !defined(KLD_MODULE)
  593 
  594 static __inline vm_page_t
  595 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
  596 {
  597         vm_page_t m;
  598 
  599 #if PQ_L2_SIZE > 1
  600         if (prefer_zero) {
  601                 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
  602         } else {
  603                 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
  604         }
  605         if (m == NULL)
  606                 m = _vm_page_list_find(basequeue, index);
  607 #else
  608         if (prefer_zero) {
  609                 m = TAILQ_LAST(&vm_page_queues[basequeue].pl, pglist);
  610         } else {
  611                 m = TAILQ_FIRST(&vm_page_queues[basequeue].pl);
  612         }
  613 #endif
  614         return(m);
  615 }
  616 
  617 #endif
  618 
  619 #endif                          /* _KERNEL */
  620 #endif                          /* !_VM_PAGE_ */

Cache object: 016755f5594fed5c270fbcd6a642c420


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.