The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_page.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_page.h     8.2 (Berkeley) 12/13/93
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  *
   60  * $FreeBSD: releng/9.2/sys/vm/vm_page.h 240760 2012-09-20 18:21:29Z alc $
   61  */
   62 
   63 /*
   64  *      Resident memory system definitions.
   65  */
   66 
   67 #ifndef _VM_PAGE_
   68 #define _VM_PAGE_
   69 
   70 #include <vm/pmap.h>
   71 
   72 /*
   73  *      Management of resident (logical) pages.
   74  *
   75  *      A small structure is kept for each resident
   76  *      page, indexed by page number.  Each structure
   77  *      is an element of several lists:
   78  *
   79  *              A hash table bucket used to quickly
   80  *              perform object/offset lookups
   81  *
   82  *              A list of all pages for a given object,
   83  *              so they can be quickly deactivated at
   84  *              time of deallocation.
   85  *
   86  *              An ordered list of pages due for pageout.
   87  *
   88  *      In addition, the structure contains the object
   89  *      and offset to which this page belongs (for pageout),
   90  *      and sundry status bits.
   91  *
   92  *      In general, operations on this structure's mutable fields are
   93  *      synchronized using either one of or a combination of the lock on the
   94  *      object that the page belongs to (O), the pool lock for the page (P),
   95  *      or the lock for either the free or paging queues (Q).  If a field is
   96  *      annotated below with two of these locks, then holding either lock is
   97  *      sufficient for read access, but both locks are required for write
   98  *      access.
   99  *
  100  *      In contrast, the synchronization of accesses to the page's
  101  *      dirty field is machine dependent (M).  In the
  102  *      machine-independent layer, the lock on the object that the
  103  *      page belongs to must be held in order to operate on the field.
  104  *      However, the pmap layer is permitted to set all bits within
  105  *      the field without holding that lock.  If the underlying
  106  *      architecture does not support atomic read-modify-write
  107  *      operations on the field's type, then the machine-independent
  108  *      layer uses a 32-bit atomic on the aligned 32-bit word that
  109  *      contains the dirty field.  In the machine-independent layer,
  110  *      the implementation of read-modify-write operations on the
  111  *      field is encapsulated in vm_page_clear_dirty_mask().
  112  */
  113 
  114 TAILQ_HEAD(pglist, vm_page);
  115 
  116 #if PAGE_SIZE == 4096
  117 #define VM_PAGE_BITS_ALL 0xffu
  118 typedef uint8_t vm_page_bits_t;
  119 #elif PAGE_SIZE == 8192
  120 #define VM_PAGE_BITS_ALL 0xffffu
  121 typedef uint16_t vm_page_bits_t;
  122 #elif PAGE_SIZE == 16384
  123 #define VM_PAGE_BITS_ALL 0xffffffffu
  124 typedef uint32_t vm_page_bits_t;
  125 #elif PAGE_SIZE == 32768
  126 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
  127 typedef uint64_t vm_page_bits_t;
  128 #endif
  129 
  130 struct vm_page {
  131         TAILQ_ENTRY(vm_page) pageq;     /* queue info for FIFO queue or free list (Q) */
  132         TAILQ_ENTRY(vm_page) listq;     /* pages in same object (O)     */
  133         struct vm_page *left;           /* splay tree link (O)          */
  134         struct vm_page *right;          /* splay tree link (O)          */
  135 
  136         vm_object_t object;             /* which object am I in (O,P)*/
  137         vm_pindex_t pindex;             /* offset into object (O,P) */
  138         vm_paddr_t phys_addr;           /* physical address of page */
  139         struct md_page md;              /* machine dependant stuff */
  140         uint8_t queue;                  /* page queue index (P,Q) */
  141         int8_t segind;
  142         short hold_count;               /* page hold count (P) */
  143         uint8_t order;                  /* index of the buddy queue */
  144         uint8_t pool;
  145         u_short cow;                    /* page cow mapping count (P) */
  146         u_int wire_count;               /* wired down maps refs (P) */
  147         uint8_t aflags;                 /* access is atomic */
  148         uint8_t flags;                  /* see below, often immutable after alloc */
  149         u_short oflags;                 /* page flags (O) */
  150         u_char  act_count;              /* page usage count (O) */
  151         u_char  busy;                   /* page busy count (O) */
  152         /* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
  153         /* so, on normal X86 kernels, they must be at least 8 bits wide */
  154         vm_page_bits_t valid;           /* map of valid DEV_BSIZE chunks (O) */
  155         vm_page_bits_t dirty;           /* map of dirty DEV_BSIZE chunks (M) */
  156 };
  157 
  158 /*
  159  * Page flags stored in oflags:
  160  *
  161  * Access to these page flags is synchronized by the lock on the object
  162  * containing the page (O).
  163  *
  164  * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
  165  *       indicates that the page is not under PV management but
  166  *       otherwise should be treated as a normal page.  Pages not
  167  *       under PV management cannot be paged out via the
  168  *       object/vm_page_t because there is no knowledge of their pte
  169  *       mappings, and such pages are also not on any PQ queue.
  170  *
  171  */
  172 #define VPO_BUSY        0x0001  /* page is in transit */
  173 #define VPO_WANTED      0x0002  /* someone is waiting for page */
  174 #define VPO_UNMANAGED   0x0004          /* No PV management for page */
  175 #define VPO_SWAPINPROG  0x0200  /* swap I/O in progress on page */
  176 #define VPO_NOSYNC      0x0400  /* do not collect for syncer */
  177 
  178 #define PQ_NONE         255
  179 #define PQ_INACTIVE     0
  180 #define PQ_ACTIVE       1
  181 #define PQ_HOLD         2
  182 #define PQ_COUNT        3
  183 
  184 struct vpgqueues {
  185         struct pglist pl;
  186         int     *cnt;
  187 };
  188 
  189 extern struct vpgqueues vm_page_queues[PQ_COUNT];
  190 
  191 struct vpglocks {
  192         struct mtx      data;
  193         char            pad[CACHE_LINE_SIZE - sizeof(struct mtx)];
  194 } __aligned(CACHE_LINE_SIZE);
  195 
  196 extern struct vpglocks vm_page_queue_free_lock;
  197 extern struct vpglocks pa_lock[];
  198 
  199 #if defined(__arm__)
  200 #define PDRSHIFT        PDR_SHIFT
  201 #elif !defined(PDRSHIFT)
  202 #define PDRSHIFT        21
  203 #endif
  204 
  205 #define pa_index(pa)    ((pa) >> PDRSHIFT)
  206 #define PA_LOCKPTR(pa)  &pa_lock[pa_index((pa)) % PA_LOCK_COUNT].data
  207 #define PA_LOCKOBJPTR(pa)       ((struct lock_object *)PA_LOCKPTR((pa)))
  208 #define PA_LOCK(pa)     mtx_lock(PA_LOCKPTR(pa))
  209 #define PA_TRYLOCK(pa)  mtx_trylock(PA_LOCKPTR(pa))
  210 #define PA_UNLOCK(pa)   mtx_unlock(PA_LOCKPTR(pa))
  211 #define PA_UNLOCK_COND(pa)                      \
  212         do {                                    \
  213                 if ((pa) != 0) {                \
  214                         PA_UNLOCK((pa));        \
  215                         (pa) = 0;               \
  216                 }                               \
  217         } while (0)
  218 
  219 #define PA_LOCK_ASSERT(pa, a)   mtx_assert(PA_LOCKPTR(pa), (a))
  220 
  221 #ifdef KLD_MODULE
  222 #define vm_page_lock(m)         vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE)
  223 #define vm_page_unlock(m)       vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE)
  224 #define vm_page_trylock(m)      vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE)
  225 #if defined(INVARIANTS)
  226 #define vm_page_lock_assert(m, a)               \
  227     vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__)
  228 #else
  229 #define vm_page_lock_assert(m, a)
  230 #endif
  231 #else   /* !KLD_MODULE */
  232 #define vm_page_lockptr(m)      (PA_LOCKPTR(VM_PAGE_TO_PHYS((m))))
  233 #define vm_page_lock(m)         mtx_lock(vm_page_lockptr((m)))
  234 #define vm_page_unlock(m)       mtx_unlock(vm_page_lockptr((m)))
  235 #define vm_page_trylock(m)      mtx_trylock(vm_page_lockptr((m)))
  236 #define vm_page_lock_assert(m, a)       mtx_assert(vm_page_lockptr((m)), (a))
  237 #endif
  238 
  239 #define vm_page_queue_free_mtx  vm_page_queue_free_lock.data
  240 
  241 /*
  242  * These are the flags defined for vm_page.
  243  *
  244  * aflags are updated by atomic accesses.  Use the vm_page_aflag_set()
  245  * and vm_page_aflag_clear() functions to set and clear the flags.
  246  *
  247  * PGA_REFERENCED may be cleared only if the object containing the page is
  248  * locked.  It is set by both the MI and MD VM layers.
  249  *
  250  * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter().  When it
  251  * does so, the page must be VPO_BUSY.  The MI VM layer must never access this
  252  * flag directly.  Instead, it should call pmap_page_is_write_mapped().
  253  *
  254  * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has
  255  * at least one executable mapping.  It is not consumed by the MI VM layer.
  256  */
  257 #define PGA_WRITEABLE   0x01            /* page may be mapped writeable */
  258 #define PGA_REFERENCED  0x02            /* page has been referenced */
  259 #define PGA_EXECUTABLE  0x04            /* page may be mapped executable */
  260 
  261 /*
  262  * Page flags.  If changed at any other time than page allocation or
  263  * freeing, the modification must be protected by the vm_page lock.
  264  */
  265 #define PG_CACHED       0x01            /* page is cached */
  266 #define PG_FREE         0x02            /* page is free */
  267 #define PG_FICTITIOUS   0x04            /* physical page doesn't exist */
  268 #define PG_ZERO         0x08            /* page is zeroed */
  269 #define PG_MARKER       0x10            /* special queue marker page */
  270 #define PG_SLAB         0x20            /* object pointer is actually a slab */
  271 #define PG_WINATCFLS    0x40            /* flush dirty page on inactive q */
  272 #define PG_NODUMP       0x80            /* don't include this page in a dump */
  273 
  274 /*
  275  * Misc constants.
  276  */
  277 #define ACT_DECLINE             1
  278 #define ACT_ADVANCE             3
  279 #define ACT_INIT                5
  280 #define ACT_MAX                 64
  281 
  282 #ifdef _KERNEL
  283 
  284 /*
  285  * Each pageable resident page falls into one of five lists:
  286  *
  287  *      free
  288  *              Available for allocation now.
  289  *
  290  *      cache
  291  *              Almost available for allocation. Still associated with
  292  *              an object, but clean and immediately freeable.
  293  *
  294  *      hold
  295  *              Will become free after a pending I/O operation
  296  *              completes.
  297  *
  298  * The following lists are LRU sorted:
  299  *
  300  *      inactive
  301  *              Low activity, candidates for reclamation.
  302  *              This is the list of pages that should be
  303  *              paged out next.
  304  *
  305  *      active
  306  *              Pages that are "active" i.e. they have been
  307  *              recently referenced.
  308  *
  309  */
  310 
  311 struct vnode;
  312 extern int vm_page_zero_count;
  313 
  314 extern vm_page_t vm_page_array;         /* First resident page in table */
  315 extern long vm_page_array_size;         /* number of vm_page_t's */
  316 extern long first_page;                 /* first physical page number */
  317 
  318 #define VM_PAGE_IS_FREE(m)      (((m)->flags & PG_FREE) != 0)
  319 
  320 #define VM_PAGE_TO_PHYS(entry)  ((entry)->phys_addr)
  321 
  322 vm_page_t vm_phys_paddr_to_vm_page(vm_paddr_t pa);
  323 
  324 vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
  325 
  326 extern struct vpglocks vm_page_queue_lock;
  327 
  328 #define vm_page_queue_mtx       vm_page_queue_lock.data
  329 #define vm_page_lock_queues()   mtx_lock(&vm_page_queue_mtx)
  330 #define vm_page_unlock_queues() mtx_unlock(&vm_page_queue_mtx)
  331 
  332 /* page allocation classes: */
  333 #define VM_ALLOC_NORMAL         0
  334 #define VM_ALLOC_INTERRUPT      1
  335 #define VM_ALLOC_SYSTEM         2
  336 #define VM_ALLOC_CLASS_MASK     3
  337 /* page allocation flags: */
  338 #define VM_ALLOC_WIRED          0x0020  /* non pageable */
  339 #define VM_ALLOC_ZERO           0x0040  /* Try to obtain a zeroed page */
  340 #define VM_ALLOC_RETRY          0x0080  /* Mandatory with vm_page_grab() */
  341 #define VM_ALLOC_NOOBJ          0x0100  /* No associated object */
  342 #define VM_ALLOC_NOBUSY         0x0200  /* Do not busy the page */
  343 #define VM_ALLOC_IFCACHED       0x0400  /* Fail if the page is not cached */
  344 #define VM_ALLOC_IFNOTCACHED    0x0800  /* Fail if the page is cached */
  345 #define VM_ALLOC_IGN_SBUSY      0x1000  /* vm_page_grab() only */
  346 #define VM_ALLOC_NODUMP         0x2000  /* don't include in dump */
  347 
  348 #define VM_ALLOC_COUNT_SHIFT    16
  349 #define VM_ALLOC_COUNT(count)   ((count) << VM_ALLOC_COUNT_SHIFT)
  350 
  351 void vm_page_aflag_set(vm_page_t m, uint8_t bits);
  352 void vm_page_aflag_clear(vm_page_t m, uint8_t bits);
  353 void vm_page_busy(vm_page_t m);
  354 void vm_page_flash(vm_page_t m);
  355 void vm_page_io_start(vm_page_t m);
  356 void vm_page_io_finish(vm_page_t m);
  357 void vm_page_hold(vm_page_t mem);
  358 void vm_page_unhold(vm_page_t mem);
  359 void vm_page_free(vm_page_t m);
  360 void vm_page_free_zero(vm_page_t m);
  361 void vm_page_dirty(vm_page_t m);
  362 void vm_page_wakeup(vm_page_t m);
  363 
  364 void vm_pageq_remove(vm_page_t m);
  365 
  366 void vm_page_activate (vm_page_t);
  367 vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int);
  368 vm_page_t vm_page_alloc_freelist(int, int);
  369 struct vnode *vm_page_alloc_init(vm_page_t);
  370 vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int);
  371 void vm_page_cache(vm_page_t);
  372 void vm_page_cache_free(vm_object_t, vm_pindex_t, vm_pindex_t);
  373 void vm_page_cache_remove(vm_page_t);
  374 void vm_page_cache_transfer(vm_object_t, vm_pindex_t, vm_object_t);
  375 int vm_page_try_to_cache (vm_page_t);
  376 int vm_page_try_to_free (vm_page_t);
  377 void vm_page_dontneed(vm_page_t);
  378 void vm_page_deactivate (vm_page_t);
  379 vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t);
  380 vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
  381 void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
  382 void vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
  383 boolean_t vm_page_is_cached(vm_object_t object, vm_pindex_t pindex);
  384 vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t);
  385 vm_page_t vm_page_next(vm_page_t m);
  386 int vm_page_pa_tryrelock(pmap_t, vm_paddr_t, vm_paddr_t *);
  387 vm_page_t vm_page_prev(vm_page_t m);
  388 void vm_page_putfake(vm_page_t m);
  389 void vm_page_readahead_finish(vm_page_t m);
  390 void vm_page_reference(vm_page_t m);
  391 void vm_page_remove (vm_page_t);
  392 void vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t);
  393 void vm_page_requeue(vm_page_t m);
  394 void vm_page_set_valid(vm_page_t m, int base, int size);
  395 void vm_page_sleep(vm_page_t m, const char *msg);
  396 vm_page_t vm_page_splay(vm_pindex_t, vm_page_t);
  397 vm_offset_t vm_page_startup(vm_offset_t vaddr);
  398 void vm_page_unhold_pages(vm_page_t *ma, int count);
  399 void vm_page_unwire (vm_page_t, int);
  400 void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
  401 void vm_page_wire (vm_page_t);
  402 void vm_page_set_validclean (vm_page_t, int, int);
  403 void vm_page_clear_dirty (vm_page_t, int, int);
  404 void vm_page_set_invalid (vm_page_t, int, int);
  405 int vm_page_is_valid (vm_page_t, int, int);
  406 void vm_page_test_dirty (vm_page_t);
  407 vm_page_bits_t vm_page_bits(int base, int size);
  408 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
  409 void vm_page_free_toq(vm_page_t m);
  410 void vm_page_zero_idle_wakeup(void);
  411 void vm_page_cowfault (vm_page_t);
  412 int vm_page_cowsetup(vm_page_t);
  413 void vm_page_cowclear (vm_page_t);
  414 
  415 void vm_page_lock_KBI(vm_page_t m, const char *file, int line);
  416 void vm_page_unlock_KBI(vm_page_t m, const char *file, int line);
  417 int vm_page_trylock_KBI(vm_page_t m, const char *file, int line);
  418 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
  419 void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line);
  420 #endif
  421 
  422 #ifdef INVARIANTS
  423 void vm_page_object_lock_assert(vm_page_t m);
  424 #define VM_PAGE_OBJECT_LOCK_ASSERT(m)   vm_page_object_lock_assert(m)
  425 #else
  426 #define VM_PAGE_OBJECT_LOCK_ASSERT(m)   (void)0
  427 #endif
  428 
  429 /*
  430  *      vm_page_sleep_if_busy:
  431  *
  432  *      Sleep and release the page queues lock if VPO_BUSY is set or,
  433  *      if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
  434  *      thread slept and the page queues lock was released.
  435  *      Otherwise, retains the page queues lock and returns FALSE.
  436  *
  437  *      The object containing the given page must be locked.
  438  */
  439 static __inline int
  440 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
  441 {
  442 
  443         if ((m->oflags & VPO_BUSY) || (also_m_busy && m->busy)) {
  444                 vm_page_sleep(m, msg);
  445                 return (TRUE);
  446         }
  447         return (FALSE);
  448 }
  449 
  450 /*
  451  *      vm_page_undirty:
  452  *
  453  *      Set page to not be dirty.  Note: does not clear pmap modify bits
  454  */
  455 static __inline void
  456 vm_page_undirty(vm_page_t m)
  457 {
  458 
  459         VM_PAGE_OBJECT_LOCK_ASSERT(m);
  460         m->dirty = 0;
  461 }
  462 
  463 #endif                          /* _KERNEL */
  464 #endif                          /* !_VM_PAGE_ */

Cache object: 1ab7965a22e749b03266fe7eec457305


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.